Merge changes from emacs-23 branch.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 2005, 2006, 2007, 2008, 2009, 2010
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8 Copyright (C) 2003
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
11
12 This file is part of GNU Emacs.
13
14 GNU Emacs is free software: you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 GNU Emacs is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26
27 /*** TABLE OF CONTENTS ***
28
29 0. General comments
30 1. Preamble
31 2. Emacs' internal format (emacs-utf-8) handlers
32 3. UTF-8 handlers
33 4. UTF-16 handlers
34 5. Charset-base coding systems handlers
35 6. emacs-mule (old Emacs' internal format) handlers
36 7. ISO2022 handlers
37 8. Shift-JIS and BIG5 handlers
38 9. CCL handlers
39 10. C library functions
40 11. Emacs Lisp library functions
41 12. Postamble
42
43 */
44
45 /*** 0. General comments ***
46
47
48 CODING SYSTEM
49
50 A coding system is an object for an encoding mechanism that contains
51 information about how to convert byte sequences to character
52 sequences and vice versa. When we say "decode", it means converting
53 a byte sequence of a specific coding system into a character
54 sequence that is represented by Emacs' internal coding system
55 `emacs-utf-8', and when we say "encode", it means converting a
56 character sequence of emacs-utf-8 to a byte sequence of a specific
57 coding system.
58
59 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
60 C level, a coding system is represented by a vector of attributes
61 stored in the hash table Vcharset_hash_table. The conversion from
62 coding system symbol to attributes vector is done by looking up
63 Vcharset_hash_table by the symbol.
64
65 Coding systems are classified into the following types depending on
66 the encoding mechanism. Here's a brief description of the types.
67
68 o UTF-8
69
70 o UTF-16
71
72 o Charset-base coding system
73
74 A coding system defined by one or more (coded) character sets.
75 Decoding and encoding are done by a code converter defined for each
76 character set.
77
78 o Old Emacs internal format (emacs-mule)
79
80 The coding system adopted by old versions of Emacs (20 and 21).
81
82 o ISO2022-base coding system
83
84 The most famous coding system for multiple character sets. X's
85 Compound Text, various EUCs (Extended Unix Code), and coding systems
86 used in the Internet communication such as ISO-2022-JP are all
87 variants of ISO2022.
88
89 o SJIS (or Shift-JIS or MS-Kanji-Code)
90
91 A coding system to encode character sets: ASCII, JISX0201, and
92 JISX0208. Widely used for PC's in Japan. Details are described in
93 section 8.
94
95 o BIG5
96
97 A coding system to encode character sets: ASCII and Big5. Widely
98 used for Chinese (mainly in Taiwan and Hong Kong). Details are
99 described in section 8. In this file, when we write "big5" (all
100 lowercase), we mean the coding system, and when we write "Big5"
101 (capitalized), we mean the character set.
102
103 o CCL
104
105 If a user wants to decode/encode text encoded in a coding system
106 not listed above, he can supply a decoder and an encoder for it in
107 CCL (Code Conversion Language) programs. Emacs executes the CCL
108 program while decoding/encoding.
109
110 o Raw-text
111
112 A coding system for text containing raw eight-bit data. Emacs
113 treats each byte of source text as a character (except for
114 end-of-line conversion).
115
116 o No-conversion
117
118 Like raw text, but don't do end-of-line conversion.
119
120
121 END-OF-LINE FORMAT
122
123 How text end-of-line is encoded depends on operating system. For
124 instance, Unix's format is just one byte of LF (line-feed) code,
125 whereas DOS's format is two-byte sequence of `carriage-return' and
126 `line-feed' codes. MacOS's format is usually one byte of
127 `carriage-return'.
128
129 Since text character encoding and end-of-line encoding are
130 independent, any coding system described above can take any format
131 of end-of-line (except for no-conversion).
132
133 STRUCT CODING_SYSTEM
134
135 Before using a coding system for code conversion (i.e. decoding and
136 encoding), we setup a structure of type `struct coding_system'.
137 This structure keeps various information about a specific code
138 conversion (e.g. the location of source and destination data).
139
140 */
141
142 /* COMMON MACROS */
143
144
145 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
146
147 These functions check if a byte sequence specified as a source in
148 CODING conforms to the format of XXX, and update the members of
149 DETECT_INFO.
150
151 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
152
153 Below is the template of these functions. */
154
155 #if 0
156 static int
157 detect_coding_XXX (struct coding_system *coding,
158 struct coding_detection_info *detect_info)
159 {
160 const unsigned char *src = coding->source;
161 const unsigned char *src_end = coding->source + coding->src_bytes;
162 int multibytep = coding->src_multibyte;
163 int consumed_chars = 0;
164 int found = 0;
165 ...;
166
167 while (1)
168 {
169 /* Get one byte from the source. If the souce is exausted, jump
170 to no_more_source:. */
171 ONE_MORE_BYTE (c);
172
173 if (! __C_conforms_to_XXX___ (c))
174 break;
175 if (! __C_strongly_suggests_XXX__ (c))
176 found = CATEGORY_MASK_XXX;
177 }
178 /* The byte sequence is invalid for XXX. */
179 detect_info->rejected |= CATEGORY_MASK_XXX;
180 return 0;
181
182 no_more_source:
183 /* The source exausted successfully. */
184 detect_info->found |= found;
185 return 1;
186 }
187 #endif
188
189 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
190
191 These functions decode a byte sequence specified as a source by
192 CODING. The resulting multibyte text goes to a place pointed to by
193 CODING->charbuf, the length of which should not exceed
194 CODING->charbuf_size;
195
196 These functions set the information of original and decoded texts in
197 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
198 They also set CODING->result to one of CODING_RESULT_XXX indicating
199 how the decoding is finished.
200
201 Below is the template of these functions. */
202
203 #if 0
204 static void
205 decode_coding_XXXX (struct coding_system *coding)
206 {
207 const unsigned char *src = coding->source + coding->consumed;
208 const unsigned char *src_end = coding->source + coding->src_bytes;
209 /* SRC_BASE remembers the start position in source in each loop.
210 The loop will be exited when there's not enough source code, or
211 when there's no room in CHARBUF for a decoded character. */
212 const unsigned char *src_base;
213 /* A buffer to produce decoded characters. */
214 int *charbuf = coding->charbuf + coding->charbuf_used;
215 int *charbuf_end = coding->charbuf + coding->charbuf_size;
216 int multibytep = coding->src_multibyte;
217
218 while (1)
219 {
220 src_base = src;
221 if (charbuf < charbuf_end)
222 /* No more room to produce a decoded character. */
223 break;
224 ONE_MORE_BYTE (c);
225 /* Decode it. */
226 }
227
228 no_more_source:
229 if (src_base < src_end
230 && coding->mode & CODING_MODE_LAST_BLOCK)
231 /* If the source ends by partial bytes to construct a character,
232 treat them as eight-bit raw data. */
233 while (src_base < src_end && charbuf < charbuf_end)
234 *charbuf++ = *src_base++;
235 /* Remember how many bytes and characters we consumed. If the
236 source is multibyte, the bytes and chars are not identical. */
237 coding->consumed = coding->consumed_char = src_base - coding->source;
238 /* Remember how many characters we produced. */
239 coding->charbuf_used = charbuf - coding->charbuf;
240 }
241 #endif
242
243 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
244
245 These functions encode SRC_BYTES length text at SOURCE of Emacs'
246 internal multibyte format by CODING. The resulting byte sequence
247 goes to a place pointed to by DESTINATION, the length of which
248 should not exceed DST_BYTES.
249
250 These functions set the information of original and encoded texts in
251 the members produced, produced_char, consumed, and consumed_char of
252 the structure *CODING. They also set the member result to one of
253 CODING_RESULT_XXX indicating how the encoding finished.
254
255 DST_BYTES zero means that source area and destination area are
256 overlapped, which means that we can produce a encoded text until it
257 reaches at the head of not-yet-encoded source text.
258
259 Below is a template of these functions. */
260 #if 0
261 static void
262 encode_coding_XXX (struct coding_system *coding)
263 {
264 int multibytep = coding->dst_multibyte;
265 int *charbuf = coding->charbuf;
266 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
267 unsigned char *dst = coding->destination + coding->produced;
268 unsigned char *dst_end = coding->destination + coding->dst_bytes;
269 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
270 int produced_chars = 0;
271
272 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
273 {
274 int c = *charbuf;
275 /* Encode C into DST, and increment DST. */
276 }
277 label_no_more_destination:
278 /* How many chars and bytes we produced. */
279 coding->produced_char += produced_chars;
280 coding->produced = dst - coding->destination;
281 }
282 #endif
283
284 \f
285 /*** 1. Preamble ***/
286
287 #include <config.h>
288 #include <stdio.h>
289 #include <setjmp.h>
290
291 #include "lisp.h"
292 #include "buffer.h"
293 #include "character.h"
294 #include "charset.h"
295 #include "ccl.h"
296 #include "composite.h"
297 #include "coding.h"
298 #include "window.h"
299 #include "frame.h"
300 #include "termhooks.h"
301
302 Lisp_Object Vcoding_system_hash_table;
303
304 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
305 Lisp_Object Qunix, Qdos;
306 Lisp_Object Qbuffer_file_coding_system;
307 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
308 Lisp_Object Qdefault_char;
309 Lisp_Object Qno_conversion, Qundecided;
310 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
311 Lisp_Object Qbig, Qlittle;
312 Lisp_Object Qcoding_system_history;
313 Lisp_Object Qvalid_codes;
314 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
315 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
316 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
317 Lisp_Object QCascii_compatible_p;
318
319 Lisp_Object Qcall_process, Qcall_process_region;
320 Lisp_Object Qstart_process, Qopen_network_stream;
321 Lisp_Object Qtarget_idx;
322
323 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
324 Lisp_Object Qinterrupted, Qinsufficient_memory;
325
326 /* If a symbol has this property, evaluate the value to define the
327 symbol as a coding system. */
328 static Lisp_Object Qcoding_system_define_form;
329
330 int coding_system_require_warning;
331
332 Lisp_Object Vselect_safe_coding_system_function;
333
334 /* Mnemonic string for each format of end-of-line. */
335 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
336 /* Mnemonic string to indicate format of end-of-line is not yet
337 decided. */
338 Lisp_Object eol_mnemonic_undecided;
339
340 /* Format of end-of-line decided by system. This is Qunix on
341 Unix and Mac, Qdos on DOS/Windows.
342 This has an effect only for external encoding (i.e. for output to
343 file and process), not for in-buffer or Lisp string encoding. */
344 static Lisp_Object system_eol_type;
345
346 #ifdef emacs
347
348 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
349
350 Lisp_Object Qcoding_system_p, Qcoding_system_error;
351
352 /* Coding system emacs-mule and raw-text are for converting only
353 end-of-line format. */
354 Lisp_Object Qemacs_mule, Qraw_text;
355 Lisp_Object Qutf_8_emacs;
356
357 /* Coding-systems are handed between Emacs Lisp programs and C internal
358 routines by the following three variables. */
359 /* Coding-system for reading files and receiving data from process. */
360 Lisp_Object Vcoding_system_for_read;
361 /* Coding-system for writing files and sending data to process. */
362 Lisp_Object Vcoding_system_for_write;
363 /* Coding-system actually used in the latest I/O. */
364 Lisp_Object Vlast_coding_system_used;
365 /* Set to non-nil when an error is detected while code conversion. */
366 Lisp_Object Vlast_code_conversion_error;
367 /* A vector of length 256 which contains information about special
368 Latin codes (especially for dealing with Microsoft codes). */
369 Lisp_Object Vlatin_extra_code_table;
370
371 /* Flag to inhibit code conversion of end-of-line format. */
372 int inhibit_eol_conversion;
373
374 /* Flag to inhibit ISO2022 escape sequence detection. */
375 int inhibit_iso_escape_detection;
376
377 /* Flag to inhibit detection of binary files through null bytes. */
378 int inhibit_null_byte_detection;
379
380 /* Flag to make buffer-file-coding-system inherit from process-coding. */
381 int inherit_process_coding_system;
382
383 /* Coding system to be used to encode text for terminal display when
384 terminal coding system is nil. */
385 struct coding_system safe_terminal_coding;
386
387 Lisp_Object Vfile_coding_system_alist;
388 Lisp_Object Vprocess_coding_system_alist;
389 Lisp_Object Vnetwork_coding_system_alist;
390
391 Lisp_Object Vlocale_coding_system;
392
393 #endif /* emacs */
394
395 /* Flag to tell if we look up translation table on character code
396 conversion. */
397 Lisp_Object Venable_character_translation;
398 /* Standard translation table to look up on decoding (reading). */
399 Lisp_Object Vstandard_translation_table_for_decode;
400 /* Standard translation table to look up on encoding (writing). */
401 Lisp_Object Vstandard_translation_table_for_encode;
402
403 Lisp_Object Qtranslation_table;
404 Lisp_Object Qtranslation_table_id;
405 Lisp_Object Qtranslation_table_for_decode;
406 Lisp_Object Qtranslation_table_for_encode;
407
408 /* Alist of charsets vs revision number. */
409 static Lisp_Object Vcharset_revision_table;
410
411 /* Default coding systems used for process I/O. */
412 Lisp_Object Vdefault_process_coding_system;
413
414 /* Char table for translating Quail and self-inserting input. */
415 Lisp_Object Vtranslation_table_for_input;
416
417 /* Two special coding systems. */
418 Lisp_Object Vsjis_coding_system;
419 Lisp_Object Vbig5_coding_system;
420
421 /* ISO2022 section */
422
423 #define CODING_ISO_INITIAL(coding, reg) \
424 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
425 coding_attr_iso_initial), \
426 reg)))
427
428
429 #define CODING_ISO_REQUEST(coding, charset_id) \
430 (((charset_id) <= (coding)->max_charset_id \
431 ? ((coding)->safe_charsets[charset_id] != 255 \
432 ? (coding)->safe_charsets[charset_id] \
433 : -1) \
434 : -1))
435
436
437 #define CODING_ISO_FLAGS(coding) \
438 ((coding)->spec.iso_2022.flags)
439 #define CODING_ISO_DESIGNATION(coding, reg) \
440 ((coding)->spec.iso_2022.current_designation[reg])
441 #define CODING_ISO_INVOCATION(coding, plane) \
442 ((coding)->spec.iso_2022.current_invocation[plane])
443 #define CODING_ISO_SINGLE_SHIFTING(coding) \
444 ((coding)->spec.iso_2022.single_shifting)
445 #define CODING_ISO_BOL(coding) \
446 ((coding)->spec.iso_2022.bol)
447 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
448 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
449 #define CODING_ISO_CMP_STATUS(coding) \
450 (&(coding)->spec.iso_2022.cmp_status)
451 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
452 ((coding)->spec.iso_2022.ctext_extended_segment_len)
453 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
454 ((coding)->spec.iso_2022.embedded_utf_8)
455
456 /* Control characters of ISO2022. */
457 /* code */ /* function */
458 #define ISO_CODE_LF 0x0A /* line-feed */
459 #define ISO_CODE_CR 0x0D /* carriage-return */
460 #define ISO_CODE_SO 0x0E /* shift-out */
461 #define ISO_CODE_SI 0x0F /* shift-in */
462 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
463 #define ISO_CODE_ESC 0x1B /* escape */
464 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
465 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
466 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
467
468 /* All code (1-byte) of ISO2022 is classified into one of the
469 followings. */
470 enum iso_code_class_type
471 {
472 ISO_control_0, /* Control codes in the range
473 0x00..0x1F and 0x7F, except for the
474 following 5 codes. */
475 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
476 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
477 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
478 ISO_escape, /* ISO_CODE_SO (0x1B) */
479 ISO_control_1, /* Control codes in the range
480 0x80..0x9F, except for the
481 following 3 codes. */
482 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
483 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
484 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
485 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
486 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
487 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
488 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
489 };
490
491 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
492 `iso-flags' attribute of an iso2022 coding system. */
493
494 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
495 instead of the correct short-form sequence (e.g. ESC $ A). */
496 #define CODING_ISO_FLAG_LONG_FORM 0x0001
497
498 /* If set, reset graphic planes and registers at end-of-line to the
499 initial state. */
500 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
501
502 /* If set, reset graphic planes and registers before any control
503 characters to the initial state. */
504 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
505
506 /* If set, encode by 7-bit environment. */
507 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
508
509 /* If set, use locking-shift function. */
510 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
511
512 /* If set, use single-shift function. Overwrite
513 CODING_ISO_FLAG_LOCKING_SHIFT. */
514 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
515
516 /* If set, use designation escape sequence. */
517 #define CODING_ISO_FLAG_DESIGNATION 0x0040
518
519 /* If set, produce revision number sequence. */
520 #define CODING_ISO_FLAG_REVISION 0x0080
521
522 /* If set, produce ISO6429's direction specifying sequence. */
523 #define CODING_ISO_FLAG_DIRECTION 0x0100
524
525 /* If set, assume designation states are reset at beginning of line on
526 output. */
527 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
528
529 /* If set, designation sequence should be placed at beginning of line
530 on output. */
531 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
532
533 /* If set, do not encode unsafe charactes on output. */
534 #define CODING_ISO_FLAG_SAFE 0x0800
535
536 /* If set, extra latin codes (128..159) are accepted as a valid code
537 on input. */
538 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
539
540 #define CODING_ISO_FLAG_COMPOSITION 0x2000
541
542 #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000
543
544 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
545
546 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
547
548 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
549
550 /* A character to be produced on output if encoding of the original
551 character is prohibited by CODING_ISO_FLAG_SAFE. */
552 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
553
554 /* UTF-8 section */
555 #define CODING_UTF_8_BOM(coding) \
556 ((coding)->spec.utf_8_bom)
557
558 /* UTF-16 section */
559 #define CODING_UTF_16_BOM(coding) \
560 ((coding)->spec.utf_16.bom)
561
562 #define CODING_UTF_16_ENDIAN(coding) \
563 ((coding)->spec.utf_16.endian)
564
565 #define CODING_UTF_16_SURROGATE(coding) \
566 ((coding)->spec.utf_16.surrogate)
567
568
569 /* CCL section */
570 #define CODING_CCL_DECODER(coding) \
571 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
572 #define CODING_CCL_ENCODER(coding) \
573 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
574 #define CODING_CCL_VALIDS(coding) \
575 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
576
577 /* Index for each coding category in `coding_categories' */
578
579 enum coding_category
580 {
581 coding_category_iso_7,
582 coding_category_iso_7_tight,
583 coding_category_iso_8_1,
584 coding_category_iso_8_2,
585 coding_category_iso_7_else,
586 coding_category_iso_8_else,
587 coding_category_utf_8_auto,
588 coding_category_utf_8_nosig,
589 coding_category_utf_8_sig,
590 coding_category_utf_16_auto,
591 coding_category_utf_16_be,
592 coding_category_utf_16_le,
593 coding_category_utf_16_be_nosig,
594 coding_category_utf_16_le_nosig,
595 coding_category_charset,
596 coding_category_sjis,
597 coding_category_big5,
598 coding_category_ccl,
599 coding_category_emacs_mule,
600 /* All above are targets of code detection. */
601 coding_category_raw_text,
602 coding_category_undecided,
603 coding_category_max
604 };
605
606 /* Definitions of flag bits used in detect_coding_XXXX. */
607 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
608 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
609 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
610 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
611 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
612 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
613 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
614 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
615 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
616 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
617 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
618 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
619 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
620 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
621 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
622 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
623 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
624 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
625 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
626 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
627
628 /* This value is returned if detect_coding_mask () find nothing other
629 than ASCII characters. */
630 #define CATEGORY_MASK_ANY \
631 (CATEGORY_MASK_ISO_7 \
632 | CATEGORY_MASK_ISO_7_TIGHT \
633 | CATEGORY_MASK_ISO_8_1 \
634 | CATEGORY_MASK_ISO_8_2 \
635 | CATEGORY_MASK_ISO_7_ELSE \
636 | CATEGORY_MASK_ISO_8_ELSE \
637 | CATEGORY_MASK_UTF_8_AUTO \
638 | CATEGORY_MASK_UTF_8_NOSIG \
639 | CATEGORY_MASK_UTF_8_SIG \
640 | CATEGORY_MASK_UTF_16_AUTO \
641 | CATEGORY_MASK_UTF_16_BE \
642 | CATEGORY_MASK_UTF_16_LE \
643 | CATEGORY_MASK_UTF_16_BE_NOSIG \
644 | CATEGORY_MASK_UTF_16_LE_NOSIG \
645 | CATEGORY_MASK_CHARSET \
646 | CATEGORY_MASK_SJIS \
647 | CATEGORY_MASK_BIG5 \
648 | CATEGORY_MASK_CCL \
649 | CATEGORY_MASK_EMACS_MULE)
650
651
652 #define CATEGORY_MASK_ISO_7BIT \
653 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
654
655 #define CATEGORY_MASK_ISO_8BIT \
656 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
657
658 #define CATEGORY_MASK_ISO_ELSE \
659 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
660
661 #define CATEGORY_MASK_ISO_ESCAPE \
662 (CATEGORY_MASK_ISO_7 \
663 | CATEGORY_MASK_ISO_7_TIGHT \
664 | CATEGORY_MASK_ISO_7_ELSE \
665 | CATEGORY_MASK_ISO_8_ELSE)
666
667 #define CATEGORY_MASK_ISO \
668 ( CATEGORY_MASK_ISO_7BIT \
669 | CATEGORY_MASK_ISO_8BIT \
670 | CATEGORY_MASK_ISO_ELSE)
671
672 #define CATEGORY_MASK_UTF_16 \
673 (CATEGORY_MASK_UTF_16_AUTO \
674 | CATEGORY_MASK_UTF_16_BE \
675 | CATEGORY_MASK_UTF_16_LE \
676 | CATEGORY_MASK_UTF_16_BE_NOSIG \
677 | CATEGORY_MASK_UTF_16_LE_NOSIG)
678
679 #define CATEGORY_MASK_UTF_8 \
680 (CATEGORY_MASK_UTF_8_AUTO \
681 | CATEGORY_MASK_UTF_8_NOSIG \
682 | CATEGORY_MASK_UTF_8_SIG)
683
684 /* List of symbols `coding-category-xxx' ordered by priority. This
685 variable is exposed to Emacs Lisp. */
686 static Lisp_Object Vcoding_category_list;
687
688 /* Table of coding categories (Lisp symbols). This variable is for
689 internal use oly. */
690 static Lisp_Object Vcoding_category_table;
691
692 /* Table of coding-categories ordered by priority. */
693 static enum coding_category coding_priorities[coding_category_max];
694
695 /* Nth element is a coding context for the coding system bound to the
696 Nth coding category. */
697 static struct coding_system coding_categories[coding_category_max];
698
699 /*** Commonly used macros and functions ***/
700
701 #ifndef min
702 #define min(a, b) ((a) < (b) ? (a) : (b))
703 #endif
704 #ifndef max
705 #define max(a, b) ((a) > (b) ? (a) : (b))
706 #endif
707
708 #define CODING_GET_INFO(coding, attrs, charset_list) \
709 do { \
710 (attrs) = CODING_ID_ATTRS ((coding)->id); \
711 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
712 } while (0)
713
714
715 /* Safely get one byte from the source text pointed by SRC which ends
716 at SRC_END, and set C to that byte. If there are not enough bytes
717 in the source, it jumps to `no_more_source'. If multibytep is
718 nonzero, and a multibyte character is found at SRC, set C to the
719 negative value of the character code. The caller should declare
720 and set these variables appropriately in advance:
721 src, src_end, multibytep */
722
723 #define ONE_MORE_BYTE(c) \
724 do { \
725 if (src == src_end) \
726 { \
727 if (src_base < src) \
728 record_conversion_result \
729 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
730 goto no_more_source; \
731 } \
732 c = *src++; \
733 if (multibytep && (c & 0x80)) \
734 { \
735 if ((c & 0xFE) == 0xC0) \
736 c = ((c & 1) << 6) | *src++; \
737 else \
738 { \
739 src--; \
740 c = - string_char (src, &src, NULL); \
741 record_conversion_result \
742 (coding, CODING_RESULT_INVALID_SRC); \
743 } \
744 } \
745 consumed_chars++; \
746 } while (0)
747
748 /* Safely get two bytes from the source text pointed by SRC which ends
749 at SRC_END, and set C1 and C2 to those bytes while skipping the
750 heading multibyte characters. If there are not enough bytes in the
751 source, it jumps to `no_more_source'. If multibytep is nonzero and
752 a multibyte character is found for C2, set C2 to the negative value
753 of the character code. The caller should declare and set these
754 variables appropriately in advance:
755 src, src_end, multibytep
756 It is intended that this macro is used in detect_coding_utf_16. */
757
758 #define TWO_MORE_BYTES(c1, c2) \
759 do { \
760 do { \
761 if (src == src_end) \
762 goto no_more_source; \
763 c1 = *src++; \
764 if (multibytep && (c1 & 0x80)) \
765 { \
766 if ((c1 & 0xFE) == 0xC0) \
767 c1 = ((c1 & 1) << 6) | *src++; \
768 else \
769 { \
770 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
771 c1 = -1; \
772 } \
773 } \
774 } while (c1 < 0); \
775 if (src == src_end) \
776 goto no_more_source; \
777 c2 = *src++; \
778 if (multibytep && (c2 & 0x80)) \
779 { \
780 if ((c2 & 0xFE) == 0xC0) \
781 c2 = ((c2 & 1) << 6) | *src++; \
782 else \
783 c2 = -1; \
784 } \
785 } while (0)
786
787
788 #define ONE_MORE_BYTE_NO_CHECK(c) \
789 do { \
790 c = *src++; \
791 if (multibytep && (c & 0x80)) \
792 { \
793 if ((c & 0xFE) == 0xC0) \
794 c = ((c & 1) << 6) | *src++; \
795 else \
796 { \
797 src--; \
798 c = - string_char (src, &src, NULL); \
799 record_conversion_result \
800 (coding, CODING_RESULT_INVALID_SRC); \
801 } \
802 } \
803 consumed_chars++; \
804 } while (0)
805
806
807 /* Store a byte C in the place pointed by DST and increment DST to the
808 next free point, and increment PRODUCED_CHARS. The caller should
809 assure that C is 0..127, and declare and set the variable `dst'
810 appropriately in advance.
811 */
812
813
814 #define EMIT_ONE_ASCII_BYTE(c) \
815 do { \
816 produced_chars++; \
817 *dst++ = (c); \
818 } while (0)
819
820
821 /* Like EMIT_ONE_ASCII_BYTE byt store two bytes; C1 and C2. */
822
823 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
824 do { \
825 produced_chars += 2; \
826 *dst++ = (c1), *dst++ = (c2); \
827 } while (0)
828
829
830 /* Store a byte C in the place pointed by DST and increment DST to the
831 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
832 nonzero, store in an appropriate multibyte from. The caller should
833 declare and set the variables `dst' and `multibytep' appropriately
834 in advance. */
835
836 #define EMIT_ONE_BYTE(c) \
837 do { \
838 produced_chars++; \
839 if (multibytep) \
840 { \
841 int ch = (c); \
842 if (ch >= 0x80) \
843 ch = BYTE8_TO_CHAR (ch); \
844 CHAR_STRING_ADVANCE (ch, dst); \
845 } \
846 else \
847 *dst++ = (c); \
848 } while (0)
849
850
851 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
852
853 #define EMIT_TWO_BYTES(c1, c2) \
854 do { \
855 produced_chars += 2; \
856 if (multibytep) \
857 { \
858 int ch; \
859 \
860 ch = (c1); \
861 if (ch >= 0x80) \
862 ch = BYTE8_TO_CHAR (ch); \
863 CHAR_STRING_ADVANCE (ch, dst); \
864 ch = (c2); \
865 if (ch >= 0x80) \
866 ch = BYTE8_TO_CHAR (ch); \
867 CHAR_STRING_ADVANCE (ch, dst); \
868 } \
869 else \
870 { \
871 *dst++ = (c1); \
872 *dst++ = (c2); \
873 } \
874 } while (0)
875
876
877 #define EMIT_THREE_BYTES(c1, c2, c3) \
878 do { \
879 EMIT_ONE_BYTE (c1); \
880 EMIT_TWO_BYTES (c2, c3); \
881 } while (0)
882
883
884 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
885 do { \
886 EMIT_TWO_BYTES (c1, c2); \
887 EMIT_TWO_BYTES (c3, c4); \
888 } while (0)
889
890
891 /* Prototypes for static functions. */
892 static void record_conversion_result (struct coding_system *coding,
893 enum coding_result_code result);
894 static int detect_coding_utf_8 (struct coding_system *,
895 struct coding_detection_info *info);
896 static void decode_coding_utf_8 (struct coding_system *);
897 static int encode_coding_utf_8 (struct coding_system *);
898
899 static int detect_coding_utf_16 (struct coding_system *,
900 struct coding_detection_info *info);
901 static void decode_coding_utf_16 (struct coding_system *);
902 static int encode_coding_utf_16 (struct coding_system *);
903
904 static int detect_coding_iso_2022 (struct coding_system *,
905 struct coding_detection_info *info);
906 static void decode_coding_iso_2022 (struct coding_system *);
907 static int encode_coding_iso_2022 (struct coding_system *);
908
909 static int detect_coding_emacs_mule (struct coding_system *,
910 struct coding_detection_info *info);
911 static void decode_coding_emacs_mule (struct coding_system *);
912 static int encode_coding_emacs_mule (struct coding_system *);
913
914 static int detect_coding_sjis (struct coding_system *,
915 struct coding_detection_info *info);
916 static void decode_coding_sjis (struct coding_system *);
917 static int encode_coding_sjis (struct coding_system *);
918
919 static int detect_coding_big5 (struct coding_system *,
920 struct coding_detection_info *info);
921 static void decode_coding_big5 (struct coding_system *);
922 static int encode_coding_big5 (struct coding_system *);
923
924 static int detect_coding_ccl (struct coding_system *,
925 struct coding_detection_info *info);
926 static void decode_coding_ccl (struct coding_system *);
927 static int encode_coding_ccl (struct coding_system *);
928
929 static void decode_coding_raw_text (struct coding_system *);
930 static int encode_coding_raw_text (struct coding_system *);
931
932 static void coding_set_source (struct coding_system *);
933 static void coding_set_destination (struct coding_system *);
934 static void coding_alloc_by_realloc (struct coding_system *, EMACS_INT);
935 static void coding_alloc_by_making_gap (struct coding_system *,
936 EMACS_INT, EMACS_INT);
937 static unsigned char *alloc_destination (struct coding_system *,
938 EMACS_INT, unsigned char *);
939 static void setup_iso_safe_charsets (Lisp_Object);
940 static unsigned char *encode_designation_at_bol (struct coding_system *,
941 int *, int *,
942 unsigned char *);
943 static int detect_eol (const unsigned char *,
944 EMACS_INT, enum coding_category);
945 static Lisp_Object adjust_coding_eol_type (struct coding_system *, int);
946 static void decode_eol (struct coding_system *);
947 static Lisp_Object get_translation_table (Lisp_Object, int, int *);
948 static Lisp_Object get_translation (Lisp_Object, int *, int *);
949 static int produce_chars (struct coding_system *, Lisp_Object, int);
950 static INLINE void produce_charset (struct coding_system *, int *,
951 EMACS_INT);
952 static void produce_annotation (struct coding_system *, EMACS_INT);
953 static int decode_coding (struct coding_system *);
954 static INLINE int *handle_composition_annotation (EMACS_INT, EMACS_INT,
955 struct coding_system *,
956 int *, EMACS_INT *);
957 static INLINE int *handle_charset_annotation (EMACS_INT, EMACS_INT,
958 struct coding_system *,
959 int *, EMACS_INT *);
960 static void consume_chars (struct coding_system *, Lisp_Object, int);
961 static int encode_coding (struct coding_system *);
962 static Lisp_Object make_conversion_work_buffer (int);
963 static Lisp_Object code_conversion_restore (Lisp_Object);
964 static INLINE int char_encodable_p (int, Lisp_Object);
965 static Lisp_Object make_subsidiaries (Lisp_Object);
966
967 static void
968 record_conversion_result (struct coding_system *coding,
969 enum coding_result_code result)
970 {
971 coding->result = result;
972 switch (result)
973 {
974 case CODING_RESULT_INSUFFICIENT_SRC:
975 Vlast_code_conversion_error = Qinsufficient_source;
976 break;
977 case CODING_RESULT_INCONSISTENT_EOL:
978 Vlast_code_conversion_error = Qinconsistent_eol;
979 break;
980 case CODING_RESULT_INVALID_SRC:
981 Vlast_code_conversion_error = Qinvalid_source;
982 break;
983 case CODING_RESULT_INTERRUPT:
984 Vlast_code_conversion_error = Qinterrupted;
985 break;
986 case CODING_RESULT_INSUFFICIENT_MEM:
987 Vlast_code_conversion_error = Qinsufficient_memory;
988 break;
989 case CODING_RESULT_INSUFFICIENT_DST:
990 /* Don't record this error in Vlast_code_conversion_error
991 because it happens just temporarily and is resolved when the
992 whole conversion is finished. */
993 break;
994 case CODING_RESULT_SUCCESS:
995 break;
996 default:
997 Vlast_code_conversion_error = intern ("Unknown error");
998 }
999 }
1000
1001 /* This wrapper macro is used to preserve validity of pointers into
1002 buffer text across calls to decode_char, which could cause
1003 relocation of buffers if it loads a charset map, because loading a
1004 charset map allocates large structures. */
1005 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
1006 do { \
1007 charset_map_loaded = 0; \
1008 c = DECODE_CHAR (charset, code); \
1009 if (charset_map_loaded) \
1010 { \
1011 const unsigned char *orig = coding->source; \
1012 EMACS_INT offset; \
1013 \
1014 coding_set_source (coding); \
1015 offset = coding->source - orig; \
1016 src += offset; \
1017 src_base += offset; \
1018 src_end += offset; \
1019 } \
1020 } while (0)
1021
1022
1023 /* If there are at least BYTES length of room at dst, allocate memory
1024 for coding->destination and update dst and dst_end. We don't have
1025 to take care of coding->source which will be relocated. It is
1026 handled by calling coding_set_source in encode_coding. */
1027
1028 #define ASSURE_DESTINATION(bytes) \
1029 do { \
1030 if (dst + (bytes) >= dst_end) \
1031 { \
1032 int more_bytes = charbuf_end - charbuf + (bytes); \
1033 \
1034 dst = alloc_destination (coding, more_bytes, dst); \
1035 dst_end = coding->destination + coding->dst_bytes; \
1036 } \
1037 } while (0)
1038
1039
1040 /* Store multibyte form of the character C in P, and advance P to the
1041 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1042 never calls MAYBE_UNIFY_CHAR. */
1043
1044 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1045 do { \
1046 if ((c) <= MAX_1_BYTE_CHAR) \
1047 *(p)++ = (c); \
1048 else if ((c) <= MAX_2_BYTE_CHAR) \
1049 *(p)++ = (0xC0 | ((c) >> 6)), \
1050 *(p)++ = (0x80 | ((c) & 0x3F)); \
1051 else if ((c) <= MAX_3_BYTE_CHAR) \
1052 *(p)++ = (0xE0 | ((c) >> 12)), \
1053 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1054 *(p)++ = (0x80 | ((c) & 0x3F)); \
1055 else if ((c) <= MAX_4_BYTE_CHAR) \
1056 *(p)++ = (0xF0 | (c >> 18)), \
1057 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1058 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1059 *(p)++ = (0x80 | (c & 0x3F)); \
1060 else if ((c) <= MAX_5_BYTE_CHAR) \
1061 *(p)++ = 0xF8, \
1062 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1063 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1064 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1065 *(p)++ = (0x80 | (c & 0x3F)); \
1066 else \
1067 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1068 } while (0)
1069
1070
1071 /* Return the character code of character whose multibyte form is at
1072 P, and advance P to the end of the multibyte form. This is like
1073 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1074
1075 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1076 (!((p)[0] & 0x80) \
1077 ? *(p)++ \
1078 : ! ((p)[0] & 0x20) \
1079 ? ((p) += 2, \
1080 ((((p)[-2] & 0x1F) << 6) \
1081 | ((p)[-1] & 0x3F) \
1082 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1083 : ! ((p)[0] & 0x10) \
1084 ? ((p) += 3, \
1085 ((((p)[-3] & 0x0F) << 12) \
1086 | (((p)[-2] & 0x3F) << 6) \
1087 | ((p)[-1] & 0x3F))) \
1088 : ! ((p)[0] & 0x08) \
1089 ? ((p) += 4, \
1090 ((((p)[-4] & 0xF) << 18) \
1091 | (((p)[-3] & 0x3F) << 12) \
1092 | (((p)[-2] & 0x3F) << 6) \
1093 | ((p)[-1] & 0x3F))) \
1094 : ((p) += 5, \
1095 ((((p)[-4] & 0x3F) << 18) \
1096 | (((p)[-3] & 0x3F) << 12) \
1097 | (((p)[-2] & 0x3F) << 6) \
1098 | ((p)[-1] & 0x3F))))
1099
1100
1101 static void
1102 coding_set_source (struct coding_system *coding)
1103 {
1104 if (BUFFERP (coding->src_object))
1105 {
1106 struct buffer *buf = XBUFFER (coding->src_object);
1107
1108 if (coding->src_pos < 0)
1109 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1110 else
1111 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1112 }
1113 else if (STRINGP (coding->src_object))
1114 {
1115 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1116 }
1117 else
1118 /* Otherwise, the source is C string and is never relocated
1119 automatically. Thus we don't have to update anything. */
1120 ;
1121 }
1122
1123 static void
1124 coding_set_destination (struct coding_system *coding)
1125 {
1126 if (BUFFERP (coding->dst_object))
1127 {
1128 if (coding->src_pos < 0)
1129 {
1130 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1131 coding->dst_bytes = (GAP_END_ADDR
1132 - (coding->src_bytes - coding->consumed)
1133 - coding->destination);
1134 }
1135 else
1136 {
1137 /* We are sure that coding->dst_pos_byte is before the gap
1138 of the buffer. */
1139 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1140 + coding->dst_pos_byte - BEG_BYTE);
1141 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1142 - coding->destination);
1143 }
1144 }
1145 else
1146 /* Otherwise, the destination is C string and is never relocated
1147 automatically. Thus we don't have to update anything. */
1148 ;
1149 }
1150
1151
1152 static void
1153 coding_alloc_by_realloc (struct coding_system *coding, EMACS_INT bytes)
1154 {
1155 coding->destination = (unsigned char *) xrealloc (coding->destination,
1156 coding->dst_bytes + bytes);
1157 coding->dst_bytes += bytes;
1158 }
1159
1160 static void
1161 coding_alloc_by_making_gap (struct coding_system *coding,
1162 EMACS_INT gap_head_used, EMACS_INT bytes)
1163 {
1164 if (EQ (coding->src_object, coding->dst_object))
1165 {
1166 /* The gap may contain the produced data at the head and not-yet
1167 consumed data at the tail. To preserve those data, we at
1168 first make the gap size to zero, then increase the gap
1169 size. */
1170 EMACS_INT add = GAP_SIZE;
1171
1172 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1173 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1174 make_gap (bytes);
1175 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1176 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1177 }
1178 else
1179 {
1180 Lisp_Object this_buffer;
1181
1182 this_buffer = Fcurrent_buffer ();
1183 set_buffer_internal (XBUFFER (coding->dst_object));
1184 make_gap (bytes);
1185 set_buffer_internal (XBUFFER (this_buffer));
1186 }
1187 }
1188
1189
1190 static unsigned char *
1191 alloc_destination (struct coding_system *coding, EMACS_INT nbytes,
1192 unsigned char *dst)
1193 {
1194 EMACS_INT offset = dst - coding->destination;
1195
1196 if (BUFFERP (coding->dst_object))
1197 {
1198 struct buffer *buf = XBUFFER (coding->dst_object);
1199
1200 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1201 }
1202 else
1203 coding_alloc_by_realloc (coding, nbytes);
1204 coding_set_destination (coding);
1205 dst = coding->destination + offset;
1206 return dst;
1207 }
1208
1209 /** Macros for annotations. */
1210
1211 /* An annotation data is stored in the array coding->charbuf in this
1212 format:
1213 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1214 LENGTH is the number of elements in the annotation.
1215 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1216 NCHARS is the number of characters in the text annotated.
1217
1218 The format of the following elements depend on ANNOTATION_MASK.
1219
1220 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1221 follows:
1222 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1223
1224 NBYTES is the number of bytes specified in the header part of
1225 old-style emacs-mule encoding, or 0 for the other kind of
1226 composition.
1227
1228 METHOD is one of enum composition_method.
1229
1230 Optionnal COMPOSITION-COMPONENTS are characters and composition
1231 rules.
1232
1233 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1234 follows.
1235
1236 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1237 recover from an invalid annotation, and should be skipped by
1238 produce_annotation. */
1239
1240 /* Maximum length of the header of annotation data. */
1241 #define MAX_ANNOTATION_LENGTH 5
1242
1243 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1244 do { \
1245 *(buf)++ = -(len); \
1246 *(buf)++ = (mask); \
1247 *(buf)++ = (nchars); \
1248 coding->annotated = 1; \
1249 } while (0);
1250
1251 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1252 do { \
1253 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1254 *buf++ = nbytes; \
1255 *buf++ = method; \
1256 } while (0)
1257
1258
1259 #define ADD_CHARSET_DATA(buf, nchars, id) \
1260 do { \
1261 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1262 *buf++ = id; \
1263 } while (0)
1264
1265 \f
1266 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1267
1268
1269
1270 \f
1271 /*** 3. UTF-8 ***/
1272
1273 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1274 Check if a text is encoded in UTF-8. If it is, return 1, else
1275 return 0. */
1276
1277 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1278 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1279 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1280 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1281 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1282 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1283
1284 #define UTF_BOM 0xFEFF
1285 #define UTF_8_BOM_1 0xEF
1286 #define UTF_8_BOM_2 0xBB
1287 #define UTF_8_BOM_3 0xBF
1288
1289 static int
1290 detect_coding_utf_8 (struct coding_system *coding,
1291 struct coding_detection_info *detect_info)
1292 {
1293 const unsigned char *src = coding->source, *src_base;
1294 const unsigned char *src_end = coding->source + coding->src_bytes;
1295 int multibytep = coding->src_multibyte;
1296 int consumed_chars = 0;
1297 int bom_found = 0;
1298 int found = 0;
1299
1300 detect_info->checked |= CATEGORY_MASK_UTF_8;
1301 /* A coding system of this category is always ASCII compatible. */
1302 src += coding->head_ascii;
1303
1304 while (1)
1305 {
1306 int c, c1, c2, c3, c4;
1307
1308 src_base = src;
1309 ONE_MORE_BYTE (c);
1310 if (c < 0 || UTF_8_1_OCTET_P (c))
1311 continue;
1312 ONE_MORE_BYTE (c1);
1313 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1314 break;
1315 if (UTF_8_2_OCTET_LEADING_P (c))
1316 {
1317 found = 1;
1318 continue;
1319 }
1320 ONE_MORE_BYTE (c2);
1321 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1322 break;
1323 if (UTF_8_3_OCTET_LEADING_P (c))
1324 {
1325 found = 1;
1326 if (src_base == coding->source
1327 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1328 bom_found = 1;
1329 continue;
1330 }
1331 ONE_MORE_BYTE (c3);
1332 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1333 break;
1334 if (UTF_8_4_OCTET_LEADING_P (c))
1335 {
1336 found = 1;
1337 continue;
1338 }
1339 ONE_MORE_BYTE (c4);
1340 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1341 break;
1342 if (UTF_8_5_OCTET_LEADING_P (c))
1343 {
1344 found = 1;
1345 continue;
1346 }
1347 break;
1348 }
1349 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1350 return 0;
1351
1352 no_more_source:
1353 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1354 {
1355 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1356 return 0;
1357 }
1358 if (bom_found)
1359 {
1360 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1361 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1362 }
1363 else
1364 {
1365 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1366 if (found)
1367 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1368 }
1369 return 1;
1370 }
1371
1372
1373 static void
1374 decode_coding_utf_8 (struct coding_system *coding)
1375 {
1376 const unsigned char *src = coding->source + coding->consumed;
1377 const unsigned char *src_end = coding->source + coding->src_bytes;
1378 const unsigned char *src_base;
1379 int *charbuf = coding->charbuf + coding->charbuf_used;
1380 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1381 int consumed_chars = 0, consumed_chars_base = 0;
1382 int multibytep = coding->src_multibyte;
1383 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1384 Lisp_Object attr, charset_list;
1385 int eol_crlf =
1386 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1387 int byte_after_cr = -1;
1388
1389 CODING_GET_INFO (coding, attr, charset_list);
1390
1391 if (bom != utf_without_bom)
1392 {
1393 int c1, c2, c3;
1394
1395 src_base = src;
1396 ONE_MORE_BYTE (c1);
1397 if (! UTF_8_3_OCTET_LEADING_P (c1))
1398 src = src_base;
1399 else
1400 {
1401 ONE_MORE_BYTE (c2);
1402 if (! UTF_8_EXTRA_OCTET_P (c2))
1403 src = src_base;
1404 else
1405 {
1406 ONE_MORE_BYTE (c3);
1407 if (! UTF_8_EXTRA_OCTET_P (c3))
1408 src = src_base;
1409 else
1410 {
1411 if ((c1 != UTF_8_BOM_1)
1412 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1413 src = src_base;
1414 else
1415 CODING_UTF_8_BOM (coding) = utf_without_bom;
1416 }
1417 }
1418 }
1419 }
1420 CODING_UTF_8_BOM (coding) = utf_without_bom;
1421
1422 while (1)
1423 {
1424 int c, c1, c2, c3, c4, c5;
1425
1426 src_base = src;
1427 consumed_chars_base = consumed_chars;
1428
1429 if (charbuf >= charbuf_end)
1430 {
1431 if (byte_after_cr >= 0)
1432 src_base--;
1433 break;
1434 }
1435
1436 if (byte_after_cr >= 0)
1437 c1 = byte_after_cr, byte_after_cr = -1;
1438 else
1439 ONE_MORE_BYTE (c1);
1440 if (c1 < 0)
1441 {
1442 c = - c1;
1443 }
1444 else if (UTF_8_1_OCTET_P (c1))
1445 {
1446 if (eol_crlf && c1 == '\r')
1447 ONE_MORE_BYTE (byte_after_cr);
1448 c = c1;
1449 }
1450 else
1451 {
1452 ONE_MORE_BYTE (c2);
1453 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1454 goto invalid_code;
1455 if (UTF_8_2_OCTET_LEADING_P (c1))
1456 {
1457 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1458 /* Reject overlong sequences here and below. Encoders
1459 producing them are incorrect, they can be misleading,
1460 and they mess up read/write invariance. */
1461 if (c < 128)
1462 goto invalid_code;
1463 }
1464 else
1465 {
1466 ONE_MORE_BYTE (c3);
1467 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1468 goto invalid_code;
1469 if (UTF_8_3_OCTET_LEADING_P (c1))
1470 {
1471 c = (((c1 & 0xF) << 12)
1472 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1473 if (c < 0x800
1474 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1475 goto invalid_code;
1476 }
1477 else
1478 {
1479 ONE_MORE_BYTE (c4);
1480 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1481 goto invalid_code;
1482 if (UTF_8_4_OCTET_LEADING_P (c1))
1483 {
1484 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1485 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1486 if (c < 0x10000)
1487 goto invalid_code;
1488 }
1489 else
1490 {
1491 ONE_MORE_BYTE (c5);
1492 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1493 goto invalid_code;
1494 if (UTF_8_5_OCTET_LEADING_P (c1))
1495 {
1496 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1497 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1498 | (c5 & 0x3F));
1499 if ((c > MAX_CHAR) || (c < 0x200000))
1500 goto invalid_code;
1501 }
1502 else
1503 goto invalid_code;
1504 }
1505 }
1506 }
1507 }
1508
1509 *charbuf++ = c;
1510 continue;
1511
1512 invalid_code:
1513 src = src_base;
1514 consumed_chars = consumed_chars_base;
1515 ONE_MORE_BYTE (c);
1516 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1517 coding->errors++;
1518 }
1519
1520 no_more_source:
1521 coding->consumed_char += consumed_chars_base;
1522 coding->consumed = src_base - coding->source;
1523 coding->charbuf_used = charbuf - coding->charbuf;
1524 }
1525
1526
1527 static int
1528 encode_coding_utf_8 (struct coding_system *coding)
1529 {
1530 int multibytep = coding->dst_multibyte;
1531 int *charbuf = coding->charbuf;
1532 int *charbuf_end = charbuf + coding->charbuf_used;
1533 unsigned char *dst = coding->destination + coding->produced;
1534 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1535 int produced_chars = 0;
1536 int c;
1537
1538 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1539 {
1540 ASSURE_DESTINATION (3);
1541 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1542 CODING_UTF_8_BOM (coding) = utf_without_bom;
1543 }
1544
1545 if (multibytep)
1546 {
1547 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1548
1549 while (charbuf < charbuf_end)
1550 {
1551 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1552
1553 ASSURE_DESTINATION (safe_room);
1554 c = *charbuf++;
1555 if (CHAR_BYTE8_P (c))
1556 {
1557 c = CHAR_TO_BYTE8 (c);
1558 EMIT_ONE_BYTE (c);
1559 }
1560 else
1561 {
1562 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1563 for (p = str; p < pend; p++)
1564 EMIT_ONE_BYTE (*p);
1565 }
1566 }
1567 }
1568 else
1569 {
1570 int safe_room = MAX_MULTIBYTE_LENGTH;
1571
1572 while (charbuf < charbuf_end)
1573 {
1574 ASSURE_DESTINATION (safe_room);
1575 c = *charbuf++;
1576 if (CHAR_BYTE8_P (c))
1577 *dst++ = CHAR_TO_BYTE8 (c);
1578 else
1579 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1580 produced_chars++;
1581 }
1582 }
1583 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1584 coding->produced_char += produced_chars;
1585 coding->produced = dst - coding->destination;
1586 return 0;
1587 }
1588
1589
1590 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1591 Check if a text is encoded in one of UTF-16 based coding systems.
1592 If it is, return 1, else return 0. */
1593
1594 #define UTF_16_HIGH_SURROGATE_P(val) \
1595 (((val) & 0xFC00) == 0xD800)
1596
1597 #define UTF_16_LOW_SURROGATE_P(val) \
1598 (((val) & 0xFC00) == 0xDC00)
1599
1600 #define UTF_16_INVALID_P(val) \
1601 (((val) == 0xFFFE) \
1602 || ((val) == 0xFFFF) \
1603 || UTF_16_LOW_SURROGATE_P (val))
1604
1605
1606 static int
1607 detect_coding_utf_16 (struct coding_system *coding,
1608 struct coding_detection_info *detect_info)
1609 {
1610 const unsigned char *src = coding->source, *src_base = src;
1611 const unsigned char *src_end = coding->source + coding->src_bytes;
1612 int multibytep = coding->src_multibyte;
1613 int consumed_chars = 0;
1614 int c1, c2;
1615
1616 detect_info->checked |= CATEGORY_MASK_UTF_16;
1617 if (coding->mode & CODING_MODE_LAST_BLOCK
1618 && (coding->src_chars & 1))
1619 {
1620 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1621 return 0;
1622 }
1623
1624 TWO_MORE_BYTES (c1, c2);
1625 if ((c1 == 0xFF) && (c2 == 0xFE))
1626 {
1627 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1628 | CATEGORY_MASK_UTF_16_AUTO);
1629 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1630 | CATEGORY_MASK_UTF_16_BE_NOSIG
1631 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1632 }
1633 else if ((c1 == 0xFE) && (c2 == 0xFF))
1634 {
1635 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1636 | CATEGORY_MASK_UTF_16_AUTO);
1637 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1638 | CATEGORY_MASK_UTF_16_BE_NOSIG
1639 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1640 }
1641 else if (c2 < 0)
1642 {
1643 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1644 return 0;
1645 }
1646 else
1647 {
1648 /* We check the dispersion of Eth and Oth bytes where E is even and
1649 O is odd. If both are high, we assume binary data.*/
1650 unsigned char e[256], o[256];
1651 unsigned e_num = 1, o_num = 1;
1652
1653 memset (e, 0, 256);
1654 memset (o, 0, 256);
1655 e[c1] = 1;
1656 o[c2] = 1;
1657
1658 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1659 |CATEGORY_MASK_UTF_16_BE
1660 | CATEGORY_MASK_UTF_16_LE);
1661
1662 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1663 != CATEGORY_MASK_UTF_16)
1664 {
1665 TWO_MORE_BYTES (c1, c2);
1666 if (c2 < 0)
1667 break;
1668 if (! e[c1])
1669 {
1670 e[c1] = 1;
1671 e_num++;
1672 if (e_num >= 128)
1673 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1674 }
1675 if (! o[c2])
1676 {
1677 o[c2] = 1;
1678 o_num++;
1679 if (o_num >= 128)
1680 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1681 }
1682 }
1683 return 0;
1684 }
1685
1686 no_more_source:
1687 return 1;
1688 }
1689
1690 static void
1691 decode_coding_utf_16 (struct coding_system *coding)
1692 {
1693 const unsigned char *src = coding->source + coding->consumed;
1694 const unsigned char *src_end = coding->source + coding->src_bytes;
1695 const unsigned char *src_base;
1696 int *charbuf = coding->charbuf + coding->charbuf_used;
1697 /* We may produces at most 3 chars in one loop. */
1698 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1699 int consumed_chars = 0, consumed_chars_base = 0;
1700 int multibytep = coding->src_multibyte;
1701 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1702 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1703 int surrogate = CODING_UTF_16_SURROGATE (coding);
1704 Lisp_Object attr, charset_list;
1705 int eol_crlf =
1706 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1707 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1708
1709 CODING_GET_INFO (coding, attr, charset_list);
1710
1711 if (bom == utf_with_bom)
1712 {
1713 int c, c1, c2;
1714
1715 src_base = src;
1716 ONE_MORE_BYTE (c1);
1717 ONE_MORE_BYTE (c2);
1718 c = (c1 << 8) | c2;
1719
1720 if (endian == utf_16_big_endian
1721 ? c != 0xFEFF : c != 0xFFFE)
1722 {
1723 /* The first two bytes are not BOM. Treat them as bytes
1724 for a normal character. */
1725 src = src_base;
1726 coding->errors++;
1727 }
1728 CODING_UTF_16_BOM (coding) = utf_without_bom;
1729 }
1730 else if (bom == utf_detect_bom)
1731 {
1732 /* We have already tried to detect BOM and failed in
1733 detect_coding. */
1734 CODING_UTF_16_BOM (coding) = utf_without_bom;
1735 }
1736
1737 while (1)
1738 {
1739 int c, c1, c2;
1740
1741 src_base = src;
1742 consumed_chars_base = consumed_chars;
1743
1744 if (charbuf >= charbuf_end)
1745 {
1746 if (byte_after_cr1 >= 0)
1747 src_base -= 2;
1748 break;
1749 }
1750
1751 if (byte_after_cr1 >= 0)
1752 c1 = byte_after_cr1, byte_after_cr1 = -1;
1753 else
1754 ONE_MORE_BYTE (c1);
1755 if (c1 < 0)
1756 {
1757 *charbuf++ = -c1;
1758 continue;
1759 }
1760 if (byte_after_cr2 >= 0)
1761 c2 = byte_after_cr2, byte_after_cr2 = -1;
1762 else
1763 ONE_MORE_BYTE (c2);
1764 if (c2 < 0)
1765 {
1766 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1767 *charbuf++ = -c2;
1768 continue;
1769 }
1770 c = (endian == utf_16_big_endian
1771 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1772
1773 if (surrogate)
1774 {
1775 if (! UTF_16_LOW_SURROGATE_P (c))
1776 {
1777 if (endian == utf_16_big_endian)
1778 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1779 else
1780 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1781 *charbuf++ = c1;
1782 *charbuf++ = c2;
1783 coding->errors++;
1784 if (UTF_16_HIGH_SURROGATE_P (c))
1785 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1786 else
1787 *charbuf++ = c;
1788 }
1789 else
1790 {
1791 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1792 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1793 *charbuf++ = 0x10000 + c;
1794 }
1795 }
1796 else
1797 {
1798 if (UTF_16_HIGH_SURROGATE_P (c))
1799 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1800 else
1801 {
1802 if (eol_crlf && c == '\r')
1803 {
1804 ONE_MORE_BYTE (byte_after_cr1);
1805 ONE_MORE_BYTE (byte_after_cr2);
1806 }
1807 *charbuf++ = c;
1808 }
1809 }
1810 }
1811
1812 no_more_source:
1813 coding->consumed_char += consumed_chars_base;
1814 coding->consumed = src_base - coding->source;
1815 coding->charbuf_used = charbuf - coding->charbuf;
1816 }
1817
1818 static int
1819 encode_coding_utf_16 (struct coding_system *coding)
1820 {
1821 int multibytep = coding->dst_multibyte;
1822 int *charbuf = coding->charbuf;
1823 int *charbuf_end = charbuf + coding->charbuf_used;
1824 unsigned char *dst = coding->destination + coding->produced;
1825 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1826 int safe_room = 8;
1827 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1828 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1829 int produced_chars = 0;
1830 Lisp_Object attrs, charset_list;
1831 int c;
1832
1833 CODING_GET_INFO (coding, attrs, charset_list);
1834
1835 if (bom != utf_without_bom)
1836 {
1837 ASSURE_DESTINATION (safe_room);
1838 if (big_endian)
1839 EMIT_TWO_BYTES (0xFE, 0xFF);
1840 else
1841 EMIT_TWO_BYTES (0xFF, 0xFE);
1842 CODING_UTF_16_BOM (coding) = utf_without_bom;
1843 }
1844
1845 while (charbuf < charbuf_end)
1846 {
1847 ASSURE_DESTINATION (safe_room);
1848 c = *charbuf++;
1849 if (c > MAX_UNICODE_CHAR)
1850 c = coding->default_char;
1851
1852 if (c < 0x10000)
1853 {
1854 if (big_endian)
1855 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1856 else
1857 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1858 }
1859 else
1860 {
1861 int c1, c2;
1862
1863 c -= 0x10000;
1864 c1 = (c >> 10) + 0xD800;
1865 c2 = (c & 0x3FF) + 0xDC00;
1866 if (big_endian)
1867 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1868 else
1869 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1870 }
1871 }
1872 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1873 coding->produced = dst - coding->destination;
1874 coding->produced_char += produced_chars;
1875 return 0;
1876 }
1877
1878 \f
1879 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1880
1881 /* Emacs' internal format for representation of multiple character
1882 sets is a kind of multi-byte encoding, i.e. characters are
1883 represented by variable-length sequences of one-byte codes.
1884
1885 ASCII characters and control characters (e.g. `tab', `newline') are
1886 represented by one-byte sequences which are their ASCII codes, in
1887 the range 0x00 through 0x7F.
1888
1889 8-bit characters of the range 0x80..0x9F are represented by
1890 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1891 code + 0x20).
1892
1893 8-bit characters of the range 0xA0..0xFF are represented by
1894 one-byte sequences which are their 8-bit code.
1895
1896 The other characters are represented by a sequence of `base
1897 leading-code', optional `extended leading-code', and one or two
1898 `position-code's. The length of the sequence is determined by the
1899 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1900 whereas extended leading-code and position-code take the range 0xA0
1901 through 0xFF. See `charset.h' for more details about leading-code
1902 and position-code.
1903
1904 --- CODE RANGE of Emacs' internal format ---
1905 character set range
1906 ------------- -----
1907 ascii 0x00..0x7F
1908 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1909 eight-bit-graphic 0xA0..0xBF
1910 ELSE 0x81..0x9D + [0xA0..0xFF]+
1911 ---------------------------------------------
1912
1913 As this is the internal character representation, the format is
1914 usually not used externally (i.e. in a file or in a data sent to a
1915 process). But, it is possible to have a text externally in this
1916 format (i.e. by encoding by the coding system `emacs-mule').
1917
1918 In that case, a sequence of one-byte codes has a slightly different
1919 form.
1920
1921 At first, all characters in eight-bit-control are represented by
1922 one-byte sequences which are their 8-bit code.
1923
1924 Next, character composition data are represented by the byte
1925 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1926 where,
1927 METHOD is 0xF2 plus one of composition method (enum
1928 composition_method),
1929
1930 BYTES is 0xA0 plus a byte length of this composition data,
1931
1932 CHARS is 0xA0 plus a number of characters composed by this
1933 data,
1934
1935 COMPONENTs are characters of multibye form or composition
1936 rules encoded by two-byte of ASCII codes.
1937
1938 In addition, for backward compatibility, the following formats are
1939 also recognized as composition data on decoding.
1940
1941 0x80 MSEQ ...
1942 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1943
1944 Here,
1945 MSEQ is a multibyte form but in these special format:
1946 ASCII: 0xA0 ASCII_CODE+0x80,
1947 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1948 RULE is a one byte code of the range 0xA0..0xF0 that
1949 represents a composition rule.
1950 */
1951
1952 char emacs_mule_bytes[256];
1953
1954
1955 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1956 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1957 else return 0. */
1958
1959 static int
1960 detect_coding_emacs_mule (struct coding_system *coding,
1961 struct coding_detection_info *detect_info)
1962 {
1963 const unsigned char *src = coding->source, *src_base;
1964 const unsigned char *src_end = coding->source + coding->src_bytes;
1965 int multibytep = coding->src_multibyte;
1966 int consumed_chars = 0;
1967 int c;
1968 int found = 0;
1969
1970 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1971 /* A coding system of this category is always ASCII compatible. */
1972 src += coding->head_ascii;
1973
1974 while (1)
1975 {
1976 src_base = src;
1977 ONE_MORE_BYTE (c);
1978 if (c < 0)
1979 continue;
1980 if (c == 0x80)
1981 {
1982 /* Perhaps the start of composite character. We simply skip
1983 it because analyzing it is too heavy for detecting. But,
1984 at least, we check that the composite character
1985 constitutes of more than 4 bytes. */
1986 const unsigned char *src_base;
1987
1988 repeat:
1989 src_base = src;
1990 do
1991 {
1992 ONE_MORE_BYTE (c);
1993 }
1994 while (c >= 0xA0);
1995
1996 if (src - src_base <= 4)
1997 break;
1998 found = CATEGORY_MASK_EMACS_MULE;
1999 if (c == 0x80)
2000 goto repeat;
2001 }
2002
2003 if (c < 0x80)
2004 {
2005 if (c < 0x20
2006 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2007 break;
2008 }
2009 else
2010 {
2011 int more_bytes = emacs_mule_bytes[c] - 1;
2012
2013 while (more_bytes > 0)
2014 {
2015 ONE_MORE_BYTE (c);
2016 if (c < 0xA0)
2017 {
2018 src--; /* Unread the last byte. */
2019 break;
2020 }
2021 more_bytes--;
2022 }
2023 if (more_bytes != 0)
2024 break;
2025 found = CATEGORY_MASK_EMACS_MULE;
2026 }
2027 }
2028 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2029 return 0;
2030
2031 no_more_source:
2032 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
2033 {
2034 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2035 return 0;
2036 }
2037 detect_info->found |= found;
2038 return 1;
2039 }
2040
2041
2042 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2043 character. If CMP_STATUS indicates that we must expect MSEQ or
2044 RULE described above, decode it and return the negative value of
2045 the decoded character or rule. If an invalid byte is found, return
2046 -1. If SRC is too short, return -2. */
2047
2048 int
2049 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
2050 int *nbytes, int *nchars, int *id,
2051 struct composition_status *cmp_status)
2052 {
2053 const unsigned char *src_end = coding->source + coding->src_bytes;
2054 const unsigned char *src_base = src;
2055 int multibytep = coding->src_multibyte;
2056 struct charset *charset;
2057 unsigned code;
2058 int c;
2059 int consumed_chars = 0;
2060 int mseq_found = 0;
2061
2062 ONE_MORE_BYTE (c);
2063 if (c < 0)
2064 {
2065 c = -c;
2066 charset = emacs_mule_charset[0];
2067 }
2068 else
2069 {
2070 if (c >= 0xA0)
2071 {
2072 if (cmp_status->state != COMPOSING_NO
2073 && cmp_status->old_form)
2074 {
2075 if (cmp_status->state == COMPOSING_CHAR)
2076 {
2077 if (c == 0xA0)
2078 {
2079 ONE_MORE_BYTE (c);
2080 c -= 0x80;
2081 if (c < 0)
2082 goto invalid_code;
2083 }
2084 else
2085 c -= 0x20;
2086 mseq_found = 1;
2087 }
2088 else
2089 {
2090 *nbytes = src - src_base;
2091 *nchars = consumed_chars;
2092 return -c;
2093 }
2094 }
2095 else
2096 goto invalid_code;
2097 }
2098
2099 switch (emacs_mule_bytes[c])
2100 {
2101 case 2:
2102 if (! (charset = emacs_mule_charset[c]))
2103 goto invalid_code;
2104 ONE_MORE_BYTE (c);
2105 if (c < 0xA0)
2106 goto invalid_code;
2107 code = c & 0x7F;
2108 break;
2109
2110 case 3:
2111 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2112 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2113 {
2114 ONE_MORE_BYTE (c);
2115 if (c < 0xA0 || ! (charset = emacs_mule_charset[c]))
2116 goto invalid_code;
2117 ONE_MORE_BYTE (c);
2118 if (c < 0xA0)
2119 goto invalid_code;
2120 code = c & 0x7F;
2121 }
2122 else
2123 {
2124 if (! (charset = emacs_mule_charset[c]))
2125 goto invalid_code;
2126 ONE_MORE_BYTE (c);
2127 if (c < 0xA0)
2128 goto invalid_code;
2129 code = (c & 0x7F) << 8;
2130 ONE_MORE_BYTE (c);
2131 if (c < 0xA0)
2132 goto invalid_code;
2133 code |= c & 0x7F;
2134 }
2135 break;
2136
2137 case 4:
2138 ONE_MORE_BYTE (c);
2139 if (c < 0 || ! (charset = emacs_mule_charset[c]))
2140 goto invalid_code;
2141 ONE_MORE_BYTE (c);
2142 if (c < 0xA0)
2143 goto invalid_code;
2144 code = (c & 0x7F) << 8;
2145 ONE_MORE_BYTE (c);
2146 if (c < 0xA0)
2147 goto invalid_code;
2148 code |= c & 0x7F;
2149 break;
2150
2151 case 1:
2152 code = c;
2153 charset = CHARSET_FROM_ID (ASCII_BYTE_P (code)
2154 ? charset_ascii : charset_eight_bit);
2155 break;
2156
2157 default:
2158 abort ();
2159 }
2160 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, code, c);
2161 if (c < 0)
2162 goto invalid_code;
2163 }
2164 *nbytes = src - src_base;
2165 *nchars = consumed_chars;
2166 if (id)
2167 *id = charset->id;
2168 return (mseq_found ? -c : c);
2169
2170 no_more_source:
2171 return -2;
2172
2173 invalid_code:
2174 return -1;
2175 }
2176
2177
2178 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2179
2180 /* Handle these composition sequence ('|': the end of header elements,
2181 BYTES and CHARS >= 0xA0):
2182
2183 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2184 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2185 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2186
2187 and these old form:
2188
2189 (4) relative composition: 0x80 | MSEQ ... MSEQ
2190 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2191
2192 When the starter 0x80 and the following header elements are found,
2193 this annotation header is produced.
2194
2195 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2196
2197 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2198 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2199
2200 Then, upon reading the following elements, these codes are produced
2201 until the composition end is found:
2202
2203 (1) CHAR ... CHAR
2204 (2) ALT ... ALT CHAR ... CHAR
2205 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2206 (4) CHAR ... CHAR
2207 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2208
2209 When the composition end is found, LENGTH and NCHARS in the
2210 annotation header is updated as below:
2211
2212 (1) LENGTH: unchanged, NCHARS: unchanged
2213 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2214 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2215 (4) LENGTH: unchanged, NCHARS: number of CHARs
2216 (5) LENGTH: unchanged, NCHARS: number of CHARs
2217
2218 If an error is found while composing, the annotation header is
2219 changed to the original composition header (plus filler -1s) as
2220 below:
2221
2222 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2223 (5) [ 0x80 0xFF -1 -1- -1 ]
2224
2225 and the sequence [ -2 DECODED-RULE ] is changed to the original
2226 byte sequence as below:
2227 o the original byte sequence is B: [ B -1 ]
2228 o the original byte sequence is B1 B2: [ B1 B2 ]
2229
2230 Most of the routines are implemented by macros because many
2231 variables and labels in the caller decode_coding_emacs_mule must be
2232 accessible, and they are usually called just once (thus doesn't
2233 increase the size of compiled object). */
2234
2235 /* Decode a composition rule represented by C as a component of
2236 composition sequence of Emacs 20 style. Set RULE to the decoded
2237 rule. */
2238
2239 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2240 do { \
2241 int gref, nref; \
2242 \
2243 c -= 0xA0; \
2244 if (c < 0 || c >= 81) \
2245 goto invalid_code; \
2246 gref = c / 9, nref = c % 9; \
2247 if (gref == 4) gref = 10; \
2248 if (nref == 4) nref = 10; \
2249 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2250 } while (0)
2251
2252
2253 /* Decode a composition rule represented by C and the following byte
2254 at SRC as a component of composition sequence of Emacs 21 style.
2255 Set RULE to the decoded rule. */
2256
2257 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2258 do { \
2259 int gref, nref; \
2260 \
2261 gref = c - 0x20; \
2262 if (gref < 0 || gref >= 81) \
2263 goto invalid_code; \
2264 ONE_MORE_BYTE (c); \
2265 nref = c - 0x20; \
2266 if (nref < 0 || nref >= 81) \
2267 goto invalid_code; \
2268 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2269 } while (0)
2270
2271
2272 /* Start of Emacs 21 style format. The first three bytes at SRC are
2273 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2274 byte length of this composition information, CHARS is the number of
2275 characters composed by this composition. */
2276
2277 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2278 do { \
2279 enum composition_method method = c - 0xF2; \
2280 int *charbuf_base = charbuf; \
2281 int nbytes, nchars; \
2282 \
2283 ONE_MORE_BYTE (c); \
2284 if (c < 0) \
2285 goto invalid_code; \
2286 nbytes = c - 0xA0; \
2287 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2288 goto invalid_code; \
2289 ONE_MORE_BYTE (c); \
2290 nchars = c - 0xA0; \
2291 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2292 goto invalid_code; \
2293 cmp_status->old_form = 0; \
2294 cmp_status->method = method; \
2295 if (method == COMPOSITION_RELATIVE) \
2296 cmp_status->state = COMPOSING_CHAR; \
2297 else \
2298 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2299 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2300 cmp_status->nchars = nchars; \
2301 cmp_status->ncomps = nbytes - 4; \
2302 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2303 } while (0)
2304
2305
2306 /* Start of Emacs 20 style format for relative composition. */
2307
2308 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2309 do { \
2310 cmp_status->old_form = 1; \
2311 cmp_status->method = COMPOSITION_RELATIVE; \
2312 cmp_status->state = COMPOSING_CHAR; \
2313 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2314 cmp_status->nchars = cmp_status->ncomps = 0; \
2315 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2316 } while (0)
2317
2318
2319 /* Start of Emacs 20 style format for rule-base composition. */
2320
2321 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2322 do { \
2323 cmp_status->old_form = 1; \
2324 cmp_status->method = COMPOSITION_WITH_RULE; \
2325 cmp_status->state = COMPOSING_CHAR; \
2326 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2327 cmp_status->nchars = cmp_status->ncomps = 0; \
2328 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2329 } while (0)
2330
2331
2332 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2333 do { \
2334 const unsigned char *current_src = src; \
2335 \
2336 ONE_MORE_BYTE (c); \
2337 if (c < 0) \
2338 goto invalid_code; \
2339 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2340 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2341 DECODE_EMACS_MULE_21_COMPOSITION (); \
2342 else if (c < 0xA0) \
2343 goto invalid_code; \
2344 else if (c < 0xC0) \
2345 { \
2346 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2347 /* Re-read C as a composition component. */ \
2348 src = current_src; \
2349 } \
2350 else if (c == 0xFF) \
2351 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2352 else \
2353 goto invalid_code; \
2354 } while (0)
2355
2356 #define EMACS_MULE_COMPOSITION_END() \
2357 do { \
2358 int idx = - cmp_status->length; \
2359 \
2360 if (cmp_status->old_form) \
2361 charbuf[idx + 2] = cmp_status->nchars; \
2362 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2363 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2364 cmp_status->state = COMPOSING_NO; \
2365 } while (0)
2366
2367
2368 static int
2369 emacs_mule_finish_composition (int *charbuf,
2370 struct composition_status *cmp_status)
2371 {
2372 int idx = - cmp_status->length;
2373 int new_chars;
2374
2375 if (cmp_status->old_form && cmp_status->nchars > 0)
2376 {
2377 charbuf[idx + 2] = cmp_status->nchars;
2378 new_chars = 0;
2379 if (cmp_status->method == COMPOSITION_WITH_RULE
2380 && cmp_status->state == COMPOSING_CHAR)
2381 {
2382 /* The last rule was invalid. */
2383 int rule = charbuf[-1] + 0xA0;
2384
2385 charbuf[-2] = BYTE8_TO_CHAR (rule);
2386 charbuf[-1] = -1;
2387 new_chars = 1;
2388 }
2389 }
2390 else
2391 {
2392 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2393
2394 if (cmp_status->method == COMPOSITION_WITH_RULE)
2395 {
2396 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2397 charbuf[idx++] = -3;
2398 charbuf[idx++] = 0;
2399 new_chars = 1;
2400 }
2401 else
2402 {
2403 int nchars = charbuf[idx + 1] + 0xA0;
2404 int nbytes = charbuf[idx + 2] + 0xA0;
2405
2406 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2407 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2408 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2409 charbuf[idx++] = -1;
2410 new_chars = 4;
2411 }
2412 }
2413 cmp_status->state = COMPOSING_NO;
2414 return new_chars;
2415 }
2416
2417 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2418 do { \
2419 if (cmp_status->state != COMPOSING_NO) \
2420 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2421 } while (0)
2422
2423
2424 static void
2425 decode_coding_emacs_mule (struct coding_system *coding)
2426 {
2427 const unsigned char *src = coding->source + coding->consumed;
2428 const unsigned char *src_end = coding->source + coding->src_bytes;
2429 const unsigned char *src_base;
2430 int *charbuf = coding->charbuf + coding->charbuf_used;
2431 /* We may produce two annocations (charset and composition) in one
2432 loop and one more charset annocation at the end. */
2433 int *charbuf_end
2434 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2435 int consumed_chars = 0, consumed_chars_base;
2436 int multibytep = coding->src_multibyte;
2437 Lisp_Object attrs, charset_list;
2438 int char_offset = coding->produced_char;
2439 int last_offset = char_offset;
2440 int last_id = charset_ascii;
2441 int eol_crlf =
2442 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2443 int byte_after_cr = -1;
2444 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2445
2446 CODING_GET_INFO (coding, attrs, charset_list);
2447
2448 if (cmp_status->state != COMPOSING_NO)
2449 {
2450 int i;
2451
2452 for (i = 0; i < cmp_status->length; i++)
2453 *charbuf++ = cmp_status->carryover[i];
2454 coding->annotated = 1;
2455 }
2456
2457 while (1)
2458 {
2459 int c, id;
2460
2461 src_base = src;
2462 consumed_chars_base = consumed_chars;
2463
2464 if (charbuf >= charbuf_end)
2465 {
2466 if (byte_after_cr >= 0)
2467 src_base--;
2468 break;
2469 }
2470
2471 if (byte_after_cr >= 0)
2472 c = byte_after_cr, byte_after_cr = -1;
2473 else
2474 ONE_MORE_BYTE (c);
2475
2476 if (c < 0 || c == 0x80)
2477 {
2478 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2479 if (c < 0)
2480 {
2481 *charbuf++ = -c;
2482 char_offset++;
2483 }
2484 else
2485 DECODE_EMACS_MULE_COMPOSITION_START ();
2486 continue;
2487 }
2488
2489 if (c < 0x80)
2490 {
2491 if (eol_crlf && c == '\r')
2492 ONE_MORE_BYTE (byte_after_cr);
2493 id = charset_ascii;
2494 if (cmp_status->state != COMPOSING_NO)
2495 {
2496 if (cmp_status->old_form)
2497 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2498 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2499 cmp_status->ncomps--;
2500 }
2501 }
2502 else
2503 {
2504 int nchars, nbytes;
2505 /* emacs_mule_char can load a charset map from a file, which
2506 allocates a large structure and might cause buffer text
2507 to be relocated as result. Thus, we need to remember the
2508 original pointer to buffer text, and fixup all related
2509 pointers after the call. */
2510 const unsigned char *orig = coding->source;
2511 EMACS_INT offset;
2512
2513 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2514 cmp_status);
2515 offset = coding->source - orig;
2516 if (offset)
2517 {
2518 src += offset;
2519 src_base += offset;
2520 src_end += offset;
2521 }
2522 if (c < 0)
2523 {
2524 if (c == -1)
2525 goto invalid_code;
2526 if (c == -2)
2527 break;
2528 }
2529 src = src_base + nbytes;
2530 consumed_chars = consumed_chars_base + nchars;
2531 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2532 cmp_status->ncomps -= nchars;
2533 }
2534
2535 /* Now if C >= 0, we found a normally encoded characer, if C <
2536 0, we found an old-style composition component character or
2537 rule. */
2538
2539 if (cmp_status->state == COMPOSING_NO)
2540 {
2541 if (last_id != id)
2542 {
2543 if (last_id != charset_ascii)
2544 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2545 last_id);
2546 last_id = id;
2547 last_offset = char_offset;
2548 }
2549 *charbuf++ = c;
2550 char_offset++;
2551 }
2552 else if (cmp_status->state == COMPOSING_CHAR)
2553 {
2554 if (cmp_status->old_form)
2555 {
2556 if (c >= 0)
2557 {
2558 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2559 *charbuf++ = c;
2560 char_offset++;
2561 }
2562 else
2563 {
2564 *charbuf++ = -c;
2565 cmp_status->nchars++;
2566 cmp_status->length++;
2567 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2568 EMACS_MULE_COMPOSITION_END ();
2569 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2570 cmp_status->state = COMPOSING_RULE;
2571 }
2572 }
2573 else
2574 {
2575 *charbuf++ = c;
2576 cmp_status->length++;
2577 cmp_status->nchars--;
2578 if (cmp_status->nchars == 0)
2579 EMACS_MULE_COMPOSITION_END ();
2580 }
2581 }
2582 else if (cmp_status->state == COMPOSING_RULE)
2583 {
2584 int rule;
2585
2586 if (c >= 0)
2587 {
2588 EMACS_MULE_COMPOSITION_END ();
2589 *charbuf++ = c;
2590 char_offset++;
2591 }
2592 else
2593 {
2594 c = -c;
2595 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2596 if (rule < 0)
2597 goto invalid_code;
2598 *charbuf++ = -2;
2599 *charbuf++ = rule;
2600 cmp_status->length += 2;
2601 cmp_status->state = COMPOSING_CHAR;
2602 }
2603 }
2604 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2605 {
2606 *charbuf++ = c;
2607 cmp_status->length++;
2608 if (cmp_status->ncomps == 0)
2609 cmp_status->state = COMPOSING_CHAR;
2610 else if (cmp_status->ncomps > 0)
2611 {
2612 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2613 cmp_status->state = COMPOSING_COMPONENT_RULE;
2614 }
2615 else
2616 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2617 }
2618 else /* COMPOSING_COMPONENT_RULE */
2619 {
2620 int rule;
2621
2622 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2623 if (rule < 0)
2624 goto invalid_code;
2625 *charbuf++ = -2;
2626 *charbuf++ = rule;
2627 cmp_status->length += 2;
2628 cmp_status->ncomps--;
2629 if (cmp_status->ncomps > 0)
2630 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2631 else
2632 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2633 }
2634 continue;
2635
2636 retry:
2637 src = src_base;
2638 consumed_chars = consumed_chars_base;
2639 continue;
2640
2641 invalid_code:
2642 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2643 src = src_base;
2644 consumed_chars = consumed_chars_base;
2645 ONE_MORE_BYTE (c);
2646 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2647 char_offset++;
2648 coding->errors++;
2649 }
2650
2651 no_more_source:
2652 if (cmp_status->state != COMPOSING_NO)
2653 {
2654 if (coding->mode & CODING_MODE_LAST_BLOCK)
2655 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2656 else
2657 {
2658 int i;
2659
2660 charbuf -= cmp_status->length;
2661 for (i = 0; i < cmp_status->length; i++)
2662 cmp_status->carryover[i] = charbuf[i];
2663 }
2664 }
2665 if (last_id != charset_ascii)
2666 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2667 coding->consumed_char += consumed_chars_base;
2668 coding->consumed = src_base - coding->source;
2669 coding->charbuf_used = charbuf - coding->charbuf;
2670 }
2671
2672
2673 #define EMACS_MULE_LEADING_CODES(id, codes) \
2674 do { \
2675 if (id < 0xA0) \
2676 codes[0] = id, codes[1] = 0; \
2677 else if (id < 0xE0) \
2678 codes[0] = 0x9A, codes[1] = id; \
2679 else if (id < 0xF0) \
2680 codes[0] = 0x9B, codes[1] = id; \
2681 else if (id < 0xF5) \
2682 codes[0] = 0x9C, codes[1] = id; \
2683 else \
2684 codes[0] = 0x9D, codes[1] = id; \
2685 } while (0);
2686
2687
2688 static int
2689 encode_coding_emacs_mule (struct coding_system *coding)
2690 {
2691 int multibytep = coding->dst_multibyte;
2692 int *charbuf = coding->charbuf;
2693 int *charbuf_end = charbuf + coding->charbuf_used;
2694 unsigned char *dst = coding->destination + coding->produced;
2695 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2696 int safe_room = 8;
2697 int produced_chars = 0;
2698 Lisp_Object attrs, charset_list;
2699 int c;
2700 int preferred_charset_id = -1;
2701
2702 CODING_GET_INFO (coding, attrs, charset_list);
2703 if (! EQ (charset_list, Vemacs_mule_charset_list))
2704 {
2705 CODING_ATTR_CHARSET_LIST (attrs)
2706 = charset_list = Vemacs_mule_charset_list;
2707 }
2708
2709 while (charbuf < charbuf_end)
2710 {
2711 ASSURE_DESTINATION (safe_room);
2712 c = *charbuf++;
2713
2714 if (c < 0)
2715 {
2716 /* Handle an annotation. */
2717 switch (*charbuf)
2718 {
2719 case CODING_ANNOTATE_COMPOSITION_MASK:
2720 /* Not yet implemented. */
2721 break;
2722 case CODING_ANNOTATE_CHARSET_MASK:
2723 preferred_charset_id = charbuf[3];
2724 if (preferred_charset_id >= 0
2725 && NILP (Fmemq (make_number (preferred_charset_id),
2726 charset_list)))
2727 preferred_charset_id = -1;
2728 break;
2729 default:
2730 abort ();
2731 }
2732 charbuf += -c - 1;
2733 continue;
2734 }
2735
2736 if (ASCII_CHAR_P (c))
2737 EMIT_ONE_ASCII_BYTE (c);
2738 else if (CHAR_BYTE8_P (c))
2739 {
2740 c = CHAR_TO_BYTE8 (c);
2741 EMIT_ONE_BYTE (c);
2742 }
2743 else
2744 {
2745 struct charset *charset;
2746 unsigned code;
2747 int dimension;
2748 int emacs_mule_id;
2749 unsigned char leading_codes[2];
2750
2751 if (preferred_charset_id >= 0)
2752 {
2753 charset = CHARSET_FROM_ID (preferred_charset_id);
2754 if (CHAR_CHARSET_P (c, charset))
2755 code = ENCODE_CHAR (charset, c);
2756 else
2757 charset = char_charset (c, charset_list, &code);
2758 }
2759 else
2760 charset = char_charset (c, charset_list, &code);
2761 if (! charset)
2762 {
2763 c = coding->default_char;
2764 if (ASCII_CHAR_P (c))
2765 {
2766 EMIT_ONE_ASCII_BYTE (c);
2767 continue;
2768 }
2769 charset = char_charset (c, charset_list, &code);
2770 }
2771 dimension = CHARSET_DIMENSION (charset);
2772 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2773 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2774 EMIT_ONE_BYTE (leading_codes[0]);
2775 if (leading_codes[1])
2776 EMIT_ONE_BYTE (leading_codes[1]);
2777 if (dimension == 1)
2778 EMIT_ONE_BYTE (code | 0x80);
2779 else
2780 {
2781 code |= 0x8080;
2782 EMIT_ONE_BYTE (code >> 8);
2783 EMIT_ONE_BYTE (code & 0xFF);
2784 }
2785 }
2786 }
2787 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2788 coding->produced_char += produced_chars;
2789 coding->produced = dst - coding->destination;
2790 return 0;
2791 }
2792
2793 \f
2794 /*** 7. ISO2022 handlers ***/
2795
2796 /* The following note describes the coding system ISO2022 briefly.
2797 Since the intention of this note is to help understand the
2798 functions in this file, some parts are NOT ACCURATE or are OVERLY
2799 SIMPLIFIED. For thorough understanding, please refer to the
2800 original document of ISO2022. This is equivalent to the standard
2801 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2802
2803 ISO2022 provides many mechanisms to encode several character sets
2804 in 7-bit and 8-bit environments. For 7-bit environments, all text
2805 is encoded using bytes less than 128. This may make the encoded
2806 text a little bit longer, but the text passes more easily through
2807 several types of gateway, some of which strip off the MSB (Most
2808 Significant Bit).
2809
2810 There are two kinds of character sets: control character sets and
2811 graphic character sets. The former contain control characters such
2812 as `newline' and `escape' to provide control functions (control
2813 functions are also provided by escape sequences). The latter
2814 contain graphic characters such as 'A' and '-'. Emacs recognizes
2815 two control character sets and many graphic character sets.
2816
2817 Graphic character sets are classified into one of the following
2818 four classes, according to the number of bytes (DIMENSION) and
2819 number of characters in one dimension (CHARS) of the set:
2820 - DIMENSION1_CHARS94
2821 - DIMENSION1_CHARS96
2822 - DIMENSION2_CHARS94
2823 - DIMENSION2_CHARS96
2824
2825 In addition, each character set is assigned an identification tag,
2826 unique for each set, called the "final character" (denoted as <F>
2827 hereafter). The <F> of each character set is decided by ECMA(*)
2828 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2829 (0x30..0x3F are for private use only).
2830
2831 Note (*): ECMA = European Computer Manufacturers Association
2832
2833 Here are examples of graphic character sets [NAME(<F>)]:
2834 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2835 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2836 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2837 o DIMENSION2_CHARS96 -- none for the moment
2838
2839 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2840 C0 [0x00..0x1F] -- control character plane 0
2841 GL [0x20..0x7F] -- graphic character plane 0
2842 C1 [0x80..0x9F] -- control character plane 1
2843 GR [0xA0..0xFF] -- graphic character plane 1
2844
2845 A control character set is directly designated and invoked to C0 or
2846 C1 by an escape sequence. The most common case is that:
2847 - ISO646's control character set is designated/invoked to C0, and
2848 - ISO6429's control character set is designated/invoked to C1,
2849 and usually these designations/invocations are omitted in encoded
2850 text. In a 7-bit environment, only C0 can be used, and a control
2851 character for C1 is encoded by an appropriate escape sequence to
2852 fit into the environment. All control characters for C1 are
2853 defined to have corresponding escape sequences.
2854
2855 A graphic character set is at first designated to one of four
2856 graphic registers (G0 through G3), then these graphic registers are
2857 invoked to GL or GR. These designations and invocations can be
2858 done independently. The most common case is that G0 is invoked to
2859 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2860 these invocations and designations are omitted in encoded text.
2861 In a 7-bit environment, only GL can be used.
2862
2863 When a graphic character set of CHARS94 is invoked to GL, codes
2864 0x20 and 0x7F of the GL area work as control characters SPACE and
2865 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2866 be used.
2867
2868 There are two ways of invocation: locking-shift and single-shift.
2869 With locking-shift, the invocation lasts until the next different
2870 invocation, whereas with single-shift, the invocation affects the
2871 following character only and doesn't affect the locking-shift
2872 state. Invocations are done by the following control characters or
2873 escape sequences:
2874
2875 ----------------------------------------------------------------------
2876 abbrev function cntrl escape seq description
2877 ----------------------------------------------------------------------
2878 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2879 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2880 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2881 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2882 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2883 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2884 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2885 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2886 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2887 ----------------------------------------------------------------------
2888 (*) These are not used by any known coding system.
2889
2890 Control characters for these functions are defined by macros
2891 ISO_CODE_XXX in `coding.h'.
2892
2893 Designations are done by the following escape sequences:
2894 ----------------------------------------------------------------------
2895 escape sequence description
2896 ----------------------------------------------------------------------
2897 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2898 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2899 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2900 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2901 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2902 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2903 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2904 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2905 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2906 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2907 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2908 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2909 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2910 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2911 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2912 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2913 ----------------------------------------------------------------------
2914
2915 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2916 of dimension 1, chars 94, and final character <F>, etc...
2917
2918 Note (*): Although these designations are not allowed in ISO2022,
2919 Emacs accepts them on decoding, and produces them on encoding
2920 CHARS96 character sets in a coding system which is characterized as
2921 7-bit environment, non-locking-shift, and non-single-shift.
2922
2923 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2924 '(' must be omitted. We refer to this as "short-form" hereafter.
2925
2926 Now you may notice that there are a lot of ways of encoding the
2927 same multilingual text in ISO2022. Actually, there exist many
2928 coding systems such as Compound Text (used in X11's inter client
2929 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2930 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2931 localized platforms), and all of these are variants of ISO2022.
2932
2933 In addition to the above, Emacs handles two more kinds of escape
2934 sequences: ISO6429's direction specification and Emacs' private
2935 sequence for specifying character composition.
2936
2937 ISO6429's direction specification takes the following form:
2938 o CSI ']' -- end of the current direction
2939 o CSI '0' ']' -- end of the current direction
2940 o CSI '1' ']' -- start of left-to-right text
2941 o CSI '2' ']' -- start of right-to-left text
2942 The control character CSI (0x9B: control sequence introducer) is
2943 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2944
2945 Character composition specification takes the following form:
2946 o ESC '0' -- start relative composition
2947 o ESC '1' -- end composition
2948 o ESC '2' -- start rule-base composition (*)
2949 o ESC '3' -- start relative composition with alternate chars (**)
2950 o ESC '4' -- start rule-base composition with alternate chars (**)
2951 Since these are not standard escape sequences of any ISO standard,
2952 the use of them with these meanings is restricted to Emacs only.
2953
2954 (*) This form is used only in Emacs 20.7 and older versions,
2955 but newer versions can safely decode it.
2956 (**) This form is used only in Emacs 21.1 and newer versions,
2957 and older versions can't decode it.
2958
2959 Here's a list of example usages of these composition escape
2960 sequences (categorized by `enum composition_method').
2961
2962 COMPOSITION_RELATIVE:
2963 ESC 0 CHAR [ CHAR ] ESC 1
2964 COMPOSITION_WITH_RULE:
2965 ESC 2 CHAR [ RULE CHAR ] ESC 1
2966 COMPOSITION_WITH_ALTCHARS:
2967 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2968 COMPOSITION_WITH_RULE_ALTCHARS:
2969 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2970
2971 enum iso_code_class_type iso_code_class[256];
2972
2973 #define SAFE_CHARSET_P(coding, id) \
2974 ((id) <= (coding)->max_charset_id \
2975 && (coding)->safe_charsets[id] != 255)
2976
2977
2978 #define SHIFT_OUT_OK(category) \
2979 (CODING_ISO_INITIAL (&coding_categories[category], 1) >= 0)
2980
2981 static void
2982 setup_iso_safe_charsets (Lisp_Object attrs)
2983 {
2984 Lisp_Object charset_list, safe_charsets;
2985 Lisp_Object request;
2986 Lisp_Object reg_usage;
2987 Lisp_Object tail;
2988 int reg94, reg96;
2989 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2990 int max_charset_id;
2991
2992 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2993 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2994 && ! EQ (charset_list, Viso_2022_charset_list))
2995 {
2996 CODING_ATTR_CHARSET_LIST (attrs)
2997 = charset_list = Viso_2022_charset_list;
2998 ASET (attrs, coding_attr_safe_charsets, Qnil);
2999 }
3000
3001 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
3002 return;
3003
3004 max_charset_id = 0;
3005 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3006 {
3007 int id = XINT (XCAR (tail));
3008 if (max_charset_id < id)
3009 max_charset_id = id;
3010 }
3011
3012 safe_charsets = make_uninit_string (max_charset_id + 1);
3013 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
3014 request = AREF (attrs, coding_attr_iso_request);
3015 reg_usage = AREF (attrs, coding_attr_iso_usage);
3016 reg94 = XINT (XCAR (reg_usage));
3017 reg96 = XINT (XCDR (reg_usage));
3018
3019 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3020 {
3021 Lisp_Object id;
3022 Lisp_Object reg;
3023 struct charset *charset;
3024
3025 id = XCAR (tail);
3026 charset = CHARSET_FROM_ID (XINT (id));
3027 reg = Fcdr (Fassq (id, request));
3028 if (! NILP (reg))
3029 SSET (safe_charsets, XINT (id), XINT (reg));
3030 else if (charset->iso_chars_96)
3031 {
3032 if (reg96 < 4)
3033 SSET (safe_charsets, XINT (id), reg96);
3034 }
3035 else
3036 {
3037 if (reg94 < 4)
3038 SSET (safe_charsets, XINT (id), reg94);
3039 }
3040 }
3041 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
3042 }
3043
3044
3045 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3046 Check if a text is encoded in one of ISO-2022 based codig systems.
3047 If it is, return 1, else return 0. */
3048
3049 static int
3050 detect_coding_iso_2022 (struct coding_system *coding,
3051 struct coding_detection_info *detect_info)
3052 {
3053 const unsigned char *src = coding->source, *src_base = src;
3054 const unsigned char *src_end = coding->source + coding->src_bytes;
3055 int multibytep = coding->src_multibyte;
3056 int single_shifting = 0;
3057 int id;
3058 int c, c1;
3059 int consumed_chars = 0;
3060 int i;
3061 int rejected = 0;
3062 int found = 0;
3063 int composition_count = -1;
3064
3065 detect_info->checked |= CATEGORY_MASK_ISO;
3066
3067 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3068 {
3069 struct coding_system *this = &(coding_categories[i]);
3070 Lisp_Object attrs, val;
3071
3072 if (this->id < 0)
3073 continue;
3074 attrs = CODING_ID_ATTRS (this->id);
3075 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3076 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3077 setup_iso_safe_charsets (attrs);
3078 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3079 this->max_charset_id = SCHARS (val) - 1;
3080 this->safe_charsets = SDATA (val);
3081 }
3082
3083 /* A coding system of this category is always ASCII compatible. */
3084 src += coding->head_ascii;
3085
3086 while (rejected != CATEGORY_MASK_ISO)
3087 {
3088 src_base = src;
3089 ONE_MORE_BYTE (c);
3090 switch (c)
3091 {
3092 case ISO_CODE_ESC:
3093 if (inhibit_iso_escape_detection)
3094 break;
3095 single_shifting = 0;
3096 ONE_MORE_BYTE (c);
3097 if (c >= '(' && c <= '/')
3098 {
3099 /* Designation sequence for a charset of dimension 1. */
3100 ONE_MORE_BYTE (c1);
3101 if (c1 < ' ' || c1 >= 0x80
3102 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3103 /* Invalid designation sequence. Just ignore. */
3104 break;
3105 }
3106 else if (c == '$')
3107 {
3108 /* Designation sequence for a charset of dimension 2. */
3109 ONE_MORE_BYTE (c);
3110 if (c >= '@' && c <= 'B')
3111 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3112 id = iso_charset_table[1][0][c];
3113 else if (c >= '(' && c <= '/')
3114 {
3115 ONE_MORE_BYTE (c1);
3116 if (c1 < ' ' || c1 >= 0x80
3117 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3118 /* Invalid designation sequence. Just ignore. */
3119 break;
3120 }
3121 else
3122 /* Invalid designation sequence. Just ignore it. */
3123 break;
3124 }
3125 else if (c == 'N' || c == 'O')
3126 {
3127 /* ESC <Fe> for SS2 or SS3. */
3128 single_shifting = 1;
3129 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3130 break;
3131 }
3132 else if (c == '1')
3133 {
3134 /* End of composition. */
3135 if (composition_count < 0
3136 || composition_count > MAX_COMPOSITION_COMPONENTS)
3137 /* Invalid */
3138 break;
3139 composition_count = -1;
3140 found |= CATEGORY_MASK_ISO;
3141 }
3142 else if (c >= '0' && c <= '4')
3143 {
3144 /* ESC <Fp> for start/end composition. */
3145 composition_count = 0;
3146 break;
3147 }
3148 else
3149 {
3150 /* Invalid escape sequence. Just ignore it. */
3151 break;
3152 }
3153
3154 /* We found a valid designation sequence for CHARSET. */
3155 rejected |= CATEGORY_MASK_ISO_8BIT;
3156 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3157 id))
3158 found |= CATEGORY_MASK_ISO_7;
3159 else
3160 rejected |= CATEGORY_MASK_ISO_7;
3161 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3162 id))
3163 found |= CATEGORY_MASK_ISO_7_TIGHT;
3164 else
3165 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3166 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3167 id))
3168 found |= CATEGORY_MASK_ISO_7_ELSE;
3169 else
3170 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3171 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3172 id))
3173 found |= CATEGORY_MASK_ISO_8_ELSE;
3174 else
3175 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3176 break;
3177
3178 case ISO_CODE_SO:
3179 case ISO_CODE_SI:
3180 /* Locking shift out/in. */
3181 if (inhibit_iso_escape_detection)
3182 break;
3183 single_shifting = 0;
3184 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3185 break;
3186
3187 case ISO_CODE_CSI:
3188 /* Control sequence introducer. */
3189 single_shifting = 0;
3190 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3191 found |= CATEGORY_MASK_ISO_8_ELSE;
3192 goto check_extra_latin;
3193
3194 case ISO_CODE_SS2:
3195 case ISO_CODE_SS3:
3196 /* Single shift. */
3197 if (inhibit_iso_escape_detection)
3198 break;
3199 single_shifting = 0;
3200 rejected |= CATEGORY_MASK_ISO_7BIT;
3201 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3202 & CODING_ISO_FLAG_SINGLE_SHIFT)
3203 found |= CATEGORY_MASK_ISO_8_1, single_shifting = 1;
3204 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3205 & CODING_ISO_FLAG_SINGLE_SHIFT)
3206 found |= CATEGORY_MASK_ISO_8_2, single_shifting = 1;
3207 if (single_shifting)
3208 break;
3209 goto check_extra_latin;
3210
3211 default:
3212 if (c < 0)
3213 continue;
3214 if (c < 0x80)
3215 {
3216 if (composition_count >= 0)
3217 composition_count++;
3218 single_shifting = 0;
3219 break;
3220 }
3221 if (c >= 0xA0)
3222 {
3223 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3224 found |= CATEGORY_MASK_ISO_8_1;
3225 /* Check the length of succeeding codes of the range
3226 0xA0..0FF. If the byte length is even, we include
3227 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3228 only when we are not single shifting. */
3229 if (! single_shifting
3230 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3231 {
3232 int i = 1;
3233 while (src < src_end)
3234 {
3235 src_base = src;
3236 ONE_MORE_BYTE (c);
3237 if (c < 0xA0)
3238 {
3239 src = src_base;
3240 break;
3241 }
3242 i++;
3243 }
3244
3245 if (i & 1 && src < src_end)
3246 {
3247 rejected |= CATEGORY_MASK_ISO_8_2;
3248 if (composition_count >= 0)
3249 composition_count += i;
3250 }
3251 else
3252 {
3253 found |= CATEGORY_MASK_ISO_8_2;
3254 if (composition_count >= 0)
3255 composition_count += i / 2;
3256 }
3257 }
3258 break;
3259 }
3260 check_extra_latin:
3261 single_shifting = 0;
3262 if (! VECTORP (Vlatin_extra_code_table)
3263 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3264 {
3265 rejected = CATEGORY_MASK_ISO;
3266 break;
3267 }
3268 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3269 & CODING_ISO_FLAG_LATIN_EXTRA)
3270 found |= CATEGORY_MASK_ISO_8_1;
3271 else
3272 rejected |= CATEGORY_MASK_ISO_8_1;
3273 rejected |= CATEGORY_MASK_ISO_8_2;
3274 }
3275 }
3276 detect_info->rejected |= CATEGORY_MASK_ISO;
3277 return 0;
3278
3279 no_more_source:
3280 detect_info->rejected |= rejected;
3281 detect_info->found |= (found & ~rejected);
3282 return 1;
3283 }
3284
3285
3286 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3287 escape sequence should be kept. */
3288 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3289 do { \
3290 int id, prev; \
3291 \
3292 if (final < '0' || final >= 128 \
3293 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3294 || !SAFE_CHARSET_P (coding, id)) \
3295 { \
3296 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3297 chars_96 = -1; \
3298 break; \
3299 } \
3300 prev = CODING_ISO_DESIGNATION (coding, reg); \
3301 if (id == charset_jisx0201_roman) \
3302 { \
3303 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3304 id = charset_ascii; \
3305 } \
3306 else if (id == charset_jisx0208_1978) \
3307 { \
3308 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3309 id = charset_jisx0208; \
3310 } \
3311 CODING_ISO_DESIGNATION (coding, reg) = id; \
3312 /* If there was an invalid designation to REG previously, and this \
3313 designation is ASCII to REG, we should keep this designation \
3314 sequence. */ \
3315 if (prev == -2 && id == charset_ascii) \
3316 chars_96 = -1; \
3317 } while (0)
3318
3319
3320 /* Handle these composition sequence (ALT: alternate char):
3321
3322 (1) relative composition: ESC 0 CHAR ... ESC 1
3323 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3324 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3325 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3326
3327 When the start sequence (ESC 0/2/3/4) is found, this annotation
3328 header is produced.
3329
3330 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3331
3332 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3333 produced until the end sequence (ESC 1) is found:
3334
3335 (1) CHAR ... CHAR
3336 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3337 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3338 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3339
3340 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3341 annotation header is updated as below:
3342
3343 (1) LENGTH: unchanged, NCHARS: number of CHARs
3344 (2) LENGTH: unchanged, NCHARS: number of CHARs
3345 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3346 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3347
3348 If an error is found while composing, the annotation header is
3349 changed to:
3350
3351 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3352
3353 and the sequence [ -2 DECODED-RULE ] is changed to the original
3354 byte sequence as below:
3355 o the original byte sequence is B: [ B -1 ]
3356 o the original byte sequence is B1 B2: [ B1 B2 ]
3357 and the sequence [ -1 -1 ] is changed to the original byte
3358 sequence:
3359 [ ESC '0' ]
3360 */
3361
3362 /* Decode a composition rule C1 and maybe one more byte from the
3363 source, and set RULE to the encoded composition rule, NBYTES to the
3364 length of the composition rule. If the rule is invalid, set RULE
3365 to some negative value. */
3366
3367 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3368 do { \
3369 rule = c1 - 32; \
3370 if (rule < 0) \
3371 break; \
3372 if (rule < 81) /* old format (before ver.21) */ \
3373 { \
3374 int gref = (rule) / 9; \
3375 int nref = (rule) % 9; \
3376 if (gref == 4) gref = 10; \
3377 if (nref == 4) nref = 10; \
3378 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3379 nbytes = 1; \
3380 } \
3381 else /* new format (after ver.21) */ \
3382 { \
3383 int c; \
3384 \
3385 ONE_MORE_BYTE (c); \
3386 rule = COMPOSITION_ENCODE_RULE (rule - 81, c - 32); \
3387 if (rule >= 0) \
3388 rule += 0x100; /* to destinguish it from the old format */ \
3389 nbytes = 2; \
3390 } \
3391 } while (0)
3392
3393 #define ENCODE_COMPOSITION_RULE(rule) \
3394 do { \
3395 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3396 \
3397 if (rule < 0x100) /* old format */ \
3398 { \
3399 if (gref == 10) gref = 4; \
3400 if (nref == 10) nref = 4; \
3401 charbuf[idx] = 32 + gref * 9 + nref; \
3402 charbuf[idx + 1] = -1; \
3403 new_chars++; \
3404 } \
3405 else /* new format */ \
3406 { \
3407 charbuf[idx] = 32 + 81 + gref; \
3408 charbuf[idx + 1] = 32 + nref; \
3409 new_chars += 2; \
3410 } \
3411 } while (0)
3412
3413 /* Finish the current composition as invalid. */
3414
3415 static int finish_composition (int *, struct composition_status *);
3416
3417 static int
3418 finish_composition (int *charbuf, struct composition_status *cmp_status)
3419 {
3420 int idx = - cmp_status->length;
3421 int new_chars;
3422
3423 /* Recover the original ESC sequence */
3424 charbuf[idx++] = ISO_CODE_ESC;
3425 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3426 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3427 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3428 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3429 : '4');
3430 charbuf[idx++] = -2;
3431 charbuf[idx++] = 0;
3432 charbuf[idx++] = -1;
3433 new_chars = cmp_status->nchars;
3434 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3435 for (; idx < 0; idx++)
3436 {
3437 int elt = charbuf[idx];
3438
3439 if (elt == -2)
3440 {
3441 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3442 idx++;
3443 }
3444 else if (elt == -1)
3445 {
3446 charbuf[idx++] = ISO_CODE_ESC;
3447 charbuf[idx] = '0';
3448 new_chars += 2;
3449 }
3450 }
3451 cmp_status->state = COMPOSING_NO;
3452 return new_chars;
3453 }
3454
3455 /* If characers are under composition, finish the composition. */
3456 #define MAYBE_FINISH_COMPOSITION() \
3457 do { \
3458 if (cmp_status->state != COMPOSING_NO) \
3459 char_offset += finish_composition (charbuf, cmp_status); \
3460 } while (0)
3461
3462 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3463
3464 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3465 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3466 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3467 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3468
3469 Produce this annotation sequence now:
3470
3471 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3472 */
3473
3474 #define DECODE_COMPOSITION_START(c1) \
3475 do { \
3476 if (c1 == '0' \
3477 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3478 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3479 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3480 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3481 { \
3482 *charbuf++ = -1; \
3483 *charbuf++= -1; \
3484 cmp_status->state = COMPOSING_CHAR; \
3485 cmp_status->length += 2; \
3486 } \
3487 else \
3488 { \
3489 MAYBE_FINISH_COMPOSITION (); \
3490 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3491 : c1 == '2' ? COMPOSITION_WITH_RULE \
3492 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3493 : COMPOSITION_WITH_RULE_ALTCHARS); \
3494 cmp_status->state \
3495 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3496 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3497 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3498 cmp_status->nchars = cmp_status->ncomps = 0; \
3499 coding->annotated = 1; \
3500 } \
3501 } while (0)
3502
3503
3504 /* Handle composition end sequence ESC 1. */
3505
3506 #define DECODE_COMPOSITION_END() \
3507 do { \
3508 if (cmp_status->nchars == 0 \
3509 || ((cmp_status->state == COMPOSING_CHAR) \
3510 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3511 { \
3512 MAYBE_FINISH_COMPOSITION (); \
3513 goto invalid_code; \
3514 } \
3515 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3516 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3517 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3518 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3519 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3520 char_offset += cmp_status->nchars; \
3521 cmp_status->state = COMPOSING_NO; \
3522 } while (0)
3523
3524 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3525
3526 #define STORE_COMPOSITION_RULE(rule) \
3527 do { \
3528 *charbuf++ = -2; \
3529 *charbuf++ = rule; \
3530 cmp_status->length += 2; \
3531 cmp_status->state--; \
3532 } while (0)
3533
3534 /* Store a composed char or a component char C in charbuf, and update
3535 cmp_status. */
3536
3537 #define STORE_COMPOSITION_CHAR(c) \
3538 do { \
3539 *charbuf++ = (c); \
3540 cmp_status->length++; \
3541 if (cmp_status->state == COMPOSING_CHAR) \
3542 cmp_status->nchars++; \
3543 else \
3544 cmp_status->ncomps++; \
3545 if (cmp_status->method == COMPOSITION_WITH_RULE \
3546 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3547 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3548 cmp_status->state++; \
3549 } while (0)
3550
3551
3552 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3553
3554 static void
3555 decode_coding_iso_2022 (struct coding_system *coding)
3556 {
3557 const unsigned char *src = coding->source + coding->consumed;
3558 const unsigned char *src_end = coding->source + coding->src_bytes;
3559 const unsigned char *src_base;
3560 int *charbuf = coding->charbuf + coding->charbuf_used;
3561 /* We may produce two annocations (charset and composition) in one
3562 loop and one more charset annocation at the end. */
3563 int *charbuf_end
3564 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3565 int consumed_chars = 0, consumed_chars_base;
3566 int multibytep = coding->src_multibyte;
3567 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3568 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3569 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3570 int charset_id_2, charset_id_3;
3571 struct charset *charset;
3572 int c;
3573 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3574 Lisp_Object attrs, charset_list;
3575 int char_offset = coding->produced_char;
3576 int last_offset = char_offset;
3577 int last_id = charset_ascii;
3578 int eol_crlf =
3579 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3580 int byte_after_cr = -1;
3581 int i;
3582
3583 CODING_GET_INFO (coding, attrs, charset_list);
3584 setup_iso_safe_charsets (attrs);
3585 /* Charset list may have been changed. */
3586 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3587 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3588
3589 if (cmp_status->state != COMPOSING_NO)
3590 {
3591 for (i = 0; i < cmp_status->length; i++)
3592 *charbuf++ = cmp_status->carryover[i];
3593 coding->annotated = 1;
3594 }
3595
3596 while (1)
3597 {
3598 int c1, c2, c3;
3599
3600 src_base = src;
3601 consumed_chars_base = consumed_chars;
3602
3603 if (charbuf >= charbuf_end)
3604 {
3605 if (byte_after_cr >= 0)
3606 src_base--;
3607 break;
3608 }
3609
3610 if (byte_after_cr >= 0)
3611 c1 = byte_after_cr, byte_after_cr = -1;
3612 else
3613 ONE_MORE_BYTE (c1);
3614 if (c1 < 0)
3615 goto invalid_code;
3616
3617 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3618 {
3619 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3620 char_offset++;
3621 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3622 continue;
3623 }
3624
3625 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3626 {
3627 if (c1 == ISO_CODE_ESC)
3628 {
3629 if (src + 1 >= src_end)
3630 goto no_more_source;
3631 *charbuf++ = ISO_CODE_ESC;
3632 char_offset++;
3633 if (src[0] == '%' && src[1] == '@')
3634 {
3635 src += 2;
3636 consumed_chars += 2;
3637 char_offset += 2;
3638 /* We are sure charbuf can contain two more chars. */
3639 *charbuf++ = '%';
3640 *charbuf++ = '@';
3641 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3642 }
3643 }
3644 else
3645 {
3646 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3647 char_offset++;
3648 }
3649 continue;
3650 }
3651
3652 if ((cmp_status->state == COMPOSING_RULE
3653 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3654 && c1 != ISO_CODE_ESC)
3655 {
3656 int rule, nbytes;
3657
3658 DECODE_COMPOSITION_RULE (rule, nbytes);
3659 if (rule < 0)
3660 goto invalid_code;
3661 STORE_COMPOSITION_RULE (rule);
3662 continue;
3663 }
3664
3665 /* We produce at most one character. */
3666 switch (iso_code_class [c1])
3667 {
3668 case ISO_0x20_or_0x7F:
3669 if (charset_id_0 < 0
3670 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3671 /* This is SPACE or DEL. */
3672 charset = CHARSET_FROM_ID (charset_ascii);
3673 else
3674 charset = CHARSET_FROM_ID (charset_id_0);
3675 break;
3676
3677 case ISO_graphic_plane_0:
3678 if (charset_id_0 < 0)
3679 charset = CHARSET_FROM_ID (charset_ascii);
3680 else
3681 charset = CHARSET_FROM_ID (charset_id_0);
3682 break;
3683
3684 case ISO_0xA0_or_0xFF:
3685 if (charset_id_1 < 0
3686 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3687 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3688 goto invalid_code;
3689 /* This is a graphic character, we fall down ... */
3690
3691 case ISO_graphic_plane_1:
3692 if (charset_id_1 < 0)
3693 goto invalid_code;
3694 charset = CHARSET_FROM_ID (charset_id_1);
3695 break;
3696
3697 case ISO_control_0:
3698 if (eol_crlf && c1 == '\r')
3699 ONE_MORE_BYTE (byte_after_cr);
3700 MAYBE_FINISH_COMPOSITION ();
3701 charset = CHARSET_FROM_ID (charset_ascii);
3702 break;
3703
3704 case ISO_control_1:
3705 goto invalid_code;
3706
3707 case ISO_shift_out:
3708 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3709 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3710 goto invalid_code;
3711 CODING_ISO_INVOCATION (coding, 0) = 1;
3712 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3713 continue;
3714
3715 case ISO_shift_in:
3716 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3717 goto invalid_code;
3718 CODING_ISO_INVOCATION (coding, 0) = 0;
3719 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3720 continue;
3721
3722 case ISO_single_shift_2_7:
3723 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3724 goto invalid_code;
3725 case ISO_single_shift_2:
3726 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3727 goto invalid_code;
3728 /* SS2 is handled as an escape sequence of ESC 'N' */
3729 c1 = 'N';
3730 goto label_escape_sequence;
3731
3732 case ISO_single_shift_3:
3733 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3734 goto invalid_code;
3735 /* SS2 is handled as an escape sequence of ESC 'O' */
3736 c1 = 'O';
3737 goto label_escape_sequence;
3738
3739 case ISO_control_sequence_introducer:
3740 /* CSI is handled as an escape sequence of ESC '[' ... */
3741 c1 = '[';
3742 goto label_escape_sequence;
3743
3744 case ISO_escape:
3745 ONE_MORE_BYTE (c1);
3746 label_escape_sequence:
3747 /* Escape sequences handled here are invocation,
3748 designation, direction specification, and character
3749 composition specification. */
3750 switch (c1)
3751 {
3752 case '&': /* revision of following character set */
3753 ONE_MORE_BYTE (c1);
3754 if (!(c1 >= '@' && c1 <= '~'))
3755 goto invalid_code;
3756 ONE_MORE_BYTE (c1);
3757 if (c1 != ISO_CODE_ESC)
3758 goto invalid_code;
3759 ONE_MORE_BYTE (c1);
3760 goto label_escape_sequence;
3761
3762 case '$': /* designation of 2-byte character set */
3763 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3764 goto invalid_code;
3765 {
3766 int reg, chars96;
3767
3768 ONE_MORE_BYTE (c1);
3769 if (c1 >= '@' && c1 <= 'B')
3770 { /* designation of JISX0208.1978, GB2312.1980,
3771 or JISX0208.1980 */
3772 reg = 0, chars96 = 0;
3773 }
3774 else if (c1 >= 0x28 && c1 <= 0x2B)
3775 { /* designation of DIMENSION2_CHARS94 character set */
3776 reg = c1 - 0x28, chars96 = 0;
3777 ONE_MORE_BYTE (c1);
3778 }
3779 else if (c1 >= 0x2C && c1 <= 0x2F)
3780 { /* designation of DIMENSION2_CHARS96 character set */
3781 reg = c1 - 0x2C, chars96 = 1;
3782 ONE_MORE_BYTE (c1);
3783 }
3784 else
3785 goto invalid_code;
3786 DECODE_DESIGNATION (reg, 2, chars96, c1);
3787 /* We must update these variables now. */
3788 if (reg == 0)
3789 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3790 else if (reg == 1)
3791 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3792 if (chars96 < 0)
3793 goto invalid_code;
3794 }
3795 continue;
3796
3797 case 'n': /* invocation of locking-shift-2 */
3798 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3799 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3800 goto invalid_code;
3801 CODING_ISO_INVOCATION (coding, 0) = 2;
3802 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3803 continue;
3804
3805 case 'o': /* invocation of locking-shift-3 */
3806 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3807 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3808 goto invalid_code;
3809 CODING_ISO_INVOCATION (coding, 0) = 3;
3810 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3811 continue;
3812
3813 case 'N': /* invocation of single-shift-2 */
3814 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3815 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3816 goto invalid_code;
3817 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3818 if (charset_id_2 < 0)
3819 charset = CHARSET_FROM_ID (charset_ascii);
3820 else
3821 charset = CHARSET_FROM_ID (charset_id_2);
3822 ONE_MORE_BYTE (c1);
3823 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3824 goto invalid_code;
3825 break;
3826
3827 case 'O': /* invocation of single-shift-3 */
3828 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3829 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3830 goto invalid_code;
3831 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3832 if (charset_id_3 < 0)
3833 charset = CHARSET_FROM_ID (charset_ascii);
3834 else
3835 charset = CHARSET_FROM_ID (charset_id_3);
3836 ONE_MORE_BYTE (c1);
3837 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3838 goto invalid_code;
3839 break;
3840
3841 case '0': case '2': case '3': case '4': /* start composition */
3842 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3843 goto invalid_code;
3844 if (last_id != charset_ascii)
3845 {
3846 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3847 last_id = charset_ascii;
3848 last_offset = char_offset;
3849 }
3850 DECODE_COMPOSITION_START (c1);
3851 continue;
3852
3853 case '1': /* end composition */
3854 if (cmp_status->state == COMPOSING_NO)
3855 goto invalid_code;
3856 DECODE_COMPOSITION_END ();
3857 continue;
3858
3859 case '[': /* specification of direction */
3860 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3861 goto invalid_code;
3862 /* For the moment, nested direction is not supported.
3863 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3864 left-to-right, and nozero means right-to-left. */
3865 ONE_MORE_BYTE (c1);
3866 switch (c1)
3867 {
3868 case ']': /* end of the current direction */
3869 coding->mode &= ~CODING_MODE_DIRECTION;
3870
3871 case '0': /* end of the current direction */
3872 case '1': /* start of left-to-right direction */
3873 ONE_MORE_BYTE (c1);
3874 if (c1 == ']')
3875 coding->mode &= ~CODING_MODE_DIRECTION;
3876 else
3877 goto invalid_code;
3878 break;
3879
3880 case '2': /* start of right-to-left direction */
3881 ONE_MORE_BYTE (c1);
3882 if (c1 == ']')
3883 coding->mode |= CODING_MODE_DIRECTION;
3884 else
3885 goto invalid_code;
3886 break;
3887
3888 default:
3889 goto invalid_code;
3890 }
3891 continue;
3892
3893 case '%':
3894 ONE_MORE_BYTE (c1);
3895 if (c1 == '/')
3896 {
3897 /* CTEXT extended segment:
3898 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3899 We keep these bytes as is for the moment.
3900 They may be decoded by post-read-conversion. */
3901 int dim, M, L;
3902 int size;
3903
3904 ONE_MORE_BYTE (dim);
3905 if (dim < '0' || dim > '4')
3906 goto invalid_code;
3907 ONE_MORE_BYTE (M);
3908 if (M < 128)
3909 goto invalid_code;
3910 ONE_MORE_BYTE (L);
3911 if (L < 128)
3912 goto invalid_code;
3913 size = ((M - 128) * 128) + (L - 128);
3914 if (charbuf + 6 > charbuf_end)
3915 goto break_loop;
3916 *charbuf++ = ISO_CODE_ESC;
3917 *charbuf++ = '%';
3918 *charbuf++ = '/';
3919 *charbuf++ = dim;
3920 *charbuf++ = BYTE8_TO_CHAR (M);
3921 *charbuf++ = BYTE8_TO_CHAR (L);
3922 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3923 }
3924 else if (c1 == 'G')
3925 {
3926 /* XFree86 extension for embedding UTF-8 in CTEXT:
3927 ESC % G --UTF-8-BYTES-- ESC % @
3928 We keep these bytes as is for the moment.
3929 They may be decoded by post-read-conversion. */
3930 if (charbuf + 3 > charbuf_end)
3931 goto break_loop;
3932 *charbuf++ = ISO_CODE_ESC;
3933 *charbuf++ = '%';
3934 *charbuf++ = 'G';
3935 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3936 }
3937 else
3938 goto invalid_code;
3939 continue;
3940 break;
3941
3942 default:
3943 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3944 goto invalid_code;
3945 {
3946 int reg, chars96;
3947
3948 if (c1 >= 0x28 && c1 <= 0x2B)
3949 { /* designation of DIMENSION1_CHARS94 character set */
3950 reg = c1 - 0x28, chars96 = 0;
3951 ONE_MORE_BYTE (c1);
3952 }
3953 else if (c1 >= 0x2C && c1 <= 0x2F)
3954 { /* designation of DIMENSION1_CHARS96 character set */
3955 reg = c1 - 0x2C, chars96 = 1;
3956 ONE_MORE_BYTE (c1);
3957 }
3958 else
3959 goto invalid_code;
3960 DECODE_DESIGNATION (reg, 1, chars96, c1);
3961 /* We must update these variables now. */
3962 if (reg == 0)
3963 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3964 else if (reg == 1)
3965 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3966 if (chars96 < 0)
3967 goto invalid_code;
3968 }
3969 continue;
3970 }
3971 }
3972
3973 if (cmp_status->state == COMPOSING_NO
3974 && charset->id != charset_ascii
3975 && last_id != charset->id)
3976 {
3977 if (last_id != charset_ascii)
3978 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3979 last_id = charset->id;
3980 last_offset = char_offset;
3981 }
3982
3983 /* Now we know CHARSET and 1st position code C1 of a character.
3984 Produce a decoded character while getting 2nd and 3rd
3985 position codes C2, C3 if necessary. */
3986 if (CHARSET_DIMENSION (charset) > 1)
3987 {
3988 ONE_MORE_BYTE (c2);
3989 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3990 || ((c1 & 0x80) != (c2 & 0x80)))
3991 /* C2 is not in a valid range. */
3992 goto invalid_code;
3993 if (CHARSET_DIMENSION (charset) == 2)
3994 c1 = (c1 << 8) | c2;
3995 else
3996 {
3997 ONE_MORE_BYTE (c3);
3998 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3999 || ((c1 & 0x80) != (c3 & 0x80)))
4000 /* C3 is not in a valid range. */
4001 goto invalid_code;
4002 c1 = (c1 << 16) | (c2 << 8) | c2;
4003 }
4004 }
4005 c1 &= 0x7F7F7F;
4006 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
4007 if (c < 0)
4008 {
4009 MAYBE_FINISH_COMPOSITION ();
4010 for (; src_base < src; src_base++, char_offset++)
4011 {
4012 if (ASCII_BYTE_P (*src_base))
4013 *charbuf++ = *src_base;
4014 else
4015 *charbuf++ = BYTE8_TO_CHAR (*src_base);
4016 }
4017 }
4018 else if (cmp_status->state == COMPOSING_NO)
4019 {
4020 *charbuf++ = c;
4021 char_offset++;
4022 }
4023 else if ((cmp_status->state == COMPOSING_CHAR
4024 ? cmp_status->nchars
4025 : cmp_status->ncomps)
4026 >= MAX_COMPOSITION_COMPONENTS)
4027 {
4028 /* Too long composition. */
4029 MAYBE_FINISH_COMPOSITION ();
4030 *charbuf++ = c;
4031 char_offset++;
4032 }
4033 else
4034 STORE_COMPOSITION_CHAR (c);
4035 continue;
4036
4037 invalid_code:
4038 MAYBE_FINISH_COMPOSITION ();
4039 src = src_base;
4040 consumed_chars = consumed_chars_base;
4041 ONE_MORE_BYTE (c);
4042 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4043 char_offset++;
4044 coding->errors++;
4045 continue;
4046
4047 break_loop:
4048 break;
4049 }
4050
4051 no_more_source:
4052 if (cmp_status->state != COMPOSING_NO)
4053 {
4054 if (coding->mode & CODING_MODE_LAST_BLOCK)
4055 MAYBE_FINISH_COMPOSITION ();
4056 else
4057 {
4058 charbuf -= cmp_status->length;
4059 for (i = 0; i < cmp_status->length; i++)
4060 cmp_status->carryover[i] = charbuf[i];
4061 }
4062 }
4063 else if (last_id != charset_ascii)
4064 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4065 coding->consumed_char += consumed_chars_base;
4066 coding->consumed = src_base - coding->source;
4067 coding->charbuf_used = charbuf - coding->charbuf;
4068 }
4069
4070
4071 /* ISO2022 encoding stuff. */
4072
4073 /*
4074 It is not enough to say just "ISO2022" on encoding, we have to
4075 specify more details. In Emacs, each coding system of ISO2022
4076 variant has the following specifications:
4077 1. Initial designation to G0 thru G3.
4078 2. Allows short-form designation?
4079 3. ASCII should be designated to G0 before control characters?
4080 4. ASCII should be designated to G0 at end of line?
4081 5. 7-bit environment or 8-bit environment?
4082 6. Use locking-shift?
4083 7. Use Single-shift?
4084 And the following two are only for Japanese:
4085 8. Use ASCII in place of JIS0201-1976-Roman?
4086 9. Use JISX0208-1983 in place of JISX0208-1978?
4087 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4088 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4089 details.
4090 */
4091
4092 /* Produce codes (escape sequence) for designating CHARSET to graphic
4093 register REG at DST, and increment DST. If <final-char> of CHARSET is
4094 '@', 'A', or 'B' and the coding system CODING allows, produce
4095 designation sequence of short-form. */
4096
4097 #define ENCODE_DESIGNATION(charset, reg, coding) \
4098 do { \
4099 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4100 const char *intermediate_char_94 = "()*+"; \
4101 const char *intermediate_char_96 = ",-./"; \
4102 int revision = -1; \
4103 int c; \
4104 \
4105 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4106 revision = CHARSET_ISO_REVISION (charset); \
4107 \
4108 if (revision >= 0) \
4109 { \
4110 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4111 EMIT_ONE_BYTE ('@' + revision); \
4112 } \
4113 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4114 if (CHARSET_DIMENSION (charset) == 1) \
4115 { \
4116 if (! CHARSET_ISO_CHARS_96 (charset)) \
4117 c = intermediate_char_94[reg]; \
4118 else \
4119 c = intermediate_char_96[reg]; \
4120 EMIT_ONE_ASCII_BYTE (c); \
4121 } \
4122 else \
4123 { \
4124 EMIT_ONE_ASCII_BYTE ('$'); \
4125 if (! CHARSET_ISO_CHARS_96 (charset)) \
4126 { \
4127 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4128 || reg != 0 \
4129 || final_char < '@' || final_char > 'B') \
4130 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4131 } \
4132 else \
4133 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4134 } \
4135 EMIT_ONE_ASCII_BYTE (final_char); \
4136 \
4137 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4138 } while (0)
4139
4140
4141 /* The following two macros produce codes (control character or escape
4142 sequence) for ISO2022 single-shift functions (single-shift-2 and
4143 single-shift-3). */
4144
4145 #define ENCODE_SINGLE_SHIFT_2 \
4146 do { \
4147 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4148 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4149 else \
4150 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4151 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4152 } while (0)
4153
4154
4155 #define ENCODE_SINGLE_SHIFT_3 \
4156 do { \
4157 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4158 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4159 else \
4160 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4161 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4162 } while (0)
4163
4164
4165 /* The following four macros produce codes (control character or
4166 escape sequence) for ISO2022 locking-shift functions (shift-in,
4167 shift-out, locking-shift-2, and locking-shift-3). */
4168
4169 #define ENCODE_SHIFT_IN \
4170 do { \
4171 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4172 CODING_ISO_INVOCATION (coding, 0) = 0; \
4173 } while (0)
4174
4175
4176 #define ENCODE_SHIFT_OUT \
4177 do { \
4178 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4179 CODING_ISO_INVOCATION (coding, 0) = 1; \
4180 } while (0)
4181
4182
4183 #define ENCODE_LOCKING_SHIFT_2 \
4184 do { \
4185 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4186 CODING_ISO_INVOCATION (coding, 0) = 2; \
4187 } while (0)
4188
4189
4190 #define ENCODE_LOCKING_SHIFT_3 \
4191 do { \
4192 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4193 CODING_ISO_INVOCATION (coding, 0) = 3; \
4194 } while (0)
4195
4196
4197 /* Produce codes for a DIMENSION1 character whose character set is
4198 CHARSET and whose position-code is C1. Designation and invocation
4199 sequences are also produced in advance if necessary. */
4200
4201 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4202 do { \
4203 int id = CHARSET_ID (charset); \
4204 \
4205 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4206 && id == charset_ascii) \
4207 { \
4208 id = charset_jisx0201_roman; \
4209 charset = CHARSET_FROM_ID (id); \
4210 } \
4211 \
4212 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4213 { \
4214 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4215 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4216 else \
4217 EMIT_ONE_BYTE (c1 | 0x80); \
4218 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4219 break; \
4220 } \
4221 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4222 { \
4223 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4224 break; \
4225 } \
4226 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4227 { \
4228 EMIT_ONE_BYTE (c1 | 0x80); \
4229 break; \
4230 } \
4231 else \
4232 /* Since CHARSET is not yet invoked to any graphic planes, we \
4233 must invoke it, or, at first, designate it to some graphic \
4234 register. Then repeat the loop to actually produce the \
4235 character. */ \
4236 dst = encode_invocation_designation (charset, coding, dst, \
4237 &produced_chars); \
4238 } while (1)
4239
4240
4241 /* Produce codes for a DIMENSION2 character whose character set is
4242 CHARSET and whose position-codes are C1 and C2. Designation and
4243 invocation codes are also produced in advance if necessary. */
4244
4245 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4246 do { \
4247 int id = CHARSET_ID (charset); \
4248 \
4249 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4250 && id == charset_jisx0208) \
4251 { \
4252 id = charset_jisx0208_1978; \
4253 charset = CHARSET_FROM_ID (id); \
4254 } \
4255 \
4256 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4257 { \
4258 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4259 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4260 else \
4261 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4262 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4263 break; \
4264 } \
4265 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4266 { \
4267 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4268 break; \
4269 } \
4270 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4271 { \
4272 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4273 break; \
4274 } \
4275 else \
4276 /* Since CHARSET is not yet invoked to any graphic planes, we \
4277 must invoke it, or, at first, designate it to some graphic \
4278 register. Then repeat the loop to actually produce the \
4279 character. */ \
4280 dst = encode_invocation_designation (charset, coding, dst, \
4281 &produced_chars); \
4282 } while (1)
4283
4284
4285 #define ENCODE_ISO_CHARACTER(charset, c) \
4286 do { \
4287 int code = ENCODE_CHAR ((charset), (c)); \
4288 \
4289 if (CHARSET_DIMENSION (charset) == 1) \
4290 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4291 else \
4292 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4293 } while (0)
4294
4295
4296 /* Produce designation and invocation codes at a place pointed by DST
4297 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4298 Return new DST. */
4299
4300 unsigned char *
4301 encode_invocation_designation (struct charset *charset,
4302 struct coding_system *coding,
4303 unsigned char *dst, int *p_nchars)
4304 {
4305 int multibytep = coding->dst_multibyte;
4306 int produced_chars = *p_nchars;
4307 int reg; /* graphic register number */
4308 int id = CHARSET_ID (charset);
4309
4310 /* At first, check designations. */
4311 for (reg = 0; reg < 4; reg++)
4312 if (id == CODING_ISO_DESIGNATION (coding, reg))
4313 break;
4314
4315 if (reg >= 4)
4316 {
4317 /* CHARSET is not yet designated to any graphic registers. */
4318 /* At first check the requested designation. */
4319 reg = CODING_ISO_REQUEST (coding, id);
4320 if (reg < 0)
4321 /* Since CHARSET requests no special designation, designate it
4322 to graphic register 0. */
4323 reg = 0;
4324
4325 ENCODE_DESIGNATION (charset, reg, coding);
4326 }
4327
4328 if (CODING_ISO_INVOCATION (coding, 0) != reg
4329 && CODING_ISO_INVOCATION (coding, 1) != reg)
4330 {
4331 /* Since the graphic register REG is not invoked to any graphic
4332 planes, invoke it to graphic plane 0. */
4333 switch (reg)
4334 {
4335 case 0: /* graphic register 0 */
4336 ENCODE_SHIFT_IN;
4337 break;
4338
4339 case 1: /* graphic register 1 */
4340 ENCODE_SHIFT_OUT;
4341 break;
4342
4343 case 2: /* graphic register 2 */
4344 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4345 ENCODE_SINGLE_SHIFT_2;
4346 else
4347 ENCODE_LOCKING_SHIFT_2;
4348 break;
4349
4350 case 3: /* graphic register 3 */
4351 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4352 ENCODE_SINGLE_SHIFT_3;
4353 else
4354 ENCODE_LOCKING_SHIFT_3;
4355 break;
4356 }
4357 }
4358
4359 *p_nchars = produced_chars;
4360 return dst;
4361 }
4362
4363 /* The following three macros produce codes for indicating direction
4364 of text. */
4365 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
4366 do { \
4367 if (CODING_ISO_FLAGS (coding) == CODING_ISO_FLAG_SEVEN_BITS) \
4368 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '['); \
4369 else \
4370 EMIT_ONE_BYTE (ISO_CODE_CSI); \
4371 } while (0)
4372
4373
4374 #define ENCODE_DIRECTION_R2L() \
4375 do { \
4376 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4377 EMIT_TWO_ASCII_BYTES ('2', ']'); \
4378 } while (0)
4379
4380
4381 #define ENCODE_DIRECTION_L2R() \
4382 do { \
4383 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4384 EMIT_TWO_ASCII_BYTES ('0', ']'); \
4385 } while (0)
4386
4387
4388 /* Produce codes for designation and invocation to reset the graphic
4389 planes and registers to initial state. */
4390 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4391 do { \
4392 int reg; \
4393 struct charset *charset; \
4394 \
4395 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4396 ENCODE_SHIFT_IN; \
4397 for (reg = 0; reg < 4; reg++) \
4398 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4399 && (CODING_ISO_DESIGNATION (coding, reg) \
4400 != CODING_ISO_INITIAL (coding, reg))) \
4401 { \
4402 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4403 ENCODE_DESIGNATION (charset, reg, coding); \
4404 } \
4405 } while (0)
4406
4407
4408 /* Produce designation sequences of charsets in the line started from
4409 SRC to a place pointed by DST, and return updated DST.
4410
4411 If the current block ends before any end-of-line, we may fail to
4412 find all the necessary designations. */
4413
4414 static unsigned char *
4415 encode_designation_at_bol (struct coding_system *coding, int *charbuf,
4416 int *charbuf_end, unsigned char *dst)
4417 {
4418 struct charset *charset;
4419 /* Table of charsets to be designated to each graphic register. */
4420 int r[4];
4421 int c, found = 0, reg;
4422 int produced_chars = 0;
4423 int multibytep = coding->dst_multibyte;
4424 Lisp_Object attrs;
4425 Lisp_Object charset_list;
4426
4427 attrs = CODING_ID_ATTRS (coding->id);
4428 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4429 if (EQ (charset_list, Qiso_2022))
4430 charset_list = Viso_2022_charset_list;
4431
4432 for (reg = 0; reg < 4; reg++)
4433 r[reg] = -1;
4434
4435 while (found < 4)
4436 {
4437 int id;
4438
4439 c = *charbuf++;
4440 if (c == '\n')
4441 break;
4442 charset = char_charset (c, charset_list, NULL);
4443 id = CHARSET_ID (charset);
4444 reg = CODING_ISO_REQUEST (coding, id);
4445 if (reg >= 0 && r[reg] < 0)
4446 {
4447 found++;
4448 r[reg] = id;
4449 }
4450 }
4451
4452 if (found)
4453 {
4454 for (reg = 0; reg < 4; reg++)
4455 if (r[reg] >= 0
4456 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4457 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4458 }
4459
4460 return dst;
4461 }
4462
4463 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4464
4465 static int
4466 encode_coding_iso_2022 (struct coding_system *coding)
4467 {
4468 int multibytep = coding->dst_multibyte;
4469 int *charbuf = coding->charbuf;
4470 int *charbuf_end = charbuf + coding->charbuf_used;
4471 unsigned char *dst = coding->destination + coding->produced;
4472 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4473 int safe_room = 16;
4474 int bol_designation
4475 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4476 && CODING_ISO_BOL (coding));
4477 int produced_chars = 0;
4478 Lisp_Object attrs, eol_type, charset_list;
4479 int ascii_compatible;
4480 int c;
4481 int preferred_charset_id = -1;
4482
4483 CODING_GET_INFO (coding, attrs, charset_list);
4484 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4485 if (VECTORP (eol_type))
4486 eol_type = Qunix;
4487
4488 setup_iso_safe_charsets (attrs);
4489 /* Charset list may have been changed. */
4490 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4491 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4492
4493 ascii_compatible
4494 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4495 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4496 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4497
4498 while (charbuf < charbuf_end)
4499 {
4500 ASSURE_DESTINATION (safe_room);
4501
4502 if (bol_designation)
4503 {
4504 unsigned char *dst_prev = dst;
4505
4506 /* We have to produce designation sequences if any now. */
4507 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4508 bol_designation = 0;
4509 /* We are sure that designation sequences are all ASCII bytes. */
4510 produced_chars += dst - dst_prev;
4511 }
4512
4513 c = *charbuf++;
4514
4515 if (c < 0)
4516 {
4517 /* Handle an annotation. */
4518 switch (*charbuf)
4519 {
4520 case CODING_ANNOTATE_COMPOSITION_MASK:
4521 /* Not yet implemented. */
4522 break;
4523 case CODING_ANNOTATE_CHARSET_MASK:
4524 preferred_charset_id = charbuf[2];
4525 if (preferred_charset_id >= 0
4526 && NILP (Fmemq (make_number (preferred_charset_id),
4527 charset_list)))
4528 preferred_charset_id = -1;
4529 break;
4530 default:
4531 abort ();
4532 }
4533 charbuf += -c - 1;
4534 continue;
4535 }
4536
4537 /* Now encode the character C. */
4538 if (c < 0x20 || c == 0x7F)
4539 {
4540 if (c == '\n'
4541 || (c == '\r' && EQ (eol_type, Qmac)))
4542 {
4543 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4544 ENCODE_RESET_PLANE_AND_REGISTER ();
4545 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4546 {
4547 int i;
4548
4549 for (i = 0; i < 4; i++)
4550 CODING_ISO_DESIGNATION (coding, i)
4551 = CODING_ISO_INITIAL (coding, i);
4552 }
4553 bol_designation
4554 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4555 }
4556 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4557 ENCODE_RESET_PLANE_AND_REGISTER ();
4558 EMIT_ONE_ASCII_BYTE (c);
4559 }
4560 else if (ASCII_CHAR_P (c))
4561 {
4562 if (ascii_compatible)
4563 EMIT_ONE_ASCII_BYTE (c);
4564 else
4565 {
4566 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4567 ENCODE_ISO_CHARACTER (charset, c);
4568 }
4569 }
4570 else if (CHAR_BYTE8_P (c))
4571 {
4572 c = CHAR_TO_BYTE8 (c);
4573 EMIT_ONE_BYTE (c);
4574 }
4575 else
4576 {
4577 struct charset *charset;
4578
4579 if (preferred_charset_id >= 0)
4580 {
4581 charset = CHARSET_FROM_ID (preferred_charset_id);
4582 if (! CHAR_CHARSET_P (c, charset))
4583 charset = char_charset (c, charset_list, NULL);
4584 }
4585 else
4586 charset = char_charset (c, charset_list, NULL);
4587 if (!charset)
4588 {
4589 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4590 {
4591 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4592 charset = CHARSET_FROM_ID (charset_ascii);
4593 }
4594 else
4595 {
4596 c = coding->default_char;
4597 charset = char_charset (c, charset_list, NULL);
4598 }
4599 }
4600 ENCODE_ISO_CHARACTER (charset, c);
4601 }
4602 }
4603
4604 if (coding->mode & CODING_MODE_LAST_BLOCK
4605 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4606 {
4607 ASSURE_DESTINATION (safe_room);
4608 ENCODE_RESET_PLANE_AND_REGISTER ();
4609 }
4610 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4611 CODING_ISO_BOL (coding) = bol_designation;
4612 coding->produced_char += produced_chars;
4613 coding->produced = dst - coding->destination;
4614 return 0;
4615 }
4616
4617 \f
4618 /*** 8,9. SJIS and BIG5 handlers ***/
4619
4620 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4621 quite widely. So, for the moment, Emacs supports them in the bare
4622 C code. But, in the future, they may be supported only by CCL. */
4623
4624 /* SJIS is a coding system encoding three character sets: ASCII, right
4625 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4626 as is. A character of charset katakana-jisx0201 is encoded by
4627 "position-code + 0x80". A character of charset japanese-jisx0208
4628 is encoded in 2-byte but two position-codes are divided and shifted
4629 so that it fit in the range below.
4630
4631 --- CODE RANGE of SJIS ---
4632 (character set) (range)
4633 ASCII 0x00 .. 0x7F
4634 KATAKANA-JISX0201 0xA0 .. 0xDF
4635 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4636 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4637 -------------------------------
4638
4639 */
4640
4641 /* BIG5 is a coding system encoding two character sets: ASCII and
4642 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4643 character set and is encoded in two-byte.
4644
4645 --- CODE RANGE of BIG5 ---
4646 (character set) (range)
4647 ASCII 0x00 .. 0x7F
4648 Big5 (1st byte) 0xA1 .. 0xFE
4649 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4650 --------------------------
4651
4652 */
4653
4654 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4655 Check if a text is encoded in SJIS. If it is, return
4656 CATEGORY_MASK_SJIS, else return 0. */
4657
4658 static int
4659 detect_coding_sjis (struct coding_system *coding,
4660 struct coding_detection_info *detect_info)
4661 {
4662 const unsigned char *src = coding->source, *src_base;
4663 const unsigned char *src_end = coding->source + coding->src_bytes;
4664 int multibytep = coding->src_multibyte;
4665 int consumed_chars = 0;
4666 int found = 0;
4667 int c;
4668 Lisp_Object attrs, charset_list;
4669 int max_first_byte_of_2_byte_code;
4670
4671 CODING_GET_INFO (coding, attrs, charset_list);
4672 max_first_byte_of_2_byte_code
4673 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4674
4675 detect_info->checked |= CATEGORY_MASK_SJIS;
4676 /* A coding system of this category is always ASCII compatible. */
4677 src += coding->head_ascii;
4678
4679 while (1)
4680 {
4681 src_base = src;
4682 ONE_MORE_BYTE (c);
4683 if (c < 0x80)
4684 continue;
4685 if ((c >= 0x81 && c <= 0x9F)
4686 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4687 {
4688 ONE_MORE_BYTE (c);
4689 if (c < 0x40 || c == 0x7F || c > 0xFC)
4690 break;
4691 found = CATEGORY_MASK_SJIS;
4692 }
4693 else if (c >= 0xA0 && c < 0xE0)
4694 found = CATEGORY_MASK_SJIS;
4695 else
4696 break;
4697 }
4698 detect_info->rejected |= CATEGORY_MASK_SJIS;
4699 return 0;
4700
4701 no_more_source:
4702 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4703 {
4704 detect_info->rejected |= CATEGORY_MASK_SJIS;
4705 return 0;
4706 }
4707 detect_info->found |= found;
4708 return 1;
4709 }
4710
4711 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4712 Check if a text is encoded in BIG5. If it is, return
4713 CATEGORY_MASK_BIG5, else return 0. */
4714
4715 static int
4716 detect_coding_big5 (struct coding_system *coding,
4717 struct coding_detection_info *detect_info)
4718 {
4719 const unsigned char *src = coding->source, *src_base;
4720 const unsigned char *src_end = coding->source + coding->src_bytes;
4721 int multibytep = coding->src_multibyte;
4722 int consumed_chars = 0;
4723 int found = 0;
4724 int c;
4725
4726 detect_info->checked |= CATEGORY_MASK_BIG5;
4727 /* A coding system of this category is always ASCII compatible. */
4728 src += coding->head_ascii;
4729
4730 while (1)
4731 {
4732 src_base = src;
4733 ONE_MORE_BYTE (c);
4734 if (c < 0x80)
4735 continue;
4736 if (c >= 0xA1)
4737 {
4738 ONE_MORE_BYTE (c);
4739 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4740 return 0;
4741 found = CATEGORY_MASK_BIG5;
4742 }
4743 else
4744 break;
4745 }
4746 detect_info->rejected |= CATEGORY_MASK_BIG5;
4747 return 0;
4748
4749 no_more_source:
4750 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4751 {
4752 detect_info->rejected |= CATEGORY_MASK_BIG5;
4753 return 0;
4754 }
4755 detect_info->found |= found;
4756 return 1;
4757 }
4758
4759 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4760 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4761
4762 static void
4763 decode_coding_sjis (struct coding_system *coding)
4764 {
4765 const unsigned char *src = coding->source + coding->consumed;
4766 const unsigned char *src_end = coding->source + coding->src_bytes;
4767 const unsigned char *src_base;
4768 int *charbuf = coding->charbuf + coding->charbuf_used;
4769 /* We may produce one charset annocation in one loop and one more at
4770 the end. */
4771 int *charbuf_end
4772 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4773 int consumed_chars = 0, consumed_chars_base;
4774 int multibytep = coding->src_multibyte;
4775 struct charset *charset_roman, *charset_kanji, *charset_kana;
4776 struct charset *charset_kanji2;
4777 Lisp_Object attrs, charset_list, val;
4778 int char_offset = coding->produced_char;
4779 int last_offset = char_offset;
4780 int last_id = charset_ascii;
4781 int eol_crlf =
4782 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4783 int byte_after_cr = -1;
4784
4785 CODING_GET_INFO (coding, attrs, charset_list);
4786
4787 val = charset_list;
4788 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4789 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4790 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4791 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4792
4793 while (1)
4794 {
4795 int c, c1;
4796 struct charset *charset;
4797
4798 src_base = src;
4799 consumed_chars_base = consumed_chars;
4800
4801 if (charbuf >= charbuf_end)
4802 {
4803 if (byte_after_cr >= 0)
4804 src_base--;
4805 break;
4806 }
4807
4808 if (byte_after_cr >= 0)
4809 c = byte_after_cr, byte_after_cr = -1;
4810 else
4811 ONE_MORE_BYTE (c);
4812 if (c < 0)
4813 goto invalid_code;
4814 if (c < 0x80)
4815 {
4816 if (eol_crlf && c == '\r')
4817 ONE_MORE_BYTE (byte_after_cr);
4818 charset = charset_roman;
4819 }
4820 else if (c == 0x80 || c == 0xA0)
4821 goto invalid_code;
4822 else if (c >= 0xA1 && c <= 0xDF)
4823 {
4824 /* SJIS -> JISX0201-Kana */
4825 c &= 0x7F;
4826 charset = charset_kana;
4827 }
4828 else if (c <= 0xEF)
4829 {
4830 /* SJIS -> JISX0208 */
4831 ONE_MORE_BYTE (c1);
4832 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4833 goto invalid_code;
4834 c = (c << 8) | c1;
4835 SJIS_TO_JIS (c);
4836 charset = charset_kanji;
4837 }
4838 else if (c <= 0xFC && charset_kanji2)
4839 {
4840 /* SJIS -> JISX0213-2 */
4841 ONE_MORE_BYTE (c1);
4842 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4843 goto invalid_code;
4844 c = (c << 8) | c1;
4845 SJIS_TO_JIS2 (c);
4846 charset = charset_kanji2;
4847 }
4848 else
4849 goto invalid_code;
4850 if (charset->id != charset_ascii
4851 && last_id != charset->id)
4852 {
4853 if (last_id != charset_ascii)
4854 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4855 last_id = charset->id;
4856 last_offset = char_offset;
4857 }
4858 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4859 *charbuf++ = c;
4860 char_offset++;
4861 continue;
4862
4863 invalid_code:
4864 src = src_base;
4865 consumed_chars = consumed_chars_base;
4866 ONE_MORE_BYTE (c);
4867 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4868 char_offset++;
4869 coding->errors++;
4870 }
4871
4872 no_more_source:
4873 if (last_id != charset_ascii)
4874 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4875 coding->consumed_char += consumed_chars_base;
4876 coding->consumed = src_base - coding->source;
4877 coding->charbuf_used = charbuf - coding->charbuf;
4878 }
4879
4880 static void
4881 decode_coding_big5 (struct coding_system *coding)
4882 {
4883 const unsigned char *src = coding->source + coding->consumed;
4884 const unsigned char *src_end = coding->source + coding->src_bytes;
4885 const unsigned char *src_base;
4886 int *charbuf = coding->charbuf + coding->charbuf_used;
4887 /* We may produce one charset annocation in one loop and one more at
4888 the end. */
4889 int *charbuf_end
4890 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4891 int consumed_chars = 0, consumed_chars_base;
4892 int multibytep = coding->src_multibyte;
4893 struct charset *charset_roman, *charset_big5;
4894 Lisp_Object attrs, charset_list, val;
4895 int char_offset = coding->produced_char;
4896 int last_offset = char_offset;
4897 int last_id = charset_ascii;
4898 int eol_crlf =
4899 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4900 int byte_after_cr = -1;
4901
4902 CODING_GET_INFO (coding, attrs, charset_list);
4903 val = charset_list;
4904 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4905 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4906
4907 while (1)
4908 {
4909 int c, c1;
4910 struct charset *charset;
4911
4912 src_base = src;
4913 consumed_chars_base = consumed_chars;
4914
4915 if (charbuf >= charbuf_end)
4916 {
4917 if (byte_after_cr >= 0)
4918 src_base--;
4919 break;
4920 }
4921
4922 if (byte_after_cr >= 0)
4923 c = byte_after_cr, byte_after_cr = -1;
4924 else
4925 ONE_MORE_BYTE (c);
4926
4927 if (c < 0)
4928 goto invalid_code;
4929 if (c < 0x80)
4930 {
4931 if (eol_crlf && c == '\r')
4932 ONE_MORE_BYTE (byte_after_cr);
4933 charset = charset_roman;
4934 }
4935 else
4936 {
4937 /* BIG5 -> Big5 */
4938 if (c < 0xA1 || c > 0xFE)
4939 goto invalid_code;
4940 ONE_MORE_BYTE (c1);
4941 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4942 goto invalid_code;
4943 c = c << 8 | c1;
4944 charset = charset_big5;
4945 }
4946 if (charset->id != charset_ascii
4947 && last_id != charset->id)
4948 {
4949 if (last_id != charset_ascii)
4950 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4951 last_id = charset->id;
4952 last_offset = char_offset;
4953 }
4954 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4955 *charbuf++ = c;
4956 char_offset++;
4957 continue;
4958
4959 invalid_code:
4960 src = src_base;
4961 consumed_chars = consumed_chars_base;
4962 ONE_MORE_BYTE (c);
4963 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4964 char_offset++;
4965 coding->errors++;
4966 }
4967
4968 no_more_source:
4969 if (last_id != charset_ascii)
4970 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4971 coding->consumed_char += consumed_chars_base;
4972 coding->consumed = src_base - coding->source;
4973 coding->charbuf_used = charbuf - coding->charbuf;
4974 }
4975
4976 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4977 This function can encode charsets `ascii', `katakana-jisx0201',
4978 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4979 are sure that all these charsets are registered as official charset
4980 (i.e. do not have extended leading-codes). Characters of other
4981 charsets are produced without any encoding. If SJIS_P is 1, encode
4982 SJIS text, else encode BIG5 text. */
4983
4984 static int
4985 encode_coding_sjis (struct coding_system *coding)
4986 {
4987 int multibytep = coding->dst_multibyte;
4988 int *charbuf = coding->charbuf;
4989 int *charbuf_end = charbuf + coding->charbuf_used;
4990 unsigned char *dst = coding->destination + coding->produced;
4991 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4992 int safe_room = 4;
4993 int produced_chars = 0;
4994 Lisp_Object attrs, charset_list, val;
4995 int ascii_compatible;
4996 struct charset *charset_roman, *charset_kanji, *charset_kana;
4997 struct charset *charset_kanji2;
4998 int c;
4999
5000 CODING_GET_INFO (coding, attrs, charset_list);
5001 val = charset_list;
5002 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5003 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5004 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5005 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
5006
5007 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5008
5009 while (charbuf < charbuf_end)
5010 {
5011 ASSURE_DESTINATION (safe_room);
5012 c = *charbuf++;
5013 /* Now encode the character C. */
5014 if (ASCII_CHAR_P (c) && ascii_compatible)
5015 EMIT_ONE_ASCII_BYTE (c);
5016 else if (CHAR_BYTE8_P (c))
5017 {
5018 c = CHAR_TO_BYTE8 (c);
5019 EMIT_ONE_BYTE (c);
5020 }
5021 else
5022 {
5023 unsigned code;
5024 struct charset *charset = char_charset (c, charset_list, &code);
5025
5026 if (!charset)
5027 {
5028 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5029 {
5030 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5031 charset = CHARSET_FROM_ID (charset_ascii);
5032 }
5033 else
5034 {
5035 c = coding->default_char;
5036 charset = char_charset (c, charset_list, &code);
5037 }
5038 }
5039 if (code == CHARSET_INVALID_CODE (charset))
5040 abort ();
5041 if (charset == charset_kanji)
5042 {
5043 int c1, c2;
5044 JIS_TO_SJIS (code);
5045 c1 = code >> 8, c2 = code & 0xFF;
5046 EMIT_TWO_BYTES (c1, c2);
5047 }
5048 else if (charset == charset_kana)
5049 EMIT_ONE_BYTE (code | 0x80);
5050 else if (charset_kanji2 && charset == charset_kanji2)
5051 {
5052 int c1, c2;
5053
5054 c1 = code >> 8;
5055 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
5056 || c1 == 0x28
5057 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5058 {
5059 JIS_TO_SJIS2 (code);
5060 c1 = code >> 8, c2 = code & 0xFF;
5061 EMIT_TWO_BYTES (c1, c2);
5062 }
5063 else
5064 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5065 }
5066 else
5067 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5068 }
5069 }
5070 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5071 coding->produced_char += produced_chars;
5072 coding->produced = dst - coding->destination;
5073 return 0;
5074 }
5075
5076 static int
5077 encode_coding_big5 (struct coding_system *coding)
5078 {
5079 int multibytep = coding->dst_multibyte;
5080 int *charbuf = coding->charbuf;
5081 int *charbuf_end = charbuf + coding->charbuf_used;
5082 unsigned char *dst = coding->destination + coding->produced;
5083 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5084 int safe_room = 4;
5085 int produced_chars = 0;
5086 Lisp_Object attrs, charset_list, val;
5087 int ascii_compatible;
5088 struct charset *charset_roman, *charset_big5;
5089 int c;
5090
5091 CODING_GET_INFO (coding, attrs, charset_list);
5092 val = charset_list;
5093 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5094 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5095 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5096
5097 while (charbuf < charbuf_end)
5098 {
5099 ASSURE_DESTINATION (safe_room);
5100 c = *charbuf++;
5101 /* Now encode the character C. */
5102 if (ASCII_CHAR_P (c) && ascii_compatible)
5103 EMIT_ONE_ASCII_BYTE (c);
5104 else if (CHAR_BYTE8_P (c))
5105 {
5106 c = CHAR_TO_BYTE8 (c);
5107 EMIT_ONE_BYTE (c);
5108 }
5109 else
5110 {
5111 unsigned code;
5112 struct charset *charset = char_charset (c, charset_list, &code);
5113
5114 if (! charset)
5115 {
5116 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5117 {
5118 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5119 charset = CHARSET_FROM_ID (charset_ascii);
5120 }
5121 else
5122 {
5123 c = coding->default_char;
5124 charset = char_charset (c, charset_list, &code);
5125 }
5126 }
5127 if (code == CHARSET_INVALID_CODE (charset))
5128 abort ();
5129 if (charset == charset_big5)
5130 {
5131 int c1, c2;
5132
5133 c1 = code >> 8, c2 = code & 0xFF;
5134 EMIT_TWO_BYTES (c1, c2);
5135 }
5136 else
5137 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5138 }
5139 }
5140 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5141 coding->produced_char += produced_chars;
5142 coding->produced = dst - coding->destination;
5143 return 0;
5144 }
5145
5146 \f
5147 /*** 10. CCL handlers ***/
5148
5149 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5150 Check if a text is encoded in a coding system of which
5151 encoder/decoder are written in CCL program. If it is, return
5152 CATEGORY_MASK_CCL, else return 0. */
5153
5154 static int
5155 detect_coding_ccl (struct coding_system *coding,
5156 struct coding_detection_info *detect_info)
5157 {
5158 const unsigned char *src = coding->source, *src_base;
5159 const unsigned char *src_end = coding->source + coding->src_bytes;
5160 int multibytep = coding->src_multibyte;
5161 int consumed_chars = 0;
5162 int found = 0;
5163 unsigned char *valids;
5164 int head_ascii = coding->head_ascii;
5165 Lisp_Object attrs;
5166
5167 detect_info->checked |= CATEGORY_MASK_CCL;
5168
5169 coding = &coding_categories[coding_category_ccl];
5170 valids = CODING_CCL_VALIDS (coding);
5171 attrs = CODING_ID_ATTRS (coding->id);
5172 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5173 src += head_ascii;
5174
5175 while (1)
5176 {
5177 int c;
5178
5179 src_base = src;
5180 ONE_MORE_BYTE (c);
5181 if (c < 0 || ! valids[c])
5182 break;
5183 if ((valids[c] > 1))
5184 found = CATEGORY_MASK_CCL;
5185 }
5186 detect_info->rejected |= CATEGORY_MASK_CCL;
5187 return 0;
5188
5189 no_more_source:
5190 detect_info->found |= found;
5191 return 1;
5192 }
5193
5194 static void
5195 decode_coding_ccl (struct coding_system *coding)
5196 {
5197 const unsigned char *src = coding->source + coding->consumed;
5198 const unsigned char *src_end = coding->source + coding->src_bytes;
5199 int *charbuf = coding->charbuf + coding->charbuf_used;
5200 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5201 int consumed_chars = 0;
5202 int multibytep = coding->src_multibyte;
5203 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5204 int source_charbuf[1024];
5205 int source_byteidx[1025];
5206 Lisp_Object attrs, charset_list;
5207
5208 CODING_GET_INFO (coding, attrs, charset_list);
5209
5210 while (1)
5211 {
5212 const unsigned char *p = src;
5213 int i = 0;
5214
5215 if (multibytep)
5216 {
5217 while (i < 1024 && p < src_end)
5218 {
5219 source_byteidx[i] = p - src;
5220 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5221 }
5222 source_byteidx[i] = p - src;
5223 }
5224 else
5225 while (i < 1024 && p < src_end)
5226 source_charbuf[i++] = *p++;
5227
5228 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5229 ccl->last_block = 1;
5230 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5231 charset_list);
5232 charbuf += ccl->produced;
5233 if (multibytep)
5234 src += source_byteidx[ccl->consumed];
5235 else
5236 src += ccl->consumed;
5237 consumed_chars += ccl->consumed;
5238 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5239 break;
5240 }
5241
5242 switch (ccl->status)
5243 {
5244 case CCL_STAT_SUSPEND_BY_SRC:
5245 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5246 break;
5247 case CCL_STAT_SUSPEND_BY_DST:
5248 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5249 break;
5250 case CCL_STAT_QUIT:
5251 case CCL_STAT_INVALID_CMD:
5252 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5253 break;
5254 default:
5255 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5256 break;
5257 }
5258 coding->consumed_char += consumed_chars;
5259 coding->consumed = src - coding->source;
5260 coding->charbuf_used = charbuf - coding->charbuf;
5261 }
5262
5263 static int
5264 encode_coding_ccl (struct coding_system *coding)
5265 {
5266 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5267 int multibytep = coding->dst_multibyte;
5268 int *charbuf = coding->charbuf;
5269 int *charbuf_end = charbuf + coding->charbuf_used;
5270 unsigned char *dst = coding->destination + coding->produced;
5271 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5272 int destination_charbuf[1024];
5273 int i, produced_chars = 0;
5274 Lisp_Object attrs, charset_list;
5275
5276 CODING_GET_INFO (coding, attrs, charset_list);
5277 if (coding->consumed_char == coding->src_chars
5278 && coding->mode & CODING_MODE_LAST_BLOCK)
5279 ccl->last_block = 1;
5280
5281 while (charbuf < charbuf_end)
5282 {
5283 ccl_driver (ccl, charbuf, destination_charbuf,
5284 charbuf_end - charbuf, 1024, charset_list);
5285 if (multibytep)
5286 {
5287 ASSURE_DESTINATION (ccl->produced * 2);
5288 for (i = 0; i < ccl->produced; i++)
5289 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5290 }
5291 else
5292 {
5293 ASSURE_DESTINATION (ccl->produced);
5294 for (i = 0; i < ccl->produced; i++)
5295 *dst++ = destination_charbuf[i] & 0xFF;
5296 produced_chars += ccl->produced;
5297 }
5298 charbuf += ccl->consumed;
5299 if (ccl->status == CCL_STAT_QUIT
5300 || ccl->status == CCL_STAT_INVALID_CMD)
5301 break;
5302 }
5303
5304 switch (ccl->status)
5305 {
5306 case CCL_STAT_SUSPEND_BY_SRC:
5307 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5308 break;
5309 case CCL_STAT_SUSPEND_BY_DST:
5310 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5311 break;
5312 case CCL_STAT_QUIT:
5313 case CCL_STAT_INVALID_CMD:
5314 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5315 break;
5316 default:
5317 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5318 break;
5319 }
5320
5321 coding->produced_char += produced_chars;
5322 coding->produced = dst - coding->destination;
5323 return 0;
5324 }
5325
5326
5327 \f
5328 /*** 10, 11. no-conversion handlers ***/
5329
5330 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5331
5332 static void
5333 decode_coding_raw_text (struct coding_system *coding)
5334 {
5335 int eol_crlf =
5336 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5337
5338 coding->chars_at_source = 1;
5339 coding->consumed_char = coding->src_chars;
5340 coding->consumed = coding->src_bytes;
5341 if (eol_crlf && coding->source[coding->src_bytes - 1] == '\r')
5342 {
5343 coding->consumed_char--;
5344 coding->consumed--;
5345 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5346 }
5347 else
5348 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5349 }
5350
5351 static int
5352 encode_coding_raw_text (struct coding_system *coding)
5353 {
5354 int multibytep = coding->dst_multibyte;
5355 int *charbuf = coding->charbuf;
5356 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5357 unsigned char *dst = coding->destination + coding->produced;
5358 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5359 int produced_chars = 0;
5360 int c;
5361
5362 if (multibytep)
5363 {
5364 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5365
5366 if (coding->src_multibyte)
5367 while (charbuf < charbuf_end)
5368 {
5369 ASSURE_DESTINATION (safe_room);
5370 c = *charbuf++;
5371 if (ASCII_CHAR_P (c))
5372 EMIT_ONE_ASCII_BYTE (c);
5373 else if (CHAR_BYTE8_P (c))
5374 {
5375 c = CHAR_TO_BYTE8 (c);
5376 EMIT_ONE_BYTE (c);
5377 }
5378 else
5379 {
5380 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5381
5382 CHAR_STRING_ADVANCE (c, p1);
5383 while (p0 < p1)
5384 {
5385 EMIT_ONE_BYTE (*p0);
5386 p0++;
5387 }
5388 }
5389 }
5390 else
5391 while (charbuf < charbuf_end)
5392 {
5393 ASSURE_DESTINATION (safe_room);
5394 c = *charbuf++;
5395 EMIT_ONE_BYTE (c);
5396 }
5397 }
5398 else
5399 {
5400 if (coding->src_multibyte)
5401 {
5402 int safe_room = MAX_MULTIBYTE_LENGTH;
5403
5404 while (charbuf < charbuf_end)
5405 {
5406 ASSURE_DESTINATION (safe_room);
5407 c = *charbuf++;
5408 if (ASCII_CHAR_P (c))
5409 *dst++ = c;
5410 else if (CHAR_BYTE8_P (c))
5411 *dst++ = CHAR_TO_BYTE8 (c);
5412 else
5413 CHAR_STRING_ADVANCE (c, dst);
5414 }
5415 }
5416 else
5417 {
5418 ASSURE_DESTINATION (charbuf_end - charbuf);
5419 while (charbuf < charbuf_end && dst < dst_end)
5420 *dst++ = *charbuf++;
5421 }
5422 produced_chars = dst - (coding->destination + coding->produced);
5423 }
5424 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5425 coding->produced_char += produced_chars;
5426 coding->produced = dst - coding->destination;
5427 return 0;
5428 }
5429
5430 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5431 Check if a text is encoded in a charset-based coding system. If it
5432 is, return 1, else return 0. */
5433
5434 static int
5435 detect_coding_charset (struct coding_system *coding,
5436 struct coding_detection_info *detect_info)
5437 {
5438 const unsigned char *src = coding->source, *src_base;
5439 const unsigned char *src_end = coding->source + coding->src_bytes;
5440 int multibytep = coding->src_multibyte;
5441 int consumed_chars = 0;
5442 Lisp_Object attrs, valids, name;
5443 int found = 0;
5444 int head_ascii = coding->head_ascii;
5445 int check_latin_extra = 0;
5446
5447 detect_info->checked |= CATEGORY_MASK_CHARSET;
5448
5449 coding = &coding_categories[coding_category_charset];
5450 attrs = CODING_ID_ATTRS (coding->id);
5451 valids = AREF (attrs, coding_attr_charset_valids);
5452 name = CODING_ID_NAME (coding->id);
5453 if (strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5454 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5455 || strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5456 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5457 check_latin_extra = 1;
5458
5459 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5460 src += head_ascii;
5461
5462 while (1)
5463 {
5464 int c;
5465 Lisp_Object val;
5466 struct charset *charset;
5467 int dim, idx;
5468
5469 src_base = src;
5470 ONE_MORE_BYTE (c);
5471 if (c < 0)
5472 continue;
5473 val = AREF (valids, c);
5474 if (NILP (val))
5475 break;
5476 if (c >= 0x80)
5477 {
5478 if (c < 0xA0
5479 && check_latin_extra
5480 && (!VECTORP (Vlatin_extra_code_table)
5481 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5482 break;
5483 found = CATEGORY_MASK_CHARSET;
5484 }
5485 if (INTEGERP (val))
5486 {
5487 charset = CHARSET_FROM_ID (XFASTINT (val));
5488 dim = CHARSET_DIMENSION (charset);
5489 for (idx = 1; idx < dim; idx++)
5490 {
5491 if (src == src_end)
5492 goto too_short;
5493 ONE_MORE_BYTE (c);
5494 if (c < charset->code_space[(dim - 1 - idx) * 2]
5495 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5496 break;
5497 }
5498 if (idx < dim)
5499 break;
5500 }
5501 else
5502 {
5503 idx = 1;
5504 for (; CONSP (val); val = XCDR (val))
5505 {
5506 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5507 dim = CHARSET_DIMENSION (charset);
5508 while (idx < dim)
5509 {
5510 if (src == src_end)
5511 goto too_short;
5512 ONE_MORE_BYTE (c);
5513 if (c < charset->code_space[(dim - 1 - idx) * 4]
5514 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5515 break;
5516 idx++;
5517 }
5518 if (idx == dim)
5519 {
5520 val = Qnil;
5521 break;
5522 }
5523 }
5524 if (CONSP (val))
5525 break;
5526 }
5527 }
5528 too_short:
5529 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5530 return 0;
5531
5532 no_more_source:
5533 detect_info->found |= found;
5534 return 1;
5535 }
5536
5537 static void
5538 decode_coding_charset (struct coding_system *coding)
5539 {
5540 const unsigned char *src = coding->source + coding->consumed;
5541 const unsigned char *src_end = coding->source + coding->src_bytes;
5542 const unsigned char *src_base;
5543 int *charbuf = coding->charbuf + coding->charbuf_used;
5544 /* We may produce one charset annocation in one loop and one more at
5545 the end. */
5546 int *charbuf_end
5547 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5548 int consumed_chars = 0, consumed_chars_base;
5549 int multibytep = coding->src_multibyte;
5550 Lisp_Object attrs, charset_list, valids;
5551 int char_offset = coding->produced_char;
5552 int last_offset = char_offset;
5553 int last_id = charset_ascii;
5554 int eol_crlf =
5555 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5556 int byte_after_cr = -1;
5557
5558 CODING_GET_INFO (coding, attrs, charset_list);
5559 valids = AREF (attrs, coding_attr_charset_valids);
5560
5561 while (1)
5562 {
5563 int c;
5564 Lisp_Object val;
5565 struct charset *charset;
5566 int dim;
5567 int len = 1;
5568 unsigned code;
5569
5570 src_base = src;
5571 consumed_chars_base = consumed_chars;
5572
5573 if (charbuf >= charbuf_end)
5574 {
5575 if (byte_after_cr >= 0)
5576 src_base--;
5577 break;
5578 }
5579
5580 if (byte_after_cr >= 0)
5581 {
5582 c = byte_after_cr;
5583 byte_after_cr = -1;
5584 }
5585 else
5586 {
5587 ONE_MORE_BYTE (c);
5588 if (eol_crlf && c == '\r')
5589 ONE_MORE_BYTE (byte_after_cr);
5590 }
5591 if (c < 0)
5592 goto invalid_code;
5593 code = c;
5594
5595 val = AREF (valids, c);
5596 if (! INTEGERP (val) && ! CONSP (val))
5597 goto invalid_code;
5598 if (INTEGERP (val))
5599 {
5600 charset = CHARSET_FROM_ID (XFASTINT (val));
5601 dim = CHARSET_DIMENSION (charset);
5602 while (len < dim)
5603 {
5604 ONE_MORE_BYTE (c);
5605 code = (code << 8) | c;
5606 len++;
5607 }
5608 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5609 charset, code, c);
5610 }
5611 else
5612 {
5613 /* VAL is a list of charset IDs. It is assured that the
5614 list is sorted by charset dimensions (smaller one
5615 comes first). */
5616 while (CONSP (val))
5617 {
5618 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5619 dim = CHARSET_DIMENSION (charset);
5620 while (len < dim)
5621 {
5622 ONE_MORE_BYTE (c);
5623 code = (code << 8) | c;
5624 len++;
5625 }
5626 CODING_DECODE_CHAR (coding, src, src_base,
5627 src_end, charset, code, c);
5628 if (c >= 0)
5629 break;
5630 val = XCDR (val);
5631 }
5632 }
5633 if (c < 0)
5634 goto invalid_code;
5635 if (charset->id != charset_ascii
5636 && last_id != charset->id)
5637 {
5638 if (last_id != charset_ascii)
5639 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5640 last_id = charset->id;
5641 last_offset = char_offset;
5642 }
5643
5644 *charbuf++ = c;
5645 char_offset++;
5646 continue;
5647
5648 invalid_code:
5649 src = src_base;
5650 consumed_chars = consumed_chars_base;
5651 ONE_MORE_BYTE (c);
5652 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5653 char_offset++;
5654 coding->errors++;
5655 }
5656
5657 no_more_source:
5658 if (last_id != charset_ascii)
5659 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5660 coding->consumed_char += consumed_chars_base;
5661 coding->consumed = src_base - coding->source;
5662 coding->charbuf_used = charbuf - coding->charbuf;
5663 }
5664
5665 static int
5666 encode_coding_charset (struct coding_system *coding)
5667 {
5668 int multibytep = coding->dst_multibyte;
5669 int *charbuf = coding->charbuf;
5670 int *charbuf_end = charbuf + coding->charbuf_used;
5671 unsigned char *dst = coding->destination + coding->produced;
5672 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5673 int safe_room = MAX_MULTIBYTE_LENGTH;
5674 int produced_chars = 0;
5675 Lisp_Object attrs, charset_list;
5676 int ascii_compatible;
5677 int c;
5678
5679 CODING_GET_INFO (coding, attrs, charset_list);
5680 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5681
5682 while (charbuf < charbuf_end)
5683 {
5684 struct charset *charset;
5685 unsigned code;
5686
5687 ASSURE_DESTINATION (safe_room);
5688 c = *charbuf++;
5689 if (ascii_compatible && ASCII_CHAR_P (c))
5690 EMIT_ONE_ASCII_BYTE (c);
5691 else if (CHAR_BYTE8_P (c))
5692 {
5693 c = CHAR_TO_BYTE8 (c);
5694 EMIT_ONE_BYTE (c);
5695 }
5696 else
5697 {
5698 charset = char_charset (c, charset_list, &code);
5699 if (charset)
5700 {
5701 if (CHARSET_DIMENSION (charset) == 1)
5702 EMIT_ONE_BYTE (code);
5703 else if (CHARSET_DIMENSION (charset) == 2)
5704 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5705 else if (CHARSET_DIMENSION (charset) == 3)
5706 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5707 else
5708 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5709 (code >> 8) & 0xFF, code & 0xFF);
5710 }
5711 else
5712 {
5713 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5714 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5715 else
5716 c = coding->default_char;
5717 EMIT_ONE_BYTE (c);
5718 }
5719 }
5720 }
5721
5722 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5723 coding->produced_char += produced_chars;
5724 coding->produced = dst - coding->destination;
5725 return 0;
5726 }
5727
5728 \f
5729 /*** 7. C library functions ***/
5730
5731 /* Setup coding context CODING from information about CODING_SYSTEM.
5732 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5733 CODING_SYSTEM is invalid, signal an error. */
5734
5735 void
5736 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5737 {
5738 Lisp_Object attrs;
5739 Lisp_Object eol_type;
5740 Lisp_Object coding_type;
5741 Lisp_Object val;
5742
5743 if (NILP (coding_system))
5744 coding_system = Qundecided;
5745
5746 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5747
5748 attrs = CODING_ID_ATTRS (coding->id);
5749 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5750
5751 coding->mode = 0;
5752 coding->head_ascii = -1;
5753 if (VECTORP (eol_type))
5754 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5755 | CODING_REQUIRE_DETECTION_MASK);
5756 else if (! EQ (eol_type, Qunix))
5757 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5758 | CODING_REQUIRE_ENCODING_MASK);
5759 else
5760 coding->common_flags = 0;
5761 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5762 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5763 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5764 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5765 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5766 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5767
5768 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5769 coding->max_charset_id = SCHARS (val) - 1;
5770 coding->safe_charsets = SDATA (val);
5771 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5772 coding->carryover_bytes = 0;
5773
5774 coding_type = CODING_ATTR_TYPE (attrs);
5775 if (EQ (coding_type, Qundecided))
5776 {
5777 coding->detector = NULL;
5778 coding->decoder = decode_coding_raw_text;
5779 coding->encoder = encode_coding_raw_text;
5780 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5781 }
5782 else if (EQ (coding_type, Qiso_2022))
5783 {
5784 int i;
5785 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5786
5787 /* Invoke graphic register 0 to plane 0. */
5788 CODING_ISO_INVOCATION (coding, 0) = 0;
5789 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5790 CODING_ISO_INVOCATION (coding, 1)
5791 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5792 /* Setup the initial status of designation. */
5793 for (i = 0; i < 4; i++)
5794 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5795 /* Not single shifting initially. */
5796 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5797 /* Beginning of buffer should also be regarded as bol. */
5798 CODING_ISO_BOL (coding) = 1;
5799 coding->detector = detect_coding_iso_2022;
5800 coding->decoder = decode_coding_iso_2022;
5801 coding->encoder = encode_coding_iso_2022;
5802 if (flags & CODING_ISO_FLAG_SAFE)
5803 coding->mode |= CODING_MODE_SAFE_ENCODING;
5804 coding->common_flags
5805 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5806 | CODING_REQUIRE_FLUSHING_MASK);
5807 if (flags & CODING_ISO_FLAG_COMPOSITION)
5808 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5809 if (flags & CODING_ISO_FLAG_DESIGNATION)
5810 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5811 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5812 {
5813 setup_iso_safe_charsets (attrs);
5814 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5815 coding->max_charset_id = SCHARS (val) - 1;
5816 coding->safe_charsets = SDATA (val);
5817 }
5818 CODING_ISO_FLAGS (coding) = flags;
5819 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5820 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5821 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5822 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5823 }
5824 else if (EQ (coding_type, Qcharset))
5825 {
5826 coding->detector = detect_coding_charset;
5827 coding->decoder = decode_coding_charset;
5828 coding->encoder = encode_coding_charset;
5829 coding->common_flags
5830 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5831 }
5832 else if (EQ (coding_type, Qutf_8))
5833 {
5834 val = AREF (attrs, coding_attr_utf_bom);
5835 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5836 : EQ (val, Qt) ? utf_with_bom
5837 : utf_without_bom);
5838 coding->detector = detect_coding_utf_8;
5839 coding->decoder = decode_coding_utf_8;
5840 coding->encoder = encode_coding_utf_8;
5841 coding->common_flags
5842 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5843 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5844 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5845 }
5846 else if (EQ (coding_type, Qutf_16))
5847 {
5848 val = AREF (attrs, coding_attr_utf_bom);
5849 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5850 : EQ (val, Qt) ? utf_with_bom
5851 : utf_without_bom);
5852 val = AREF (attrs, coding_attr_utf_16_endian);
5853 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5854 : utf_16_little_endian);
5855 CODING_UTF_16_SURROGATE (coding) = 0;
5856 coding->detector = detect_coding_utf_16;
5857 coding->decoder = decode_coding_utf_16;
5858 coding->encoder = encode_coding_utf_16;
5859 coding->common_flags
5860 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5861 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5862 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5863 }
5864 else if (EQ (coding_type, Qccl))
5865 {
5866 coding->detector = detect_coding_ccl;
5867 coding->decoder = decode_coding_ccl;
5868 coding->encoder = encode_coding_ccl;
5869 coding->common_flags
5870 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5871 | CODING_REQUIRE_FLUSHING_MASK);
5872 }
5873 else if (EQ (coding_type, Qemacs_mule))
5874 {
5875 coding->detector = detect_coding_emacs_mule;
5876 coding->decoder = decode_coding_emacs_mule;
5877 coding->encoder = encode_coding_emacs_mule;
5878 coding->common_flags
5879 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5880 coding->spec.emacs_mule.full_support = 1;
5881 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5882 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5883 {
5884 Lisp_Object tail, safe_charsets;
5885 int max_charset_id = 0;
5886
5887 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5888 tail = XCDR (tail))
5889 if (max_charset_id < XFASTINT (XCAR (tail)))
5890 max_charset_id = XFASTINT (XCAR (tail));
5891 safe_charsets = make_uninit_string (max_charset_id + 1);
5892 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5893 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5894 tail = XCDR (tail))
5895 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5896 coding->max_charset_id = max_charset_id;
5897 coding->safe_charsets = SDATA (safe_charsets);
5898 coding->spec.emacs_mule.full_support = 1;
5899 }
5900 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5901 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5902 }
5903 else if (EQ (coding_type, Qshift_jis))
5904 {
5905 coding->detector = detect_coding_sjis;
5906 coding->decoder = decode_coding_sjis;
5907 coding->encoder = encode_coding_sjis;
5908 coding->common_flags
5909 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5910 }
5911 else if (EQ (coding_type, Qbig5))
5912 {
5913 coding->detector = detect_coding_big5;
5914 coding->decoder = decode_coding_big5;
5915 coding->encoder = encode_coding_big5;
5916 coding->common_flags
5917 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5918 }
5919 else /* EQ (coding_type, Qraw_text) */
5920 {
5921 coding->detector = NULL;
5922 coding->decoder = decode_coding_raw_text;
5923 coding->encoder = encode_coding_raw_text;
5924 if (! EQ (eol_type, Qunix))
5925 {
5926 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5927 if (! VECTORP (eol_type))
5928 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5929 }
5930
5931 }
5932
5933 return;
5934 }
5935
5936 /* Return a list of charsets supported by CODING. */
5937
5938 Lisp_Object
5939 coding_charset_list (struct coding_system *coding)
5940 {
5941 Lisp_Object attrs, charset_list;
5942
5943 CODING_GET_INFO (coding, attrs, charset_list);
5944 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5945 {
5946 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5947
5948 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5949 charset_list = Viso_2022_charset_list;
5950 }
5951 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5952 {
5953 charset_list = Vemacs_mule_charset_list;
5954 }
5955 return charset_list;
5956 }
5957
5958
5959 /* Return a list of charsets supported by CODING-SYSTEM. */
5960
5961 Lisp_Object
5962 coding_system_charset_list (Lisp_Object coding_system)
5963 {
5964 int id;
5965 Lisp_Object attrs, charset_list;
5966
5967 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5968 attrs = CODING_ID_ATTRS (id);
5969
5970 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5971 {
5972 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5973
5974 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5975 charset_list = Viso_2022_charset_list;
5976 else
5977 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5978 }
5979 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5980 {
5981 charset_list = Vemacs_mule_charset_list;
5982 }
5983 else
5984 {
5985 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5986 }
5987 return charset_list;
5988 }
5989
5990
5991 /* Return raw-text or one of its subsidiaries that has the same
5992 eol_type as CODING-SYSTEM. */
5993
5994 Lisp_Object
5995 raw_text_coding_system (Lisp_Object coding_system)
5996 {
5997 Lisp_Object spec, attrs;
5998 Lisp_Object eol_type, raw_text_eol_type;
5999
6000 if (NILP (coding_system))
6001 return Qraw_text;
6002 spec = CODING_SYSTEM_SPEC (coding_system);
6003 attrs = AREF (spec, 0);
6004
6005 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
6006 return coding_system;
6007
6008 eol_type = AREF (spec, 2);
6009 if (VECTORP (eol_type))
6010 return Qraw_text;
6011 spec = CODING_SYSTEM_SPEC (Qraw_text);
6012 raw_text_eol_type = AREF (spec, 2);
6013 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
6014 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
6015 : AREF (raw_text_eol_type, 2));
6016 }
6017
6018
6019 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
6020 the subsidiary that has the same eol-spec as PARENT (if it is not
6021 nil and specifies end-of-line format) or the system's setting
6022 (system_eol_type). */
6023
6024 Lisp_Object
6025 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
6026 {
6027 Lisp_Object spec, eol_type;
6028
6029 if (NILP (coding_system))
6030 coding_system = Qraw_text;
6031 spec = CODING_SYSTEM_SPEC (coding_system);
6032 eol_type = AREF (spec, 2);
6033 if (VECTORP (eol_type))
6034 {
6035 Lisp_Object parent_eol_type;
6036
6037 if (! NILP (parent))
6038 {
6039 Lisp_Object parent_spec;
6040
6041 parent_spec = CODING_SYSTEM_SPEC (parent);
6042 parent_eol_type = AREF (parent_spec, 2);
6043 if (VECTORP (parent_eol_type))
6044 parent_eol_type = system_eol_type;
6045 }
6046 else
6047 parent_eol_type = system_eol_type;
6048 if (EQ (parent_eol_type, Qunix))
6049 coding_system = AREF (eol_type, 0);
6050 else if (EQ (parent_eol_type, Qdos))
6051 coding_system = AREF (eol_type, 1);
6052 else if (EQ (parent_eol_type, Qmac))
6053 coding_system = AREF (eol_type, 2);
6054 }
6055 return coding_system;
6056 }
6057
6058
6059 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
6060 decided for writing to a process. If not, complement them, and
6061 return a new coding system. */
6062
6063 Lisp_Object
6064 complement_process_encoding_system (Lisp_Object coding_system)
6065 {
6066 Lisp_Object coding_base = Qnil, eol_base = Qnil;
6067 Lisp_Object spec, attrs;
6068 int i;
6069
6070 for (i = 0; i < 3; i++)
6071 {
6072 if (i == 1)
6073 coding_system = CDR_SAFE (Vdefault_process_coding_system);
6074 else if (i == 2)
6075 coding_system = preferred_coding_system ();
6076 spec = CODING_SYSTEM_SPEC (coding_system);
6077 if (NILP (spec))
6078 continue;
6079 attrs = AREF (spec, 0);
6080 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
6081 coding_base = CODING_ATTR_BASE_NAME (attrs);
6082 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
6083 eol_base = coding_system;
6084 if (! NILP (coding_base) && ! NILP (eol_base))
6085 break;
6086 }
6087
6088 if (i > 0)
6089 /* The original CODING_SYSTEM didn't specify text-conversion or
6090 eol-conversion. Be sure that we return a fully complemented
6091 coding system. */
6092 coding_system = coding_inherit_eol_type (coding_base, eol_base);
6093 return coding_system;
6094 }
6095
6096
6097 /* Emacs has a mechanism to automatically detect a coding system if it
6098 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6099 it's impossible to distinguish some coding systems accurately
6100 because they use the same range of codes. So, at first, coding
6101 systems are categorized into 7, those are:
6102
6103 o coding-category-emacs-mule
6104
6105 The category for a coding system which has the same code range
6106 as Emacs' internal format. Assigned the coding-system (Lisp
6107 symbol) `emacs-mule' by default.
6108
6109 o coding-category-sjis
6110
6111 The category for a coding system which has the same code range
6112 as SJIS. Assigned the coding-system (Lisp
6113 symbol) `japanese-shift-jis' by default.
6114
6115 o coding-category-iso-7
6116
6117 The category for a coding system which has the same code range
6118 as ISO2022 of 7-bit environment. This doesn't use any locking
6119 shift and single shift functions. This can encode/decode all
6120 charsets. Assigned the coding-system (Lisp symbol)
6121 `iso-2022-7bit' by default.
6122
6123 o coding-category-iso-7-tight
6124
6125 Same as coding-category-iso-7 except that this can
6126 encode/decode only the specified charsets.
6127
6128 o coding-category-iso-8-1
6129
6130 The category for a coding system which has the same code range
6131 as ISO2022 of 8-bit environment and graphic plane 1 used only
6132 for DIMENSION1 charset. This doesn't use any locking shift
6133 and single shift functions. Assigned the coding-system (Lisp
6134 symbol) `iso-latin-1' by default.
6135
6136 o coding-category-iso-8-2
6137
6138 The category for a coding system which has the same code range
6139 as ISO2022 of 8-bit environment and graphic plane 1 used only
6140 for DIMENSION2 charset. This doesn't use any locking shift
6141 and single shift functions. Assigned the coding-system (Lisp
6142 symbol) `japanese-iso-8bit' by default.
6143
6144 o coding-category-iso-7-else
6145
6146 The category for a coding system which has the same code range
6147 as ISO2022 of 7-bit environemnt but uses locking shift or
6148 single shift functions. Assigned the coding-system (Lisp
6149 symbol) `iso-2022-7bit-lock' by default.
6150
6151 o coding-category-iso-8-else
6152
6153 The category for a coding system which has the same code range
6154 as ISO2022 of 8-bit environemnt but uses locking shift or
6155 single shift functions. Assigned the coding-system (Lisp
6156 symbol) `iso-2022-8bit-ss2' by default.
6157
6158 o coding-category-big5
6159
6160 The category for a coding system which has the same code range
6161 as BIG5. Assigned the coding-system (Lisp symbol)
6162 `cn-big5' by default.
6163
6164 o coding-category-utf-8
6165
6166 The category for a coding system which has the same code range
6167 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6168 symbol) `utf-8' by default.
6169
6170 o coding-category-utf-16-be
6171
6172 The category for a coding system in which a text has an
6173 Unicode signature (cf. Unicode Standard) in the order of BIG
6174 endian at the head. Assigned the coding-system (Lisp symbol)
6175 `utf-16-be' by default.
6176
6177 o coding-category-utf-16-le
6178
6179 The category for a coding system in which a text has an
6180 Unicode signature (cf. Unicode Standard) in the order of
6181 LITTLE endian at the head. Assigned the coding-system (Lisp
6182 symbol) `utf-16-le' by default.
6183
6184 o coding-category-ccl
6185
6186 The category for a coding system of which encoder/decoder is
6187 written in CCL programs. The default value is nil, i.e., no
6188 coding system is assigned.
6189
6190 o coding-category-binary
6191
6192 The category for a coding system not categorized in any of the
6193 above. Assigned the coding-system (Lisp symbol)
6194 `no-conversion' by default.
6195
6196 Each of them is a Lisp symbol and the value is an actual
6197 `coding-system's (this is also a Lisp symbol) assigned by a user.
6198 What Emacs does actually is to detect a category of coding system.
6199 Then, it uses a `coding-system' assigned to it. If Emacs can't
6200 decide only one possible category, it selects a category of the
6201 highest priority. Priorities of categories are also specified by a
6202 user in a Lisp variable `coding-category-list'.
6203
6204 */
6205
6206 #define EOL_SEEN_NONE 0
6207 #define EOL_SEEN_LF 1
6208 #define EOL_SEEN_CR 2
6209 #define EOL_SEEN_CRLF 4
6210
6211 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6212 SOURCE is encoded. If CATEGORY is one of
6213 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6214 two-byte, else they are encoded by one-byte.
6215
6216 Return one of EOL_SEEN_XXX. */
6217
6218 #define MAX_EOL_CHECK_COUNT 3
6219
6220 static int
6221 detect_eol (const unsigned char *source, EMACS_INT src_bytes,
6222 enum coding_category category)
6223 {
6224 const unsigned char *src = source, *src_end = src + src_bytes;
6225 unsigned char c;
6226 int total = 0;
6227 int eol_seen = EOL_SEEN_NONE;
6228
6229 if ((1 << category) & CATEGORY_MASK_UTF_16)
6230 {
6231 int msb, lsb;
6232
6233 msb = category == (coding_category_utf_16_le
6234 | coding_category_utf_16_le_nosig);
6235 lsb = 1 - msb;
6236
6237 while (src + 1 < src_end)
6238 {
6239 c = src[lsb];
6240 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6241 {
6242 int this_eol;
6243
6244 if (c == '\n')
6245 this_eol = EOL_SEEN_LF;
6246 else if (src + 3 >= src_end
6247 || src[msb + 2] != 0
6248 || src[lsb + 2] != '\n')
6249 this_eol = EOL_SEEN_CR;
6250 else
6251 {
6252 this_eol = EOL_SEEN_CRLF;
6253 src += 2;
6254 }
6255
6256 if (eol_seen == EOL_SEEN_NONE)
6257 /* This is the first end-of-line. */
6258 eol_seen = this_eol;
6259 else if (eol_seen != this_eol)
6260 {
6261 /* The found type is different from what found before.
6262 Allow for stray ^M characters in DOS EOL files. */
6263 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6264 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6265 eol_seen = EOL_SEEN_CRLF;
6266 else
6267 {
6268 eol_seen = EOL_SEEN_LF;
6269 break;
6270 }
6271 }
6272 if (++total == MAX_EOL_CHECK_COUNT)
6273 break;
6274 }
6275 src += 2;
6276 }
6277 }
6278 else
6279 {
6280 while (src < src_end)
6281 {
6282 c = *src++;
6283 if (c == '\n' || c == '\r')
6284 {
6285 int this_eol;
6286
6287 if (c == '\n')
6288 this_eol = EOL_SEEN_LF;
6289 else if (src >= src_end || *src != '\n')
6290 this_eol = EOL_SEEN_CR;
6291 else
6292 this_eol = EOL_SEEN_CRLF, src++;
6293
6294 if (eol_seen == EOL_SEEN_NONE)
6295 /* This is the first end-of-line. */
6296 eol_seen = this_eol;
6297 else if (eol_seen != this_eol)
6298 {
6299 /* The found type is different from what found before.
6300 Allow for stray ^M characters in DOS EOL files. */
6301 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6302 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6303 eol_seen = EOL_SEEN_CRLF;
6304 else
6305 {
6306 eol_seen = EOL_SEEN_LF;
6307 break;
6308 }
6309 }
6310 if (++total == MAX_EOL_CHECK_COUNT)
6311 break;
6312 }
6313 }
6314 }
6315 return eol_seen;
6316 }
6317
6318
6319 static Lisp_Object
6320 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6321 {
6322 Lisp_Object eol_type;
6323
6324 eol_type = CODING_ID_EOL_TYPE (coding->id);
6325 if (eol_seen & EOL_SEEN_LF)
6326 {
6327 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6328 eol_type = Qunix;
6329 }
6330 else if (eol_seen & EOL_SEEN_CRLF)
6331 {
6332 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6333 eol_type = Qdos;
6334 }
6335 else if (eol_seen & EOL_SEEN_CR)
6336 {
6337 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6338 eol_type = Qmac;
6339 }
6340 return eol_type;
6341 }
6342
6343 /* Detect how a text specified in CODING is encoded. If a coding
6344 system is detected, update fields of CODING by the detected coding
6345 system. */
6346
6347 void
6348 detect_coding (struct coding_system *coding)
6349 {
6350 const unsigned char *src, *src_end;
6351 int saved_mode = coding->mode;
6352
6353 coding->consumed = coding->consumed_char = 0;
6354 coding->produced = coding->produced_char = 0;
6355 coding_set_source (coding);
6356
6357 src_end = coding->source + coding->src_bytes;
6358 coding->head_ascii = 0;
6359
6360 /* If we have not yet decided the text encoding type, detect it
6361 now. */
6362 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6363 {
6364 int c, i;
6365 struct coding_detection_info detect_info;
6366 int null_byte_found = 0, eight_bit_found = 0;
6367
6368 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6369 for (src = coding->source; src < src_end; src++)
6370 {
6371 c = *src;
6372 if (c & 0x80)
6373 {
6374 eight_bit_found = 1;
6375 if (null_byte_found)
6376 break;
6377 }
6378 else if (c < 0x20)
6379 {
6380 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6381 && ! inhibit_iso_escape_detection
6382 && ! detect_info.checked)
6383 {
6384 if (detect_coding_iso_2022 (coding, &detect_info))
6385 {
6386 /* We have scanned the whole data. */
6387 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6388 {
6389 /* We didn't find an 8-bit code. We may
6390 have found a null-byte, but it's very
6391 rare that a binary file conforms to
6392 ISO-2022. */
6393 src = src_end;
6394 coding->head_ascii = src - coding->source;
6395 }
6396 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6397 break;
6398 }
6399 }
6400 else if (! c && !inhibit_null_byte_detection)
6401 {
6402 null_byte_found = 1;
6403 if (eight_bit_found)
6404 break;
6405 }
6406 if (! eight_bit_found)
6407 coding->head_ascii++;
6408 }
6409 else if (! eight_bit_found)
6410 coding->head_ascii++;
6411 }
6412
6413 if (null_byte_found || eight_bit_found
6414 || coding->head_ascii < coding->src_bytes
6415 || detect_info.found)
6416 {
6417 enum coding_category category;
6418 struct coding_system *this;
6419
6420 if (coding->head_ascii == coding->src_bytes)
6421 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6422 for (i = 0; i < coding_category_raw_text; i++)
6423 {
6424 category = coding_priorities[i];
6425 this = coding_categories + category;
6426 if (detect_info.found & (1 << category))
6427 break;
6428 }
6429 else
6430 {
6431 if (null_byte_found)
6432 {
6433 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6434 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6435 }
6436 for (i = 0; i < coding_category_raw_text; i++)
6437 {
6438 category = coding_priorities[i];
6439 this = coding_categories + category;
6440 if (this->id < 0)
6441 {
6442 /* No coding system of this category is defined. */
6443 detect_info.rejected |= (1 << category);
6444 }
6445 else if (category >= coding_category_raw_text)
6446 continue;
6447 else if (detect_info.checked & (1 << category))
6448 {
6449 if (detect_info.found & (1 << category))
6450 break;
6451 }
6452 else if ((*(this->detector)) (coding, &detect_info)
6453 && detect_info.found & (1 << category))
6454 {
6455 if (category == coding_category_utf_16_auto)
6456 {
6457 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6458 category = coding_category_utf_16_le;
6459 else
6460 category = coding_category_utf_16_be;
6461 }
6462 break;
6463 }
6464 }
6465 }
6466
6467 if (i < coding_category_raw_text)
6468 setup_coding_system (CODING_ID_NAME (this->id), coding);
6469 else if (null_byte_found)
6470 setup_coding_system (Qno_conversion, coding);
6471 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6472 == CATEGORY_MASK_ANY)
6473 setup_coding_system (Qraw_text, coding);
6474 else if (detect_info.rejected)
6475 for (i = 0; i < coding_category_raw_text; i++)
6476 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6477 {
6478 this = coding_categories + coding_priorities[i];
6479 setup_coding_system (CODING_ID_NAME (this->id), coding);
6480 break;
6481 }
6482 }
6483 }
6484 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6485 == coding_category_utf_8_auto)
6486 {
6487 Lisp_Object coding_systems;
6488 struct coding_detection_info detect_info;
6489
6490 coding_systems
6491 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6492 detect_info.found = detect_info.rejected = 0;
6493 coding->head_ascii = 0;
6494 if (CONSP (coding_systems)
6495 && detect_coding_utf_8 (coding, &detect_info))
6496 {
6497 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6498 setup_coding_system (XCAR (coding_systems), coding);
6499 else
6500 setup_coding_system (XCDR (coding_systems), coding);
6501 }
6502 }
6503 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6504 == coding_category_utf_16_auto)
6505 {
6506 Lisp_Object coding_systems;
6507 struct coding_detection_info detect_info;
6508
6509 coding_systems
6510 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6511 detect_info.found = detect_info.rejected = 0;
6512 coding->head_ascii = 0;
6513 if (CONSP (coding_systems)
6514 && detect_coding_utf_16 (coding, &detect_info))
6515 {
6516 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6517 setup_coding_system (XCAR (coding_systems), coding);
6518 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6519 setup_coding_system (XCDR (coding_systems), coding);
6520 }
6521 }
6522 coding->mode = saved_mode;
6523 }
6524
6525
6526 static void
6527 decode_eol (struct coding_system *coding)
6528 {
6529 Lisp_Object eol_type;
6530 unsigned char *p, *pbeg, *pend;
6531
6532 eol_type = CODING_ID_EOL_TYPE (coding->id);
6533 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6534 return;
6535
6536 if (NILP (coding->dst_object))
6537 pbeg = coding->destination;
6538 else
6539 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6540 pend = pbeg + coding->produced;
6541
6542 if (VECTORP (eol_type))
6543 {
6544 int eol_seen = EOL_SEEN_NONE;
6545
6546 for (p = pbeg; p < pend; p++)
6547 {
6548 if (*p == '\n')
6549 eol_seen |= EOL_SEEN_LF;
6550 else if (*p == '\r')
6551 {
6552 if (p + 1 < pend && *(p + 1) == '\n')
6553 {
6554 eol_seen |= EOL_SEEN_CRLF;
6555 p++;
6556 }
6557 else
6558 eol_seen |= EOL_SEEN_CR;
6559 }
6560 }
6561 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6562 if ((eol_seen & EOL_SEEN_CRLF) != 0
6563 && (eol_seen & EOL_SEEN_CR) != 0
6564 && (eol_seen & EOL_SEEN_LF) == 0)
6565 eol_seen = EOL_SEEN_CRLF;
6566 else if (eol_seen != EOL_SEEN_NONE
6567 && eol_seen != EOL_SEEN_LF
6568 && eol_seen != EOL_SEEN_CRLF
6569 && eol_seen != EOL_SEEN_CR)
6570 eol_seen = EOL_SEEN_LF;
6571 if (eol_seen != EOL_SEEN_NONE)
6572 eol_type = adjust_coding_eol_type (coding, eol_seen);
6573 }
6574
6575 if (EQ (eol_type, Qmac))
6576 {
6577 for (p = pbeg; p < pend; p++)
6578 if (*p == '\r')
6579 *p = '\n';
6580 }
6581 else if (EQ (eol_type, Qdos))
6582 {
6583 int n = 0;
6584
6585 if (NILP (coding->dst_object))
6586 {
6587 /* Start deleting '\r' from the tail to minimize the memory
6588 movement. */
6589 for (p = pend - 2; p >= pbeg; p--)
6590 if (*p == '\r')
6591 {
6592 memmove (p, p + 1, pend-- - p - 1);
6593 n++;
6594 }
6595 }
6596 else
6597 {
6598 int pos_byte = coding->dst_pos_byte;
6599 int pos = coding->dst_pos;
6600 int pos_end = pos + coding->produced_char - 1;
6601
6602 while (pos < pos_end)
6603 {
6604 p = BYTE_POS_ADDR (pos_byte);
6605 if (*p == '\r' && p[1] == '\n')
6606 {
6607 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6608 n++;
6609 pos_end--;
6610 }
6611 pos++;
6612 if (coding->dst_multibyte)
6613 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6614 else
6615 pos_byte++;
6616 }
6617 }
6618 coding->produced -= n;
6619 coding->produced_char -= n;
6620 }
6621 }
6622
6623
6624 /* Return a translation table (or list of them) from coding system
6625 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6626 decoding (ENCODEP is zero). */
6627
6628 static Lisp_Object
6629 get_translation_table (Lisp_Object attrs, int encodep, int *max_lookup)
6630 {
6631 Lisp_Object standard, translation_table;
6632 Lisp_Object val;
6633
6634 if (NILP (Venable_character_translation))
6635 {
6636 if (max_lookup)
6637 *max_lookup = 0;
6638 return Qnil;
6639 }
6640 if (encodep)
6641 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6642 standard = Vstandard_translation_table_for_encode;
6643 else
6644 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6645 standard = Vstandard_translation_table_for_decode;
6646 if (NILP (translation_table))
6647 translation_table = standard;
6648 else
6649 {
6650 if (SYMBOLP (translation_table))
6651 translation_table = Fget (translation_table, Qtranslation_table);
6652 else if (CONSP (translation_table))
6653 {
6654 translation_table = Fcopy_sequence (translation_table);
6655 for (val = translation_table; CONSP (val); val = XCDR (val))
6656 if (SYMBOLP (XCAR (val)))
6657 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6658 }
6659 if (CHAR_TABLE_P (standard))
6660 {
6661 if (CONSP (translation_table))
6662 translation_table = nconc2 (translation_table,
6663 Fcons (standard, Qnil));
6664 else
6665 translation_table = Fcons (translation_table,
6666 Fcons (standard, Qnil));
6667 }
6668 }
6669
6670 if (max_lookup)
6671 {
6672 *max_lookup = 1;
6673 if (CHAR_TABLE_P (translation_table)
6674 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6675 {
6676 val = XCHAR_TABLE (translation_table)->extras[1];
6677 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6678 *max_lookup = XFASTINT (val);
6679 }
6680 else if (CONSP (translation_table))
6681 {
6682 Lisp_Object tail, val;
6683
6684 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6685 if (CHAR_TABLE_P (XCAR (tail))
6686 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6687 {
6688 val = XCHAR_TABLE (XCAR (tail))->extras[1];
6689 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6690 *max_lookup = XFASTINT (val);
6691 }
6692 }
6693 }
6694 return translation_table;
6695 }
6696
6697 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6698 do { \
6699 trans = Qnil; \
6700 if (CHAR_TABLE_P (table)) \
6701 { \
6702 trans = CHAR_TABLE_REF (table, c); \
6703 if (CHARACTERP (trans)) \
6704 c = XFASTINT (trans), trans = Qnil; \
6705 } \
6706 else if (CONSP (table)) \
6707 { \
6708 Lisp_Object tail; \
6709 \
6710 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6711 if (CHAR_TABLE_P (XCAR (tail))) \
6712 { \
6713 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6714 if (CHARACTERP (trans)) \
6715 c = XFASTINT (trans), trans = Qnil; \
6716 else if (! NILP (trans)) \
6717 break; \
6718 } \
6719 } \
6720 } while (0)
6721
6722
6723 /* Return a translation of character(s) at BUF according to TRANS.
6724 TRANS is TO-CHAR or ((FROM . TO) ...) where
6725 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6726 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6727 translation is found, and Qnil if not found..
6728 If BUF is too short to lookup characters in FROM, return Qt. */
6729
6730 static Lisp_Object
6731 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6732 {
6733
6734 if (INTEGERP (trans))
6735 return trans;
6736 for (; CONSP (trans); trans = XCDR (trans))
6737 {
6738 Lisp_Object val = XCAR (trans);
6739 Lisp_Object from = XCAR (val);
6740 int len = ASIZE (from);
6741 int i;
6742
6743 for (i = 0; i < len; i++)
6744 {
6745 if (buf + i == buf_end)
6746 return Qt;
6747 if (XINT (AREF (from, i)) != buf[i])
6748 break;
6749 }
6750 if (i == len)
6751 return val;
6752 }
6753 return Qnil;
6754 }
6755
6756
6757 static int
6758 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6759 int last_block)
6760 {
6761 unsigned char *dst = coding->destination + coding->produced;
6762 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6763 EMACS_INT produced;
6764 EMACS_INT produced_chars = 0;
6765 int carryover = 0;
6766
6767 if (! coding->chars_at_source)
6768 {
6769 /* Source characters are in coding->charbuf. */
6770 int *buf = coding->charbuf;
6771 int *buf_end = buf + coding->charbuf_used;
6772
6773 if (EQ (coding->src_object, coding->dst_object))
6774 {
6775 coding_set_source (coding);
6776 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6777 }
6778
6779 while (buf < buf_end)
6780 {
6781 int c = *buf, i;
6782
6783 if (c >= 0)
6784 {
6785 int from_nchars = 1, to_nchars = 1;
6786 Lisp_Object trans = Qnil;
6787
6788 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6789 if (! NILP (trans))
6790 {
6791 trans = get_translation (trans, buf, buf_end);
6792 if (INTEGERP (trans))
6793 c = XINT (trans);
6794 else if (CONSP (trans))
6795 {
6796 from_nchars = ASIZE (XCAR (trans));
6797 trans = XCDR (trans);
6798 if (INTEGERP (trans))
6799 c = XINT (trans);
6800 else
6801 {
6802 to_nchars = ASIZE (trans);
6803 c = XINT (AREF (trans, 0));
6804 }
6805 }
6806 else if (EQ (trans, Qt) && ! last_block)
6807 break;
6808 }
6809
6810 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6811 {
6812 dst = alloc_destination (coding,
6813 buf_end - buf
6814 + MAX_MULTIBYTE_LENGTH * to_nchars,
6815 dst);
6816 if (EQ (coding->src_object, coding->dst_object))
6817 {
6818 coding_set_source (coding);
6819 dst_end = (((unsigned char *) coding->source)
6820 + coding->consumed);
6821 }
6822 else
6823 dst_end = coding->destination + coding->dst_bytes;
6824 }
6825
6826 for (i = 0; i < to_nchars; i++)
6827 {
6828 if (i > 0)
6829 c = XINT (AREF (trans, i));
6830 if (coding->dst_multibyte
6831 || ! CHAR_BYTE8_P (c))
6832 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6833 else
6834 *dst++ = CHAR_TO_BYTE8 (c);
6835 }
6836 produced_chars += to_nchars;
6837 buf += from_nchars;
6838 }
6839 else
6840 /* This is an annotation datum. (-C) is the length. */
6841 buf += -c;
6842 }
6843 carryover = buf_end - buf;
6844 }
6845 else
6846 {
6847 /* Source characters are at coding->source. */
6848 const unsigned char *src = coding->source;
6849 const unsigned char *src_end = src + coding->consumed;
6850
6851 if (EQ (coding->dst_object, coding->src_object))
6852 dst_end = (unsigned char *) src;
6853 if (coding->src_multibyte != coding->dst_multibyte)
6854 {
6855 if (coding->src_multibyte)
6856 {
6857 int multibytep = 1;
6858 EMACS_INT consumed_chars = 0;
6859
6860 while (1)
6861 {
6862 const unsigned char *src_base = src;
6863 int c;
6864
6865 ONE_MORE_BYTE (c);
6866 if (dst == dst_end)
6867 {
6868 if (EQ (coding->src_object, coding->dst_object))
6869 dst_end = (unsigned char *) src;
6870 if (dst == dst_end)
6871 {
6872 EMACS_INT offset = src - coding->source;
6873
6874 dst = alloc_destination (coding, src_end - src + 1,
6875 dst);
6876 dst_end = coding->destination + coding->dst_bytes;
6877 coding_set_source (coding);
6878 src = coding->source + offset;
6879 src_end = coding->source + coding->src_bytes;
6880 if (EQ (coding->src_object, coding->dst_object))
6881 dst_end = (unsigned char *) src;
6882 }
6883 }
6884 *dst++ = c;
6885 produced_chars++;
6886 }
6887 no_more_source:
6888 ;
6889 }
6890 else
6891 while (src < src_end)
6892 {
6893 int multibytep = 1;
6894 int c = *src++;
6895
6896 if (dst >= dst_end - 1)
6897 {
6898 if (EQ (coding->src_object, coding->dst_object))
6899 dst_end = (unsigned char *) src;
6900 if (dst >= dst_end - 1)
6901 {
6902 EMACS_INT offset = src - coding->source;
6903 EMACS_INT more_bytes;
6904
6905 if (EQ (coding->src_object, coding->dst_object))
6906 more_bytes = ((src_end - src) / 2) + 2;
6907 else
6908 more_bytes = src_end - src + 2;
6909 dst = alloc_destination (coding, more_bytes, dst);
6910 dst_end = coding->destination + coding->dst_bytes;
6911 coding_set_source (coding);
6912 src = coding->source + offset;
6913 src_end = coding->source + coding->src_bytes;
6914 if (EQ (coding->src_object, coding->dst_object))
6915 dst_end = (unsigned char *) src;
6916 }
6917 }
6918 EMIT_ONE_BYTE (c);
6919 }
6920 }
6921 else
6922 {
6923 if (!EQ (coding->src_object, coding->dst_object))
6924 {
6925 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6926
6927 if (require > 0)
6928 {
6929 EMACS_INT offset = src - coding->source;
6930
6931 dst = alloc_destination (coding, require, dst);
6932 coding_set_source (coding);
6933 src = coding->source + offset;
6934 src_end = coding->source + coding->src_bytes;
6935 }
6936 }
6937 produced_chars = coding->consumed_char;
6938 while (src < src_end)
6939 *dst++ = *src++;
6940 }
6941 }
6942
6943 produced = dst - (coding->destination + coding->produced);
6944 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6945 insert_from_gap (produced_chars, produced);
6946 coding->produced += produced;
6947 coding->produced_char += produced_chars;
6948 return carryover;
6949 }
6950
6951 /* Compose text in CODING->object according to the annotation data at
6952 CHARBUF. CHARBUF is an array:
6953 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6954 */
6955
6956 static INLINE void
6957 produce_composition (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6958 {
6959 int len;
6960 EMACS_INT to;
6961 enum composition_method method;
6962 Lisp_Object components;
6963
6964 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6965 to = pos + charbuf[2];
6966 method = (enum composition_method) (charbuf[4]);
6967
6968 if (method == COMPOSITION_RELATIVE)
6969 components = Qnil;
6970 else
6971 {
6972 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6973 int i, j;
6974
6975 if (method == COMPOSITION_WITH_RULE)
6976 len = charbuf[2] * 3 - 2;
6977 charbuf += MAX_ANNOTATION_LENGTH;
6978 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6979 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6980 {
6981 if (charbuf[i] >= 0)
6982 args[j] = make_number (charbuf[i]);
6983 else
6984 {
6985 i++;
6986 args[j] = make_number (charbuf[i] % 0x100);
6987 }
6988 }
6989 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6990 }
6991 compose_text (pos, to, components, Qnil, coding->dst_object);
6992 }
6993
6994
6995 /* Put `charset' property on text in CODING->object according to
6996 the annotation data at CHARBUF. CHARBUF is an array:
6997 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6998 */
6999
7000 static INLINE void
7001 produce_charset (struct coding_system *coding, int *charbuf, EMACS_INT pos)
7002 {
7003 EMACS_INT from = pos - charbuf[2];
7004 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7005
7006 Fput_text_property (make_number (from), make_number (pos),
7007 Qcharset, CHARSET_NAME (charset),
7008 coding->dst_object);
7009 }
7010
7011
7012 #define CHARBUF_SIZE 0x4000
7013
7014 #define ALLOC_CONVERSION_WORK_AREA(coding) \
7015 do { \
7016 int size = CHARBUF_SIZE; \
7017 \
7018 coding->charbuf = NULL; \
7019 while (size > 1024) \
7020 { \
7021 coding->charbuf = (int *) alloca (sizeof (int) * size); \
7022 if (coding->charbuf) \
7023 break; \
7024 size >>= 1; \
7025 } \
7026 if (! coding->charbuf) \
7027 { \
7028 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
7029 return coding->result; \
7030 } \
7031 coding->charbuf_size = size; \
7032 } while (0)
7033
7034
7035 static void
7036 produce_annotation (struct coding_system *coding, EMACS_INT pos)
7037 {
7038 int *charbuf = coding->charbuf;
7039 int *charbuf_end = charbuf + coding->charbuf_used;
7040
7041 if (NILP (coding->dst_object))
7042 return;
7043
7044 while (charbuf < charbuf_end)
7045 {
7046 if (*charbuf >= 0)
7047 pos++, charbuf++;
7048 else
7049 {
7050 int len = -*charbuf;
7051
7052 if (len > 2)
7053 switch (charbuf[1])
7054 {
7055 case CODING_ANNOTATE_COMPOSITION_MASK:
7056 produce_composition (coding, charbuf, pos);
7057 break;
7058 case CODING_ANNOTATE_CHARSET_MASK:
7059 produce_charset (coding, charbuf, pos);
7060 break;
7061 }
7062 charbuf += len;
7063 }
7064 }
7065 }
7066
7067 /* Decode the data at CODING->src_object into CODING->dst_object.
7068 CODING->src_object is a buffer, a string, or nil.
7069 CODING->dst_object is a buffer.
7070
7071 If CODING->src_object is a buffer, it must be the current buffer.
7072 In this case, if CODING->src_pos is positive, it is a position of
7073 the source text in the buffer, otherwise, the source text is in the
7074 gap area of the buffer, and CODING->src_pos specifies the offset of
7075 the text from GPT (which must be the same as PT). If this is the
7076 same buffer as CODING->dst_object, CODING->src_pos must be
7077 negative.
7078
7079 If CODING->src_object is a string, CODING->src_pos is an index to
7080 that string.
7081
7082 If CODING->src_object is nil, CODING->source must already point to
7083 the non-relocatable memory area. In this case, CODING->src_pos is
7084 an offset from CODING->source.
7085
7086 The decoded data is inserted at the current point of the buffer
7087 CODING->dst_object.
7088 */
7089
7090 static int
7091 decode_coding (struct coding_system *coding)
7092 {
7093 Lisp_Object attrs;
7094 Lisp_Object undo_list;
7095 Lisp_Object translation_table;
7096 struct ccl_spec cclspec;
7097 int carryover;
7098 int i;
7099
7100 if (BUFFERP (coding->src_object)
7101 && coding->src_pos > 0
7102 && coding->src_pos < GPT
7103 && coding->src_pos + coding->src_chars > GPT)
7104 move_gap_both (coding->src_pos, coding->src_pos_byte);
7105
7106 undo_list = Qt;
7107 if (BUFFERP (coding->dst_object))
7108 {
7109 if (current_buffer != XBUFFER (coding->dst_object))
7110 set_buffer_internal (XBUFFER (coding->dst_object));
7111 if (GPT != PT)
7112 move_gap_both (PT, PT_BYTE);
7113 undo_list = current_buffer->undo_list;
7114 current_buffer->undo_list = Qt;
7115 }
7116
7117 coding->consumed = coding->consumed_char = 0;
7118 coding->produced = coding->produced_char = 0;
7119 coding->chars_at_source = 0;
7120 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7121 coding->errors = 0;
7122
7123 ALLOC_CONVERSION_WORK_AREA (coding);
7124
7125 attrs = CODING_ID_ATTRS (coding->id);
7126 translation_table = get_translation_table (attrs, 0, NULL);
7127
7128 carryover = 0;
7129 if (coding->decoder == decode_coding_ccl)
7130 {
7131 coding->spec.ccl = &cclspec;
7132 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7133 }
7134 do
7135 {
7136 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7137
7138 coding_set_source (coding);
7139 coding->annotated = 0;
7140 coding->charbuf_used = carryover;
7141 (*(coding->decoder)) (coding);
7142 coding_set_destination (coding);
7143 carryover = produce_chars (coding, translation_table, 0);
7144 if (coding->annotated)
7145 produce_annotation (coding, pos);
7146 for (i = 0; i < carryover; i++)
7147 coding->charbuf[i]
7148 = coding->charbuf[coding->charbuf_used - carryover + i];
7149 }
7150 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7151 || (coding->consumed < coding->src_bytes
7152 && (coding->result == CODING_RESULT_SUCCESS
7153 || coding->result == CODING_RESULT_INVALID_SRC)));
7154
7155 if (carryover > 0)
7156 {
7157 coding_set_destination (coding);
7158 coding->charbuf_used = carryover;
7159 produce_chars (coding, translation_table, 1);
7160 }
7161
7162 coding->carryover_bytes = 0;
7163 if (coding->consumed < coding->src_bytes)
7164 {
7165 int nbytes = coding->src_bytes - coding->consumed;
7166 const unsigned char *src;
7167
7168 coding_set_source (coding);
7169 coding_set_destination (coding);
7170 src = coding->source + coding->consumed;
7171
7172 if (coding->mode & CODING_MODE_LAST_BLOCK)
7173 {
7174 /* Flush out unprocessed data as binary chars. We are sure
7175 that the number of data is less than the size of
7176 coding->charbuf. */
7177 coding->charbuf_used = 0;
7178 coding->chars_at_source = 0;
7179
7180 while (nbytes-- > 0)
7181 {
7182 int c = *src++;
7183
7184 if (c & 0x80)
7185 c = BYTE8_TO_CHAR (c);
7186 coding->charbuf[coding->charbuf_used++] = c;
7187 }
7188 produce_chars (coding, Qnil, 1);
7189 }
7190 else
7191 {
7192 /* Record unprocessed bytes in coding->carryover. We are
7193 sure that the number of data is less than the size of
7194 coding->carryover. */
7195 unsigned char *p = coding->carryover;
7196
7197 if (nbytes > sizeof coding->carryover)
7198 nbytes = sizeof coding->carryover;
7199 coding->carryover_bytes = nbytes;
7200 while (nbytes-- > 0)
7201 *p++ = *src++;
7202 }
7203 coding->consumed = coding->src_bytes;
7204 }
7205
7206 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7207 && !inhibit_eol_conversion)
7208 decode_eol (coding);
7209 if (BUFFERP (coding->dst_object))
7210 {
7211 current_buffer->undo_list = undo_list;
7212 record_insert (coding->dst_pos, coding->produced_char);
7213 }
7214 return coding->result;
7215 }
7216
7217
7218 /* Extract an annotation datum from a composition starting at POS and
7219 ending before LIMIT of CODING->src_object (buffer or string), store
7220 the data in BUF, set *STOP to a starting position of the next
7221 composition (if any) or to LIMIT, and return the address of the
7222 next element of BUF.
7223
7224 If such an annotation is not found, set *STOP to a starting
7225 position of a composition after POS (if any) or to LIMIT, and
7226 return BUF. */
7227
7228 static INLINE int *
7229 handle_composition_annotation (EMACS_INT pos, EMACS_INT limit,
7230 struct coding_system *coding, int *buf,
7231 EMACS_INT *stop)
7232 {
7233 EMACS_INT start, end;
7234 Lisp_Object prop;
7235
7236 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7237 || end > limit)
7238 *stop = limit;
7239 else if (start > pos)
7240 *stop = start;
7241 else
7242 {
7243 if (start == pos)
7244 {
7245 /* We found a composition. Store the corresponding
7246 annotation data in BUF. */
7247 int *head = buf;
7248 enum composition_method method = COMPOSITION_METHOD (prop);
7249 int nchars = COMPOSITION_LENGTH (prop);
7250
7251 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7252 if (method != COMPOSITION_RELATIVE)
7253 {
7254 Lisp_Object components;
7255 int len, i, i_byte;
7256
7257 components = COMPOSITION_COMPONENTS (prop);
7258 if (VECTORP (components))
7259 {
7260 len = XVECTOR (components)->size;
7261 for (i = 0; i < len; i++)
7262 *buf++ = XINT (AREF (components, i));
7263 }
7264 else if (STRINGP (components))
7265 {
7266 len = SCHARS (components);
7267 i = i_byte = 0;
7268 while (i < len)
7269 {
7270 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7271 buf++;
7272 }
7273 }
7274 else if (INTEGERP (components))
7275 {
7276 len = 1;
7277 *buf++ = XINT (components);
7278 }
7279 else if (CONSP (components))
7280 {
7281 for (len = 0; CONSP (components);
7282 len++, components = XCDR (components))
7283 *buf++ = XINT (XCAR (components));
7284 }
7285 else
7286 abort ();
7287 *head -= len;
7288 }
7289 }
7290
7291 if (find_composition (end, limit, &start, &end, &prop,
7292 coding->src_object)
7293 && end <= limit)
7294 *stop = start;
7295 else
7296 *stop = limit;
7297 }
7298 return buf;
7299 }
7300
7301
7302 /* Extract an annotation datum from a text property `charset' at POS of
7303 CODING->src_object (buffer of string), store the data in BUF, set
7304 *STOP to the position where the value of `charset' property changes
7305 (limiting by LIMIT), and return the address of the next element of
7306 BUF.
7307
7308 If the property value is nil, set *STOP to the position where the
7309 property value is non-nil (limiting by LIMIT), and return BUF. */
7310
7311 static INLINE int *
7312 handle_charset_annotation (EMACS_INT pos, EMACS_INT limit,
7313 struct coding_system *coding, int *buf,
7314 EMACS_INT *stop)
7315 {
7316 Lisp_Object val, next;
7317 int id;
7318
7319 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7320 if (! NILP (val) && CHARSETP (val))
7321 id = XINT (CHARSET_SYMBOL_ID (val));
7322 else
7323 id = -1;
7324 ADD_CHARSET_DATA (buf, 0, id);
7325 next = Fnext_single_property_change (make_number (pos), Qcharset,
7326 coding->src_object,
7327 make_number (limit));
7328 *stop = XINT (next);
7329 return buf;
7330 }
7331
7332
7333 static void
7334 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7335 int max_lookup)
7336 {
7337 int *buf = coding->charbuf;
7338 int *buf_end = coding->charbuf + coding->charbuf_size;
7339 const unsigned char *src = coding->source + coding->consumed;
7340 const unsigned char *src_end = coding->source + coding->src_bytes;
7341 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7342 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7343 int multibytep = coding->src_multibyte;
7344 Lisp_Object eol_type;
7345 int c;
7346 EMACS_INT stop, stop_composition, stop_charset;
7347 int *lookup_buf = NULL;
7348
7349 if (! NILP (translation_table))
7350 lookup_buf = alloca (sizeof (int) * max_lookup);
7351
7352 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7353 if (VECTORP (eol_type))
7354 eol_type = Qunix;
7355
7356 /* Note: composition handling is not yet implemented. */
7357 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7358
7359 if (NILP (coding->src_object))
7360 stop = stop_composition = stop_charset = end_pos;
7361 else
7362 {
7363 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7364 stop = stop_composition = pos;
7365 else
7366 stop = stop_composition = end_pos;
7367 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7368 stop = stop_charset = pos;
7369 else
7370 stop_charset = end_pos;
7371 }
7372
7373 /* Compensate for CRLF and conversion. */
7374 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7375 while (buf < buf_end)
7376 {
7377 Lisp_Object trans;
7378
7379 if (pos == stop)
7380 {
7381 if (pos == end_pos)
7382 break;
7383 if (pos == stop_composition)
7384 buf = handle_composition_annotation (pos, end_pos, coding,
7385 buf, &stop_composition);
7386 if (pos == stop_charset)
7387 buf = handle_charset_annotation (pos, end_pos, coding,
7388 buf, &stop_charset);
7389 stop = (stop_composition < stop_charset
7390 ? stop_composition : stop_charset);
7391 }
7392
7393 if (! multibytep)
7394 {
7395 EMACS_INT bytes;
7396
7397 if (coding->encoder == encode_coding_raw_text
7398 || coding->encoder == encode_coding_ccl)
7399 c = *src++, pos++;
7400 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7401 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7402 else
7403 c = BYTE8_TO_CHAR (*src), src++, pos++;
7404 }
7405 else
7406 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7407 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7408 c = '\n';
7409 if (! EQ (eol_type, Qunix))
7410 {
7411 if (c == '\n')
7412 {
7413 if (EQ (eol_type, Qdos))
7414 *buf++ = '\r';
7415 else
7416 c = '\r';
7417 }
7418 }
7419
7420 trans = Qnil;
7421 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7422 if (NILP (trans))
7423 *buf++ = c;
7424 else
7425 {
7426 int from_nchars = 1, to_nchars = 1;
7427 int *lookup_buf_end;
7428 const unsigned char *p = src;
7429 int i;
7430
7431 lookup_buf[0] = c;
7432 for (i = 1; i < max_lookup && p < src_end; i++)
7433 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7434 lookup_buf_end = lookup_buf + i;
7435 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7436 if (INTEGERP (trans))
7437 c = XINT (trans);
7438 else if (CONSP (trans))
7439 {
7440 from_nchars = ASIZE (XCAR (trans));
7441 trans = XCDR (trans);
7442 if (INTEGERP (trans))
7443 c = XINT (trans);
7444 else
7445 {
7446 to_nchars = ASIZE (trans);
7447 if (buf + to_nchars > buf_end)
7448 break;
7449 c = XINT (AREF (trans, 0));
7450 }
7451 }
7452 else
7453 break;
7454 *buf++ = c;
7455 for (i = 1; i < to_nchars; i++)
7456 *buf++ = XINT (AREF (trans, i));
7457 for (i = 1; i < from_nchars; i++, pos++)
7458 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7459 }
7460 }
7461
7462 coding->consumed = src - coding->source;
7463 coding->consumed_char = pos - coding->src_pos;
7464 coding->charbuf_used = buf - coding->charbuf;
7465 coding->chars_at_source = 0;
7466 }
7467
7468
7469 /* Encode the text at CODING->src_object into CODING->dst_object.
7470 CODING->src_object is a buffer or a string.
7471 CODING->dst_object is a buffer or nil.
7472
7473 If CODING->src_object is a buffer, it must be the current buffer.
7474 In this case, if CODING->src_pos is positive, it is a position of
7475 the source text in the buffer, otherwise. the source text is in the
7476 gap area of the buffer, and coding->src_pos specifies the offset of
7477 the text from GPT (which must be the same as PT). If this is the
7478 same buffer as CODING->dst_object, CODING->src_pos must be
7479 negative and CODING should not have `pre-write-conversion'.
7480
7481 If CODING->src_object is a string, CODING should not have
7482 `pre-write-conversion'.
7483
7484 If CODING->dst_object is a buffer, the encoded data is inserted at
7485 the current point of that buffer.
7486
7487 If CODING->dst_object is nil, the encoded data is placed at the
7488 memory area specified by CODING->destination. */
7489
7490 static int
7491 encode_coding (struct coding_system *coding)
7492 {
7493 Lisp_Object attrs;
7494 Lisp_Object translation_table;
7495 int max_lookup;
7496 struct ccl_spec cclspec;
7497
7498 attrs = CODING_ID_ATTRS (coding->id);
7499 if (coding->encoder == encode_coding_raw_text)
7500 translation_table = Qnil, max_lookup = 0;
7501 else
7502 translation_table = get_translation_table (attrs, 1, &max_lookup);
7503
7504 if (BUFFERP (coding->dst_object))
7505 {
7506 set_buffer_internal (XBUFFER (coding->dst_object));
7507 coding->dst_multibyte
7508 = ! NILP (current_buffer->enable_multibyte_characters);
7509 }
7510
7511 coding->consumed = coding->consumed_char = 0;
7512 coding->produced = coding->produced_char = 0;
7513 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7514 coding->errors = 0;
7515
7516 ALLOC_CONVERSION_WORK_AREA (coding);
7517
7518 if (coding->encoder == encode_coding_ccl)
7519 {
7520 coding->spec.ccl = &cclspec;
7521 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7522 }
7523 do {
7524 coding_set_source (coding);
7525 consume_chars (coding, translation_table, max_lookup);
7526 coding_set_destination (coding);
7527 (*(coding->encoder)) (coding);
7528 } while (coding->consumed_char < coding->src_chars);
7529
7530 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7531 insert_from_gap (coding->produced_char, coding->produced);
7532
7533 return (coding->result);
7534 }
7535
7536
7537 /* Name (or base name) of work buffer for code conversion. */
7538 static Lisp_Object Vcode_conversion_workbuf_name;
7539
7540 /* A working buffer used by the top level conversion. Once it is
7541 created, it is never destroyed. It has the name
7542 Vcode_conversion_workbuf_name. The other working buffers are
7543 destroyed after the use is finished, and their names are modified
7544 versions of Vcode_conversion_workbuf_name. */
7545 static Lisp_Object Vcode_conversion_reused_workbuf;
7546
7547 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7548 static int reused_workbuf_in_use;
7549
7550
7551 /* Return a working buffer of code convesion. MULTIBYTE specifies the
7552 multibyteness of returning buffer. */
7553
7554 static Lisp_Object
7555 make_conversion_work_buffer (int multibyte)
7556 {
7557 Lisp_Object name, workbuf;
7558 struct buffer *current;
7559
7560 if (reused_workbuf_in_use++)
7561 {
7562 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7563 workbuf = Fget_buffer_create (name);
7564 }
7565 else
7566 {
7567 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7568 Vcode_conversion_reused_workbuf
7569 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7570 workbuf = Vcode_conversion_reused_workbuf;
7571 }
7572 current = current_buffer;
7573 set_buffer_internal (XBUFFER (workbuf));
7574 /* We can't allow modification hooks to run in the work buffer. For
7575 instance, directory_files_internal assumes that file decoding
7576 doesn't compile new regexps. */
7577 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7578 Ferase_buffer ();
7579 current_buffer->undo_list = Qt;
7580 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
7581 set_buffer_internal (current);
7582 return workbuf;
7583 }
7584
7585
7586 static Lisp_Object
7587 code_conversion_restore (Lisp_Object arg)
7588 {
7589 Lisp_Object current, workbuf;
7590 struct gcpro gcpro1;
7591
7592 GCPRO1 (arg);
7593 current = XCAR (arg);
7594 workbuf = XCDR (arg);
7595 if (! NILP (workbuf))
7596 {
7597 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7598 reused_workbuf_in_use = 0;
7599 else if (! NILP (Fbuffer_live_p (workbuf)))
7600 Fkill_buffer (workbuf);
7601 }
7602 set_buffer_internal (XBUFFER (current));
7603 UNGCPRO;
7604 return Qnil;
7605 }
7606
7607 Lisp_Object
7608 code_conversion_save (int with_work_buf, int multibyte)
7609 {
7610 Lisp_Object workbuf = Qnil;
7611
7612 if (with_work_buf)
7613 workbuf = make_conversion_work_buffer (multibyte);
7614 record_unwind_protect (code_conversion_restore,
7615 Fcons (Fcurrent_buffer (), workbuf));
7616 return workbuf;
7617 }
7618
7619 int
7620 decode_coding_gap (struct coding_system *coding,
7621 EMACS_INT chars, EMACS_INT bytes)
7622 {
7623 int count = SPECPDL_INDEX ();
7624 Lisp_Object attrs;
7625
7626 code_conversion_save (0, 0);
7627
7628 coding->src_object = Fcurrent_buffer ();
7629 coding->src_chars = chars;
7630 coding->src_bytes = bytes;
7631 coding->src_pos = -chars;
7632 coding->src_pos_byte = -bytes;
7633 coding->src_multibyte = chars < bytes;
7634 coding->dst_object = coding->src_object;
7635 coding->dst_pos = PT;
7636 coding->dst_pos_byte = PT_BYTE;
7637 coding->dst_multibyte = ! NILP (current_buffer->enable_multibyte_characters);
7638
7639 if (CODING_REQUIRE_DETECTION (coding))
7640 detect_coding (coding);
7641
7642 coding->mode |= CODING_MODE_LAST_BLOCK;
7643 current_buffer->text->inhibit_shrinking = 1;
7644 decode_coding (coding);
7645 current_buffer->text->inhibit_shrinking = 0;
7646
7647 attrs = CODING_ID_ATTRS (coding->id);
7648 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7649 {
7650 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7651 Lisp_Object val;
7652
7653 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7654 val = call1 (CODING_ATTR_POST_READ (attrs),
7655 make_number (coding->produced_char));
7656 CHECK_NATNUM (val);
7657 coding->produced_char += Z - prev_Z;
7658 coding->produced += Z_BYTE - prev_Z_BYTE;
7659 }
7660
7661 unbind_to (count, Qnil);
7662 return coding->result;
7663 }
7664
7665 int
7666 encode_coding_gap (struct coding_system *coding,
7667 EMACS_INT chars, EMACS_INT bytes)
7668 {
7669 int count = SPECPDL_INDEX ();
7670
7671 code_conversion_save (0, 0);
7672
7673 coding->src_object = Fcurrent_buffer ();
7674 coding->src_chars = chars;
7675 coding->src_bytes = bytes;
7676 coding->src_pos = -chars;
7677 coding->src_pos_byte = -bytes;
7678 coding->src_multibyte = chars < bytes;
7679 coding->dst_object = coding->src_object;
7680 coding->dst_pos = PT;
7681 coding->dst_pos_byte = PT_BYTE;
7682
7683 encode_coding (coding);
7684
7685 unbind_to (count, Qnil);
7686 return coding->result;
7687 }
7688
7689
7690 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7691 SRC_OBJECT into DST_OBJECT by coding context CODING.
7692
7693 SRC_OBJECT is a buffer, a string, or Qnil.
7694
7695 If it is a buffer, the text is at point of the buffer. FROM and TO
7696 are positions in the buffer.
7697
7698 If it is a string, the text is at the beginning of the string.
7699 FROM and TO are indices to the string.
7700
7701 If it is nil, the text is at coding->source. FROM and TO are
7702 indices to coding->source.
7703
7704 DST_OBJECT is a buffer, Qt, or Qnil.
7705
7706 If it is a buffer, the decoded text is inserted at point of the
7707 buffer. If the buffer is the same as SRC_OBJECT, the source text
7708 is deleted.
7709
7710 If it is Qt, a string is made from the decoded text, and
7711 set in CODING->dst_object.
7712
7713 If it is Qnil, the decoded text is stored at CODING->destination.
7714 The caller must allocate CODING->dst_bytes bytes at
7715 CODING->destination by xmalloc. If the decoded text is longer than
7716 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7717 */
7718
7719 void
7720 decode_coding_object (struct coding_system *coding,
7721 Lisp_Object src_object,
7722 EMACS_INT from, EMACS_INT from_byte,
7723 EMACS_INT to, EMACS_INT to_byte,
7724 Lisp_Object dst_object)
7725 {
7726 int count = SPECPDL_INDEX ();
7727 unsigned char *destination;
7728 EMACS_INT dst_bytes;
7729 EMACS_INT chars = to - from;
7730 EMACS_INT bytes = to_byte - from_byte;
7731 Lisp_Object attrs;
7732 int saved_pt = -1, saved_pt_byte;
7733 int need_marker_adjustment = 0;
7734 Lisp_Object old_deactivate_mark;
7735
7736 old_deactivate_mark = Vdeactivate_mark;
7737
7738 if (NILP (dst_object))
7739 {
7740 destination = coding->destination;
7741 dst_bytes = coding->dst_bytes;
7742 }
7743
7744 coding->src_object = src_object;
7745 coding->src_chars = chars;
7746 coding->src_bytes = bytes;
7747 coding->src_multibyte = chars < bytes;
7748
7749 if (STRINGP (src_object))
7750 {
7751 coding->src_pos = from;
7752 coding->src_pos_byte = from_byte;
7753 }
7754 else if (BUFFERP (src_object))
7755 {
7756 set_buffer_internal (XBUFFER (src_object));
7757 if (from != GPT)
7758 move_gap_both (from, from_byte);
7759 if (EQ (src_object, dst_object))
7760 {
7761 struct Lisp_Marker *tail;
7762
7763 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7764 {
7765 tail->need_adjustment
7766 = tail->charpos == (tail->insertion_type ? from : to);
7767 need_marker_adjustment |= tail->need_adjustment;
7768 }
7769 saved_pt = PT, saved_pt_byte = PT_BYTE;
7770 TEMP_SET_PT_BOTH (from, from_byte);
7771 current_buffer->text->inhibit_shrinking = 1;
7772 del_range_both (from, from_byte, to, to_byte, 1);
7773 coding->src_pos = -chars;
7774 coding->src_pos_byte = -bytes;
7775 }
7776 else
7777 {
7778 coding->src_pos = from;
7779 coding->src_pos_byte = from_byte;
7780 }
7781 }
7782
7783 if (CODING_REQUIRE_DETECTION (coding))
7784 detect_coding (coding);
7785 attrs = CODING_ID_ATTRS (coding->id);
7786
7787 if (EQ (dst_object, Qt)
7788 || (! NILP (CODING_ATTR_POST_READ (attrs))
7789 && NILP (dst_object)))
7790 {
7791 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7792 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7793 coding->dst_pos = BEG;
7794 coding->dst_pos_byte = BEG_BYTE;
7795 }
7796 else if (BUFFERP (dst_object))
7797 {
7798 code_conversion_save (0, 0);
7799 coding->dst_object = dst_object;
7800 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7801 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7802 coding->dst_multibyte
7803 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7804 }
7805 else
7806 {
7807 code_conversion_save (0, 0);
7808 coding->dst_object = Qnil;
7809 /* Most callers presume this will return a multibyte result, and they
7810 won't use `binary' or `raw-text' anyway, so let's not worry about
7811 CODING_FOR_UNIBYTE. */
7812 coding->dst_multibyte = 1;
7813 }
7814
7815 decode_coding (coding);
7816
7817 if (BUFFERP (coding->dst_object))
7818 set_buffer_internal (XBUFFER (coding->dst_object));
7819
7820 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7821 {
7822 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7823 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7824 Lisp_Object val;
7825
7826 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7827 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7828 old_deactivate_mark);
7829 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7830 make_number (coding->produced_char));
7831 UNGCPRO;
7832 CHECK_NATNUM (val);
7833 coding->produced_char += Z - prev_Z;
7834 coding->produced += Z_BYTE - prev_Z_BYTE;
7835 }
7836
7837 if (EQ (dst_object, Qt))
7838 {
7839 coding->dst_object = Fbuffer_string ();
7840 }
7841 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7842 {
7843 set_buffer_internal (XBUFFER (coding->dst_object));
7844 if (dst_bytes < coding->produced)
7845 {
7846 destination = xrealloc (destination, coding->produced);
7847 if (! destination)
7848 {
7849 record_conversion_result (coding,
7850 CODING_RESULT_INSUFFICIENT_MEM);
7851 unbind_to (count, Qnil);
7852 return;
7853 }
7854 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7855 move_gap_both (BEGV, BEGV_BYTE);
7856 memcpy (destination, BEGV_ADDR, coding->produced);
7857 coding->destination = destination;
7858 }
7859 }
7860
7861 if (saved_pt >= 0)
7862 {
7863 /* This is the case of:
7864 (BUFFERP (src_object) && EQ (src_object, dst_object))
7865 As we have moved PT while replacing the original buffer
7866 contents, we must recover it now. */
7867 set_buffer_internal (XBUFFER (src_object));
7868 current_buffer->text->inhibit_shrinking = 0;
7869 if (saved_pt < from)
7870 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7871 else if (saved_pt < from + chars)
7872 TEMP_SET_PT_BOTH (from, from_byte);
7873 else if (! NILP (current_buffer->enable_multibyte_characters))
7874 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7875 saved_pt_byte + (coding->produced - bytes));
7876 else
7877 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7878 saved_pt_byte + (coding->produced - bytes));
7879
7880 if (need_marker_adjustment)
7881 {
7882 struct Lisp_Marker *tail;
7883
7884 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7885 if (tail->need_adjustment)
7886 {
7887 tail->need_adjustment = 0;
7888 if (tail->insertion_type)
7889 {
7890 tail->bytepos = from_byte;
7891 tail->charpos = from;
7892 }
7893 else
7894 {
7895 tail->bytepos = from_byte + coding->produced;
7896 tail->charpos
7897 = (NILP (current_buffer->enable_multibyte_characters)
7898 ? tail->bytepos : from + coding->produced_char);
7899 }
7900 }
7901 }
7902 }
7903
7904 Vdeactivate_mark = old_deactivate_mark;
7905 unbind_to (count, coding->dst_object);
7906 }
7907
7908
7909 void
7910 encode_coding_object (struct coding_system *coding,
7911 Lisp_Object src_object,
7912 EMACS_INT from, EMACS_INT from_byte,
7913 EMACS_INT to, EMACS_INT to_byte,
7914 Lisp_Object dst_object)
7915 {
7916 int count = SPECPDL_INDEX ();
7917 EMACS_INT chars = to - from;
7918 EMACS_INT bytes = to_byte - from_byte;
7919 Lisp_Object attrs;
7920 int saved_pt = -1, saved_pt_byte;
7921 int need_marker_adjustment = 0;
7922 int kill_src_buffer = 0;
7923 Lisp_Object old_deactivate_mark;
7924
7925 old_deactivate_mark = Vdeactivate_mark;
7926
7927 coding->src_object = src_object;
7928 coding->src_chars = chars;
7929 coding->src_bytes = bytes;
7930 coding->src_multibyte = chars < bytes;
7931
7932 attrs = CODING_ID_ATTRS (coding->id);
7933
7934 if (EQ (src_object, dst_object))
7935 {
7936 struct Lisp_Marker *tail;
7937
7938 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7939 {
7940 tail->need_adjustment
7941 = tail->charpos == (tail->insertion_type ? from : to);
7942 need_marker_adjustment |= tail->need_adjustment;
7943 }
7944 }
7945
7946 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7947 {
7948 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7949 set_buffer_internal (XBUFFER (coding->src_object));
7950 if (STRINGP (src_object))
7951 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7952 else if (BUFFERP (src_object))
7953 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7954 else
7955 insert_1_both (coding->source + from, chars, bytes, 0, 0, 0);
7956
7957 if (EQ (src_object, dst_object))
7958 {
7959 set_buffer_internal (XBUFFER (src_object));
7960 saved_pt = PT, saved_pt_byte = PT_BYTE;
7961 del_range_both (from, from_byte, to, to_byte, 1);
7962 set_buffer_internal (XBUFFER (coding->src_object));
7963 }
7964
7965 {
7966 Lisp_Object args[3];
7967 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7968
7969 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7970 old_deactivate_mark);
7971 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7972 args[1] = make_number (BEG);
7973 args[2] = make_number (Z);
7974 safe_call (3, args);
7975 UNGCPRO;
7976 }
7977 if (XBUFFER (coding->src_object) != current_buffer)
7978 kill_src_buffer = 1;
7979 coding->src_object = Fcurrent_buffer ();
7980 if (BEG != GPT)
7981 move_gap_both (BEG, BEG_BYTE);
7982 coding->src_chars = Z - BEG;
7983 coding->src_bytes = Z_BYTE - BEG_BYTE;
7984 coding->src_pos = BEG;
7985 coding->src_pos_byte = BEG_BYTE;
7986 coding->src_multibyte = Z < Z_BYTE;
7987 }
7988 else if (STRINGP (src_object))
7989 {
7990 code_conversion_save (0, 0);
7991 coding->src_pos = from;
7992 coding->src_pos_byte = from_byte;
7993 }
7994 else if (BUFFERP (src_object))
7995 {
7996 code_conversion_save (0, 0);
7997 set_buffer_internal (XBUFFER (src_object));
7998 if (EQ (src_object, dst_object))
7999 {
8000 saved_pt = PT, saved_pt_byte = PT_BYTE;
8001 coding->src_object = del_range_1 (from, to, 1, 1);
8002 coding->src_pos = 0;
8003 coding->src_pos_byte = 0;
8004 }
8005 else
8006 {
8007 if (from < GPT && to >= GPT)
8008 move_gap_both (from, from_byte);
8009 coding->src_pos = from;
8010 coding->src_pos_byte = from_byte;
8011 }
8012 }
8013 else
8014 code_conversion_save (0, 0);
8015
8016 if (BUFFERP (dst_object))
8017 {
8018 coding->dst_object = dst_object;
8019 if (EQ (src_object, dst_object))
8020 {
8021 coding->dst_pos = from;
8022 coding->dst_pos_byte = from_byte;
8023 }
8024 else
8025 {
8026 struct buffer *current = current_buffer;
8027
8028 set_buffer_temp (XBUFFER (dst_object));
8029 coding->dst_pos = PT;
8030 coding->dst_pos_byte = PT_BYTE;
8031 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8032 set_buffer_temp (current);
8033 }
8034 coding->dst_multibyte
8035 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
8036 }
8037 else if (EQ (dst_object, Qt))
8038 {
8039 coding->dst_object = Qnil;
8040 coding->dst_bytes = coding->src_chars;
8041 if (coding->dst_bytes == 0)
8042 coding->dst_bytes = 1;
8043 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
8044 coding->dst_multibyte = 0;
8045 }
8046 else
8047 {
8048 coding->dst_object = Qnil;
8049 coding->dst_multibyte = 0;
8050 }
8051
8052 encode_coding (coding);
8053
8054 if (EQ (dst_object, Qt))
8055 {
8056 if (BUFFERP (coding->dst_object))
8057 coding->dst_object = Fbuffer_string ();
8058 else
8059 {
8060 coding->dst_object
8061 = make_unibyte_string ((char *) coding->destination,
8062 coding->produced);
8063 xfree (coding->destination);
8064 }
8065 }
8066
8067 if (saved_pt >= 0)
8068 {
8069 /* This is the case of:
8070 (BUFFERP (src_object) && EQ (src_object, dst_object))
8071 As we have moved PT while replacing the original buffer
8072 contents, we must recover it now. */
8073 set_buffer_internal (XBUFFER (src_object));
8074 if (saved_pt < from)
8075 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8076 else if (saved_pt < from + chars)
8077 TEMP_SET_PT_BOTH (from, from_byte);
8078 else if (! NILP (current_buffer->enable_multibyte_characters))
8079 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8080 saved_pt_byte + (coding->produced - bytes));
8081 else
8082 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8083 saved_pt_byte + (coding->produced - bytes));
8084
8085 if (need_marker_adjustment)
8086 {
8087 struct Lisp_Marker *tail;
8088
8089 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8090 if (tail->need_adjustment)
8091 {
8092 tail->need_adjustment = 0;
8093 if (tail->insertion_type)
8094 {
8095 tail->bytepos = from_byte;
8096 tail->charpos = from;
8097 }
8098 else
8099 {
8100 tail->bytepos = from_byte + coding->produced;
8101 tail->charpos
8102 = (NILP (current_buffer->enable_multibyte_characters)
8103 ? tail->bytepos : from + coding->produced_char);
8104 }
8105 }
8106 }
8107 }
8108
8109 if (kill_src_buffer)
8110 Fkill_buffer (coding->src_object);
8111
8112 Vdeactivate_mark = old_deactivate_mark;
8113 unbind_to (count, Qnil);
8114 }
8115
8116
8117 Lisp_Object
8118 preferred_coding_system (void)
8119 {
8120 int id = coding_categories[coding_priorities[0]].id;
8121
8122 return CODING_ID_NAME (id);
8123 }
8124
8125 \f
8126 #ifdef emacs
8127 /*** 8. Emacs Lisp library functions ***/
8128
8129 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8130 doc: /* Return t if OBJECT is nil or a coding-system.
8131 See the documentation of `define-coding-system' for information
8132 about coding-system objects. */)
8133 (Lisp_Object object)
8134 {
8135 if (NILP (object)
8136 || CODING_SYSTEM_ID (object) >= 0)
8137 return Qt;
8138 if (! SYMBOLP (object)
8139 || NILP (Fget (object, Qcoding_system_define_form)))
8140 return Qnil;
8141 return Qt;
8142 }
8143
8144 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8145 Sread_non_nil_coding_system, 1, 1, 0,
8146 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8147 (Lisp_Object prompt)
8148 {
8149 Lisp_Object val;
8150 do
8151 {
8152 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8153 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8154 }
8155 while (SCHARS (val) == 0);
8156 return (Fintern (val, Qnil));
8157 }
8158
8159 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8160 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8161 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8162 Ignores case when completing coding systems (all Emacs coding systems
8163 are lower-case). */)
8164 (Lisp_Object prompt, Lisp_Object default_coding_system)
8165 {
8166 Lisp_Object val;
8167 int count = SPECPDL_INDEX ();
8168
8169 if (SYMBOLP (default_coding_system))
8170 default_coding_system = SYMBOL_NAME (default_coding_system);
8171 specbind (Qcompletion_ignore_case, Qt);
8172 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8173 Qt, Qnil, Qcoding_system_history,
8174 default_coding_system, Qnil);
8175 unbind_to (count, Qnil);
8176 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8177 }
8178
8179 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8180 1, 1, 0,
8181 doc: /* Check validity of CODING-SYSTEM.
8182 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8183 It is valid if it is nil or a symbol defined as a coding system by the
8184 function `define-coding-system'. */)
8185 (Lisp_Object coding_system)
8186 {
8187 Lisp_Object define_form;
8188
8189 define_form = Fget (coding_system, Qcoding_system_define_form);
8190 if (! NILP (define_form))
8191 {
8192 Fput (coding_system, Qcoding_system_define_form, Qnil);
8193 safe_eval (define_form);
8194 }
8195 if (!NILP (Fcoding_system_p (coding_system)))
8196 return coding_system;
8197 xsignal1 (Qcoding_system_error, coding_system);
8198 }
8199
8200 \f
8201 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8202 HIGHEST is nonzero, return the coding system of the highest
8203 priority among the detected coding systems. Otherwize return a
8204 list of detected coding systems sorted by their priorities. If
8205 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8206 multibyte form but contains only ASCII and eight-bit chars.
8207 Otherwise, the bytes are raw bytes.
8208
8209 CODING-SYSTEM controls the detection as below:
8210
8211 If it is nil, detect both text-format and eol-format. If the
8212 text-format part of CODING-SYSTEM is already specified
8213 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8214 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8215 detect only text-format. */
8216
8217 Lisp_Object
8218 detect_coding_system (const unsigned char *src,
8219 EMACS_INT src_chars, EMACS_INT src_bytes,
8220 int highest, int multibytep,
8221 Lisp_Object coding_system)
8222 {
8223 const unsigned char *src_end = src + src_bytes;
8224 Lisp_Object attrs, eol_type;
8225 Lisp_Object val = Qnil;
8226 struct coding_system coding;
8227 int id;
8228 struct coding_detection_info detect_info;
8229 enum coding_category base_category;
8230 int null_byte_found = 0, eight_bit_found = 0;
8231
8232 if (NILP (coding_system))
8233 coding_system = Qundecided;
8234 setup_coding_system (coding_system, &coding);
8235 attrs = CODING_ID_ATTRS (coding.id);
8236 eol_type = CODING_ID_EOL_TYPE (coding.id);
8237 coding_system = CODING_ATTR_BASE_NAME (attrs);
8238
8239 coding.source = src;
8240 coding.src_chars = src_chars;
8241 coding.src_bytes = src_bytes;
8242 coding.src_multibyte = multibytep;
8243 coding.consumed = 0;
8244 coding.mode |= CODING_MODE_LAST_BLOCK;
8245 coding.head_ascii = 0;
8246
8247 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8248
8249 /* At first, detect text-format if necessary. */
8250 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8251 if (base_category == coding_category_undecided)
8252 {
8253 enum coding_category category;
8254 struct coding_system *this;
8255 int c, i;
8256
8257 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8258 for (; src < src_end; src++)
8259 {
8260 c = *src;
8261 if (c & 0x80)
8262 {
8263 eight_bit_found = 1;
8264 if (null_byte_found)
8265 break;
8266 }
8267 else if (c < 0x20)
8268 {
8269 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8270 && ! inhibit_iso_escape_detection
8271 && ! detect_info.checked)
8272 {
8273 if (detect_coding_iso_2022 (&coding, &detect_info))
8274 {
8275 /* We have scanned the whole data. */
8276 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8277 {
8278 /* We didn't find an 8-bit code. We may
8279 have found a null-byte, but it's very
8280 rare that a binary file confirm to
8281 ISO-2022. */
8282 src = src_end;
8283 coding.head_ascii = src - coding.source;
8284 }
8285 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8286 break;
8287 }
8288 }
8289 else if (! c && !inhibit_null_byte_detection)
8290 {
8291 null_byte_found = 1;
8292 if (eight_bit_found)
8293 break;
8294 }
8295 if (! eight_bit_found)
8296 coding.head_ascii++;
8297 }
8298 else if (! eight_bit_found)
8299 coding.head_ascii++;
8300 }
8301
8302 if (null_byte_found || eight_bit_found
8303 || coding.head_ascii < coding.src_bytes
8304 || detect_info.found)
8305 {
8306 if (coding.head_ascii == coding.src_bytes)
8307 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8308 for (i = 0; i < coding_category_raw_text; i++)
8309 {
8310 category = coding_priorities[i];
8311 this = coding_categories + category;
8312 if (detect_info.found & (1 << category))
8313 break;
8314 }
8315 else
8316 {
8317 if (null_byte_found)
8318 {
8319 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8320 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8321 }
8322 for (i = 0; i < coding_category_raw_text; i++)
8323 {
8324 category = coding_priorities[i];
8325 this = coding_categories + category;
8326
8327 if (this->id < 0)
8328 {
8329 /* No coding system of this category is defined. */
8330 detect_info.rejected |= (1 << category);
8331 }
8332 else if (category >= coding_category_raw_text)
8333 continue;
8334 else if (detect_info.checked & (1 << category))
8335 {
8336 if (highest
8337 && (detect_info.found & (1 << category)))
8338 break;
8339 }
8340 else if ((*(this->detector)) (&coding, &detect_info)
8341 && highest
8342 && (detect_info.found & (1 << category)))
8343 {
8344 if (category == coding_category_utf_16_auto)
8345 {
8346 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8347 category = coding_category_utf_16_le;
8348 else
8349 category = coding_category_utf_16_be;
8350 }
8351 break;
8352 }
8353 }
8354 }
8355 }
8356
8357 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8358 || null_byte_found)
8359 {
8360 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8361 id = CODING_SYSTEM_ID (Qno_conversion);
8362 val = Fcons (make_number (id), Qnil);
8363 }
8364 else if (! detect_info.rejected && ! detect_info.found)
8365 {
8366 detect_info.found = CATEGORY_MASK_ANY;
8367 id = coding_categories[coding_category_undecided].id;
8368 val = Fcons (make_number (id), Qnil);
8369 }
8370 else if (highest)
8371 {
8372 if (detect_info.found)
8373 {
8374 detect_info.found = 1 << category;
8375 val = Fcons (make_number (this->id), Qnil);
8376 }
8377 else
8378 for (i = 0; i < coding_category_raw_text; i++)
8379 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8380 {
8381 detect_info.found = 1 << coding_priorities[i];
8382 id = coding_categories[coding_priorities[i]].id;
8383 val = Fcons (make_number (id), Qnil);
8384 break;
8385 }
8386 }
8387 else
8388 {
8389 int mask = detect_info.rejected | detect_info.found;
8390 int found = 0;
8391
8392 for (i = coding_category_raw_text - 1; i >= 0; i--)
8393 {
8394 category = coding_priorities[i];
8395 if (! (mask & (1 << category)))
8396 {
8397 found |= 1 << category;
8398 id = coding_categories[category].id;
8399 if (id >= 0)
8400 val = Fcons (make_number (id), val);
8401 }
8402 }
8403 for (i = coding_category_raw_text - 1; i >= 0; i--)
8404 {
8405 category = coding_priorities[i];
8406 if (detect_info.found & (1 << category))
8407 {
8408 id = coding_categories[category].id;
8409 val = Fcons (make_number (id), val);
8410 }
8411 }
8412 detect_info.found |= found;
8413 }
8414 }
8415 else if (base_category == coding_category_utf_8_auto)
8416 {
8417 if (detect_coding_utf_8 (&coding, &detect_info))
8418 {
8419 struct coding_system *this;
8420
8421 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8422 this = coding_categories + coding_category_utf_8_sig;
8423 else
8424 this = coding_categories + coding_category_utf_8_nosig;
8425 val = Fcons (make_number (this->id), Qnil);
8426 }
8427 }
8428 else if (base_category == coding_category_utf_16_auto)
8429 {
8430 if (detect_coding_utf_16 (&coding, &detect_info))
8431 {
8432 struct coding_system *this;
8433
8434 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8435 this = coding_categories + coding_category_utf_16_le;
8436 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8437 this = coding_categories + coding_category_utf_16_be;
8438 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8439 this = coding_categories + coding_category_utf_16_be_nosig;
8440 else
8441 this = coding_categories + coding_category_utf_16_le_nosig;
8442 val = Fcons (make_number (this->id), Qnil);
8443 }
8444 }
8445 else
8446 {
8447 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8448 val = Fcons (make_number (coding.id), Qnil);
8449 }
8450
8451 /* Then, detect eol-format if necessary. */
8452 {
8453 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8454 Lisp_Object tail;
8455
8456 if (VECTORP (eol_type))
8457 {
8458 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8459 {
8460 if (null_byte_found)
8461 normal_eol = EOL_SEEN_LF;
8462 else
8463 normal_eol = detect_eol (coding.source, src_bytes,
8464 coding_category_raw_text);
8465 }
8466 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8467 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8468 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8469 coding_category_utf_16_be);
8470 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8471 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8472 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8473 coding_category_utf_16_le);
8474 }
8475 else
8476 {
8477 if (EQ (eol_type, Qunix))
8478 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8479 else if (EQ (eol_type, Qdos))
8480 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8481 else
8482 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8483 }
8484
8485 for (tail = val; CONSP (tail); tail = XCDR (tail))
8486 {
8487 enum coding_category category;
8488 int this_eol;
8489
8490 id = XINT (XCAR (tail));
8491 attrs = CODING_ID_ATTRS (id);
8492 category = XINT (CODING_ATTR_CATEGORY (attrs));
8493 eol_type = CODING_ID_EOL_TYPE (id);
8494 if (VECTORP (eol_type))
8495 {
8496 if (category == coding_category_utf_16_be
8497 || category == coding_category_utf_16_be_nosig)
8498 this_eol = utf_16_be_eol;
8499 else if (category == coding_category_utf_16_le
8500 || category == coding_category_utf_16_le_nosig)
8501 this_eol = utf_16_le_eol;
8502 else
8503 this_eol = normal_eol;
8504
8505 if (this_eol == EOL_SEEN_LF)
8506 XSETCAR (tail, AREF (eol_type, 0));
8507 else if (this_eol == EOL_SEEN_CRLF)
8508 XSETCAR (tail, AREF (eol_type, 1));
8509 else if (this_eol == EOL_SEEN_CR)
8510 XSETCAR (tail, AREF (eol_type, 2));
8511 else
8512 XSETCAR (tail, CODING_ID_NAME (id));
8513 }
8514 else
8515 XSETCAR (tail, CODING_ID_NAME (id));
8516 }
8517 }
8518
8519 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8520 }
8521
8522
8523 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8524 2, 3, 0,
8525 doc: /* Detect coding system of the text in the region between START and END.
8526 Return a list of possible coding systems ordered by priority.
8527 The coding systems to try and their priorities follows what
8528 the function `coding-system-priority-list' (which see) returns.
8529
8530 If only ASCII characters are found (except for such ISO-2022 control
8531 characters as ESC), it returns a list of single element `undecided'
8532 or its subsidiary coding system according to a detected end-of-line
8533 format.
8534
8535 If optional argument HIGHEST is non-nil, return the coding system of
8536 highest priority. */)
8537 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8538 {
8539 int from, to;
8540 int from_byte, to_byte;
8541
8542 CHECK_NUMBER_COERCE_MARKER (start);
8543 CHECK_NUMBER_COERCE_MARKER (end);
8544
8545 validate_region (&start, &end);
8546 from = XINT (start), to = XINT (end);
8547 from_byte = CHAR_TO_BYTE (from);
8548 to_byte = CHAR_TO_BYTE (to);
8549
8550 if (from < GPT && to >= GPT)
8551 move_gap_both (to, to_byte);
8552
8553 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8554 to - from, to_byte - from_byte,
8555 !NILP (highest),
8556 !NILP (current_buffer
8557 ->enable_multibyte_characters),
8558 Qnil);
8559 }
8560
8561 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8562 1, 2, 0,
8563 doc: /* Detect coding system of the text in STRING.
8564 Return a list of possible coding systems ordered by priority.
8565 The coding systems to try and their priorities follows what
8566 the function `coding-system-priority-list' (which see) returns.
8567
8568 If only ASCII characters are found (except for such ISO-2022 control
8569 characters as ESC), it returns a list of single element `undecided'
8570 or its subsidiary coding system according to a detected end-of-line
8571 format.
8572
8573 If optional argument HIGHEST is non-nil, return the coding system of
8574 highest priority. */)
8575 (Lisp_Object string, Lisp_Object highest)
8576 {
8577 CHECK_STRING (string);
8578
8579 return detect_coding_system (SDATA (string),
8580 SCHARS (string), SBYTES (string),
8581 !NILP (highest), STRING_MULTIBYTE (string),
8582 Qnil);
8583 }
8584
8585
8586 static INLINE int
8587 char_encodable_p (int c, Lisp_Object attrs)
8588 {
8589 Lisp_Object tail;
8590 struct charset *charset;
8591 Lisp_Object translation_table;
8592
8593 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8594 if (! NILP (translation_table))
8595 c = translate_char (translation_table, c);
8596 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8597 CONSP (tail); tail = XCDR (tail))
8598 {
8599 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8600 if (CHAR_CHARSET_P (c, charset))
8601 break;
8602 }
8603 return (! NILP (tail));
8604 }
8605
8606
8607 /* Return a list of coding systems that safely encode the text between
8608 START and END. If EXCLUDE is non-nil, it is a list of coding
8609 systems not to check. The returned list doesn't contain any such
8610 coding systems. In any case, if the text contains only ASCII or is
8611 unibyte, return t. */
8612
8613 DEFUN ("find-coding-systems-region-internal",
8614 Ffind_coding_systems_region_internal,
8615 Sfind_coding_systems_region_internal, 2, 3, 0,
8616 doc: /* Internal use only. */)
8617 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8618 {
8619 Lisp_Object coding_attrs_list, safe_codings;
8620 EMACS_INT start_byte, end_byte;
8621 const unsigned char *p, *pbeg, *pend;
8622 int c;
8623 Lisp_Object tail, elt, work_table;
8624
8625 if (STRINGP (start))
8626 {
8627 if (!STRING_MULTIBYTE (start)
8628 || SCHARS (start) == SBYTES (start))
8629 return Qt;
8630 start_byte = 0;
8631 end_byte = SBYTES (start);
8632 }
8633 else
8634 {
8635 CHECK_NUMBER_COERCE_MARKER (start);
8636 CHECK_NUMBER_COERCE_MARKER (end);
8637 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8638 args_out_of_range (start, end);
8639 if (NILP (current_buffer->enable_multibyte_characters))
8640 return Qt;
8641 start_byte = CHAR_TO_BYTE (XINT (start));
8642 end_byte = CHAR_TO_BYTE (XINT (end));
8643 if (XINT (end) - XINT (start) == end_byte - start_byte)
8644 return Qt;
8645
8646 if (XINT (start) < GPT && XINT (end) > GPT)
8647 {
8648 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8649 move_gap_both (XINT (start), start_byte);
8650 else
8651 move_gap_both (XINT (end), end_byte);
8652 }
8653 }
8654
8655 coding_attrs_list = Qnil;
8656 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8657 if (NILP (exclude)
8658 || NILP (Fmemq (XCAR (tail), exclude)))
8659 {
8660 Lisp_Object attrs;
8661
8662 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8663 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8664 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8665 {
8666 ASET (attrs, coding_attr_trans_tbl,
8667 get_translation_table (attrs, 1, NULL));
8668 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8669 }
8670 }
8671
8672 if (STRINGP (start))
8673 p = pbeg = SDATA (start);
8674 else
8675 p = pbeg = BYTE_POS_ADDR (start_byte);
8676 pend = p + (end_byte - start_byte);
8677
8678 while (p < pend && ASCII_BYTE_P (*p)) p++;
8679 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8680
8681 work_table = Fmake_char_table (Qnil, Qnil);
8682 while (p < pend)
8683 {
8684 if (ASCII_BYTE_P (*p))
8685 p++;
8686 else
8687 {
8688 c = STRING_CHAR_ADVANCE (p);
8689 if (!NILP (char_table_ref (work_table, c)))
8690 /* This character was already checked. Ignore it. */
8691 continue;
8692
8693 charset_map_loaded = 0;
8694 for (tail = coding_attrs_list; CONSP (tail);)
8695 {
8696 elt = XCAR (tail);
8697 if (NILP (elt))
8698 tail = XCDR (tail);
8699 else if (char_encodable_p (c, elt))
8700 tail = XCDR (tail);
8701 else if (CONSP (XCDR (tail)))
8702 {
8703 XSETCAR (tail, XCAR (XCDR (tail)));
8704 XSETCDR (tail, XCDR (XCDR (tail)));
8705 }
8706 else
8707 {
8708 XSETCAR (tail, Qnil);
8709 tail = XCDR (tail);
8710 }
8711 }
8712 if (charset_map_loaded)
8713 {
8714 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8715
8716 if (STRINGP (start))
8717 pbeg = SDATA (start);
8718 else
8719 pbeg = BYTE_POS_ADDR (start_byte);
8720 p = pbeg + p_offset;
8721 pend = pbeg + pend_offset;
8722 }
8723 char_table_set (work_table, c, Qt);
8724 }
8725 }
8726
8727 safe_codings = list2 (Qraw_text, Qno_conversion);
8728 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8729 if (! NILP (XCAR (tail)))
8730 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8731
8732 return safe_codings;
8733 }
8734
8735
8736 DEFUN ("unencodable-char-position", Funencodable_char_position,
8737 Sunencodable_char_position, 3, 5, 0,
8738 doc: /*
8739 Return position of first un-encodable character in a region.
8740 START and END specify the region and CODING-SYSTEM specifies the
8741 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8742
8743 If optional 4th argument COUNT is non-nil, it specifies at most how
8744 many un-encodable characters to search. In this case, the value is a
8745 list of positions.
8746
8747 If optional 5th argument STRING is non-nil, it is a string to search
8748 for un-encodable characters. In that case, START and END are indexes
8749 to the string. */)
8750 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object count, Lisp_Object string)
8751 {
8752 int n;
8753 struct coding_system coding;
8754 Lisp_Object attrs, charset_list, translation_table;
8755 Lisp_Object positions;
8756 int from, to;
8757 const unsigned char *p, *stop, *pend;
8758 int ascii_compatible;
8759
8760 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8761 attrs = CODING_ID_ATTRS (coding.id);
8762 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8763 return Qnil;
8764 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8765 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8766 translation_table = get_translation_table (attrs, 1, NULL);
8767
8768 if (NILP (string))
8769 {
8770 validate_region (&start, &end);
8771 from = XINT (start);
8772 to = XINT (end);
8773 if (NILP (current_buffer->enable_multibyte_characters)
8774 || (ascii_compatible
8775 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8776 return Qnil;
8777 p = CHAR_POS_ADDR (from);
8778 pend = CHAR_POS_ADDR (to);
8779 if (from < GPT && to >= GPT)
8780 stop = GPT_ADDR;
8781 else
8782 stop = pend;
8783 }
8784 else
8785 {
8786 CHECK_STRING (string);
8787 CHECK_NATNUM (start);
8788 CHECK_NATNUM (end);
8789 from = XINT (start);
8790 to = XINT (end);
8791 if (from > to
8792 || to > SCHARS (string))
8793 args_out_of_range_3 (string, start, end);
8794 if (! STRING_MULTIBYTE (string))
8795 return Qnil;
8796 p = SDATA (string) + string_char_to_byte (string, from);
8797 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8798 if (ascii_compatible && (to - from) == (pend - p))
8799 return Qnil;
8800 }
8801
8802 if (NILP (count))
8803 n = 1;
8804 else
8805 {
8806 CHECK_NATNUM (count);
8807 n = XINT (count);
8808 }
8809
8810 positions = Qnil;
8811 while (1)
8812 {
8813 int c;
8814
8815 if (ascii_compatible)
8816 while (p < stop && ASCII_BYTE_P (*p))
8817 p++, from++;
8818 if (p >= stop)
8819 {
8820 if (p >= pend)
8821 break;
8822 stop = pend;
8823 p = GAP_END_ADDR;
8824 }
8825
8826 c = STRING_CHAR_ADVANCE (p);
8827 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8828 && ! char_charset (translate_char (translation_table, c),
8829 charset_list, NULL))
8830 {
8831 positions = Fcons (make_number (from), positions);
8832 n--;
8833 if (n == 0)
8834 break;
8835 }
8836
8837 from++;
8838 }
8839
8840 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8841 }
8842
8843
8844 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8845 Scheck_coding_systems_region, 3, 3, 0,
8846 doc: /* Check if the region is encodable by coding systems.
8847
8848 START and END are buffer positions specifying the region.
8849 CODING-SYSTEM-LIST is a list of coding systems to check.
8850
8851 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8852 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8853 whole region, POS0, POS1, ... are buffer positions where non-encodable
8854 characters are found.
8855
8856 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8857 value is nil.
8858
8859 START may be a string. In that case, check if the string is
8860 encodable, and the value contains indices to the string instead of
8861 buffer positions. END is ignored.
8862
8863 If the current buffer (or START if it is a string) is unibyte, the value
8864 is nil. */)
8865 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
8866 {
8867 Lisp_Object list;
8868 EMACS_INT start_byte, end_byte;
8869 int pos;
8870 const unsigned char *p, *pbeg, *pend;
8871 int c;
8872 Lisp_Object tail, elt, attrs;
8873
8874 if (STRINGP (start))
8875 {
8876 if (!STRING_MULTIBYTE (start)
8877 || SCHARS (start) == SBYTES (start))
8878 return Qnil;
8879 start_byte = 0;
8880 end_byte = SBYTES (start);
8881 pos = 0;
8882 }
8883 else
8884 {
8885 CHECK_NUMBER_COERCE_MARKER (start);
8886 CHECK_NUMBER_COERCE_MARKER (end);
8887 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8888 args_out_of_range (start, end);
8889 if (NILP (current_buffer->enable_multibyte_characters))
8890 return Qnil;
8891 start_byte = CHAR_TO_BYTE (XINT (start));
8892 end_byte = CHAR_TO_BYTE (XINT (end));
8893 if (XINT (end) - XINT (start) == end_byte - start_byte)
8894 return Qnil;
8895
8896 if (XINT (start) < GPT && XINT (end) > GPT)
8897 {
8898 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8899 move_gap_both (XINT (start), start_byte);
8900 else
8901 move_gap_both (XINT (end), end_byte);
8902 }
8903 pos = XINT (start);
8904 }
8905
8906 list = Qnil;
8907 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8908 {
8909 elt = XCAR (tail);
8910 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8911 ASET (attrs, coding_attr_trans_tbl,
8912 get_translation_table (attrs, 1, NULL));
8913 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8914 }
8915
8916 if (STRINGP (start))
8917 p = pbeg = SDATA (start);
8918 else
8919 p = pbeg = BYTE_POS_ADDR (start_byte);
8920 pend = p + (end_byte - start_byte);
8921
8922 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8923 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8924
8925 while (p < pend)
8926 {
8927 if (ASCII_BYTE_P (*p))
8928 p++;
8929 else
8930 {
8931 c = STRING_CHAR_ADVANCE (p);
8932
8933 charset_map_loaded = 0;
8934 for (tail = list; CONSP (tail); tail = XCDR (tail))
8935 {
8936 elt = XCDR (XCAR (tail));
8937 if (! char_encodable_p (c, XCAR (elt)))
8938 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8939 }
8940 if (charset_map_loaded)
8941 {
8942 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8943
8944 if (STRINGP (start))
8945 pbeg = SDATA (start);
8946 else
8947 pbeg = BYTE_POS_ADDR (start_byte);
8948 p = pbeg + p_offset;
8949 pend = pbeg + pend_offset;
8950 }
8951 }
8952 pos++;
8953 }
8954
8955 tail = list;
8956 list = Qnil;
8957 for (; CONSP (tail); tail = XCDR (tail))
8958 {
8959 elt = XCAR (tail);
8960 if (CONSP (XCDR (XCDR (elt))))
8961 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8962 list);
8963 }
8964
8965 return list;
8966 }
8967
8968
8969 Lisp_Object
8970 code_convert_region (Lisp_Object start, Lisp_Object end,
8971 Lisp_Object coding_system, Lisp_Object dst_object,
8972 int encodep, int norecord)
8973 {
8974 struct coding_system coding;
8975 EMACS_INT from, from_byte, to, to_byte;
8976 Lisp_Object src_object;
8977
8978 CHECK_NUMBER_COERCE_MARKER (start);
8979 CHECK_NUMBER_COERCE_MARKER (end);
8980 if (NILP (coding_system))
8981 coding_system = Qno_conversion;
8982 else
8983 CHECK_CODING_SYSTEM (coding_system);
8984 src_object = Fcurrent_buffer ();
8985 if (NILP (dst_object))
8986 dst_object = src_object;
8987 else if (! EQ (dst_object, Qt))
8988 CHECK_BUFFER (dst_object);
8989
8990 validate_region (&start, &end);
8991 from = XFASTINT (start);
8992 from_byte = CHAR_TO_BYTE (from);
8993 to = XFASTINT (end);
8994 to_byte = CHAR_TO_BYTE (to);
8995
8996 setup_coding_system (coding_system, &coding);
8997 coding.mode |= CODING_MODE_LAST_BLOCK;
8998
8999 if (encodep)
9000 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9001 dst_object);
9002 else
9003 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9004 dst_object);
9005 if (! norecord)
9006 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9007
9008 return (BUFFERP (dst_object)
9009 ? make_number (coding.produced_char)
9010 : coding.dst_object);
9011 }
9012
9013
9014 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9015 3, 4, "r\nzCoding system: ",
9016 doc: /* Decode the current region from the specified coding system.
9017 When called from a program, takes four arguments:
9018 START, END, CODING-SYSTEM, and DESTINATION.
9019 START and END are buffer positions.
9020
9021 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9022 If nil, the region between START and END is replaced by the decoded text.
9023 If buffer, the decoded text is inserted in that buffer after point (point
9024 does not move).
9025 In those cases, the length of the decoded text is returned.
9026 If DESTINATION is t, the decoded text is returned.
9027
9028 This function sets `last-coding-system-used' to the precise coding system
9029 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9030 not fully specified.) */)
9031 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9032 {
9033 return code_convert_region (start, end, coding_system, destination, 0, 0);
9034 }
9035
9036 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9037 3, 4, "r\nzCoding system: ",
9038 doc: /* Encode the current region by specified coding system.
9039 When called from a program, takes four arguments:
9040 START, END, CODING-SYSTEM and DESTINATION.
9041 START and END are buffer positions.
9042
9043 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9044 If nil, the region between START and END is replace by the encoded text.
9045 If buffer, the encoded text is inserted in that buffer after point (point
9046 does not move).
9047 In those cases, the length of the encoded text is returned.
9048 If DESTINATION is t, the encoded text is returned.
9049
9050 This function sets `last-coding-system-used' to the precise coding system
9051 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9052 not fully specified.) */)
9053 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9054 {
9055 return code_convert_region (start, end, coding_system, destination, 1, 0);
9056 }
9057
9058 Lisp_Object
9059 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
9060 Lisp_Object dst_object, int encodep, int nocopy, int norecord)
9061 {
9062 struct coding_system coding;
9063 EMACS_INT chars, bytes;
9064
9065 CHECK_STRING (string);
9066 if (NILP (coding_system))
9067 {
9068 if (! norecord)
9069 Vlast_coding_system_used = Qno_conversion;
9070 if (NILP (dst_object))
9071 return (nocopy ? Fcopy_sequence (string) : string);
9072 }
9073
9074 if (NILP (coding_system))
9075 coding_system = Qno_conversion;
9076 else
9077 CHECK_CODING_SYSTEM (coding_system);
9078 if (NILP (dst_object))
9079 dst_object = Qt;
9080 else if (! EQ (dst_object, Qt))
9081 CHECK_BUFFER (dst_object);
9082
9083 setup_coding_system (coding_system, &coding);
9084 coding.mode |= CODING_MODE_LAST_BLOCK;
9085 chars = SCHARS (string);
9086 bytes = SBYTES (string);
9087 if (encodep)
9088 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9089 else
9090 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9091 if (! norecord)
9092 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9093
9094 return (BUFFERP (dst_object)
9095 ? make_number (coding.produced_char)
9096 : coding.dst_object);
9097 }
9098
9099
9100 /* Encode or decode STRING according to CODING_SYSTEM.
9101 Do not set Vlast_coding_system_used.
9102
9103 This function is called only from macros DECODE_FILE and
9104 ENCODE_FILE, thus we ignore character composition. */
9105
9106 Lisp_Object
9107 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
9108 int encodep)
9109 {
9110 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9111 }
9112
9113
9114 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9115 2, 4, 0,
9116 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9117
9118 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9119 if the decoding operation is trivial.
9120
9121 Optional fourth arg BUFFER non-nil means that the decoded text is
9122 inserted in that buffer after point (point does not move). In this
9123 case, the return value is the length of the decoded text.
9124
9125 This function sets `last-coding-system-used' to the precise coding system
9126 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9127 not fully specified.) */)
9128 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9129 {
9130 return code_convert_string (string, coding_system, buffer,
9131 0, ! NILP (nocopy), 0);
9132 }
9133
9134 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9135 2, 4, 0,
9136 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9137
9138 Optional third arg NOCOPY non-nil means it is OK to return STRING
9139 itself if the encoding operation is trivial.
9140
9141 Optional fourth arg BUFFER non-nil means that the encoded text is
9142 inserted in that buffer after point (point does not move). In this
9143 case, the return value is the length of the encoded text.
9144
9145 This function sets `last-coding-system-used' to the precise coding system
9146 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9147 not fully specified.) */)
9148 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9149 {
9150 return code_convert_string (string, coding_system, buffer,
9151 1, ! NILP (nocopy), 1);
9152 }
9153
9154 \f
9155 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9156 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9157 Return the corresponding character. */)
9158 (Lisp_Object code)
9159 {
9160 Lisp_Object spec, attrs, val;
9161 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9162 int c;
9163
9164 CHECK_NATNUM (code);
9165 c = XFASTINT (code);
9166 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9167 attrs = AREF (spec, 0);
9168
9169 if (ASCII_BYTE_P (c)
9170 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9171 return code;
9172
9173 val = CODING_ATTR_CHARSET_LIST (attrs);
9174 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9175 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9176 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9177
9178 if (c <= 0x7F)
9179 charset = charset_roman;
9180 else if (c >= 0xA0 && c < 0xDF)
9181 {
9182 charset = charset_kana;
9183 c -= 0x80;
9184 }
9185 else
9186 {
9187 int s1 = c >> 8, s2 = c & 0xFF;
9188
9189 if (s1 < 0x81 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF
9190 || s2 < 0x40 || s2 == 0x7F || s2 > 0xFC)
9191 error ("Invalid code: %d", code);
9192 SJIS_TO_JIS (c);
9193 charset = charset_kanji;
9194 }
9195 c = DECODE_CHAR (charset, c);
9196 if (c < 0)
9197 error ("Invalid code: %d", code);
9198 return make_number (c);
9199 }
9200
9201
9202 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9203 doc: /* Encode a Japanese character CH to shift_jis encoding.
9204 Return the corresponding code in SJIS. */)
9205 (Lisp_Object ch)
9206 {
9207 Lisp_Object spec, attrs, charset_list;
9208 int c;
9209 struct charset *charset;
9210 unsigned code;
9211
9212 CHECK_CHARACTER (ch);
9213 c = XFASTINT (ch);
9214 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9215 attrs = AREF (spec, 0);
9216
9217 if (ASCII_CHAR_P (c)
9218 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9219 return ch;
9220
9221 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9222 charset = char_charset (c, charset_list, &code);
9223 if (code == CHARSET_INVALID_CODE (charset))
9224 error ("Can't encode by shift_jis encoding: %d", c);
9225 JIS_TO_SJIS (code);
9226
9227 return make_number (code);
9228 }
9229
9230 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9231 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9232 Return the corresponding character. */)
9233 (Lisp_Object code)
9234 {
9235 Lisp_Object spec, attrs, val;
9236 struct charset *charset_roman, *charset_big5, *charset;
9237 int c;
9238
9239 CHECK_NATNUM (code);
9240 c = XFASTINT (code);
9241 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9242 attrs = AREF (spec, 0);
9243
9244 if (ASCII_BYTE_P (c)
9245 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9246 return code;
9247
9248 val = CODING_ATTR_CHARSET_LIST (attrs);
9249 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9250 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9251
9252 if (c <= 0x7F)
9253 charset = charset_roman;
9254 else
9255 {
9256 int b1 = c >> 8, b2 = c & 0x7F;
9257 if (b1 < 0xA1 || b1 > 0xFE
9258 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9259 error ("Invalid code: %d", code);
9260 charset = charset_big5;
9261 }
9262 c = DECODE_CHAR (charset, (unsigned )c);
9263 if (c < 0)
9264 error ("Invalid code: %d", code);
9265 return make_number (c);
9266 }
9267
9268 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9269 doc: /* Encode the Big5 character CH to BIG5 coding system.
9270 Return the corresponding character code in Big5. */)
9271 (Lisp_Object ch)
9272 {
9273 Lisp_Object spec, attrs, charset_list;
9274 struct charset *charset;
9275 int c;
9276 unsigned code;
9277
9278 CHECK_CHARACTER (ch);
9279 c = XFASTINT (ch);
9280 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9281 attrs = AREF (spec, 0);
9282 if (ASCII_CHAR_P (c)
9283 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9284 return ch;
9285
9286 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9287 charset = char_charset (c, charset_list, &code);
9288 if (code == CHARSET_INVALID_CODE (charset))
9289 error ("Can't encode by Big5 encoding: %d", c);
9290
9291 return make_number (code);
9292 }
9293
9294 \f
9295 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9296 Sset_terminal_coding_system_internal, 1, 2, 0,
9297 doc: /* Internal use only. */)
9298 (Lisp_Object coding_system, Lisp_Object terminal)
9299 {
9300 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9301 CHECK_SYMBOL (coding_system);
9302 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9303 /* We had better not send unsafe characters to terminal. */
9304 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9305 /* Characer composition should be disabled. */
9306 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9307 terminal_coding->src_multibyte = 1;
9308 terminal_coding->dst_multibyte = 0;
9309 return Qnil;
9310 }
9311
9312 DEFUN ("set-safe-terminal-coding-system-internal",
9313 Fset_safe_terminal_coding_system_internal,
9314 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9315 doc: /* Internal use only. */)
9316 (Lisp_Object coding_system)
9317 {
9318 CHECK_SYMBOL (coding_system);
9319 setup_coding_system (Fcheck_coding_system (coding_system),
9320 &safe_terminal_coding);
9321 /* Characer composition should be disabled. */
9322 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9323 safe_terminal_coding.src_multibyte = 1;
9324 safe_terminal_coding.dst_multibyte = 0;
9325 return Qnil;
9326 }
9327
9328 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9329 Sterminal_coding_system, 0, 1, 0,
9330 doc: /* Return coding system specified for terminal output on the given terminal.
9331 TERMINAL may be a terminal object, a frame, or nil for the selected
9332 frame's terminal device. */)
9333 (Lisp_Object terminal)
9334 {
9335 struct coding_system *terminal_coding
9336 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9337 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9338
9339 /* For backward compatibility, return nil if it is `undecided'. */
9340 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9341 }
9342
9343 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9344 Sset_keyboard_coding_system_internal, 1, 2, 0,
9345 doc: /* Internal use only. */)
9346 (Lisp_Object coding_system, Lisp_Object terminal)
9347 {
9348 struct terminal *t = get_terminal (terminal, 1);
9349 CHECK_SYMBOL (coding_system);
9350 if (NILP (coding_system))
9351 coding_system = Qno_conversion;
9352 else
9353 Fcheck_coding_system (coding_system);
9354 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9355 /* Characer composition should be disabled. */
9356 TERMINAL_KEYBOARD_CODING (t)->common_flags
9357 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9358 return Qnil;
9359 }
9360
9361 DEFUN ("keyboard-coding-system",
9362 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9363 doc: /* Return coding system specified for decoding keyboard input. */)
9364 (Lisp_Object terminal)
9365 {
9366 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9367 (get_terminal (terminal, 1))->id);
9368 }
9369
9370 \f
9371 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9372 Sfind_operation_coding_system, 1, MANY, 0,
9373 doc: /* Choose a coding system for an operation based on the target name.
9374 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9375 DECODING-SYSTEM is the coding system to use for decoding
9376 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9377 for encoding (in case OPERATION does encoding).
9378
9379 The first argument OPERATION specifies an I/O primitive:
9380 For file I/O, `insert-file-contents' or `write-region'.
9381 For process I/O, `call-process', `call-process-region', or `start-process'.
9382 For network I/O, `open-network-stream'.
9383
9384 The remaining arguments should be the same arguments that were passed
9385 to the primitive. Depending on which primitive, one of those arguments
9386 is selected as the TARGET. For example, if OPERATION does file I/O,
9387 whichever argument specifies the file name is TARGET.
9388
9389 TARGET has a meaning which depends on OPERATION:
9390 For file I/O, TARGET is a file name (except for the special case below).
9391 For process I/O, TARGET is a process name.
9392 For network I/O, TARGET is a service name or a port number.
9393
9394 This function looks up what is specified for TARGET in
9395 `file-coding-system-alist', `process-coding-system-alist',
9396 or `network-coding-system-alist' depending on OPERATION.
9397 They may specify a coding system, a cons of coding systems,
9398 or a function symbol to call.
9399 In the last case, we call the function with one argument,
9400 which is a list of all the arguments given to this function.
9401 If the function can't decide a coding system, it can return
9402 `undecided' so that the normal code-detection is performed.
9403
9404 If OPERATION is `insert-file-contents', the argument corresponding to
9405 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9406 file name to look up, and BUFFER is a buffer that contains the file's
9407 contents (not yet decoded). If `file-coding-system-alist' specifies a
9408 function to call for FILENAME, that function should examine the
9409 contents of BUFFER instead of reading the file.
9410
9411 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9412 (int nargs, Lisp_Object *args)
9413 {
9414 Lisp_Object operation, target_idx, target, val;
9415 register Lisp_Object chain;
9416
9417 if (nargs < 2)
9418 error ("Too few arguments");
9419 operation = args[0];
9420 if (!SYMBOLP (operation)
9421 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
9422 error ("Invalid first argument");
9423 if (nargs < 1 + XINT (target_idx))
9424 error ("Too few arguments for operation: %s",
9425 SDATA (SYMBOL_NAME (operation)));
9426 target = args[XINT (target_idx) + 1];
9427 if (!(STRINGP (target)
9428 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9429 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9430 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9431 error ("Invalid %dth argument", XINT (target_idx) + 1);
9432 if (CONSP (target))
9433 target = XCAR (target);
9434
9435 chain = ((EQ (operation, Qinsert_file_contents)
9436 || EQ (operation, Qwrite_region))
9437 ? Vfile_coding_system_alist
9438 : (EQ (operation, Qopen_network_stream)
9439 ? Vnetwork_coding_system_alist
9440 : Vprocess_coding_system_alist));
9441 if (NILP (chain))
9442 return Qnil;
9443
9444 for (; CONSP (chain); chain = XCDR (chain))
9445 {
9446 Lisp_Object elt;
9447
9448 elt = XCAR (chain);
9449 if (CONSP (elt)
9450 && ((STRINGP (target)
9451 && STRINGP (XCAR (elt))
9452 && fast_string_match (XCAR (elt), target) >= 0)
9453 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9454 {
9455 val = XCDR (elt);
9456 /* Here, if VAL is both a valid coding system and a valid
9457 function symbol, we return VAL as a coding system. */
9458 if (CONSP (val))
9459 return val;
9460 if (! SYMBOLP (val))
9461 return Qnil;
9462 if (! NILP (Fcoding_system_p (val)))
9463 return Fcons (val, val);
9464 if (! NILP (Ffboundp (val)))
9465 {
9466 /* We use call1 rather than safe_call1
9467 so as to get bug reports about functions called here
9468 which don't handle the current interface. */
9469 val = call1 (val, Flist (nargs, args));
9470 if (CONSP (val))
9471 return val;
9472 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9473 return Fcons (val, val);
9474 }
9475 return Qnil;
9476 }
9477 }
9478 return Qnil;
9479 }
9480
9481 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9482 Sset_coding_system_priority, 0, MANY, 0,
9483 doc: /* Assign higher priority to the coding systems given as arguments.
9484 If multiple coding systems belong to the same category,
9485 all but the first one are ignored.
9486
9487 usage: (set-coding-system-priority &rest coding-systems) */)
9488 (int nargs, Lisp_Object *args)
9489 {
9490 int i, j;
9491 int changed[coding_category_max];
9492 enum coding_category priorities[coding_category_max];
9493
9494 memset (changed, 0, sizeof changed);
9495
9496 for (i = j = 0; i < nargs; i++)
9497 {
9498 enum coding_category category;
9499 Lisp_Object spec, attrs;
9500
9501 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9502 attrs = AREF (spec, 0);
9503 category = XINT (CODING_ATTR_CATEGORY (attrs));
9504 if (changed[category])
9505 /* Ignore this coding system because a coding system of the
9506 same category already had a higher priority. */
9507 continue;
9508 changed[category] = 1;
9509 priorities[j++] = category;
9510 if (coding_categories[category].id >= 0
9511 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9512 setup_coding_system (args[i], &coding_categories[category]);
9513 Fset (AREF (Vcoding_category_table, category), args[i]);
9514 }
9515
9516 /* Now we have decided top J priorities. Reflect the order of the
9517 original priorities to the remaining priorities. */
9518
9519 for (i = j, j = 0; i < coding_category_max; i++, j++)
9520 {
9521 while (j < coding_category_max
9522 && changed[coding_priorities[j]])
9523 j++;
9524 if (j == coding_category_max)
9525 abort ();
9526 priorities[i] = coding_priorities[j];
9527 }
9528
9529 memcpy (coding_priorities, priorities, sizeof priorities);
9530
9531 /* Update `coding-category-list'. */
9532 Vcoding_category_list = Qnil;
9533 for (i = coding_category_max - 1; i >= 0; i--)
9534 Vcoding_category_list
9535 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9536 Vcoding_category_list);
9537
9538 return Qnil;
9539 }
9540
9541 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9542 Scoding_system_priority_list, 0, 1, 0,
9543 doc: /* Return a list of coding systems ordered by their priorities.
9544 The list contains a subset of coding systems; i.e. coding systems
9545 assigned to each coding category (see `coding-category-list').
9546
9547 HIGHESTP non-nil means just return the highest priority one. */)
9548 (Lisp_Object highestp)
9549 {
9550 int i;
9551 Lisp_Object val;
9552
9553 for (i = 0, val = Qnil; i < coding_category_max; i++)
9554 {
9555 enum coding_category category = coding_priorities[i];
9556 int id = coding_categories[category].id;
9557 Lisp_Object attrs;
9558
9559 if (id < 0)
9560 continue;
9561 attrs = CODING_ID_ATTRS (id);
9562 if (! NILP (highestp))
9563 return CODING_ATTR_BASE_NAME (attrs);
9564 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9565 }
9566 return Fnreverse (val);
9567 }
9568
9569 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9570
9571 static Lisp_Object
9572 make_subsidiaries (Lisp_Object base)
9573 {
9574 Lisp_Object subsidiaries;
9575 int base_name_len = SBYTES (SYMBOL_NAME (base));
9576 char *buf = (char *) alloca (base_name_len + 6);
9577 int i;
9578
9579 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9580 subsidiaries = Fmake_vector (make_number (3), Qnil);
9581 for (i = 0; i < 3; i++)
9582 {
9583 memcpy (buf + base_name_len, suffixes[i], strlen (suffixes[i]) + 1);
9584 ASET (subsidiaries, i, intern (buf));
9585 }
9586 return subsidiaries;
9587 }
9588
9589
9590 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9591 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9592 doc: /* For internal use only.
9593 usage: (define-coding-system-internal ...) */)
9594 (int nargs, Lisp_Object *args)
9595 {
9596 Lisp_Object name;
9597 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9598 Lisp_Object attrs; /* Vector of attributes. */
9599 Lisp_Object eol_type;
9600 Lisp_Object aliases;
9601 Lisp_Object coding_type, charset_list, safe_charsets;
9602 enum coding_category category;
9603 Lisp_Object tail, val;
9604 int max_charset_id = 0;
9605 int i;
9606
9607 if (nargs < coding_arg_max)
9608 goto short_args;
9609
9610 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9611
9612 name = args[coding_arg_name];
9613 CHECK_SYMBOL (name);
9614 CODING_ATTR_BASE_NAME (attrs) = name;
9615
9616 val = args[coding_arg_mnemonic];
9617 if (! STRINGP (val))
9618 CHECK_CHARACTER (val);
9619 CODING_ATTR_MNEMONIC (attrs) = val;
9620
9621 coding_type = args[coding_arg_coding_type];
9622 CHECK_SYMBOL (coding_type);
9623 CODING_ATTR_TYPE (attrs) = coding_type;
9624
9625 charset_list = args[coding_arg_charset_list];
9626 if (SYMBOLP (charset_list))
9627 {
9628 if (EQ (charset_list, Qiso_2022))
9629 {
9630 if (! EQ (coding_type, Qiso_2022))
9631 error ("Invalid charset-list");
9632 charset_list = Viso_2022_charset_list;
9633 }
9634 else if (EQ (charset_list, Qemacs_mule))
9635 {
9636 if (! EQ (coding_type, Qemacs_mule))
9637 error ("Invalid charset-list");
9638 charset_list = Vemacs_mule_charset_list;
9639 }
9640 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9641 if (max_charset_id < XFASTINT (XCAR (tail)))
9642 max_charset_id = XFASTINT (XCAR (tail));
9643 }
9644 else
9645 {
9646 charset_list = Fcopy_sequence (charset_list);
9647 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9648 {
9649 struct charset *charset;
9650
9651 val = XCAR (tail);
9652 CHECK_CHARSET_GET_CHARSET (val, charset);
9653 if (EQ (coding_type, Qiso_2022)
9654 ? CHARSET_ISO_FINAL (charset) < 0
9655 : EQ (coding_type, Qemacs_mule)
9656 ? CHARSET_EMACS_MULE_ID (charset) < 0
9657 : 0)
9658 error ("Can't handle charset `%s'",
9659 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9660
9661 XSETCAR (tail, make_number (charset->id));
9662 if (max_charset_id < charset->id)
9663 max_charset_id = charset->id;
9664 }
9665 }
9666 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9667
9668 safe_charsets = make_uninit_string (max_charset_id + 1);
9669 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9670 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9671 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9672 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9673
9674 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9675
9676 val = args[coding_arg_decode_translation_table];
9677 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9678 CHECK_SYMBOL (val);
9679 CODING_ATTR_DECODE_TBL (attrs) = val;
9680
9681 val = args[coding_arg_encode_translation_table];
9682 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9683 CHECK_SYMBOL (val);
9684 CODING_ATTR_ENCODE_TBL (attrs) = val;
9685
9686 val = args[coding_arg_post_read_conversion];
9687 CHECK_SYMBOL (val);
9688 CODING_ATTR_POST_READ (attrs) = val;
9689
9690 val = args[coding_arg_pre_write_conversion];
9691 CHECK_SYMBOL (val);
9692 CODING_ATTR_PRE_WRITE (attrs) = val;
9693
9694 val = args[coding_arg_default_char];
9695 if (NILP (val))
9696 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9697 else
9698 {
9699 CHECK_CHARACTER (val);
9700 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9701 }
9702
9703 val = args[coding_arg_for_unibyte];
9704 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9705
9706 val = args[coding_arg_plist];
9707 CHECK_LIST (val);
9708 CODING_ATTR_PLIST (attrs) = val;
9709
9710 if (EQ (coding_type, Qcharset))
9711 {
9712 /* Generate a lisp vector of 256 elements. Each element is nil,
9713 integer, or a list of charset IDs.
9714
9715 If Nth element is nil, the byte code N is invalid in this
9716 coding system.
9717
9718 If Nth element is a number NUM, N is the first byte of a
9719 charset whose ID is NUM.
9720
9721 If Nth element is a list of charset IDs, N is the first byte
9722 of one of them. The list is sorted by dimensions of the
9723 charsets. A charset of smaller dimension comes firtst. */
9724 val = Fmake_vector (make_number (256), Qnil);
9725
9726 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9727 {
9728 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9729 int dim = CHARSET_DIMENSION (charset);
9730 int idx = (dim - 1) * 4;
9731
9732 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9733 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9734
9735 for (i = charset->code_space[idx];
9736 i <= charset->code_space[idx + 1]; i++)
9737 {
9738 Lisp_Object tmp, tmp2;
9739 int dim2;
9740
9741 tmp = AREF (val, i);
9742 if (NILP (tmp))
9743 tmp = XCAR (tail);
9744 else if (NUMBERP (tmp))
9745 {
9746 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9747 if (dim < dim2)
9748 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9749 else
9750 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9751 }
9752 else
9753 {
9754 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9755 {
9756 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9757 if (dim < dim2)
9758 break;
9759 }
9760 if (NILP (tmp2))
9761 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9762 else
9763 {
9764 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9765 XSETCAR (tmp2, XCAR (tail));
9766 }
9767 }
9768 ASET (val, i, tmp);
9769 }
9770 }
9771 ASET (attrs, coding_attr_charset_valids, val);
9772 category = coding_category_charset;
9773 }
9774 else if (EQ (coding_type, Qccl))
9775 {
9776 Lisp_Object valids;
9777
9778 if (nargs < coding_arg_ccl_max)
9779 goto short_args;
9780
9781 val = args[coding_arg_ccl_decoder];
9782 CHECK_CCL_PROGRAM (val);
9783 if (VECTORP (val))
9784 val = Fcopy_sequence (val);
9785 ASET (attrs, coding_attr_ccl_decoder, val);
9786
9787 val = args[coding_arg_ccl_encoder];
9788 CHECK_CCL_PROGRAM (val);
9789 if (VECTORP (val))
9790 val = Fcopy_sequence (val);
9791 ASET (attrs, coding_attr_ccl_encoder, val);
9792
9793 val = args[coding_arg_ccl_valids];
9794 valids = Fmake_string (make_number (256), make_number (0));
9795 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9796 {
9797 int from, to;
9798
9799 val = Fcar (tail);
9800 if (INTEGERP (val))
9801 {
9802 from = to = XINT (val);
9803 if (from < 0 || from > 255)
9804 args_out_of_range_3 (val, make_number (0), make_number (255));
9805 }
9806 else
9807 {
9808 CHECK_CONS (val);
9809 CHECK_NATNUM_CAR (val);
9810 CHECK_NATNUM_CDR (val);
9811 from = XINT (XCAR (val));
9812 if (from > 255)
9813 args_out_of_range_3 (XCAR (val),
9814 make_number (0), make_number (255));
9815 to = XINT (XCDR (val));
9816 if (to < from || to > 255)
9817 args_out_of_range_3 (XCDR (val),
9818 XCAR (val), make_number (255));
9819 }
9820 for (i = from; i <= to; i++)
9821 SSET (valids, i, 1);
9822 }
9823 ASET (attrs, coding_attr_ccl_valids, valids);
9824
9825 category = coding_category_ccl;
9826 }
9827 else if (EQ (coding_type, Qutf_16))
9828 {
9829 Lisp_Object bom, endian;
9830
9831 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9832
9833 if (nargs < coding_arg_utf16_max)
9834 goto short_args;
9835
9836 bom = args[coding_arg_utf16_bom];
9837 if (! NILP (bom) && ! EQ (bom, Qt))
9838 {
9839 CHECK_CONS (bom);
9840 val = XCAR (bom);
9841 CHECK_CODING_SYSTEM (val);
9842 val = XCDR (bom);
9843 CHECK_CODING_SYSTEM (val);
9844 }
9845 ASET (attrs, coding_attr_utf_bom, bom);
9846
9847 endian = args[coding_arg_utf16_endian];
9848 CHECK_SYMBOL (endian);
9849 if (NILP (endian))
9850 endian = Qbig;
9851 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9852 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9853 ASET (attrs, coding_attr_utf_16_endian, endian);
9854
9855 category = (CONSP (bom)
9856 ? coding_category_utf_16_auto
9857 : NILP (bom)
9858 ? (EQ (endian, Qbig)
9859 ? coding_category_utf_16_be_nosig
9860 : coding_category_utf_16_le_nosig)
9861 : (EQ (endian, Qbig)
9862 ? coding_category_utf_16_be
9863 : coding_category_utf_16_le));
9864 }
9865 else if (EQ (coding_type, Qiso_2022))
9866 {
9867 Lisp_Object initial, reg_usage, request, flags;
9868 int i;
9869
9870 if (nargs < coding_arg_iso2022_max)
9871 goto short_args;
9872
9873 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9874 CHECK_VECTOR (initial);
9875 for (i = 0; i < 4; i++)
9876 {
9877 val = Faref (initial, make_number (i));
9878 if (! NILP (val))
9879 {
9880 struct charset *charset;
9881
9882 CHECK_CHARSET_GET_CHARSET (val, charset);
9883 ASET (initial, i, make_number (CHARSET_ID (charset)));
9884 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9885 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9886 }
9887 else
9888 ASET (initial, i, make_number (-1));
9889 }
9890
9891 reg_usage = args[coding_arg_iso2022_reg_usage];
9892 CHECK_CONS (reg_usage);
9893 CHECK_NUMBER_CAR (reg_usage);
9894 CHECK_NUMBER_CDR (reg_usage);
9895
9896 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9897 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9898 {
9899 int id;
9900 Lisp_Object tmp;
9901
9902 val = Fcar (tail);
9903 CHECK_CONS (val);
9904 tmp = XCAR (val);
9905 CHECK_CHARSET_GET_ID (tmp, id);
9906 CHECK_NATNUM_CDR (val);
9907 if (XINT (XCDR (val)) >= 4)
9908 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9909 XSETCAR (val, make_number (id));
9910 }
9911
9912 flags = args[coding_arg_iso2022_flags];
9913 CHECK_NATNUM (flags);
9914 i = XINT (flags);
9915 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9916 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9917
9918 ASET (attrs, coding_attr_iso_initial, initial);
9919 ASET (attrs, coding_attr_iso_usage, reg_usage);
9920 ASET (attrs, coding_attr_iso_request, request);
9921 ASET (attrs, coding_attr_iso_flags, flags);
9922 setup_iso_safe_charsets (attrs);
9923
9924 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9925 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9926 | CODING_ISO_FLAG_SINGLE_SHIFT))
9927 ? coding_category_iso_7_else
9928 : EQ (args[coding_arg_charset_list], Qiso_2022)
9929 ? coding_category_iso_7
9930 : coding_category_iso_7_tight);
9931 else
9932 {
9933 int id = XINT (AREF (initial, 1));
9934
9935 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9936 || EQ (args[coding_arg_charset_list], Qiso_2022)
9937 || id < 0)
9938 ? coding_category_iso_8_else
9939 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9940 ? coding_category_iso_8_1
9941 : coding_category_iso_8_2);
9942 }
9943 if (category != coding_category_iso_8_1
9944 && category != coding_category_iso_8_2)
9945 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9946 }
9947 else if (EQ (coding_type, Qemacs_mule))
9948 {
9949 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9950 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9951 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9952 category = coding_category_emacs_mule;
9953 }
9954 else if (EQ (coding_type, Qshift_jis))
9955 {
9956
9957 struct charset *charset;
9958
9959 if (XINT (Flength (charset_list)) != 3
9960 && XINT (Flength (charset_list)) != 4)
9961 error ("There should be three or four charsets");
9962
9963 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9964 if (CHARSET_DIMENSION (charset) != 1)
9965 error ("Dimension of charset %s is not one",
9966 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9967 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9968 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9969
9970 charset_list = XCDR (charset_list);
9971 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9972 if (CHARSET_DIMENSION (charset) != 1)
9973 error ("Dimension of charset %s is not one",
9974 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9975
9976 charset_list = XCDR (charset_list);
9977 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9978 if (CHARSET_DIMENSION (charset) != 2)
9979 error ("Dimension of charset %s is not two",
9980 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9981
9982 charset_list = XCDR (charset_list);
9983 if (! NILP (charset_list))
9984 {
9985 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9986 if (CHARSET_DIMENSION (charset) != 2)
9987 error ("Dimension of charset %s is not two",
9988 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9989 }
9990
9991 category = coding_category_sjis;
9992 Vsjis_coding_system = name;
9993 }
9994 else if (EQ (coding_type, Qbig5))
9995 {
9996 struct charset *charset;
9997
9998 if (XINT (Flength (charset_list)) != 2)
9999 error ("There should be just two charsets");
10000
10001 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10002 if (CHARSET_DIMENSION (charset) != 1)
10003 error ("Dimension of charset %s is not one",
10004 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10005 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10006 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10007
10008 charset_list = XCDR (charset_list);
10009 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10010 if (CHARSET_DIMENSION (charset) != 2)
10011 error ("Dimension of charset %s is not two",
10012 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10013
10014 category = coding_category_big5;
10015 Vbig5_coding_system = name;
10016 }
10017 else if (EQ (coding_type, Qraw_text))
10018 {
10019 category = coding_category_raw_text;
10020 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10021 }
10022 else if (EQ (coding_type, Qutf_8))
10023 {
10024 Lisp_Object bom;
10025
10026 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10027
10028 if (nargs < coding_arg_utf8_max)
10029 goto short_args;
10030
10031 bom = args[coding_arg_utf8_bom];
10032 if (! NILP (bom) && ! EQ (bom, Qt))
10033 {
10034 CHECK_CONS (bom);
10035 val = XCAR (bom);
10036 CHECK_CODING_SYSTEM (val);
10037 val = XCDR (bom);
10038 CHECK_CODING_SYSTEM (val);
10039 }
10040 ASET (attrs, coding_attr_utf_bom, bom);
10041
10042 category = (CONSP (bom) ? coding_category_utf_8_auto
10043 : NILP (bom) ? coding_category_utf_8_nosig
10044 : coding_category_utf_8_sig);
10045 }
10046 else if (EQ (coding_type, Qundecided))
10047 category = coding_category_undecided;
10048 else
10049 error ("Invalid coding system type: %s",
10050 SDATA (SYMBOL_NAME (coding_type)));
10051
10052 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10053 CODING_ATTR_PLIST (attrs)
10054 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10055 CODING_ATTR_PLIST (attrs)));
10056 CODING_ATTR_PLIST (attrs)
10057 = Fcons (QCascii_compatible_p,
10058 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10059 CODING_ATTR_PLIST (attrs)));
10060
10061 eol_type = args[coding_arg_eol_type];
10062 if (! NILP (eol_type)
10063 && ! EQ (eol_type, Qunix)
10064 && ! EQ (eol_type, Qdos)
10065 && ! EQ (eol_type, Qmac))
10066 error ("Invalid eol-type");
10067
10068 aliases = Fcons (name, Qnil);
10069
10070 if (NILP (eol_type))
10071 {
10072 eol_type = make_subsidiaries (name);
10073 for (i = 0; i < 3; i++)
10074 {
10075 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10076
10077 this_name = AREF (eol_type, i);
10078 this_aliases = Fcons (this_name, Qnil);
10079 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10080 this_spec = Fmake_vector (make_number (3), attrs);
10081 ASET (this_spec, 1, this_aliases);
10082 ASET (this_spec, 2, this_eol_type);
10083 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10084 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10085 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10086 if (NILP (val))
10087 Vcoding_system_alist
10088 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10089 Vcoding_system_alist);
10090 }
10091 }
10092
10093 spec_vec = Fmake_vector (make_number (3), attrs);
10094 ASET (spec_vec, 1, aliases);
10095 ASET (spec_vec, 2, eol_type);
10096
10097 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10098 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10099 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10100 if (NILP (val))
10101 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10102 Vcoding_system_alist);
10103
10104 {
10105 int id = coding_categories[category].id;
10106
10107 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10108 setup_coding_system (name, &coding_categories[category]);
10109 }
10110
10111 return Qnil;
10112
10113 short_args:
10114 return Fsignal (Qwrong_number_of_arguments,
10115 Fcons (intern ("define-coding-system-internal"),
10116 make_number (nargs)));
10117 }
10118
10119
10120 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10121 3, 3, 0,
10122 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10123 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10124 {
10125 Lisp_Object spec, attrs;
10126
10127 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10128 attrs = AREF (spec, 0);
10129 if (EQ (prop, QCmnemonic))
10130 {
10131 if (! STRINGP (val))
10132 CHECK_CHARACTER (val);
10133 CODING_ATTR_MNEMONIC (attrs) = val;
10134 }
10135 else if (EQ (prop, QCdefault_char))
10136 {
10137 if (NILP (val))
10138 val = make_number (' ');
10139 else
10140 CHECK_CHARACTER (val);
10141 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10142 }
10143 else if (EQ (prop, QCdecode_translation_table))
10144 {
10145 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10146 CHECK_SYMBOL (val);
10147 CODING_ATTR_DECODE_TBL (attrs) = val;
10148 }
10149 else if (EQ (prop, QCencode_translation_table))
10150 {
10151 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10152 CHECK_SYMBOL (val);
10153 CODING_ATTR_ENCODE_TBL (attrs) = val;
10154 }
10155 else if (EQ (prop, QCpost_read_conversion))
10156 {
10157 CHECK_SYMBOL (val);
10158 CODING_ATTR_POST_READ (attrs) = val;
10159 }
10160 else if (EQ (prop, QCpre_write_conversion))
10161 {
10162 CHECK_SYMBOL (val);
10163 CODING_ATTR_PRE_WRITE (attrs) = val;
10164 }
10165 else if (EQ (prop, QCascii_compatible_p))
10166 {
10167 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10168 }
10169
10170 CODING_ATTR_PLIST (attrs)
10171 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10172 return val;
10173 }
10174
10175
10176 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10177 Sdefine_coding_system_alias, 2, 2, 0,
10178 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10179 (Lisp_Object alias, Lisp_Object coding_system)
10180 {
10181 Lisp_Object spec, aliases, eol_type, val;
10182
10183 CHECK_SYMBOL (alias);
10184 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10185 aliases = AREF (spec, 1);
10186 /* ALIASES should be a list of length more than zero, and the first
10187 element is a base coding system. Append ALIAS at the tail of the
10188 list. */
10189 while (!NILP (XCDR (aliases)))
10190 aliases = XCDR (aliases);
10191 XSETCDR (aliases, Fcons (alias, Qnil));
10192
10193 eol_type = AREF (spec, 2);
10194 if (VECTORP (eol_type))
10195 {
10196 Lisp_Object subsidiaries;
10197 int i;
10198
10199 subsidiaries = make_subsidiaries (alias);
10200 for (i = 0; i < 3; i++)
10201 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10202 AREF (eol_type, i));
10203 }
10204
10205 Fputhash (alias, spec, Vcoding_system_hash_table);
10206 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10207 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10208 if (NILP (val))
10209 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10210 Vcoding_system_alist);
10211
10212 return Qnil;
10213 }
10214
10215 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10216 1, 1, 0,
10217 doc: /* Return the base of CODING-SYSTEM.
10218 Any alias or subsidiary coding system is not a base coding system. */)
10219 (Lisp_Object coding_system)
10220 {
10221 Lisp_Object spec, attrs;
10222
10223 if (NILP (coding_system))
10224 return (Qno_conversion);
10225 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10226 attrs = AREF (spec, 0);
10227 return CODING_ATTR_BASE_NAME (attrs);
10228 }
10229
10230 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10231 1, 1, 0,
10232 doc: "Return the property list of CODING-SYSTEM.")
10233 (Lisp_Object coding_system)
10234 {
10235 Lisp_Object spec, attrs;
10236
10237 if (NILP (coding_system))
10238 coding_system = Qno_conversion;
10239 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10240 attrs = AREF (spec, 0);
10241 return CODING_ATTR_PLIST (attrs);
10242 }
10243
10244
10245 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10246 1, 1, 0,
10247 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10248 (Lisp_Object coding_system)
10249 {
10250 Lisp_Object spec;
10251
10252 if (NILP (coding_system))
10253 coding_system = Qno_conversion;
10254 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10255 return AREF (spec, 1);
10256 }
10257
10258 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10259 Scoding_system_eol_type, 1, 1, 0,
10260 doc: /* Return eol-type of CODING-SYSTEM.
10261 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10262
10263 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10264 and CR respectively.
10265
10266 A vector value indicates that a format of end-of-line should be
10267 detected automatically. Nth element of the vector is the subsidiary
10268 coding system whose eol-type is N. */)
10269 (Lisp_Object coding_system)
10270 {
10271 Lisp_Object spec, eol_type;
10272 int n;
10273
10274 if (NILP (coding_system))
10275 coding_system = Qno_conversion;
10276 if (! CODING_SYSTEM_P (coding_system))
10277 return Qnil;
10278 spec = CODING_SYSTEM_SPEC (coding_system);
10279 eol_type = AREF (spec, 2);
10280 if (VECTORP (eol_type))
10281 return Fcopy_sequence (eol_type);
10282 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10283 return make_number (n);
10284 }
10285
10286 #endif /* emacs */
10287
10288 \f
10289 /*** 9. Post-amble ***/
10290
10291 void
10292 init_coding_once (void)
10293 {
10294 int i;
10295
10296 for (i = 0; i < coding_category_max; i++)
10297 {
10298 coding_categories[i].id = -1;
10299 coding_priorities[i] = i;
10300 }
10301
10302 /* ISO2022 specific initialize routine. */
10303 for (i = 0; i < 0x20; i++)
10304 iso_code_class[i] = ISO_control_0;
10305 for (i = 0x21; i < 0x7F; i++)
10306 iso_code_class[i] = ISO_graphic_plane_0;
10307 for (i = 0x80; i < 0xA0; i++)
10308 iso_code_class[i] = ISO_control_1;
10309 for (i = 0xA1; i < 0xFF; i++)
10310 iso_code_class[i] = ISO_graphic_plane_1;
10311 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10312 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10313 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10314 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10315 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10316 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10317 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10318 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10319 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10320
10321 for (i = 0; i < 256; i++)
10322 {
10323 emacs_mule_bytes[i] = 1;
10324 }
10325 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10326 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10327 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10328 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10329 }
10330
10331 #ifdef emacs
10332
10333 void
10334 syms_of_coding (void)
10335 {
10336 staticpro (&Vcoding_system_hash_table);
10337 {
10338 Lisp_Object args[2];
10339 args[0] = QCtest;
10340 args[1] = Qeq;
10341 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10342 }
10343
10344 staticpro (&Vsjis_coding_system);
10345 Vsjis_coding_system = Qnil;
10346
10347 staticpro (&Vbig5_coding_system);
10348 Vbig5_coding_system = Qnil;
10349
10350 staticpro (&Vcode_conversion_reused_workbuf);
10351 Vcode_conversion_reused_workbuf = Qnil;
10352
10353 staticpro (&Vcode_conversion_workbuf_name);
10354 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10355
10356 reused_workbuf_in_use = 0;
10357
10358 DEFSYM (Qcharset, "charset");
10359 DEFSYM (Qtarget_idx, "target-idx");
10360 DEFSYM (Qcoding_system_history, "coding-system-history");
10361 Fset (Qcoding_system_history, Qnil);
10362
10363 /* Target FILENAME is the first argument. */
10364 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10365 /* Target FILENAME is the third argument. */
10366 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10367
10368 DEFSYM (Qcall_process, "call-process");
10369 /* Target PROGRAM is the first argument. */
10370 Fput (Qcall_process, Qtarget_idx, make_number (0));
10371
10372 DEFSYM (Qcall_process_region, "call-process-region");
10373 /* Target PROGRAM is the third argument. */
10374 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10375
10376 DEFSYM (Qstart_process, "start-process");
10377 /* Target PROGRAM is the third argument. */
10378 Fput (Qstart_process, Qtarget_idx, make_number (2));
10379
10380 DEFSYM (Qopen_network_stream, "open-network-stream");
10381 /* Target SERVICE is the fourth argument. */
10382 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10383
10384 DEFSYM (Qcoding_system, "coding-system");
10385 DEFSYM (Qcoding_aliases, "coding-aliases");
10386
10387 DEFSYM (Qeol_type, "eol-type");
10388 DEFSYM (Qunix, "unix");
10389 DEFSYM (Qdos, "dos");
10390
10391 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10392 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10393 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10394 DEFSYM (Qdefault_char, "default-char");
10395 DEFSYM (Qundecided, "undecided");
10396 DEFSYM (Qno_conversion, "no-conversion");
10397 DEFSYM (Qraw_text, "raw-text");
10398
10399 DEFSYM (Qiso_2022, "iso-2022");
10400
10401 DEFSYM (Qutf_8, "utf-8");
10402 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10403
10404 DEFSYM (Qutf_16, "utf-16");
10405 DEFSYM (Qbig, "big");
10406 DEFSYM (Qlittle, "little");
10407
10408 DEFSYM (Qshift_jis, "shift-jis");
10409 DEFSYM (Qbig5, "big5");
10410
10411 DEFSYM (Qcoding_system_p, "coding-system-p");
10412
10413 DEFSYM (Qcoding_system_error, "coding-system-error");
10414 Fput (Qcoding_system_error, Qerror_conditions,
10415 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10416 Fput (Qcoding_system_error, Qerror_message,
10417 make_pure_c_string ("Invalid coding system"));
10418
10419 /* Intern this now in case it isn't already done.
10420 Setting this variable twice is harmless.
10421 But don't staticpro it here--that is done in alloc.c. */
10422 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10423
10424 DEFSYM (Qtranslation_table, "translation-table");
10425 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10426 DEFSYM (Qtranslation_table_id, "translation-table-id");
10427 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10428 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10429
10430 DEFSYM (Qvalid_codes, "valid-codes");
10431
10432 DEFSYM (Qemacs_mule, "emacs-mule");
10433
10434 DEFSYM (QCcategory, ":category");
10435 DEFSYM (QCmnemonic, ":mnemonic");
10436 DEFSYM (QCdefault_char, ":default-char");
10437 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10438 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10439 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10440 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10441 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10442
10443 Vcoding_category_table
10444 = Fmake_vector (make_number (coding_category_max), Qnil);
10445 staticpro (&Vcoding_category_table);
10446 /* Followings are target of code detection. */
10447 ASET (Vcoding_category_table, coding_category_iso_7,
10448 intern_c_string ("coding-category-iso-7"));
10449 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10450 intern_c_string ("coding-category-iso-7-tight"));
10451 ASET (Vcoding_category_table, coding_category_iso_8_1,
10452 intern_c_string ("coding-category-iso-8-1"));
10453 ASET (Vcoding_category_table, coding_category_iso_8_2,
10454 intern_c_string ("coding-category-iso-8-2"));
10455 ASET (Vcoding_category_table, coding_category_iso_7_else,
10456 intern_c_string ("coding-category-iso-7-else"));
10457 ASET (Vcoding_category_table, coding_category_iso_8_else,
10458 intern_c_string ("coding-category-iso-8-else"));
10459 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10460 intern_c_string ("coding-category-utf-8-auto"));
10461 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10462 intern_c_string ("coding-category-utf-8"));
10463 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10464 intern_c_string ("coding-category-utf-8-sig"));
10465 ASET (Vcoding_category_table, coding_category_utf_16_be,
10466 intern_c_string ("coding-category-utf-16-be"));
10467 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10468 intern_c_string ("coding-category-utf-16-auto"));
10469 ASET (Vcoding_category_table, coding_category_utf_16_le,
10470 intern_c_string ("coding-category-utf-16-le"));
10471 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10472 intern_c_string ("coding-category-utf-16-be-nosig"));
10473 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10474 intern_c_string ("coding-category-utf-16-le-nosig"));
10475 ASET (Vcoding_category_table, coding_category_charset,
10476 intern_c_string ("coding-category-charset"));
10477 ASET (Vcoding_category_table, coding_category_sjis,
10478 intern_c_string ("coding-category-sjis"));
10479 ASET (Vcoding_category_table, coding_category_big5,
10480 intern_c_string ("coding-category-big5"));
10481 ASET (Vcoding_category_table, coding_category_ccl,
10482 intern_c_string ("coding-category-ccl"));
10483 ASET (Vcoding_category_table, coding_category_emacs_mule,
10484 intern_c_string ("coding-category-emacs-mule"));
10485 /* Followings are NOT target of code detection. */
10486 ASET (Vcoding_category_table, coding_category_raw_text,
10487 intern_c_string ("coding-category-raw-text"));
10488 ASET (Vcoding_category_table, coding_category_undecided,
10489 intern_c_string ("coding-category-undecided"));
10490
10491 DEFSYM (Qinsufficient_source, "insufficient-source");
10492 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10493 DEFSYM (Qinvalid_source, "invalid-source");
10494 DEFSYM (Qinterrupted, "interrupted");
10495 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10496 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10497
10498 defsubr (&Scoding_system_p);
10499 defsubr (&Sread_coding_system);
10500 defsubr (&Sread_non_nil_coding_system);
10501 defsubr (&Scheck_coding_system);
10502 defsubr (&Sdetect_coding_region);
10503 defsubr (&Sdetect_coding_string);
10504 defsubr (&Sfind_coding_systems_region_internal);
10505 defsubr (&Sunencodable_char_position);
10506 defsubr (&Scheck_coding_systems_region);
10507 defsubr (&Sdecode_coding_region);
10508 defsubr (&Sencode_coding_region);
10509 defsubr (&Sdecode_coding_string);
10510 defsubr (&Sencode_coding_string);
10511 defsubr (&Sdecode_sjis_char);
10512 defsubr (&Sencode_sjis_char);
10513 defsubr (&Sdecode_big5_char);
10514 defsubr (&Sencode_big5_char);
10515 defsubr (&Sset_terminal_coding_system_internal);
10516 defsubr (&Sset_safe_terminal_coding_system_internal);
10517 defsubr (&Sterminal_coding_system);
10518 defsubr (&Sset_keyboard_coding_system_internal);
10519 defsubr (&Skeyboard_coding_system);
10520 defsubr (&Sfind_operation_coding_system);
10521 defsubr (&Sset_coding_system_priority);
10522 defsubr (&Sdefine_coding_system_internal);
10523 defsubr (&Sdefine_coding_system_alias);
10524 defsubr (&Scoding_system_put);
10525 defsubr (&Scoding_system_base);
10526 defsubr (&Scoding_system_plist);
10527 defsubr (&Scoding_system_aliases);
10528 defsubr (&Scoding_system_eol_type);
10529 defsubr (&Scoding_system_priority_list);
10530
10531 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
10532 doc: /* List of coding systems.
10533
10534 Do not alter the value of this variable manually. This variable should be
10535 updated by the functions `define-coding-system' and
10536 `define-coding-system-alias'. */);
10537 Vcoding_system_list = Qnil;
10538
10539 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
10540 doc: /* Alist of coding system names.
10541 Each element is one element list of coding system name.
10542 This variable is given to `completing-read' as COLLECTION argument.
10543
10544 Do not alter the value of this variable manually. This variable should be
10545 updated by the functions `make-coding-system' and
10546 `define-coding-system-alias'. */);
10547 Vcoding_system_alist = Qnil;
10548
10549 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
10550 doc: /* List of coding-categories (symbols) ordered by priority.
10551
10552 On detecting a coding system, Emacs tries code detection algorithms
10553 associated with each coding-category one by one in this order. When
10554 one algorithm agrees with a byte sequence of source text, the coding
10555 system bound to the corresponding coding-category is selected.
10556
10557 Don't modify this variable directly, but use `set-coding-priority'. */);
10558 {
10559 int i;
10560
10561 Vcoding_category_list = Qnil;
10562 for (i = coding_category_max - 1; i >= 0; i--)
10563 Vcoding_category_list
10564 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10565 Vcoding_category_list);
10566 }
10567
10568 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
10569 doc: /* Specify the coding system for read operations.
10570 It is useful to bind this variable with `let', but do not set it globally.
10571 If the value is a coding system, it is used for decoding on read operation.
10572 If not, an appropriate element is used from one of the coding system alists.
10573 There are three such tables: `file-coding-system-alist',
10574 `process-coding-system-alist', and `network-coding-system-alist'. */);
10575 Vcoding_system_for_read = Qnil;
10576
10577 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
10578 doc: /* Specify the coding system for write operations.
10579 Programs bind this variable with `let', but you should not set it globally.
10580 If the value is a coding system, it is used for encoding of output,
10581 when writing it to a file and when sending it to a file or subprocess.
10582
10583 If this does not specify a coding system, an appropriate element
10584 is used from one of the coding system alists.
10585 There are three such tables: `file-coding-system-alist',
10586 `process-coding-system-alist', and `network-coding-system-alist'.
10587 For output to files, if the above procedure does not specify a coding system,
10588 the value of `buffer-file-coding-system' is used. */);
10589 Vcoding_system_for_write = Qnil;
10590
10591 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
10592 doc: /*
10593 Coding system used in the latest file or process I/O. */);
10594 Vlast_coding_system_used = Qnil;
10595
10596 DEFVAR_LISP ("last-code-conversion-error", &Vlast_code_conversion_error,
10597 doc: /*
10598 Error status of the last code conversion.
10599
10600 When an error was detected in the last code conversion, this variable
10601 is set to one of the following symbols.
10602 `insufficient-source'
10603 `inconsistent-eol'
10604 `invalid-source'
10605 `interrupted'
10606 `insufficient-memory'
10607 When no error was detected, the value doesn't change. So, to check
10608 the error status of a code conversion by this variable, you must
10609 explicitly set this variable to nil before performing code
10610 conversion. */);
10611 Vlast_code_conversion_error = Qnil;
10612
10613 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
10614 doc: /*
10615 *Non-nil means always inhibit code conversion of end-of-line format.
10616 See info node `Coding Systems' and info node `Text and Binary' concerning
10617 such conversion. */);
10618 inhibit_eol_conversion = 0;
10619
10620 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
10621 doc: /*
10622 Non-nil means process buffer inherits coding system of process output.
10623 Bind it to t if the process output is to be treated as if it were a file
10624 read from some filesystem. */);
10625 inherit_process_coding_system = 0;
10626
10627 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
10628 doc: /*
10629 Alist to decide a coding system to use for a file I/O operation.
10630 The format is ((PATTERN . VAL) ...),
10631 where PATTERN is a regular expression matching a file name,
10632 VAL is a coding system, a cons of coding systems, or a function symbol.
10633 If VAL is a coding system, it is used for both decoding and encoding
10634 the file contents.
10635 If VAL is a cons of coding systems, the car part is used for decoding,
10636 and the cdr part is used for encoding.
10637 If VAL is a function symbol, the function must return a coding system
10638 or a cons of coding systems which are used as above. The function is
10639 called with an argument that is a list of the arguments with which
10640 `find-operation-coding-system' was called. If the function can't decide
10641 a coding system, it can return `undecided' so that the normal
10642 code-detection is performed.
10643
10644 See also the function `find-operation-coding-system'
10645 and the variable `auto-coding-alist'. */);
10646 Vfile_coding_system_alist = Qnil;
10647
10648 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
10649 doc: /*
10650 Alist to decide a coding system to use for a process I/O operation.
10651 The format is ((PATTERN . VAL) ...),
10652 where PATTERN is a regular expression matching a program name,
10653 VAL is a coding system, a cons of coding systems, or a function symbol.
10654 If VAL is a coding system, it is used for both decoding what received
10655 from the program and encoding what sent to the program.
10656 If VAL is a cons of coding systems, the car part is used for decoding,
10657 and the cdr part is used for encoding.
10658 If VAL is a function symbol, the function must return a coding system
10659 or a cons of coding systems which are used as above.
10660
10661 See also the function `find-operation-coding-system'. */);
10662 Vprocess_coding_system_alist = Qnil;
10663
10664 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
10665 doc: /*
10666 Alist to decide a coding system to use for a network I/O operation.
10667 The format is ((PATTERN . VAL) ...),
10668 where PATTERN is a regular expression matching a network service name
10669 or is a port number to connect to,
10670 VAL is a coding system, a cons of coding systems, or a function symbol.
10671 If VAL is a coding system, it is used for both decoding what received
10672 from the network stream and encoding what sent to the network stream.
10673 If VAL is a cons of coding systems, the car part is used for decoding,
10674 and the cdr part is used for encoding.
10675 If VAL is a function symbol, the function must return a coding system
10676 or a cons of coding systems which are used as above.
10677
10678 See also the function `find-operation-coding-system'. */);
10679 Vnetwork_coding_system_alist = Qnil;
10680
10681 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
10682 doc: /* Coding system to use with system messages.
10683 Also used for decoding keyboard input on X Window system. */);
10684 Vlocale_coding_system = Qnil;
10685
10686 /* The eol mnemonics are reset in startup.el system-dependently. */
10687 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
10688 doc: /*
10689 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10690 eol_mnemonic_unix = make_pure_c_string (":");
10691
10692 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
10693 doc: /*
10694 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10695 eol_mnemonic_dos = make_pure_c_string ("\\");
10696
10697 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
10698 doc: /*
10699 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10700 eol_mnemonic_mac = make_pure_c_string ("/");
10701
10702 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
10703 doc: /*
10704 *String displayed in mode line when end-of-line format is not yet determined. */);
10705 eol_mnemonic_undecided = make_pure_c_string (":");
10706
10707 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
10708 doc: /*
10709 *Non-nil enables character translation while encoding and decoding. */);
10710 Venable_character_translation = Qt;
10711
10712 DEFVAR_LISP ("standard-translation-table-for-decode",
10713 &Vstandard_translation_table_for_decode,
10714 doc: /* Table for translating characters while decoding. */);
10715 Vstandard_translation_table_for_decode = Qnil;
10716
10717 DEFVAR_LISP ("standard-translation-table-for-encode",
10718 &Vstandard_translation_table_for_encode,
10719 doc: /* Table for translating characters while encoding. */);
10720 Vstandard_translation_table_for_encode = Qnil;
10721
10722 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_table,
10723 doc: /* Alist of charsets vs revision numbers.
10724 While encoding, if a charset (car part of an element) is found,
10725 designate it with the escape sequence identifying revision (cdr part
10726 of the element). */);
10727 Vcharset_revision_table = Qnil;
10728
10729 DEFVAR_LISP ("default-process-coding-system",
10730 &Vdefault_process_coding_system,
10731 doc: /* Cons of coding systems used for process I/O by default.
10732 The car part is used for decoding a process output,
10733 the cdr part is used for encoding a text to be sent to a process. */);
10734 Vdefault_process_coding_system = Qnil;
10735
10736 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
10737 doc: /*
10738 Table of extra Latin codes in the range 128..159 (inclusive).
10739 This is a vector of length 256.
10740 If Nth element is non-nil, the existence of code N in a file
10741 \(or output of subprocess) doesn't prevent it to be detected as
10742 a coding system of ISO 2022 variant which has a flag
10743 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10744 or reading output of a subprocess.
10745 Only 128th through 159th elements have a meaning. */);
10746 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10747
10748 DEFVAR_LISP ("select-safe-coding-system-function",
10749 &Vselect_safe_coding_system_function,
10750 doc: /*
10751 Function to call to select safe coding system for encoding a text.
10752
10753 If set, this function is called to force a user to select a proper
10754 coding system which can encode the text in the case that a default
10755 coding system used in each operation can't encode the text. The
10756 function should take care that the buffer is not modified while
10757 the coding system is being selected.
10758
10759 The default value is `select-safe-coding-system' (which see). */);
10760 Vselect_safe_coding_system_function = Qnil;
10761
10762 DEFVAR_BOOL ("coding-system-require-warning",
10763 &coding_system_require_warning,
10764 doc: /* Internal use only.
10765 If non-nil, on writing a file, `select-safe-coding-system-function' is
10766 called even if `coding-system-for-write' is non-nil. The command
10767 `universal-coding-system-argument' binds this variable to t temporarily. */);
10768 coding_system_require_warning = 0;
10769
10770
10771 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10772 &inhibit_iso_escape_detection,
10773 doc: /*
10774 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10775
10776 When Emacs reads text, it tries to detect how the text is encoded.
10777 This code detection is sensitive to escape sequences. If Emacs sees
10778 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10779 of the ISO2022 encodings, and decodes text by the corresponding coding
10780 system (e.g. `iso-2022-7bit').
10781
10782 However, there may be a case that you want to read escape sequences in
10783 a file as is. In such a case, you can set this variable to non-nil.
10784 Then the code detection will ignore any escape sequences, and no text is
10785 detected as encoded in some ISO-2022 encoding. The result is that all
10786 escape sequences become visible in a buffer.
10787
10788 The default value is nil, and it is strongly recommended not to change
10789 it. That is because many Emacs Lisp source files that contain
10790 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10791 in Emacs's distribution, and they won't be decoded correctly on
10792 reading if you suppress escape sequence detection.
10793
10794 The other way to read escape sequences in a file without decoding is
10795 to explicitly specify some coding system that doesn't use ISO-2022
10796 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10797 inhibit_iso_escape_detection = 0;
10798
10799 DEFVAR_BOOL ("inhibit-null-byte-detection",
10800 &inhibit_null_byte_detection,
10801 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10802 By default, Emacs treats it as binary data, and does not attempt to
10803 decode it. The effect is as if you specified `no-conversion' for
10804 reading that text.
10805
10806 Set this to non-nil when a regular text happens to include null bytes.
10807 Examples are Index nodes of Info files and null-byte delimited output
10808 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10809 decode text as usual. */);
10810 inhibit_null_byte_detection = 0;
10811
10812 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
10813 doc: /* Char table for translating self-inserting characters.
10814 This is applied to the result of input methods, not their input.
10815 See also `keyboard-translate-table'.
10816
10817 Use of this variable for character code unification was rendered
10818 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10819 internal character representation. */);
10820 Vtranslation_table_for_input = Qnil;
10821
10822 {
10823 Lisp_Object args[coding_arg_max];
10824 Lisp_Object plist[16];
10825 int i;
10826
10827 for (i = 0; i < coding_arg_max; i++)
10828 args[i] = Qnil;
10829
10830 plist[0] = intern_c_string (":name");
10831 plist[1] = args[coding_arg_name] = Qno_conversion;
10832 plist[2] = intern_c_string (":mnemonic");
10833 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10834 plist[4] = intern_c_string (":coding-type");
10835 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10836 plist[6] = intern_c_string (":ascii-compatible-p");
10837 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10838 plist[8] = intern_c_string (":default-char");
10839 plist[9] = args[coding_arg_default_char] = make_number (0);
10840 plist[10] = intern_c_string (":for-unibyte");
10841 plist[11] = args[coding_arg_for_unibyte] = Qt;
10842 plist[12] = intern_c_string (":docstring");
10843 plist[13] = make_pure_c_string ("Do no conversion.\n\
10844 \n\
10845 When you visit a file with this coding, the file is read into a\n\
10846 unibyte buffer as is, thus each byte of a file is treated as a\n\
10847 character.");
10848 plist[14] = intern_c_string (":eol-type");
10849 plist[15] = args[coding_arg_eol_type] = Qunix;
10850 args[coding_arg_plist] = Flist (16, plist);
10851 Fdefine_coding_system_internal (coding_arg_max, args);
10852
10853 plist[1] = args[coding_arg_name] = Qundecided;
10854 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10855 plist[5] = args[coding_arg_coding_type] = Qundecided;
10856 /* This is already set.
10857 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10858 plist[8] = intern_c_string (":charset-list");
10859 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10860 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10861 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10862 plist[15] = args[coding_arg_eol_type] = Qnil;
10863 args[coding_arg_plist] = Flist (16, plist);
10864 Fdefine_coding_system_internal (coding_arg_max, args);
10865 }
10866
10867 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10868
10869 {
10870 int i;
10871
10872 for (i = 0; i < coding_category_max; i++)
10873 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10874 }
10875 #if defined (DOS_NT)
10876 system_eol_type = Qdos;
10877 #else
10878 system_eol_type = Qunix;
10879 #endif
10880 staticpro (&system_eol_type);
10881 }
10882
10883 char *
10884 emacs_strerror (int error_number)
10885 {
10886 char *str;
10887
10888 synchronize_system_messages_locale ();
10889 str = strerror (error_number);
10890
10891 if (! NILP (Vlocale_coding_system))
10892 {
10893 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10894 Vlocale_coding_system,
10895 0);
10896 str = (char *) SDATA (dec);
10897 }
10898
10899 return str;
10900 }
10901
10902 #endif /* emacs */
10903
10904 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
10905 (do not change this comment) */