* emacs-lisp/lisp.el (up-list): Doc fix.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <unistd.h>
24 #include <time.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42
43 Lisp_Object Qstring_lessp;
44 static Lisp_Object Qprovide, Qrequire;
45 static Lisp_Object Qyes_or_no_p_history;
46 Lisp_Object Qcursor_in_echo_area;
47 static Lisp_Object Qwidget_type;
48 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
49
50 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
51
52 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
53 \f
54 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
55 doc: /* Return the argument unchanged. */)
56 (Lisp_Object arg)
57 {
58 return arg;
59 }
60
61 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
62 doc: /* Return a pseudo-random number.
63 All integers representable in Lisp, i.e. between `most-negative-fixnum'
64 and `most-positive-fixnum', inclusive, are equally likely.
65
66 With positive integer LIMIT, return random number in interval [0,LIMIT).
67 With argument t, set the random number seed from the current time and pid.
68 With a string argument, set the seed based on the string's contents.
69 Other values of LIMIT are ignored.
70
71 See Info node `(elisp)Random Numbers' for more details. */)
72 (Lisp_Object limit)
73 {
74 EMACS_INT val;
75
76 if (EQ (limit, Qt))
77 init_random ();
78 else if (STRINGP (limit))
79 seed_random (SSDATA (limit), SBYTES (limit));
80
81 val = get_random ();
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 val %= XFASTINT (limit);
84 return make_number (val);
85 }
86 \f
87 /* Heuristic on how many iterations of a tight loop can be safely done
88 before it's time to do a QUIT. This must be a power of 2. */
89 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
90
91 /* Random data-structure functions. */
92
93 static void
94 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
95 {
96 CHECK_TYPE (NILP (x), Qlistp, y);
97 }
98
99 DEFUN ("length", Flength, Slength, 1, 1, 0,
100 doc: /* Return the length of vector, list or string SEQUENCE.
101 A byte-code function object is also allowed.
102 If the string contains multibyte characters, this is not necessarily
103 the number of bytes in the string; it is the number of characters.
104 To get the number of bytes, use `string-bytes'. */)
105 (register Lisp_Object sequence)
106 {
107 register Lisp_Object val;
108
109 if (STRINGP (sequence))
110 XSETFASTINT (val, SCHARS (sequence));
111 else if (VECTORP (sequence))
112 XSETFASTINT (val, ASIZE (sequence));
113 else if (CHAR_TABLE_P (sequence))
114 XSETFASTINT (val, MAX_CHAR);
115 else if (BOOL_VECTOR_P (sequence))
116 XSETFASTINT (val, bool_vector_size (sequence));
117 else if (COMPILEDP (sequence))
118 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
119 else if (CONSP (sequence))
120 {
121 EMACS_INT i = 0;
122
123 do
124 {
125 ++i;
126 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
127 {
128 if (MOST_POSITIVE_FIXNUM < i)
129 error ("List too long");
130 QUIT;
131 }
132 sequence = XCDR (sequence);
133 }
134 while (CONSP (sequence));
135
136 CHECK_LIST_END (sequence, sequence);
137
138 val = make_number (i);
139 }
140 else if (NILP (sequence))
141 XSETFASTINT (val, 0);
142 else
143 wrong_type_argument (Qsequencep, sequence);
144
145 return val;
146 }
147
148 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
149 doc: /* Return the length of a list, but avoid error or infinite loop.
150 This function never gets an error. If LIST is not really a list,
151 it returns 0. If LIST is circular, it returns a finite value
152 which is at least the number of distinct elements. */)
153 (Lisp_Object list)
154 {
155 Lisp_Object tail, halftail;
156 double hilen = 0;
157 uintmax_t lolen = 1;
158
159 if (! CONSP (list))
160 return make_number (0);
161
162 /* halftail is used to detect circular lists. */
163 for (tail = halftail = list; ; )
164 {
165 tail = XCDR (tail);
166 if (! CONSP (tail))
167 break;
168 if (EQ (tail, halftail))
169 break;
170 lolen++;
171 if ((lolen & 1) == 0)
172 {
173 halftail = XCDR (halftail);
174 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
175 {
176 QUIT;
177 if (lolen == 0)
178 hilen += UINTMAX_MAX + 1.0;
179 }
180 }
181 }
182
183 /* If the length does not fit into a fixnum, return a float.
184 On all known practical machines this returns an upper bound on
185 the true length. */
186 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
187 }
188
189 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
190 doc: /* Return the number of bytes in STRING.
191 If STRING is multibyte, this may be greater than the length of STRING. */)
192 (Lisp_Object string)
193 {
194 CHECK_STRING (string);
195 return make_number (SBYTES (string));
196 }
197
198 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
199 doc: /* Return t if two strings have identical contents.
200 Case is significant, but text properties are ignored.
201 Symbols are also allowed; their print names are used instead. */)
202 (register Lisp_Object s1, Lisp_Object s2)
203 {
204 if (SYMBOLP (s1))
205 s1 = SYMBOL_NAME (s1);
206 if (SYMBOLP (s2))
207 s2 = SYMBOL_NAME (s2);
208 CHECK_STRING (s1);
209 CHECK_STRING (s2);
210
211 if (SCHARS (s1) != SCHARS (s2)
212 || SBYTES (s1) != SBYTES (s2)
213 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
214 return Qnil;
215 return Qt;
216 }
217
218 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
219 doc: /* Compare the contents of two strings, converting to multibyte if needed.
220 The arguments START1, END1, START2, and END2, if non-nil, are
221 positions specifying which parts of STR1 or STR2 to compare. In
222 string STR1, compare the part between START1 (inclusive) and END1
223 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
224 the string; if END1 is nil, it defaults to the length of the string.
225 Likewise, in string STR2, compare the part between START2 and END2.
226
227 The strings are compared by the numeric values of their characters.
228 For instance, STR1 is "less than" STR2 if its first differing
229 character has a smaller numeric value. If IGNORE-CASE is non-nil,
230 characters are converted to lower-case before comparing them. Unibyte
231 strings are converted to multibyte for comparison.
232
233 The value is t if the strings (or specified portions) match.
234 If string STR1 is less, the value is a negative number N;
235 - 1 - N is the number of characters that match at the beginning.
236 If string STR1 is greater, the value is a positive number N;
237 N - 1 is the number of characters that match at the beginning. */)
238 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
239 {
240 register ptrdiff_t end1_char, end2_char;
241 register ptrdiff_t i1, i1_byte, i2, i2_byte;
242
243 CHECK_STRING (str1);
244 CHECK_STRING (str2);
245 if (NILP (start1))
246 start1 = make_number (0);
247 if (NILP (start2))
248 start2 = make_number (0);
249 CHECK_NATNUM (start1);
250 CHECK_NATNUM (start2);
251 if (! NILP (end1))
252 CHECK_NATNUM (end1);
253 if (! NILP (end2))
254 CHECK_NATNUM (end2);
255
256 end1_char = SCHARS (str1);
257 if (! NILP (end1) && end1_char > XINT (end1))
258 end1_char = XINT (end1);
259 if (end1_char < XINT (start1))
260 args_out_of_range (str1, start1);
261
262 end2_char = SCHARS (str2);
263 if (! NILP (end2) && end2_char > XINT (end2))
264 end2_char = XINT (end2);
265 if (end2_char < XINT (start2))
266 args_out_of_range (str2, start2);
267
268 i1 = XINT (start1);
269 i2 = XINT (start2);
270
271 i1_byte = string_char_to_byte (str1, i1);
272 i2_byte = string_char_to_byte (str2, i2);
273
274 while (i1 < end1_char && i2 < end2_char)
275 {
276 /* When we find a mismatch, we must compare the
277 characters, not just the bytes. */
278 int c1, c2;
279
280 if (STRING_MULTIBYTE (str1))
281 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
282 else
283 {
284 c1 = SREF (str1, i1++);
285 MAKE_CHAR_MULTIBYTE (c1);
286 }
287
288 if (STRING_MULTIBYTE (str2))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
290 else
291 {
292 c2 = SREF (str2, i2++);
293 MAKE_CHAR_MULTIBYTE (c2);
294 }
295
296 if (c1 == c2)
297 continue;
298
299 if (! NILP (ignore_case))
300 {
301 Lisp_Object tem;
302
303 tem = Fupcase (make_number (c1));
304 c1 = XINT (tem);
305 tem = Fupcase (make_number (c2));
306 c2 = XINT (tem);
307 }
308
309 if (c1 == c2)
310 continue;
311
312 /* Note that I1 has already been incremented
313 past the character that we are comparing;
314 hence we don't add or subtract 1 here. */
315 if (c1 < c2)
316 return make_number (- i1 + XINT (start1));
317 else
318 return make_number (i1 - XINT (start1));
319 }
320
321 if (i1 < end1_char)
322 return make_number (i1 - XINT (start1) + 1);
323 if (i2 < end2_char)
324 return make_number (- i1 + XINT (start1) - 1);
325
326 return Qt;
327 }
328
329 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
330 doc: /* Return t if first arg string is less than second in lexicographic order.
331 Case is significant.
332 Symbols are also allowed; their print names are used instead. */)
333 (register Lisp_Object s1, Lisp_Object s2)
334 {
335 register ptrdiff_t end;
336 register ptrdiff_t i1, i1_byte, i2, i2_byte;
337
338 if (SYMBOLP (s1))
339 s1 = SYMBOL_NAME (s1);
340 if (SYMBOLP (s2))
341 s2 = SYMBOL_NAME (s2);
342 CHECK_STRING (s1);
343 CHECK_STRING (s2);
344
345 i1 = i1_byte = i2 = i2_byte = 0;
346
347 end = SCHARS (s1);
348 if (end > SCHARS (s2))
349 end = SCHARS (s2);
350
351 while (i1 < end)
352 {
353 /* When we find a mismatch, we must compare the
354 characters, not just the bytes. */
355 int c1, c2;
356
357 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
358 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
359
360 if (c1 != c2)
361 return c1 < c2 ? Qt : Qnil;
362 }
363 return i1 < SCHARS (s2) ? Qt : Qnil;
364 }
365 \f
366 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
367 enum Lisp_Type target_type, bool last_special);
368
369 /* ARGSUSED */
370 Lisp_Object
371 concat2 (Lisp_Object s1, Lisp_Object s2)
372 {
373 Lisp_Object args[2];
374 args[0] = s1;
375 args[1] = s2;
376 return concat (2, args, Lisp_String, 0);
377 }
378
379 /* ARGSUSED */
380 Lisp_Object
381 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
382 {
383 Lisp_Object args[3];
384 args[0] = s1;
385 args[1] = s2;
386 args[2] = s3;
387 return concat (3, args, Lisp_String, 0);
388 }
389
390 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a list.
392 The result is a list whose elements are the elements of all the arguments.
393 Each argument may be a list, vector or string.
394 The last argument is not copied, just used as the tail of the new list.
395 usage: (append &rest SEQUENCES) */)
396 (ptrdiff_t nargs, Lisp_Object *args)
397 {
398 return concat (nargs, args, Lisp_Cons, 1);
399 }
400
401 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
402 doc: /* Concatenate all the arguments and make the result a string.
403 The result is a string whose elements are the elements of all the arguments.
404 Each argument may be a string or a list or vector of characters (integers).
405 usage: (concat &rest SEQUENCES) */)
406 (ptrdiff_t nargs, Lisp_Object *args)
407 {
408 return concat (nargs, args, Lisp_String, 0);
409 }
410
411 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
412 doc: /* Concatenate all the arguments and make the result a vector.
413 The result is a vector whose elements are the elements of all the arguments.
414 Each argument may be a list, vector or string.
415 usage: (vconcat &rest SEQUENCES) */)
416 (ptrdiff_t nargs, Lisp_Object *args)
417 {
418 return concat (nargs, args, Lisp_Vectorlike, 0);
419 }
420
421
422 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
423 doc: /* Return a copy of a list, vector, string or char-table.
424 The elements of a list or vector are not copied; they are shared
425 with the original. */)
426 (Lisp_Object arg)
427 {
428 if (NILP (arg)) return arg;
429
430 if (CHAR_TABLE_P (arg))
431 {
432 return copy_char_table (arg);
433 }
434
435 if (BOOL_VECTOR_P (arg))
436 {
437 EMACS_INT nbits = bool_vector_size (arg);
438 ptrdiff_t nbytes = bool_vector_bytes (nbits);
439 Lisp_Object val = make_uninit_bool_vector (nbits);
440 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
441 return val;
442 }
443
444 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
445 wrong_type_argument (Qsequencep, arg);
446
447 return concat (1, &arg, XTYPE (arg), 0);
448 }
449
450 /* This structure holds information of an argument of `concat' that is
451 a string and has text properties to be copied. */
452 struct textprop_rec
453 {
454 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
455 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
456 ptrdiff_t to; /* refer to VAL (the target string) */
457 };
458
459 static Lisp_Object
460 concat (ptrdiff_t nargs, Lisp_Object *args,
461 enum Lisp_Type target_type, bool last_special)
462 {
463 Lisp_Object val;
464 Lisp_Object tail;
465 Lisp_Object this;
466 ptrdiff_t toindex;
467 ptrdiff_t toindex_byte = 0;
468 EMACS_INT result_len;
469 EMACS_INT result_len_byte;
470 ptrdiff_t argnum;
471 Lisp_Object last_tail;
472 Lisp_Object prev;
473 bool some_multibyte;
474 /* When we make a multibyte string, we can't copy text properties
475 while concatenating each string because the length of resulting
476 string can't be decided until we finish the whole concatenation.
477 So, we record strings that have text properties to be copied
478 here, and copy the text properties after the concatenation. */
479 struct textprop_rec *textprops = NULL;
480 /* Number of elements in textprops. */
481 ptrdiff_t num_textprops = 0;
482 USE_SAFE_ALLOCA;
483
484 tail = Qnil;
485
486 /* In append, the last arg isn't treated like the others */
487 if (last_special && nargs > 0)
488 {
489 nargs--;
490 last_tail = args[nargs];
491 }
492 else
493 last_tail = Qnil;
494
495 /* Check each argument. */
496 for (argnum = 0; argnum < nargs; argnum++)
497 {
498 this = args[argnum];
499 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
500 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
501 wrong_type_argument (Qsequencep, this);
502 }
503
504 /* Compute total length in chars of arguments in RESULT_LEN.
505 If desired output is a string, also compute length in bytes
506 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
507 whether the result should be a multibyte string. */
508 result_len_byte = 0;
509 result_len = 0;
510 some_multibyte = 0;
511 for (argnum = 0; argnum < nargs; argnum++)
512 {
513 EMACS_INT len;
514 this = args[argnum];
515 len = XFASTINT (Flength (this));
516 if (target_type == Lisp_String)
517 {
518 /* We must count the number of bytes needed in the string
519 as well as the number of characters. */
520 ptrdiff_t i;
521 Lisp_Object ch;
522 int c;
523 ptrdiff_t this_len_byte;
524
525 if (VECTORP (this) || COMPILEDP (this))
526 for (i = 0; i < len; i++)
527 {
528 ch = AREF (this, i);
529 CHECK_CHARACTER (ch);
530 c = XFASTINT (ch);
531 this_len_byte = CHAR_BYTES (c);
532 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
533 string_overflow ();
534 result_len_byte += this_len_byte;
535 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
536 some_multibyte = 1;
537 }
538 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
539 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
540 else if (CONSP (this))
541 for (; CONSP (this); this = XCDR (this))
542 {
543 ch = XCAR (this);
544 CHECK_CHARACTER (ch);
545 c = XFASTINT (ch);
546 this_len_byte = CHAR_BYTES (c);
547 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
548 string_overflow ();
549 result_len_byte += this_len_byte;
550 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
551 some_multibyte = 1;
552 }
553 else if (STRINGP (this))
554 {
555 if (STRING_MULTIBYTE (this))
556 {
557 some_multibyte = 1;
558 this_len_byte = SBYTES (this);
559 }
560 else
561 this_len_byte = count_size_as_multibyte (SDATA (this),
562 SCHARS (this));
563 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
564 string_overflow ();
565 result_len_byte += this_len_byte;
566 }
567 }
568
569 result_len += len;
570 if (MOST_POSITIVE_FIXNUM < result_len)
571 memory_full (SIZE_MAX);
572 }
573
574 if (! some_multibyte)
575 result_len_byte = result_len;
576
577 /* Create the output object. */
578 if (target_type == Lisp_Cons)
579 val = Fmake_list (make_number (result_len), Qnil);
580 else if (target_type == Lisp_Vectorlike)
581 val = Fmake_vector (make_number (result_len), Qnil);
582 else if (some_multibyte)
583 val = make_uninit_multibyte_string (result_len, result_len_byte);
584 else
585 val = make_uninit_string (result_len);
586
587 /* In `append', if all but last arg are nil, return last arg. */
588 if (target_type == Lisp_Cons && EQ (val, Qnil))
589 return last_tail;
590
591 /* Copy the contents of the args into the result. */
592 if (CONSP (val))
593 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
594 else
595 toindex = 0, toindex_byte = 0;
596
597 prev = Qnil;
598 if (STRINGP (val))
599 SAFE_NALLOCA (textprops, 1, nargs);
600
601 for (argnum = 0; argnum < nargs; argnum++)
602 {
603 Lisp_Object thislen;
604 ptrdiff_t thisleni = 0;
605 register ptrdiff_t thisindex = 0;
606 register ptrdiff_t thisindex_byte = 0;
607
608 this = args[argnum];
609 if (!CONSP (this))
610 thislen = Flength (this), thisleni = XINT (thislen);
611
612 /* Between strings of the same kind, copy fast. */
613 if (STRINGP (this) && STRINGP (val)
614 && STRING_MULTIBYTE (this) == some_multibyte)
615 {
616 ptrdiff_t thislen_byte = SBYTES (this);
617
618 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
619 if (string_intervals (this))
620 {
621 textprops[num_textprops].argnum = argnum;
622 textprops[num_textprops].from = 0;
623 textprops[num_textprops++].to = toindex;
624 }
625 toindex_byte += thislen_byte;
626 toindex += thisleni;
627 }
628 /* Copy a single-byte string to a multibyte string. */
629 else if (STRINGP (this) && STRINGP (val))
630 {
631 if (string_intervals (this))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += copy_text (SDATA (this),
638 SDATA (val) + toindex_byte,
639 SCHARS (this), 0, 1);
640 toindex += thisleni;
641 }
642 else
643 /* Copy element by element. */
644 while (1)
645 {
646 register Lisp_Object elt;
647
648 /* Fetch next element of `this' arg into `elt', or break if
649 `this' is exhausted. */
650 if (NILP (this)) break;
651 if (CONSP (this))
652 elt = XCAR (this), this = XCDR (this);
653 else if (thisindex >= thisleni)
654 break;
655 else if (STRINGP (this))
656 {
657 int c;
658 if (STRING_MULTIBYTE (this))
659 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
660 thisindex,
661 thisindex_byte);
662 else
663 {
664 c = SREF (this, thisindex); thisindex++;
665 if (some_multibyte && !ASCII_CHAR_P (c))
666 c = BYTE8_TO_CHAR (c);
667 }
668 XSETFASTINT (elt, c);
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 elt = bool_vector_ref (this, thisindex);
673 thisindex++;
674 }
675 else
676 {
677 elt = AREF (this, thisindex);
678 thisindex++;
679 }
680
681 /* Store this element into the result. */
682 if (toindex < 0)
683 {
684 XSETCAR (tail, elt);
685 prev = tail;
686 tail = XCDR (tail);
687 }
688 else if (VECTORP (val))
689 {
690 ASET (val, toindex, elt);
691 toindex++;
692 }
693 else
694 {
695 int c;
696 CHECK_CHARACTER (elt);
697 c = XFASTINT (elt);
698 if (some_multibyte)
699 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
700 else
701 SSET (val, toindex_byte++, c);
702 toindex++;
703 }
704 }
705 }
706 if (!NILP (prev))
707 XSETCDR (prev, last_tail);
708
709 if (num_textprops > 0)
710 {
711 Lisp_Object props;
712 ptrdiff_t last_to_end = -1;
713
714 for (argnum = 0; argnum < num_textprops; argnum++)
715 {
716 this = args[textprops[argnum].argnum];
717 props = text_property_list (this,
718 make_number (0),
719 make_number (SCHARS (this)),
720 Qnil);
721 /* If successive arguments have properties, be sure that the
722 value of `composition' property be the copy. */
723 if (last_to_end == textprops[argnum].to)
724 make_composition_value_copy (props);
725 add_text_properties_from_list (val, props,
726 make_number (textprops[argnum].to));
727 last_to_end = textprops[argnum].to + SCHARS (this);
728 }
729 }
730
731 SAFE_FREE ();
732 return val;
733 }
734 \f
735 static Lisp_Object string_char_byte_cache_string;
736 static ptrdiff_t string_char_byte_cache_charpos;
737 static ptrdiff_t string_char_byte_cache_bytepos;
738
739 void
740 clear_string_char_byte_cache (void)
741 {
742 string_char_byte_cache_string = Qnil;
743 }
744
745 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
746
747 ptrdiff_t
748 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
749 {
750 ptrdiff_t i_byte;
751 ptrdiff_t best_below, best_below_byte;
752 ptrdiff_t best_above, best_above_byte;
753
754 best_below = best_below_byte = 0;
755 best_above = SCHARS (string);
756 best_above_byte = SBYTES (string);
757 if (best_above == best_above_byte)
758 return char_index;
759
760 if (EQ (string, string_char_byte_cache_string))
761 {
762 if (string_char_byte_cache_charpos < char_index)
763 {
764 best_below = string_char_byte_cache_charpos;
765 best_below_byte = string_char_byte_cache_bytepos;
766 }
767 else
768 {
769 best_above = string_char_byte_cache_charpos;
770 best_above_byte = string_char_byte_cache_bytepos;
771 }
772 }
773
774 if (char_index - best_below < best_above - char_index)
775 {
776 unsigned char *p = SDATA (string) + best_below_byte;
777
778 while (best_below < char_index)
779 {
780 p += BYTES_BY_CHAR_HEAD (*p);
781 best_below++;
782 }
783 i_byte = p - SDATA (string);
784 }
785 else
786 {
787 unsigned char *p = SDATA (string) + best_above_byte;
788
789 while (best_above > char_index)
790 {
791 p--;
792 while (!CHAR_HEAD_P (*p)) p--;
793 best_above--;
794 }
795 i_byte = p - SDATA (string);
796 }
797
798 string_char_byte_cache_bytepos = i_byte;
799 string_char_byte_cache_charpos = char_index;
800 string_char_byte_cache_string = string;
801
802 return i_byte;
803 }
804 \f
805 /* Return the character index corresponding to BYTE_INDEX in STRING. */
806
807 ptrdiff_t
808 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
809 {
810 ptrdiff_t i, i_byte;
811 ptrdiff_t best_below, best_below_byte;
812 ptrdiff_t best_above, best_above_byte;
813
814 best_below = best_below_byte = 0;
815 best_above = SCHARS (string);
816 best_above_byte = SBYTES (string);
817 if (best_above == best_above_byte)
818 return byte_index;
819
820 if (EQ (string, string_char_byte_cache_string))
821 {
822 if (string_char_byte_cache_bytepos < byte_index)
823 {
824 best_below = string_char_byte_cache_charpos;
825 best_below_byte = string_char_byte_cache_bytepos;
826 }
827 else
828 {
829 best_above = string_char_byte_cache_charpos;
830 best_above_byte = string_char_byte_cache_bytepos;
831 }
832 }
833
834 if (byte_index - best_below_byte < best_above_byte - byte_index)
835 {
836 unsigned char *p = SDATA (string) + best_below_byte;
837 unsigned char *pend = SDATA (string) + byte_index;
838
839 while (p < pend)
840 {
841 p += BYTES_BY_CHAR_HEAD (*p);
842 best_below++;
843 }
844 i = best_below;
845 i_byte = p - SDATA (string);
846 }
847 else
848 {
849 unsigned char *p = SDATA (string) + best_above_byte;
850 unsigned char *pbeg = SDATA (string) + byte_index;
851
852 while (p > pbeg)
853 {
854 p--;
855 while (!CHAR_HEAD_P (*p)) p--;
856 best_above--;
857 }
858 i = best_above;
859 i_byte = p - SDATA (string);
860 }
861
862 string_char_byte_cache_bytepos = i_byte;
863 string_char_byte_cache_charpos = i;
864 string_char_byte_cache_string = string;
865
866 return i;
867 }
868 \f
869 /* Convert STRING to a multibyte string. */
870
871 static Lisp_Object
872 string_make_multibyte (Lisp_Object string)
873 {
874 unsigned char *buf;
875 ptrdiff_t nbytes;
876 Lisp_Object ret;
877 USE_SAFE_ALLOCA;
878
879 if (STRING_MULTIBYTE (string))
880 return string;
881
882 nbytes = count_size_as_multibyte (SDATA (string),
883 SCHARS (string));
884 /* If all the chars are ASCII, they won't need any more bytes
885 once converted. In that case, we can return STRING itself. */
886 if (nbytes == SBYTES (string))
887 return string;
888
889 buf = SAFE_ALLOCA (nbytes);
890 copy_text (SDATA (string), buf, SBYTES (string),
891 0, 1);
892
893 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
894 SAFE_FREE ();
895
896 return ret;
897 }
898
899
900 /* Convert STRING (if unibyte) to a multibyte string without changing
901 the number of characters. Characters 0200 trough 0237 are
902 converted to eight-bit characters. */
903
904 Lisp_Object
905 string_to_multibyte (Lisp_Object string)
906 {
907 unsigned char *buf;
908 ptrdiff_t nbytes;
909 Lisp_Object ret;
910 USE_SAFE_ALLOCA;
911
912 if (STRING_MULTIBYTE (string))
913 return string;
914
915 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
916 /* If all the chars are ASCII, they won't need any more bytes once
917 converted. */
918 if (nbytes == SBYTES (string))
919 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
920
921 buf = SAFE_ALLOCA (nbytes);
922 memcpy (buf, SDATA (string), SBYTES (string));
923 str_to_multibyte (buf, nbytes, SBYTES (string));
924
925 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
926 SAFE_FREE ();
927
928 return ret;
929 }
930
931
932 /* Convert STRING to a single-byte string. */
933
934 Lisp_Object
935 string_make_unibyte (Lisp_Object string)
936 {
937 ptrdiff_t nchars;
938 unsigned char *buf;
939 Lisp_Object ret;
940 USE_SAFE_ALLOCA;
941
942 if (! STRING_MULTIBYTE (string))
943 return string;
944
945 nchars = SCHARS (string);
946
947 buf = SAFE_ALLOCA (nchars);
948 copy_text (SDATA (string), buf, SBYTES (string),
949 1, 0);
950
951 ret = make_unibyte_string ((char *) buf, nchars);
952 SAFE_FREE ();
953
954 return ret;
955 }
956
957 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
958 1, 1, 0,
959 doc: /* Return the multibyte equivalent of STRING.
960 If STRING is unibyte and contains non-ASCII characters, the function
961 `unibyte-char-to-multibyte' is used to convert each unibyte character
962 to a multibyte character. In this case, the returned string is a
963 newly created string with no text properties. If STRING is multibyte
964 or entirely ASCII, it is returned unchanged. In particular, when
965 STRING is unibyte and entirely ASCII, the returned string is unibyte.
966 \(When the characters are all ASCII, Emacs primitives will treat the
967 string the same way whether it is unibyte or multibyte.) */)
968 (Lisp_Object string)
969 {
970 CHECK_STRING (string);
971
972 return string_make_multibyte (string);
973 }
974
975 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
976 1, 1, 0,
977 doc: /* Return the unibyte equivalent of STRING.
978 Multibyte character codes are converted to unibyte according to
979 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
980 If the lookup in the translation table fails, this function takes just
981 the low 8 bits of each character. */)
982 (Lisp_Object string)
983 {
984 CHECK_STRING (string);
985
986 return string_make_unibyte (string);
987 }
988
989 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
990 1, 1, 0,
991 doc: /* Return a unibyte string with the same individual bytes as STRING.
992 If STRING is unibyte, the result is STRING itself.
993 Otherwise it is a newly created string, with no text properties.
994 If STRING is multibyte and contains a character of charset
995 `eight-bit', it is converted to the corresponding single byte. */)
996 (Lisp_Object string)
997 {
998 CHECK_STRING (string);
999
1000 if (STRING_MULTIBYTE (string))
1001 {
1002 unsigned char *str = (unsigned char *) xlispstrdup (string);
1003 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
1004
1005 string = make_unibyte_string ((char *) str, bytes);
1006 xfree (str);
1007 }
1008 return string;
1009 }
1010
1011 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1012 1, 1, 0,
1013 doc: /* Return a multibyte string with the same individual bytes as STRING.
1014 If STRING is multibyte, the result is STRING itself.
1015 Otherwise it is a newly created string, with no text properties.
1016
1017 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1018 part of a correct utf-8 sequence), it is converted to the corresponding
1019 multibyte character of charset `eight-bit'.
1020 See also `string-to-multibyte'.
1021
1022 Beware, this often doesn't really do what you think it does.
1023 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1024 If you're not sure, whether to use `string-as-multibyte' or
1025 `string-to-multibyte', use `string-to-multibyte'. */)
1026 (Lisp_Object string)
1027 {
1028 CHECK_STRING (string);
1029
1030 if (! STRING_MULTIBYTE (string))
1031 {
1032 Lisp_Object new_string;
1033 ptrdiff_t nchars, nbytes;
1034
1035 parse_str_as_multibyte (SDATA (string),
1036 SBYTES (string),
1037 &nchars, &nbytes);
1038 new_string = make_uninit_multibyte_string (nchars, nbytes);
1039 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1040 if (nbytes != SBYTES (string))
1041 str_as_multibyte (SDATA (new_string), nbytes,
1042 SBYTES (string), NULL);
1043 string = new_string;
1044 set_string_intervals (string, NULL);
1045 }
1046 return string;
1047 }
1048
1049 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1050 1, 1, 0,
1051 doc: /* Return a multibyte string with the same individual chars as STRING.
1052 If STRING is multibyte, the result is STRING itself.
1053 Otherwise it is a newly created string, with no text properties.
1054
1055 If STRING is unibyte and contains an 8-bit byte, it is converted to
1056 the corresponding multibyte character of charset `eight-bit'.
1057
1058 This differs from `string-as-multibyte' by converting each byte of a correct
1059 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1060 correct sequence. */)
1061 (Lisp_Object string)
1062 {
1063 CHECK_STRING (string);
1064
1065 return string_to_multibyte (string);
1066 }
1067
1068 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1069 1, 1, 0,
1070 doc: /* Return a unibyte string with the same individual chars as STRING.
1071 If STRING is unibyte, the result is STRING itself.
1072 Otherwise it is a newly created string, with no text properties,
1073 where each `eight-bit' character is converted to the corresponding byte.
1074 If STRING contains a non-ASCII, non-`eight-bit' character,
1075 an error is signaled. */)
1076 (Lisp_Object string)
1077 {
1078 CHECK_STRING (string);
1079
1080 if (STRING_MULTIBYTE (string))
1081 {
1082 ptrdiff_t chars = SCHARS (string);
1083 unsigned char *str = xmalloc (chars);
1084 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1085
1086 if (converted < chars)
1087 error ("Can't convert the %"pD"dth character to unibyte", converted);
1088 string = make_unibyte_string ((char *) str, chars);
1089 xfree (str);
1090 }
1091 return string;
1092 }
1093
1094 \f
1095 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1096 doc: /* Return a copy of ALIST.
1097 This is an alist which represents the same mapping from objects to objects,
1098 but does not share the alist structure with ALIST.
1099 The objects mapped (cars and cdrs of elements of the alist)
1100 are shared, however.
1101 Elements of ALIST that are not conses are also shared. */)
1102 (Lisp_Object alist)
1103 {
1104 register Lisp_Object tem;
1105
1106 CHECK_LIST (alist);
1107 if (NILP (alist))
1108 return alist;
1109 alist = concat (1, &alist, Lisp_Cons, 0);
1110 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1111 {
1112 register Lisp_Object car;
1113 car = XCAR (tem);
1114
1115 if (CONSP (car))
1116 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1117 }
1118 return alist;
1119 }
1120
1121 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1122 doc: /* Return a new string whose contents are a substring of STRING.
1123 The returned string consists of the characters between index FROM
1124 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1125 zero-indexed: 0 means the first character of STRING. Negative values
1126 are counted from the end of STRING. If TO is nil, the substring runs
1127 to the end of STRING.
1128
1129 The STRING argument may also be a vector. In that case, the return
1130 value is a new vector that contains the elements between index FROM
1131 \(inclusive) and index TO (exclusive) of that vector argument. */)
1132 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1133 {
1134 Lisp_Object res;
1135 ptrdiff_t size;
1136 EMACS_INT from_char, to_char;
1137
1138 CHECK_VECTOR_OR_STRING (string);
1139 CHECK_NUMBER (from);
1140
1141 if (STRINGP (string))
1142 size = SCHARS (string);
1143 else
1144 size = ASIZE (string);
1145
1146 if (NILP (to))
1147 to_char = size;
1148 else
1149 {
1150 CHECK_NUMBER (to);
1151
1152 to_char = XINT (to);
1153 if (to_char < 0)
1154 to_char += size;
1155 }
1156
1157 from_char = XINT (from);
1158 if (from_char < 0)
1159 from_char += size;
1160 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1161 args_out_of_range_3 (string, make_number (from_char),
1162 make_number (to_char));
1163
1164 if (STRINGP (string))
1165 {
1166 ptrdiff_t to_byte =
1167 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1168 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1169 res = make_specified_string (SSDATA (string) + from_byte,
1170 to_char - from_char, to_byte - from_byte,
1171 STRING_MULTIBYTE (string));
1172 copy_text_properties (make_number (from_char), make_number (to_char),
1173 string, make_number (0), res, Qnil);
1174 }
1175 else
1176 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1177
1178 return res;
1179 }
1180
1181
1182 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1183 doc: /* Return a substring of STRING, without text properties.
1184 It starts at index FROM and ends before TO.
1185 TO may be nil or omitted; then the substring runs to the end of STRING.
1186 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1187 If FROM or TO is negative, it counts from the end.
1188
1189 With one argument, just copy STRING without its properties. */)
1190 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1191 {
1192 ptrdiff_t size;
1193 EMACS_INT from_char, to_char;
1194 ptrdiff_t from_byte, to_byte;
1195
1196 CHECK_STRING (string);
1197
1198 size = SCHARS (string);
1199
1200 if (NILP (from))
1201 from_char = 0;
1202 else
1203 {
1204 CHECK_NUMBER (from);
1205 from_char = XINT (from);
1206 if (from_char < 0)
1207 from_char += size;
1208 }
1209
1210 if (NILP (to))
1211 to_char = size;
1212 else
1213 {
1214 CHECK_NUMBER (to);
1215 to_char = XINT (to);
1216 if (to_char < 0)
1217 to_char += size;
1218 }
1219
1220 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1221 args_out_of_range_3 (string, make_number (from_char),
1222 make_number (to_char));
1223
1224 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1225 to_byte =
1226 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1227 return make_specified_string (SSDATA (string) + from_byte,
1228 to_char - from_char, to_byte - from_byte,
1229 STRING_MULTIBYTE (string));
1230 }
1231
1232 /* Extract a substring of STRING, giving start and end positions
1233 both in characters and in bytes. */
1234
1235 Lisp_Object
1236 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1237 ptrdiff_t to, ptrdiff_t to_byte)
1238 {
1239 Lisp_Object res;
1240 ptrdiff_t size;
1241
1242 CHECK_VECTOR_OR_STRING (string);
1243
1244 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1245
1246 if (!(0 <= from && from <= to && to <= size))
1247 args_out_of_range_3 (string, make_number (from), make_number (to));
1248
1249 if (STRINGP (string))
1250 {
1251 res = make_specified_string (SSDATA (string) + from_byte,
1252 to - from, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 copy_text_properties (make_number (from), make_number (to),
1255 string, make_number (0), res, Qnil);
1256 }
1257 else
1258 res = Fvector (to - from, aref_addr (string, from));
1259
1260 return res;
1261 }
1262 \f
1263 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1264 doc: /* Take cdr N times on LIST, return the result. */)
1265 (Lisp_Object n, Lisp_Object list)
1266 {
1267 EMACS_INT i, num;
1268 CHECK_NUMBER (n);
1269 num = XINT (n);
1270 for (i = 0; i < num && !NILP (list); i++)
1271 {
1272 QUIT;
1273 CHECK_LIST_CONS (list, list);
1274 list = XCDR (list);
1275 }
1276 return list;
1277 }
1278
1279 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1280 doc: /* Return the Nth element of LIST.
1281 N counts from zero. If LIST is not that long, nil is returned. */)
1282 (Lisp_Object n, Lisp_Object list)
1283 {
1284 return Fcar (Fnthcdr (n, list));
1285 }
1286
1287 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1288 doc: /* Return element of SEQUENCE at index N. */)
1289 (register Lisp_Object sequence, Lisp_Object n)
1290 {
1291 CHECK_NUMBER (n);
1292 if (CONSP (sequence) || NILP (sequence))
1293 return Fcar (Fnthcdr (n, sequence));
1294
1295 /* Faref signals a "not array" error, so check here. */
1296 CHECK_ARRAY (sequence, Qsequencep);
1297 return Faref (sequence, n);
1298 }
1299
1300 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1301 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1302 The value is actually the tail of LIST whose car is ELT. */)
1303 (register Lisp_Object elt, Lisp_Object list)
1304 {
1305 register Lisp_Object tail;
1306 for (tail = list; CONSP (tail); tail = XCDR (tail))
1307 {
1308 register Lisp_Object tem;
1309 CHECK_LIST_CONS (tail, list);
1310 tem = XCAR (tail);
1311 if (! NILP (Fequal (elt, tem)))
1312 return tail;
1313 QUIT;
1314 }
1315 return Qnil;
1316 }
1317
1318 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1319 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1320 The value is actually the tail of LIST whose car is ELT. */)
1321 (register Lisp_Object elt, Lisp_Object list)
1322 {
1323 while (1)
1324 {
1325 if (!CONSP (list) || EQ (XCAR (list), elt))
1326 break;
1327
1328 list = XCDR (list);
1329 if (!CONSP (list) || EQ (XCAR (list), elt))
1330 break;
1331
1332 list = XCDR (list);
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 QUIT;
1338 }
1339
1340 CHECK_LIST (list);
1341 return list;
1342 }
1343
1344 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1345 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1346 The value is actually the tail of LIST whose car is ELT. */)
1347 (register Lisp_Object elt, Lisp_Object list)
1348 {
1349 register Lisp_Object tail;
1350
1351 if (!FLOATP (elt))
1352 return Fmemq (elt, list);
1353
1354 for (tail = list; CONSP (tail); tail = XCDR (tail))
1355 {
1356 register Lisp_Object tem;
1357 CHECK_LIST_CONS (tail, list);
1358 tem = XCAR (tail);
1359 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
1360 return tail;
1361 QUIT;
1362 }
1363 return Qnil;
1364 }
1365
1366 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1367 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1368 The value is actually the first element of LIST whose car is KEY.
1369 Elements of LIST that are not conses are ignored. */)
1370 (Lisp_Object key, Lisp_Object list)
1371 {
1372 while (1)
1373 {
1374 if (!CONSP (list)
1375 || (CONSP (XCAR (list))
1376 && EQ (XCAR (XCAR (list)), key)))
1377 break;
1378
1379 list = XCDR (list);
1380 if (!CONSP (list)
1381 || (CONSP (XCAR (list))
1382 && EQ (XCAR (XCAR (list)), key)))
1383 break;
1384
1385 list = XCDR (list);
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1390
1391 list = XCDR (list);
1392 QUIT;
1393 }
1394
1395 return CAR (list);
1396 }
1397
1398 /* Like Fassq but never report an error and do not allow quits.
1399 Use only on lists known never to be circular. */
1400
1401 Lisp_Object
1402 assq_no_quit (Lisp_Object key, Lisp_Object list)
1403 {
1404 while (CONSP (list)
1405 && (!CONSP (XCAR (list))
1406 || !EQ (XCAR (XCAR (list)), key)))
1407 list = XCDR (list);
1408
1409 return CAR_SAFE (list);
1410 }
1411
1412 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1413 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1414 The value is actually the first element of LIST whose car equals KEY. */)
1415 (Lisp_Object key, Lisp_Object list)
1416 {
1417 Lisp_Object car;
1418
1419 while (1)
1420 {
1421 if (!CONSP (list)
1422 || (CONSP (XCAR (list))
1423 && (car = XCAR (XCAR (list)),
1424 EQ (car, key) || !NILP (Fequal (car, key)))))
1425 break;
1426
1427 list = XCDR (list);
1428 if (!CONSP (list)
1429 || (CONSP (XCAR (list))
1430 && (car = XCAR (XCAR (list)),
1431 EQ (car, key) || !NILP (Fequal (car, key)))))
1432 break;
1433
1434 list = XCDR (list);
1435 if (!CONSP (list)
1436 || (CONSP (XCAR (list))
1437 && (car = XCAR (XCAR (list)),
1438 EQ (car, key) || !NILP (Fequal (car, key)))))
1439 break;
1440
1441 list = XCDR (list);
1442 QUIT;
1443 }
1444
1445 return CAR (list);
1446 }
1447
1448 /* Like Fassoc but never report an error and do not allow quits.
1449 Use only on lists known never to be circular. */
1450
1451 Lisp_Object
1452 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1453 {
1454 while (CONSP (list)
1455 && (!CONSP (XCAR (list))
1456 || (!EQ (XCAR (XCAR (list)), key)
1457 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1458 list = XCDR (list);
1459
1460 return CONSP (list) ? XCAR (list) : Qnil;
1461 }
1462
1463 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1464 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1465 The value is actually the first element of LIST whose cdr is KEY. */)
1466 (register Lisp_Object key, Lisp_Object list)
1467 {
1468 while (1)
1469 {
1470 if (!CONSP (list)
1471 || (CONSP (XCAR (list))
1472 && EQ (XCDR (XCAR (list)), key)))
1473 break;
1474
1475 list = XCDR (list);
1476 if (!CONSP (list)
1477 || (CONSP (XCAR (list))
1478 && EQ (XCDR (XCAR (list)), key)))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1486
1487 list = XCDR (list);
1488 QUIT;
1489 }
1490
1491 return CAR (list);
1492 }
1493
1494 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1495 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1496 The value is actually the first element of LIST whose cdr equals KEY. */)
1497 (Lisp_Object key, Lisp_Object list)
1498 {
1499 Lisp_Object cdr;
1500
1501 while (1)
1502 {
1503 if (!CONSP (list)
1504 || (CONSP (XCAR (list))
1505 && (cdr = XCDR (XCAR (list)),
1506 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1507 break;
1508
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && (cdr = XCDR (XCAR (list)),
1513 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1514 break;
1515
1516 list = XCDR (list);
1517 if (!CONSP (list)
1518 || (CONSP (XCAR (list))
1519 && (cdr = XCDR (XCAR (list)),
1520 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1521 break;
1522
1523 list = XCDR (list);
1524 QUIT;
1525 }
1526
1527 return CAR (list);
1528 }
1529 \f
1530 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1531 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1532 More precisely, this function skips any members `eq' to ELT at the
1533 front of LIST, then removes members `eq' to ELT from the remaining
1534 sublist by modifying its list structure, then returns the resulting
1535 list.
1536
1537 Write `(setq foo (delq element foo))' to be sure of correctly changing
1538 the value of a list `foo'. */)
1539 (register Lisp_Object elt, Lisp_Object list)
1540 {
1541 Lisp_Object tail, tortoise, prev = Qnil;
1542 bool skip;
1543
1544 FOR_EACH_TAIL (tail, list, tortoise, skip)
1545 {
1546 Lisp_Object tem = XCAR (tail);
1547 if (EQ (elt, tem))
1548 {
1549 if (NILP (prev))
1550 list = XCDR (tail);
1551 else
1552 Fsetcdr (prev, XCDR (tail));
1553 }
1554 else
1555 prev = tail;
1556 }
1557 return list;
1558 }
1559
1560 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1561 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1562 SEQ must be a sequence (i.e. a list, a vector, or a string).
1563 The return value is a sequence of the same type.
1564
1565 If SEQ is a list, this behaves like `delq', except that it compares
1566 with `equal' instead of `eq'. In particular, it may remove elements
1567 by altering the list structure.
1568
1569 If SEQ is not a list, deletion is never performed destructively;
1570 instead this function creates and returns a new vector or string.
1571
1572 Write `(setq foo (delete element foo))' to be sure of correctly
1573 changing the value of a sequence `foo'. */)
1574 (Lisp_Object elt, Lisp_Object seq)
1575 {
1576 if (VECTORP (seq))
1577 {
1578 ptrdiff_t i, n;
1579
1580 for (i = n = 0; i < ASIZE (seq); ++i)
1581 if (NILP (Fequal (AREF (seq, i), elt)))
1582 ++n;
1583
1584 if (n != ASIZE (seq))
1585 {
1586 struct Lisp_Vector *p = allocate_vector (n);
1587
1588 for (i = n = 0; i < ASIZE (seq); ++i)
1589 if (NILP (Fequal (AREF (seq, i), elt)))
1590 p->contents[n++] = AREF (seq, i);
1591
1592 XSETVECTOR (seq, p);
1593 }
1594 }
1595 else if (STRINGP (seq))
1596 {
1597 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1598 int c;
1599
1600 for (i = nchars = nbytes = ibyte = 0;
1601 i < SCHARS (seq);
1602 ++i, ibyte += cbytes)
1603 {
1604 if (STRING_MULTIBYTE (seq))
1605 {
1606 c = STRING_CHAR (SDATA (seq) + ibyte);
1607 cbytes = CHAR_BYTES (c);
1608 }
1609 else
1610 {
1611 c = SREF (seq, i);
1612 cbytes = 1;
1613 }
1614
1615 if (!INTEGERP (elt) || c != XINT (elt))
1616 {
1617 ++nchars;
1618 nbytes += cbytes;
1619 }
1620 }
1621
1622 if (nchars != SCHARS (seq))
1623 {
1624 Lisp_Object tem;
1625
1626 tem = make_uninit_multibyte_string (nchars, nbytes);
1627 if (!STRING_MULTIBYTE (seq))
1628 STRING_SET_UNIBYTE (tem);
1629
1630 for (i = nchars = nbytes = ibyte = 0;
1631 i < SCHARS (seq);
1632 ++i, ibyte += cbytes)
1633 {
1634 if (STRING_MULTIBYTE (seq))
1635 {
1636 c = STRING_CHAR (SDATA (seq) + ibyte);
1637 cbytes = CHAR_BYTES (c);
1638 }
1639 else
1640 {
1641 c = SREF (seq, i);
1642 cbytes = 1;
1643 }
1644
1645 if (!INTEGERP (elt) || c != XINT (elt))
1646 {
1647 unsigned char *from = SDATA (seq) + ibyte;
1648 unsigned char *to = SDATA (tem) + nbytes;
1649 ptrdiff_t n;
1650
1651 ++nchars;
1652 nbytes += cbytes;
1653
1654 for (n = cbytes; n--; )
1655 *to++ = *from++;
1656 }
1657 }
1658
1659 seq = tem;
1660 }
1661 }
1662 else
1663 {
1664 Lisp_Object tail, prev;
1665
1666 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1667 {
1668 CHECK_LIST_CONS (tail, seq);
1669
1670 if (!NILP (Fequal (elt, XCAR (tail))))
1671 {
1672 if (NILP (prev))
1673 seq = XCDR (tail);
1674 else
1675 Fsetcdr (prev, XCDR (tail));
1676 }
1677 else
1678 prev = tail;
1679 QUIT;
1680 }
1681 }
1682
1683 return seq;
1684 }
1685
1686 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1687 doc: /* Reverse LIST by modifying cdr pointers.
1688 Return the reversed list. Expects a properly nil-terminated list. */)
1689 (Lisp_Object list)
1690 {
1691 register Lisp_Object prev, tail, next;
1692
1693 if (NILP (list)) return list;
1694 prev = Qnil;
1695 tail = list;
1696 while (!NILP (tail))
1697 {
1698 QUIT;
1699 CHECK_LIST_CONS (tail, tail);
1700 next = XCDR (tail);
1701 Fsetcdr (tail, prev);
1702 prev = tail;
1703 tail = next;
1704 }
1705 return prev;
1706 }
1707
1708 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1709 doc: /* Reverse LIST, copying. Return the reversed list.
1710 See also the function `nreverse', which is used more often. */)
1711 (Lisp_Object list)
1712 {
1713 Lisp_Object new;
1714
1715 for (new = Qnil; CONSP (list); list = XCDR (list))
1716 {
1717 QUIT;
1718 new = Fcons (XCAR (list), new);
1719 }
1720 CHECK_LIST_END (list, list);
1721 return new;
1722 }
1723 \f
1724 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1725 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1726 Returns the sorted list. LIST is modified by side effects.
1727 PREDICATE is called with two elements of LIST, and should return non-nil
1728 if the first element should sort before the second. */)
1729 (Lisp_Object list, Lisp_Object predicate)
1730 {
1731 Lisp_Object front, back;
1732 register Lisp_Object len, tem;
1733 struct gcpro gcpro1, gcpro2;
1734 EMACS_INT length;
1735
1736 front = list;
1737 len = Flength (list);
1738 length = XINT (len);
1739 if (length < 2)
1740 return list;
1741
1742 XSETINT (len, (length / 2) - 1);
1743 tem = Fnthcdr (len, list);
1744 back = Fcdr (tem);
1745 Fsetcdr (tem, Qnil);
1746
1747 GCPRO2 (front, back);
1748 front = Fsort (front, predicate);
1749 back = Fsort (back, predicate);
1750 UNGCPRO;
1751 return merge (front, back, predicate);
1752 }
1753
1754 Lisp_Object
1755 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1756 {
1757 Lisp_Object value;
1758 register Lisp_Object tail;
1759 Lisp_Object tem;
1760 register Lisp_Object l1, l2;
1761 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1762
1763 l1 = org_l1;
1764 l2 = org_l2;
1765 tail = Qnil;
1766 value = Qnil;
1767
1768 /* It is sufficient to protect org_l1 and org_l2.
1769 When l1 and l2 are updated, we copy the new values
1770 back into the org_ vars. */
1771 GCPRO4 (org_l1, org_l2, pred, value);
1772
1773 while (1)
1774 {
1775 if (NILP (l1))
1776 {
1777 UNGCPRO;
1778 if (NILP (tail))
1779 return l2;
1780 Fsetcdr (tail, l2);
1781 return value;
1782 }
1783 if (NILP (l2))
1784 {
1785 UNGCPRO;
1786 if (NILP (tail))
1787 return l1;
1788 Fsetcdr (tail, l1);
1789 return value;
1790 }
1791 tem = call2 (pred, Fcar (l2), Fcar (l1));
1792 if (NILP (tem))
1793 {
1794 tem = l1;
1795 l1 = Fcdr (l1);
1796 org_l1 = l1;
1797 }
1798 else
1799 {
1800 tem = l2;
1801 l2 = Fcdr (l2);
1802 org_l2 = l2;
1803 }
1804 if (NILP (tail))
1805 value = tem;
1806 else
1807 Fsetcdr (tail, tem);
1808 tail = tem;
1809 }
1810 }
1811
1812 \f
1813 /* This does not check for quits. That is safe since it must terminate. */
1814
1815 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1816 doc: /* Extract a value from a property list.
1817 PLIST is a property list, which is a list of the form
1818 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1819 corresponding to the given PROP, or nil if PROP is not one of the
1820 properties on the list. This function never signals an error. */)
1821 (Lisp_Object plist, Lisp_Object prop)
1822 {
1823 Lisp_Object tail, halftail;
1824
1825 /* halftail is used to detect circular lists. */
1826 tail = halftail = plist;
1827 while (CONSP (tail) && CONSP (XCDR (tail)))
1828 {
1829 if (EQ (prop, XCAR (tail)))
1830 return XCAR (XCDR (tail));
1831
1832 tail = XCDR (XCDR (tail));
1833 halftail = XCDR (halftail);
1834 if (EQ (tail, halftail))
1835 break;
1836 }
1837
1838 return Qnil;
1839 }
1840
1841 DEFUN ("get", Fget, Sget, 2, 2, 0,
1842 doc: /* Return the value of SYMBOL's PROPNAME property.
1843 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1844 (Lisp_Object symbol, Lisp_Object propname)
1845 {
1846 CHECK_SYMBOL (symbol);
1847 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1848 }
1849
1850 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1851 doc: /* Change value in PLIST of PROP to VAL.
1852 PLIST is a property list, which is a list of the form
1853 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1854 If PROP is already a property on the list, its value is set to VAL,
1855 otherwise the new PROP VAL pair is added. The new plist is returned;
1856 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1857 The PLIST is modified by side effects. */)
1858 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1859 {
1860 register Lisp_Object tail, prev;
1861 Lisp_Object newcell;
1862 prev = Qnil;
1863 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1864 tail = XCDR (XCDR (tail)))
1865 {
1866 if (EQ (prop, XCAR (tail)))
1867 {
1868 Fsetcar (XCDR (tail), val);
1869 return plist;
1870 }
1871
1872 prev = tail;
1873 QUIT;
1874 }
1875 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1876 if (NILP (prev))
1877 return newcell;
1878 else
1879 Fsetcdr (XCDR (prev), newcell);
1880 return plist;
1881 }
1882
1883 DEFUN ("put", Fput, Sput, 3, 3, 0,
1884 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1885 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1886 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1887 {
1888 CHECK_SYMBOL (symbol);
1889 set_symbol_plist
1890 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1891 return value;
1892 }
1893 \f
1894 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1895 doc: /* Extract a value from a property list, comparing with `equal'.
1896 PLIST is a property list, which is a list of the form
1897 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1898 corresponding to the given PROP, or nil if PROP is not
1899 one of the properties on the list. */)
1900 (Lisp_Object plist, Lisp_Object prop)
1901 {
1902 Lisp_Object tail;
1903
1904 for (tail = plist;
1905 CONSP (tail) && CONSP (XCDR (tail));
1906 tail = XCDR (XCDR (tail)))
1907 {
1908 if (! NILP (Fequal (prop, XCAR (tail))))
1909 return XCAR (XCDR (tail));
1910
1911 QUIT;
1912 }
1913
1914 CHECK_LIST_END (tail, prop);
1915
1916 return Qnil;
1917 }
1918
1919 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1920 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1921 PLIST is a property list, which is a list of the form
1922 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1923 If PROP is already a property on the list, its value is set to VAL,
1924 otherwise the new PROP VAL pair is added. The new plist is returned;
1925 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1926 The PLIST is modified by side effects. */)
1927 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1928 {
1929 register Lisp_Object tail, prev;
1930 Lisp_Object newcell;
1931 prev = Qnil;
1932 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1933 tail = XCDR (XCDR (tail)))
1934 {
1935 if (! NILP (Fequal (prop, XCAR (tail))))
1936 {
1937 Fsetcar (XCDR (tail), val);
1938 return plist;
1939 }
1940
1941 prev = tail;
1942 QUIT;
1943 }
1944 newcell = list2 (prop, val);
1945 if (NILP (prev))
1946 return newcell;
1947 else
1948 Fsetcdr (XCDR (prev), newcell);
1949 return plist;
1950 }
1951 \f
1952 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1953 doc: /* Return t if the two args are the same Lisp object.
1954 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1955 (Lisp_Object obj1, Lisp_Object obj2)
1956 {
1957 if (FLOATP (obj1))
1958 return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
1959 else
1960 return EQ (obj1, obj2) ? Qt : Qnil;
1961 }
1962
1963 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1964 doc: /* Return t if two Lisp objects have similar structure and contents.
1965 They must have the same data type.
1966 Conses are compared by comparing the cars and the cdrs.
1967 Vectors and strings are compared element by element.
1968 Numbers are compared by value, but integers cannot equal floats.
1969 (Use `=' if you want integers and floats to be able to be equal.)
1970 Symbols must match exactly. */)
1971 (register Lisp_Object o1, Lisp_Object o2)
1972 {
1973 return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
1974 }
1975
1976 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1977 doc: /* Return t if two Lisp objects have similar structure and contents.
1978 This is like `equal' except that it compares the text properties
1979 of strings. (`equal' ignores text properties.) */)
1980 (register Lisp_Object o1, Lisp_Object o2)
1981 {
1982 return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
1983 }
1984
1985 /* DEPTH is current depth of recursion. Signal an error if it
1986 gets too deep.
1987 PROPS means compare string text properties too. */
1988
1989 static bool
1990 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
1991 Lisp_Object ht)
1992 {
1993 if (depth > 10)
1994 {
1995 if (depth > 200)
1996 error ("Stack overflow in equal");
1997 if (NILP (ht))
1998 {
1999 Lisp_Object args[2];
2000 args[0] = QCtest;
2001 args[1] = Qeq;
2002 ht = Fmake_hash_table (2, args);
2003 }
2004 switch (XTYPE (o1))
2005 {
2006 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2007 {
2008 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2009 EMACS_UINT hash;
2010 ptrdiff_t i = hash_lookup (h, o1, &hash);
2011 if (i >= 0)
2012 { /* `o1' was seen already. */
2013 Lisp_Object o2s = HASH_VALUE (h, i);
2014 if (!NILP (Fmemq (o2, o2s)))
2015 return 1;
2016 else
2017 set_hash_value_slot (h, i, Fcons (o2, o2s));
2018 }
2019 else
2020 hash_put (h, o1, Fcons (o2, Qnil), hash);
2021 }
2022 default: ;
2023 }
2024 }
2025
2026 tail_recurse:
2027 QUIT;
2028 if (EQ (o1, o2))
2029 return 1;
2030 if (XTYPE (o1) != XTYPE (o2))
2031 return 0;
2032
2033 switch (XTYPE (o1))
2034 {
2035 case Lisp_Float:
2036 {
2037 double d1, d2;
2038
2039 d1 = extract_float (o1);
2040 d2 = extract_float (o2);
2041 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2042 though they are not =. */
2043 return d1 == d2 || (d1 != d1 && d2 != d2);
2044 }
2045
2046 case Lisp_Cons:
2047 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
2048 return 0;
2049 o1 = XCDR (o1);
2050 o2 = XCDR (o2);
2051 /* FIXME: This inf-loops in a circular list! */
2052 goto tail_recurse;
2053
2054 case Lisp_Misc:
2055 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2056 return 0;
2057 if (OVERLAYP (o1))
2058 {
2059 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2060 depth + 1, props, ht)
2061 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2062 depth + 1, props, ht))
2063 return 0;
2064 o1 = XOVERLAY (o1)->plist;
2065 o2 = XOVERLAY (o2)->plist;
2066 goto tail_recurse;
2067 }
2068 if (MARKERP (o1))
2069 {
2070 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2071 && (XMARKER (o1)->buffer == 0
2072 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2073 }
2074 break;
2075
2076 case Lisp_Vectorlike:
2077 {
2078 register int i;
2079 ptrdiff_t size = ASIZE (o1);
2080 /* Pseudovectors have the type encoded in the size field, so this test
2081 actually checks that the objects have the same type as well as the
2082 same size. */
2083 if (ASIZE (o2) != size)
2084 return 0;
2085 /* Boolvectors are compared much like strings. */
2086 if (BOOL_VECTOR_P (o1))
2087 {
2088 EMACS_INT size = bool_vector_size (o1);
2089 if (size != bool_vector_size (o2))
2090 return 0;
2091 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2092 bool_vector_bytes (size)))
2093 return 0;
2094 return 1;
2095 }
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return compare_window_configurations (o1, o2, 0);
2098
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object)
2101 are sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2103 {
2104 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2105 < PVEC_COMPILED)
2106 return 0;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2108 }
2109 for (i = 0; i < size; i++)
2110 {
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (!internal_equal (v1, v2, depth + 1, props, ht))
2115 return 0;
2116 }
2117 return 1;
2118 }
2119 break;
2120
2121 case Lisp_String:
2122 if (SCHARS (o1) != SCHARS (o2))
2123 return 0;
2124 if (SBYTES (o1) != SBYTES (o2))
2125 return 0;
2126 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2127 return 0;
2128 if (props && !compare_string_intervals (o1, o2))
2129 return 0;
2130 return 1;
2131
2132 default:
2133 break;
2134 }
2135
2136 return 0;
2137 }
2138 \f
2139
2140 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2141 doc: /* Store each element of ARRAY with ITEM.
2142 ARRAY is a vector, string, char-table, or bool-vector. */)
2143 (Lisp_Object array, Lisp_Object item)
2144 {
2145 register ptrdiff_t size, idx;
2146
2147 if (VECTORP (array))
2148 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2149 ASET (array, idx, item);
2150 else if (CHAR_TABLE_P (array))
2151 {
2152 int i;
2153
2154 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2155 set_char_table_contents (array, i, item);
2156 set_char_table_defalt (array, item);
2157 }
2158 else if (STRINGP (array))
2159 {
2160 register unsigned char *p = SDATA (array);
2161 int charval;
2162 CHECK_CHARACTER (item);
2163 charval = XFASTINT (item);
2164 size = SCHARS (array);
2165 if (STRING_MULTIBYTE (array))
2166 {
2167 unsigned char str[MAX_MULTIBYTE_LENGTH];
2168 int len = CHAR_STRING (charval, str);
2169 ptrdiff_t size_byte = SBYTES (array);
2170
2171 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2172 || SCHARS (array) * len != size_byte)
2173 error ("Attempt to change byte length of a string");
2174 for (idx = 0; idx < size_byte; idx++)
2175 *p++ = str[idx % len];
2176 }
2177 else
2178 for (idx = 0; idx < size; idx++)
2179 p[idx] = charval;
2180 }
2181 else if (BOOL_VECTOR_P (array))
2182 return bool_vector_fill (array, item);
2183 else
2184 wrong_type_argument (Qarrayp, array);
2185 return array;
2186 }
2187
2188 DEFUN ("clear-string", Fclear_string, Sclear_string,
2189 1, 1, 0,
2190 doc: /* Clear the contents of STRING.
2191 This makes STRING unibyte and may change its length. */)
2192 (Lisp_Object string)
2193 {
2194 ptrdiff_t len;
2195 CHECK_STRING (string);
2196 len = SBYTES (string);
2197 memset (SDATA (string), 0, len);
2198 STRING_SET_CHARS (string, len);
2199 STRING_SET_UNIBYTE (string);
2200 return Qnil;
2201 }
2202 \f
2203 /* ARGSUSED */
2204 Lisp_Object
2205 nconc2 (Lisp_Object s1, Lisp_Object s2)
2206 {
2207 Lisp_Object args[2];
2208 args[0] = s1;
2209 args[1] = s2;
2210 return Fnconc (2, args);
2211 }
2212
2213 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2214 doc: /* Concatenate any number of lists by altering them.
2215 Only the last argument is not altered, and need not be a list.
2216 usage: (nconc &rest LISTS) */)
2217 (ptrdiff_t nargs, Lisp_Object *args)
2218 {
2219 ptrdiff_t argnum;
2220 register Lisp_Object tail, tem, val;
2221
2222 val = tail = Qnil;
2223
2224 for (argnum = 0; argnum < nargs; argnum++)
2225 {
2226 tem = args[argnum];
2227 if (NILP (tem)) continue;
2228
2229 if (NILP (val))
2230 val = tem;
2231
2232 if (argnum + 1 == nargs) break;
2233
2234 CHECK_LIST_CONS (tem, tem);
2235
2236 while (CONSP (tem))
2237 {
2238 tail = tem;
2239 tem = XCDR (tail);
2240 QUIT;
2241 }
2242
2243 tem = args[argnum + 1];
2244 Fsetcdr (tail, tem);
2245 if (NILP (tem))
2246 args[argnum + 1] = tail;
2247 }
2248
2249 return val;
2250 }
2251 \f
2252 /* This is the guts of all mapping functions.
2253 Apply FN to each element of SEQ, one by one,
2254 storing the results into elements of VALS, a C vector of Lisp_Objects.
2255 LENI is the length of VALS, which should also be the length of SEQ. */
2256
2257 static void
2258 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2259 {
2260 register Lisp_Object tail;
2261 Lisp_Object dummy;
2262 register EMACS_INT i;
2263 struct gcpro gcpro1, gcpro2, gcpro3;
2264
2265 if (vals)
2266 {
2267 /* Don't let vals contain any garbage when GC happens. */
2268 for (i = 0; i < leni; i++)
2269 vals[i] = Qnil;
2270
2271 GCPRO3 (dummy, fn, seq);
2272 gcpro1.var = vals;
2273 gcpro1.nvars = leni;
2274 }
2275 else
2276 GCPRO2 (fn, seq);
2277 /* We need not explicitly protect `tail' because it is used only on lists, and
2278 1) lists are not relocated and 2) the list is marked via `seq' so will not
2279 be freed */
2280
2281 if (VECTORP (seq) || COMPILEDP (seq))
2282 {
2283 for (i = 0; i < leni; i++)
2284 {
2285 dummy = call1 (fn, AREF (seq, i));
2286 if (vals)
2287 vals[i] = dummy;
2288 }
2289 }
2290 else if (BOOL_VECTOR_P (seq))
2291 {
2292 for (i = 0; i < leni; i++)
2293 {
2294 dummy = call1 (fn, bool_vector_ref (seq, i));
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328 }
2329
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336 {
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369 }
2370
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376 {
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412 }
2413 \f
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2421 {
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423 }
2424
2425 /* Anything that calls this function must protect from GC! */
2426
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429 PROMPT is the string to display to ask the question. It should end in
2430 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432 The user must confirm the answer with RET, and can edit it until it
2433 has been confirmed.
2434
2435 If dialog boxes are supported, a dialog box will be used
2436 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438 {
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2446 && use_dialog_box)
2447 {
2448 Lisp_Object pane, menu, obj;
2449 redisplay_preserve_echo_area (4);
2450 pane = list2 (Fcons (build_string ("Yes"), Qt),
2451 Fcons (build_string ("No"), Qnil));
2452 GCPRO1 (pane);
2453 menu = Fcons (prompt, pane);
2454 obj = Fx_popup_dialog (Qt, menu, Qnil);
2455 UNGCPRO;
2456 return obj;
2457 }
2458
2459 args[0] = prompt;
2460 args[1] = build_string ("(yes or no) ");
2461 prompt = Fconcat (2, args);
2462
2463 GCPRO1 (prompt);
2464
2465 while (1)
2466 {
2467 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2468 Qyes_or_no_p_history, Qnil,
2469 Qnil));
2470 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2471 {
2472 UNGCPRO;
2473 return Qt;
2474 }
2475 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2476 {
2477 UNGCPRO;
2478 return Qnil;
2479 }
2480
2481 Fding (Qnil);
2482 Fdiscard_input ();
2483 message1 ("Please answer yes or no.");
2484 Fsleep_for (make_number (2), Qnil);
2485 }
2486 }
2487 \f
2488 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2489 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2490
2491 Each of the three load averages is multiplied by 100, then converted
2492 to integer.
2493
2494 When USE-FLOATS is non-nil, floats will be used instead of integers.
2495 These floats are not multiplied by 100.
2496
2497 If the 5-minute or 15-minute load averages are not available, return a
2498 shortened list, containing only those averages which are available.
2499
2500 An error is thrown if the load average can't be obtained. In some
2501 cases making it work would require Emacs being installed setuid or
2502 setgid so that it can read kernel information, and that usually isn't
2503 advisable. */)
2504 (Lisp_Object use_floats)
2505 {
2506 double load_ave[3];
2507 int loads = getloadavg (load_ave, 3);
2508 Lisp_Object ret = Qnil;
2509
2510 if (loads < 0)
2511 error ("load-average not implemented for this operating system");
2512
2513 while (loads-- > 0)
2514 {
2515 Lisp_Object load = (NILP (use_floats)
2516 ? make_number (100.0 * load_ave[loads])
2517 : make_float (load_ave[loads]));
2518 ret = Fcons (load, ret);
2519 }
2520
2521 return ret;
2522 }
2523 \f
2524 static Lisp_Object Qsubfeatures;
2525
2526 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2527 doc: /* Return t if FEATURE is present in this Emacs.
2528
2529 Use this to conditionalize execution of lisp code based on the
2530 presence or absence of Emacs or environment extensions.
2531 Use `provide' to declare that a feature is available. This function
2532 looks at the value of the variable `features'. The optional argument
2533 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2534 (Lisp_Object feature, Lisp_Object subfeature)
2535 {
2536 register Lisp_Object tem;
2537 CHECK_SYMBOL (feature);
2538 tem = Fmemq (feature, Vfeatures);
2539 if (!NILP (tem) && !NILP (subfeature))
2540 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2541 return (NILP (tem)) ? Qnil : Qt;
2542 }
2543
2544 static Lisp_Object Qfuncall;
2545
2546 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2547 doc: /* Announce that FEATURE is a feature of the current Emacs.
2548 The optional argument SUBFEATURES should be a list of symbols listing
2549 particular subfeatures supported in this version of FEATURE. */)
2550 (Lisp_Object feature, Lisp_Object subfeatures)
2551 {
2552 register Lisp_Object tem;
2553 CHECK_SYMBOL (feature);
2554 CHECK_LIST (subfeatures);
2555 if (!NILP (Vautoload_queue))
2556 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2557 Vautoload_queue);
2558 tem = Fmemq (feature, Vfeatures);
2559 if (NILP (tem))
2560 Vfeatures = Fcons (feature, Vfeatures);
2561 if (!NILP (subfeatures))
2562 Fput (feature, Qsubfeatures, subfeatures);
2563 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2564
2565 /* Run any load-hooks for this file. */
2566 tem = Fassq (feature, Vafter_load_alist);
2567 if (CONSP (tem))
2568 Fmapc (Qfuncall, XCDR (tem));
2569
2570 return feature;
2571 }
2572 \f
2573 /* `require' and its subroutines. */
2574
2575 /* List of features currently being require'd, innermost first. */
2576
2577 static Lisp_Object require_nesting_list;
2578
2579 static void
2580 require_unwind (Lisp_Object old_value)
2581 {
2582 require_nesting_list = old_value;
2583 }
2584
2585 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2586 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2587 If FEATURE is not a member of the list `features', then the feature
2588 is not loaded; so load the file FILENAME.
2589 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2590 and `load' will try to load this name appended with the suffix `.elc' or
2591 `.el', in that order. The name without appended suffix will not be used.
2592 See `get-load-suffixes' for the complete list of suffixes.
2593 If the optional third argument NOERROR is non-nil,
2594 then return nil if the file is not found instead of signaling an error.
2595 Normally the return value is FEATURE.
2596 The normal messages at start and end of loading FILENAME are suppressed. */)
2597 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2598 {
2599 Lisp_Object tem;
2600 struct gcpro gcpro1, gcpro2;
2601 bool from_file = load_in_progress;
2602
2603 CHECK_SYMBOL (feature);
2604
2605 /* Record the presence of `require' in this file
2606 even if the feature specified is already loaded.
2607 But not more than once in any file,
2608 and not when we aren't loading or reading from a file. */
2609 if (!from_file)
2610 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2611 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2612 from_file = 1;
2613
2614 if (from_file)
2615 {
2616 tem = Fcons (Qrequire, feature);
2617 if (NILP (Fmember (tem, Vcurrent_load_list)))
2618 LOADHIST_ATTACH (tem);
2619 }
2620 tem = Fmemq (feature, Vfeatures);
2621
2622 if (NILP (tem))
2623 {
2624 ptrdiff_t count = SPECPDL_INDEX ();
2625 int nesting = 0;
2626
2627 /* This is to make sure that loadup.el gives a clear picture
2628 of what files are preloaded and when. */
2629 if (! NILP (Vpurify_flag))
2630 error ("(require %s) while preparing to dump",
2631 SDATA (SYMBOL_NAME (feature)));
2632
2633 /* A certain amount of recursive `require' is legitimate,
2634 but if we require the same feature recursively 3 times,
2635 signal an error. */
2636 tem = require_nesting_list;
2637 while (! NILP (tem))
2638 {
2639 if (! NILP (Fequal (feature, XCAR (tem))))
2640 nesting++;
2641 tem = XCDR (tem);
2642 }
2643 if (nesting > 3)
2644 error ("Recursive `require' for feature `%s'",
2645 SDATA (SYMBOL_NAME (feature)));
2646
2647 /* Update the list for any nested `require's that occur. */
2648 record_unwind_protect (require_unwind, require_nesting_list);
2649 require_nesting_list = Fcons (feature, require_nesting_list);
2650
2651 /* Value saved here is to be restored into Vautoload_queue */
2652 record_unwind_protect (un_autoload, Vautoload_queue);
2653 Vautoload_queue = Qt;
2654
2655 /* Load the file. */
2656 GCPRO2 (feature, filename);
2657 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2658 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2659 UNGCPRO;
2660
2661 /* If load failed entirely, return nil. */
2662 if (NILP (tem))
2663 return unbind_to (count, Qnil);
2664
2665 tem = Fmemq (feature, Vfeatures);
2666 if (NILP (tem))
2667 error ("Required feature `%s' was not provided",
2668 SDATA (SYMBOL_NAME (feature)));
2669
2670 /* Once loading finishes, don't undo it. */
2671 Vautoload_queue = Qt;
2672 feature = unbind_to (count, feature);
2673 }
2674
2675 return feature;
2676 }
2677 \f
2678 /* Primitives for work of the "widget" library.
2679 In an ideal world, this section would not have been necessary.
2680 However, lisp function calls being as slow as they are, it turns
2681 out that some functions in the widget library (wid-edit.el) are the
2682 bottleneck of Widget operation. Here is their translation to C,
2683 for the sole reason of efficiency. */
2684
2685 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2686 doc: /* Return non-nil if PLIST has the property PROP.
2687 PLIST is a property list, which is a list of the form
2688 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2689 Unlike `plist-get', this allows you to distinguish between a missing
2690 property and a property with the value nil.
2691 The value is actually the tail of PLIST whose car is PROP. */)
2692 (Lisp_Object plist, Lisp_Object prop)
2693 {
2694 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2695 {
2696 QUIT;
2697 plist = XCDR (plist);
2698 plist = CDR (plist);
2699 }
2700 return plist;
2701 }
2702
2703 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2704 doc: /* In WIDGET, set PROPERTY to VALUE.
2705 The value can later be retrieved with `widget-get'. */)
2706 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2707 {
2708 CHECK_CONS (widget);
2709 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2710 return value;
2711 }
2712
2713 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2714 doc: /* In WIDGET, get the value of PROPERTY.
2715 The value could either be specified when the widget was created, or
2716 later with `widget-put'. */)
2717 (Lisp_Object widget, Lisp_Object property)
2718 {
2719 Lisp_Object tmp;
2720
2721 while (1)
2722 {
2723 if (NILP (widget))
2724 return Qnil;
2725 CHECK_CONS (widget);
2726 tmp = Fplist_member (XCDR (widget), property);
2727 if (CONSP (tmp))
2728 {
2729 tmp = XCDR (tmp);
2730 return CAR (tmp);
2731 }
2732 tmp = XCAR (widget);
2733 if (NILP (tmp))
2734 return Qnil;
2735 widget = Fget (tmp, Qwidget_type);
2736 }
2737 }
2738
2739 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2740 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2741 ARGS are passed as extra arguments to the function.
2742 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2743 (ptrdiff_t nargs, Lisp_Object *args)
2744 {
2745 /* This function can GC. */
2746 Lisp_Object newargs[3];
2747 struct gcpro gcpro1, gcpro2;
2748 Lisp_Object result;
2749
2750 newargs[0] = Fwidget_get (args[0], args[1]);
2751 newargs[1] = args[0];
2752 newargs[2] = Flist (nargs - 2, args + 2);
2753 GCPRO2 (newargs[0], newargs[2]);
2754 result = Fapply (3, newargs);
2755 UNGCPRO;
2756 return result;
2757 }
2758
2759 #ifdef HAVE_LANGINFO_CODESET
2760 #include <langinfo.h>
2761 #endif
2762
2763 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2764 doc: /* Access locale data ITEM for the current C locale, if available.
2765 ITEM should be one of the following:
2766
2767 `codeset', returning the character set as a string (locale item CODESET);
2768
2769 `days', returning a 7-element vector of day names (locale items DAY_n);
2770
2771 `months', returning a 12-element vector of month names (locale items MON_n);
2772
2773 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2774 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2775
2776 If the system can't provide such information through a call to
2777 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2778
2779 See also Info node `(libc)Locales'.
2780
2781 The data read from the system are decoded using `locale-coding-system'. */)
2782 (Lisp_Object item)
2783 {
2784 char *str = NULL;
2785 #ifdef HAVE_LANGINFO_CODESET
2786 Lisp_Object val;
2787 if (EQ (item, Qcodeset))
2788 {
2789 str = nl_langinfo (CODESET);
2790 return build_string (str);
2791 }
2792 #ifdef DAY_1
2793 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2794 {
2795 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2796 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2797 int i;
2798 struct gcpro gcpro1;
2799 GCPRO1 (v);
2800 synchronize_system_time_locale ();
2801 for (i = 0; i < 7; i++)
2802 {
2803 str = nl_langinfo (days[i]);
2804 val = build_unibyte_string (str);
2805 /* Fixme: Is this coding system necessarily right, even if
2806 it is consistent with CODESET? If not, what to do? */
2807 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2808 0));
2809 }
2810 UNGCPRO;
2811 return v;
2812 }
2813 #endif /* DAY_1 */
2814 #ifdef MON_1
2815 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2816 {
2817 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2818 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2819 MON_8, MON_9, MON_10, MON_11, MON_12};
2820 int i;
2821 struct gcpro gcpro1;
2822 GCPRO1 (v);
2823 synchronize_system_time_locale ();
2824 for (i = 0; i < 12; i++)
2825 {
2826 str = nl_langinfo (months[i]);
2827 val = build_unibyte_string (str);
2828 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2829 0));
2830 }
2831 UNGCPRO;
2832 return v;
2833 }
2834 #endif /* MON_1 */
2835 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2836 but is in the locale files. This could be used by ps-print. */
2837 #ifdef PAPER_WIDTH
2838 else if (EQ (item, Qpaper))
2839 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2840 #endif /* PAPER_WIDTH */
2841 #endif /* HAVE_LANGINFO_CODESET*/
2842 return Qnil;
2843 }
2844 \f
2845 /* base64 encode/decode functions (RFC 2045).
2846 Based on code from GNU recode. */
2847
2848 #define MIME_LINE_LENGTH 76
2849
2850 #define IS_ASCII(Character) \
2851 ((Character) < 128)
2852 #define IS_BASE64(Character) \
2853 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2854 #define IS_BASE64_IGNORABLE(Character) \
2855 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2856 || (Character) == '\f' || (Character) == '\r')
2857
2858 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2859 character or return retval if there are no characters left to
2860 process. */
2861 #define READ_QUADRUPLET_BYTE(retval) \
2862 do \
2863 { \
2864 if (i == length) \
2865 { \
2866 if (nchars_return) \
2867 *nchars_return = nchars; \
2868 return (retval); \
2869 } \
2870 c = from[i++]; \
2871 } \
2872 while (IS_BASE64_IGNORABLE (c))
2873
2874 /* Table of characters coding the 64 values. */
2875 static const char base64_value_to_char[64] =
2876 {
2877 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2878 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2879 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2880 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2881 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2882 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2883 '8', '9', '+', '/' /* 60-63 */
2884 };
2885
2886 /* Table of base64 values for first 128 characters. */
2887 static const short base64_char_to_value[128] =
2888 {
2889 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2893 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2894 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2895 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2896 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2897 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2898 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2899 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2900 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2901 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2902 };
2903
2904 /* The following diagram shows the logical steps by which three octets
2905 get transformed into four base64 characters.
2906
2907 .--------. .--------. .--------.
2908 |aaaaaabb| |bbbbcccc| |ccdddddd|
2909 `--------' `--------' `--------'
2910 6 2 4 4 2 6
2911 .--------+--------+--------+--------.
2912 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2913 `--------+--------+--------+--------'
2914
2915 .--------+--------+--------+--------.
2916 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2917 `--------+--------+--------+--------'
2918
2919 The octets are divided into 6 bit chunks, which are then encoded into
2920 base64 characters. */
2921
2922
2923 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2924 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2925 ptrdiff_t *);
2926
2927 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2928 2, 3, "r",
2929 doc: /* Base64-encode the region between BEG and END.
2930 Return the length of the encoded text.
2931 Optional third argument NO-LINE-BREAK means do not break long lines
2932 into shorter lines. */)
2933 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2934 {
2935 char *encoded;
2936 ptrdiff_t allength, length;
2937 ptrdiff_t ibeg, iend, encoded_length;
2938 ptrdiff_t old_pos = PT;
2939 USE_SAFE_ALLOCA;
2940
2941 validate_region (&beg, &end);
2942
2943 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2944 iend = CHAR_TO_BYTE (XFASTINT (end));
2945 move_gap_both (XFASTINT (beg), ibeg);
2946
2947 /* We need to allocate enough room for encoding the text.
2948 We need 33 1/3% more space, plus a newline every 76
2949 characters, and then we round up. */
2950 length = iend - ibeg;
2951 allength = length + length/3 + 1;
2952 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2953
2954 encoded = SAFE_ALLOCA (allength);
2955 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2956 encoded, length, NILP (no_line_break),
2957 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2958 if (encoded_length > allength)
2959 emacs_abort ();
2960
2961 if (encoded_length < 0)
2962 {
2963 /* The encoding wasn't possible. */
2964 SAFE_FREE ();
2965 error ("Multibyte character in data for base64 encoding");
2966 }
2967
2968 /* Now we have encoded the region, so we insert the new contents
2969 and delete the old. (Insert first in order to preserve markers.) */
2970 SET_PT_BOTH (XFASTINT (beg), ibeg);
2971 insert (encoded, encoded_length);
2972 SAFE_FREE ();
2973 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2974
2975 /* If point was outside of the region, restore it exactly; else just
2976 move to the beginning of the region. */
2977 if (old_pos >= XFASTINT (end))
2978 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2979 else if (old_pos > XFASTINT (beg))
2980 old_pos = XFASTINT (beg);
2981 SET_PT (old_pos);
2982
2983 /* We return the length of the encoded text. */
2984 return make_number (encoded_length);
2985 }
2986
2987 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2988 1, 2, 0,
2989 doc: /* Base64-encode STRING and return the result.
2990 Optional second argument NO-LINE-BREAK means do not break long lines
2991 into shorter lines. */)
2992 (Lisp_Object string, Lisp_Object no_line_break)
2993 {
2994 ptrdiff_t allength, length, encoded_length;
2995 char *encoded;
2996 Lisp_Object encoded_string;
2997 USE_SAFE_ALLOCA;
2998
2999 CHECK_STRING (string);
3000
3001 /* We need to allocate enough room for encoding the text.
3002 We need 33 1/3% more space, plus a newline every 76
3003 characters, and then we round up. */
3004 length = SBYTES (string);
3005 allength = length + length/3 + 1;
3006 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3007
3008 /* We need to allocate enough room for decoding the text. */
3009 encoded = SAFE_ALLOCA (allength);
3010
3011 encoded_length = base64_encode_1 (SSDATA (string),
3012 encoded, length, NILP (no_line_break),
3013 STRING_MULTIBYTE (string));
3014 if (encoded_length > allength)
3015 emacs_abort ();
3016
3017 if (encoded_length < 0)
3018 {
3019 /* The encoding wasn't possible. */
3020 SAFE_FREE ();
3021 error ("Multibyte character in data for base64 encoding");
3022 }
3023
3024 encoded_string = make_unibyte_string (encoded, encoded_length);
3025 SAFE_FREE ();
3026
3027 return encoded_string;
3028 }
3029
3030 static ptrdiff_t
3031 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3032 bool line_break, bool multibyte)
3033 {
3034 int counter = 0;
3035 ptrdiff_t i = 0;
3036 char *e = to;
3037 int c;
3038 unsigned int value;
3039 int bytes;
3040
3041 while (i < length)
3042 {
3043 if (multibyte)
3044 {
3045 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3046 if (CHAR_BYTE8_P (c))
3047 c = CHAR_TO_BYTE8 (c);
3048 else if (c >= 256)
3049 return -1;
3050 i += bytes;
3051 }
3052 else
3053 c = from[i++];
3054
3055 /* Wrap line every 76 characters. */
3056
3057 if (line_break)
3058 {
3059 if (counter < MIME_LINE_LENGTH / 4)
3060 counter++;
3061 else
3062 {
3063 *e++ = '\n';
3064 counter = 1;
3065 }
3066 }
3067
3068 /* Process first byte of a triplet. */
3069
3070 *e++ = base64_value_to_char[0x3f & c >> 2];
3071 value = (0x03 & c) << 4;
3072
3073 /* Process second byte of a triplet. */
3074
3075 if (i == length)
3076 {
3077 *e++ = base64_value_to_char[value];
3078 *e++ = '=';
3079 *e++ = '=';
3080 break;
3081 }
3082
3083 if (multibyte)
3084 {
3085 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3086 if (CHAR_BYTE8_P (c))
3087 c = CHAR_TO_BYTE8 (c);
3088 else if (c >= 256)
3089 return -1;
3090 i += bytes;
3091 }
3092 else
3093 c = from[i++];
3094
3095 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3096 value = (0x0f & c) << 2;
3097
3098 /* Process third byte of a triplet. */
3099
3100 if (i == length)
3101 {
3102 *e++ = base64_value_to_char[value];
3103 *e++ = '=';
3104 break;
3105 }
3106
3107 if (multibyte)
3108 {
3109 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3110 if (CHAR_BYTE8_P (c))
3111 c = CHAR_TO_BYTE8 (c);
3112 else if (c >= 256)
3113 return -1;
3114 i += bytes;
3115 }
3116 else
3117 c = from[i++];
3118
3119 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3120 *e++ = base64_value_to_char[0x3f & c];
3121 }
3122
3123 return e - to;
3124 }
3125
3126
3127 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3128 2, 2, "r",
3129 doc: /* Base64-decode the region between BEG and END.
3130 Return the length of the decoded text.
3131 If the region can't be decoded, signal an error and don't modify the buffer. */)
3132 (Lisp_Object beg, Lisp_Object end)
3133 {
3134 ptrdiff_t ibeg, iend, length, allength;
3135 char *decoded;
3136 ptrdiff_t old_pos = PT;
3137 ptrdiff_t decoded_length;
3138 ptrdiff_t inserted_chars;
3139 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3140 USE_SAFE_ALLOCA;
3141
3142 validate_region (&beg, &end);
3143
3144 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3145 iend = CHAR_TO_BYTE (XFASTINT (end));
3146
3147 length = iend - ibeg;
3148
3149 /* We need to allocate enough room for decoding the text. If we are
3150 working on a multibyte buffer, each decoded code may occupy at
3151 most two bytes. */
3152 allength = multibyte ? length * 2 : length;
3153 decoded = SAFE_ALLOCA (allength);
3154
3155 move_gap_both (XFASTINT (beg), ibeg);
3156 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3157 decoded, length,
3158 multibyte, &inserted_chars);
3159 if (decoded_length > allength)
3160 emacs_abort ();
3161
3162 if (decoded_length < 0)
3163 {
3164 /* The decoding wasn't possible. */
3165 SAFE_FREE ();
3166 error ("Invalid base64 data");
3167 }
3168
3169 /* Now we have decoded the region, so we insert the new contents
3170 and delete the old. (Insert first in order to preserve markers.) */
3171 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3172 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3173 SAFE_FREE ();
3174
3175 /* Delete the original text. */
3176 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3177 iend + decoded_length, 1);
3178
3179 /* If point was outside of the region, restore it exactly; else just
3180 move to the beginning of the region. */
3181 if (old_pos >= XFASTINT (end))
3182 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3183 else if (old_pos > XFASTINT (beg))
3184 old_pos = XFASTINT (beg);
3185 SET_PT (old_pos > ZV ? ZV : old_pos);
3186
3187 return make_number (inserted_chars);
3188 }
3189
3190 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3191 1, 1, 0,
3192 doc: /* Base64-decode STRING and return the result. */)
3193 (Lisp_Object string)
3194 {
3195 char *decoded;
3196 ptrdiff_t length, decoded_length;
3197 Lisp_Object decoded_string;
3198 USE_SAFE_ALLOCA;
3199
3200 CHECK_STRING (string);
3201
3202 length = SBYTES (string);
3203 /* We need to allocate enough room for decoding the text. */
3204 decoded = SAFE_ALLOCA (length);
3205
3206 /* The decoded result should be unibyte. */
3207 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3208 0, NULL);
3209 if (decoded_length > length)
3210 emacs_abort ();
3211 else if (decoded_length >= 0)
3212 decoded_string = make_unibyte_string (decoded, decoded_length);
3213 else
3214 decoded_string = Qnil;
3215
3216 SAFE_FREE ();
3217 if (!STRINGP (decoded_string))
3218 error ("Invalid base64 data");
3219
3220 return decoded_string;
3221 }
3222
3223 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3224 MULTIBYTE, the decoded result should be in multibyte
3225 form. If NCHARS_RETURN is not NULL, store the number of produced
3226 characters in *NCHARS_RETURN. */
3227
3228 static ptrdiff_t
3229 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3230 bool multibyte, ptrdiff_t *nchars_return)
3231 {
3232 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3233 char *e = to;
3234 unsigned char c;
3235 unsigned long value;
3236 ptrdiff_t nchars = 0;
3237
3238 while (1)
3239 {
3240 /* Process first byte of a quadruplet. */
3241
3242 READ_QUADRUPLET_BYTE (e-to);
3243
3244 if (!IS_BASE64 (c))
3245 return -1;
3246 value = base64_char_to_value[c] << 18;
3247
3248 /* Process second byte of a quadruplet. */
3249
3250 READ_QUADRUPLET_BYTE (-1);
3251
3252 if (!IS_BASE64 (c))
3253 return -1;
3254 value |= base64_char_to_value[c] << 12;
3255
3256 c = (unsigned char) (value >> 16);
3257 if (multibyte && c >= 128)
3258 e += BYTE8_STRING (c, e);
3259 else
3260 *e++ = c;
3261 nchars++;
3262
3263 /* Process third byte of a quadruplet. */
3264
3265 READ_QUADRUPLET_BYTE (-1);
3266
3267 if (c == '=')
3268 {
3269 READ_QUADRUPLET_BYTE (-1);
3270
3271 if (c != '=')
3272 return -1;
3273 continue;
3274 }
3275
3276 if (!IS_BASE64 (c))
3277 return -1;
3278 value |= base64_char_to_value[c] << 6;
3279
3280 c = (unsigned char) (0xff & value >> 8);
3281 if (multibyte && c >= 128)
3282 e += BYTE8_STRING (c, e);
3283 else
3284 *e++ = c;
3285 nchars++;
3286
3287 /* Process fourth byte of a quadruplet. */
3288
3289 READ_QUADRUPLET_BYTE (-1);
3290
3291 if (c == '=')
3292 continue;
3293
3294 if (!IS_BASE64 (c))
3295 return -1;
3296 value |= base64_char_to_value[c];
3297
3298 c = (unsigned char) (0xff & value);
3299 if (multibyte && c >= 128)
3300 e += BYTE8_STRING (c, e);
3301 else
3302 *e++ = c;
3303 nchars++;
3304 }
3305 }
3306
3307
3308 \f
3309 /***********************************************************************
3310 ***** *****
3311 ***** Hash Tables *****
3312 ***** *****
3313 ***********************************************************************/
3314
3315 /* Implemented by gerd@gnu.org. This hash table implementation was
3316 inspired by CMUCL hash tables. */
3317
3318 /* Ideas:
3319
3320 1. For small tables, association lists are probably faster than
3321 hash tables because they have lower overhead.
3322
3323 For uses of hash tables where the O(1) behavior of table
3324 operations is not a requirement, it might therefore be a good idea
3325 not to hash. Instead, we could just do a linear search in the
3326 key_and_value vector of the hash table. This could be done
3327 if a `:linear-search t' argument is given to make-hash-table. */
3328
3329
3330 /* The list of all weak hash tables. Don't staticpro this one. */
3331
3332 static struct Lisp_Hash_Table *weak_hash_tables;
3333
3334 /* Various symbols. */
3335
3336 static Lisp_Object Qhash_table_p;
3337 static Lisp_Object Qkey, Qvalue, Qeql;
3338 Lisp_Object Qeq, Qequal;
3339 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3340 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3341
3342 \f
3343 /***********************************************************************
3344 Utilities
3345 ***********************************************************************/
3346
3347 static void
3348 CHECK_HASH_TABLE (Lisp_Object x)
3349 {
3350 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3351 }
3352
3353 static void
3354 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3355 {
3356 h->key_and_value = key_and_value;
3357 }
3358 static void
3359 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3360 {
3361 h->next = next;
3362 }
3363 static void
3364 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3365 {
3366 gc_aset (h->next, idx, val);
3367 }
3368 static void
3369 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3370 {
3371 h->hash = hash;
3372 }
3373 static void
3374 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3375 {
3376 gc_aset (h->hash, idx, val);
3377 }
3378 static void
3379 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3380 {
3381 h->index = index;
3382 }
3383 static void
3384 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3385 {
3386 gc_aset (h->index, idx, val);
3387 }
3388
3389 /* If OBJ is a Lisp hash table, return a pointer to its struct
3390 Lisp_Hash_Table. Otherwise, signal an error. */
3391
3392 static struct Lisp_Hash_Table *
3393 check_hash_table (Lisp_Object obj)
3394 {
3395 CHECK_HASH_TABLE (obj);
3396 return XHASH_TABLE (obj);
3397 }
3398
3399
3400 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3401 number. A number is "almost" a prime number if it is not divisible
3402 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3403
3404 EMACS_INT
3405 next_almost_prime (EMACS_INT n)
3406 {
3407 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3408 for (n |= 1; ; n += 2)
3409 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3410 return n;
3411 }
3412
3413
3414 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3415 which USED[I] is non-zero. If found at index I in ARGS, set
3416 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3417 0. This function is used to extract a keyword/argument pair from
3418 a DEFUN parameter list. */
3419
3420 static ptrdiff_t
3421 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3422 {
3423 ptrdiff_t i;
3424
3425 for (i = 1; i < nargs; i++)
3426 if (!used[i - 1] && EQ (args[i - 1], key))
3427 {
3428 used[i - 1] = 1;
3429 used[i] = 1;
3430 return i;
3431 }
3432
3433 return 0;
3434 }
3435
3436
3437 /* Return a Lisp vector which has the same contents as VEC but has
3438 at least INCR_MIN more entries, where INCR_MIN is positive.
3439 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3440 than NITEMS_MAX. Entries in the resulting
3441 vector that are not copied from VEC are set to nil. */
3442
3443 Lisp_Object
3444 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3445 {
3446 struct Lisp_Vector *v;
3447 ptrdiff_t i, incr, incr_max, old_size, new_size;
3448 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3449 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3450 ? nitems_max : C_language_max);
3451 eassert (VECTORP (vec));
3452 eassert (0 < incr_min && -1 <= nitems_max);
3453 old_size = ASIZE (vec);
3454 incr_max = n_max - old_size;
3455 incr = max (incr_min, min (old_size >> 1, incr_max));
3456 if (incr_max < incr)
3457 memory_full (SIZE_MAX);
3458 new_size = old_size + incr;
3459 v = allocate_vector (new_size);
3460 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3461 for (i = old_size; i < new_size; ++i)
3462 v->contents[i] = Qnil;
3463 XSETVECTOR (vec, v);
3464 return vec;
3465 }
3466
3467
3468 /***********************************************************************
3469 Low-level Functions
3470 ***********************************************************************/
3471
3472 static struct hash_table_test hashtest_eq;
3473 struct hash_table_test hashtest_eql, hashtest_equal;
3474
3475 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3476 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3477 KEY2 are the same. */
3478
3479 static bool
3480 cmpfn_eql (struct hash_table_test *ht,
3481 Lisp_Object key1,
3482 Lisp_Object key2)
3483 {
3484 return (FLOATP (key1)
3485 && FLOATP (key2)
3486 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3487 }
3488
3489
3490 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3491 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3492 KEY2 are the same. */
3493
3494 static bool
3495 cmpfn_equal (struct hash_table_test *ht,
3496 Lisp_Object key1,
3497 Lisp_Object key2)
3498 {
3499 return !NILP (Fequal (key1, key2));
3500 }
3501
3502
3503 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3504 HASH2 in hash table H using H->user_cmp_function. Value is true
3505 if KEY1 and KEY2 are the same. */
3506
3507 static bool
3508 cmpfn_user_defined (struct hash_table_test *ht,
3509 Lisp_Object key1,
3510 Lisp_Object key2)
3511 {
3512 Lisp_Object args[3];
3513
3514 args[0] = ht->user_cmp_function;
3515 args[1] = key1;
3516 args[2] = key2;
3517 return !NILP (Ffuncall (3, args));
3518 }
3519
3520
3521 /* Value is a hash code for KEY for use in hash table H which uses
3522 `eq' to compare keys. The hash code returned is guaranteed to fit
3523 in a Lisp integer. */
3524
3525 static EMACS_UINT
3526 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3527 {
3528 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3529 return hash;
3530 }
3531
3532 /* Value is a hash code for KEY for use in hash table H which uses
3533 `eql' to compare keys. The hash code returned is guaranteed to fit
3534 in a Lisp integer. */
3535
3536 static EMACS_UINT
3537 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3538 {
3539 EMACS_UINT hash;
3540 if (FLOATP (key))
3541 hash = sxhash (key, 0);
3542 else
3543 hash = XHASH (key) ^ XTYPE (key);
3544 return hash;
3545 }
3546
3547 /* Value is a hash code for KEY for use in hash table H which uses
3548 `equal' to compare keys. The hash code returned is guaranteed to fit
3549 in a Lisp integer. */
3550
3551 static EMACS_UINT
3552 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3553 {
3554 EMACS_UINT hash = sxhash (key, 0);
3555 return hash;
3556 }
3557
3558 /* Value is a hash code for KEY for use in hash table H which uses as
3559 user-defined function to compare keys. The hash code returned is
3560 guaranteed to fit in a Lisp integer. */
3561
3562 static EMACS_UINT
3563 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3564 {
3565 Lisp_Object args[2], hash;
3566
3567 args[0] = ht->user_hash_function;
3568 args[1] = key;
3569 hash = Ffuncall (2, args);
3570 return hashfn_eq (ht, hash);
3571 }
3572
3573 /* An upper bound on the size of a hash table index. It must fit in
3574 ptrdiff_t and be a valid Emacs fixnum. */
3575 #define INDEX_SIZE_BOUND \
3576 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3577
3578 /* Create and initialize a new hash table.
3579
3580 TEST specifies the test the hash table will use to compare keys.
3581 It must be either one of the predefined tests `eq', `eql' or
3582 `equal' or a symbol denoting a user-defined test named TEST with
3583 test and hash functions USER_TEST and USER_HASH.
3584
3585 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3586
3587 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3588 new size when it becomes full is computed by adding REHASH_SIZE to
3589 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3590 table's new size is computed by multiplying its old size with
3591 REHASH_SIZE.
3592
3593 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3594 be resized when the ratio of (number of entries in the table) /
3595 (table size) is >= REHASH_THRESHOLD.
3596
3597 WEAK specifies the weakness of the table. If non-nil, it must be
3598 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3599
3600 Lisp_Object
3601 make_hash_table (struct hash_table_test test,
3602 Lisp_Object size, Lisp_Object rehash_size,
3603 Lisp_Object rehash_threshold, Lisp_Object weak)
3604 {
3605 struct Lisp_Hash_Table *h;
3606 Lisp_Object table;
3607 EMACS_INT index_size, sz;
3608 ptrdiff_t i;
3609 double index_float;
3610
3611 /* Preconditions. */
3612 eassert (SYMBOLP (test.name));
3613 eassert (INTEGERP (size) && XINT (size) >= 0);
3614 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3615 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3616 eassert (FLOATP (rehash_threshold)
3617 && 0 < XFLOAT_DATA (rehash_threshold)
3618 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3619
3620 if (XFASTINT (size) == 0)
3621 size = make_number (1);
3622
3623 sz = XFASTINT (size);
3624 index_float = sz / XFLOAT_DATA (rehash_threshold);
3625 index_size = (index_float < INDEX_SIZE_BOUND + 1
3626 ? next_almost_prime (index_float)
3627 : INDEX_SIZE_BOUND + 1);
3628 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3629 error ("Hash table too large");
3630
3631 /* Allocate a table and initialize it. */
3632 h = allocate_hash_table ();
3633
3634 /* Initialize hash table slots. */
3635 h->test = test;
3636 h->weak = weak;
3637 h->rehash_threshold = rehash_threshold;
3638 h->rehash_size = rehash_size;
3639 h->count = 0;
3640 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3641 h->hash = Fmake_vector (size, Qnil);
3642 h->next = Fmake_vector (size, Qnil);
3643 h->index = Fmake_vector (make_number (index_size), Qnil);
3644
3645 /* Set up the free list. */
3646 for (i = 0; i < sz - 1; ++i)
3647 set_hash_next_slot (h, i, make_number (i + 1));
3648 h->next_free = make_number (0);
3649
3650 XSET_HASH_TABLE (table, h);
3651 eassert (HASH_TABLE_P (table));
3652 eassert (XHASH_TABLE (table) == h);
3653
3654 /* Maybe add this hash table to the list of all weak hash tables. */
3655 if (NILP (h->weak))
3656 h->next_weak = NULL;
3657 else
3658 {
3659 h->next_weak = weak_hash_tables;
3660 weak_hash_tables = h;
3661 }
3662
3663 return table;
3664 }
3665
3666
3667 /* Return a copy of hash table H1. Keys and values are not copied,
3668 only the table itself is. */
3669
3670 static Lisp_Object
3671 copy_hash_table (struct Lisp_Hash_Table *h1)
3672 {
3673 Lisp_Object table;
3674 struct Lisp_Hash_Table *h2;
3675
3676 h2 = allocate_hash_table ();
3677 *h2 = *h1;
3678 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3679 h2->hash = Fcopy_sequence (h1->hash);
3680 h2->next = Fcopy_sequence (h1->next);
3681 h2->index = Fcopy_sequence (h1->index);
3682 XSET_HASH_TABLE (table, h2);
3683
3684 /* Maybe add this hash table to the list of all weak hash tables. */
3685 if (!NILP (h2->weak))
3686 {
3687 h2->next_weak = weak_hash_tables;
3688 weak_hash_tables = h2;
3689 }
3690
3691 return table;
3692 }
3693
3694
3695 /* Resize hash table H if it's too full. If H cannot be resized
3696 because it's already too large, throw an error. */
3697
3698 static void
3699 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3700 {
3701 if (NILP (h->next_free))
3702 {
3703 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3704 EMACS_INT new_size, index_size, nsize;
3705 ptrdiff_t i;
3706 double index_float;
3707
3708 if (INTEGERP (h->rehash_size))
3709 new_size = old_size + XFASTINT (h->rehash_size);
3710 else
3711 {
3712 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3713 if (float_new_size < INDEX_SIZE_BOUND + 1)
3714 {
3715 new_size = float_new_size;
3716 if (new_size <= old_size)
3717 new_size = old_size + 1;
3718 }
3719 else
3720 new_size = INDEX_SIZE_BOUND + 1;
3721 }
3722 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3723 index_size = (index_float < INDEX_SIZE_BOUND + 1
3724 ? next_almost_prime (index_float)
3725 : INDEX_SIZE_BOUND + 1);
3726 nsize = max (index_size, 2 * new_size);
3727 if (INDEX_SIZE_BOUND < nsize)
3728 error ("Hash table too large to resize");
3729
3730 #ifdef ENABLE_CHECKING
3731 if (HASH_TABLE_P (Vpurify_flag)
3732 && XHASH_TABLE (Vpurify_flag) == h)
3733 {
3734 Lisp_Object args[2];
3735 args[0] = build_string ("Growing hash table to: %d");
3736 args[1] = make_number (new_size);
3737 Fmessage (2, args);
3738 }
3739 #endif
3740
3741 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3742 2 * (new_size - old_size), -1));
3743 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3744 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3745 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3746
3747 /* Update the free list. Do it so that new entries are added at
3748 the end of the free list. This makes some operations like
3749 maphash faster. */
3750 for (i = old_size; i < new_size - 1; ++i)
3751 set_hash_next_slot (h, i, make_number (i + 1));
3752
3753 if (!NILP (h->next_free))
3754 {
3755 Lisp_Object last, next;
3756
3757 last = h->next_free;
3758 while (next = HASH_NEXT (h, XFASTINT (last)),
3759 !NILP (next))
3760 last = next;
3761
3762 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3763 }
3764 else
3765 XSETFASTINT (h->next_free, old_size);
3766
3767 /* Rehash. */
3768 for (i = 0; i < old_size; ++i)
3769 if (!NILP (HASH_HASH (h, i)))
3770 {
3771 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3772 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3773 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3774 set_hash_index_slot (h, start_of_bucket, make_number (i));
3775 }
3776 }
3777 }
3778
3779
3780 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3781 the hash code of KEY. Value is the index of the entry in H
3782 matching KEY, or -1 if not found. */
3783
3784 ptrdiff_t
3785 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3786 {
3787 EMACS_UINT hash_code;
3788 ptrdiff_t start_of_bucket;
3789 Lisp_Object idx;
3790
3791 hash_code = h->test.hashfn (&h->test, key);
3792 eassert ((hash_code & ~INTMASK) == 0);
3793 if (hash)
3794 *hash = hash_code;
3795
3796 start_of_bucket = hash_code % ASIZE (h->index);
3797 idx = HASH_INDEX (h, start_of_bucket);
3798
3799 /* We need not gcpro idx since it's either an integer or nil. */
3800 while (!NILP (idx))
3801 {
3802 ptrdiff_t i = XFASTINT (idx);
3803 if (EQ (key, HASH_KEY (h, i))
3804 || (h->test.cmpfn
3805 && hash_code == XUINT (HASH_HASH (h, i))
3806 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3807 break;
3808 idx = HASH_NEXT (h, i);
3809 }
3810
3811 return NILP (idx) ? -1 : XFASTINT (idx);
3812 }
3813
3814
3815 /* Put an entry into hash table H that associates KEY with VALUE.
3816 HASH is a previously computed hash code of KEY.
3817 Value is the index of the entry in H matching KEY. */
3818
3819 ptrdiff_t
3820 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3821 EMACS_UINT hash)
3822 {
3823 ptrdiff_t start_of_bucket, i;
3824
3825 eassert ((hash & ~INTMASK) == 0);
3826
3827 /* Increment count after resizing because resizing may fail. */
3828 maybe_resize_hash_table (h);
3829 h->count++;
3830
3831 /* Store key/value in the key_and_value vector. */
3832 i = XFASTINT (h->next_free);
3833 h->next_free = HASH_NEXT (h, i);
3834 set_hash_key_slot (h, i, key);
3835 set_hash_value_slot (h, i, value);
3836
3837 /* Remember its hash code. */
3838 set_hash_hash_slot (h, i, make_number (hash));
3839
3840 /* Add new entry to its collision chain. */
3841 start_of_bucket = hash % ASIZE (h->index);
3842 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3843 set_hash_index_slot (h, start_of_bucket, make_number (i));
3844 return i;
3845 }
3846
3847
3848 /* Remove the entry matching KEY from hash table H, if there is one. */
3849
3850 static void
3851 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3852 {
3853 EMACS_UINT hash_code;
3854 ptrdiff_t start_of_bucket;
3855 Lisp_Object idx, prev;
3856
3857 hash_code = h->test.hashfn (&h->test, key);
3858 eassert ((hash_code & ~INTMASK) == 0);
3859 start_of_bucket = hash_code % ASIZE (h->index);
3860 idx = HASH_INDEX (h, start_of_bucket);
3861 prev = Qnil;
3862
3863 /* We need not gcpro idx, prev since they're either integers or nil. */
3864 while (!NILP (idx))
3865 {
3866 ptrdiff_t i = XFASTINT (idx);
3867
3868 if (EQ (key, HASH_KEY (h, i))
3869 || (h->test.cmpfn
3870 && hash_code == XUINT (HASH_HASH (h, i))
3871 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3872 {
3873 /* Take entry out of collision chain. */
3874 if (NILP (prev))
3875 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3876 else
3877 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3878
3879 /* Clear slots in key_and_value and add the slots to
3880 the free list. */
3881 set_hash_key_slot (h, i, Qnil);
3882 set_hash_value_slot (h, i, Qnil);
3883 set_hash_hash_slot (h, i, Qnil);
3884 set_hash_next_slot (h, i, h->next_free);
3885 h->next_free = make_number (i);
3886 h->count--;
3887 eassert (h->count >= 0);
3888 break;
3889 }
3890 else
3891 {
3892 prev = idx;
3893 idx = HASH_NEXT (h, i);
3894 }
3895 }
3896 }
3897
3898
3899 /* Clear hash table H. */
3900
3901 static void
3902 hash_clear (struct Lisp_Hash_Table *h)
3903 {
3904 if (h->count > 0)
3905 {
3906 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3907
3908 for (i = 0; i < size; ++i)
3909 {
3910 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3911 set_hash_key_slot (h, i, Qnil);
3912 set_hash_value_slot (h, i, Qnil);
3913 set_hash_hash_slot (h, i, Qnil);
3914 }
3915
3916 for (i = 0; i < ASIZE (h->index); ++i)
3917 ASET (h->index, i, Qnil);
3918
3919 h->next_free = make_number (0);
3920 h->count = 0;
3921 }
3922 }
3923
3924
3925 \f
3926 /************************************************************************
3927 Weak Hash Tables
3928 ************************************************************************/
3929
3930 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3931 entries from the table that don't survive the current GC.
3932 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3933 true if anything was marked. */
3934
3935 static bool
3936 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3937 {
3938 ptrdiff_t bucket, n;
3939 bool marked;
3940
3941 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3942 marked = 0;
3943
3944 for (bucket = 0; bucket < n; ++bucket)
3945 {
3946 Lisp_Object idx, next, prev;
3947
3948 /* Follow collision chain, removing entries that
3949 don't survive this garbage collection. */
3950 prev = Qnil;
3951 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3952 {
3953 ptrdiff_t i = XFASTINT (idx);
3954 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3955 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3956 bool remove_p;
3957
3958 if (EQ (h->weak, Qkey))
3959 remove_p = !key_known_to_survive_p;
3960 else if (EQ (h->weak, Qvalue))
3961 remove_p = !value_known_to_survive_p;
3962 else if (EQ (h->weak, Qkey_or_value))
3963 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3964 else if (EQ (h->weak, Qkey_and_value))
3965 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3966 else
3967 emacs_abort ();
3968
3969 next = HASH_NEXT (h, i);
3970
3971 if (remove_entries_p)
3972 {
3973 if (remove_p)
3974 {
3975 /* Take out of collision chain. */
3976 if (NILP (prev))
3977 set_hash_index_slot (h, bucket, next);
3978 else
3979 set_hash_next_slot (h, XFASTINT (prev), next);
3980
3981 /* Add to free list. */
3982 set_hash_next_slot (h, i, h->next_free);
3983 h->next_free = idx;
3984
3985 /* Clear key, value, and hash. */
3986 set_hash_key_slot (h, i, Qnil);
3987 set_hash_value_slot (h, i, Qnil);
3988 set_hash_hash_slot (h, i, Qnil);
3989
3990 h->count--;
3991 }
3992 else
3993 {
3994 prev = idx;
3995 }
3996 }
3997 else
3998 {
3999 if (!remove_p)
4000 {
4001 /* Make sure key and value survive. */
4002 if (!key_known_to_survive_p)
4003 {
4004 mark_object (HASH_KEY (h, i));
4005 marked = 1;
4006 }
4007
4008 if (!value_known_to_survive_p)
4009 {
4010 mark_object (HASH_VALUE (h, i));
4011 marked = 1;
4012 }
4013 }
4014 }
4015 }
4016 }
4017
4018 return marked;
4019 }
4020
4021 /* Remove elements from weak hash tables that don't survive the
4022 current garbage collection. Remove weak tables that don't survive
4023 from Vweak_hash_tables. Called from gc_sweep. */
4024
4025 void
4026 sweep_weak_hash_tables (void)
4027 {
4028 struct Lisp_Hash_Table *h, *used, *next;
4029 bool marked;
4030
4031 /* Mark all keys and values that are in use. Keep on marking until
4032 there is no more change. This is necessary for cases like
4033 value-weak table A containing an entry X -> Y, where Y is used in a
4034 key-weak table B, Z -> Y. If B comes after A in the list of weak
4035 tables, X -> Y might be removed from A, although when looking at B
4036 one finds that it shouldn't. */
4037 do
4038 {
4039 marked = 0;
4040 for (h = weak_hash_tables; h; h = h->next_weak)
4041 {
4042 if (h->header.size & ARRAY_MARK_FLAG)
4043 marked |= sweep_weak_table (h, 0);
4044 }
4045 }
4046 while (marked);
4047
4048 /* Remove tables and entries that aren't used. */
4049 for (h = weak_hash_tables, used = NULL; h; h = next)
4050 {
4051 next = h->next_weak;
4052
4053 if (h->header.size & ARRAY_MARK_FLAG)
4054 {
4055 /* TABLE is marked as used. Sweep its contents. */
4056 if (h->count > 0)
4057 sweep_weak_table (h, 1);
4058
4059 /* Add table to the list of used weak hash tables. */
4060 h->next_weak = used;
4061 used = h;
4062 }
4063 }
4064
4065 weak_hash_tables = used;
4066 }
4067
4068
4069 \f
4070 /***********************************************************************
4071 Hash Code Computation
4072 ***********************************************************************/
4073
4074 /* Maximum depth up to which to dive into Lisp structures. */
4075
4076 #define SXHASH_MAX_DEPTH 3
4077
4078 /* Maximum length up to which to take list and vector elements into
4079 account. */
4080
4081 #define SXHASH_MAX_LEN 7
4082
4083 /* Return a hash for string PTR which has length LEN. The hash value
4084 can be any EMACS_UINT value. */
4085
4086 EMACS_UINT
4087 hash_string (char const *ptr, ptrdiff_t len)
4088 {
4089 char const *p = ptr;
4090 char const *end = p + len;
4091 unsigned char c;
4092 EMACS_UINT hash = 0;
4093
4094 while (p != end)
4095 {
4096 c = *p++;
4097 hash = sxhash_combine (hash, c);
4098 }
4099
4100 return hash;
4101 }
4102
4103 /* Return a hash for string PTR which has length LEN. The hash
4104 code returned is guaranteed to fit in a Lisp integer. */
4105
4106 static EMACS_UINT
4107 sxhash_string (char const *ptr, ptrdiff_t len)
4108 {
4109 EMACS_UINT hash = hash_string (ptr, len);
4110 return SXHASH_REDUCE (hash);
4111 }
4112
4113 /* Return a hash for the floating point value VAL. */
4114
4115 static EMACS_UINT
4116 sxhash_float (double val)
4117 {
4118 EMACS_UINT hash = 0;
4119 enum {
4120 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4121 + (sizeof val % sizeof hash != 0))
4122 };
4123 union {
4124 double val;
4125 EMACS_UINT word[WORDS_PER_DOUBLE];
4126 } u;
4127 int i;
4128 u.val = val;
4129 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4130 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4131 hash = sxhash_combine (hash, u.word[i]);
4132 return SXHASH_REDUCE (hash);
4133 }
4134
4135 /* Return a hash for list LIST. DEPTH is the current depth in the
4136 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4137
4138 static EMACS_UINT
4139 sxhash_list (Lisp_Object list, int depth)
4140 {
4141 EMACS_UINT hash = 0;
4142 int i;
4143
4144 if (depth < SXHASH_MAX_DEPTH)
4145 for (i = 0;
4146 CONSP (list) && i < SXHASH_MAX_LEN;
4147 list = XCDR (list), ++i)
4148 {
4149 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4150 hash = sxhash_combine (hash, hash2);
4151 }
4152
4153 if (!NILP (list))
4154 {
4155 EMACS_UINT hash2 = sxhash (list, depth + 1);
4156 hash = sxhash_combine (hash, hash2);
4157 }
4158
4159 return SXHASH_REDUCE (hash);
4160 }
4161
4162
4163 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4164 the Lisp structure. */
4165
4166 static EMACS_UINT
4167 sxhash_vector (Lisp_Object vec, int depth)
4168 {
4169 EMACS_UINT hash = ASIZE (vec);
4170 int i, n;
4171
4172 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4173 for (i = 0; i < n; ++i)
4174 {
4175 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4176 hash = sxhash_combine (hash, hash2);
4177 }
4178
4179 return SXHASH_REDUCE (hash);
4180 }
4181
4182 /* Return a hash for bool-vector VECTOR. */
4183
4184 static EMACS_UINT
4185 sxhash_bool_vector (Lisp_Object vec)
4186 {
4187 EMACS_INT size = bool_vector_size (vec);
4188 EMACS_UINT hash = size;
4189 int i, n;
4190
4191 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4192 for (i = 0; i < n; ++i)
4193 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4194
4195 return SXHASH_REDUCE (hash);
4196 }
4197
4198
4199 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4200 structure. Value is an unsigned integer clipped to INTMASK. */
4201
4202 EMACS_UINT
4203 sxhash (Lisp_Object obj, int depth)
4204 {
4205 EMACS_UINT hash;
4206
4207 if (depth > SXHASH_MAX_DEPTH)
4208 return 0;
4209
4210 switch (XTYPE (obj))
4211 {
4212 case_Lisp_Int:
4213 hash = XUINT (obj);
4214 break;
4215
4216 case Lisp_Misc:
4217 hash = XHASH (obj);
4218 break;
4219
4220 case Lisp_Symbol:
4221 obj = SYMBOL_NAME (obj);
4222 /* Fall through. */
4223
4224 case Lisp_String:
4225 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4226 break;
4227
4228 /* This can be everything from a vector to an overlay. */
4229 case Lisp_Vectorlike:
4230 if (VECTORP (obj))
4231 /* According to the CL HyperSpec, two arrays are equal only if
4232 they are `eq', except for strings and bit-vectors. In
4233 Emacs, this works differently. We have to compare element
4234 by element. */
4235 hash = sxhash_vector (obj, depth);
4236 else if (BOOL_VECTOR_P (obj))
4237 hash = sxhash_bool_vector (obj);
4238 else
4239 /* Others are `equal' if they are `eq', so let's take their
4240 address as hash. */
4241 hash = XHASH (obj);
4242 break;
4243
4244 case Lisp_Cons:
4245 hash = sxhash_list (obj, depth);
4246 break;
4247
4248 case Lisp_Float:
4249 hash = sxhash_float (XFLOAT_DATA (obj));
4250 break;
4251
4252 default:
4253 emacs_abort ();
4254 }
4255
4256 return hash;
4257 }
4258
4259
4260 \f
4261 /***********************************************************************
4262 Lisp Interface
4263 ***********************************************************************/
4264
4265
4266 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4267 doc: /* Compute a hash code for OBJ and return it as integer. */)
4268 (Lisp_Object obj)
4269 {
4270 EMACS_UINT hash = sxhash (obj, 0);
4271 return make_number (hash);
4272 }
4273
4274
4275 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4276 doc: /* Create and return a new hash table.
4277
4278 Arguments are specified as keyword/argument pairs. The following
4279 arguments are defined:
4280
4281 :test TEST -- TEST must be a symbol that specifies how to compare
4282 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4283 `equal'. User-supplied test and hash functions can be specified via
4284 `define-hash-table-test'.
4285
4286 :size SIZE -- A hint as to how many elements will be put in the table.
4287 Default is 65.
4288
4289 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4290 fills up. If REHASH-SIZE is an integer, increase the size by that
4291 amount. If it is a float, it must be > 1.0, and the new size is the
4292 old size multiplied by that factor. Default is 1.5.
4293
4294 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4295 Resize the hash table when the ratio (number of entries / table size)
4296 is greater than or equal to THRESHOLD. Default is 0.8.
4297
4298 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4299 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4300 returned is a weak table. Key/value pairs are removed from a weak
4301 hash table when there are no non-weak references pointing to their
4302 key, value, one of key or value, or both key and value, depending on
4303 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4304 is nil.
4305
4306 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4307 (ptrdiff_t nargs, Lisp_Object *args)
4308 {
4309 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4310 struct hash_table_test testdesc;
4311 char *used;
4312 ptrdiff_t i;
4313
4314 /* The vector `used' is used to keep track of arguments that
4315 have been consumed. */
4316 used = alloca (nargs * sizeof *used);
4317 memset (used, 0, nargs * sizeof *used);
4318
4319 /* See if there's a `:test TEST' among the arguments. */
4320 i = get_key_arg (QCtest, nargs, args, used);
4321 test = i ? args[i] : Qeql;
4322 if (EQ (test, Qeq))
4323 testdesc = hashtest_eq;
4324 else if (EQ (test, Qeql))
4325 testdesc = hashtest_eql;
4326 else if (EQ (test, Qequal))
4327 testdesc = hashtest_equal;
4328 else
4329 {
4330 /* See if it is a user-defined test. */
4331 Lisp_Object prop;
4332
4333 prop = Fget (test, Qhash_table_test);
4334 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4335 signal_error ("Invalid hash table test", test);
4336 testdesc.name = test;
4337 testdesc.user_cmp_function = XCAR (prop);
4338 testdesc.user_hash_function = XCAR (XCDR (prop));
4339 testdesc.hashfn = hashfn_user_defined;
4340 testdesc.cmpfn = cmpfn_user_defined;
4341 }
4342
4343 /* See if there's a `:size SIZE' argument. */
4344 i = get_key_arg (QCsize, nargs, args, used);
4345 size = i ? args[i] : Qnil;
4346 if (NILP (size))
4347 size = make_number (DEFAULT_HASH_SIZE);
4348 else if (!INTEGERP (size) || XINT (size) < 0)
4349 signal_error ("Invalid hash table size", size);
4350
4351 /* Look for `:rehash-size SIZE'. */
4352 i = get_key_arg (QCrehash_size, nargs, args, used);
4353 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4354 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4355 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4356 signal_error ("Invalid hash table rehash size", rehash_size);
4357
4358 /* Look for `:rehash-threshold THRESHOLD'. */
4359 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4360 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4361 if (! (FLOATP (rehash_threshold)
4362 && 0 < XFLOAT_DATA (rehash_threshold)
4363 && XFLOAT_DATA (rehash_threshold) <= 1))
4364 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4365
4366 /* Look for `:weakness WEAK'. */
4367 i = get_key_arg (QCweakness, nargs, args, used);
4368 weak = i ? args[i] : Qnil;
4369 if (EQ (weak, Qt))
4370 weak = Qkey_and_value;
4371 if (!NILP (weak)
4372 && !EQ (weak, Qkey)
4373 && !EQ (weak, Qvalue)
4374 && !EQ (weak, Qkey_or_value)
4375 && !EQ (weak, Qkey_and_value))
4376 signal_error ("Invalid hash table weakness", weak);
4377
4378 /* Now, all args should have been used up, or there's a problem. */
4379 for (i = 0; i < nargs; ++i)
4380 if (!used[i])
4381 signal_error ("Invalid argument list", args[i]);
4382
4383 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4384 }
4385
4386
4387 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4388 doc: /* Return a copy of hash table TABLE. */)
4389 (Lisp_Object table)
4390 {
4391 return copy_hash_table (check_hash_table (table));
4392 }
4393
4394
4395 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4396 doc: /* Return the number of elements in TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return make_number (check_hash_table (table)->count);
4400 }
4401
4402
4403 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4404 Shash_table_rehash_size, 1, 1, 0,
4405 doc: /* Return the current rehash size of TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->rehash_size;
4409 }
4410
4411
4412 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4413 Shash_table_rehash_threshold, 1, 1, 0,
4414 doc: /* Return the current rehash threshold of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->rehash_threshold;
4418 }
4419
4420
4421 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4422 doc: /* Return the size of TABLE.
4423 The size can be used as an argument to `make-hash-table' to create
4424 a hash table than can hold as many elements as TABLE holds
4425 without need for resizing. */)
4426 (Lisp_Object table)
4427 {
4428 struct Lisp_Hash_Table *h = check_hash_table (table);
4429 return make_number (HASH_TABLE_SIZE (h));
4430 }
4431
4432
4433 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4434 doc: /* Return the test TABLE uses. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->test.name;
4438 }
4439
4440
4441 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4442 1, 1, 0,
4443 doc: /* Return the weakness of TABLE. */)
4444 (Lisp_Object table)
4445 {
4446 return check_hash_table (table)->weak;
4447 }
4448
4449
4450 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4451 doc: /* Return t if OBJ is a Lisp hash table object. */)
4452 (Lisp_Object obj)
4453 {
4454 return HASH_TABLE_P (obj) ? Qt : Qnil;
4455 }
4456
4457
4458 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4459 doc: /* Clear hash table TABLE and return it. */)
4460 (Lisp_Object table)
4461 {
4462 hash_clear (check_hash_table (table));
4463 /* Be compatible with XEmacs. */
4464 return table;
4465 }
4466
4467
4468 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4469 doc: /* Look up KEY in TABLE and return its associated value.
4470 If KEY is not found, return DFLT which defaults to nil. */)
4471 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4472 {
4473 struct Lisp_Hash_Table *h = check_hash_table (table);
4474 ptrdiff_t i = hash_lookup (h, key, NULL);
4475 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4476 }
4477
4478
4479 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4480 doc: /* Associate KEY with VALUE in hash table TABLE.
4481 If KEY is already present in table, replace its current value with
4482 VALUE. In any case, return VALUE. */)
4483 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 ptrdiff_t i;
4487 EMACS_UINT hash;
4488
4489 i = hash_lookup (h, key, &hash);
4490 if (i >= 0)
4491 set_hash_value_slot (h, i, value);
4492 else
4493 hash_put (h, key, value, hash);
4494
4495 return value;
4496 }
4497
4498
4499 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4500 doc: /* Remove KEY from TABLE. */)
4501 (Lisp_Object key, Lisp_Object table)
4502 {
4503 struct Lisp_Hash_Table *h = check_hash_table (table);
4504 hash_remove_from_table (h, key);
4505 return Qnil;
4506 }
4507
4508
4509 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4510 doc: /* Call FUNCTION for all entries in hash table TABLE.
4511 FUNCTION is called with two arguments, KEY and VALUE. */)
4512 (Lisp_Object function, Lisp_Object table)
4513 {
4514 struct Lisp_Hash_Table *h = check_hash_table (table);
4515 Lisp_Object args[3];
4516 ptrdiff_t i;
4517
4518 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4519 if (!NILP (HASH_HASH (h, i)))
4520 {
4521 args[0] = function;
4522 args[1] = HASH_KEY (h, i);
4523 args[2] = HASH_VALUE (h, i);
4524 Ffuncall (3, args);
4525 }
4526
4527 return Qnil;
4528 }
4529
4530
4531 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4532 Sdefine_hash_table_test, 3, 3, 0,
4533 doc: /* Define a new hash table test with name NAME, a symbol.
4534
4535 In hash tables created with NAME specified as test, use TEST to
4536 compare keys, and HASH for computing hash codes of keys.
4537
4538 TEST must be a function taking two arguments and returning non-nil if
4539 both arguments are the same. HASH must be a function taking one
4540 argument and returning an object that is the hash code of the argument.
4541 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4542 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4543 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4544 {
4545 return Fput (name, Qhash_table_test, list2 (test, hash));
4546 }
4547
4548
4549 \f
4550 /************************************************************************
4551 MD5, SHA-1, and SHA-2
4552 ************************************************************************/
4553
4554 #include "md5.h"
4555 #include "sha1.h"
4556 #include "sha256.h"
4557 #include "sha512.h"
4558
4559 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4560
4561 static Lisp_Object
4562 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4563 {
4564 int i;
4565 ptrdiff_t size;
4566 EMACS_INT start_char = 0, end_char = 0;
4567 ptrdiff_t start_byte, end_byte;
4568 register EMACS_INT b, e;
4569 register struct buffer *bp;
4570 EMACS_INT temp;
4571 int digest_size;
4572 void *(*hash_func) (const char *, size_t, void *);
4573 Lisp_Object digest;
4574
4575 CHECK_SYMBOL (algorithm);
4576
4577 if (STRINGP (object))
4578 {
4579 if (NILP (coding_system))
4580 {
4581 /* Decide the coding-system to encode the data with. */
4582
4583 if (STRING_MULTIBYTE (object))
4584 /* use default, we can't guess correct value */
4585 coding_system = preferred_coding_system ();
4586 else
4587 coding_system = Qraw_text;
4588 }
4589
4590 if (NILP (Fcoding_system_p (coding_system)))
4591 {
4592 /* Invalid coding system. */
4593
4594 if (!NILP (noerror))
4595 coding_system = Qraw_text;
4596 else
4597 xsignal1 (Qcoding_system_error, coding_system);
4598 }
4599
4600 if (STRING_MULTIBYTE (object))
4601 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4602
4603 size = SCHARS (object);
4604
4605 if (!NILP (start))
4606 {
4607 CHECK_NUMBER (start);
4608
4609 start_char = XINT (start);
4610
4611 if (start_char < 0)
4612 start_char += size;
4613 }
4614
4615 if (NILP (end))
4616 end_char = size;
4617 else
4618 {
4619 CHECK_NUMBER (end);
4620
4621 end_char = XINT (end);
4622
4623 if (end_char < 0)
4624 end_char += size;
4625 }
4626
4627 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4628 args_out_of_range_3 (object, make_number (start_char),
4629 make_number (end_char));
4630
4631 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4632 end_byte =
4633 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4634 }
4635 else
4636 {
4637 struct buffer *prev = current_buffer;
4638
4639 record_unwind_current_buffer ();
4640
4641 CHECK_BUFFER (object);
4642
4643 bp = XBUFFER (object);
4644 set_buffer_internal (bp);
4645
4646 if (NILP (start))
4647 b = BEGV;
4648 else
4649 {
4650 CHECK_NUMBER_COERCE_MARKER (start);
4651 b = XINT (start);
4652 }
4653
4654 if (NILP (end))
4655 e = ZV;
4656 else
4657 {
4658 CHECK_NUMBER_COERCE_MARKER (end);
4659 e = XINT (end);
4660 }
4661
4662 if (b > e)
4663 temp = b, b = e, e = temp;
4664
4665 if (!(BEGV <= b && e <= ZV))
4666 args_out_of_range (start, end);
4667
4668 if (NILP (coding_system))
4669 {
4670 /* Decide the coding-system to encode the data with.
4671 See fileio.c:Fwrite-region */
4672
4673 if (!NILP (Vcoding_system_for_write))
4674 coding_system = Vcoding_system_for_write;
4675 else
4676 {
4677 bool force_raw_text = 0;
4678
4679 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4680 if (NILP (coding_system)
4681 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4682 {
4683 coding_system = Qnil;
4684 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4685 force_raw_text = 1;
4686 }
4687
4688 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4689 {
4690 /* Check file-coding-system-alist. */
4691 Lisp_Object args[4], val;
4692
4693 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4694 args[3] = Fbuffer_file_name (object);
4695 val = Ffind_operation_coding_system (4, args);
4696 if (CONSP (val) && !NILP (XCDR (val)))
4697 coding_system = XCDR (val);
4698 }
4699
4700 if (NILP (coding_system)
4701 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4702 {
4703 /* If we still have not decided a coding system, use the
4704 default value of buffer-file-coding-system. */
4705 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4706 }
4707
4708 if (!force_raw_text
4709 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4710 /* Confirm that VAL can surely encode the current region. */
4711 coding_system = call4 (Vselect_safe_coding_system_function,
4712 make_number (b), make_number (e),
4713 coding_system, Qnil);
4714
4715 if (force_raw_text)
4716 coding_system = Qraw_text;
4717 }
4718
4719 if (NILP (Fcoding_system_p (coding_system)))
4720 {
4721 /* Invalid coding system. */
4722
4723 if (!NILP (noerror))
4724 coding_system = Qraw_text;
4725 else
4726 xsignal1 (Qcoding_system_error, coding_system);
4727 }
4728 }
4729
4730 object = make_buffer_string (b, e, 0);
4731 set_buffer_internal (prev);
4732 /* Discard the unwind protect for recovering the current
4733 buffer. */
4734 specpdl_ptr--;
4735
4736 if (STRING_MULTIBYTE (object))
4737 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4738 start_byte = 0;
4739 end_byte = SBYTES (object);
4740 }
4741
4742 if (EQ (algorithm, Qmd5))
4743 {
4744 digest_size = MD5_DIGEST_SIZE;
4745 hash_func = md5_buffer;
4746 }
4747 else if (EQ (algorithm, Qsha1))
4748 {
4749 digest_size = SHA1_DIGEST_SIZE;
4750 hash_func = sha1_buffer;
4751 }
4752 else if (EQ (algorithm, Qsha224))
4753 {
4754 digest_size = SHA224_DIGEST_SIZE;
4755 hash_func = sha224_buffer;
4756 }
4757 else if (EQ (algorithm, Qsha256))
4758 {
4759 digest_size = SHA256_DIGEST_SIZE;
4760 hash_func = sha256_buffer;
4761 }
4762 else if (EQ (algorithm, Qsha384))
4763 {
4764 digest_size = SHA384_DIGEST_SIZE;
4765 hash_func = sha384_buffer;
4766 }
4767 else if (EQ (algorithm, Qsha512))
4768 {
4769 digest_size = SHA512_DIGEST_SIZE;
4770 hash_func = sha512_buffer;
4771 }
4772 else
4773 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4774
4775 /* allocate 2 x digest_size so that it can be re-used to hold the
4776 hexified value */
4777 digest = make_uninit_string (digest_size * 2);
4778
4779 hash_func (SSDATA (object) + start_byte,
4780 end_byte - start_byte,
4781 SSDATA (digest));
4782
4783 if (NILP (binary))
4784 {
4785 unsigned char *p = SDATA (digest);
4786 for (i = digest_size - 1; i >= 0; i--)
4787 {
4788 static char const hexdigit[16] = "0123456789abcdef";
4789 int p_i = p[i];
4790 p[2 * i] = hexdigit[p_i >> 4];
4791 p[2 * i + 1] = hexdigit[p_i & 0xf];
4792 }
4793 return digest;
4794 }
4795 else
4796 return make_unibyte_string (SSDATA (digest), digest_size);
4797 }
4798
4799 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4800 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4801
4802 A message digest is a cryptographic checksum of a document, and the
4803 algorithm to calculate it is defined in RFC 1321.
4804
4805 The two optional arguments START and END are character positions
4806 specifying for which part of OBJECT the message digest should be
4807 computed. If nil or omitted, the digest is computed for the whole
4808 OBJECT.
4809
4810 The MD5 message digest is computed from the result of encoding the
4811 text in a coding system, not directly from the internal Emacs form of
4812 the text. The optional fourth argument CODING-SYSTEM specifies which
4813 coding system to encode the text with. It should be the same coding
4814 system that you used or will use when actually writing the text into a
4815 file.
4816
4817 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4818 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4819 system would be chosen by default for writing this text into a file.
4820
4821 If OBJECT is a string, the most preferred coding system (see the
4822 command `prefer-coding-system') is used.
4823
4824 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4825 guesswork fails. Normally, an error is signaled in such case. */)
4826 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4827 {
4828 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4829 }
4830
4831 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4832 doc: /* Return the secure hash of OBJECT, a buffer or string.
4833 ALGORITHM is a symbol specifying the hash to use:
4834 md5, sha1, sha224, sha256, sha384 or sha512.
4835
4836 The two optional arguments START and END are positions specifying for
4837 which part of OBJECT to compute the hash. If nil or omitted, uses the
4838 whole OBJECT.
4839
4840 If BINARY is non-nil, returns a string in binary form. */)
4841 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4842 {
4843 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4844 }
4845 \f
4846 void
4847 syms_of_fns (void)
4848 {
4849 DEFSYM (Qmd5, "md5");
4850 DEFSYM (Qsha1, "sha1");
4851 DEFSYM (Qsha224, "sha224");
4852 DEFSYM (Qsha256, "sha256");
4853 DEFSYM (Qsha384, "sha384");
4854 DEFSYM (Qsha512, "sha512");
4855
4856 /* Hash table stuff. */
4857 DEFSYM (Qhash_table_p, "hash-table-p");
4858 DEFSYM (Qeq, "eq");
4859 DEFSYM (Qeql, "eql");
4860 DEFSYM (Qequal, "equal");
4861 DEFSYM (QCtest, ":test");
4862 DEFSYM (QCsize, ":size");
4863 DEFSYM (QCrehash_size, ":rehash-size");
4864 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4865 DEFSYM (QCweakness, ":weakness");
4866 DEFSYM (Qkey, "key");
4867 DEFSYM (Qvalue, "value");
4868 DEFSYM (Qhash_table_test, "hash-table-test");
4869 DEFSYM (Qkey_or_value, "key-or-value");
4870 DEFSYM (Qkey_and_value, "key-and-value");
4871
4872 defsubr (&Ssxhash);
4873 defsubr (&Smake_hash_table);
4874 defsubr (&Scopy_hash_table);
4875 defsubr (&Shash_table_count);
4876 defsubr (&Shash_table_rehash_size);
4877 defsubr (&Shash_table_rehash_threshold);
4878 defsubr (&Shash_table_size);
4879 defsubr (&Shash_table_test);
4880 defsubr (&Shash_table_weakness);
4881 defsubr (&Shash_table_p);
4882 defsubr (&Sclrhash);
4883 defsubr (&Sgethash);
4884 defsubr (&Sputhash);
4885 defsubr (&Sremhash);
4886 defsubr (&Smaphash);
4887 defsubr (&Sdefine_hash_table_test);
4888
4889 DEFSYM (Qstring_lessp, "string-lessp");
4890 DEFSYM (Qprovide, "provide");
4891 DEFSYM (Qrequire, "require");
4892 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4893 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4894 DEFSYM (Qwidget_type, "widget-type");
4895
4896 staticpro (&string_char_byte_cache_string);
4897 string_char_byte_cache_string = Qnil;
4898
4899 require_nesting_list = Qnil;
4900 staticpro (&require_nesting_list);
4901
4902 Fset (Qyes_or_no_p_history, Qnil);
4903
4904 DEFVAR_LISP ("features", Vfeatures,
4905 doc: /* A list of symbols which are the features of the executing Emacs.
4906 Used by `featurep' and `require', and altered by `provide'. */);
4907 Vfeatures = list1 (intern_c_string ("emacs"));
4908 DEFSYM (Qsubfeatures, "subfeatures");
4909 DEFSYM (Qfuncall, "funcall");
4910
4911 #ifdef HAVE_LANGINFO_CODESET
4912 DEFSYM (Qcodeset, "codeset");
4913 DEFSYM (Qdays, "days");
4914 DEFSYM (Qmonths, "months");
4915 DEFSYM (Qpaper, "paper");
4916 #endif /* HAVE_LANGINFO_CODESET */
4917
4918 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4919 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4920 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4921 invoked by mouse clicks and mouse menu items.
4922
4923 On some platforms, file selection dialogs are also enabled if this is
4924 non-nil. */);
4925 use_dialog_box = 1;
4926
4927 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4928 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4929 This applies to commands from menus and tool bar buttons even when
4930 they are initiated from the keyboard. If `use-dialog-box' is nil,
4931 that disables the use of a file dialog, regardless of the value of
4932 this variable. */);
4933 use_file_dialog = 1;
4934
4935 defsubr (&Sidentity);
4936 defsubr (&Srandom);
4937 defsubr (&Slength);
4938 defsubr (&Ssafe_length);
4939 defsubr (&Sstring_bytes);
4940 defsubr (&Sstring_equal);
4941 defsubr (&Scompare_strings);
4942 defsubr (&Sstring_lessp);
4943 defsubr (&Sappend);
4944 defsubr (&Sconcat);
4945 defsubr (&Svconcat);
4946 defsubr (&Scopy_sequence);
4947 defsubr (&Sstring_make_multibyte);
4948 defsubr (&Sstring_make_unibyte);
4949 defsubr (&Sstring_as_multibyte);
4950 defsubr (&Sstring_as_unibyte);
4951 defsubr (&Sstring_to_multibyte);
4952 defsubr (&Sstring_to_unibyte);
4953 defsubr (&Scopy_alist);
4954 defsubr (&Ssubstring);
4955 defsubr (&Ssubstring_no_properties);
4956 defsubr (&Snthcdr);
4957 defsubr (&Snth);
4958 defsubr (&Selt);
4959 defsubr (&Smember);
4960 defsubr (&Smemq);
4961 defsubr (&Smemql);
4962 defsubr (&Sassq);
4963 defsubr (&Sassoc);
4964 defsubr (&Srassq);
4965 defsubr (&Srassoc);
4966 defsubr (&Sdelq);
4967 defsubr (&Sdelete);
4968 defsubr (&Snreverse);
4969 defsubr (&Sreverse);
4970 defsubr (&Ssort);
4971 defsubr (&Splist_get);
4972 defsubr (&Sget);
4973 defsubr (&Splist_put);
4974 defsubr (&Sput);
4975 defsubr (&Slax_plist_get);
4976 defsubr (&Slax_plist_put);
4977 defsubr (&Seql);
4978 defsubr (&Sequal);
4979 defsubr (&Sequal_including_properties);
4980 defsubr (&Sfillarray);
4981 defsubr (&Sclear_string);
4982 defsubr (&Snconc);
4983 defsubr (&Smapcar);
4984 defsubr (&Smapc);
4985 defsubr (&Smapconcat);
4986 defsubr (&Syes_or_no_p);
4987 defsubr (&Sload_average);
4988 defsubr (&Sfeaturep);
4989 defsubr (&Srequire);
4990 defsubr (&Sprovide);
4991 defsubr (&Splist_member);
4992 defsubr (&Swidget_put);
4993 defsubr (&Swidget_get);
4994 defsubr (&Swidget_apply);
4995 defsubr (&Sbase64_encode_region);
4996 defsubr (&Sbase64_decode_region);
4997 defsubr (&Sbase64_encode_string);
4998 defsubr (&Sbase64_decode_string);
4999 defsubr (&Smd5);
5000 defsubr (&Ssecure_hash);
5001 defsubr (&Slocale_info);
5002
5003 hashtest_eq.name = Qeq;
5004 hashtest_eq.user_hash_function = Qnil;
5005 hashtest_eq.user_cmp_function = Qnil;
5006 hashtest_eq.cmpfn = 0;
5007 hashtest_eq.hashfn = hashfn_eq;
5008
5009 hashtest_eql.name = Qeql;
5010 hashtest_eql.user_hash_function = Qnil;
5011 hashtest_eql.user_cmp_function = Qnil;
5012 hashtest_eql.cmpfn = cmpfn_eql;
5013 hashtest_eql.hashfn = hashfn_eql;
5014
5015 hashtest_equal.name = Qequal;
5016 hashtest_equal.user_hash_function = Qnil;
5017 hashtest_equal.user_cmp_function = Qnil;
5018 hashtest_equal.cmpfn = cmpfn_equal;
5019 hashtest_equal.hashfn = hashfn_equal;
5020 }