(Ffile_attributes): Fix last change.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <sys/types.h>
26 #include <stdio.h>
27
28 #ifdef HAVE_PWD_H
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 #ifdef HAVE_SYS_UTSNAME_H
37 #include <sys/utsname.h>
38 #endif
39
40 #include "lisp.h"
41
42 /* systime.h includes <sys/time.h> which, on some systems, is required
43 for <sys/resource.h>; thus systime.h must be included before
44 <sys/resource.h> */
45 #include "systime.h"
46
47 #if defined HAVE_SYS_RESOURCE_H
48 #include <sys/resource.h>
49 #endif
50
51 #include <ctype.h>
52
53 #include "intervals.h"
54 #include "buffer.h"
55 #include "charset.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #ifdef STDC_HEADERS
62 #include <float.h>
63 #define MAX_10_EXP DBL_MAX_10_EXP
64 #else
65 #define MAX_10_EXP 310
66 #endif
67
68 #ifndef NULL
69 #define NULL 0
70 #endif
71
72 #ifndef USE_CRT_DLL
73 extern char **environ;
74 #endif
75
76 #define TM_YEAR_BASE 1900
77
78 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
79 asctime to have well-defined behavior. */
80 #ifndef TM_YEAR_IN_ASCTIME_RANGE
81 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
82 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
83 #endif
84
85 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
86 const struct tm *, int));
87 static int tm_diff P_ ((struct tm *, struct tm *));
88 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
89 static void update_buffer_properties P_ ((int, int));
90 static Lisp_Object region_limit P_ ((int));
91 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
92 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
93 size_t, const struct tm *, int));
94 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
95 void (*) (Lisp_Object, int, int, int,
96 int, int),
97 int, int, Lisp_Object *));
98 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
99 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
100 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
101
102 #ifdef HAVE_INDEX
103 extern char *index P_ ((const char *, int));
104 #endif
105
106 Lisp_Object Vbuffer_access_fontify_functions;
107 Lisp_Object Qbuffer_access_fontify_functions;
108 Lisp_Object Vbuffer_access_fontified_property;
109
110 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
111
112 /* Non-nil means don't stop at field boundary in text motion commands. */
113
114 Lisp_Object Vinhibit_field_text_motion;
115
116 /* Some static data, and a function to initialize it for each run */
117
118 Lisp_Object Vsystem_name;
119 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
120 Lisp_Object Vuser_full_name; /* full name of current user */
121 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
122 Lisp_Object Voperating_system_release; /* Operating System Release */
123
124 /* Symbol for the text property used to mark fields. */
125
126 Lisp_Object Qfield;
127
128 /* A special value for Qfield properties. */
129
130 Lisp_Object Qboundary;
131
132
133 void
134 init_editfns ()
135 {
136 char *user_name;
137 register unsigned char *p;
138 struct passwd *pw; /* password entry for the current user */
139 Lisp_Object tem;
140
141 /* Set up system_name even when dumping. */
142 init_system_name ();
143
144 #ifndef CANNOT_DUMP
145 /* Don't bother with this on initial start when just dumping out */
146 if (!initialized)
147 return;
148 #endif /* not CANNOT_DUMP */
149
150 pw = (struct passwd *) getpwuid (getuid ());
151 #ifdef MSDOS
152 /* We let the real user name default to "root" because that's quite
153 accurate on MSDOG and because it lets Emacs find the init file.
154 (The DVX libraries override the Djgpp libraries here.) */
155 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
156 #else
157 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
158 #endif
159
160 /* Get the effective user name, by consulting environment variables,
161 or the effective uid if those are unset. */
162 user_name = (char *) getenv ("LOGNAME");
163 if (!user_name)
164 #ifdef WINDOWSNT
165 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
166 #else /* WINDOWSNT */
167 user_name = (char *) getenv ("USER");
168 #endif /* WINDOWSNT */
169 if (!user_name)
170 {
171 pw = (struct passwd *) getpwuid (geteuid ());
172 user_name = (char *) (pw ? pw->pw_name : "unknown");
173 }
174 Vuser_login_name = build_string (user_name);
175
176 /* If the user name claimed in the environment vars differs from
177 the real uid, use the claimed name to find the full name. */
178 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
179 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
180 : Vuser_login_name);
181
182 p = (unsigned char *) getenv ("NAME");
183 if (p)
184 Vuser_full_name = build_string (p);
185 else if (NILP (Vuser_full_name))
186 Vuser_full_name = build_string ("unknown");
187
188 #ifdef HAVE_SYS_UTSNAME_H
189 {
190 struct utsname uts;
191 uname (&uts);
192 Voperating_system_release = build_string (uts.release);
193 }
194 #else
195 Voperating_system_release = Qnil;
196 #endif
197 }
198 \f
199 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
200 doc: /* Convert arg CHAR to a string containing that character.
201 usage: (char-to-string CHAR) */)
202 (character)
203 Lisp_Object character;
204 {
205 int len;
206 unsigned char str[MAX_MULTIBYTE_LENGTH];
207
208 CHECK_NUMBER (character);
209
210 len = (SINGLE_BYTE_CHAR_P (XFASTINT (character))
211 ? (*str = (unsigned char)(XFASTINT (character)), 1)
212 : char_to_string (XFASTINT (character), str));
213 return make_string_from_bytes (str, 1, len);
214 }
215
216 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
217 doc: /* Convert arg STRING to a character, the first character of that string.
218 A multibyte character is handled correctly. */)
219 (string)
220 register Lisp_Object string;
221 {
222 register Lisp_Object val;
223 CHECK_STRING (string);
224 if (SCHARS (string))
225 {
226 if (STRING_MULTIBYTE (string))
227 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
228 else
229 XSETFASTINT (val, SREF (string, 0));
230 }
231 else
232 XSETFASTINT (val, 0);
233 return val;
234 }
235 \f
236 static Lisp_Object
237 buildmark (charpos, bytepos)
238 int charpos, bytepos;
239 {
240 register Lisp_Object mark;
241 mark = Fmake_marker ();
242 set_marker_both (mark, Qnil, charpos, bytepos);
243 return mark;
244 }
245
246 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
247 doc: /* Return value of point, as an integer.
248 Beginning of buffer is position (point-min). */)
249 ()
250 {
251 Lisp_Object temp;
252 XSETFASTINT (temp, PT);
253 return temp;
254 }
255
256 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
257 doc: /* Return value of point, as a marker object. */)
258 ()
259 {
260 return buildmark (PT, PT_BYTE);
261 }
262
263 int
264 clip_to_bounds (lower, num, upper)
265 int lower, num, upper;
266 {
267 if (num < lower)
268 return lower;
269 else if (num > upper)
270 return upper;
271 else
272 return num;
273 }
274
275 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
276 doc: /* Set point to POSITION, a number or marker.
277 Beginning of buffer is position (point-min), end is (point-max). */)
278 (position)
279 register Lisp_Object position;
280 {
281 int pos;
282
283 if (MARKERP (position)
284 && current_buffer == XMARKER (position)->buffer)
285 {
286 pos = marker_position (position);
287 if (pos < BEGV)
288 SET_PT_BOTH (BEGV, BEGV_BYTE);
289 else if (pos > ZV)
290 SET_PT_BOTH (ZV, ZV_BYTE);
291 else
292 SET_PT_BOTH (pos, marker_byte_position (position));
293
294 return position;
295 }
296
297 CHECK_NUMBER_COERCE_MARKER (position);
298
299 pos = clip_to_bounds (BEGV, XINT (position), ZV);
300 SET_PT (pos);
301 return position;
302 }
303
304
305 /* Return the start or end position of the region.
306 BEGINNINGP non-zero means return the start.
307 If there is no region active, signal an error. */
308
309 static Lisp_Object
310 region_limit (beginningp)
311 int beginningp;
312 {
313 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
314 Lisp_Object m;
315
316 if (!NILP (Vtransient_mark_mode)
317 && NILP (Vmark_even_if_inactive)
318 && NILP (current_buffer->mark_active))
319 xsignal0 (Qmark_inactive);
320
321 m = Fmarker_position (current_buffer->mark);
322 if (NILP (m))
323 error ("The mark is not set now, so there is no region");
324
325 if ((PT < XFASTINT (m)) == (beginningp != 0))
326 m = make_number (PT);
327 return m;
328 }
329
330 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
331 doc: /* Return position of beginning of region, as an integer. */)
332 ()
333 {
334 return region_limit (1);
335 }
336
337 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
338 doc: /* Return position of end of region, as an integer. */)
339 ()
340 {
341 return region_limit (0);
342 }
343
344 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
345 doc: /* Return this buffer's mark, as a marker object.
346 Watch out! Moving this marker changes the mark position.
347 If you set the marker not to point anywhere, the buffer will have no mark. */)
348 ()
349 {
350 return current_buffer->mark;
351 }
352
353 \f
354 /* Find all the overlays in the current buffer that touch position POS.
355 Return the number found, and store them in a vector in VEC
356 of length LEN. */
357
358 static int
359 overlays_around (pos, vec, len)
360 int pos;
361 Lisp_Object *vec;
362 int len;
363 {
364 Lisp_Object overlay, start, end;
365 struct Lisp_Overlay *tail;
366 int startpos, endpos;
367 int idx = 0;
368
369 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
370 {
371 XSETMISC (overlay, tail);
372
373 end = OVERLAY_END (overlay);
374 endpos = OVERLAY_POSITION (end);
375 if (endpos < pos)
376 break;
377 start = OVERLAY_START (overlay);
378 startpos = OVERLAY_POSITION (start);
379 if (startpos <= pos)
380 {
381 if (idx < len)
382 vec[idx] = overlay;
383 /* Keep counting overlays even if we can't return them all. */
384 idx++;
385 }
386 }
387
388 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
389 {
390 XSETMISC (overlay, tail);
391
392 start = OVERLAY_START (overlay);
393 startpos = OVERLAY_POSITION (start);
394 if (pos < startpos)
395 break;
396 end = OVERLAY_END (overlay);
397 endpos = OVERLAY_POSITION (end);
398 if (pos <= endpos)
399 {
400 if (idx < len)
401 vec[idx] = overlay;
402 idx++;
403 }
404 }
405
406 return idx;
407 }
408
409 /* Return the value of property PROP, in OBJECT at POSITION.
410 It's the value of PROP that a char inserted at POSITION would get.
411 OBJECT is optional and defaults to the current buffer.
412 If OBJECT is a buffer, then overlay properties are considered as well as
413 text properties.
414 If OBJECT is a window, then that window's buffer is used, but
415 window-specific overlays are considered only if they are associated
416 with OBJECT. */
417 Lisp_Object
418 get_pos_property (position, prop, object)
419 Lisp_Object position, object;
420 register Lisp_Object prop;
421 {
422 CHECK_NUMBER_COERCE_MARKER (position);
423
424 if (NILP (object))
425 XSETBUFFER (object, current_buffer);
426 else if (WINDOWP (object))
427 object = XWINDOW (object)->buffer;
428
429 if (!BUFFERP (object))
430 /* pos-property only makes sense in buffers right now, since strings
431 have no overlays and no notion of insertion for which stickiness
432 could be obeyed. */
433 return Fget_text_property (position, prop, object);
434 else
435 {
436 int posn = XINT (position);
437 int noverlays;
438 Lisp_Object *overlay_vec, tem;
439 struct buffer *obuf = current_buffer;
440
441 set_buffer_temp (XBUFFER (object));
442
443 /* First try with room for 40 overlays. */
444 noverlays = 40;
445 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
446 noverlays = overlays_around (posn, overlay_vec, noverlays);
447
448 /* If there are more than 40,
449 make enough space for all, and try again. */
450 if (noverlays > 40)
451 {
452 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
453 noverlays = overlays_around (posn, overlay_vec, noverlays);
454 }
455 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
456
457 set_buffer_temp (obuf);
458
459 /* Now check the overlays in order of decreasing priority. */
460 while (--noverlays >= 0)
461 {
462 Lisp_Object ol = overlay_vec[noverlays];
463 tem = Foverlay_get (ol, prop);
464 if (!NILP (tem))
465 {
466 /* Check the overlay is indeed active at point. */
467 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
468 if ((OVERLAY_POSITION (start) == posn
469 && XMARKER (start)->insertion_type == 1)
470 || (OVERLAY_POSITION (finish) == posn
471 && XMARKER (finish)->insertion_type == 0))
472 ; /* The overlay will not cover a char inserted at point. */
473 else
474 {
475 return tem;
476 }
477 }
478 }
479
480 { /* Now check the text-properties. */
481 int stickiness = text_property_stickiness (prop, position, object);
482 if (stickiness > 0)
483 return Fget_text_property (position, prop, object);
484 else if (stickiness < 0
485 && XINT (position) > BUF_BEGV (XBUFFER (object)))
486 return Fget_text_property (make_number (XINT (position) - 1),
487 prop, object);
488 else
489 return Qnil;
490 }
491 }
492 }
493
494 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
495 the value of point is used instead. If BEG or END is null,
496 means don't store the beginning or end of the field.
497
498 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
499 results; they do not effect boundary behavior.
500
501 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
502 position of a field, then the beginning of the previous field is
503 returned instead of the beginning of POS's field (since the end of a
504 field is actually also the beginning of the next input field, this
505 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
506 true case, if two fields are separated by a field with the special
507 value `boundary', and POS lies within it, then the two separated
508 fields are considered to be adjacent, and POS between them, when
509 finding the beginning and ending of the "merged" field.
510
511 Either BEG or END may be 0, in which case the corresponding value
512 is not stored. */
513
514 static void
515 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
516 Lisp_Object pos;
517 Lisp_Object merge_at_boundary;
518 Lisp_Object beg_limit, end_limit;
519 int *beg, *end;
520 {
521 /* Fields right before and after the point. */
522 Lisp_Object before_field, after_field;
523 /* 1 if POS counts as the start of a field. */
524 int at_field_start = 0;
525 /* 1 if POS counts as the end of a field. */
526 int at_field_end = 0;
527
528 if (NILP (pos))
529 XSETFASTINT (pos, PT);
530 else
531 CHECK_NUMBER_COERCE_MARKER (pos);
532
533 after_field
534 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
535 before_field
536 = (XFASTINT (pos) > BEGV
537 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
538 Qfield, Qnil, NULL)
539 /* Using nil here would be a more obvious choice, but it would
540 fail when the buffer starts with a non-sticky field. */
541 : after_field);
542
543 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
544 and POS is at beginning of a field, which can also be interpreted
545 as the end of the previous field. Note that the case where if
546 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
547 more natural one; then we avoid treating the beginning of a field
548 specially. */
549 if (NILP (merge_at_boundary))
550 {
551 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
552 if (!EQ (field, after_field))
553 at_field_end = 1;
554 if (!EQ (field, before_field))
555 at_field_start = 1;
556 if (NILP (field) && at_field_start && at_field_end)
557 /* If an inserted char would have a nil field while the surrounding
558 text is non-nil, we're probably not looking at a
559 zero-length field, but instead at a non-nil field that's
560 not intended for editing (such as comint's prompts). */
561 at_field_end = at_field_start = 0;
562 }
563
564 /* Note about special `boundary' fields:
565
566 Consider the case where the point (`.') is between the fields `x' and `y':
567
568 xxxx.yyyy
569
570 In this situation, if merge_at_boundary is true, we consider the
571 `x' and `y' fields as forming one big merged field, and so the end
572 of the field is the end of `y'.
573
574 However, if `x' and `y' are separated by a special `boundary' field
575 (a field with a `field' char-property of 'boundary), then we ignore
576 this special field when merging adjacent fields. Here's the same
577 situation, but with a `boundary' field between the `x' and `y' fields:
578
579 xxx.BBBByyyy
580
581 Here, if point is at the end of `x', the beginning of `y', or
582 anywhere in-between (within the `boundary' field), we merge all
583 three fields and consider the beginning as being the beginning of
584 the `x' field, and the end as being the end of the `y' field. */
585
586 if (beg)
587 {
588 if (at_field_start)
589 /* POS is at the edge of a field, and we should consider it as
590 the beginning of the following field. */
591 *beg = XFASTINT (pos);
592 else
593 /* Find the previous field boundary. */
594 {
595 Lisp_Object p = pos;
596 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
597 /* Skip a `boundary' field. */
598 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
599 beg_limit);
600
601 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
602 beg_limit);
603 *beg = NILP (p) ? BEGV : XFASTINT (p);
604 }
605 }
606
607 if (end)
608 {
609 if (at_field_end)
610 /* POS is at the edge of a field, and we should consider it as
611 the end of the previous field. */
612 *end = XFASTINT (pos);
613 else
614 /* Find the next field boundary. */
615 {
616 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
617 /* Skip a `boundary' field. */
618 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
619 end_limit);
620
621 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
622 end_limit);
623 *end = NILP (pos) ? ZV : XFASTINT (pos);
624 }
625 }
626 }
627
628 \f
629 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
630 doc: /* Delete the field surrounding POS.
631 A field is a region of text with the same `field' property.
632 If POS is nil, the value of point is used for POS. */)
633 (pos)
634 Lisp_Object pos;
635 {
636 int beg, end;
637 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
638 if (beg != end)
639 del_range (beg, end);
640 return Qnil;
641 }
642
643 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
644 doc: /* Return the contents of the field surrounding POS as a string.
645 A field is a region of text with the same `field' property.
646 If POS is nil, the value of point is used for POS. */)
647 (pos)
648 Lisp_Object pos;
649 {
650 int beg, end;
651 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
652 return make_buffer_string (beg, end, 1);
653 }
654
655 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
656 doc: /* Return the contents of the field around POS, without text-properties.
657 A field is a region of text with the same `field' property.
658 If POS is nil, the value of point is used for POS. */)
659 (pos)
660 Lisp_Object pos;
661 {
662 int beg, end;
663 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
664 return make_buffer_string (beg, end, 0);
665 }
666
667 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
668 doc: /* Return the beginning of the field surrounding POS.
669 A field is a region of text with the same `field' property.
670 If POS is nil, the value of point is used for POS.
671 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
672 field, then the beginning of the *previous* field is returned.
673 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
674 is before LIMIT, then LIMIT will be returned instead. */)
675 (pos, escape_from_edge, limit)
676 Lisp_Object pos, escape_from_edge, limit;
677 {
678 int beg;
679 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
680 return make_number (beg);
681 }
682
683 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
684 doc: /* Return the end of the field surrounding POS.
685 A field is a region of text with the same `field' property.
686 If POS is nil, the value of point is used for POS.
687 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
688 then the end of the *following* field is returned.
689 If LIMIT is non-nil, it is a buffer position; if the end of the field
690 is after LIMIT, then LIMIT will be returned instead. */)
691 (pos, escape_from_edge, limit)
692 Lisp_Object pos, escape_from_edge, limit;
693 {
694 int end;
695 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
696 return make_number (end);
697 }
698
699 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
700 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
701
702 A field is a region of text with the same `field' property.
703 If NEW-POS is nil, then the current point is used instead, and set to the
704 constrained position if that is different.
705
706 If OLD-POS is at the boundary of two fields, then the allowable
707 positions for NEW-POS depends on the value of the optional argument
708 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
709 constrained to the field that has the same `field' char-property
710 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
711 is non-nil, NEW-POS is constrained to the union of the two adjacent
712 fields. Additionally, if two fields are separated by another field with
713 the special value `boundary', then any point within this special field is
714 also considered to be `on the boundary'.
715
716 If the optional argument ONLY-IN-LINE is non-nil and constraining
717 NEW-POS would move it to a different line, NEW-POS is returned
718 unconstrained. This useful for commands that move by line, like
719 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
720 only in the case where they can still move to the right line.
721
722 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
723 a non-nil property of that name, then any field boundaries are ignored.
724
725 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
726 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
727 Lisp_Object new_pos, old_pos;
728 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
729 {
730 /* If non-zero, then the original point, before re-positioning. */
731 int orig_point = 0;
732 int fwd;
733 Lisp_Object prev_old, prev_new;
734
735 if (NILP (new_pos))
736 /* Use the current point, and afterwards, set it. */
737 {
738 orig_point = PT;
739 XSETFASTINT (new_pos, PT);
740 }
741
742 CHECK_NUMBER_COERCE_MARKER (new_pos);
743 CHECK_NUMBER_COERCE_MARKER (old_pos);
744
745 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
746
747 prev_old = make_number (XFASTINT (old_pos) - 1);
748 prev_new = make_number (XFASTINT (new_pos) - 1);
749
750 if (NILP (Vinhibit_field_text_motion)
751 && !EQ (new_pos, old_pos)
752 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
753 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
754 /* To recognize field boundaries, we must also look at the
755 previous positions; we could use `get_pos_property'
756 instead, but in itself that would fail inside non-sticky
757 fields (like comint prompts). */
758 || (XFASTINT (new_pos) > BEGV
759 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
760 || (XFASTINT (old_pos) > BEGV
761 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
762 && (NILP (inhibit_capture_property)
763 /* Field boundaries are again a problem; but now we must
764 decide the case exactly, so we need to call
765 `get_pos_property' as well. */
766 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
767 && (XFASTINT (old_pos) <= BEGV
768 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
769 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
770 /* It is possible that NEW_POS is not within the same field as
771 OLD_POS; try to move NEW_POS so that it is. */
772 {
773 int shortage;
774 Lisp_Object field_bound;
775
776 if (fwd)
777 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
778 else
779 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
780
781 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
782 other side of NEW_POS, which would mean that NEW_POS is
783 already acceptable, and it's not necessary to constrain it
784 to FIELD_BOUND. */
785 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
786 /* NEW_POS should be constrained, but only if either
787 ONLY_IN_LINE is nil (in which case any constraint is OK),
788 or NEW_POS and FIELD_BOUND are on the same line (in which
789 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
790 && (NILP (only_in_line)
791 /* This is the ONLY_IN_LINE case, check that NEW_POS and
792 FIELD_BOUND are on the same line by seeing whether
793 there's an intervening newline or not. */
794 || (scan_buffer ('\n',
795 XFASTINT (new_pos), XFASTINT (field_bound),
796 fwd ? -1 : 1, &shortage, 1),
797 shortage != 0)))
798 /* Constrain NEW_POS to FIELD_BOUND. */
799 new_pos = field_bound;
800
801 if (orig_point && XFASTINT (new_pos) != orig_point)
802 /* The NEW_POS argument was originally nil, so automatically set PT. */
803 SET_PT (XFASTINT (new_pos));
804 }
805
806 return new_pos;
807 }
808
809 \f
810 DEFUN ("line-beginning-position",
811 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
812 doc: /* Return the character position of the first character on the current line.
813 With argument N not nil or 1, move forward N - 1 lines first.
814 If scan reaches end of buffer, return that position.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a front-sticky field
819 starts at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (n)
824 Lisp_Object n;
825 {
826 int orig, orig_byte, end;
827 int count = SPECPDL_INDEX ();
828 specbind (Qinhibit_point_motion_hooks, Qt);
829
830 if (NILP (n))
831 XSETFASTINT (n, 1);
832 else
833 CHECK_NUMBER (n);
834
835 orig = PT;
836 orig_byte = PT_BYTE;
837 Fforward_line (make_number (XINT (n) - 1));
838 end = PT;
839
840 SET_PT_BOTH (orig, orig_byte);
841
842 unbind_to (count, Qnil);
843
844 /* Return END constrained to the current input field. */
845 return Fconstrain_to_field (make_number (end), make_number (orig),
846 XINT (n) != 1 ? Qt : Qnil,
847 Qt, Qnil);
848 }
849
850 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
851 doc: /* Return the character position of the last character on the current line.
852 With argument N not nil or 1, move forward N - 1 lines first.
853 If scan reaches end of buffer, return that position.
854
855 This function constrains the returned position to the current field
856 unless that would be on a different line than the original,
857 unconstrained result. If N is nil or 1, and a rear-sticky field ends
858 at point, the scan stops as soon as it starts. To ignore field
859 boundaries bind `inhibit-field-text-motion' to t.
860
861 This function does not move point. */)
862 (n)
863 Lisp_Object n;
864 {
865 int end_pos;
866 int orig = PT;
867
868 if (NILP (n))
869 XSETFASTINT (n, 1);
870 else
871 CHECK_NUMBER (n);
872
873 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
874
875 /* Return END_POS constrained to the current input field. */
876 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
877 Qnil, Qt, Qnil);
878 }
879
880 \f
881 Lisp_Object
882 save_excursion_save ()
883 {
884 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
885 == current_buffer);
886
887 return Fcons (Fpoint_marker (),
888 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
889 Fcons (visible ? Qt : Qnil,
890 Fcons (current_buffer->mark_active,
891 selected_window))));
892 }
893
894 Lisp_Object
895 save_excursion_restore (info)
896 Lisp_Object info;
897 {
898 Lisp_Object tem, tem1, omark, nmark;
899 struct gcpro gcpro1, gcpro2, gcpro3;
900 int visible_p;
901
902 tem = Fmarker_buffer (XCAR (info));
903 /* If buffer being returned to is now deleted, avoid error */
904 /* Otherwise could get error here while unwinding to top level
905 and crash */
906 /* In that case, Fmarker_buffer returns nil now. */
907 if (NILP (tem))
908 return Qnil;
909
910 omark = nmark = Qnil;
911 GCPRO3 (info, omark, nmark);
912
913 Fset_buffer (tem);
914
915 /* Point marker. */
916 tem = XCAR (info);
917 Fgoto_char (tem);
918 unchain_marker (XMARKER (tem));
919
920 /* Mark marker. */
921 info = XCDR (info);
922 tem = XCAR (info);
923 omark = Fmarker_position (current_buffer->mark);
924 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
925 nmark = Fmarker_position (tem);
926 unchain_marker (XMARKER (tem));
927
928 /* visible */
929 info = XCDR (info);
930 visible_p = !NILP (XCAR (info));
931
932 #if 0 /* We used to make the current buffer visible in the selected window
933 if that was true previously. That avoids some anomalies.
934 But it creates others, and it wasn't documented, and it is simpler
935 and cleaner never to alter the window/buffer connections. */
936 tem1 = Fcar (tem);
937 if (!NILP (tem1)
938 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
939 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
940 #endif /* 0 */
941
942 /* Mark active */
943 info = XCDR (info);
944 tem = XCAR (info);
945 tem1 = current_buffer->mark_active;
946 current_buffer->mark_active = tem;
947
948 if (!NILP (Vrun_hooks))
949 {
950 /* If mark is active now, and either was not active
951 or was at a different place, run the activate hook. */
952 if (! NILP (current_buffer->mark_active))
953 {
954 if (! EQ (omark, nmark))
955 call1 (Vrun_hooks, intern ("activate-mark-hook"));
956 }
957 /* If mark has ceased to be active, run deactivate hook. */
958 else if (! NILP (tem1))
959 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
960 }
961
962 /* If buffer was visible in a window, and a different window was
963 selected, and the old selected window is still showing this
964 buffer, restore point in that window. */
965 tem = XCDR (info);
966 if (visible_p
967 && !EQ (tem, selected_window)
968 && (tem1 = XWINDOW (tem)->buffer,
969 (/* Window is live... */
970 BUFFERP (tem1)
971 /* ...and it shows the current buffer. */
972 && XBUFFER (tem1) == current_buffer)))
973 Fset_window_point (tem, make_number (PT));
974
975 UNGCPRO;
976 return Qnil;
977 }
978
979 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
980 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
981 Executes BODY just like `progn'.
982 The values of point, mark and the current buffer are restored
983 even in case of abnormal exit (throw or error).
984 The state of activation of the mark is also restored.
985
986 This construct does not save `deactivate-mark', and therefore
987 functions that change the buffer will still cause deactivation
988 of the mark at the end of the command. To prevent that, bind
989 `deactivate-mark' with `let'.
990
991 usage: (save-excursion &rest BODY) */)
992 (args)
993 Lisp_Object args;
994 {
995 register Lisp_Object val;
996 int count = SPECPDL_INDEX ();
997
998 record_unwind_protect (save_excursion_restore, save_excursion_save ());
999
1000 val = Fprogn (args);
1001 return unbind_to (count, val);
1002 }
1003
1004 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1005 doc: /* Save the current buffer; execute BODY; restore the current buffer.
1006 Executes BODY just like `progn'.
1007 usage: (save-current-buffer &rest BODY) */)
1008 (args)
1009 Lisp_Object args;
1010 {
1011 Lisp_Object val;
1012 int count = SPECPDL_INDEX ();
1013
1014 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
1015
1016 val = Fprogn (args);
1017 return unbind_to (count, val);
1018 }
1019 \f
1020 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
1021 doc: /* Return the number of characters in the current buffer.
1022 If BUFFER, return the number of characters in that buffer instead. */)
1023 (buffer)
1024 Lisp_Object buffer;
1025 {
1026 if (NILP (buffer))
1027 return make_number (Z - BEG);
1028 else
1029 {
1030 CHECK_BUFFER (buffer);
1031 return make_number (BUF_Z (XBUFFER (buffer))
1032 - BUF_BEG (XBUFFER (buffer)));
1033 }
1034 }
1035
1036 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1037 doc: /* Return the minimum permissible value of point in the current buffer.
1038 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1039 ()
1040 {
1041 Lisp_Object temp;
1042 XSETFASTINT (temp, BEGV);
1043 return temp;
1044 }
1045
1046 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1047 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1048 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1049 ()
1050 {
1051 return buildmark (BEGV, BEGV_BYTE);
1052 }
1053
1054 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1055 doc: /* Return the maximum permissible value of point in the current buffer.
1056 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1057 is in effect, in which case it is less. */)
1058 ()
1059 {
1060 Lisp_Object temp;
1061 XSETFASTINT (temp, ZV);
1062 return temp;
1063 }
1064
1065 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1066 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1067 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1068 is in effect, in which case it is less. */)
1069 ()
1070 {
1071 return buildmark (ZV, ZV_BYTE);
1072 }
1073
1074 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1075 doc: /* Return the position of the gap, in the current buffer.
1076 See also `gap-size'. */)
1077 ()
1078 {
1079 Lisp_Object temp;
1080 XSETFASTINT (temp, GPT);
1081 return temp;
1082 }
1083
1084 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1085 doc: /* Return the size of the current buffer's gap.
1086 See also `gap-position'. */)
1087 ()
1088 {
1089 Lisp_Object temp;
1090 XSETFASTINT (temp, GAP_SIZE);
1091 return temp;
1092 }
1093
1094 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1095 doc: /* Return the byte position for character position POSITION.
1096 If POSITION is out of range, the value is nil. */)
1097 (position)
1098 Lisp_Object position;
1099 {
1100 CHECK_NUMBER_COERCE_MARKER (position);
1101 if (XINT (position) < BEG || XINT (position) > Z)
1102 return Qnil;
1103 return make_number (CHAR_TO_BYTE (XINT (position)));
1104 }
1105
1106 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1107 doc: /* Return the character position for byte position BYTEPOS.
1108 If BYTEPOS is out of range, the value is nil. */)
1109 (bytepos)
1110 Lisp_Object bytepos;
1111 {
1112 CHECK_NUMBER (bytepos);
1113 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1114 return Qnil;
1115 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1116 }
1117 \f
1118 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1119 doc: /* Return the character following point, as a number.
1120 At the end of the buffer or accessible region, return 0. */)
1121 ()
1122 {
1123 Lisp_Object temp;
1124 if (PT >= ZV)
1125 XSETFASTINT (temp, 0);
1126 else
1127 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1128 return temp;
1129 }
1130
1131 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1132 doc: /* Return the character preceding point, as a number.
1133 At the beginning of the buffer or accessible region, return 0. */)
1134 ()
1135 {
1136 Lisp_Object temp;
1137 if (PT <= BEGV)
1138 XSETFASTINT (temp, 0);
1139 else if (!NILP (current_buffer->enable_multibyte_characters))
1140 {
1141 int pos = PT_BYTE;
1142 DEC_POS (pos);
1143 XSETFASTINT (temp, FETCH_CHAR (pos));
1144 }
1145 else
1146 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1147 return temp;
1148 }
1149
1150 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1151 doc: /* Return t if point is at the beginning of the buffer.
1152 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1153 ()
1154 {
1155 if (PT == BEGV)
1156 return Qt;
1157 return Qnil;
1158 }
1159
1160 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1161 doc: /* Return t if point is at the end of the buffer.
1162 If the buffer is narrowed, this means the end of the narrowed part. */)
1163 ()
1164 {
1165 if (PT == ZV)
1166 return Qt;
1167 return Qnil;
1168 }
1169
1170 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1171 doc: /* Return t if point is at the beginning of a line. */)
1172 ()
1173 {
1174 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1175 return Qt;
1176 return Qnil;
1177 }
1178
1179 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1180 doc: /* Return t if point is at the end of a line.
1181 `End of a line' includes point being at the end of the buffer. */)
1182 ()
1183 {
1184 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1185 return Qt;
1186 return Qnil;
1187 }
1188
1189 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1190 doc: /* Return character in current buffer at position POS.
1191 POS is an integer or a marker and defaults to point.
1192 If POS is out of range, the value is nil. */)
1193 (pos)
1194 Lisp_Object pos;
1195 {
1196 register int pos_byte;
1197
1198 if (NILP (pos))
1199 {
1200 pos_byte = PT_BYTE;
1201 XSETFASTINT (pos, PT);
1202 }
1203
1204 if (MARKERP (pos))
1205 {
1206 pos_byte = marker_byte_position (pos);
1207 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1208 return Qnil;
1209 }
1210 else
1211 {
1212 CHECK_NUMBER_COERCE_MARKER (pos);
1213 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1214 return Qnil;
1215
1216 pos_byte = CHAR_TO_BYTE (XINT (pos));
1217 }
1218
1219 return make_number (FETCH_CHAR (pos_byte));
1220 }
1221
1222 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1223 doc: /* Return character in current buffer preceding position POS.
1224 POS is an integer or a marker and defaults to point.
1225 If POS is out of range, the value is nil. */)
1226 (pos)
1227 Lisp_Object pos;
1228 {
1229 register Lisp_Object val;
1230 register int pos_byte;
1231
1232 if (NILP (pos))
1233 {
1234 pos_byte = PT_BYTE;
1235 XSETFASTINT (pos, PT);
1236 }
1237
1238 if (MARKERP (pos))
1239 {
1240 pos_byte = marker_byte_position (pos);
1241
1242 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1243 return Qnil;
1244 }
1245 else
1246 {
1247 CHECK_NUMBER_COERCE_MARKER (pos);
1248
1249 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1250 return Qnil;
1251
1252 pos_byte = CHAR_TO_BYTE (XINT (pos));
1253 }
1254
1255 if (!NILP (current_buffer->enable_multibyte_characters))
1256 {
1257 DEC_POS (pos_byte);
1258 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1259 }
1260 else
1261 {
1262 pos_byte--;
1263 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1264 }
1265 return val;
1266 }
1267 \f
1268 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1269 doc: /* Return the name under which the user logged in, as a string.
1270 This is based on the effective uid, not the real uid.
1271 Also, if the environment variables LOGNAME or USER are set,
1272 that determines the value of this function.
1273
1274 If optional argument UID is an integer, return the login name of the user
1275 with that uid, or nil if there is no such user. */)
1276 (uid)
1277 Lisp_Object uid;
1278 {
1279 struct passwd *pw;
1280
1281 /* Set up the user name info if we didn't do it before.
1282 (That can happen if Emacs is dumpable
1283 but you decide to run `temacs -l loadup' and not dump. */
1284 if (INTEGERP (Vuser_login_name))
1285 init_editfns ();
1286
1287 if (NILP (uid))
1288 return Vuser_login_name;
1289
1290 CHECK_NUMBER (uid);
1291 BLOCK_INPUT;
1292 pw = (struct passwd *) getpwuid (XINT (uid));
1293 UNBLOCK_INPUT;
1294 return (pw ? build_string (pw->pw_name) : Qnil);
1295 }
1296
1297 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1298 0, 0, 0,
1299 doc: /* Return the name of the user's real uid, as a string.
1300 This ignores the environment variables LOGNAME and USER, so it differs from
1301 `user-login-name' when running under `su'. */)
1302 ()
1303 {
1304 /* Set up the user name info if we didn't do it before.
1305 (That can happen if Emacs is dumpable
1306 but you decide to run `temacs -l loadup' and not dump. */
1307 if (INTEGERP (Vuser_login_name))
1308 init_editfns ();
1309 return Vuser_real_login_name;
1310 }
1311
1312 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1313 doc: /* Return the effective uid of Emacs.
1314 Value is an integer or float, depending on the value. */)
1315 ()
1316 {
1317 return make_fixnum_or_float (geteuid ());
1318 }
1319
1320 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1321 doc: /* Return the real uid of Emacs.
1322 Value is an integer or float, depending on the value. */)
1323 ()
1324 {
1325 return make_fixnum_or_float (getuid ());
1326 }
1327
1328 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1329 doc: /* Return the full name of the user logged in, as a string.
1330 If the full name corresponding to Emacs's userid is not known,
1331 return "unknown".
1332
1333 If optional argument UID is an integer or float, return the full name
1334 of the user with that uid, or nil if there is no such user.
1335 If UID is a string, return the full name of the user with that login
1336 name, or nil if there is no such user. */)
1337 (uid)
1338 Lisp_Object uid;
1339 {
1340 struct passwd *pw;
1341 register unsigned char *p, *q;
1342 Lisp_Object full;
1343
1344 if (NILP (uid))
1345 return Vuser_full_name;
1346 else if (NUMBERP (uid))
1347 {
1348 BLOCK_INPUT;
1349 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1350 UNBLOCK_INPUT;
1351 }
1352 else if (STRINGP (uid))
1353 {
1354 BLOCK_INPUT;
1355 pw = (struct passwd *) getpwnam (SDATA (uid));
1356 UNBLOCK_INPUT;
1357 }
1358 else
1359 error ("Invalid UID specification");
1360
1361 if (!pw)
1362 return Qnil;
1363
1364 p = (unsigned char *) USER_FULL_NAME;
1365 /* Chop off everything after the first comma. */
1366 q = (unsigned char *) index (p, ',');
1367 full = make_string (p, q ? q - p : strlen (p));
1368
1369 #ifdef AMPERSAND_FULL_NAME
1370 p = SDATA (full);
1371 q = (unsigned char *) index (p, '&');
1372 /* Substitute the login name for the &, upcasing the first character. */
1373 if (q)
1374 {
1375 register unsigned char *r;
1376 Lisp_Object login;
1377
1378 login = Fuser_login_name (make_number (pw->pw_uid));
1379 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1380 bcopy (p, r, q - p);
1381 r[q - p] = 0;
1382 strcat (r, SDATA (login));
1383 r[q - p] = UPCASE (r[q - p]);
1384 strcat (r, q + 1);
1385 full = build_string (r);
1386 }
1387 #endif /* AMPERSAND_FULL_NAME */
1388
1389 return full;
1390 }
1391
1392 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1393 doc: /* Return the host name of the machine you are running on, as a string. */)
1394 ()
1395 {
1396 return Vsystem_name;
1397 }
1398
1399 /* For the benefit of callers who don't want to include lisp.h */
1400
1401 char *
1402 get_system_name ()
1403 {
1404 if (STRINGP (Vsystem_name))
1405 return (char *) SDATA (Vsystem_name);
1406 else
1407 return "";
1408 }
1409
1410 char *
1411 get_operating_system_release()
1412 {
1413 if (STRINGP (Voperating_system_release))
1414 return (char *) SDATA (Voperating_system_release);
1415 else
1416 return "";
1417 }
1418
1419 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1420 doc: /* Return the process ID of Emacs, as an integer. */)
1421 ()
1422 {
1423 return make_number (getpid ());
1424 }
1425
1426 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1427 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1428 The time is returned as a list of three integers. The first has the
1429 most significant 16 bits of the seconds, while the second has the
1430 least significant 16 bits. The third integer gives the microsecond
1431 count.
1432
1433 The microsecond count is zero on systems that do not provide
1434 resolution finer than a second. */)
1435 ()
1436 {
1437 EMACS_TIME t;
1438
1439 EMACS_GET_TIME (t);
1440 return list3 (make_number ((EMACS_SECS (t) >> 16) & 0xffff),
1441 make_number ((EMACS_SECS (t) >> 0) & 0xffff),
1442 make_number (EMACS_USECS (t)));
1443 }
1444
1445 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1446 0, 0, 0,
1447 doc: /* Return the current run time used by Emacs.
1448 The time is returned as a list of three integers. The first has the
1449 most significant 16 bits of the seconds, while the second has the
1450 least significant 16 bits. The third integer gives the microsecond
1451 count.
1452
1453 On systems that can't determine the run time, get-internal-run-time
1454 does the same thing as current-time. The microsecond count is zero on
1455 systems that do not provide resolution finer than a second. */)
1456 ()
1457 {
1458 #ifdef HAVE_GETRUSAGE
1459 struct rusage usage;
1460 int secs, usecs;
1461
1462 if (getrusage (RUSAGE_SELF, &usage) < 0)
1463 /* This shouldn't happen. What action is appropriate? */
1464 xsignal0 (Qerror);
1465
1466 /* Sum up user time and system time. */
1467 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1468 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1469 if (usecs >= 1000000)
1470 {
1471 usecs -= 1000000;
1472 secs++;
1473 }
1474
1475 return list3 (make_number ((secs >> 16) & 0xffff),
1476 make_number ((secs >> 0) & 0xffff),
1477 make_number (usecs));
1478 #else
1479 return Fcurrent_time ();
1480 #endif
1481 }
1482 \f
1483
1484 int
1485 lisp_time_argument (specified_time, result, usec)
1486 Lisp_Object specified_time;
1487 time_t *result;
1488 int *usec;
1489 {
1490 if (NILP (specified_time))
1491 {
1492 if (usec)
1493 {
1494 EMACS_TIME t;
1495
1496 EMACS_GET_TIME (t);
1497 *usec = EMACS_USECS (t);
1498 *result = EMACS_SECS (t);
1499 return 1;
1500 }
1501 else
1502 return time (result) != -1;
1503 }
1504 else
1505 {
1506 Lisp_Object high, low;
1507 high = Fcar (specified_time);
1508 CHECK_NUMBER (high);
1509 low = Fcdr (specified_time);
1510 if (CONSP (low))
1511 {
1512 if (usec)
1513 {
1514 Lisp_Object usec_l = Fcdr (low);
1515 if (CONSP (usec_l))
1516 usec_l = Fcar (usec_l);
1517 if (NILP (usec_l))
1518 *usec = 0;
1519 else
1520 {
1521 CHECK_NUMBER (usec_l);
1522 *usec = XINT (usec_l);
1523 }
1524 }
1525 low = Fcar (low);
1526 }
1527 else if (usec)
1528 *usec = 0;
1529 CHECK_NUMBER (low);
1530 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1531 return *result >> 16 == XINT (high);
1532 }
1533 }
1534
1535 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1536 doc: /* Return the current time, as a float number of seconds since the epoch.
1537 If SPECIFIED-TIME is given, it is the time to convert to float
1538 instead of the current time. The argument should have the form
1539 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1540 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1541 have the form (HIGH . LOW), but this is considered obsolete.
1542
1543 WARNING: Since the result is floating point, it may not be exact.
1544 Do not use this function if precise time stamps are required. */)
1545 (specified_time)
1546 Lisp_Object specified_time;
1547 {
1548 time_t sec;
1549 int usec;
1550
1551 if (! lisp_time_argument (specified_time, &sec, &usec))
1552 error ("Invalid time specification");
1553
1554 return make_float ((sec * 1e6 + usec) / 1e6);
1555 }
1556
1557 /* Write information into buffer S of size MAXSIZE, according to the
1558 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1559 Default to Universal Time if UT is nonzero, local time otherwise.
1560 Return the number of bytes written, not including the terminating
1561 '\0'. If S is NULL, nothing will be written anywhere; so to
1562 determine how many bytes would be written, use NULL for S and
1563 ((size_t) -1) for MAXSIZE.
1564
1565 This function behaves like emacs_strftimeu, except it allows null
1566 bytes in FORMAT. */
1567 static size_t
1568 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1569 char *s;
1570 size_t maxsize;
1571 const char *format;
1572 size_t format_len;
1573 const struct tm *tp;
1574 int ut;
1575 {
1576 size_t total = 0;
1577
1578 /* Loop through all the null-terminated strings in the format
1579 argument. Normally there's just one null-terminated string, but
1580 there can be arbitrarily many, concatenated together, if the
1581 format contains '\0' bytes. emacs_strftimeu stops at the first
1582 '\0' byte so we must invoke it separately for each such string. */
1583 for (;;)
1584 {
1585 size_t len;
1586 size_t result;
1587
1588 if (s)
1589 s[0] = '\1';
1590
1591 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1592
1593 if (s)
1594 {
1595 if (result == 0 && s[0] != '\0')
1596 return 0;
1597 s += result + 1;
1598 }
1599
1600 maxsize -= result + 1;
1601 total += result;
1602 len = strlen (format);
1603 if (len == format_len)
1604 return total;
1605 total++;
1606 format += len + 1;
1607 format_len -= len + 1;
1608 }
1609 }
1610
1611 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1612 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1613 TIME is specified as (HIGH LOW . IGNORED), as returned by
1614 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1615 is also still accepted.
1616 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1617 as Universal Time; nil means describe TIME in the local time zone.
1618 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1619 by text that describes the specified date and time in TIME:
1620
1621 %Y is the year, %y within the century, %C the century.
1622 %G is the year corresponding to the ISO week, %g within the century.
1623 %m is the numeric month.
1624 %b and %h are the locale's abbreviated month name, %B the full name.
1625 %d is the day of the month, zero-padded, %e is blank-padded.
1626 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1627 %a is the locale's abbreviated name of the day of week, %A the full name.
1628 %U is the week number starting on Sunday, %W starting on Monday,
1629 %V according to ISO 8601.
1630 %j is the day of the year.
1631
1632 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1633 only blank-padded, %l is like %I blank-padded.
1634 %p is the locale's equivalent of either AM or PM.
1635 %M is the minute.
1636 %S is the second.
1637 %Z is the time zone name, %z is the numeric form.
1638 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1639
1640 %c is the locale's date and time format.
1641 %x is the locale's "preferred" date format.
1642 %D is like "%m/%d/%y".
1643
1644 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1645 %X is the locale's "preferred" time format.
1646
1647 Finally, %n is a newline, %t is a tab, %% is a literal %.
1648
1649 Certain flags and modifiers are available with some format controls.
1650 The flags are `_', `-', `^' and `#'. For certain characters X,
1651 %_X is like %X, but padded with blanks; %-X is like %X,
1652 but without padding. %^X is like %X, but with all textual
1653 characters up-cased; %#X is like %X, but with letter-case of
1654 all textual characters reversed.
1655 %NX (where N stands for an integer) is like %X,
1656 but takes up at least N (a number) positions.
1657 The modifiers are `E' and `O'. For certain characters X,
1658 %EX is a locale's alternative version of %X;
1659 %OX is like %X, but uses the locale's number symbols.
1660
1661 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1662 (format_string, time, universal)
1663 Lisp_Object format_string, time, universal;
1664 {
1665 time_t value;
1666 int size;
1667 struct tm *tm;
1668 int ut = ! NILP (universal);
1669
1670 CHECK_STRING (format_string);
1671
1672 if (! lisp_time_argument (time, &value, NULL))
1673 error ("Invalid time specification");
1674
1675 format_string = code_convert_string_norecord (format_string,
1676 Vlocale_coding_system, 1);
1677
1678 /* This is probably enough. */
1679 size = SBYTES (format_string) * 6 + 50;
1680
1681 BLOCK_INPUT;
1682 tm = ut ? gmtime (&value) : localtime (&value);
1683 UNBLOCK_INPUT;
1684 if (! tm)
1685 error ("Specified time is not representable");
1686
1687 synchronize_system_time_locale ();
1688
1689 while (1)
1690 {
1691 char *buf = (char *) alloca (size + 1);
1692 int result;
1693
1694 buf[0] = '\1';
1695 BLOCK_INPUT;
1696 result = emacs_memftimeu (buf, size, SDATA (format_string),
1697 SBYTES (format_string),
1698 tm, ut);
1699 UNBLOCK_INPUT;
1700 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1701 return code_convert_string_norecord (make_unibyte_string (buf, result),
1702 Vlocale_coding_system, 0);
1703
1704 /* If buffer was too small, make it bigger and try again. */
1705 BLOCK_INPUT;
1706 result = emacs_memftimeu (NULL, (size_t) -1,
1707 SDATA (format_string),
1708 SBYTES (format_string),
1709 tm, ut);
1710 UNBLOCK_INPUT;
1711 size = result + 1;
1712 }
1713 }
1714
1715 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1716 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1717 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1718 as from `current-time' and `file-attributes', or `nil' to use the
1719 current time. The obsolete form (HIGH . LOW) is also still accepted.
1720 The list has the following nine members: SEC is an integer between 0
1721 and 60; SEC is 60 for a leap second, which only some operating systems
1722 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1723 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1724 integer between 1 and 12. YEAR is an integer indicating the
1725 four-digit year. DOW is the day of week, an integer between 0 and 6,
1726 where 0 is Sunday. DST is t if daylight savings time is effect,
1727 otherwise nil. ZONE is an integer indicating the number of seconds
1728 east of Greenwich. (Note that Common Lisp has different meanings for
1729 DOW and ZONE.) */)
1730 (specified_time)
1731 Lisp_Object specified_time;
1732 {
1733 time_t time_spec;
1734 struct tm save_tm;
1735 struct tm *decoded_time;
1736 Lisp_Object list_args[9];
1737
1738 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1739 error ("Invalid time specification");
1740
1741 BLOCK_INPUT;
1742 decoded_time = localtime (&time_spec);
1743 UNBLOCK_INPUT;
1744 if (! decoded_time)
1745 error ("Specified time is not representable");
1746 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1747 XSETFASTINT (list_args[1], decoded_time->tm_min);
1748 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1749 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1750 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1751 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1752 cast below avoids overflow in int arithmetics. */
1753 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1754 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1755 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1756
1757 /* Make a copy, in case gmtime modifies the struct. */
1758 save_tm = *decoded_time;
1759 BLOCK_INPUT;
1760 decoded_time = gmtime (&time_spec);
1761 UNBLOCK_INPUT;
1762 if (decoded_time == 0)
1763 list_args[8] = Qnil;
1764 else
1765 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1766 return Flist (9, list_args);
1767 }
1768
1769 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1770 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1771 This is the reverse operation of `decode-time', which see.
1772 ZONE defaults to the current time zone rule. This can
1773 be a string or t (as from `set-time-zone-rule'), or it can be a list
1774 \(as from `current-time-zone') or an integer (as from `decode-time')
1775 applied without consideration for daylight savings time.
1776
1777 You can pass more than 7 arguments; then the first six arguments
1778 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1779 The intervening arguments are ignored.
1780 This feature lets (apply 'encode-time (decode-time ...)) work.
1781
1782 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1783 for example, a DAY of 0 means the day preceding the given month.
1784 Year numbers less than 100 are treated just like other year numbers.
1785 If you want them to stand for years in this century, you must do that yourself.
1786
1787 Years before 1970 are not guaranteed to work. On some systems,
1788 year values as low as 1901 do work.
1789
1790 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1791 (nargs, args)
1792 int nargs;
1793 register Lisp_Object *args;
1794 {
1795 time_t time;
1796 struct tm tm;
1797 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1798
1799 CHECK_NUMBER (args[0]); /* second */
1800 CHECK_NUMBER (args[1]); /* minute */
1801 CHECK_NUMBER (args[2]); /* hour */
1802 CHECK_NUMBER (args[3]); /* day */
1803 CHECK_NUMBER (args[4]); /* month */
1804 CHECK_NUMBER (args[5]); /* year */
1805
1806 tm.tm_sec = XINT (args[0]);
1807 tm.tm_min = XINT (args[1]);
1808 tm.tm_hour = XINT (args[2]);
1809 tm.tm_mday = XINT (args[3]);
1810 tm.tm_mon = XINT (args[4]) - 1;
1811 tm.tm_year = XINT (args[5]) - TM_YEAR_BASE;
1812 tm.tm_isdst = -1;
1813
1814 if (CONSP (zone))
1815 zone = Fcar (zone);
1816 if (NILP (zone))
1817 {
1818 BLOCK_INPUT;
1819 time = mktime (&tm);
1820 UNBLOCK_INPUT;
1821 }
1822 else
1823 {
1824 char tzbuf[100];
1825 char *tzstring;
1826 char **oldenv = environ, **newenv;
1827
1828 if (EQ (zone, Qt))
1829 tzstring = "UTC0";
1830 else if (STRINGP (zone))
1831 tzstring = (char *) SDATA (zone);
1832 else if (INTEGERP (zone))
1833 {
1834 int abszone = abs (XINT (zone));
1835 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1836 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1837 tzstring = tzbuf;
1838 }
1839 else
1840 error ("Invalid time zone specification");
1841
1842 /* Set TZ before calling mktime; merely adjusting mktime's returned
1843 value doesn't suffice, since that would mishandle leap seconds. */
1844 set_time_zone_rule (tzstring);
1845
1846 BLOCK_INPUT;
1847 time = mktime (&tm);
1848 UNBLOCK_INPUT;
1849
1850 /* Restore TZ to previous value. */
1851 newenv = environ;
1852 environ = oldenv;
1853 xfree (newenv);
1854 #ifdef LOCALTIME_CACHE
1855 tzset ();
1856 #endif
1857 }
1858
1859 if (time == (time_t) -1)
1860 error ("Specified time is not representable");
1861
1862 return make_time (time);
1863 }
1864
1865 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1866 doc: /* Return the current time, as a human-readable string.
1867 Programs can use this function to decode a time,
1868 since the number of columns in each field is fixed
1869 if the year is in the range 1000-9999.
1870 The format is `Sun Sep 16 01:03:52 1973'.
1871 However, see also the functions `decode-time' and `format-time-string'
1872 which provide a much more powerful and general facility.
1873
1874 If SPECIFIED-TIME is given, it is a time to format instead of the
1875 current time. The argument should have the form (HIGH LOW . IGNORED).
1876 Thus, you can use times obtained from `current-time' and from
1877 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1878 but this is considered obsolete. */)
1879 (specified_time)
1880 Lisp_Object specified_time;
1881 {
1882 time_t value;
1883 struct tm *tm;
1884 register char *tem;
1885
1886 if (! lisp_time_argument (specified_time, &value, NULL))
1887 error ("Invalid time specification");
1888
1889 /* Convert to a string, checking for out-of-range time stamps.
1890 Don't use 'ctime', as that might dump core if VALUE is out of
1891 range. */
1892 BLOCK_INPUT;
1893 tm = localtime (&value);
1894 UNBLOCK_INPUT;
1895 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1896 error ("Specified time is not representable");
1897
1898 /* Remove the trailing newline. */
1899 tem[strlen (tem) - 1] = '\0';
1900
1901 return build_string (tem);
1902 }
1903
1904 /* Yield A - B, measured in seconds.
1905 This function is copied from the GNU C Library. */
1906 static int
1907 tm_diff (a, b)
1908 struct tm *a, *b;
1909 {
1910 /* Compute intervening leap days correctly even if year is negative.
1911 Take care to avoid int overflow in leap day calculations,
1912 but it's OK to assume that A and B are close to each other. */
1913 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1914 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1915 int a100 = a4 / 25 - (a4 % 25 < 0);
1916 int b100 = b4 / 25 - (b4 % 25 < 0);
1917 int a400 = a100 >> 2;
1918 int b400 = b100 >> 2;
1919 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1920 int years = a->tm_year - b->tm_year;
1921 int days = (365 * years + intervening_leap_days
1922 + (a->tm_yday - b->tm_yday));
1923 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1924 + (a->tm_min - b->tm_min))
1925 + (a->tm_sec - b->tm_sec));
1926 }
1927
1928 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1929 doc: /* Return the offset and name for the local time zone.
1930 This returns a list of the form (OFFSET NAME).
1931 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1932 A negative value means west of Greenwich.
1933 NAME is a string giving the name of the time zone.
1934 If SPECIFIED-TIME is given, the time zone offset is determined from it
1935 instead of using the current time. The argument should have the form
1936 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1937 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1938 have the form (HIGH . LOW), but this is considered obsolete.
1939
1940 Some operating systems cannot provide all this information to Emacs;
1941 in this case, `current-time-zone' returns a list containing nil for
1942 the data it can't find. */)
1943 (specified_time)
1944 Lisp_Object specified_time;
1945 {
1946 time_t value;
1947 struct tm *t;
1948 struct tm gmt;
1949
1950 if (!lisp_time_argument (specified_time, &value, NULL))
1951 t = NULL;
1952 else
1953 {
1954 BLOCK_INPUT;
1955 t = gmtime (&value);
1956 if (t)
1957 {
1958 gmt = *t;
1959 t = localtime (&value);
1960 }
1961 UNBLOCK_INPUT;
1962 }
1963
1964 if (t)
1965 {
1966 int offset = tm_diff (t, &gmt);
1967 char *s = 0;
1968 char buf[6];
1969 #ifdef HAVE_TM_ZONE
1970 if (t->tm_zone)
1971 s = (char *)t->tm_zone;
1972 #else /* not HAVE_TM_ZONE */
1973 #ifdef HAVE_TZNAME
1974 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1975 s = tzname[t->tm_isdst];
1976 #endif
1977 #endif /* not HAVE_TM_ZONE */
1978
1979 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1980 if (s)
1981 {
1982 /* On Japanese w32, we can get a Japanese string as time
1983 zone name. Don't accept that. */
1984 char *p;
1985 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1986 ;
1987 if (p == s || *p)
1988 s = NULL;
1989 }
1990 #endif
1991
1992 if (!s)
1993 {
1994 /* No local time zone name is available; use "+-NNNN" instead. */
1995 int am = (offset < 0 ? -offset : offset) / 60;
1996 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1997 s = buf;
1998 }
1999 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
2000 }
2001 else
2002 return Fmake_list (make_number (2), Qnil);
2003 }
2004
2005 /* This holds the value of `environ' produced by the previous
2006 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2007 has never been called. */
2008 static char **environbuf;
2009
2010 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2011 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2012 If TZ is nil, use implementation-defined default time zone information.
2013 If TZ is t, use Universal Time. */)
2014 (tz)
2015 Lisp_Object tz;
2016 {
2017 char *tzstring;
2018
2019 if (NILP (tz))
2020 tzstring = 0;
2021 else if (EQ (tz, Qt))
2022 tzstring = "UTC0";
2023 else
2024 {
2025 CHECK_STRING (tz);
2026 tzstring = (char *) SDATA (tz);
2027 }
2028
2029 set_time_zone_rule (tzstring);
2030 if (environbuf)
2031 free (environbuf);
2032 environbuf = environ;
2033
2034 return Qnil;
2035 }
2036
2037 #ifdef LOCALTIME_CACHE
2038
2039 /* These two values are known to load tz files in buggy implementations,
2040 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2041 Their values shouldn't matter in non-buggy implementations.
2042 We don't use string literals for these strings,
2043 since if a string in the environment is in readonly
2044 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2045 See Sun bugs 1113095 and 1114114, ``Timezone routines
2046 improperly modify environment''. */
2047
2048 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2049 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2050
2051 #endif
2052
2053 /* Set the local time zone rule to TZSTRING.
2054 This allocates memory into `environ', which it is the caller's
2055 responsibility to free. */
2056
2057 void
2058 set_time_zone_rule (tzstring)
2059 char *tzstring;
2060 {
2061 int envptrs;
2062 char **from, **to, **newenv;
2063
2064 /* Make the ENVIRON vector longer with room for TZSTRING. */
2065 for (from = environ; *from; from++)
2066 continue;
2067 envptrs = from - environ + 2;
2068 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2069 + (tzstring ? strlen (tzstring) + 4 : 0));
2070
2071 /* Add TZSTRING to the end of environ, as a value for TZ. */
2072 if (tzstring)
2073 {
2074 char *t = (char *) (to + envptrs);
2075 strcpy (t, "TZ=");
2076 strcat (t, tzstring);
2077 *to++ = t;
2078 }
2079
2080 /* Copy the old environ vector elements into NEWENV,
2081 but don't copy the TZ variable.
2082 So we have only one definition of TZ, which came from TZSTRING. */
2083 for (from = environ; *from; from++)
2084 if (strncmp (*from, "TZ=", 3) != 0)
2085 *to++ = *from;
2086 *to = 0;
2087
2088 environ = newenv;
2089
2090 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2091 the TZ variable is stored. If we do not have a TZSTRING,
2092 TO points to the vector slot which has the terminating null. */
2093
2094 #ifdef LOCALTIME_CACHE
2095 {
2096 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2097 "US/Pacific" that loads a tz file, then changes to a value like
2098 "XXX0" that does not load a tz file, and then changes back to
2099 its original value, the last change is (incorrectly) ignored.
2100 Also, if TZ changes twice in succession to values that do
2101 not load a tz file, tzset can dump core (see Sun bug#1225179).
2102 The following code works around these bugs. */
2103
2104 if (tzstring)
2105 {
2106 /* Temporarily set TZ to a value that loads a tz file
2107 and that differs from tzstring. */
2108 char *tz = *newenv;
2109 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2110 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2111 tzset ();
2112 *newenv = tz;
2113 }
2114 else
2115 {
2116 /* The implied tzstring is unknown, so temporarily set TZ to
2117 two different values that each load a tz file. */
2118 *to = set_time_zone_rule_tz1;
2119 to[1] = 0;
2120 tzset ();
2121 *to = set_time_zone_rule_tz2;
2122 tzset ();
2123 *to = 0;
2124 }
2125
2126 /* Now TZ has the desired value, and tzset can be invoked safely. */
2127 }
2128
2129 tzset ();
2130 #endif
2131 }
2132 \f
2133 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2134 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2135 type of object is Lisp_String). INHERIT is passed to
2136 INSERT_FROM_STRING_FUNC as the last argument. */
2137
2138 static void
2139 general_insert_function (insert_func, insert_from_string_func,
2140 inherit, nargs, args)
2141 void (*insert_func) P_ ((const unsigned char *, int));
2142 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2143 int inherit, nargs;
2144 register Lisp_Object *args;
2145 {
2146 register int argnum;
2147 register Lisp_Object val;
2148
2149 for (argnum = 0; argnum < nargs; argnum++)
2150 {
2151 val = args[argnum];
2152 if (INTEGERP (val))
2153 {
2154 unsigned char str[MAX_MULTIBYTE_LENGTH];
2155 int len;
2156
2157 if (!NILP (current_buffer->enable_multibyte_characters))
2158 len = CHAR_STRING (XFASTINT (val), str);
2159 else
2160 {
2161 str[0] = (SINGLE_BYTE_CHAR_P (XINT (val))
2162 ? XINT (val)
2163 : multibyte_char_to_unibyte (XINT (val), Qnil));
2164 len = 1;
2165 }
2166 (*insert_func) (str, len);
2167 }
2168 else if (STRINGP (val))
2169 {
2170 (*insert_from_string_func) (val, 0, 0,
2171 SCHARS (val),
2172 SBYTES (val),
2173 inherit);
2174 }
2175 else
2176 wrong_type_argument (Qchar_or_string_p, val);
2177 }
2178 }
2179
2180 void
2181 insert1 (arg)
2182 Lisp_Object arg;
2183 {
2184 Finsert (1, &arg);
2185 }
2186
2187
2188 /* Callers passing one argument to Finsert need not gcpro the
2189 argument "array", since the only element of the array will
2190 not be used after calling insert or insert_from_string, so
2191 we don't care if it gets trashed. */
2192
2193 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2194 doc: /* Insert the arguments, either strings or characters, at point.
2195 Point and before-insertion markers move forward to end up
2196 after the inserted text.
2197 Any other markers at the point of insertion remain before the text.
2198
2199 If the current buffer is multibyte, unibyte strings are converted
2200 to multibyte for insertion (see `string-make-multibyte').
2201 If the current buffer is unibyte, multibyte strings are converted
2202 to unibyte for insertion (see `string-make-unibyte').
2203
2204 When operating on binary data, it may be necessary to preserve the
2205 original bytes of a unibyte string when inserting it into a multibyte
2206 buffer; to accomplish this, apply `string-as-multibyte' to the string
2207 and insert the result.
2208
2209 usage: (insert &rest ARGS) */)
2210 (nargs, args)
2211 int nargs;
2212 register Lisp_Object *args;
2213 {
2214 general_insert_function (insert, insert_from_string, 0, nargs, args);
2215 return Qnil;
2216 }
2217
2218 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2219 0, MANY, 0,
2220 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2221 Point and before-insertion markers move forward to end up
2222 after the inserted text.
2223 Any other markers at the point of insertion remain before the text.
2224
2225 If the current buffer is multibyte, unibyte strings are converted
2226 to multibyte for insertion (see `unibyte-char-to-multibyte').
2227 If the current buffer is unibyte, multibyte strings are converted
2228 to unibyte for insertion.
2229
2230 usage: (insert-and-inherit &rest ARGS) */)
2231 (nargs, args)
2232 int nargs;
2233 register Lisp_Object *args;
2234 {
2235 general_insert_function (insert_and_inherit, insert_from_string, 1,
2236 nargs, args);
2237 return Qnil;
2238 }
2239
2240 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2241 doc: /* Insert strings or characters at point, relocating markers after the text.
2242 Point and markers move forward to end up after the inserted text.
2243
2244 If the current buffer is multibyte, unibyte strings are converted
2245 to multibyte for insertion (see `unibyte-char-to-multibyte').
2246 If the current buffer is unibyte, multibyte strings are converted
2247 to unibyte for insertion.
2248
2249 usage: (insert-before-markers &rest ARGS) */)
2250 (nargs, args)
2251 int nargs;
2252 register Lisp_Object *args;
2253 {
2254 general_insert_function (insert_before_markers,
2255 insert_from_string_before_markers, 0,
2256 nargs, args);
2257 return Qnil;
2258 }
2259
2260 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2261 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2262 doc: /* Insert text at point, relocating markers and inheriting properties.
2263 Point and markers move forward to end up after the inserted text.
2264
2265 If the current buffer is multibyte, unibyte strings are converted
2266 to multibyte for insertion (see `unibyte-char-to-multibyte').
2267 If the current buffer is unibyte, multibyte strings are converted
2268 to unibyte for insertion.
2269
2270 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2271 (nargs, args)
2272 int nargs;
2273 register Lisp_Object *args;
2274 {
2275 general_insert_function (insert_before_markers_and_inherit,
2276 insert_from_string_before_markers, 1,
2277 nargs, args);
2278 return Qnil;
2279 }
2280 \f
2281 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2282 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2283 Both arguments are required.
2284 Point, and before-insertion markers, are relocated as in the function `insert'.
2285 The optional third arg INHERIT, if non-nil, says to inherit text properties
2286 from adjoining text, if those properties are sticky. */)
2287 (character, count, inherit)
2288 Lisp_Object character, count, inherit;
2289 {
2290 register unsigned char *string;
2291 register int strlen;
2292 register int i, n;
2293 int len;
2294 unsigned char str[MAX_MULTIBYTE_LENGTH];
2295
2296 CHECK_NUMBER (character);
2297 CHECK_NUMBER (count);
2298
2299 if (!NILP (current_buffer->enable_multibyte_characters))
2300 len = CHAR_STRING (XFASTINT (character), str);
2301 else
2302 str[0] = XFASTINT (character), len = 1;
2303 n = XINT (count) * len;
2304 if (n <= 0)
2305 return Qnil;
2306 strlen = min (n, 256 * len);
2307 string = (unsigned char *) alloca (strlen);
2308 for (i = 0; i < strlen; i++)
2309 string[i] = str[i % len];
2310 while (n >= strlen)
2311 {
2312 QUIT;
2313 if (!NILP (inherit))
2314 insert_and_inherit (string, strlen);
2315 else
2316 insert (string, strlen);
2317 n -= strlen;
2318 }
2319 if (n > 0)
2320 {
2321 if (!NILP (inherit))
2322 insert_and_inherit (string, n);
2323 else
2324 insert (string, n);
2325 }
2326 return Qnil;
2327 }
2328
2329 \f
2330 /* Making strings from buffer contents. */
2331
2332 /* Return a Lisp_String containing the text of the current buffer from
2333 START to END. If text properties are in use and the current buffer
2334 has properties in the range specified, the resulting string will also
2335 have them, if PROPS is nonzero.
2336
2337 We don't want to use plain old make_string here, because it calls
2338 make_uninit_string, which can cause the buffer arena to be
2339 compacted. make_string has no way of knowing that the data has
2340 been moved, and thus copies the wrong data into the string. This
2341 doesn't effect most of the other users of make_string, so it should
2342 be left as is. But we should use this function when conjuring
2343 buffer substrings. */
2344
2345 Lisp_Object
2346 make_buffer_string (start, end, props)
2347 int start, end;
2348 int props;
2349 {
2350 int start_byte = CHAR_TO_BYTE (start);
2351 int end_byte = CHAR_TO_BYTE (end);
2352
2353 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2354 }
2355
2356 /* Return a Lisp_String containing the text of the current buffer from
2357 START / START_BYTE to END / END_BYTE.
2358
2359 If text properties are in use and the current buffer
2360 has properties in the range specified, the resulting string will also
2361 have them, if PROPS is nonzero.
2362
2363 We don't want to use plain old make_string here, because it calls
2364 make_uninit_string, which can cause the buffer arena to be
2365 compacted. make_string has no way of knowing that the data has
2366 been moved, and thus copies the wrong data into the string. This
2367 doesn't effect most of the other users of make_string, so it should
2368 be left as is. But we should use this function when conjuring
2369 buffer substrings. */
2370
2371 Lisp_Object
2372 make_buffer_string_both (start, start_byte, end, end_byte, props)
2373 int start, start_byte, end, end_byte;
2374 int props;
2375 {
2376 Lisp_Object result, tem, tem1;
2377
2378 if (start < GPT && GPT < end)
2379 move_gap (start);
2380
2381 if (! NILP (current_buffer->enable_multibyte_characters))
2382 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2383 else
2384 result = make_uninit_string (end - start);
2385 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2386 end_byte - start_byte);
2387
2388 /* If desired, update and copy the text properties. */
2389 if (props)
2390 {
2391 update_buffer_properties (start, end);
2392
2393 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2394 tem1 = Ftext_properties_at (make_number (start), Qnil);
2395
2396 if (XINT (tem) != end || !NILP (tem1))
2397 copy_intervals_to_string (result, current_buffer, start,
2398 end - start);
2399 }
2400
2401 return result;
2402 }
2403
2404 /* Call Vbuffer_access_fontify_functions for the range START ... END
2405 in the current buffer, if necessary. */
2406
2407 static void
2408 update_buffer_properties (start, end)
2409 int start, end;
2410 {
2411 /* If this buffer has some access functions,
2412 call them, specifying the range of the buffer being accessed. */
2413 if (!NILP (Vbuffer_access_fontify_functions))
2414 {
2415 Lisp_Object args[3];
2416 Lisp_Object tem;
2417
2418 args[0] = Qbuffer_access_fontify_functions;
2419 XSETINT (args[1], start);
2420 XSETINT (args[2], end);
2421
2422 /* But don't call them if we can tell that the work
2423 has already been done. */
2424 if (!NILP (Vbuffer_access_fontified_property))
2425 {
2426 tem = Ftext_property_any (args[1], args[2],
2427 Vbuffer_access_fontified_property,
2428 Qnil, Qnil);
2429 if (! NILP (tem))
2430 Frun_hook_with_args (3, args);
2431 }
2432 else
2433 Frun_hook_with_args (3, args);
2434 }
2435 }
2436
2437 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2438 doc: /* Return the contents of part of the current buffer as a string.
2439 The two arguments START and END are character positions;
2440 they can be in either order.
2441 The string returned is multibyte if the buffer is multibyte.
2442
2443 This function copies the text properties of that part of the buffer
2444 into the result string; if you don't want the text properties,
2445 use `buffer-substring-no-properties' instead. */)
2446 (start, end)
2447 Lisp_Object start, end;
2448 {
2449 register int b, e;
2450
2451 validate_region (&start, &end);
2452 b = XINT (start);
2453 e = XINT (end);
2454
2455 return make_buffer_string (b, e, 1);
2456 }
2457
2458 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2459 Sbuffer_substring_no_properties, 2, 2, 0,
2460 doc: /* Return the characters of part of the buffer, without the text properties.
2461 The two arguments START and END are character positions;
2462 they can be in either order. */)
2463 (start, end)
2464 Lisp_Object start, end;
2465 {
2466 register int b, e;
2467
2468 validate_region (&start, &end);
2469 b = XINT (start);
2470 e = XINT (end);
2471
2472 return make_buffer_string (b, e, 0);
2473 }
2474
2475 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2476 doc: /* Return the contents of the current buffer as a string.
2477 If narrowing is in effect, this function returns only the visible part
2478 of the buffer. */)
2479 ()
2480 {
2481 return make_buffer_string (BEGV, ZV, 1);
2482 }
2483
2484 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2485 1, 3, 0,
2486 doc: /* Insert before point a substring of the contents of BUFFER.
2487 BUFFER may be a buffer or a buffer name.
2488 Arguments START and END are character positions specifying the substring.
2489 They default to the values of (point-min) and (point-max) in BUFFER. */)
2490 (buffer, start, end)
2491 Lisp_Object buffer, start, end;
2492 {
2493 register int b, e, temp;
2494 register struct buffer *bp, *obuf;
2495 Lisp_Object buf;
2496
2497 buf = Fget_buffer (buffer);
2498 if (NILP (buf))
2499 nsberror (buffer);
2500 bp = XBUFFER (buf);
2501 if (NILP (bp->name))
2502 error ("Selecting deleted buffer");
2503
2504 if (NILP (start))
2505 b = BUF_BEGV (bp);
2506 else
2507 {
2508 CHECK_NUMBER_COERCE_MARKER (start);
2509 b = XINT (start);
2510 }
2511 if (NILP (end))
2512 e = BUF_ZV (bp);
2513 else
2514 {
2515 CHECK_NUMBER_COERCE_MARKER (end);
2516 e = XINT (end);
2517 }
2518
2519 if (b > e)
2520 temp = b, b = e, e = temp;
2521
2522 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2523 args_out_of_range (start, end);
2524
2525 obuf = current_buffer;
2526 set_buffer_internal_1 (bp);
2527 update_buffer_properties (b, e);
2528 set_buffer_internal_1 (obuf);
2529
2530 insert_from_buffer (bp, b, e - b, 0);
2531 return Qnil;
2532 }
2533
2534 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2535 6, 6, 0,
2536 doc: /* Compare two substrings of two buffers; return result as number.
2537 the value is -N if first string is less after N-1 chars,
2538 +N if first string is greater after N-1 chars, or 0 if strings match.
2539 Each substring is represented as three arguments: BUFFER, START and END.
2540 That makes six args in all, three for each substring.
2541
2542 The value of `case-fold-search' in the current buffer
2543 determines whether case is significant or ignored. */)
2544 (buffer1, start1, end1, buffer2, start2, end2)
2545 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2546 {
2547 register int begp1, endp1, begp2, endp2, temp;
2548 register struct buffer *bp1, *bp2;
2549 register Lisp_Object trt
2550 = (!NILP (current_buffer->case_fold_search)
2551 ? current_buffer->case_canon_table : Qnil);
2552 int chars = 0;
2553 int i1, i2, i1_byte, i2_byte;
2554
2555 /* Find the first buffer and its substring. */
2556
2557 if (NILP (buffer1))
2558 bp1 = current_buffer;
2559 else
2560 {
2561 Lisp_Object buf1;
2562 buf1 = Fget_buffer (buffer1);
2563 if (NILP (buf1))
2564 nsberror (buffer1);
2565 bp1 = XBUFFER (buf1);
2566 if (NILP (bp1->name))
2567 error ("Selecting deleted buffer");
2568 }
2569
2570 if (NILP (start1))
2571 begp1 = BUF_BEGV (bp1);
2572 else
2573 {
2574 CHECK_NUMBER_COERCE_MARKER (start1);
2575 begp1 = XINT (start1);
2576 }
2577 if (NILP (end1))
2578 endp1 = BUF_ZV (bp1);
2579 else
2580 {
2581 CHECK_NUMBER_COERCE_MARKER (end1);
2582 endp1 = XINT (end1);
2583 }
2584
2585 if (begp1 > endp1)
2586 temp = begp1, begp1 = endp1, endp1 = temp;
2587
2588 if (!(BUF_BEGV (bp1) <= begp1
2589 && begp1 <= endp1
2590 && endp1 <= BUF_ZV (bp1)))
2591 args_out_of_range (start1, end1);
2592
2593 /* Likewise for second substring. */
2594
2595 if (NILP (buffer2))
2596 bp2 = current_buffer;
2597 else
2598 {
2599 Lisp_Object buf2;
2600 buf2 = Fget_buffer (buffer2);
2601 if (NILP (buf2))
2602 nsberror (buffer2);
2603 bp2 = XBUFFER (buf2);
2604 if (NILP (bp2->name))
2605 error ("Selecting deleted buffer");
2606 }
2607
2608 if (NILP (start2))
2609 begp2 = BUF_BEGV (bp2);
2610 else
2611 {
2612 CHECK_NUMBER_COERCE_MARKER (start2);
2613 begp2 = XINT (start2);
2614 }
2615 if (NILP (end2))
2616 endp2 = BUF_ZV (bp2);
2617 else
2618 {
2619 CHECK_NUMBER_COERCE_MARKER (end2);
2620 endp2 = XINT (end2);
2621 }
2622
2623 if (begp2 > endp2)
2624 temp = begp2, begp2 = endp2, endp2 = temp;
2625
2626 if (!(BUF_BEGV (bp2) <= begp2
2627 && begp2 <= endp2
2628 && endp2 <= BUF_ZV (bp2)))
2629 args_out_of_range (start2, end2);
2630
2631 i1 = begp1;
2632 i2 = begp2;
2633 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2634 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2635
2636 while (i1 < endp1 && i2 < endp2)
2637 {
2638 /* When we find a mismatch, we must compare the
2639 characters, not just the bytes. */
2640 int c1, c2;
2641
2642 QUIT;
2643
2644 if (! NILP (bp1->enable_multibyte_characters))
2645 {
2646 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2647 BUF_INC_POS (bp1, i1_byte);
2648 i1++;
2649 }
2650 else
2651 {
2652 c1 = BUF_FETCH_BYTE (bp1, i1);
2653 c1 = unibyte_char_to_multibyte (c1);
2654 i1++;
2655 }
2656
2657 if (! NILP (bp2->enable_multibyte_characters))
2658 {
2659 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2660 BUF_INC_POS (bp2, i2_byte);
2661 i2++;
2662 }
2663 else
2664 {
2665 c2 = BUF_FETCH_BYTE (bp2, i2);
2666 c2 = unibyte_char_to_multibyte (c2);
2667 i2++;
2668 }
2669
2670 if (!NILP (trt))
2671 {
2672 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2673 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2674 }
2675 if (c1 < c2)
2676 return make_number (- 1 - chars);
2677 if (c1 > c2)
2678 return make_number (chars + 1);
2679
2680 chars++;
2681 }
2682
2683 /* The strings match as far as they go.
2684 If one is shorter, that one is less. */
2685 if (chars < endp1 - begp1)
2686 return make_number (chars + 1);
2687 else if (chars < endp2 - begp2)
2688 return make_number (- chars - 1);
2689
2690 /* Same length too => they are equal. */
2691 return make_number (0);
2692 }
2693 \f
2694 static Lisp_Object
2695 subst_char_in_region_unwind (arg)
2696 Lisp_Object arg;
2697 {
2698 return current_buffer->undo_list = arg;
2699 }
2700
2701 static Lisp_Object
2702 subst_char_in_region_unwind_1 (arg)
2703 Lisp_Object arg;
2704 {
2705 return current_buffer->filename = arg;
2706 }
2707
2708 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2709 Ssubst_char_in_region, 4, 5, 0,
2710 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2711 If optional arg NOUNDO is non-nil, don't record this change for undo
2712 and don't mark the buffer as really changed.
2713 Both characters must have the same length of multi-byte form. */)
2714 (start, end, fromchar, tochar, noundo)
2715 Lisp_Object start, end, fromchar, tochar, noundo;
2716 {
2717 register int pos, pos_byte, stop, i, len, end_byte;
2718 /* Keep track of the first change in the buffer:
2719 if 0 we haven't found it yet.
2720 if < 0 we've found it and we've run the before-change-function.
2721 if > 0 we've actually performed it and the value is its position. */
2722 int changed = 0;
2723 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2724 unsigned char *p;
2725 int count = SPECPDL_INDEX ();
2726 #define COMBINING_NO 0
2727 #define COMBINING_BEFORE 1
2728 #define COMBINING_AFTER 2
2729 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2730 int maybe_byte_combining = COMBINING_NO;
2731 int last_changed = 0;
2732 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2733
2734 restart:
2735
2736 validate_region (&start, &end);
2737 CHECK_NUMBER (fromchar);
2738 CHECK_NUMBER (tochar);
2739
2740 if (multibyte_p)
2741 {
2742 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2743 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2744 error ("Characters in `subst-char-in-region' have different byte-lengths");
2745 if (!ASCII_BYTE_P (*tostr))
2746 {
2747 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2748 complete multibyte character, it may be combined with the
2749 after bytes. If it is in the range 0xA0..0xFF, it may be
2750 combined with the before and after bytes. */
2751 if (!CHAR_HEAD_P (*tostr))
2752 maybe_byte_combining = COMBINING_BOTH;
2753 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2754 maybe_byte_combining = COMBINING_AFTER;
2755 }
2756 }
2757 else
2758 {
2759 len = 1;
2760 fromstr[0] = XFASTINT (fromchar);
2761 tostr[0] = XFASTINT (tochar);
2762 }
2763
2764 pos = XINT (start);
2765 pos_byte = CHAR_TO_BYTE (pos);
2766 stop = CHAR_TO_BYTE (XINT (end));
2767 end_byte = stop;
2768
2769 /* If we don't want undo, turn off putting stuff on the list.
2770 That's faster than getting rid of things,
2771 and it prevents even the entry for a first change.
2772 Also inhibit locking the file. */
2773 if (!changed && !NILP (noundo))
2774 {
2775 record_unwind_protect (subst_char_in_region_unwind,
2776 current_buffer->undo_list);
2777 current_buffer->undo_list = Qt;
2778 /* Don't do file-locking. */
2779 record_unwind_protect (subst_char_in_region_unwind_1,
2780 current_buffer->filename);
2781 current_buffer->filename = Qnil;
2782 }
2783
2784 if (pos_byte < GPT_BYTE)
2785 stop = min (stop, GPT_BYTE);
2786 while (1)
2787 {
2788 int pos_byte_next = pos_byte;
2789
2790 if (pos_byte >= stop)
2791 {
2792 if (pos_byte >= end_byte) break;
2793 stop = end_byte;
2794 }
2795 p = BYTE_POS_ADDR (pos_byte);
2796 if (multibyte_p)
2797 INC_POS (pos_byte_next);
2798 else
2799 ++pos_byte_next;
2800 if (pos_byte_next - pos_byte == len
2801 && p[0] == fromstr[0]
2802 && (len == 1
2803 || (p[1] == fromstr[1]
2804 && (len == 2 || (p[2] == fromstr[2]
2805 && (len == 3 || p[3] == fromstr[3]))))))
2806 {
2807 if (changed < 0)
2808 /* We've already seen this and run the before-change-function;
2809 this time we only need to record the actual position. */
2810 changed = pos;
2811 else if (!changed)
2812 {
2813 changed = -1;
2814 modify_region (current_buffer, pos, XINT (end), 0);
2815
2816 if (! NILP (noundo))
2817 {
2818 if (MODIFF - 1 == SAVE_MODIFF)
2819 SAVE_MODIFF++;
2820 if (MODIFF - 1 == current_buffer->auto_save_modified)
2821 current_buffer->auto_save_modified++;
2822 }
2823
2824 /* The before-change-function may have moved the gap
2825 or even modified the buffer so we should start over. */
2826 goto restart;
2827 }
2828
2829 /* Take care of the case where the new character
2830 combines with neighboring bytes. */
2831 if (maybe_byte_combining
2832 && (maybe_byte_combining == COMBINING_AFTER
2833 ? (pos_byte_next < Z_BYTE
2834 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2835 : ((pos_byte_next < Z_BYTE
2836 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2837 || (pos_byte > BEG_BYTE
2838 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2839 {
2840 Lisp_Object tem, string;
2841
2842 struct gcpro gcpro1;
2843
2844 tem = current_buffer->undo_list;
2845 GCPRO1 (tem);
2846
2847 /* Make a multibyte string containing this single character. */
2848 string = make_multibyte_string (tostr, 1, len);
2849 /* replace_range is less efficient, because it moves the gap,
2850 but it handles combining correctly. */
2851 replace_range (pos, pos + 1, string,
2852 0, 0, 1);
2853 pos_byte_next = CHAR_TO_BYTE (pos);
2854 if (pos_byte_next > pos_byte)
2855 /* Before combining happened. We should not increment
2856 POS. So, to cancel the later increment of POS,
2857 decrease it now. */
2858 pos--;
2859 else
2860 INC_POS (pos_byte_next);
2861
2862 if (! NILP (noundo))
2863 current_buffer->undo_list = tem;
2864
2865 UNGCPRO;
2866 }
2867 else
2868 {
2869 if (NILP (noundo))
2870 record_change (pos, 1);
2871 for (i = 0; i < len; i++) *p++ = tostr[i];
2872 }
2873 last_changed = pos + 1;
2874 }
2875 pos_byte = pos_byte_next;
2876 pos++;
2877 }
2878
2879 if (changed > 0)
2880 {
2881 signal_after_change (changed,
2882 last_changed - changed, last_changed - changed);
2883 update_compositions (changed, last_changed, CHECK_ALL);
2884 }
2885
2886 unbind_to (count, Qnil);
2887 return Qnil;
2888 }
2889
2890 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2891 Stranslate_region_internal, 3, 3, 0,
2892 doc: /* Internal use only.
2893 From START to END, translate characters according to TABLE.
2894 TABLE is a string; the Nth character in it is the mapping
2895 for the character with code N.
2896 It returns the number of characters changed. */)
2897 (start, end, table)
2898 Lisp_Object start;
2899 Lisp_Object end;
2900 register Lisp_Object table;
2901 {
2902 register unsigned char *tt; /* Trans table. */
2903 register int nc; /* New character. */
2904 int cnt; /* Number of changes made. */
2905 int size; /* Size of translate table. */
2906 int pos, pos_byte, end_pos;
2907 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2908 int string_multibyte;
2909
2910 validate_region (&start, &end);
2911 if (CHAR_TABLE_P (table))
2912 {
2913 size = MAX_CHAR;
2914 tt = NULL;
2915 }
2916 else
2917 {
2918 CHECK_STRING (table);
2919
2920 if (! multibyte && (SCHARS (table) < SBYTES (table)))
2921 table = string_make_unibyte (table);
2922 string_multibyte = SCHARS (table) < SBYTES (table);
2923 size = SCHARS (table);
2924 tt = SDATA (table);
2925 }
2926
2927 pos = XINT (start);
2928 pos_byte = CHAR_TO_BYTE (pos);
2929 end_pos = XINT (end);
2930 modify_region (current_buffer, pos, XINT (end), 0);
2931
2932 cnt = 0;
2933 for (; pos < end_pos; )
2934 {
2935 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2936 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2937 int len, str_len;
2938 int oc;
2939
2940 if (multibyte)
2941 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
2942 else
2943 oc = *p, len = 1;
2944 if (oc < size)
2945 {
2946 if (tt)
2947 {
2948 /* Reload as signal_after_change in last iteration may GC. */
2949 tt = SDATA (table);
2950 if (string_multibyte)
2951 {
2952 str = tt + string_char_to_byte (table, oc);
2953 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
2954 str_len);
2955 }
2956 else
2957 {
2958 nc = tt[oc];
2959 if (! ASCII_BYTE_P (nc) && multibyte)
2960 {
2961 str_len = CHAR_STRING (nc, buf);
2962 str = buf;
2963 }
2964 else
2965 {
2966 str_len = 1;
2967 str = tt + oc;
2968 }
2969 }
2970 }
2971 else
2972 {
2973 Lisp_Object val;
2974 int c;
2975
2976 nc = oc;
2977 val = CHAR_TABLE_REF (table, oc);
2978 if (INTEGERP (val)
2979 && (c = XINT (val), CHAR_VALID_P (c, 0)))
2980 {
2981 nc = c;
2982 str_len = CHAR_STRING (nc, buf);
2983 str = buf;
2984 }
2985 }
2986
2987 if (nc != oc)
2988 {
2989 if (len != str_len)
2990 {
2991 Lisp_Object string;
2992
2993 /* This is less efficient, because it moves the gap,
2994 but it should multibyte characters correctly. */
2995 string = make_multibyte_string (str, 1, str_len);
2996 replace_range (pos, pos + 1, string, 1, 0, 1);
2997 len = str_len;
2998 }
2999 else
3000 {
3001 record_change (pos, 1);
3002 while (str_len-- > 0)
3003 *p++ = *str++;
3004 signal_after_change (pos, 1, 1);
3005 update_compositions (pos, pos + 1, CHECK_BORDER);
3006 }
3007 ++cnt;
3008 }
3009 }
3010 pos_byte += len;
3011 pos++;
3012 }
3013
3014 return make_number (cnt);
3015 }
3016
3017 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3018 doc: /* Delete the text between point and mark.
3019
3020 When called from a program, expects two arguments,
3021 positions (integers or markers) specifying the stretch to be deleted. */)
3022 (start, end)
3023 Lisp_Object start, end;
3024 {
3025 validate_region (&start, &end);
3026 del_range (XINT (start), XINT (end));
3027 return Qnil;
3028 }
3029
3030 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3031 Sdelete_and_extract_region, 2, 2, 0,
3032 doc: /* Delete the text between START and END and return it. */)
3033 (start, end)
3034 Lisp_Object start, end;
3035 {
3036 validate_region (&start, &end);
3037 if (XINT (start) == XINT (end))
3038 return build_string ("");
3039 return del_range_1 (XINT (start), XINT (end), 1, 1);
3040 }
3041 \f
3042 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3043 doc: /* Remove restrictions (narrowing) from current buffer.
3044 This allows the buffer's full text to be seen and edited. */)
3045 ()
3046 {
3047 if (BEG != BEGV || Z != ZV)
3048 current_buffer->clip_changed = 1;
3049 BEGV = BEG;
3050 BEGV_BYTE = BEG_BYTE;
3051 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3052 /* Changing the buffer bounds invalidates any recorded current column. */
3053 invalidate_current_column ();
3054 return Qnil;
3055 }
3056
3057 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3058 doc: /* Restrict editing in this buffer to the current region.
3059 The rest of the text becomes temporarily invisible and untouchable
3060 but is not deleted; if you save the buffer in a file, the invisible
3061 text is included in the file. \\[widen] makes all visible again.
3062 See also `save-restriction'.
3063
3064 When calling from a program, pass two arguments; positions (integers
3065 or markers) bounding the text that should remain visible. */)
3066 (start, end)
3067 register Lisp_Object start, end;
3068 {
3069 CHECK_NUMBER_COERCE_MARKER (start);
3070 CHECK_NUMBER_COERCE_MARKER (end);
3071
3072 if (XINT (start) > XINT (end))
3073 {
3074 Lisp_Object tem;
3075 tem = start; start = end; end = tem;
3076 }
3077
3078 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3079 args_out_of_range (start, end);
3080
3081 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3082 current_buffer->clip_changed = 1;
3083
3084 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3085 SET_BUF_ZV (current_buffer, XFASTINT (end));
3086 if (PT < XFASTINT (start))
3087 SET_PT (XFASTINT (start));
3088 if (PT > XFASTINT (end))
3089 SET_PT (XFASTINT (end));
3090 /* Changing the buffer bounds invalidates any recorded current column. */
3091 invalidate_current_column ();
3092 return Qnil;
3093 }
3094
3095 Lisp_Object
3096 save_restriction_save ()
3097 {
3098 if (BEGV == BEG && ZV == Z)
3099 /* The common case that the buffer isn't narrowed.
3100 We return just the buffer object, which save_restriction_restore
3101 recognizes as meaning `no restriction'. */
3102 return Fcurrent_buffer ();
3103 else
3104 /* We have to save a restriction, so return a pair of markers, one
3105 for the beginning and one for the end. */
3106 {
3107 Lisp_Object beg, end;
3108
3109 beg = buildmark (BEGV, BEGV_BYTE);
3110 end = buildmark (ZV, ZV_BYTE);
3111
3112 /* END must move forward if text is inserted at its exact location. */
3113 XMARKER(end)->insertion_type = 1;
3114
3115 return Fcons (beg, end);
3116 }
3117 }
3118
3119 Lisp_Object
3120 save_restriction_restore (data)
3121 Lisp_Object data;
3122 {
3123 if (CONSP (data))
3124 /* A pair of marks bounding a saved restriction. */
3125 {
3126 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3127 struct Lisp_Marker *end = XMARKER (XCDR (data));
3128 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3129
3130 if (buf /* Verify marker still points to a buffer. */
3131 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3132 /* The restriction has changed from the saved one, so restore
3133 the saved restriction. */
3134 {
3135 int pt = BUF_PT (buf);
3136
3137 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3138 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3139
3140 if (pt < beg->charpos || pt > end->charpos)
3141 /* The point is outside the new visible range, move it inside. */
3142 SET_BUF_PT_BOTH (buf,
3143 clip_to_bounds (beg->charpos, pt, end->charpos),
3144 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3145 end->bytepos));
3146
3147 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3148 }
3149 }
3150 else
3151 /* A buffer, which means that there was no old restriction. */
3152 {
3153 struct buffer *buf = XBUFFER (data);
3154
3155 if (buf /* Verify marker still points to a buffer. */
3156 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3157 /* The buffer has been narrowed, get rid of the narrowing. */
3158 {
3159 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3160 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3161
3162 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3163 }
3164 }
3165
3166 return Qnil;
3167 }
3168
3169 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3170 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3171 The buffer's restrictions make parts of the beginning and end invisible.
3172 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3173 This special form, `save-restriction', saves the current buffer's restrictions
3174 when it is entered, and restores them when it is exited.
3175 So any `narrow-to-region' within BODY lasts only until the end of the form.
3176 The old restrictions settings are restored
3177 even in case of abnormal exit (throw or error).
3178
3179 The value returned is the value of the last form in BODY.
3180
3181 Note: if you are using both `save-excursion' and `save-restriction',
3182 use `save-excursion' outermost:
3183 (save-excursion (save-restriction ...))
3184
3185 usage: (save-restriction &rest BODY) */)
3186 (body)
3187 Lisp_Object body;
3188 {
3189 register Lisp_Object val;
3190 int count = SPECPDL_INDEX ();
3191
3192 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3193 val = Fprogn (body);
3194 return unbind_to (count, val);
3195 }
3196 \f
3197 /* Buffer for the most recent text displayed by Fmessage_box. */
3198 static char *message_text;
3199
3200 /* Allocated length of that buffer. */
3201 static int message_length;
3202
3203 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3204 doc: /* Display a message at the bottom of the screen.
3205 The message also goes into the `*Messages*' buffer.
3206 \(In keyboard macros, that's all it does.)
3207 Return the message.
3208
3209 The first argument is a format control string, and the rest are data
3210 to be formatted under control of the string. See `format' for details.
3211
3212 Note: Use (message "%s" VALUE) to print the value of expressions and
3213 variables to avoid accidentally interpreting `%' as format specifiers.
3214
3215 If the first argument is nil or the empty string, the function clears
3216 any existing message; this lets the minibuffer contents show. See
3217 also `current-message'.
3218
3219 usage: (message FORMAT-STRING &rest ARGS) */)
3220 (nargs, args)
3221 int nargs;
3222 Lisp_Object *args;
3223 {
3224 if (NILP (args[0])
3225 || (STRINGP (args[0])
3226 && SBYTES (args[0]) == 0))
3227 {
3228 message (0);
3229 return args[0];
3230 }
3231 else
3232 {
3233 register Lisp_Object val;
3234 val = Fformat (nargs, args);
3235 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3236 return val;
3237 }
3238 }
3239
3240 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3241 doc: /* Display a message, in a dialog box if possible.
3242 If a dialog box is not available, use the echo area.
3243 The first argument is a format control string, and the rest are data
3244 to be formatted under control of the string. See `format' for details.
3245
3246 If the first argument is nil or the empty string, clear any existing
3247 message; let the minibuffer contents show.
3248
3249 usage: (message-box FORMAT-STRING &rest ARGS) */)
3250 (nargs, args)
3251 int nargs;
3252 Lisp_Object *args;
3253 {
3254 if (NILP (args[0]))
3255 {
3256 message (0);
3257 return Qnil;
3258 }
3259 else
3260 {
3261 register Lisp_Object val;
3262 val = Fformat (nargs, args);
3263 #ifdef HAVE_MENUS
3264 /* The MS-DOS frames support popup menus even though they are
3265 not FRAME_WINDOW_P. */
3266 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3267 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3268 {
3269 Lisp_Object pane, menu, obj;
3270 struct gcpro gcpro1;
3271 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3272 GCPRO1 (pane);
3273 menu = Fcons (val, pane);
3274 obj = Fx_popup_dialog (Qt, menu, Qt);
3275 UNGCPRO;
3276 return val;
3277 }
3278 #endif /* HAVE_MENUS */
3279 /* Copy the data so that it won't move when we GC. */
3280 if (! message_text)
3281 {
3282 message_text = (char *)xmalloc (80);
3283 message_length = 80;
3284 }
3285 if (SBYTES (val) > message_length)
3286 {
3287 message_length = SBYTES (val);
3288 message_text = (char *)xrealloc (message_text, message_length);
3289 }
3290 bcopy (SDATA (val), message_text, SBYTES (val));
3291 message2 (message_text, SBYTES (val),
3292 STRING_MULTIBYTE (val));
3293 return val;
3294 }
3295 }
3296 #ifdef HAVE_MENUS
3297 extern Lisp_Object last_nonmenu_event;
3298 #endif
3299
3300 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3301 doc: /* Display a message in a dialog box or in the echo area.
3302 If this command was invoked with the mouse, use a dialog box if
3303 `use-dialog-box' is non-nil.
3304 Otherwise, use the echo area.
3305 The first argument is a format control string, and the rest are data
3306 to be formatted under control of the string. See `format' for details.
3307
3308 If the first argument is nil or the empty string, clear any existing
3309 message; let the minibuffer contents show.
3310
3311 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3312 (nargs, args)
3313 int nargs;
3314 Lisp_Object *args;
3315 {
3316 #ifdef HAVE_MENUS
3317 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3318 && use_dialog_box)
3319 return Fmessage_box (nargs, args);
3320 #endif
3321 return Fmessage (nargs, args);
3322 }
3323
3324 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3325 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3326 ()
3327 {
3328 return current_message ();
3329 }
3330
3331
3332 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3333 doc: /* Return a copy of STRING with text properties added.
3334 First argument is the string to copy.
3335 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3336 properties to add to the result.
3337 usage: (propertize STRING &rest PROPERTIES) */)
3338 (nargs, args)
3339 int nargs;
3340 Lisp_Object *args;
3341 {
3342 Lisp_Object properties, string;
3343 struct gcpro gcpro1, gcpro2;
3344 int i;
3345
3346 /* Number of args must be odd. */
3347 if ((nargs & 1) == 0 || nargs < 1)
3348 error ("Wrong number of arguments");
3349
3350 properties = string = Qnil;
3351 GCPRO2 (properties, string);
3352
3353 /* First argument must be a string. */
3354 CHECK_STRING (args[0]);
3355 string = Fcopy_sequence (args[0]);
3356
3357 for (i = 1; i < nargs; i += 2)
3358 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3359
3360 Fadd_text_properties (make_number (0),
3361 make_number (SCHARS (string)),
3362 properties, string);
3363 RETURN_UNGCPRO (string);
3364 }
3365
3366
3367 /* Number of bytes that STRING will occupy when put into the result.
3368 MULTIBYTE is nonzero if the result should be multibyte. */
3369
3370 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3371 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3372 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3373 : SBYTES (STRING))
3374
3375 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3376 doc: /* Format a string out of a format-string and arguments.
3377 The first argument is a format control string.
3378 The other arguments are substituted into it to make the result, a string.
3379 It may contain %-sequences meaning to substitute the next argument.
3380 %s means print a string argument. Actually, prints any object, with `princ'.
3381 %d means print as number in decimal (%o octal, %x hex).
3382 %X is like %x, but uses upper case.
3383 %e means print a number in exponential notation.
3384 %f means print a number in decimal-point notation.
3385 %g means print a number in exponential notation
3386 or decimal-point notation, whichever uses fewer characters.
3387 %c means print a number as a single character.
3388 %S means print any object as an s-expression (using `prin1').
3389 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3390 Use %% to put a single % into the output.
3391
3392 The basic structure of a %-sequence is
3393 % <flags> <width> <precision> character
3394 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3395
3396 usage: (format STRING &rest OBJECTS) */)
3397 (nargs, args)
3398 int nargs;
3399 register Lisp_Object *args;
3400 {
3401 register int n; /* The number of the next arg to substitute */
3402 register int total; /* An estimate of the final length */
3403 char *buf, *p;
3404 register unsigned char *format, *end, *format_start;
3405 int nchars;
3406 /* Nonzero if the output should be a multibyte string,
3407 which is true if any of the inputs is one. */
3408 int multibyte = 0;
3409 /* When we make a multibyte string, we must pay attention to the
3410 byte combining problem, i.e., a byte may be combined with a
3411 multibyte charcter of the previous string. This flag tells if we
3412 must consider such a situation or not. */
3413 int maybe_combine_byte;
3414 unsigned char *this_format;
3415 /* Precision for each spec, or -1, a flag value meaning no precision
3416 was given in that spec. Element 0, corresonding to the format
3417 string itself, will not be used. Element NARGS, corresponding to
3418 no argument, *will* be assigned to in the case that a `%' and `.'
3419 occur after the final format specifier. */
3420 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3421 int longest_format;
3422 Lisp_Object val;
3423 int arg_intervals = 0;
3424 USE_SAFE_ALLOCA;
3425
3426 /* discarded[I] is 1 if byte I of the format
3427 string was not copied into the output.
3428 It is 2 if byte I was not the first byte of its character. */
3429 char *discarded = 0;
3430
3431 /* Each element records, for one argument,
3432 the start and end bytepos in the output string,
3433 and whether the argument is a string with intervals.
3434 info[0] is unused. Unused elements have -1 for start. */
3435 struct info
3436 {
3437 int start, end, intervals;
3438 } *info = 0;
3439
3440 /* It should not be necessary to GCPRO ARGS, because
3441 the caller in the interpreter should take care of that. */
3442
3443 /* Try to determine whether the result should be multibyte.
3444 This is not always right; sometimes the result needs to be multibyte
3445 because of an object that we will pass through prin1,
3446 and in that case, we won't know it here. */
3447 for (n = 0; n < nargs; n++)
3448 {
3449 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3450 multibyte = 1;
3451 /* Piggyback on this loop to initialize precision[N]. */
3452 precision[n] = -1;
3453 }
3454 precision[nargs] = -1;
3455
3456 CHECK_STRING (args[0]);
3457 /* We may have to change "%S" to "%s". */
3458 args[0] = Fcopy_sequence (args[0]);
3459
3460 /* GC should never happen here, so abort if it does. */
3461 abort_on_gc++;
3462
3463 /* If we start out planning a unibyte result,
3464 then discover it has to be multibyte, we jump back to retry.
3465 That can only happen from the first large while loop below. */
3466 retry:
3467
3468 format = SDATA (args[0]);
3469 format_start = format;
3470 end = format + SBYTES (args[0]);
3471 longest_format = 0;
3472
3473 /* Make room in result for all the non-%-codes in the control string. */
3474 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3475
3476 /* Allocate the info and discarded tables. */
3477 {
3478 int nbytes = (nargs+1) * sizeof *info;
3479 int i;
3480 if (!info)
3481 info = (struct info *) alloca (nbytes);
3482 bzero (info, nbytes);
3483 for (i = 0; i <= nargs; i++)
3484 info[i].start = -1;
3485 if (!discarded)
3486 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3487 bzero (discarded, SBYTES (args[0]));
3488 }
3489
3490 /* Add to TOTAL enough space to hold the converted arguments. */
3491
3492 n = 0;
3493 while (format != end)
3494 if (*format++ == '%')
3495 {
3496 int thissize = 0;
3497 int actual_width = 0;
3498 unsigned char *this_format_start = format - 1;
3499 int field_width = 0;
3500
3501 /* General format specifications look like
3502
3503 '%' [flags] [field-width] [precision] format
3504
3505 where
3506
3507 flags ::= [- #0]+
3508 field-width ::= [0-9]+
3509 precision ::= '.' [0-9]*
3510
3511 If a field-width is specified, it specifies to which width
3512 the output should be padded with blanks, iff the output
3513 string is shorter than field-width.
3514
3515 If precision is specified, it specifies the number of
3516 digits to print after the '.' for floats, or the max.
3517 number of chars to print from a string. */
3518
3519 while (format != end
3520 && (*format == '-' || *format == '0' || *format == '#'
3521 || * format == ' '))
3522 ++format;
3523
3524 if (*format >= '0' && *format <= '9')
3525 {
3526 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3527 field_width = 10 * field_width + *format - '0';
3528 }
3529
3530 /* N is not incremented for another few lines below, so refer to
3531 element N+1 (which might be precision[NARGS]). */
3532 if (*format == '.')
3533 {
3534 ++format;
3535 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3536 precision[n+1] = 10 * precision[n+1] + *format - '0';
3537 }
3538
3539 if (format - this_format_start + 1 > longest_format)
3540 longest_format = format - this_format_start + 1;
3541
3542 if (format == end)
3543 error ("Format string ends in middle of format specifier");
3544 if (*format == '%')
3545 format++;
3546 else if (++n >= nargs)
3547 error ("Not enough arguments for format string");
3548 else if (*format == 'S')
3549 {
3550 /* For `S', prin1 the argument and then treat like a string. */
3551 register Lisp_Object tem;
3552 tem = Fprin1_to_string (args[n], Qnil);
3553 if (STRING_MULTIBYTE (tem) && ! multibyte)
3554 {
3555 multibyte = 1;
3556 goto retry;
3557 }
3558 args[n] = tem;
3559 /* If we restart the loop, we should not come here again
3560 because args[n] is now a string and calling
3561 Fprin1_to_string on it produces superflous double
3562 quotes. So, change "%S" to "%s" now. */
3563 *format = 's';
3564 goto string;
3565 }
3566 else if (SYMBOLP (args[n]))
3567 {
3568 args[n] = SYMBOL_NAME (args[n]);
3569 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3570 {
3571 multibyte = 1;
3572 goto retry;
3573 }
3574 goto string;
3575 }
3576 else if (STRINGP (args[n]))
3577 {
3578 string:
3579 if (*format != 's' && *format != 'S')
3580 error ("Format specifier doesn't match argument type");
3581 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3582 to be as large as is calculated here. Easy check for
3583 the case PRECISION = 0. */
3584 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3585 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3586 }
3587 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3588 else if (INTEGERP (args[n]) && *format != 's')
3589 {
3590 /* The following loop assumes the Lisp type indicates
3591 the proper way to pass the argument.
3592 So make sure we have a flonum if the argument should
3593 be a double. */
3594 if (*format == 'e' || *format == 'f' || *format == 'g')
3595 args[n] = Ffloat (args[n]);
3596 else
3597 if (*format != 'd' && *format != 'o' && *format != 'x'
3598 && *format != 'i' && *format != 'X' && *format != 'c')
3599 error ("Invalid format operation %%%c", *format);
3600
3601 thissize = 30;
3602 if (*format == 'c')
3603 {
3604 if (! SINGLE_BYTE_CHAR_P (XINT (args[n]))
3605 /* Note: No one can remember why we have to treat
3606 the character 0 as a multibyte character here.
3607 But, until it causes a real problem, let's
3608 don't change it. */
3609 || XINT (args[n]) == 0)
3610 {
3611 if (! multibyte)
3612 {
3613 multibyte = 1;
3614 goto retry;
3615 }
3616 args[n] = Fchar_to_string (args[n]);
3617 thissize = SBYTES (args[n]);
3618 }
3619 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3620 {
3621 args[n]
3622 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3623 thissize = SBYTES (args[n]);
3624 }
3625 }
3626 }
3627 else if (FLOATP (args[n]) && *format != 's')
3628 {
3629 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3630 {
3631 if (*format != 'd' && *format != 'o' && *format != 'x'
3632 && *format != 'i' && *format != 'X' && *format != 'c')
3633 error ("Invalid format operation %%%c", *format);
3634 /* This fails unnecessarily if args[n] is bigger than
3635 most-positive-fixnum but smaller than MAXINT.
3636 These cases are important because we sometimes use floats
3637 to represent such integer values (typically such values
3638 come from UIDs or PIDs). */
3639 /* args[n] = Ftruncate (args[n], Qnil); */
3640 }
3641
3642 /* Note that we're using sprintf to print floats,
3643 so we have to take into account what that function
3644 prints. */
3645 /* Filter out flag value of -1. */
3646 thissize = (MAX_10_EXP + 100
3647 + (precision[n] > 0 ? precision[n] : 0));
3648 }
3649 else
3650 {
3651 /* Anything but a string, convert to a string using princ. */
3652 register Lisp_Object tem;
3653 tem = Fprin1_to_string (args[n], Qt);
3654 if (STRING_MULTIBYTE (tem) && ! multibyte)
3655 {
3656 multibyte = 1;
3657 goto retry;
3658 }
3659 args[n] = tem;
3660 goto string;
3661 }
3662
3663 thissize += max (0, field_width - actual_width);
3664 total += thissize + 4;
3665 }
3666
3667 abort_on_gc--;
3668
3669 /* Now we can no longer jump to retry.
3670 TOTAL and LONGEST_FORMAT are known for certain. */
3671
3672 this_format = (unsigned char *) alloca (longest_format + 1);
3673
3674 /* Allocate the space for the result.
3675 Note that TOTAL is an overestimate. */
3676 SAFE_ALLOCA (buf, char *, total);
3677
3678 p = buf;
3679 nchars = 0;
3680 n = 0;
3681
3682 /* Scan the format and store result in BUF. */
3683 format = SDATA (args[0]);
3684 format_start = format;
3685 end = format + SBYTES (args[0]);
3686 maybe_combine_byte = 0;
3687 while (format != end)
3688 {
3689 if (*format == '%')
3690 {
3691 int minlen;
3692 int negative = 0;
3693 unsigned char *this_format_start = format;
3694
3695 discarded[format - format_start] = 1;
3696 format++;
3697
3698 while (index("-0# ", *format))
3699 {
3700 if (*format == '-')
3701 {
3702 negative = 1;
3703 }
3704 discarded[format - format_start] = 1;
3705 ++format;
3706 }
3707
3708 minlen = atoi (format);
3709
3710 while ((*format >= '0' && *format <= '9') || *format == '.')
3711 {
3712 discarded[format - format_start] = 1;
3713 format++;
3714 }
3715
3716 if (*format++ == '%')
3717 {
3718 *p++ = '%';
3719 nchars++;
3720 continue;
3721 }
3722
3723 ++n;
3724
3725 discarded[format - format_start - 1] = 1;
3726 info[n].start = nchars;
3727
3728 if (STRINGP (args[n]))
3729 {
3730 /* handle case (precision[n] >= 0) */
3731
3732 int width, padding;
3733 int nbytes, start, end;
3734 int nchars_string;
3735
3736 /* lisp_string_width ignores a precision of 0, but GNU
3737 libc functions print 0 characters when the precision
3738 is 0. Imitate libc behavior here. Changing
3739 lisp_string_width is the right thing, and will be
3740 done, but meanwhile we work with it. */
3741
3742 if (precision[n] == 0)
3743 width = nchars_string = nbytes = 0;
3744 else if (precision[n] > 0)
3745 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3746 else
3747 { /* no precision spec given for this argument */
3748 width = lisp_string_width (args[n], -1, NULL, NULL);
3749 nbytes = SBYTES (args[n]);
3750 nchars_string = SCHARS (args[n]);
3751 }
3752
3753 /* If spec requires it, pad on right with spaces. */
3754 padding = minlen - width;
3755 if (! negative)
3756 while (padding-- > 0)
3757 {
3758 *p++ = ' ';
3759 ++nchars;
3760 }
3761
3762 info[n].start = start = nchars;
3763 nchars += nchars_string;
3764 end = nchars;
3765
3766 if (p > buf
3767 && multibyte
3768 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3769 && STRING_MULTIBYTE (args[n])
3770 && !CHAR_HEAD_P (SREF (args[n], 0)))
3771 maybe_combine_byte = 1;
3772
3773 p += copy_text (SDATA (args[n]), p,
3774 nbytes,
3775 STRING_MULTIBYTE (args[n]), multibyte);
3776
3777 info[n].end = nchars;
3778
3779 if (negative)
3780 while (padding-- > 0)
3781 {
3782 *p++ = ' ';
3783 nchars++;
3784 }
3785
3786 /* If this argument has text properties, record where
3787 in the result string it appears. */
3788 if (STRING_INTERVALS (args[n]))
3789 info[n].intervals = arg_intervals = 1;
3790 }
3791 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3792 {
3793 int this_nchars;
3794
3795 bcopy (this_format_start, this_format,
3796 format - this_format_start);
3797 this_format[format - this_format_start] = 0;
3798
3799 if (INTEGERP (args[n]))
3800 {
3801 if (format[-1] == 'd')
3802 sprintf (p, this_format, XINT (args[n]));
3803 /* Don't sign-extend for octal or hex printing. */
3804 else
3805 sprintf (p, this_format, XUINT (args[n]));
3806 }
3807 else if (format[-1] == 'e' || format[-1] == 'f' || format[-1] == 'g')
3808 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3809 else if (format[-1] == 'd')
3810 /* Maybe we should use "%1.0f" instead so it also works
3811 for values larger than MAXINT. */
3812 sprintf (p, this_format, (EMACS_INT) XFLOAT_DATA (args[n]));
3813 else
3814 /* Don't sign-extend for octal or hex printing. */
3815 sprintf (p, this_format, (EMACS_UINT) XFLOAT_DATA (args[n]));
3816
3817 if (p > buf
3818 && multibyte
3819 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3820 && !CHAR_HEAD_P (*((unsigned char *) p)))
3821 maybe_combine_byte = 1;
3822 this_nchars = strlen (p);
3823 if (multibyte)
3824 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3825 else
3826 p += this_nchars;
3827 nchars += this_nchars;
3828 info[n].end = nchars;
3829 }
3830
3831 }
3832 else if (STRING_MULTIBYTE (args[0]))
3833 {
3834 /* Copy a whole multibyte character. */
3835 if (p > buf
3836 && multibyte
3837 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3838 && !CHAR_HEAD_P (*format))
3839 maybe_combine_byte = 1;
3840 *p++ = *format++;
3841 while (! CHAR_HEAD_P (*format))
3842 {
3843 discarded[format - format_start] = 2;
3844 *p++ = *format++;
3845 }
3846 nchars++;
3847 }
3848 else if (multibyte)
3849 {
3850 /* Convert a single-byte character to multibyte. */
3851 int len = copy_text (format, p, 1, 0, 1);
3852
3853 p += len;
3854 format++;
3855 nchars++;
3856 }
3857 else
3858 *p++ = *format++, nchars++;
3859 }
3860
3861 if (p > buf + total)
3862 abort ();
3863
3864 if (maybe_combine_byte)
3865 nchars = multibyte_chars_in_text (buf, p - buf);
3866 val = make_specified_string (buf, nchars, p - buf, multibyte);
3867
3868 /* If we allocated BUF with malloc, free it too. */
3869 SAFE_FREE ();
3870
3871 /* If the format string has text properties, or any of the string
3872 arguments has text properties, set up text properties of the
3873 result string. */
3874
3875 if (STRING_INTERVALS (args[0]) || arg_intervals)
3876 {
3877 Lisp_Object len, new_len, props;
3878 struct gcpro gcpro1;
3879
3880 /* Add text properties from the format string. */
3881 len = make_number (SCHARS (args[0]));
3882 props = text_property_list (args[0], make_number (0), len, Qnil);
3883 GCPRO1 (props);
3884
3885 if (CONSP (props))
3886 {
3887 int bytepos = 0, position = 0, translated = 0, argn = 1;
3888 Lisp_Object list;
3889
3890 /* Adjust the bounds of each text property
3891 to the proper start and end in the output string. */
3892
3893 /* Put the positions in PROPS in increasing order, so that
3894 we can do (effectively) one scan through the position
3895 space of the format string. */
3896 props = Fnreverse (props);
3897
3898 /* BYTEPOS is the byte position in the format string,
3899 POSITION is the untranslated char position in it,
3900 TRANSLATED is the translated char position in BUF,
3901 and ARGN is the number of the next arg we will come to. */
3902 for (list = props; CONSP (list); list = XCDR (list))
3903 {
3904 Lisp_Object item;
3905 int pos;
3906
3907 item = XCAR (list);
3908
3909 /* First adjust the property start position. */
3910 pos = XINT (XCAR (item));
3911
3912 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3913 up to this position. */
3914 for (; position < pos; bytepos++)
3915 {
3916 if (! discarded[bytepos])
3917 position++, translated++;
3918 else if (discarded[bytepos] == 1)
3919 {
3920 position++;
3921 if (translated == info[argn].start)
3922 {
3923 translated += info[argn].end - info[argn].start;
3924 argn++;
3925 }
3926 }
3927 }
3928
3929 XSETCAR (item, make_number (translated));
3930
3931 /* Likewise adjust the property end position. */
3932 pos = XINT (XCAR (XCDR (item)));
3933
3934 for (; position < pos; bytepos++)
3935 {
3936 if (! discarded[bytepos])
3937 position++, translated++;
3938 else if (discarded[bytepos] == 1)
3939 {
3940 position++;
3941 if (translated == info[argn].start)
3942 {
3943 translated += info[argn].end - info[argn].start;
3944 argn++;
3945 }
3946 }
3947 }
3948
3949 XSETCAR (XCDR (item), make_number (translated));
3950 }
3951
3952 add_text_properties_from_list (val, props, make_number (0));
3953 }
3954
3955 /* Add text properties from arguments. */
3956 if (arg_intervals)
3957 for (n = 1; n < nargs; ++n)
3958 if (info[n].intervals)
3959 {
3960 len = make_number (SCHARS (args[n]));
3961 new_len = make_number (info[n].end - info[n].start);
3962 props = text_property_list (args[n], make_number (0), len, Qnil);
3963 extend_property_ranges (props, len, new_len);
3964 /* If successive arguments have properites, be sure that
3965 the value of `composition' property be the copy. */
3966 if (n > 1 && info[n - 1].end)
3967 make_composition_value_copy (props);
3968 add_text_properties_from_list (val, props,
3969 make_number (info[n].start));
3970 }
3971
3972 UNGCPRO;
3973 }
3974
3975 return val;
3976 }
3977
3978 Lisp_Object
3979 format2 (string1, arg0, arg1)
3980 char *string1;
3981 Lisp_Object arg0, arg1;
3982 {
3983 Lisp_Object args[3];
3984 args[0] = build_string (string1);
3985 args[1] = arg0;
3986 args[2] = arg1;
3987 return Fformat (3, args);
3988 }
3989 \f
3990 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3991 doc: /* Return t if two characters match, optionally ignoring case.
3992 Both arguments must be characters (i.e. integers).
3993 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3994 (c1, c2)
3995 register Lisp_Object c1, c2;
3996 {
3997 int i1, i2;
3998 CHECK_NUMBER (c1);
3999 CHECK_NUMBER (c2);
4000
4001 if (XINT (c1) == XINT (c2))
4002 return Qt;
4003 if (NILP (current_buffer->case_fold_search))
4004 return Qnil;
4005
4006 /* Do these in separate statements,
4007 then compare the variables.
4008 because of the way DOWNCASE uses temp variables. */
4009 i1 = DOWNCASE (XFASTINT (c1));
4010 i2 = DOWNCASE (XFASTINT (c2));
4011 return (i1 == i2 ? Qt : Qnil);
4012 }
4013 \f
4014 /* Transpose the markers in two regions of the current buffer, and
4015 adjust the ones between them if necessary (i.e.: if the regions
4016 differ in size).
4017
4018 START1, END1 are the character positions of the first region.
4019 START1_BYTE, END1_BYTE are the byte positions.
4020 START2, END2 are the character positions of the second region.
4021 START2_BYTE, END2_BYTE are the byte positions.
4022
4023 Traverses the entire marker list of the buffer to do so, adding an
4024 appropriate amount to some, subtracting from some, and leaving the
4025 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4026
4027 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4028
4029 static void
4030 transpose_markers (start1, end1, start2, end2,
4031 start1_byte, end1_byte, start2_byte, end2_byte)
4032 register int start1, end1, start2, end2;
4033 register int start1_byte, end1_byte, start2_byte, end2_byte;
4034 {
4035 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4036 register struct Lisp_Marker *marker;
4037
4038 /* Update point as if it were a marker. */
4039 if (PT < start1)
4040 ;
4041 else if (PT < end1)
4042 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4043 PT_BYTE + (end2_byte - end1_byte));
4044 else if (PT < start2)
4045 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4046 (PT_BYTE + (end2_byte - start2_byte)
4047 - (end1_byte - start1_byte)));
4048 else if (PT < end2)
4049 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4050 PT_BYTE - (start2_byte - start1_byte));
4051
4052 /* We used to adjust the endpoints here to account for the gap, but that
4053 isn't good enough. Even if we assume the caller has tried to move the
4054 gap out of our way, it might still be at start1 exactly, for example;
4055 and that places it `inside' the interval, for our purposes. The amount
4056 of adjustment is nontrivial if there's a `denormalized' marker whose
4057 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4058 the dirty work to Fmarker_position, below. */
4059
4060 /* The difference between the region's lengths */
4061 diff = (end2 - start2) - (end1 - start1);
4062 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4063
4064 /* For shifting each marker in a region by the length of the other
4065 region plus the distance between the regions. */
4066 amt1 = (end2 - start2) + (start2 - end1);
4067 amt2 = (end1 - start1) + (start2 - end1);
4068 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4069 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4070
4071 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4072 {
4073 mpos = marker->bytepos;
4074 if (mpos >= start1_byte && mpos < end2_byte)
4075 {
4076 if (mpos < end1_byte)
4077 mpos += amt1_byte;
4078 else if (mpos < start2_byte)
4079 mpos += diff_byte;
4080 else
4081 mpos -= amt2_byte;
4082 marker->bytepos = mpos;
4083 }
4084 mpos = marker->charpos;
4085 if (mpos >= start1 && mpos < end2)
4086 {
4087 if (mpos < end1)
4088 mpos += amt1;
4089 else if (mpos < start2)
4090 mpos += diff;
4091 else
4092 mpos -= amt2;
4093 }
4094 marker->charpos = mpos;
4095 }
4096 }
4097
4098 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4099 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4100 The regions may not be overlapping, because the size of the buffer is
4101 never changed in a transposition.
4102
4103 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4104 any markers that happen to be located in the regions.
4105
4106 Transposing beyond buffer boundaries is an error. */)
4107 (startr1, endr1, startr2, endr2, leave_markers)
4108 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
4109 {
4110 register int start1, end1, start2, end2;
4111 int start1_byte, start2_byte, len1_byte, len2_byte;
4112 int gap, len1, len_mid, len2;
4113 unsigned char *start1_addr, *start2_addr, *temp;
4114
4115 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
4116 cur_intv = BUF_INTERVALS (current_buffer);
4117
4118 validate_region (&startr1, &endr1);
4119 validate_region (&startr2, &endr2);
4120
4121 start1 = XFASTINT (startr1);
4122 end1 = XFASTINT (endr1);
4123 start2 = XFASTINT (startr2);
4124 end2 = XFASTINT (endr2);
4125 gap = GPT;
4126
4127 /* Swap the regions if they're reversed. */
4128 if (start2 < end1)
4129 {
4130 register int glumph = start1;
4131 start1 = start2;
4132 start2 = glumph;
4133 glumph = end1;
4134 end1 = end2;
4135 end2 = glumph;
4136 }
4137
4138 len1 = end1 - start1;
4139 len2 = end2 - start2;
4140
4141 if (start2 < end1)
4142 error ("Transposed regions overlap");
4143 else if (start1 == end1 || start2 == end2)
4144 error ("Transposed region has length 0");
4145
4146 /* The possibilities are:
4147 1. Adjacent (contiguous) regions, or separate but equal regions
4148 (no, really equal, in this case!), or
4149 2. Separate regions of unequal size.
4150
4151 The worst case is usually No. 2. It means that (aside from
4152 potential need for getting the gap out of the way), there also
4153 needs to be a shifting of the text between the two regions. So
4154 if they are spread far apart, we are that much slower... sigh. */
4155
4156 /* It must be pointed out that the really studly thing to do would
4157 be not to move the gap at all, but to leave it in place and work
4158 around it if necessary. This would be extremely efficient,
4159 especially considering that people are likely to do
4160 transpositions near where they are working interactively, which
4161 is exactly where the gap would be found. However, such code
4162 would be much harder to write and to read. So, if you are
4163 reading this comment and are feeling squirrely, by all means have
4164 a go! I just didn't feel like doing it, so I will simply move
4165 the gap the minimum distance to get it out of the way, and then
4166 deal with an unbroken array. */
4167
4168 /* Make sure the gap won't interfere, by moving it out of the text
4169 we will operate on. */
4170 if (start1 < gap && gap < end2)
4171 {
4172 if (gap - start1 < end2 - gap)
4173 move_gap (start1);
4174 else
4175 move_gap (end2);
4176 }
4177
4178 start1_byte = CHAR_TO_BYTE (start1);
4179 start2_byte = CHAR_TO_BYTE (start2);
4180 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4181 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4182
4183 #ifdef BYTE_COMBINING_DEBUG
4184 if (end1 == start2)
4185 {
4186 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4187 len2_byte, start1, start1_byte)
4188 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4189 len1_byte, end2, start2_byte + len2_byte)
4190 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4191 len1_byte, end2, start2_byte + len2_byte))
4192 abort ();
4193 }
4194 else
4195 {
4196 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4197 len2_byte, start1, start1_byte)
4198 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4199 len1_byte, start2, start2_byte)
4200 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4201 len2_byte, end1, start1_byte + len1_byte)
4202 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4203 len1_byte, end2, start2_byte + len2_byte))
4204 abort ();
4205 }
4206 #endif
4207
4208 /* Hmmm... how about checking to see if the gap is large
4209 enough to use as the temporary storage? That would avoid an
4210 allocation... interesting. Later, don't fool with it now. */
4211
4212 /* Working without memmove, for portability (sigh), so must be
4213 careful of overlapping subsections of the array... */
4214
4215 if (end1 == start2) /* adjacent regions */
4216 {
4217 modify_region (current_buffer, start1, end2, 0);
4218 record_change (start1, len1 + len2);
4219
4220 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4221 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4222 Fset_text_properties (make_number (start1), make_number (end2),
4223 Qnil, Qnil);
4224
4225 /* First region smaller than second. */
4226 if (len1_byte < len2_byte)
4227 {
4228 USE_SAFE_ALLOCA;
4229
4230 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4231
4232 /* Don't precompute these addresses. We have to compute them
4233 at the last minute, because the relocating allocator might
4234 have moved the buffer around during the xmalloc. */
4235 start1_addr = BYTE_POS_ADDR (start1_byte);
4236 start2_addr = BYTE_POS_ADDR (start2_byte);
4237
4238 bcopy (start2_addr, temp, len2_byte);
4239 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4240 bcopy (temp, start1_addr, len2_byte);
4241 SAFE_FREE ();
4242 }
4243 else
4244 /* First region not smaller than second. */
4245 {
4246 USE_SAFE_ALLOCA;
4247
4248 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4249 start1_addr = BYTE_POS_ADDR (start1_byte);
4250 start2_addr = BYTE_POS_ADDR (start2_byte);
4251 bcopy (start1_addr, temp, len1_byte);
4252 bcopy (start2_addr, start1_addr, len2_byte);
4253 bcopy (temp, start1_addr + len2_byte, len1_byte);
4254 SAFE_FREE ();
4255 }
4256 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4257 len1, current_buffer, 0);
4258 graft_intervals_into_buffer (tmp_interval2, start1,
4259 len2, current_buffer, 0);
4260 update_compositions (start1, start1 + len2, CHECK_BORDER);
4261 update_compositions (start1 + len2, end2, CHECK_TAIL);
4262 }
4263 /* Non-adjacent regions, because end1 != start2, bleagh... */
4264 else
4265 {
4266 len_mid = start2_byte - (start1_byte + len1_byte);
4267
4268 if (len1_byte == len2_byte)
4269 /* Regions are same size, though, how nice. */
4270 {
4271 USE_SAFE_ALLOCA;
4272
4273 modify_region (current_buffer, start1, end1, 0);
4274 modify_region (current_buffer, start2, end2, 0);
4275 record_change (start1, len1);
4276 record_change (start2, len2);
4277 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4278 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4279 Fset_text_properties (make_number (start1), make_number (end1),
4280 Qnil, Qnil);
4281 Fset_text_properties (make_number (start2), make_number (end2),
4282 Qnil, Qnil);
4283
4284 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4285 start1_addr = BYTE_POS_ADDR (start1_byte);
4286 start2_addr = BYTE_POS_ADDR (start2_byte);
4287 bcopy (start1_addr, temp, len1_byte);
4288 bcopy (start2_addr, start1_addr, len2_byte);
4289 bcopy (temp, start2_addr, len1_byte);
4290 SAFE_FREE ();
4291
4292 graft_intervals_into_buffer (tmp_interval1, start2,
4293 len1, current_buffer, 0);
4294 graft_intervals_into_buffer (tmp_interval2, start1,
4295 len2, current_buffer, 0);
4296 }
4297
4298 else if (len1_byte < len2_byte) /* Second region larger than first */
4299 /* Non-adjacent & unequal size, area between must also be shifted. */
4300 {
4301 USE_SAFE_ALLOCA;
4302
4303 modify_region (current_buffer, start1, end2, 0);
4304 record_change (start1, (end2 - start1));
4305 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4306 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4307 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4308 Fset_text_properties (make_number (start1), make_number (end2),
4309 Qnil, Qnil);
4310
4311 /* holds region 2 */
4312 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4313 start1_addr = BYTE_POS_ADDR (start1_byte);
4314 start2_addr = BYTE_POS_ADDR (start2_byte);
4315 bcopy (start2_addr, temp, len2_byte);
4316 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4317 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4318 bcopy (temp, start1_addr, len2_byte);
4319 SAFE_FREE ();
4320
4321 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4322 len1, current_buffer, 0);
4323 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4324 len_mid, current_buffer, 0);
4325 graft_intervals_into_buffer (tmp_interval2, start1,
4326 len2, current_buffer, 0);
4327 }
4328 else
4329 /* Second region smaller than first. */
4330 {
4331 USE_SAFE_ALLOCA;
4332
4333 record_change (start1, (end2 - start1));
4334 modify_region (current_buffer, start1, end2, 0);
4335
4336 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4337 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4338 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4339 Fset_text_properties (make_number (start1), make_number (end2),
4340 Qnil, Qnil);
4341
4342 /* holds region 1 */
4343 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4344 start1_addr = BYTE_POS_ADDR (start1_byte);
4345 start2_addr = BYTE_POS_ADDR (start2_byte);
4346 bcopy (start1_addr, temp, len1_byte);
4347 bcopy (start2_addr, start1_addr, len2_byte);
4348 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4349 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4350 SAFE_FREE ();
4351
4352 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4353 len1, current_buffer, 0);
4354 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4355 len_mid, current_buffer, 0);
4356 graft_intervals_into_buffer (tmp_interval2, start1,
4357 len2, current_buffer, 0);
4358 }
4359
4360 update_compositions (start1, start1 + len2, CHECK_BORDER);
4361 update_compositions (end2 - len1, end2, CHECK_BORDER);
4362 }
4363
4364 /* When doing multiple transpositions, it might be nice
4365 to optimize this. Perhaps the markers in any one buffer
4366 should be organized in some sorted data tree. */
4367 if (NILP (leave_markers))
4368 {
4369 transpose_markers (start1, end1, start2, end2,
4370 start1_byte, start1_byte + len1_byte,
4371 start2_byte, start2_byte + len2_byte);
4372 fix_start_end_in_overlays (start1, end2);
4373 }
4374
4375 return Qnil;
4376 }
4377
4378 \f
4379 void
4380 syms_of_editfns ()
4381 {
4382 environbuf = 0;
4383
4384 Qbuffer_access_fontify_functions
4385 = intern ("buffer-access-fontify-functions");
4386 staticpro (&Qbuffer_access_fontify_functions);
4387
4388 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4389 doc: /* Non-nil means text motion commands don't notice fields. */);
4390 Vinhibit_field_text_motion = Qnil;
4391
4392 DEFVAR_LISP ("buffer-access-fontify-functions",
4393 &Vbuffer_access_fontify_functions,
4394 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4395 Each function is called with two arguments which specify the range
4396 of the buffer being accessed. */);
4397 Vbuffer_access_fontify_functions = Qnil;
4398
4399 {
4400 Lisp_Object obuf;
4401 extern Lisp_Object Vprin1_to_string_buffer;
4402 obuf = Fcurrent_buffer ();
4403 /* Do this here, because init_buffer_once is too early--it won't work. */
4404 Fset_buffer (Vprin1_to_string_buffer);
4405 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4406 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4407 Qnil);
4408 Fset_buffer (obuf);
4409 }
4410
4411 DEFVAR_LISP ("buffer-access-fontified-property",
4412 &Vbuffer_access_fontified_property,
4413 doc: /* Property which (if non-nil) indicates text has been fontified.
4414 `buffer-substring' need not call the `buffer-access-fontify-functions'
4415 functions if all the text being accessed has this property. */);
4416 Vbuffer_access_fontified_property = Qnil;
4417
4418 DEFVAR_LISP ("system-name", &Vsystem_name,
4419 doc: /* The host name of the machine Emacs is running on. */);
4420
4421 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4422 doc: /* The full name of the user logged in. */);
4423
4424 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4425 doc: /* The user's name, taken from environment variables if possible. */);
4426
4427 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4428 doc: /* The user's name, based upon the real uid only. */);
4429
4430 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4431 doc: /* The release of the operating system Emacs is running on. */);
4432
4433 defsubr (&Spropertize);
4434 defsubr (&Schar_equal);
4435 defsubr (&Sgoto_char);
4436 defsubr (&Sstring_to_char);
4437 defsubr (&Schar_to_string);
4438 defsubr (&Sbuffer_substring);
4439 defsubr (&Sbuffer_substring_no_properties);
4440 defsubr (&Sbuffer_string);
4441
4442 defsubr (&Spoint_marker);
4443 defsubr (&Smark_marker);
4444 defsubr (&Spoint);
4445 defsubr (&Sregion_beginning);
4446 defsubr (&Sregion_end);
4447
4448 staticpro (&Qfield);
4449 Qfield = intern ("field");
4450 staticpro (&Qboundary);
4451 Qboundary = intern ("boundary");
4452 defsubr (&Sfield_beginning);
4453 defsubr (&Sfield_end);
4454 defsubr (&Sfield_string);
4455 defsubr (&Sfield_string_no_properties);
4456 defsubr (&Sdelete_field);
4457 defsubr (&Sconstrain_to_field);
4458
4459 defsubr (&Sline_beginning_position);
4460 defsubr (&Sline_end_position);
4461
4462 /* defsubr (&Smark); */
4463 /* defsubr (&Sset_mark); */
4464 defsubr (&Ssave_excursion);
4465 defsubr (&Ssave_current_buffer);
4466
4467 defsubr (&Sbufsize);
4468 defsubr (&Spoint_max);
4469 defsubr (&Spoint_min);
4470 defsubr (&Spoint_min_marker);
4471 defsubr (&Spoint_max_marker);
4472 defsubr (&Sgap_position);
4473 defsubr (&Sgap_size);
4474 defsubr (&Sposition_bytes);
4475 defsubr (&Sbyte_to_position);
4476
4477 defsubr (&Sbobp);
4478 defsubr (&Seobp);
4479 defsubr (&Sbolp);
4480 defsubr (&Seolp);
4481 defsubr (&Sfollowing_char);
4482 defsubr (&Sprevious_char);
4483 defsubr (&Schar_after);
4484 defsubr (&Schar_before);
4485 defsubr (&Sinsert);
4486 defsubr (&Sinsert_before_markers);
4487 defsubr (&Sinsert_and_inherit);
4488 defsubr (&Sinsert_and_inherit_before_markers);
4489 defsubr (&Sinsert_char);
4490
4491 defsubr (&Suser_login_name);
4492 defsubr (&Suser_real_login_name);
4493 defsubr (&Suser_uid);
4494 defsubr (&Suser_real_uid);
4495 defsubr (&Suser_full_name);
4496 defsubr (&Semacs_pid);
4497 defsubr (&Scurrent_time);
4498 defsubr (&Sget_internal_run_time);
4499 defsubr (&Sformat_time_string);
4500 defsubr (&Sfloat_time);
4501 defsubr (&Sdecode_time);
4502 defsubr (&Sencode_time);
4503 defsubr (&Scurrent_time_string);
4504 defsubr (&Scurrent_time_zone);
4505 defsubr (&Sset_time_zone_rule);
4506 defsubr (&Ssystem_name);
4507 defsubr (&Smessage);
4508 defsubr (&Smessage_box);
4509 defsubr (&Smessage_or_box);
4510 defsubr (&Scurrent_message);
4511 defsubr (&Sformat);
4512
4513 defsubr (&Sinsert_buffer_substring);
4514 defsubr (&Scompare_buffer_substrings);
4515 defsubr (&Ssubst_char_in_region);
4516 defsubr (&Stranslate_region_internal);
4517 defsubr (&Sdelete_region);
4518 defsubr (&Sdelete_and_extract_region);
4519 defsubr (&Swiden);
4520 defsubr (&Snarrow_to_region);
4521 defsubr (&Ssave_restriction);
4522 defsubr (&Stranspose_regions);
4523 }
4524
4525 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4526 (do not change this comment) */