* src/eval.c (struct backtrace): Don't cheat with negative numbers, but do
[bpt/emacs.git] / src / bytecode.c
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985-1988, 1993, 2000-2011 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /*
20 hacked on by jwz@lucid.com 17-jun-91
21 o added a compile-time switch to turn on simple sanity checking;
22 o put back the obsolete byte-codes for error-detection;
23 o added a new instruction, unbind_all, which I will use for
24 tail-recursion elimination;
25 o made temp_output_buffer_show be called with the right number
26 of args;
27 o made the new bytecodes be called with args in the right order;
28 o added metering support.
29
30 by Hallvard:
31 o added relative jump instructions;
32 o all conditionals now only do QUIT if they jump.
33 */
34
35 #include <config.h>
36 #include <setjmp.h>
37 #include "lisp.h"
38 #include "buffer.h"
39 #include "character.h"
40 #include "syntax.h"
41 #include "window.h"
42
43 #ifdef CHECK_FRAME_FONT
44 #include "frame.h"
45 #include "xterm.h"
46 #endif
47
48 /*
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
51 *
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
53 */
54 /* #define BYTE_CODE_SAFE */
55 /* #define BYTE_CODE_METER */
56
57 \f
58 #ifdef BYTE_CODE_METER
59
60 Lisp_Object Qbyte_code_meter;
61 #define METER_2(code1, code2) \
62 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
63 ->contents[(code2)])
64
65 #define METER_1(code) METER_2 (0, (code))
66
67 #define METER_CODE(last_code, this_code) \
68 { \
69 if (byte_metering_on) \
70 { \
71 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
72 METER_1 (this_code)++; \
73 if (last_code \
74 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_2 (last_code, this_code)++; \
76 } \
77 }
78
79 #endif /* BYTE_CODE_METER */
80 \f
81
82 Lisp_Object Qbytecode;
83
84 /* Byte codes: */
85
86 #define Bvarref 010
87 #define Bvarset 020
88 #define Bvarbind 030
89 #define Bcall 040
90 #define Bunbind 050
91
92 #define Bnth 070
93 #define Bsymbolp 071
94 #define Bconsp 072
95 #define Bstringp 073
96 #define Blistp 074
97 #define Beq 075
98 #define Bmemq 076
99 #define Bnot 077
100 #define Bcar 0100
101 #define Bcdr 0101
102 #define Bcons 0102
103 #define Blist1 0103
104 #define Blist2 0104
105 #define Blist3 0105
106 #define Blist4 0106
107 #define Blength 0107
108 #define Baref 0110
109 #define Baset 0111
110 #define Bsymbol_value 0112
111 #define Bsymbol_function 0113
112 #define Bset 0114
113 #define Bfset 0115
114 #define Bget 0116
115 #define Bsubstring 0117
116 #define Bconcat2 0120
117 #define Bconcat3 0121
118 #define Bconcat4 0122
119 #define Bsub1 0123
120 #define Badd1 0124
121 #define Beqlsign 0125
122 #define Bgtr 0126
123 #define Blss 0127
124 #define Bleq 0130
125 #define Bgeq 0131
126 #define Bdiff 0132
127 #define Bnegate 0133
128 #define Bplus 0134
129 #define Bmax 0135
130 #define Bmin 0136
131 #define Bmult 0137
132
133 #define Bpoint 0140
134 /* Was Bmark in v17. */
135 #define Bsave_current_buffer 0141
136 #define Bgoto_char 0142
137 #define Binsert 0143
138 #define Bpoint_max 0144
139 #define Bpoint_min 0145
140 #define Bchar_after 0146
141 #define Bfollowing_char 0147
142 #define Bpreceding_char 0150
143 #define Bcurrent_column 0151
144 #define Bindent_to 0152
145 #ifdef BYTE_CODE_SAFE
146 #define Bscan_buffer 0153 /* No longer generated as of v18 */
147 #endif
148 #define Beolp 0154
149 #define Beobp 0155
150 #define Bbolp 0156
151 #define Bbobp 0157
152 #define Bcurrent_buffer 0160
153 #define Bset_buffer 0161
154 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
155 #if 0
156 #define Bread_char 0162 /* No longer generated as of v19 */
157 #endif
158 #ifdef BYTE_CODE_SAFE
159 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
160 #endif
161 #define Binteractive_p 0164 /* Needed since interactive-p takes unevalled args */
162
163 #define Bforward_char 0165
164 #define Bforward_word 0166
165 #define Bskip_chars_forward 0167
166 #define Bskip_chars_backward 0170
167 #define Bforward_line 0171
168 #define Bchar_syntax 0172
169 #define Bbuffer_substring 0173
170 #define Bdelete_region 0174
171 #define Bnarrow_to_region 0175
172 #define Bwiden 0176
173 #define Bend_of_line 0177
174
175 #define Bconstant2 0201
176 #define Bgoto 0202
177 #define Bgotoifnil 0203
178 #define Bgotoifnonnil 0204
179 #define Bgotoifnilelsepop 0205
180 #define Bgotoifnonnilelsepop 0206
181 #define Breturn 0207
182 #define Bdiscard 0210
183 #define Bdup 0211
184
185 #define Bsave_excursion 0212
186 #define Bsave_window_excursion 0213
187 #define Bsave_restriction 0214
188 #define Bcatch 0215
189
190 #define Bunwind_protect 0216
191 #define Bcondition_case 0217
192 #define Btemp_output_buffer_setup 0220
193 #define Btemp_output_buffer_show 0221
194
195 #define Bunbind_all 0222
196
197 #define Bset_marker 0223
198 #define Bmatch_beginning 0224
199 #define Bmatch_end 0225
200 #define Bupcase 0226
201 #define Bdowncase 0227
202
203 #define Bstringeqlsign 0230
204 #define Bstringlss 0231
205 #define Bequal 0232
206 #define Bnthcdr 0233
207 #define Belt 0234
208 #define Bmember 0235
209 #define Bassq 0236
210 #define Bnreverse 0237
211 #define Bsetcar 0240
212 #define Bsetcdr 0241
213 #define Bcar_safe 0242
214 #define Bcdr_safe 0243
215 #define Bnconc 0244
216 #define Bquo 0245
217 #define Brem 0246
218 #define Bnumberp 0247
219 #define Bintegerp 0250
220
221 #define BRgoto 0252
222 #define BRgotoifnil 0253
223 #define BRgotoifnonnil 0254
224 #define BRgotoifnilelsepop 0255
225 #define BRgotoifnonnilelsepop 0256
226
227 #define BlistN 0257
228 #define BconcatN 0260
229 #define BinsertN 0261
230
231 #define Bconstant 0300
232
233 /* Whether to maintain a `top' and `bottom' field in the stack frame. */
234 #define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
235 \f
236 /* Structure describing a value stack used during byte-code execution
237 in Fbyte_code. */
238
239 struct byte_stack
240 {
241 /* Program counter. This points into the byte_string below
242 and is relocated when that string is relocated. */
243 const unsigned char *pc;
244
245 /* Top and bottom of stack. The bottom points to an area of memory
246 allocated with alloca in Fbyte_code. */
247 #if BYTE_MAINTAIN_TOP
248 Lisp_Object *top, *bottom;
249 #endif
250
251 /* The string containing the byte-code, and its current address.
252 Storing this here protects it from GC because mark_byte_stack
253 marks it. */
254 Lisp_Object byte_string;
255 const unsigned char *byte_string_start;
256
257 /* The vector of constants used during byte-code execution. Storing
258 this here protects it from GC because mark_byte_stack marks it. */
259 Lisp_Object constants;
260
261 /* Next entry in byte_stack_list. */
262 struct byte_stack *next;
263 };
264
265 /* A list of currently active byte-code execution value stacks.
266 Fbyte_code adds an entry to the head of this list before it starts
267 processing byte-code, and it removed the entry again when it is
268 done. Signalling an error truncates the list analoguous to
269 gcprolist. */
270
271 struct byte_stack *byte_stack_list;
272
273 \f
274 /* Mark objects on byte_stack_list. Called during GC. */
275
276 #if BYTE_MARK_STACK
277 void
278 mark_byte_stack (void)
279 {
280 struct byte_stack *stack;
281 Lisp_Object *obj;
282
283 for (stack = byte_stack_list; stack; stack = stack->next)
284 {
285 /* If STACK->top is null here, this means there's an opcode in
286 Fbyte_code that wasn't expected to GC, but did. To find out
287 which opcode this is, record the value of `stack', and walk
288 up the stack in a debugger, stopping in frames of Fbyte_code.
289 The culprit is found in the frame of Fbyte_code where the
290 address of its local variable `stack' is equal to the
291 recorded value of `stack' here. */
292 eassert (stack->top);
293
294 for (obj = stack->bottom; obj <= stack->top; ++obj)
295 mark_object (*obj);
296
297 mark_object (stack->byte_string);
298 mark_object (stack->constants);
299 }
300 }
301 #endif
302
303 /* Unmark objects in the stacks on byte_stack_list. Relocate program
304 counters. Called when GC has completed. */
305
306 void
307 unmark_byte_stack (void)
308 {
309 struct byte_stack *stack;
310
311 for (stack = byte_stack_list; stack; stack = stack->next)
312 {
313 if (stack->byte_string_start != SDATA (stack->byte_string))
314 {
315 int offset = stack->pc - stack->byte_string_start;
316 stack->byte_string_start = SDATA (stack->byte_string);
317 stack->pc = stack->byte_string_start + offset;
318 }
319 }
320 }
321
322 \f
323 /* Fetch the next byte from the bytecode stream */
324
325 #define FETCH *stack.pc++
326
327 /* Fetch two bytes from the bytecode stream and make a 16-bit number
328 out of them */
329
330 #define FETCH2 (op = FETCH, op + (FETCH << 8))
331
332 /* Push x onto the execution stack. This used to be #define PUSH(x)
333 (*++stackp = (x)) This oddity is necessary because Alliant can't be
334 bothered to compile the preincrement operator properly, as of 4/91.
335 -JimB */
336
337 #define PUSH(x) (top++, *top = (x))
338
339 /* Pop a value off the execution stack. */
340
341 #define POP (*top--)
342
343 /* Discard n values from the execution stack. */
344
345 #define DISCARD(n) (top -= (n))
346
347 /* Get the value which is at the top of the execution stack, but don't
348 pop it. */
349
350 #define TOP (*top)
351
352 /* Actions that must be performed before and after calling a function
353 that might GC. */
354
355 #if !BYTE_MAINTAIN_TOP
356 #define BEFORE_POTENTIAL_GC() ((void)0)
357 #define AFTER_POTENTIAL_GC() ((void)0)
358 #else
359 #define BEFORE_POTENTIAL_GC() stack.top = top
360 #define AFTER_POTENTIAL_GC() stack.top = NULL
361 #endif
362
363 /* Garbage collect if we have consed enough since the last time.
364 We do this at every branch, to avoid loops that never GC. */
365
366 #define MAYBE_GC() \
367 do { \
368 if (consing_since_gc > gc_cons_threshold \
369 && consing_since_gc > gc_relative_threshold) \
370 { \
371 BEFORE_POTENTIAL_GC (); \
372 Fgarbage_collect (); \
373 AFTER_POTENTIAL_GC (); \
374 } \
375 } while (0)
376
377 /* Check for jumping out of range. */
378
379 #ifdef BYTE_CODE_SAFE
380
381 #define CHECK_RANGE(ARG) \
382 if (ARG >= bytestr_length) abort ()
383
384 #else /* not BYTE_CODE_SAFE */
385
386 #define CHECK_RANGE(ARG)
387
388 #endif /* not BYTE_CODE_SAFE */
389
390 /* A version of the QUIT macro which makes sure that the stack top is
391 set before signaling `quit'. */
392
393 #define BYTE_CODE_QUIT \
394 do { \
395 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
396 { \
397 Lisp_Object flag = Vquit_flag; \
398 Vquit_flag = Qnil; \
399 BEFORE_POTENTIAL_GC (); \
400 if (EQ (Vthrow_on_input, flag)) \
401 Fthrow (Vthrow_on_input, Qt); \
402 Fsignal (Qquit, Qnil); \
403 AFTER_POTENTIAL_GC (); \
404 } \
405 ELSE_PENDING_SIGNALS \
406 } while (0)
407
408
409 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
410 doc: /* Function used internally in byte-compiled code.
411 The first argument, BYTESTR, is a string of byte code;
412 the second, VECTOR, a vector of constants;
413 the third, MAXDEPTH, the maximum stack depth used in this function.
414 If the third argument is incorrect, Emacs may crash. */)
415 (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
416 {
417 int count = SPECPDL_INDEX ();
418 #ifdef BYTE_CODE_METER
419 int this_op = 0;
420 int prev_op;
421 #endif
422 int op;
423 /* Lisp_Object v1, v2; */
424 Lisp_Object *vectorp;
425 #ifdef BYTE_CODE_SAFE
426 int const_length = XVECTOR (vector)->size;
427 Lisp_Object *stacke;
428 #endif
429 int bytestr_length;
430 struct byte_stack stack;
431 Lisp_Object *top;
432 Lisp_Object result;
433
434 #if 0 /* CHECK_FRAME_FONT */
435 {
436 struct frame *f = SELECTED_FRAME ();
437 if (FRAME_X_P (f)
438 && FRAME_FONT (f)->direction != 0
439 && FRAME_FONT (f)->direction != 1)
440 abort ();
441 }
442 #endif
443
444 CHECK_STRING (bytestr);
445 CHECK_VECTOR (vector);
446 CHECK_NUMBER (maxdepth);
447
448 if (STRING_MULTIBYTE (bytestr))
449 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
450 because they produced a raw 8-bit string for byte-code and now
451 such a byte-code string is loaded as multibyte while raw 8-bit
452 characters converted to multibyte form. Thus, now we must
453 convert them back to the originally intended unibyte form. */
454 bytestr = Fstring_as_unibyte (bytestr);
455
456 bytestr_length = SBYTES (bytestr);
457 vectorp = XVECTOR (vector)->contents;
458
459 stack.byte_string = bytestr;
460 stack.pc = stack.byte_string_start = SDATA (bytestr);
461 stack.constants = vector;
462 top = (Lisp_Object *) alloca (XFASTINT (maxdepth)
463 * sizeof (Lisp_Object));
464 #if BYTE_MAINTAIN_TOP
465 stack.bottom = top;
466 stack.top = NULL;
467 #endif
468 top -= 1;
469 stack.next = byte_stack_list;
470 byte_stack_list = &stack;
471
472 #ifdef BYTE_CODE_SAFE
473 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
474 #endif
475
476 while (1)
477 {
478 #ifdef BYTE_CODE_SAFE
479 if (top > stacke)
480 abort ();
481 else if (top < stack.bottom - 1)
482 abort ();
483 #endif
484
485 #ifdef BYTE_CODE_METER
486 prev_op = this_op;
487 this_op = op = FETCH;
488 METER_CODE (prev_op, op);
489 #else
490 op = FETCH;
491 #endif
492
493 switch (op)
494 {
495 case Bvarref + 7:
496 op = FETCH2;
497 goto varref;
498
499 case Bvarref:
500 case Bvarref + 1:
501 case Bvarref + 2:
502 case Bvarref + 3:
503 case Bvarref + 4:
504 case Bvarref + 5:
505 op = op - Bvarref;
506 goto varref;
507
508 /* This seems to be the most frequently executed byte-code
509 among the Bvarref's, so avoid a goto here. */
510 case Bvarref+6:
511 op = FETCH;
512 varref:
513 {
514 Lisp_Object v1, v2;
515
516 v1 = vectorp[op];
517 if (SYMBOLP (v1))
518 {
519 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
520 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
521 EQ (v2, Qunbound)))
522 {
523 BEFORE_POTENTIAL_GC ();
524 v2 = Fsymbol_value (v1);
525 AFTER_POTENTIAL_GC ();
526 }
527 }
528 else
529 {
530 BEFORE_POTENTIAL_GC ();
531 v2 = Fsymbol_value (v1);
532 AFTER_POTENTIAL_GC ();
533 }
534 PUSH (v2);
535 break;
536 }
537
538 case Bgotoifnil:
539 {
540 Lisp_Object v1;
541 MAYBE_GC ();
542 op = FETCH2;
543 v1 = POP;
544 if (NILP (v1))
545 {
546 BYTE_CODE_QUIT;
547 CHECK_RANGE (op);
548 stack.pc = stack.byte_string_start + op;
549 }
550 break;
551 }
552
553 case Bcar:
554 {
555 Lisp_Object v1;
556 v1 = TOP;
557 if (CONSP (v1))
558 TOP = XCAR (v1);
559 else if (NILP (v1))
560 TOP = Qnil;
561 else
562 {
563 BEFORE_POTENTIAL_GC ();
564 wrong_type_argument (Qlistp, v1);
565 AFTER_POTENTIAL_GC ();
566 }
567 break;
568 }
569
570 case Beq:
571 {
572 Lisp_Object v1;
573 v1 = POP;
574 TOP = EQ (v1, TOP) ? Qt : Qnil;
575 break;
576 }
577
578 case Bmemq:
579 {
580 Lisp_Object v1;
581 BEFORE_POTENTIAL_GC ();
582 v1 = POP;
583 TOP = Fmemq (TOP, v1);
584 AFTER_POTENTIAL_GC ();
585 break;
586 }
587
588 case Bcdr:
589 {
590 Lisp_Object v1;
591 v1 = TOP;
592 if (CONSP (v1))
593 TOP = XCDR (v1);
594 else if (NILP (v1))
595 TOP = Qnil;
596 else
597 {
598 BEFORE_POTENTIAL_GC ();
599 wrong_type_argument (Qlistp, v1);
600 AFTER_POTENTIAL_GC ();
601 }
602 break;
603 break;
604 }
605
606 case Bvarset:
607 case Bvarset+1:
608 case Bvarset+2:
609 case Bvarset+3:
610 case Bvarset+4:
611 case Bvarset+5:
612 op -= Bvarset;
613 goto varset;
614
615 case Bvarset+7:
616 op = FETCH2;
617 goto varset;
618
619 case Bvarset+6:
620 op = FETCH;
621 varset:
622 {
623 Lisp_Object sym, val;
624
625 sym = vectorp[op];
626 val = TOP;
627
628 /* Inline the most common case. */
629 if (SYMBOLP (sym)
630 && !EQ (val, Qunbound)
631 && !XSYMBOL (sym)->redirect
632 && !SYMBOL_CONSTANT_P (sym))
633 XSYMBOL (sym)->val.value = val;
634 else
635 {
636 BEFORE_POTENTIAL_GC ();
637 set_internal (sym, val, Qnil, 0);
638 AFTER_POTENTIAL_GC ();
639 }
640 }
641 (void) POP;
642 break;
643
644 case Bdup:
645 {
646 Lisp_Object v1;
647 v1 = TOP;
648 PUSH (v1);
649 break;
650 }
651
652 /* ------------------ */
653
654 case Bvarbind+6:
655 op = FETCH;
656 goto varbind;
657
658 case Bvarbind+7:
659 op = FETCH2;
660 goto varbind;
661
662 case Bvarbind:
663 case Bvarbind+1:
664 case Bvarbind+2:
665 case Bvarbind+3:
666 case Bvarbind+4:
667 case Bvarbind+5:
668 op -= Bvarbind;
669 varbind:
670 /* Specbind can signal and thus GC. */
671 BEFORE_POTENTIAL_GC ();
672 specbind (vectorp[op], POP);
673 AFTER_POTENTIAL_GC ();
674 break;
675
676 case Bcall+6:
677 op = FETCH;
678 goto docall;
679
680 case Bcall+7:
681 op = FETCH2;
682 goto docall;
683
684 case Bcall:
685 case Bcall+1:
686 case Bcall+2:
687 case Bcall+3:
688 case Bcall+4:
689 case Bcall+5:
690 op -= Bcall;
691 docall:
692 {
693 BEFORE_POTENTIAL_GC ();
694 DISCARD (op);
695 #ifdef BYTE_CODE_METER
696 if (byte_metering_on && SYMBOLP (TOP))
697 {
698 Lisp_Object v1, v2;
699
700 v1 = TOP;
701 v2 = Fget (v1, Qbyte_code_meter);
702 if (INTEGERP (v2)
703 && XINT (v2) < MOST_POSITIVE_FIXNUM)
704 {
705 XSETINT (v2, XINT (v2) + 1);
706 Fput (v1, Qbyte_code_meter, v2);
707 }
708 }
709 #endif
710 TOP = Ffuncall (op + 1, &TOP);
711 AFTER_POTENTIAL_GC ();
712 break;
713 }
714
715 case Bunbind+6:
716 op = FETCH;
717 goto dounbind;
718
719 case Bunbind+7:
720 op = FETCH2;
721 goto dounbind;
722
723 case Bunbind:
724 case Bunbind+1:
725 case Bunbind+2:
726 case Bunbind+3:
727 case Bunbind+4:
728 case Bunbind+5:
729 op -= Bunbind;
730 dounbind:
731 BEFORE_POTENTIAL_GC ();
732 unbind_to (SPECPDL_INDEX () - op, Qnil);
733 AFTER_POTENTIAL_GC ();
734 break;
735
736 case Bunbind_all:
737 /* To unbind back to the beginning of this frame. Not used yet,
738 but will be needed for tail-recursion elimination. */
739 BEFORE_POTENTIAL_GC ();
740 unbind_to (count, Qnil);
741 AFTER_POTENTIAL_GC ();
742 break;
743
744 case Bgoto:
745 MAYBE_GC ();
746 BYTE_CODE_QUIT;
747 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
748 CHECK_RANGE (op);
749 stack.pc = stack.byte_string_start + op;
750 break;
751
752 case Bgotoifnonnil:
753 {
754 Lisp_Object v1;
755 MAYBE_GC ();
756 op = FETCH2;
757 v1 = POP;
758 if (!NILP (v1))
759 {
760 BYTE_CODE_QUIT;
761 CHECK_RANGE (op);
762 stack.pc = stack.byte_string_start + op;
763 }
764 break;
765 }
766
767 case Bgotoifnilelsepop:
768 MAYBE_GC ();
769 op = FETCH2;
770 if (NILP (TOP))
771 {
772 BYTE_CODE_QUIT;
773 CHECK_RANGE (op);
774 stack.pc = stack.byte_string_start + op;
775 }
776 else DISCARD (1);
777 break;
778
779 case Bgotoifnonnilelsepop:
780 MAYBE_GC ();
781 op = FETCH2;
782 if (!NILP (TOP))
783 {
784 BYTE_CODE_QUIT;
785 CHECK_RANGE (op);
786 stack.pc = stack.byte_string_start + op;
787 }
788 else DISCARD (1);
789 break;
790
791 case BRgoto:
792 MAYBE_GC ();
793 BYTE_CODE_QUIT;
794 stack.pc += (int) *stack.pc - 127;
795 break;
796
797 case BRgotoifnil:
798 {
799 Lisp_Object v1;
800 MAYBE_GC ();
801 v1 = POP;
802 if (NILP (v1))
803 {
804 BYTE_CODE_QUIT;
805 stack.pc += (int) *stack.pc - 128;
806 }
807 stack.pc++;
808 break;
809 }
810
811 case BRgotoifnonnil:
812 {
813 Lisp_Object v1;
814 MAYBE_GC ();
815 v1 = POP;
816 if (!NILP (v1))
817 {
818 BYTE_CODE_QUIT;
819 stack.pc += (int) *stack.pc - 128;
820 }
821 stack.pc++;
822 break;
823 }
824
825 case BRgotoifnilelsepop:
826 MAYBE_GC ();
827 op = *stack.pc++;
828 if (NILP (TOP))
829 {
830 BYTE_CODE_QUIT;
831 stack.pc += op - 128;
832 }
833 else DISCARD (1);
834 break;
835
836 case BRgotoifnonnilelsepop:
837 MAYBE_GC ();
838 op = *stack.pc++;
839 if (!NILP (TOP))
840 {
841 BYTE_CODE_QUIT;
842 stack.pc += op - 128;
843 }
844 else DISCARD (1);
845 break;
846
847 case Breturn:
848 result = POP;
849 goto exit;
850
851 case Bdiscard:
852 DISCARD (1);
853 break;
854
855 case Bconstant2:
856 PUSH (vectorp[FETCH2]);
857 break;
858
859 case Bsave_excursion:
860 record_unwind_protect (save_excursion_restore,
861 save_excursion_save ());
862 break;
863
864 case Bsave_current_buffer:
865 case Bsave_current_buffer_1:
866 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
867 break;
868
869 case Bsave_window_excursion:
870 BEFORE_POTENTIAL_GC ();
871 TOP = Fsave_window_excursion (TOP);
872 AFTER_POTENTIAL_GC ();
873 break;
874
875 case Bsave_restriction:
876 record_unwind_protect (save_restriction_restore,
877 save_restriction_save ());
878 break;
879
880 case Bcatch:
881 {
882 Lisp_Object v1;
883 BEFORE_POTENTIAL_GC ();
884 v1 = POP;
885 TOP = internal_catch (TOP, Feval, v1);
886 AFTER_POTENTIAL_GC ();
887 break;
888 }
889
890 case Bunwind_protect:
891 record_unwind_protect (Fprogn, POP);
892 break;
893
894 case Bcondition_case:
895 {
896 Lisp_Object handlers, body;
897 handlers = POP;
898 body = POP;
899 BEFORE_POTENTIAL_GC ();
900 TOP = internal_lisp_condition_case (TOP, body, handlers);
901 AFTER_POTENTIAL_GC ();
902 break;
903 }
904
905 case Btemp_output_buffer_setup:
906 BEFORE_POTENTIAL_GC ();
907 CHECK_STRING (TOP);
908 temp_output_buffer_setup (SSDATA (TOP));
909 AFTER_POTENTIAL_GC ();
910 TOP = Vstandard_output;
911 break;
912
913 case Btemp_output_buffer_show:
914 {
915 Lisp_Object v1;
916 BEFORE_POTENTIAL_GC ();
917 v1 = POP;
918 temp_output_buffer_show (TOP);
919 TOP = v1;
920 /* pop binding of standard-output */
921 unbind_to (SPECPDL_INDEX () - 1, Qnil);
922 AFTER_POTENTIAL_GC ();
923 break;
924 }
925
926 case Bnth:
927 {
928 Lisp_Object v1, v2;
929 BEFORE_POTENTIAL_GC ();
930 v1 = POP;
931 v2 = TOP;
932 CHECK_NUMBER (v2);
933 op = XINT (v2);
934 immediate_quit = 1;
935 while (--op >= 0 && CONSP (v1))
936 v1 = XCDR (v1);
937 immediate_quit = 0;
938 TOP = CAR (v1);
939 AFTER_POTENTIAL_GC ();
940 break;
941 }
942
943 case Bsymbolp:
944 TOP = SYMBOLP (TOP) ? Qt : Qnil;
945 break;
946
947 case Bconsp:
948 TOP = CONSP (TOP) ? Qt : Qnil;
949 break;
950
951 case Bstringp:
952 TOP = STRINGP (TOP) ? Qt : Qnil;
953 break;
954
955 case Blistp:
956 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
957 break;
958
959 case Bnot:
960 TOP = NILP (TOP) ? Qt : Qnil;
961 break;
962
963 case Bcons:
964 {
965 Lisp_Object v1;
966 v1 = POP;
967 TOP = Fcons (TOP, v1);
968 break;
969 }
970
971 case Blist1:
972 TOP = Fcons (TOP, Qnil);
973 break;
974
975 case Blist2:
976 {
977 Lisp_Object v1;
978 v1 = POP;
979 TOP = Fcons (TOP, Fcons (v1, Qnil));
980 break;
981 }
982
983 case Blist3:
984 DISCARD (2);
985 TOP = Flist (3, &TOP);
986 break;
987
988 case Blist4:
989 DISCARD (3);
990 TOP = Flist (4, &TOP);
991 break;
992
993 case BlistN:
994 op = FETCH;
995 DISCARD (op - 1);
996 TOP = Flist (op, &TOP);
997 break;
998
999 case Blength:
1000 BEFORE_POTENTIAL_GC ();
1001 TOP = Flength (TOP);
1002 AFTER_POTENTIAL_GC ();
1003 break;
1004
1005 case Baref:
1006 {
1007 Lisp_Object v1;
1008 BEFORE_POTENTIAL_GC ();
1009 v1 = POP;
1010 TOP = Faref (TOP, v1);
1011 AFTER_POTENTIAL_GC ();
1012 break;
1013 }
1014
1015 case Baset:
1016 {
1017 Lisp_Object v1, v2;
1018 BEFORE_POTENTIAL_GC ();
1019 v2 = POP; v1 = POP;
1020 TOP = Faset (TOP, v1, v2);
1021 AFTER_POTENTIAL_GC ();
1022 break;
1023 }
1024
1025 case Bsymbol_value:
1026 BEFORE_POTENTIAL_GC ();
1027 TOP = Fsymbol_value (TOP);
1028 AFTER_POTENTIAL_GC ();
1029 break;
1030
1031 case Bsymbol_function:
1032 BEFORE_POTENTIAL_GC ();
1033 TOP = Fsymbol_function (TOP);
1034 AFTER_POTENTIAL_GC ();
1035 break;
1036
1037 case Bset:
1038 {
1039 Lisp_Object v1;
1040 BEFORE_POTENTIAL_GC ();
1041 v1 = POP;
1042 TOP = Fset (TOP, v1);
1043 AFTER_POTENTIAL_GC ();
1044 break;
1045 }
1046
1047 case Bfset:
1048 {
1049 Lisp_Object v1;
1050 BEFORE_POTENTIAL_GC ();
1051 v1 = POP;
1052 TOP = Ffset (TOP, v1);
1053 AFTER_POTENTIAL_GC ();
1054 break;
1055 }
1056
1057 case Bget:
1058 {
1059 Lisp_Object v1;
1060 BEFORE_POTENTIAL_GC ();
1061 v1 = POP;
1062 TOP = Fget (TOP, v1);
1063 AFTER_POTENTIAL_GC ();
1064 break;
1065 }
1066
1067 case Bsubstring:
1068 {
1069 Lisp_Object v1, v2;
1070 BEFORE_POTENTIAL_GC ();
1071 v2 = POP; v1 = POP;
1072 TOP = Fsubstring (TOP, v1, v2);
1073 AFTER_POTENTIAL_GC ();
1074 break;
1075 }
1076
1077 case Bconcat2:
1078 BEFORE_POTENTIAL_GC ();
1079 DISCARD (1);
1080 TOP = Fconcat (2, &TOP);
1081 AFTER_POTENTIAL_GC ();
1082 break;
1083
1084 case Bconcat3:
1085 BEFORE_POTENTIAL_GC ();
1086 DISCARD (2);
1087 TOP = Fconcat (3, &TOP);
1088 AFTER_POTENTIAL_GC ();
1089 break;
1090
1091 case Bconcat4:
1092 BEFORE_POTENTIAL_GC ();
1093 DISCARD (3);
1094 TOP = Fconcat (4, &TOP);
1095 AFTER_POTENTIAL_GC ();
1096 break;
1097
1098 case BconcatN:
1099 op = FETCH;
1100 BEFORE_POTENTIAL_GC ();
1101 DISCARD (op - 1);
1102 TOP = Fconcat (op, &TOP);
1103 AFTER_POTENTIAL_GC ();
1104 break;
1105
1106 case Bsub1:
1107 {
1108 Lisp_Object v1;
1109 v1 = TOP;
1110 if (INTEGERP (v1))
1111 {
1112 XSETINT (v1, XINT (v1) - 1);
1113 TOP = v1;
1114 }
1115 else
1116 {
1117 BEFORE_POTENTIAL_GC ();
1118 TOP = Fsub1 (v1);
1119 AFTER_POTENTIAL_GC ();
1120 }
1121 break;
1122 }
1123
1124 case Badd1:
1125 {
1126 Lisp_Object v1;
1127 v1 = TOP;
1128 if (INTEGERP (v1))
1129 {
1130 XSETINT (v1, XINT (v1) + 1);
1131 TOP = v1;
1132 }
1133 else
1134 {
1135 BEFORE_POTENTIAL_GC ();
1136 TOP = Fadd1 (v1);
1137 AFTER_POTENTIAL_GC ();
1138 }
1139 break;
1140 }
1141
1142 case Beqlsign:
1143 {
1144 Lisp_Object v1, v2;
1145 BEFORE_POTENTIAL_GC ();
1146 v2 = POP; v1 = TOP;
1147 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1148 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1149 AFTER_POTENTIAL_GC ();
1150 if (FLOATP (v1) || FLOATP (v2))
1151 {
1152 double f1, f2;
1153
1154 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1155 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1156 TOP = (f1 == f2 ? Qt : Qnil);
1157 }
1158 else
1159 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1160 break;
1161 }
1162
1163 case Bgtr:
1164 {
1165 Lisp_Object v1;
1166 BEFORE_POTENTIAL_GC ();
1167 v1 = POP;
1168 TOP = Fgtr (TOP, v1);
1169 AFTER_POTENTIAL_GC ();
1170 break;
1171 }
1172
1173 case Blss:
1174 {
1175 Lisp_Object v1;
1176 BEFORE_POTENTIAL_GC ();
1177 v1 = POP;
1178 TOP = Flss (TOP, v1);
1179 AFTER_POTENTIAL_GC ();
1180 break;
1181 }
1182
1183 case Bleq:
1184 {
1185 Lisp_Object v1;
1186 BEFORE_POTENTIAL_GC ();
1187 v1 = POP;
1188 TOP = Fleq (TOP, v1);
1189 AFTER_POTENTIAL_GC ();
1190 break;
1191 }
1192
1193 case Bgeq:
1194 {
1195 Lisp_Object v1;
1196 BEFORE_POTENTIAL_GC ();
1197 v1 = POP;
1198 TOP = Fgeq (TOP, v1);
1199 AFTER_POTENTIAL_GC ();
1200 break;
1201 }
1202
1203 case Bdiff:
1204 BEFORE_POTENTIAL_GC ();
1205 DISCARD (1);
1206 TOP = Fminus (2, &TOP);
1207 AFTER_POTENTIAL_GC ();
1208 break;
1209
1210 case Bnegate:
1211 {
1212 Lisp_Object v1;
1213 v1 = TOP;
1214 if (INTEGERP (v1))
1215 {
1216 XSETINT (v1, - XINT (v1));
1217 TOP = v1;
1218 }
1219 else
1220 {
1221 BEFORE_POTENTIAL_GC ();
1222 TOP = Fminus (1, &TOP);
1223 AFTER_POTENTIAL_GC ();
1224 }
1225 break;
1226 }
1227
1228 case Bplus:
1229 BEFORE_POTENTIAL_GC ();
1230 DISCARD (1);
1231 TOP = Fplus (2, &TOP);
1232 AFTER_POTENTIAL_GC ();
1233 break;
1234
1235 case Bmax:
1236 BEFORE_POTENTIAL_GC ();
1237 DISCARD (1);
1238 TOP = Fmax (2, &TOP);
1239 AFTER_POTENTIAL_GC ();
1240 break;
1241
1242 case Bmin:
1243 BEFORE_POTENTIAL_GC ();
1244 DISCARD (1);
1245 TOP = Fmin (2, &TOP);
1246 AFTER_POTENTIAL_GC ();
1247 break;
1248
1249 case Bmult:
1250 BEFORE_POTENTIAL_GC ();
1251 DISCARD (1);
1252 TOP = Ftimes (2, &TOP);
1253 AFTER_POTENTIAL_GC ();
1254 break;
1255
1256 case Bquo:
1257 BEFORE_POTENTIAL_GC ();
1258 DISCARD (1);
1259 TOP = Fquo (2, &TOP);
1260 AFTER_POTENTIAL_GC ();
1261 break;
1262
1263 case Brem:
1264 {
1265 Lisp_Object v1;
1266 BEFORE_POTENTIAL_GC ();
1267 v1 = POP;
1268 TOP = Frem (TOP, v1);
1269 AFTER_POTENTIAL_GC ();
1270 break;
1271 }
1272
1273 case Bpoint:
1274 {
1275 Lisp_Object v1;
1276 XSETFASTINT (v1, PT);
1277 PUSH (v1);
1278 break;
1279 }
1280
1281 case Bgoto_char:
1282 BEFORE_POTENTIAL_GC ();
1283 TOP = Fgoto_char (TOP);
1284 AFTER_POTENTIAL_GC ();
1285 break;
1286
1287 case Binsert:
1288 BEFORE_POTENTIAL_GC ();
1289 TOP = Finsert (1, &TOP);
1290 AFTER_POTENTIAL_GC ();
1291 break;
1292
1293 case BinsertN:
1294 op = FETCH;
1295 BEFORE_POTENTIAL_GC ();
1296 DISCARD (op - 1);
1297 TOP = Finsert (op, &TOP);
1298 AFTER_POTENTIAL_GC ();
1299 break;
1300
1301 case Bpoint_max:
1302 {
1303 Lisp_Object v1;
1304 XSETFASTINT (v1, ZV);
1305 PUSH (v1);
1306 break;
1307 }
1308
1309 case Bpoint_min:
1310 {
1311 Lisp_Object v1;
1312 XSETFASTINT (v1, BEGV);
1313 PUSH (v1);
1314 break;
1315 }
1316
1317 case Bchar_after:
1318 BEFORE_POTENTIAL_GC ();
1319 TOP = Fchar_after (TOP);
1320 AFTER_POTENTIAL_GC ();
1321 break;
1322
1323 case Bfollowing_char:
1324 {
1325 Lisp_Object v1;
1326 BEFORE_POTENTIAL_GC ();
1327 v1 = Ffollowing_char ();
1328 AFTER_POTENTIAL_GC ();
1329 PUSH (v1);
1330 break;
1331 }
1332
1333 case Bpreceding_char:
1334 {
1335 Lisp_Object v1;
1336 BEFORE_POTENTIAL_GC ();
1337 v1 = Fprevious_char ();
1338 AFTER_POTENTIAL_GC ();
1339 PUSH (v1);
1340 break;
1341 }
1342
1343 case Bcurrent_column:
1344 {
1345 Lisp_Object v1;
1346 BEFORE_POTENTIAL_GC ();
1347 XSETFASTINT (v1, current_column ());
1348 AFTER_POTENTIAL_GC ();
1349 PUSH (v1);
1350 break;
1351 }
1352
1353 case Bindent_to:
1354 BEFORE_POTENTIAL_GC ();
1355 TOP = Findent_to (TOP, Qnil);
1356 AFTER_POTENTIAL_GC ();
1357 break;
1358
1359 case Beolp:
1360 PUSH (Feolp ());
1361 break;
1362
1363 case Beobp:
1364 PUSH (Feobp ());
1365 break;
1366
1367 case Bbolp:
1368 PUSH (Fbolp ());
1369 break;
1370
1371 case Bbobp:
1372 PUSH (Fbobp ());
1373 break;
1374
1375 case Bcurrent_buffer:
1376 PUSH (Fcurrent_buffer ());
1377 break;
1378
1379 case Bset_buffer:
1380 BEFORE_POTENTIAL_GC ();
1381 TOP = Fset_buffer (TOP);
1382 AFTER_POTENTIAL_GC ();
1383 break;
1384
1385 case Binteractive_p:
1386 PUSH (Finteractive_p ());
1387 break;
1388
1389 case Bforward_char:
1390 BEFORE_POTENTIAL_GC ();
1391 TOP = Fforward_char (TOP);
1392 AFTER_POTENTIAL_GC ();
1393 break;
1394
1395 case Bforward_word:
1396 BEFORE_POTENTIAL_GC ();
1397 TOP = Fforward_word (TOP);
1398 AFTER_POTENTIAL_GC ();
1399 break;
1400
1401 case Bskip_chars_forward:
1402 {
1403 Lisp_Object v1;
1404 BEFORE_POTENTIAL_GC ();
1405 v1 = POP;
1406 TOP = Fskip_chars_forward (TOP, v1);
1407 AFTER_POTENTIAL_GC ();
1408 break;
1409 }
1410
1411 case Bskip_chars_backward:
1412 {
1413 Lisp_Object v1;
1414 BEFORE_POTENTIAL_GC ();
1415 v1 = POP;
1416 TOP = Fskip_chars_backward (TOP, v1);
1417 AFTER_POTENTIAL_GC ();
1418 break;
1419 }
1420
1421 case Bforward_line:
1422 BEFORE_POTENTIAL_GC ();
1423 TOP = Fforward_line (TOP);
1424 AFTER_POTENTIAL_GC ();
1425 break;
1426
1427 case Bchar_syntax:
1428 {
1429 int c;
1430
1431 BEFORE_POTENTIAL_GC ();
1432 CHECK_CHARACTER (TOP);
1433 AFTER_POTENTIAL_GC ();
1434 c = XFASTINT (TOP);
1435 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
1436 MAKE_CHAR_MULTIBYTE (c);
1437 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
1438 }
1439 break;
1440
1441 case Bbuffer_substring:
1442 {
1443 Lisp_Object v1;
1444 BEFORE_POTENTIAL_GC ();
1445 v1 = POP;
1446 TOP = Fbuffer_substring (TOP, v1);
1447 AFTER_POTENTIAL_GC ();
1448 break;
1449 }
1450
1451 case Bdelete_region:
1452 {
1453 Lisp_Object v1;
1454 BEFORE_POTENTIAL_GC ();
1455 v1 = POP;
1456 TOP = Fdelete_region (TOP, v1);
1457 AFTER_POTENTIAL_GC ();
1458 break;
1459 }
1460
1461 case Bnarrow_to_region:
1462 {
1463 Lisp_Object v1;
1464 BEFORE_POTENTIAL_GC ();
1465 v1 = POP;
1466 TOP = Fnarrow_to_region (TOP, v1);
1467 AFTER_POTENTIAL_GC ();
1468 break;
1469 }
1470
1471 case Bwiden:
1472 BEFORE_POTENTIAL_GC ();
1473 PUSH (Fwiden ());
1474 AFTER_POTENTIAL_GC ();
1475 break;
1476
1477 case Bend_of_line:
1478 BEFORE_POTENTIAL_GC ();
1479 TOP = Fend_of_line (TOP);
1480 AFTER_POTENTIAL_GC ();
1481 break;
1482
1483 case Bset_marker:
1484 {
1485 Lisp_Object v1, v2;
1486 BEFORE_POTENTIAL_GC ();
1487 v1 = POP;
1488 v2 = POP;
1489 TOP = Fset_marker (TOP, v2, v1);
1490 AFTER_POTENTIAL_GC ();
1491 break;
1492 }
1493
1494 case Bmatch_beginning:
1495 BEFORE_POTENTIAL_GC ();
1496 TOP = Fmatch_beginning (TOP);
1497 AFTER_POTENTIAL_GC ();
1498 break;
1499
1500 case Bmatch_end:
1501 BEFORE_POTENTIAL_GC ();
1502 TOP = Fmatch_end (TOP);
1503 AFTER_POTENTIAL_GC ();
1504 break;
1505
1506 case Bupcase:
1507 BEFORE_POTENTIAL_GC ();
1508 TOP = Fupcase (TOP);
1509 AFTER_POTENTIAL_GC ();
1510 break;
1511
1512 case Bdowncase:
1513 BEFORE_POTENTIAL_GC ();
1514 TOP = Fdowncase (TOP);
1515 AFTER_POTENTIAL_GC ();
1516 break;
1517
1518 case Bstringeqlsign:
1519 {
1520 Lisp_Object v1;
1521 BEFORE_POTENTIAL_GC ();
1522 v1 = POP;
1523 TOP = Fstring_equal (TOP, v1);
1524 AFTER_POTENTIAL_GC ();
1525 break;
1526 }
1527
1528 case Bstringlss:
1529 {
1530 Lisp_Object v1;
1531 BEFORE_POTENTIAL_GC ();
1532 v1 = POP;
1533 TOP = Fstring_lessp (TOP, v1);
1534 AFTER_POTENTIAL_GC ();
1535 break;
1536 }
1537
1538 case Bequal:
1539 {
1540 Lisp_Object v1;
1541 v1 = POP;
1542 TOP = Fequal (TOP, v1);
1543 break;
1544 }
1545
1546 case Bnthcdr:
1547 {
1548 Lisp_Object v1;
1549 BEFORE_POTENTIAL_GC ();
1550 v1 = POP;
1551 TOP = Fnthcdr (TOP, v1);
1552 AFTER_POTENTIAL_GC ();
1553 break;
1554 }
1555
1556 case Belt:
1557 {
1558 Lisp_Object v1, v2;
1559 if (CONSP (TOP))
1560 {
1561 /* Exchange args and then do nth. */
1562 BEFORE_POTENTIAL_GC ();
1563 v2 = POP;
1564 v1 = TOP;
1565 CHECK_NUMBER (v2);
1566 AFTER_POTENTIAL_GC ();
1567 op = XINT (v2);
1568 immediate_quit = 1;
1569 while (--op >= 0 && CONSP (v1))
1570 v1 = XCDR (v1);
1571 immediate_quit = 0;
1572 TOP = CAR (v1);
1573 }
1574 else
1575 {
1576 BEFORE_POTENTIAL_GC ();
1577 v1 = POP;
1578 TOP = Felt (TOP, v1);
1579 AFTER_POTENTIAL_GC ();
1580 }
1581 break;
1582 }
1583
1584 case Bmember:
1585 {
1586 Lisp_Object v1;
1587 BEFORE_POTENTIAL_GC ();
1588 v1 = POP;
1589 TOP = Fmember (TOP, v1);
1590 AFTER_POTENTIAL_GC ();
1591 break;
1592 }
1593
1594 case Bassq:
1595 {
1596 Lisp_Object v1;
1597 BEFORE_POTENTIAL_GC ();
1598 v1 = POP;
1599 TOP = Fassq (TOP, v1);
1600 AFTER_POTENTIAL_GC ();
1601 break;
1602 }
1603
1604 case Bnreverse:
1605 BEFORE_POTENTIAL_GC ();
1606 TOP = Fnreverse (TOP);
1607 AFTER_POTENTIAL_GC ();
1608 break;
1609
1610 case Bsetcar:
1611 {
1612 Lisp_Object v1;
1613 BEFORE_POTENTIAL_GC ();
1614 v1 = POP;
1615 TOP = Fsetcar (TOP, v1);
1616 AFTER_POTENTIAL_GC ();
1617 break;
1618 }
1619
1620 case Bsetcdr:
1621 {
1622 Lisp_Object v1;
1623 BEFORE_POTENTIAL_GC ();
1624 v1 = POP;
1625 TOP = Fsetcdr (TOP, v1);
1626 AFTER_POTENTIAL_GC ();
1627 break;
1628 }
1629
1630 case Bcar_safe:
1631 {
1632 Lisp_Object v1;
1633 v1 = TOP;
1634 TOP = CAR_SAFE (v1);
1635 break;
1636 }
1637
1638 case Bcdr_safe:
1639 {
1640 Lisp_Object v1;
1641 v1 = TOP;
1642 TOP = CDR_SAFE (v1);
1643 break;
1644 }
1645
1646 case Bnconc:
1647 BEFORE_POTENTIAL_GC ();
1648 DISCARD (1);
1649 TOP = Fnconc (2, &TOP);
1650 AFTER_POTENTIAL_GC ();
1651 break;
1652
1653 case Bnumberp:
1654 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1655 break;
1656
1657 case Bintegerp:
1658 TOP = INTEGERP (TOP) ? Qt : Qnil;
1659 break;
1660
1661 #ifdef BYTE_CODE_SAFE
1662 case Bset_mark:
1663 BEFORE_POTENTIAL_GC ();
1664 error ("set-mark is an obsolete bytecode");
1665 AFTER_POTENTIAL_GC ();
1666 break;
1667 case Bscan_buffer:
1668 BEFORE_POTENTIAL_GC ();
1669 error ("scan-buffer is an obsolete bytecode");
1670 AFTER_POTENTIAL_GC ();
1671 break;
1672 #endif
1673
1674 case 0:
1675 abort ();
1676
1677 case 255:
1678 default:
1679 #ifdef BYTE_CODE_SAFE
1680 if (op < Bconstant)
1681 {
1682 abort ();
1683 }
1684 if ((op -= Bconstant) >= const_length)
1685 {
1686 abort ();
1687 }
1688 PUSH (vectorp[op]);
1689 #else
1690 PUSH (vectorp[op - Bconstant]);
1691 #endif
1692 }
1693 }
1694
1695 exit:
1696
1697 byte_stack_list = byte_stack_list->next;
1698
1699 /* Binds and unbinds are supposed to be compiled balanced. */
1700 if (SPECPDL_INDEX () != count)
1701 #ifdef BYTE_CODE_SAFE
1702 error ("binding stack not balanced (serious byte compiler bug)");
1703 #else
1704 abort ();
1705 #endif
1706
1707 return result;
1708 }
1709
1710 void
1711 syms_of_bytecode (void)
1712 {
1713 Qbytecode = intern_c_string ("byte-code");
1714 staticpro (&Qbytecode);
1715
1716 defsubr (&Sbyte_code);
1717
1718 #ifdef BYTE_CODE_METER
1719
1720 DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
1721 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1722 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1723 opcode CODE has been executed.
1724 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1725 indicates how many times the byte opcodes CODE1 and CODE2 have been
1726 executed in succession. */);
1727
1728 DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
1729 doc: /* If non-nil, keep profiling information on byte code usage.
1730 The variable byte-code-meter indicates how often each byte opcode is used.
1731 If a symbol has a property named `byte-code-meter' whose value is an
1732 integer, it is incremented each time that symbol's function is called. */);
1733
1734 byte_metering_on = 0;
1735 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1736 Qbyte_code_meter = intern_c_string ("byte-code-meter");
1737 staticpro (&Qbyte_code_meter);
1738 {
1739 int i = 256;
1740 while (i--)
1741 XVECTOR (Vbyte_code_meter)->contents[i] =
1742 Fmake_vector (make_number (256), make_number (0));
1743 }
1744 #endif
1745 }