Merge from emacs-24; up to 2013-01-03T02:31:36Z!rgm@gnu.org
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "category.h"
26 #include "character.h"
27 #include "buffer.h"
28 #include "syntax.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* True means regexp was compiled to do full POSIX backtracking. */
53 bool posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, bool);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is true if we want full backtracking (POSIX style) for this pattern.
116 False means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
122 Lisp_Object translate, bool posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* unblock_input (); */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
180 }
181 }
182
183 /* Clear the regexp cache w.r.t. a particular syntax table,
184 because it was changed.
185 There is no danger of memory leak here because re_compile_pattern
186 automagically manages the memory in each re_pattern_buffer struct,
187 based on its `allocated' and `buffer' values. */
188 void
189 clear_regexp_cache (void)
190 {
191 int i;
192
193 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
194 /* It's tempting to compare with the syntax-table we've actually changed,
195 but it's not sufficient because char-table inheritance means that
196 modifying one syntax-table can change others at the same time. */
197 if (!EQ (searchbufs[i].syntax_table, Qt))
198 searchbufs[i].regexp = Qnil;
199 }
200
201 /* Compile a regexp if necessary, but first check to see if there's one in
202 the cache.
203 PATTERN is the pattern to compile.
204 TRANSLATE is a translation table for ignoring case, or nil for none.
205 REGP is the structure that says where to store the "register"
206 values that will result from matching this pattern.
207 If it is 0, we should compile the pattern not to record any
208 subexpression bounds.
209 POSIX is true if we want full backtracking (POSIX style) for this pattern.
210 False means backtrack only enough to get a valid match. */
211
212 struct re_pattern_buffer *
213 compile_pattern (Lisp_Object pattern, struct re_registers *regp,
214 Lisp_Object translate, bool posix, bool multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, bool posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
284 BVAR (current_buffer, case_eqv_table));
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (i >= 0 ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 {
332 for (i = 0; i < search_regs.num_regs; i++)
333 if (search_regs.start[i] >= 0)
334 {
335 search_regs.start[i]
336 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
337 search_regs.end[i]
338 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
339 }
340 /* Set last_thing_searched only when match data is changed. */
341 XSETBUFFER (last_thing_searched, current_buffer);
342 }
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
370 bool posix)
371 {
372 ptrdiff_t val;
373 struct re_pattern_buffer *bufp;
374 EMACS_INT pos;
375 ptrdiff_t pos_byte, i;
376
377 if (running_asynch_code)
378 save_search_regs ();
379
380 CHECK_STRING (regexp);
381 CHECK_STRING (string);
382
383 if (NILP (start))
384 pos = 0, pos_byte = 0;
385 else
386 {
387 ptrdiff_t len = SCHARS (string);
388
389 CHECK_NUMBER (start);
390 pos = XINT (start);
391 if (pos < 0 && -pos <= len)
392 pos = len + pos;
393 else if (0 > pos || pos > len)
394 args_out_of_range (string, start);
395 pos_byte = string_char_to_byte (string, pos);
396 }
397
398 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
399 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
400 BVAR (current_buffer, case_eqv_table));
401
402 bufp = compile_pattern (regexp,
403 (NILP (Vinhibit_changing_match_data)
404 ? &search_regs : NULL),
405 (!NILP (BVAR (current_buffer, case_fold_search))
406 ? BVAR (current_buffer, case_canon_table) : Qnil),
407 posix,
408 STRING_MULTIBYTE (string));
409 immediate_quit = 1;
410 re_match_object = string;
411
412 val = re_search (bufp, SSDATA (string),
413 SBYTES (string), pos_byte,
414 SBYTES (string) - pos_byte,
415 (NILP (Vinhibit_changing_match_data)
416 ? &search_regs : NULL));
417 immediate_quit = 0;
418
419 /* Set last_thing_searched only when match data is changed. */
420 if (NILP (Vinhibit_changing_match_data))
421 last_thing_searched = Qt;
422
423 if (val == -2)
424 matcher_overflow ();
425 if (val < 0) return Qnil;
426
427 if (NILP (Vinhibit_changing_match_data))
428 for (i = 0; i < search_regs.num_regs; i++)
429 if (search_regs.start[i] >= 0)
430 {
431 search_regs.start[i]
432 = string_byte_to_char (string, search_regs.start[i]);
433 search_regs.end[i]
434 = string_byte_to_char (string, search_regs.end[i]);
435 }
436
437 return make_number (string_byte_to_char (string, val));
438 }
439
440 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
441 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
442 Matching ignores case if `case-fold-search' is non-nil.
443 If third arg START is non-nil, start search at that index in STRING.
444 For index of first char beyond the match, do (match-end 0).
445 `match-end' and `match-beginning' also give indices of substrings
446 matched by parenthesis constructs in the pattern.
447
448 You can use the function `match-string' to extract the substrings
449 matched by the parenthesis constructions in REGEXP. */)
450 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
451 {
452 return string_match_1 (regexp, string, start, 0);
453 }
454
455 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
456 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
457 Find the longest match, in accord with Posix regular expression rules.
458 Case is ignored if `case-fold-search' is non-nil in the current buffer.
459 If third arg START is non-nil, start search at that index in STRING.
460 For index of first char beyond the match, do (match-end 0).
461 `match-end' and `match-beginning' also give indices of substrings
462 matched by parenthesis constructs in the pattern. */)
463 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
464 {
465 return string_match_1 (regexp, string, start, 1);
466 }
467
468 /* Match REGEXP against STRING, searching all of STRING,
469 and return the index of the match, or negative on failure.
470 This does not clobber the match data. */
471
472 ptrdiff_t
473 fast_string_match (Lisp_Object regexp, Lisp_Object string)
474 {
475 ptrdiff_t val;
476 struct re_pattern_buffer *bufp;
477
478 bufp = compile_pattern (regexp, 0, Qnil,
479 0, STRING_MULTIBYTE (string));
480 immediate_quit = 1;
481 re_match_object = string;
482
483 val = re_search (bufp, SSDATA (string),
484 SBYTES (string), 0,
485 SBYTES (string), 0);
486 immediate_quit = 0;
487 return val;
488 }
489
490 /* Match REGEXP against STRING, searching all of STRING ignoring case,
491 and return the index of the match, or negative on failure.
492 This does not clobber the match data.
493 We assume that STRING contains single-byte characters. */
494
495 ptrdiff_t
496 fast_c_string_match_ignore_case (Lisp_Object regexp,
497 const char *string, ptrdiff_t len)
498 {
499 ptrdiff_t val;
500 struct re_pattern_buffer *bufp;
501
502 regexp = string_make_unibyte (regexp);
503 re_match_object = Qt;
504 bufp = compile_pattern (regexp, 0,
505 Vascii_canon_table, 0,
506 0);
507 immediate_quit = 1;
508 val = re_search (bufp, string, len, 0, len, 0);
509 immediate_quit = 0;
510 return val;
511 }
512
513 /* Like fast_string_match but ignore case. */
514
515 ptrdiff_t
516 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
517 {
518 ptrdiff_t val;
519 struct re_pattern_buffer *bufp;
520
521 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
522 0, STRING_MULTIBYTE (string));
523 immediate_quit = 1;
524 re_match_object = string;
525
526 val = re_search (bufp, SSDATA (string),
527 SBYTES (string), 0,
528 SBYTES (string), 0);
529 immediate_quit = 0;
530 return val;
531 }
532 \f
533 /* Match REGEXP against the characters after POS to LIMIT, and return
534 the number of matched characters. If STRING is non-nil, match
535 against the characters in it. In that case, POS and LIMIT are
536 indices into the string. This function doesn't modify the match
537 data. */
538
539 ptrdiff_t
540 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
541 ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
542 {
543 bool multibyte;
544 struct re_pattern_buffer *buf;
545 unsigned char *p1, *p2;
546 ptrdiff_t s1, s2;
547 ptrdiff_t len;
548
549 if (STRINGP (string))
550 {
551 if (pos_byte < 0)
552 pos_byte = string_char_to_byte (string, pos);
553 if (limit_byte < 0)
554 limit_byte = string_char_to_byte (string, limit);
555 p1 = NULL;
556 s1 = 0;
557 p2 = SDATA (string);
558 s2 = SBYTES (string);
559 re_match_object = string;
560 multibyte = STRING_MULTIBYTE (string);
561 }
562 else
563 {
564 if (pos_byte < 0)
565 pos_byte = CHAR_TO_BYTE (pos);
566 if (limit_byte < 0)
567 limit_byte = CHAR_TO_BYTE (limit);
568 pos_byte -= BEGV_BYTE;
569 limit_byte -= BEGV_BYTE;
570 p1 = BEGV_ADDR;
571 s1 = GPT_BYTE - BEGV_BYTE;
572 p2 = GAP_END_ADDR;
573 s2 = ZV_BYTE - GPT_BYTE;
574 if (s1 < 0)
575 {
576 p2 = p1;
577 s2 = ZV_BYTE - BEGV_BYTE;
578 s1 = 0;
579 }
580 if (s2 < 0)
581 {
582 s1 = ZV_BYTE - BEGV_BYTE;
583 s2 = 0;
584 }
585 re_match_object = Qnil;
586 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
587 }
588
589 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
590 immediate_quit = 1;
591 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
592 pos_byte, NULL, limit_byte);
593 immediate_quit = 0;
594
595 return len;
596 }
597
598 \f
599 /* The newline cache: remembering which sections of text have no newlines. */
600
601 /* If the user has requested the long scans caching, make sure it's on.
602 Otherwise, make sure it's off.
603 This is our cheezy way of associating an action with the change of
604 state of a buffer-local variable. */
605 static void
606 newline_cache_on_off (struct buffer *buf)
607 {
608 if (NILP (BVAR (buf, cache_long_scans)))
609 {
610 /* It should be off. */
611 if (buf->newline_cache)
612 {
613 free_region_cache (buf->newline_cache);
614 buf->newline_cache = 0;
615 }
616 }
617 else
618 {
619 /* It should be on. */
620 if (buf->newline_cache == 0)
621 buf->newline_cache = new_region_cache ();
622 }
623 }
624
625 \f
626 /* Search for COUNT newlines between START/START_BYTE and END/END_BYTE.
627
628 If COUNT is positive, search forwards; END must be >= START.
629 If COUNT is negative, search backwards for the -COUNTth instance;
630 END must be <= START.
631 If COUNT is zero, do anything you please; run rogue, for all I care.
632
633 If END is zero, use BEGV or ZV instead, as appropriate for the
634 direction indicated by COUNT.
635
636 If we find COUNT instances, set *SHORTAGE to zero, and return the
637 position past the COUNTth match. Note that for reverse motion
638 this is not the same as the usual convention for Emacs motion commands.
639
640 If we don't find COUNT instances before reaching END, set *SHORTAGE
641 to the number of newlines left unfound, and return END.
642
643 If BYTEPOS is not NULL, set *BYTEPOS to the byte position corresponding
644 to the returned character position.
645
646 If ALLOW_QUIT, set immediate_quit. That's good to do
647 except when inside redisplay. */
648
649 ptrdiff_t
650 find_newline (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
651 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
652 ptrdiff_t *bytepos, bool allow_quit)
653 {
654 struct region_cache *newline_cache;
655 int direction;
656
657 if (count > 0)
658 {
659 direction = 1;
660 if (!end)
661 end = ZV, end_byte = ZV_BYTE;
662 }
663 else
664 {
665 direction = -1;
666 if (!end)
667 end = BEGV, end_byte = BEGV_BYTE;
668 }
669 if (end_byte == -1)
670 end_byte = CHAR_TO_BYTE (end);
671
672 newline_cache_on_off (current_buffer);
673 newline_cache = current_buffer->newline_cache;
674
675 if (shortage != 0)
676 *shortage = 0;
677
678 immediate_quit = allow_quit;
679
680 if (count > 0)
681 while (start != end)
682 {
683 /* Our innermost scanning loop is very simple; it doesn't know
684 about gaps, buffer ends, or the newline cache. ceiling is
685 the position of the last character before the next such
686 obstacle --- the last character the dumb search loop should
687 examine. */
688 ptrdiff_t tem, ceiling_byte = end_byte - 1;
689
690 /* If we're looking for a newline, consult the newline cache
691 to see where we can avoid some scanning. */
692 if (newline_cache)
693 {
694 ptrdiff_t next_change;
695 immediate_quit = 0;
696 while (region_cache_forward
697 (current_buffer, newline_cache, start, &next_change))
698 start = next_change;
699 immediate_quit = allow_quit;
700
701 start_byte = CHAR_TO_BYTE (start);
702
703 /* START should never be after END. */
704 if (start_byte > ceiling_byte)
705 start_byte = ceiling_byte;
706
707 /* Now the text after start is an unknown region, and
708 next_change is the position of the next known region. */
709 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
710 }
711 else if (start_byte == -1)
712 start_byte = CHAR_TO_BYTE (start);
713
714 /* The dumb loop can only scan text stored in contiguous
715 bytes. BUFFER_CEILING_OF returns the last character
716 position that is contiguous, so the ceiling is the
717 position after that. */
718 tem = BUFFER_CEILING_OF (start_byte);
719 ceiling_byte = min (tem, ceiling_byte);
720
721 {
722 /* The termination address of the dumb loop. */
723 register unsigned char *ceiling_addr
724 = BYTE_POS_ADDR (ceiling_byte) + 1;
725 register unsigned char *cursor
726 = BYTE_POS_ADDR (start_byte);
727 unsigned char *base = cursor;
728
729 while (cursor < ceiling_addr)
730 {
731 /* The dumb loop. */
732 unsigned char *nl = memchr (cursor, '\n', ceiling_addr - cursor);
733
734 /* If we're looking for newlines, cache the fact that
735 the region from start to cursor is free of them. */
736 if (newline_cache)
737 {
738 unsigned char *low = cursor;
739 unsigned char *lim = nl ? nl : ceiling_addr;
740 know_region_cache (current_buffer, newline_cache,
741 BYTE_TO_CHAR (low - base + start_byte),
742 BYTE_TO_CHAR (lim - base + start_byte));
743 }
744
745 if (! nl)
746 break;
747
748 if (--count == 0)
749 {
750 immediate_quit = 0;
751 if (bytepos)
752 *bytepos = nl + 1 - base + start_byte;
753 return BYTE_TO_CHAR (nl + 1 - base + start_byte);
754 }
755 cursor = nl + 1;
756 }
757
758 start_byte += ceiling_addr - base;
759 start = BYTE_TO_CHAR (start_byte);
760 }
761 }
762 else
763 while (start > end)
764 {
765 /* The last character to check before the next obstacle. */
766 ptrdiff_t tem, ceiling_byte = end_byte;
767
768 /* Consult the newline cache, if appropriate. */
769 if (newline_cache)
770 {
771 ptrdiff_t next_change;
772 immediate_quit = 0;
773 while (region_cache_backward
774 (current_buffer, newline_cache, start, &next_change))
775 start = next_change;
776 immediate_quit = allow_quit;
777
778 start_byte = CHAR_TO_BYTE (start);
779
780 /* Start should never be at or before end. */
781 if (start_byte <= ceiling_byte)
782 start_byte = ceiling_byte + 1;
783
784 /* Now the text before start is an unknown region, and
785 next_change is the position of the next known region. */
786 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
787 }
788 else if (start_byte == -1)
789 start_byte = CHAR_TO_BYTE (start);
790
791 /* Stop scanning before the gap. */
792 tem = BUFFER_FLOOR_OF (start_byte - 1);
793 ceiling_byte = max (tem, ceiling_byte);
794
795 {
796 /* The termination address of the dumb loop. */
797 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
798 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
799 unsigned char *base = cursor;
800
801 while (cursor >= ceiling_addr)
802 {
803 unsigned char *nl = memrchr (ceiling_addr, '\n',
804 cursor + 1 - ceiling_addr);
805
806 /* If we're looking for newlines, cache the fact that
807 the region from after the cursor to start is free of them. */
808 if (newline_cache)
809 {
810 unsigned char *low = nl ? nl : ceiling_addr - 1;
811 unsigned char *lim = cursor;
812 know_region_cache (current_buffer, newline_cache,
813 BYTE_TO_CHAR (low - base + start_byte),
814 BYTE_TO_CHAR (lim - base + start_byte));
815 }
816
817 if (! nl)
818 break;
819
820 if (++count >= 0)
821 {
822 immediate_quit = 0;
823 if (bytepos)
824 *bytepos = nl - base + start_byte;
825 return BYTE_TO_CHAR (nl - base + start_byte);
826 }
827 cursor = nl - 1;
828 }
829
830 start_byte += ceiling_addr - 1 - base;
831 start = BYTE_TO_CHAR (start_byte);
832 }
833 }
834
835 immediate_quit = 0;
836 if (shortage)
837 *shortage = count * direction;
838 if (bytepos)
839 {
840 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
841 eassert (*bytepos == CHAR_TO_BYTE (start));
842 }
843 return start;
844 }
845 \f
846 /* Search for COUNT instances of a line boundary.
847 Start at START. If COUNT is negative, search backwards.
848
849 We report the resulting position by calling TEMP_SET_PT_BOTH.
850
851 If we find COUNT instances. we position after (always after,
852 even if scanning backwards) the COUNTth match, and return 0.
853
854 If we don't find COUNT instances before reaching the end of the
855 buffer (or the beginning, if scanning backwards), we return
856 the number of line boundaries left unfound, and position at
857 the limit we bumped up against.
858
859 If ALLOW_QUIT, set immediate_quit. That's good to do
860 except in special cases. */
861
862 ptrdiff_t
863 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
864 ptrdiff_t limit, ptrdiff_t limit_byte,
865 ptrdiff_t count, bool allow_quit)
866 {
867 ptrdiff_t charpos, bytepos, shortage;
868
869 charpos = find_newline (start, start_byte, limit, limit_byte,
870 count, &shortage, &bytepos, allow_quit);
871 if (shortage)
872 TEMP_SET_PT_BOTH (limit, limit_byte);
873 else
874 TEMP_SET_PT_BOTH (charpos, bytepos);
875 return shortage;
876 }
877
878 /* Like find_newline, but doesn't allow QUITting and doesn't return
879 SHORTAGE. */
880 ptrdiff_t
881 find_newline_no_quit (ptrdiff_t from, ptrdiff_t frombyte,
882 ptrdiff_t cnt, ptrdiff_t *bytepos)
883 {
884 return find_newline (from, frombyte, 0, -1, cnt, NULL, bytepos, 0);
885 }
886
887 /* Like find_newline, but returns position before the newline, not
888 after, and only search up to TO.
889 This isn't just find_newline_no_quit (...)-1, because you might hit TO. */
890
891 ptrdiff_t
892 find_before_next_newline (ptrdiff_t from, ptrdiff_t to,
893 ptrdiff_t cnt, ptrdiff_t *bytepos)
894 {
895 ptrdiff_t shortage;
896 ptrdiff_t pos = find_newline (from, -1, to, -1, cnt, &shortage, bytepos, 1);
897
898 if (shortage == 0)
899 {
900 if (bytepos)
901 DEC_BOTH (pos, *bytepos);
902 else
903 pos--;
904 }
905 return pos;
906 }
907 \f
908 /* Subroutines of Lisp buffer search functions. */
909
910 static Lisp_Object
911 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
912 Lisp_Object count, int direction, int RE, bool posix)
913 {
914 EMACS_INT np;
915 EMACS_INT lim;
916 ptrdiff_t lim_byte;
917 EMACS_INT n = direction;
918
919 if (!NILP (count))
920 {
921 CHECK_NUMBER (count);
922 n *= XINT (count);
923 }
924
925 CHECK_STRING (string);
926 if (NILP (bound))
927 {
928 if (n > 0)
929 lim = ZV, lim_byte = ZV_BYTE;
930 else
931 lim = BEGV, lim_byte = BEGV_BYTE;
932 }
933 else
934 {
935 CHECK_NUMBER_COERCE_MARKER (bound);
936 lim = XINT (bound);
937 if (n > 0 ? lim < PT : lim > PT)
938 error ("Invalid search bound (wrong side of point)");
939 if (lim > ZV)
940 lim = ZV, lim_byte = ZV_BYTE;
941 else if (lim < BEGV)
942 lim = BEGV, lim_byte = BEGV_BYTE;
943 else
944 lim_byte = CHAR_TO_BYTE (lim);
945 }
946
947 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
948 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
949 BVAR (current_buffer, case_eqv_table));
950
951 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
952 (!NILP (BVAR (current_buffer, case_fold_search))
953 ? BVAR (current_buffer, case_canon_table)
954 : Qnil),
955 (!NILP (BVAR (current_buffer, case_fold_search))
956 ? BVAR (current_buffer, case_eqv_table)
957 : Qnil),
958 posix);
959 if (np <= 0)
960 {
961 if (NILP (noerror))
962 xsignal1 (Qsearch_failed, string);
963
964 if (!EQ (noerror, Qt))
965 {
966 eassert (BEGV <= lim && lim <= ZV);
967 SET_PT_BOTH (lim, lim_byte);
968 return Qnil;
969 #if 0 /* This would be clean, but maybe programs depend on
970 a value of nil here. */
971 np = lim;
972 #endif
973 }
974 else
975 return Qnil;
976 }
977
978 eassert (BEGV <= np && np <= ZV);
979 SET_PT (np);
980
981 return make_number (np);
982 }
983 \f
984 /* Return true if REGEXP it matches just one constant string. */
985
986 static bool
987 trivial_regexp_p (Lisp_Object regexp)
988 {
989 ptrdiff_t len = SBYTES (regexp);
990 unsigned char *s = SDATA (regexp);
991 while (--len >= 0)
992 {
993 switch (*s++)
994 {
995 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
996 return 0;
997 case '\\':
998 if (--len < 0)
999 return 0;
1000 switch (*s++)
1001 {
1002 case '|': case '(': case ')': case '`': case '\'': case 'b':
1003 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1004 case 'S': case '=': case '{': case '}': case '_':
1005 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1006 case '1': case '2': case '3': case '4': case '5':
1007 case '6': case '7': case '8': case '9':
1008 return 0;
1009 }
1010 }
1011 }
1012 return 1;
1013 }
1014
1015 /* Search for the n'th occurrence of STRING in the current buffer,
1016 starting at position POS and stopping at position LIM,
1017 treating STRING as a literal string if RE is false or as
1018 a regular expression if RE is true.
1019
1020 If N is positive, searching is forward and LIM must be greater than POS.
1021 If N is negative, searching is backward and LIM must be less than POS.
1022
1023 Returns -x if x occurrences remain to be found (x > 0),
1024 or else the position at the beginning of the Nth occurrence
1025 (if searching backward) or the end (if searching forward).
1026
1027 POSIX is nonzero if we want full backtracking (POSIX style)
1028 for this pattern. 0 means backtrack only enough to get a valid match. */
1029
1030 #define TRANSLATE(out, trt, d) \
1031 do \
1032 { \
1033 if (! NILP (trt)) \
1034 { \
1035 Lisp_Object temp; \
1036 temp = Faref (trt, make_number (d)); \
1037 if (INTEGERP (temp)) \
1038 out = XINT (temp); \
1039 else \
1040 out = d; \
1041 } \
1042 else \
1043 out = d; \
1044 } \
1045 while (0)
1046
1047 /* Only used in search_buffer, to record the end position of the match
1048 when searching regexps and SEARCH_REGS should not be changed
1049 (i.e. Vinhibit_changing_match_data is non-nil). */
1050 static struct re_registers search_regs_1;
1051
1052 static EMACS_INT
1053 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1054 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1055 int RE, Lisp_Object trt, Lisp_Object inverse_trt, bool posix)
1056 {
1057 ptrdiff_t len = SCHARS (string);
1058 ptrdiff_t len_byte = SBYTES (string);
1059 register ptrdiff_t i;
1060
1061 if (running_asynch_code)
1062 save_search_regs ();
1063
1064 /* Searching 0 times means don't move. */
1065 /* Null string is found at starting position. */
1066 if (len == 0 || n == 0)
1067 {
1068 set_search_regs (pos_byte, 0);
1069 return pos;
1070 }
1071
1072 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1073 {
1074 unsigned char *p1, *p2;
1075 ptrdiff_t s1, s2;
1076 struct re_pattern_buffer *bufp;
1077
1078 bufp = compile_pattern (string,
1079 (NILP (Vinhibit_changing_match_data)
1080 ? &search_regs : &search_regs_1),
1081 trt, posix,
1082 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1083
1084 immediate_quit = 1; /* Quit immediately if user types ^G,
1085 because letting this function finish
1086 can take too long. */
1087 QUIT; /* Do a pending quit right away,
1088 to avoid paradoxical behavior */
1089 /* Get pointers and sizes of the two strings
1090 that make up the visible portion of the buffer. */
1091
1092 p1 = BEGV_ADDR;
1093 s1 = GPT_BYTE - BEGV_BYTE;
1094 p2 = GAP_END_ADDR;
1095 s2 = ZV_BYTE - GPT_BYTE;
1096 if (s1 < 0)
1097 {
1098 p2 = p1;
1099 s2 = ZV_BYTE - BEGV_BYTE;
1100 s1 = 0;
1101 }
1102 if (s2 < 0)
1103 {
1104 s1 = ZV_BYTE - BEGV_BYTE;
1105 s2 = 0;
1106 }
1107 re_match_object = Qnil;
1108
1109 while (n < 0)
1110 {
1111 ptrdiff_t val;
1112
1113 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1114 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1115 (NILP (Vinhibit_changing_match_data)
1116 ? &search_regs : &search_regs_1),
1117 /* Don't allow match past current point */
1118 pos_byte - BEGV_BYTE);
1119 if (val == -2)
1120 {
1121 matcher_overflow ();
1122 }
1123 if (val >= 0)
1124 {
1125 if (NILP (Vinhibit_changing_match_data))
1126 {
1127 pos_byte = search_regs.start[0] + BEGV_BYTE;
1128 for (i = 0; i < search_regs.num_regs; i++)
1129 if (search_regs.start[i] >= 0)
1130 {
1131 search_regs.start[i]
1132 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1133 search_regs.end[i]
1134 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1135 }
1136 XSETBUFFER (last_thing_searched, current_buffer);
1137 /* Set pos to the new position. */
1138 pos = search_regs.start[0];
1139 }
1140 else
1141 {
1142 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1143 /* Set pos to the new position. */
1144 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1145 }
1146 }
1147 else
1148 {
1149 immediate_quit = 0;
1150 return (n);
1151 }
1152 n++;
1153 }
1154 while (n > 0)
1155 {
1156 ptrdiff_t val;
1157
1158 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1159 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1160 (NILP (Vinhibit_changing_match_data)
1161 ? &search_regs : &search_regs_1),
1162 lim_byte - BEGV_BYTE);
1163 if (val == -2)
1164 {
1165 matcher_overflow ();
1166 }
1167 if (val >= 0)
1168 {
1169 if (NILP (Vinhibit_changing_match_data))
1170 {
1171 pos_byte = search_regs.end[0] + BEGV_BYTE;
1172 for (i = 0; i < search_regs.num_regs; i++)
1173 if (search_regs.start[i] >= 0)
1174 {
1175 search_regs.start[i]
1176 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1177 search_regs.end[i]
1178 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1179 }
1180 XSETBUFFER (last_thing_searched, current_buffer);
1181 pos = search_regs.end[0];
1182 }
1183 else
1184 {
1185 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1186 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1187 }
1188 }
1189 else
1190 {
1191 immediate_quit = 0;
1192 return (0 - n);
1193 }
1194 n--;
1195 }
1196 immediate_quit = 0;
1197 return (pos);
1198 }
1199 else /* non-RE case */
1200 {
1201 unsigned char *raw_pattern, *pat;
1202 ptrdiff_t raw_pattern_size;
1203 ptrdiff_t raw_pattern_size_byte;
1204 unsigned char *patbuf;
1205 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1206 unsigned char *base_pat;
1207 /* Set to positive if we find a non-ASCII char that need
1208 translation. Otherwise set to zero later. */
1209 int char_base = -1;
1210 bool boyer_moore_ok = 1;
1211
1212 /* MULTIBYTE says whether the text to be searched is multibyte.
1213 We must convert PATTERN to match that, or we will not really
1214 find things right. */
1215
1216 if (multibyte == STRING_MULTIBYTE (string))
1217 {
1218 raw_pattern = SDATA (string);
1219 raw_pattern_size = SCHARS (string);
1220 raw_pattern_size_byte = SBYTES (string);
1221 }
1222 else if (multibyte)
1223 {
1224 raw_pattern_size = SCHARS (string);
1225 raw_pattern_size_byte
1226 = count_size_as_multibyte (SDATA (string),
1227 raw_pattern_size);
1228 raw_pattern = alloca (raw_pattern_size_byte + 1);
1229 copy_text (SDATA (string), raw_pattern,
1230 SCHARS (string), 0, 1);
1231 }
1232 else
1233 {
1234 /* Converting multibyte to single-byte.
1235
1236 ??? Perhaps this conversion should be done in a special way
1237 by subtracting nonascii-insert-offset from each non-ASCII char,
1238 so that only the multibyte chars which really correspond to
1239 the chosen single-byte character set can possibly match. */
1240 raw_pattern_size = SCHARS (string);
1241 raw_pattern_size_byte = SCHARS (string);
1242 raw_pattern = alloca (raw_pattern_size + 1);
1243 copy_text (SDATA (string), raw_pattern,
1244 SBYTES (string), 1, 0);
1245 }
1246
1247 /* Copy and optionally translate the pattern. */
1248 len = raw_pattern_size;
1249 len_byte = raw_pattern_size_byte;
1250 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1251 pat = patbuf;
1252 base_pat = raw_pattern;
1253 if (multibyte)
1254 {
1255 /* Fill patbuf by translated characters in STRING while
1256 checking if we can use boyer-moore search. If TRT is
1257 non-nil, we can use boyer-moore search only if TRT can be
1258 represented by the byte array of 256 elements. For that,
1259 all non-ASCII case-equivalents of all case-sensitive
1260 characters in STRING must belong to the same character
1261 group (two characters belong to the same group iff their
1262 multibyte forms are the same except for the last byte;
1263 i.e. every 64 characters form a group; U+0000..U+003F,
1264 U+0040..U+007F, U+0080..U+00BF, ...). */
1265
1266 while (--len >= 0)
1267 {
1268 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1269 int c, translated, inverse;
1270 int in_charlen, charlen;
1271
1272 /* If we got here and the RE flag is set, it's because we're
1273 dealing with a regexp known to be trivial, so the backslash
1274 just quotes the next character. */
1275 if (RE && *base_pat == '\\')
1276 {
1277 len--;
1278 raw_pattern_size--;
1279 len_byte--;
1280 base_pat++;
1281 }
1282
1283 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1284
1285 if (NILP (trt))
1286 {
1287 str = base_pat;
1288 charlen = in_charlen;
1289 }
1290 else
1291 {
1292 /* Translate the character. */
1293 TRANSLATE (translated, trt, c);
1294 charlen = CHAR_STRING (translated, str_base);
1295 str = str_base;
1296
1297 /* Check if C has any other case-equivalents. */
1298 TRANSLATE (inverse, inverse_trt, c);
1299 /* If so, check if we can use boyer-moore. */
1300 if (c != inverse && boyer_moore_ok)
1301 {
1302 /* Check if all equivalents belong to the same
1303 group of characters. Note that the check of C
1304 itself is done by the last iteration. */
1305 int this_char_base = -1;
1306
1307 while (boyer_moore_ok)
1308 {
1309 if (ASCII_BYTE_P (inverse))
1310 {
1311 if (this_char_base > 0)
1312 boyer_moore_ok = 0;
1313 else
1314 this_char_base = 0;
1315 }
1316 else if (CHAR_BYTE8_P (inverse))
1317 /* Boyer-moore search can't handle a
1318 translation of an eight-bit
1319 character. */
1320 boyer_moore_ok = 0;
1321 else if (this_char_base < 0)
1322 {
1323 this_char_base = inverse & ~0x3F;
1324 if (char_base < 0)
1325 char_base = this_char_base;
1326 else if (this_char_base != char_base)
1327 boyer_moore_ok = 0;
1328 }
1329 else if ((inverse & ~0x3F) != this_char_base)
1330 boyer_moore_ok = 0;
1331 if (c == inverse)
1332 break;
1333 TRANSLATE (inverse, inverse_trt, inverse);
1334 }
1335 }
1336 }
1337
1338 /* Store this character into the translated pattern. */
1339 memcpy (pat, str, charlen);
1340 pat += charlen;
1341 base_pat += in_charlen;
1342 len_byte -= in_charlen;
1343 }
1344
1345 /* If char_base is still negative we didn't find any translated
1346 non-ASCII characters. */
1347 if (char_base < 0)
1348 char_base = 0;
1349 }
1350 else
1351 {
1352 /* Unibyte buffer. */
1353 char_base = 0;
1354 while (--len >= 0)
1355 {
1356 int c, translated, inverse;
1357
1358 /* If we got here and the RE flag is set, it's because we're
1359 dealing with a regexp known to be trivial, so the backslash
1360 just quotes the next character. */
1361 if (RE && *base_pat == '\\')
1362 {
1363 len--;
1364 raw_pattern_size--;
1365 base_pat++;
1366 }
1367 c = *base_pat++;
1368 TRANSLATE (translated, trt, c);
1369 *pat++ = translated;
1370 /* Check that none of C's equivalents violates the
1371 assumptions of boyer_moore. */
1372 TRANSLATE (inverse, inverse_trt, c);
1373 while (1)
1374 {
1375 if (inverse >= 0200)
1376 {
1377 boyer_moore_ok = 0;
1378 break;
1379 }
1380 if (c == inverse)
1381 break;
1382 TRANSLATE (inverse, inverse_trt, inverse);
1383 }
1384 }
1385 }
1386
1387 len_byte = pat - patbuf;
1388 pat = base_pat = patbuf;
1389
1390 if (boyer_moore_ok)
1391 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1392 pos_byte, lim_byte,
1393 char_base);
1394 else
1395 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1396 pos, pos_byte, lim, lim_byte);
1397 }
1398 }
1399 \f
1400 /* Do a simple string search N times for the string PAT,
1401 whose length is LEN/LEN_BYTE,
1402 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1403 TRT is the translation table.
1404
1405 Return the character position where the match is found.
1406 Otherwise, if M matches remained to be found, return -M.
1407
1408 This kind of search works regardless of what is in PAT and
1409 regardless of what is in TRT. It is used in cases where
1410 boyer_moore cannot work. */
1411
1412 static EMACS_INT
1413 simple_search (EMACS_INT n, unsigned char *pat,
1414 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1415 ptrdiff_t pos, ptrdiff_t pos_byte,
1416 ptrdiff_t lim, ptrdiff_t lim_byte)
1417 {
1418 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1419 bool forward = n > 0;
1420 /* Number of buffer bytes matched. Note that this may be different
1421 from len_byte in a multibyte buffer. */
1422 ptrdiff_t match_byte = PTRDIFF_MIN;
1423
1424 if (lim > pos && multibyte)
1425 while (n > 0)
1426 {
1427 while (1)
1428 {
1429 /* Try matching at position POS. */
1430 ptrdiff_t this_pos = pos;
1431 ptrdiff_t this_pos_byte = pos_byte;
1432 ptrdiff_t this_len = len;
1433 unsigned char *p = pat;
1434 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1435 goto stop;
1436
1437 while (this_len > 0)
1438 {
1439 int charlen, buf_charlen;
1440 int pat_ch, buf_ch;
1441
1442 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1443 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1444 buf_charlen);
1445 TRANSLATE (buf_ch, trt, buf_ch);
1446
1447 if (buf_ch != pat_ch)
1448 break;
1449
1450 this_len--;
1451 p += charlen;
1452
1453 this_pos_byte += buf_charlen;
1454 this_pos++;
1455 }
1456
1457 if (this_len == 0)
1458 {
1459 match_byte = this_pos_byte - pos_byte;
1460 pos += len;
1461 pos_byte += match_byte;
1462 break;
1463 }
1464
1465 INC_BOTH (pos, pos_byte);
1466 }
1467
1468 n--;
1469 }
1470 else if (lim > pos)
1471 while (n > 0)
1472 {
1473 while (1)
1474 {
1475 /* Try matching at position POS. */
1476 ptrdiff_t this_pos = pos;
1477 ptrdiff_t this_len = len;
1478 unsigned char *p = pat;
1479
1480 if (pos + len > lim)
1481 goto stop;
1482
1483 while (this_len > 0)
1484 {
1485 int pat_ch = *p++;
1486 int buf_ch = FETCH_BYTE (this_pos);
1487 TRANSLATE (buf_ch, trt, buf_ch);
1488
1489 if (buf_ch != pat_ch)
1490 break;
1491
1492 this_len--;
1493 this_pos++;
1494 }
1495
1496 if (this_len == 0)
1497 {
1498 match_byte = len;
1499 pos += len;
1500 break;
1501 }
1502
1503 pos++;
1504 }
1505
1506 n--;
1507 }
1508 /* Backwards search. */
1509 else if (lim < pos && multibyte)
1510 while (n < 0)
1511 {
1512 while (1)
1513 {
1514 /* Try matching at position POS. */
1515 ptrdiff_t this_pos = pos;
1516 ptrdiff_t this_pos_byte = pos_byte;
1517 ptrdiff_t this_len = len;
1518 const unsigned char *p = pat + len_byte;
1519
1520 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1521 goto stop;
1522
1523 while (this_len > 0)
1524 {
1525 int pat_ch, buf_ch;
1526
1527 DEC_BOTH (this_pos, this_pos_byte);
1528 PREV_CHAR_BOUNDARY (p, pat);
1529 pat_ch = STRING_CHAR (p);
1530 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1531 TRANSLATE (buf_ch, trt, buf_ch);
1532
1533 if (buf_ch != pat_ch)
1534 break;
1535
1536 this_len--;
1537 }
1538
1539 if (this_len == 0)
1540 {
1541 match_byte = pos_byte - this_pos_byte;
1542 pos = this_pos;
1543 pos_byte = this_pos_byte;
1544 break;
1545 }
1546
1547 DEC_BOTH (pos, pos_byte);
1548 }
1549
1550 n++;
1551 }
1552 else if (lim < pos)
1553 while (n < 0)
1554 {
1555 while (1)
1556 {
1557 /* Try matching at position POS. */
1558 ptrdiff_t this_pos = pos - len;
1559 ptrdiff_t this_len = len;
1560 unsigned char *p = pat;
1561
1562 if (this_pos < lim)
1563 goto stop;
1564
1565 while (this_len > 0)
1566 {
1567 int pat_ch = *p++;
1568 int buf_ch = FETCH_BYTE (this_pos);
1569 TRANSLATE (buf_ch, trt, buf_ch);
1570
1571 if (buf_ch != pat_ch)
1572 break;
1573 this_len--;
1574 this_pos++;
1575 }
1576
1577 if (this_len == 0)
1578 {
1579 match_byte = len;
1580 pos -= len;
1581 break;
1582 }
1583
1584 pos--;
1585 }
1586
1587 n++;
1588 }
1589
1590 stop:
1591 if (n == 0)
1592 {
1593 eassert (match_byte != PTRDIFF_MIN);
1594 if (forward)
1595 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1596 else
1597 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1598
1599 return pos;
1600 }
1601 else if (n > 0)
1602 return -n;
1603 else
1604 return n;
1605 }
1606 \f
1607 /* Do Boyer-Moore search N times for the string BASE_PAT,
1608 whose length is LEN_BYTE,
1609 from buffer position POS_BYTE until LIM_BYTE.
1610 DIRECTION says which direction we search in.
1611 TRT and INVERSE_TRT are translation tables.
1612 Characters in PAT are already translated by TRT.
1613
1614 This kind of search works if all the characters in BASE_PAT that
1615 have nontrivial translation are the same aside from the last byte.
1616 This makes it possible to translate just the last byte of a
1617 character, and do so after just a simple test of the context.
1618 CHAR_BASE is nonzero if there is such a non-ASCII character.
1619
1620 If that criterion is not satisfied, do not call this function. */
1621
1622 static EMACS_INT
1623 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1624 ptrdiff_t len_byte,
1625 Lisp_Object trt, Lisp_Object inverse_trt,
1626 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1627 int char_base)
1628 {
1629 int direction = ((n > 0) ? 1 : -1);
1630 register ptrdiff_t dirlen;
1631 ptrdiff_t limit;
1632 int stride_for_teases = 0;
1633 int BM_tab[0400];
1634 register unsigned char *cursor, *p_limit;
1635 register ptrdiff_t i;
1636 register int j;
1637 unsigned char *pat, *pat_end;
1638 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1639
1640 unsigned char simple_translate[0400];
1641 /* These are set to the preceding bytes of a byte to be translated
1642 if char_base is nonzero. As the maximum byte length of a
1643 multibyte character is 5, we have to check at most four previous
1644 bytes. */
1645 int translate_prev_byte1 = 0;
1646 int translate_prev_byte2 = 0;
1647 int translate_prev_byte3 = 0;
1648
1649 /* The general approach is that we are going to maintain that we know
1650 the first (closest to the present position, in whatever direction
1651 we're searching) character that could possibly be the last
1652 (furthest from present position) character of a valid match. We
1653 advance the state of our knowledge by looking at that character
1654 and seeing whether it indeed matches the last character of the
1655 pattern. If it does, we take a closer look. If it does not, we
1656 move our pointer (to putative last characters) as far as is
1657 logically possible. This amount of movement, which I call a
1658 stride, will be the length of the pattern if the actual character
1659 appears nowhere in the pattern, otherwise it will be the distance
1660 from the last occurrence of that character to the end of the
1661 pattern. If the amount is zero we have a possible match. */
1662
1663 /* Here we make a "mickey mouse" BM table. The stride of the search
1664 is determined only by the last character of the putative match.
1665 If that character does not match, we will stride the proper
1666 distance to propose a match that superimposes it on the last
1667 instance of a character that matches it (per trt), or misses
1668 it entirely if there is none. */
1669
1670 dirlen = len_byte * direction;
1671
1672 /* Record position after the end of the pattern. */
1673 pat_end = base_pat + len_byte;
1674 /* BASE_PAT points to a character that we start scanning from.
1675 It is the first character in a forward search,
1676 the last character in a backward search. */
1677 if (direction < 0)
1678 base_pat = pat_end - 1;
1679
1680 /* A character that does not appear in the pattern induces a
1681 stride equal to the pattern length. */
1682 for (i = 0; i < 0400; i++)
1683 BM_tab[i] = dirlen;
1684
1685 /* We use this for translation, instead of TRT itself.
1686 We fill this in to handle the characters that actually
1687 occur in the pattern. Others don't matter anyway! */
1688 for (i = 0; i < 0400; i++)
1689 simple_translate[i] = i;
1690
1691 if (char_base)
1692 {
1693 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1694 byte following them are the target of translation. */
1695 unsigned char str[MAX_MULTIBYTE_LENGTH];
1696 int cblen = CHAR_STRING (char_base, str);
1697
1698 translate_prev_byte1 = str[cblen - 2];
1699 if (cblen > 2)
1700 {
1701 translate_prev_byte2 = str[cblen - 3];
1702 if (cblen > 3)
1703 translate_prev_byte3 = str[cblen - 4];
1704 }
1705 }
1706
1707 i = 0;
1708 while (i != dirlen)
1709 {
1710 unsigned char *ptr = base_pat + i;
1711 i += direction;
1712 if (! NILP (trt))
1713 {
1714 /* If the byte currently looking at is the last of a
1715 character to check case-equivalents, set CH to that
1716 character. An ASCII character and a non-ASCII character
1717 matching with CHAR_BASE are to be checked. */
1718 int ch = -1;
1719
1720 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1721 ch = *ptr;
1722 else if (char_base
1723 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1724 {
1725 unsigned char *charstart = ptr - 1;
1726
1727 while (! (CHAR_HEAD_P (*charstart)))
1728 charstart--;
1729 ch = STRING_CHAR (charstart);
1730 if (char_base != (ch & ~0x3F))
1731 ch = -1;
1732 }
1733
1734 if (ch >= 0200 && multibyte)
1735 j = (ch & 0x3F) | 0200;
1736 else
1737 j = *ptr;
1738
1739 if (i == dirlen)
1740 stride_for_teases = BM_tab[j];
1741
1742 BM_tab[j] = dirlen - i;
1743 /* A translation table is accompanied by its inverse -- see
1744 comment following downcase_table for details. */
1745 if (ch >= 0)
1746 {
1747 int starting_ch = ch;
1748 int starting_j = j;
1749
1750 while (1)
1751 {
1752 TRANSLATE (ch, inverse_trt, ch);
1753 if (ch >= 0200 && multibyte)
1754 j = (ch & 0x3F) | 0200;
1755 else
1756 j = ch;
1757
1758 /* For all the characters that map into CH,
1759 set up simple_translate to map the last byte
1760 into STARTING_J. */
1761 simple_translate[j] = starting_j;
1762 if (ch == starting_ch)
1763 break;
1764 BM_tab[j] = dirlen - i;
1765 }
1766 }
1767 }
1768 else
1769 {
1770 j = *ptr;
1771
1772 if (i == dirlen)
1773 stride_for_teases = BM_tab[j];
1774 BM_tab[j] = dirlen - i;
1775 }
1776 /* stride_for_teases tells how much to stride if we get a
1777 match on the far character but are subsequently
1778 disappointed, by recording what the stride would have been
1779 for that character if the last character had been
1780 different. */
1781 }
1782 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1783 /* loop invariant - POS_BYTE points at where last char (first
1784 char if reverse) of pattern would align in a possible match. */
1785 while (n != 0)
1786 {
1787 ptrdiff_t tail_end;
1788 unsigned char *tail_end_ptr;
1789
1790 /* It's been reported that some (broken) compiler thinks that
1791 Boolean expressions in an arithmetic context are unsigned.
1792 Using an explicit ?1:0 prevents this. */
1793 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1794 < 0)
1795 return (n * (0 - direction));
1796 /* First we do the part we can by pointers (maybe nothing) */
1797 QUIT;
1798 pat = base_pat;
1799 limit = pos_byte - dirlen + direction;
1800 if (direction > 0)
1801 {
1802 limit = BUFFER_CEILING_OF (limit);
1803 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1804 can take on without hitting edge of buffer or the gap. */
1805 limit = min (limit, pos_byte + 20000);
1806 limit = min (limit, lim_byte - 1);
1807 }
1808 else
1809 {
1810 limit = BUFFER_FLOOR_OF (limit);
1811 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1812 can take on without hitting edge of buffer or the gap. */
1813 limit = max (limit, pos_byte - 20000);
1814 limit = max (limit, lim_byte);
1815 }
1816 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1817 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1818
1819 if ((limit - pos_byte) * direction > 20)
1820 {
1821 unsigned char *p2;
1822
1823 p_limit = BYTE_POS_ADDR (limit);
1824 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1825 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1826 while (1) /* use one cursor setting as long as i can */
1827 {
1828 if (direction > 0) /* worth duplicating */
1829 {
1830 while (cursor <= p_limit)
1831 {
1832 if (BM_tab[*cursor] == 0)
1833 goto hit;
1834 cursor += BM_tab[*cursor];
1835 }
1836 }
1837 else
1838 {
1839 while (cursor >= p_limit)
1840 {
1841 if (BM_tab[*cursor] == 0)
1842 goto hit;
1843 cursor += BM_tab[*cursor];
1844 }
1845 }
1846 /* If you are here, cursor is beyond the end of the
1847 searched region. You fail to match within the
1848 permitted region and would otherwise try a character
1849 beyond that region. */
1850 break;
1851
1852 hit:
1853 i = dirlen - direction;
1854 if (! NILP (trt))
1855 {
1856 while ((i -= direction) + direction != 0)
1857 {
1858 int ch;
1859 cursor -= direction;
1860 /* Translate only the last byte of a character. */
1861 if (! multibyte
1862 || ((cursor == tail_end_ptr
1863 || CHAR_HEAD_P (cursor[1]))
1864 && (CHAR_HEAD_P (cursor[0])
1865 /* Check if this is the last byte of
1866 a translatable character. */
1867 || (translate_prev_byte1 == cursor[-1]
1868 && (CHAR_HEAD_P (translate_prev_byte1)
1869 || (translate_prev_byte2 == cursor[-2]
1870 && (CHAR_HEAD_P (translate_prev_byte2)
1871 || (translate_prev_byte3 == cursor[-3]))))))))
1872 ch = simple_translate[*cursor];
1873 else
1874 ch = *cursor;
1875 if (pat[i] != ch)
1876 break;
1877 }
1878 }
1879 else
1880 {
1881 while ((i -= direction) + direction != 0)
1882 {
1883 cursor -= direction;
1884 if (pat[i] != *cursor)
1885 break;
1886 }
1887 }
1888 cursor += dirlen - i - direction; /* fix cursor */
1889 if (i + direction == 0)
1890 {
1891 ptrdiff_t position, start, end;
1892
1893 cursor -= direction;
1894
1895 position = pos_byte + cursor - p2 + ((direction > 0)
1896 ? 1 - len_byte : 0);
1897 set_search_regs (position, len_byte);
1898
1899 if (NILP (Vinhibit_changing_match_data))
1900 {
1901 start = search_regs.start[0];
1902 end = search_regs.end[0];
1903 }
1904 else
1905 /* If Vinhibit_changing_match_data is non-nil,
1906 search_regs will not be changed. So let's
1907 compute start and end here. */
1908 {
1909 start = BYTE_TO_CHAR (position);
1910 end = BYTE_TO_CHAR (position + len_byte);
1911 }
1912
1913 if ((n -= direction) != 0)
1914 cursor += dirlen; /* to resume search */
1915 else
1916 return direction > 0 ? end : start;
1917 }
1918 else
1919 cursor += stride_for_teases; /* <sigh> we lose - */
1920 }
1921 pos_byte += cursor - p2;
1922 }
1923 else
1924 /* Now we'll pick up a clump that has to be done the hard
1925 way because it covers a discontinuity. */
1926 {
1927 limit = ((direction > 0)
1928 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1929 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1930 limit = ((direction > 0)
1931 ? min (limit + len_byte, lim_byte - 1)
1932 : max (limit - len_byte, lim_byte));
1933 /* LIMIT is now the last value POS_BYTE can have
1934 and still be valid for a possible match. */
1935 while (1)
1936 {
1937 /* This loop can be coded for space rather than
1938 speed because it will usually run only once.
1939 (the reach is at most len + 21, and typically
1940 does not exceed len). */
1941 while ((limit - pos_byte) * direction >= 0)
1942 {
1943 int ch = FETCH_BYTE (pos_byte);
1944 if (BM_tab[ch] == 0)
1945 goto hit2;
1946 pos_byte += BM_tab[ch];
1947 }
1948 break; /* ran off the end */
1949
1950 hit2:
1951 /* Found what might be a match. */
1952 i = dirlen - direction;
1953 while ((i -= direction) + direction != 0)
1954 {
1955 int ch;
1956 unsigned char *ptr;
1957 pos_byte -= direction;
1958 ptr = BYTE_POS_ADDR (pos_byte);
1959 /* Translate only the last byte of a character. */
1960 if (! multibyte
1961 || ((ptr == tail_end_ptr
1962 || CHAR_HEAD_P (ptr[1]))
1963 && (CHAR_HEAD_P (ptr[0])
1964 /* Check if this is the last byte of a
1965 translatable character. */
1966 || (translate_prev_byte1 == ptr[-1]
1967 && (CHAR_HEAD_P (translate_prev_byte1)
1968 || (translate_prev_byte2 == ptr[-2]
1969 && (CHAR_HEAD_P (translate_prev_byte2)
1970 || translate_prev_byte3 == ptr[-3])))))))
1971 ch = simple_translate[*ptr];
1972 else
1973 ch = *ptr;
1974 if (pat[i] != ch)
1975 break;
1976 }
1977 /* Above loop has moved POS_BYTE part or all the way
1978 back to the first pos (last pos if reverse).
1979 Set it once again at the last (first if reverse) char. */
1980 pos_byte += dirlen - i - direction;
1981 if (i + direction == 0)
1982 {
1983 ptrdiff_t position, start, end;
1984 pos_byte -= direction;
1985
1986 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1987 set_search_regs (position, len_byte);
1988
1989 if (NILP (Vinhibit_changing_match_data))
1990 {
1991 start = search_regs.start[0];
1992 end = search_regs.end[0];
1993 }
1994 else
1995 /* If Vinhibit_changing_match_data is non-nil,
1996 search_regs will not be changed. So let's
1997 compute start and end here. */
1998 {
1999 start = BYTE_TO_CHAR (position);
2000 end = BYTE_TO_CHAR (position + len_byte);
2001 }
2002
2003 if ((n -= direction) != 0)
2004 pos_byte += dirlen; /* to resume search */
2005 else
2006 return direction > 0 ? end : start;
2007 }
2008 else
2009 pos_byte += stride_for_teases;
2010 }
2011 }
2012 /* We have done one clump. Can we continue? */
2013 if ((lim_byte - pos_byte) * direction < 0)
2014 return ((0 - n) * direction);
2015 }
2016 return BYTE_TO_CHAR (pos_byte);
2017 }
2018
2019 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2020 for the overall match just found in the current buffer.
2021 Also clear out the match data for registers 1 and up. */
2022
2023 static void
2024 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2025 {
2026 ptrdiff_t i;
2027
2028 if (!NILP (Vinhibit_changing_match_data))
2029 return;
2030
2031 /* Make sure we have registers in which to store
2032 the match position. */
2033 if (search_regs.num_regs == 0)
2034 {
2035 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2036 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2037 search_regs.num_regs = 2;
2038 }
2039
2040 /* Clear out the other registers. */
2041 for (i = 1; i < search_regs.num_regs; i++)
2042 {
2043 search_regs.start[i] = -1;
2044 search_regs.end[i] = -1;
2045 }
2046
2047 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2048 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2049 XSETBUFFER (last_thing_searched, current_buffer);
2050 }
2051 \f
2052 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2053 "MSearch backward: ",
2054 doc: /* Search backward from point for STRING.
2055 Set point to the beginning of the occurrence found, and return point.
2056 An optional second argument bounds the search; it is a buffer position.
2057 The match found must not extend before that position.
2058 Optional third argument, if t, means if fail just return nil (no error).
2059 If not nil and not t, position at limit of search and return nil.
2060 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2061 successive occurrences. If COUNT is negative, search forward,
2062 instead of backward, for -COUNT occurrences.
2063
2064 Search case-sensitivity is determined by the value of the variable
2065 `case-fold-search', which see.
2066
2067 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2068 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2069 {
2070 return search_command (string, bound, noerror, count, -1, 0, 0);
2071 }
2072
2073 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2074 doc: /* Search forward from point for STRING.
2075 Set point to the end of the occurrence found, and return point.
2076 An optional second argument bounds the search; it is a buffer position.
2077 The match found must not extend after that position. A value of nil is
2078 equivalent to (point-max).
2079 Optional third argument, if t, means if fail just return nil (no error).
2080 If not nil and not t, move to limit of search and return nil.
2081 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2082 successive occurrences. If COUNT is negative, search backward,
2083 instead of forward, for -COUNT occurrences.
2084
2085 Search case-sensitivity is determined by the value of the variable
2086 `case-fold-search', which see.
2087
2088 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2089 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2090 {
2091 return search_command (string, bound, noerror, count, 1, 0, 0);
2092 }
2093
2094 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2095 "sRE search backward: ",
2096 doc: /* Search backward from point for match for regular expression REGEXP.
2097 Set point to the beginning of the match, and return point.
2098 The match found is the one starting last in the buffer
2099 and yet ending before the origin of the search.
2100 An optional second argument bounds the search; it is a buffer position.
2101 The match found must start at or after that position.
2102 Optional third argument, if t, means if fail just return nil (no error).
2103 If not nil and not t, move to limit of search and return nil.
2104 Optional fourth argument is repeat count--search for successive occurrences.
2105
2106 Search case-sensitivity is determined by the value of the variable
2107 `case-fold-search', which see.
2108
2109 See also the functions `match-beginning', `match-end', `match-string',
2110 and `replace-match'. */)
2111 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2112 {
2113 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2114 }
2115
2116 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2117 "sRE search: ",
2118 doc: /* Search forward from point for regular expression REGEXP.
2119 Set point to the end of the occurrence found, and return point.
2120 An optional second argument bounds the search; it is a buffer position.
2121 The match found must not extend after that position.
2122 Optional third argument, if t, means if fail just return nil (no error).
2123 If not nil and not t, move to limit of search and return nil.
2124 Optional fourth argument is repeat count--search for successive occurrences.
2125
2126 Search case-sensitivity is determined by the value of the variable
2127 `case-fold-search', which see.
2128
2129 See also the functions `match-beginning', `match-end', `match-string',
2130 and `replace-match'. */)
2131 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2132 {
2133 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2134 }
2135
2136 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2137 "sPosix search backward: ",
2138 doc: /* Search backward from point for match for regular expression REGEXP.
2139 Find the longest match in accord with Posix regular expression rules.
2140 Set point to the beginning of the match, and return point.
2141 The match found is the one starting last in the buffer
2142 and yet ending before the origin of the search.
2143 An optional second argument bounds the search; it is a buffer position.
2144 The match found must start at or after that position.
2145 Optional third argument, if t, means if fail just return nil (no error).
2146 If not nil and not t, move to limit of search and return nil.
2147 Optional fourth argument is repeat count--search for successive occurrences.
2148
2149 Search case-sensitivity is determined by the value of the variable
2150 `case-fold-search', which see.
2151
2152 See also the functions `match-beginning', `match-end', `match-string',
2153 and `replace-match'. */)
2154 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2155 {
2156 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2157 }
2158
2159 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2160 "sPosix search: ",
2161 doc: /* Search forward from point for regular expression REGEXP.
2162 Find the longest match in accord with Posix regular expression rules.
2163 Set point to the end of the occurrence found, and return point.
2164 An optional second argument bounds the search; it is a buffer position.
2165 The match found must not extend after that position.
2166 Optional third argument, if t, means if fail just return nil (no error).
2167 If not nil and not t, move to limit of search and return nil.
2168 Optional fourth argument is repeat count--search for successive occurrences.
2169
2170 Search case-sensitivity is determined by the value of the variable
2171 `case-fold-search', which see.
2172
2173 See also the functions `match-beginning', `match-end', `match-string',
2174 and `replace-match'. */)
2175 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2176 {
2177 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2178 }
2179 \f
2180 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2181 doc: /* Replace text matched by last search with NEWTEXT.
2182 Leave point at the end of the replacement text.
2183
2184 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2185 the replacement text. Otherwise, maybe capitalize the whole text, or
2186 maybe just word initials, based on the replaced text. If the replaced
2187 text has only capital letters and has at least one multiletter word,
2188 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2189 in the replaced text, capitalize each word in NEWTEXT.
2190
2191 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2192 Otherwise treat `\\' as special:
2193 `\\&' in NEWTEXT means substitute original matched text.
2194 `\\N' means substitute what matched the Nth `\\(...\\)'.
2195 If Nth parens didn't match, substitute nothing.
2196 `\\\\' means insert one `\\'.
2197 `\\?' is treated literally
2198 (for compatibility with `query-replace-regexp').
2199 Any other character following `\\' signals an error.
2200 Case conversion does not apply to these substitutions.
2201
2202 If optional fourth argument STRING is non-nil, it should be a string
2203 to act on; this should be the string on which the previous match was
2204 done via `string-match'. In this case, `replace-match' creates and
2205 returns a new string, made by copying STRING and replacing the part of
2206 STRING that was matched (the original STRING itself is not altered).
2207
2208 The optional fifth argument SUBEXP specifies a subexpression;
2209 it says to replace just that subexpression with NEWTEXT,
2210 rather than replacing the entire matched text.
2211 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2212 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2213 NEWTEXT in place of subexp N.
2214 This is useful only after a regular expression search or match,
2215 since only regular expressions have distinguished subexpressions. */)
2216 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2217 {
2218 enum { nochange, all_caps, cap_initial } case_action;
2219 ptrdiff_t pos, pos_byte;
2220 bool some_multiletter_word;
2221 bool some_lowercase;
2222 bool some_uppercase;
2223 bool some_nonuppercase_initial;
2224 int c, prevc;
2225 ptrdiff_t sub;
2226 ptrdiff_t opoint, newpoint;
2227
2228 CHECK_STRING (newtext);
2229
2230 if (! NILP (string))
2231 CHECK_STRING (string);
2232
2233 case_action = nochange; /* We tried an initialization */
2234 /* but some C compilers blew it */
2235
2236 if (search_regs.num_regs <= 0)
2237 error ("`replace-match' called before any match found");
2238
2239 if (NILP (subexp))
2240 sub = 0;
2241 else
2242 {
2243 CHECK_NUMBER (subexp);
2244 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2245 args_out_of_range (subexp, make_number (search_regs.num_regs));
2246 sub = XINT (subexp);
2247 }
2248
2249 if (NILP (string))
2250 {
2251 if (search_regs.start[sub] < BEGV
2252 || search_regs.start[sub] > search_regs.end[sub]
2253 || search_regs.end[sub] > ZV)
2254 args_out_of_range (make_number (search_regs.start[sub]),
2255 make_number (search_regs.end[sub]));
2256 }
2257 else
2258 {
2259 if (search_regs.start[sub] < 0
2260 || search_regs.start[sub] > search_regs.end[sub]
2261 || search_regs.end[sub] > SCHARS (string))
2262 args_out_of_range (make_number (search_regs.start[sub]),
2263 make_number (search_regs.end[sub]));
2264 }
2265
2266 if (NILP (fixedcase))
2267 {
2268 /* Decide how to casify by examining the matched text. */
2269 ptrdiff_t last;
2270
2271 pos = search_regs.start[sub];
2272 last = search_regs.end[sub];
2273
2274 if (NILP (string))
2275 pos_byte = CHAR_TO_BYTE (pos);
2276 else
2277 pos_byte = string_char_to_byte (string, pos);
2278
2279 prevc = '\n';
2280 case_action = all_caps;
2281
2282 /* some_multiletter_word is set nonzero if any original word
2283 is more than one letter long. */
2284 some_multiletter_word = 0;
2285 some_lowercase = 0;
2286 some_nonuppercase_initial = 0;
2287 some_uppercase = 0;
2288
2289 while (pos < last)
2290 {
2291 if (NILP (string))
2292 {
2293 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2294 INC_BOTH (pos, pos_byte);
2295 }
2296 else
2297 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2298
2299 if (lowercasep (c))
2300 {
2301 /* Cannot be all caps if any original char is lower case */
2302
2303 some_lowercase = 1;
2304 if (SYNTAX (prevc) != Sword)
2305 some_nonuppercase_initial = 1;
2306 else
2307 some_multiletter_word = 1;
2308 }
2309 else if (uppercasep (c))
2310 {
2311 some_uppercase = 1;
2312 if (SYNTAX (prevc) != Sword)
2313 ;
2314 else
2315 some_multiletter_word = 1;
2316 }
2317 else
2318 {
2319 /* If the initial is a caseless word constituent,
2320 treat that like a lowercase initial. */
2321 if (SYNTAX (prevc) != Sword)
2322 some_nonuppercase_initial = 1;
2323 }
2324
2325 prevc = c;
2326 }
2327
2328 /* Convert to all caps if the old text is all caps
2329 and has at least one multiletter word. */
2330 if (! some_lowercase && some_multiletter_word)
2331 case_action = all_caps;
2332 /* Capitalize each word, if the old text has all capitalized words. */
2333 else if (!some_nonuppercase_initial && some_multiletter_word)
2334 case_action = cap_initial;
2335 else if (!some_nonuppercase_initial && some_uppercase)
2336 /* Should x -> yz, operating on X, give Yz or YZ?
2337 We'll assume the latter. */
2338 case_action = all_caps;
2339 else
2340 case_action = nochange;
2341 }
2342
2343 /* Do replacement in a string. */
2344 if (!NILP (string))
2345 {
2346 Lisp_Object before, after;
2347
2348 before = Fsubstring (string, make_number (0),
2349 make_number (search_regs.start[sub]));
2350 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2351
2352 /* Substitute parts of the match into NEWTEXT
2353 if desired. */
2354 if (NILP (literal))
2355 {
2356 ptrdiff_t lastpos = 0;
2357 ptrdiff_t lastpos_byte = 0;
2358 /* We build up the substituted string in ACCUM. */
2359 Lisp_Object accum;
2360 Lisp_Object middle;
2361 ptrdiff_t length = SBYTES (newtext);
2362
2363 accum = Qnil;
2364
2365 for (pos_byte = 0, pos = 0; pos_byte < length;)
2366 {
2367 ptrdiff_t substart = -1;
2368 ptrdiff_t subend = 0;
2369 bool delbackslash = 0;
2370
2371 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2372
2373 if (c == '\\')
2374 {
2375 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2376
2377 if (c == '&')
2378 {
2379 substart = search_regs.start[sub];
2380 subend = search_regs.end[sub];
2381 }
2382 else if (c >= '1' && c <= '9')
2383 {
2384 if (c - '0' < search_regs.num_regs
2385 && search_regs.start[c - '0'] >= 0)
2386 {
2387 substart = search_regs.start[c - '0'];
2388 subend = search_regs.end[c - '0'];
2389 }
2390 else
2391 {
2392 /* If that subexp did not match,
2393 replace \\N with nothing. */
2394 substart = 0;
2395 subend = 0;
2396 }
2397 }
2398 else if (c == '\\')
2399 delbackslash = 1;
2400 else if (c != '?')
2401 error ("Invalid use of `\\' in replacement text");
2402 }
2403 if (substart >= 0)
2404 {
2405 if (pos - 2 != lastpos)
2406 middle = substring_both (newtext, lastpos,
2407 lastpos_byte,
2408 pos - 2, pos_byte - 2);
2409 else
2410 middle = Qnil;
2411 accum = concat3 (accum, middle,
2412 Fsubstring (string,
2413 make_number (substart),
2414 make_number (subend)));
2415 lastpos = pos;
2416 lastpos_byte = pos_byte;
2417 }
2418 else if (delbackslash)
2419 {
2420 middle = substring_both (newtext, lastpos,
2421 lastpos_byte,
2422 pos - 1, pos_byte - 1);
2423
2424 accum = concat2 (accum, middle);
2425 lastpos = pos;
2426 lastpos_byte = pos_byte;
2427 }
2428 }
2429
2430 if (pos != lastpos)
2431 middle = substring_both (newtext, lastpos,
2432 lastpos_byte,
2433 pos, pos_byte);
2434 else
2435 middle = Qnil;
2436
2437 newtext = concat2 (accum, middle);
2438 }
2439
2440 /* Do case substitution in NEWTEXT if desired. */
2441 if (case_action == all_caps)
2442 newtext = Fupcase (newtext);
2443 else if (case_action == cap_initial)
2444 newtext = Fupcase_initials (newtext);
2445
2446 return concat3 (before, newtext, after);
2447 }
2448
2449 /* Record point, then move (quietly) to the start of the match. */
2450 if (PT >= search_regs.end[sub])
2451 opoint = PT - ZV;
2452 else if (PT > search_regs.start[sub])
2453 opoint = search_regs.end[sub] - ZV;
2454 else
2455 opoint = PT;
2456
2457 /* If we want non-literal replacement,
2458 perform substitution on the replacement string. */
2459 if (NILP (literal))
2460 {
2461 ptrdiff_t length = SBYTES (newtext);
2462 unsigned char *substed;
2463 ptrdiff_t substed_alloc_size, substed_len;
2464 bool buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2465 bool str_multibyte = STRING_MULTIBYTE (newtext);
2466 bool really_changed = 0;
2467
2468 substed_alloc_size = (length <= (STRING_BYTES_BOUND - 100) / 2
2469 ? length * 2 + 100
2470 : STRING_BYTES_BOUND);
2471 substed = xmalloc (substed_alloc_size);
2472 substed_len = 0;
2473
2474 /* Go thru NEWTEXT, producing the actual text to insert in
2475 SUBSTED while adjusting multibyteness to that of the current
2476 buffer. */
2477
2478 for (pos_byte = 0, pos = 0; pos_byte < length;)
2479 {
2480 unsigned char str[MAX_MULTIBYTE_LENGTH];
2481 const unsigned char *add_stuff = NULL;
2482 ptrdiff_t add_len = 0;
2483 ptrdiff_t idx = -1;
2484
2485 if (str_multibyte)
2486 {
2487 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2488 if (!buf_multibyte)
2489 c = multibyte_char_to_unibyte (c);
2490 }
2491 else
2492 {
2493 /* Note that we don't have to increment POS. */
2494 c = SREF (newtext, pos_byte++);
2495 if (buf_multibyte)
2496 MAKE_CHAR_MULTIBYTE (c);
2497 }
2498
2499 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2500 or set IDX to a match index, which means put that part
2501 of the buffer text into SUBSTED. */
2502
2503 if (c == '\\')
2504 {
2505 really_changed = 1;
2506
2507 if (str_multibyte)
2508 {
2509 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2510 pos, pos_byte);
2511 if (!buf_multibyte && !ASCII_CHAR_P (c))
2512 c = multibyte_char_to_unibyte (c);
2513 }
2514 else
2515 {
2516 c = SREF (newtext, pos_byte++);
2517 if (buf_multibyte)
2518 MAKE_CHAR_MULTIBYTE (c);
2519 }
2520
2521 if (c == '&')
2522 idx = sub;
2523 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2524 {
2525 if (search_regs.start[c - '0'] >= 1)
2526 idx = c - '0';
2527 }
2528 else if (c == '\\')
2529 add_len = 1, add_stuff = (unsigned char *) "\\";
2530 else
2531 {
2532 xfree (substed);
2533 error ("Invalid use of `\\' in replacement text");
2534 }
2535 }
2536 else
2537 {
2538 add_len = CHAR_STRING (c, str);
2539 add_stuff = str;
2540 }
2541
2542 /* If we want to copy part of a previous match,
2543 set up ADD_STUFF and ADD_LEN to point to it. */
2544 if (idx >= 0)
2545 {
2546 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2547 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2548 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2549 move_gap_both (search_regs.start[idx], begbyte);
2550 add_stuff = BYTE_POS_ADDR (begbyte);
2551 }
2552
2553 /* Now the stuff we want to add to SUBSTED
2554 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2555
2556 /* Make sure SUBSTED is big enough. */
2557 if (substed_alloc_size - substed_len < add_len)
2558 substed =
2559 xpalloc (substed, &substed_alloc_size,
2560 add_len - (substed_alloc_size - substed_len),
2561 STRING_BYTES_BOUND, 1);
2562
2563 /* Now add to the end of SUBSTED. */
2564 if (add_stuff)
2565 {
2566 memcpy (substed + substed_len, add_stuff, add_len);
2567 substed_len += add_len;
2568 }
2569 }
2570
2571 if (really_changed)
2572 {
2573 if (buf_multibyte)
2574 {
2575 ptrdiff_t nchars =
2576 multibyte_chars_in_text (substed, substed_len);
2577
2578 newtext = make_multibyte_string ((char *) substed, nchars,
2579 substed_len);
2580 }
2581 else
2582 newtext = make_unibyte_string ((char *) substed, substed_len);
2583 }
2584 xfree (substed);
2585 }
2586
2587 /* Replace the old text with the new in the cleanest possible way. */
2588 replace_range (search_regs.start[sub], search_regs.end[sub],
2589 newtext, 1, 0, 1);
2590 newpoint = search_regs.start[sub] + SCHARS (newtext);
2591
2592 if (case_action == all_caps)
2593 Fupcase_region (make_number (search_regs.start[sub]),
2594 make_number (newpoint));
2595 else if (case_action == cap_initial)
2596 Fupcase_initials_region (make_number (search_regs.start[sub]),
2597 make_number (newpoint));
2598
2599 /* Adjust search data for this change. */
2600 {
2601 ptrdiff_t oldend = search_regs.end[sub];
2602 ptrdiff_t oldstart = search_regs.start[sub];
2603 ptrdiff_t change = newpoint - search_regs.end[sub];
2604 ptrdiff_t i;
2605
2606 for (i = 0; i < search_regs.num_regs; i++)
2607 {
2608 if (search_regs.start[i] >= oldend)
2609 search_regs.start[i] += change;
2610 else if (search_regs.start[i] > oldstart)
2611 search_regs.start[i] = oldstart;
2612 if (search_regs.end[i] >= oldend)
2613 search_regs.end[i] += change;
2614 else if (search_regs.end[i] > oldstart)
2615 search_regs.end[i] = oldstart;
2616 }
2617 }
2618
2619 /* Put point back where it was in the text. */
2620 if (opoint <= 0)
2621 TEMP_SET_PT (opoint + ZV);
2622 else
2623 TEMP_SET_PT (opoint);
2624
2625 /* Now move point "officially" to the start of the inserted replacement. */
2626 move_if_not_intangible (newpoint);
2627
2628 return Qnil;
2629 }
2630 \f
2631 static Lisp_Object
2632 match_limit (Lisp_Object num, bool beginningp)
2633 {
2634 EMACS_INT n;
2635
2636 CHECK_NUMBER (num);
2637 n = XINT (num);
2638 if (n < 0)
2639 args_out_of_range (num, make_number (0));
2640 if (search_regs.num_regs <= 0)
2641 error ("No match data, because no search succeeded");
2642 if (n >= search_regs.num_regs
2643 || search_regs.start[n] < 0)
2644 return Qnil;
2645 return (make_number ((beginningp) ? search_regs.start[n]
2646 : search_regs.end[n]));
2647 }
2648
2649 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2650 doc: /* Return position of start of text matched by last search.
2651 SUBEXP, a number, specifies which parenthesized expression in the last
2652 regexp.
2653 Value is nil if SUBEXPth pair didn't match, or there were less than
2654 SUBEXP pairs.
2655 Zero means the entire text matched by the whole regexp or whole string. */)
2656 (Lisp_Object subexp)
2657 {
2658 return match_limit (subexp, 1);
2659 }
2660
2661 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2662 doc: /* Return position of end of text matched by last search.
2663 SUBEXP, a number, specifies which parenthesized expression in the last
2664 regexp.
2665 Value is nil if SUBEXPth pair didn't match, or there were less than
2666 SUBEXP pairs.
2667 Zero means the entire text matched by the whole regexp or whole string. */)
2668 (Lisp_Object subexp)
2669 {
2670 return match_limit (subexp, 0);
2671 }
2672
2673 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2674 doc: /* Return a list containing all info on what the last search matched.
2675 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2676 All the elements are markers or nil (nil if the Nth pair didn't match)
2677 if the last match was on a buffer; integers or nil if a string was matched.
2678 Use `set-match-data' to reinstate the data in this list.
2679
2680 If INTEGERS (the optional first argument) is non-nil, always use
2681 integers \(rather than markers) to represent buffer positions. In
2682 this case, and if the last match was in a buffer, the buffer will get
2683 stored as one additional element at the end of the list.
2684
2685 If REUSE is a list, reuse it as part of the value. If REUSE is long
2686 enough to hold all the values, and if INTEGERS is non-nil, no consing
2687 is done.
2688
2689 If optional third arg RESEAT is non-nil, any previous markers on the
2690 REUSE list will be modified to point to nowhere.
2691
2692 Return value is undefined if the last search failed. */)
2693 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2694 {
2695 Lisp_Object tail, prev;
2696 Lisp_Object *data;
2697 ptrdiff_t i, len;
2698
2699 if (!NILP (reseat))
2700 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2701 if (MARKERP (XCAR (tail)))
2702 {
2703 unchain_marker (XMARKER (XCAR (tail)));
2704 XSETCAR (tail, Qnil);
2705 }
2706
2707 if (NILP (last_thing_searched))
2708 return Qnil;
2709
2710 prev = Qnil;
2711
2712 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2713
2714 len = 0;
2715 for (i = 0; i < search_regs.num_regs; i++)
2716 {
2717 ptrdiff_t start = search_regs.start[i];
2718 if (start >= 0)
2719 {
2720 if (EQ (last_thing_searched, Qt)
2721 || ! NILP (integers))
2722 {
2723 XSETFASTINT (data[2 * i], start);
2724 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2725 }
2726 else if (BUFFERP (last_thing_searched))
2727 {
2728 data[2 * i] = Fmake_marker ();
2729 Fset_marker (data[2 * i],
2730 make_number (start),
2731 last_thing_searched);
2732 data[2 * i + 1] = Fmake_marker ();
2733 Fset_marker (data[2 * i + 1],
2734 make_number (search_regs.end[i]),
2735 last_thing_searched);
2736 }
2737 else
2738 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2739 emacs_abort ();
2740
2741 len = 2 * i + 2;
2742 }
2743 else
2744 data[2 * i] = data[2 * i + 1] = Qnil;
2745 }
2746
2747 if (BUFFERP (last_thing_searched) && !NILP (integers))
2748 {
2749 data[len] = last_thing_searched;
2750 len++;
2751 }
2752
2753 /* If REUSE is not usable, cons up the values and return them. */
2754 if (! CONSP (reuse))
2755 return Flist (len, data);
2756
2757 /* If REUSE is a list, store as many value elements as will fit
2758 into the elements of REUSE. */
2759 for (i = 0, tail = reuse; CONSP (tail);
2760 i++, tail = XCDR (tail))
2761 {
2762 if (i < len)
2763 XSETCAR (tail, data[i]);
2764 else
2765 XSETCAR (tail, Qnil);
2766 prev = tail;
2767 }
2768
2769 /* If we couldn't fit all value elements into REUSE,
2770 cons up the rest of them and add them to the end of REUSE. */
2771 if (i < len)
2772 XSETCDR (prev, Flist (len - i, data + i));
2773
2774 return reuse;
2775 }
2776
2777 /* We used to have an internal use variant of `reseat' described as:
2778
2779 If RESEAT is `evaporate', put the markers back on the free list
2780 immediately. No other references to the markers must exist in this
2781 case, so it is used only internally on the unwind stack and
2782 save-match-data from Lisp.
2783
2784 But it was ill-conceived: those supposedly-internal markers get exposed via
2785 the undo-list, so freeing them here is unsafe. */
2786
2787 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2788 doc: /* Set internal data on last search match from elements of LIST.
2789 LIST should have been created by calling `match-data' previously.
2790
2791 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2792 (register Lisp_Object list, Lisp_Object reseat)
2793 {
2794 ptrdiff_t i;
2795 register Lisp_Object marker;
2796
2797 if (running_asynch_code)
2798 save_search_regs ();
2799
2800 CHECK_LIST (list);
2801
2802 /* Unless we find a marker with a buffer or an explicit buffer
2803 in LIST, assume that this match data came from a string. */
2804 last_thing_searched = Qt;
2805
2806 /* Allocate registers if they don't already exist. */
2807 {
2808 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2809
2810 if (length > search_regs.num_regs)
2811 {
2812 ptrdiff_t num_regs = search_regs.num_regs;
2813 if (PTRDIFF_MAX < length)
2814 memory_full (SIZE_MAX);
2815 search_regs.start =
2816 xpalloc (search_regs.start, &num_regs, length - num_regs,
2817 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2818 search_regs.end =
2819 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2820
2821 for (i = search_regs.num_regs; i < num_regs; i++)
2822 search_regs.start[i] = -1;
2823
2824 search_regs.num_regs = num_regs;
2825 }
2826
2827 for (i = 0; CONSP (list); i++)
2828 {
2829 marker = XCAR (list);
2830 if (BUFFERP (marker))
2831 {
2832 last_thing_searched = marker;
2833 break;
2834 }
2835 if (i >= length)
2836 break;
2837 if (NILP (marker))
2838 {
2839 search_regs.start[i] = -1;
2840 list = XCDR (list);
2841 }
2842 else
2843 {
2844 Lisp_Object from;
2845 Lisp_Object m;
2846
2847 m = marker;
2848 if (MARKERP (marker))
2849 {
2850 if (XMARKER (marker)->buffer == 0)
2851 XSETFASTINT (marker, 0);
2852 else
2853 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2854 }
2855
2856 CHECK_NUMBER_COERCE_MARKER (marker);
2857 from = marker;
2858
2859 if (!NILP (reseat) && MARKERP (m))
2860 {
2861 unchain_marker (XMARKER (m));
2862 XSETCAR (list, Qnil);
2863 }
2864
2865 if ((list = XCDR (list), !CONSP (list)))
2866 break;
2867
2868 m = marker = XCAR (list);
2869
2870 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2871 XSETFASTINT (marker, 0);
2872
2873 CHECK_NUMBER_COERCE_MARKER (marker);
2874 if ((XINT (from) < 0
2875 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2876 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2877 && (XINT (marker) < 0
2878 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2879 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2880 {
2881 search_regs.start[i] = XINT (from);
2882 search_regs.end[i] = XINT (marker);
2883 }
2884 else
2885 {
2886 search_regs.start[i] = -1;
2887 }
2888
2889 if (!NILP (reseat) && MARKERP (m))
2890 {
2891 unchain_marker (XMARKER (m));
2892 XSETCAR (list, Qnil);
2893 }
2894 }
2895 list = XCDR (list);
2896 }
2897
2898 for (; i < search_regs.num_regs; i++)
2899 search_regs.start[i] = -1;
2900 }
2901
2902 return Qnil;
2903 }
2904
2905 /* If true the match data have been saved in saved_search_regs
2906 during the execution of a sentinel or filter. */
2907 static bool search_regs_saved;
2908 static struct re_registers saved_search_regs;
2909 static Lisp_Object saved_last_thing_searched;
2910
2911 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2912 if asynchronous code (filter or sentinel) is running. */
2913 static void
2914 save_search_regs (void)
2915 {
2916 if (!search_regs_saved)
2917 {
2918 saved_search_regs.num_regs = search_regs.num_regs;
2919 saved_search_regs.start = search_regs.start;
2920 saved_search_regs.end = search_regs.end;
2921 saved_last_thing_searched = last_thing_searched;
2922 last_thing_searched = Qnil;
2923 search_regs.num_regs = 0;
2924 search_regs.start = 0;
2925 search_regs.end = 0;
2926
2927 search_regs_saved = 1;
2928 }
2929 }
2930
2931 /* Called upon exit from filters and sentinels. */
2932 void
2933 restore_search_regs (void)
2934 {
2935 if (search_regs_saved)
2936 {
2937 if (search_regs.num_regs > 0)
2938 {
2939 xfree (search_regs.start);
2940 xfree (search_regs.end);
2941 }
2942 search_regs.num_regs = saved_search_regs.num_regs;
2943 search_regs.start = saved_search_regs.start;
2944 search_regs.end = saved_search_regs.end;
2945 last_thing_searched = saved_last_thing_searched;
2946 saved_last_thing_searched = Qnil;
2947 search_regs_saved = 0;
2948 }
2949 }
2950
2951 static void
2952 unwind_set_match_data (Lisp_Object list)
2953 {
2954 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2955 Fset_match_data (list, Qt);
2956 }
2957
2958 /* Called to unwind protect the match data. */
2959 void
2960 record_unwind_save_match_data (void)
2961 {
2962 record_unwind_protect (unwind_set_match_data,
2963 Fmatch_data (Qnil, Qnil, Qnil));
2964 }
2965
2966 /* Quote a string to deactivate reg-expr chars */
2967
2968 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2969 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
2970 (Lisp_Object string)
2971 {
2972 char *in, *out, *end;
2973 char *temp;
2974 ptrdiff_t backslashes_added = 0;
2975
2976 CHECK_STRING (string);
2977
2978 temp = alloca (SBYTES (string) * 2);
2979
2980 /* Now copy the data into the new string, inserting escapes. */
2981
2982 in = SSDATA (string);
2983 end = in + SBYTES (string);
2984 out = temp;
2985
2986 for (; in != end; in++)
2987 {
2988 if (*in == '['
2989 || *in == '*' || *in == '.' || *in == '\\'
2990 || *in == '?' || *in == '+'
2991 || *in == '^' || *in == '$')
2992 *out++ = '\\', backslashes_added++;
2993 *out++ = *in;
2994 }
2995
2996 return make_specified_string (temp,
2997 SCHARS (string) + backslashes_added,
2998 out - temp,
2999 STRING_MULTIBYTE (string));
3000 }
3001 \f
3002 void
3003 syms_of_search (void)
3004 {
3005 register int i;
3006
3007 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3008 {
3009 searchbufs[i].buf.allocated = 100;
3010 searchbufs[i].buf.buffer = xmalloc (100);
3011 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3012 searchbufs[i].regexp = Qnil;
3013 searchbufs[i].whitespace_regexp = Qnil;
3014 searchbufs[i].syntax_table = Qnil;
3015 staticpro (&searchbufs[i].regexp);
3016 staticpro (&searchbufs[i].whitespace_regexp);
3017 staticpro (&searchbufs[i].syntax_table);
3018 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3019 }
3020 searchbuf_head = &searchbufs[0];
3021
3022 DEFSYM (Qsearch_failed, "search-failed");
3023 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3024
3025 Fput (Qsearch_failed, Qerror_conditions,
3026 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3027 Fput (Qsearch_failed, Qerror_message,
3028 build_pure_c_string ("Search failed"));
3029
3030 Fput (Qinvalid_regexp, Qerror_conditions,
3031 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3032 Fput (Qinvalid_regexp, Qerror_message,
3033 build_pure_c_string ("Invalid regexp"));
3034
3035 last_thing_searched = Qnil;
3036 staticpro (&last_thing_searched);
3037
3038 saved_last_thing_searched = Qnil;
3039 staticpro (&saved_last_thing_searched);
3040
3041 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3042 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3043 Some commands use this for user-specified regexps.
3044 Spaces that occur inside character classes or repetition operators
3045 or other such regexp constructs are not replaced with this.
3046 A value of nil (which is the normal value) means treat spaces literally. */);
3047 Vsearch_spaces_regexp = Qnil;
3048
3049 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3050 doc: /* Internal use only.
3051 If non-nil, the primitive searching and matching functions
3052 such as `looking-at', `string-match', `re-search-forward', etc.,
3053 do not set the match data. The proper way to use this variable
3054 is to bind it with `let' around a small expression. */);
3055 Vinhibit_changing_match_data = Qnil;
3056
3057 defsubr (&Slooking_at);
3058 defsubr (&Sposix_looking_at);
3059 defsubr (&Sstring_match);
3060 defsubr (&Sposix_string_match);
3061 defsubr (&Ssearch_forward);
3062 defsubr (&Ssearch_backward);
3063 defsubr (&Sre_search_forward);
3064 defsubr (&Sre_search_backward);
3065 defsubr (&Sposix_search_forward);
3066 defsubr (&Sposix_search_backward);
3067 defsubr (&Sreplace_match);
3068 defsubr (&Smatch_beginning);
3069 defsubr (&Smatch_end);
3070 defsubr (&Smatch_data);
3071 defsubr (&Sset_match_data);
3072 defsubr (&Sregexp_quote);
3073 }