Fix failure to compile on Windows due to 2012-07-27T06:04:35Z!dmantipov@yandex.ru.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Default value of gc_cons_threshold (see below). */
165
166 #define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
167
168 /* Global variables. */
169 struct emacs_globals globals;
170
171 /* Number of bytes of consing done since the last gc. */
172
173 EMACS_INT consing_since_gc;
174
175 /* Similar minimum, computed from Vgc_cons_percentage. */
176
177 EMACS_INT gc_relative_threshold;
178
179 /* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
181
182 EMACS_INT memory_full_cons_threshold;
183
184 /* Nonzero during GC. */
185
186 int gc_in_progress;
187
188 /* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
191
192 int abort_on_gc;
193
194 /* Number of live and free conses etc. */
195
196 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
197 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
198 static EMACS_INT total_free_floats, total_floats;
199
200 /* Points to memory space allocated as "spare", to be freed if we run
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
203
204 static char *spare_memory[7];
205
206 /* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
208
209 #define SPARE_MEMORY (1 << 14)
210
211 /* Number of extra blocks malloc should get when it needs more core. */
212
213 static int malloc_hysteresis;
214
215 /* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
220
221 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
222 #define PUREBEG (char *) pure
223
224 /* Pointer to the pure area, and its size. */
225
226 static char *purebeg;
227 static ptrdiff_t pure_size;
228
229 /* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
231
232 static ptrdiff_t pure_bytes_used_before_overflow;
233
234 /* Value is non-zero if P points into pure space. */
235
236 #define PURE_POINTER_P(P) \
237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static ptrdiff_t pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static ptrdiff_t pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static ptrdiff_t stack_copy_size;
263 #endif
264
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* Handy constants for vectorlike objects. */
290 enum
291 {
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
295 };
296
297 /* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
300
301 enum mem_type
302 {
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
317 };
318
319 static void *lisp_malloc (size_t, enum mem_type);
320
321
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
323
324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325 #include <stdio.h> /* For fprintf. */
326 #endif
327
328 /* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
330
331 static Lisp_Object Vdead;
332 #define DEADP(x) EQ (x, Vdead)
333
334 #ifdef GC_MALLOC_CHECK
335
336 enum mem_type allocated_mem_type;
337
338 #endif /* GC_MALLOC_CHECK */
339
340 /* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
344
345 A red-black tree is a balanced binary tree with the following
346 properties:
347
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
354
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
357
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
363
364 struct mem_node
365 {
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
369
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
372
373 /* Start and end of allocated region. */
374 void *start, *end;
375
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
378
379 /* Memory type. */
380 enum mem_type type;
381 };
382
383 /* Base address of stack. Set in main. */
384
385 Lisp_Object *stack_base;
386
387 /* Root of the tree describing allocated Lisp memory. */
388
389 static struct mem_node *mem_root;
390
391 /* Lowest and highest known address in the heap. */
392
393 static void *min_heap_address, *max_heap_address;
394
395 /* Sentinel node of the tree. */
396
397 static struct mem_node mem_z;
398 #define MEM_NIL &mem_z
399
400 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
401 static void lisp_free (void *);
402 static void mark_stack (void);
403 static int live_vector_p (struct mem_node *, void *);
404 static int live_buffer_p (struct mem_node *, void *);
405 static int live_string_p (struct mem_node *, void *);
406 static int live_cons_p (struct mem_node *, void *);
407 static int live_symbol_p (struct mem_node *, void *);
408 static int live_float_p (struct mem_node *, void *);
409 static int live_misc_p (struct mem_node *, void *);
410 static void mark_maybe_object (Lisp_Object);
411 static void mark_memory (void *, void *);
412 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
413 static void mem_init (void);
414 static struct mem_node *mem_insert (void *, void *, enum mem_type);
415 static void mem_insert_fixup (struct mem_node *);
416 #endif
417 static void mem_rotate_left (struct mem_node *);
418 static void mem_rotate_right (struct mem_node *);
419 static void mem_delete (struct mem_node *);
420 static void mem_delete_fixup (struct mem_node *);
421 static inline struct mem_node *mem_find (void *);
422
423
424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
425 static void check_gcpros (void);
426 #endif
427
428 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
429
430 #ifndef DEADP
431 # define DEADP(x) 0
432 #endif
433
434 /* Recording what needs to be marked for gc. */
435
436 struct gcpro *gcprolist;
437
438 /* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
440
441 #define NSTATICS 0x650
442 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
443
444 /* Index of next unused slot in staticvec. */
445
446 static int staticidx;
447
448 static void *pure_alloc (size_t, int);
449
450
451 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
453
454 #define ALIGN(ptr, ALIGNMENT) \
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
457
458
459 \f
460 /************************************************************************
461 Malloc
462 ************************************************************************/
463
464 /* Function malloc calls this if it finds we are near exhausting storage. */
465
466 void
467 malloc_warning (const char *str)
468 {
469 pending_malloc_warning = str;
470 }
471
472
473 /* Display an already-pending malloc warning. */
474
475 void
476 display_malloc_warning (void)
477 {
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
482 pending_malloc_warning = 0;
483 }
484 \f
485 /* Called if we can't allocate relocatable space for a buffer. */
486
487 void
488 buffer_memory_full (ptrdiff_t nbytes)
489 {
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
496
497 #ifndef REL_ALLOC
498 memory_full (nbytes);
499 #endif
500
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
503 xsignal (Qnil, Vmemory_signal_data);
504 }
505
506 /* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509 #define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
511
512 #ifndef XMALLOC_OVERRUN_CHECK
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
514 #else
515
516 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
518
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
523
524 The header is used to detect whether this block has been allocated
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
527
528 #define XMALLOC_OVERRUN_CHECK_SIZE 16
529 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
531
532 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535 #define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
541 c)
542
543 #if USE_LSB_TAG
544 # define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
546 #else
547 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548 #endif
549 #define XMALLOC_OVERRUN_SIZE_SIZE \
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
554
555 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
560
561 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
566
567 /* Insert and extract the block size in the header. */
568
569 static void
570 xmalloc_put_size (unsigned char *ptr, size_t size)
571 {
572 int i;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
574 {
575 *--ptr = size & ((1 << CHAR_BIT) - 1);
576 size >>= CHAR_BIT;
577 }
578 }
579
580 static size_t
581 xmalloc_get_size (unsigned char *ptr)
582 {
583 size_t size = 0;
584 int i;
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
587 {
588 size <<= CHAR_BIT;
589 size += *ptr++;
590 }
591 return size;
592 }
593
594
595 /* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
604 add overhead again, return 10032
605 xmalloc returns 10032.
606
607 (time passes).
608
609 xfree(10032)
610 overrun_check_free(10032)
611 decrease overhead
612 free(10016) <- crash, because 10000 is the original pointer. */
613
614 static ptrdiff_t check_depth;
615
616 /* Like malloc, but wraps allocated block with header and trailer. */
617
618 static void *
619 overrun_check_malloc (size_t size)
620 {
621 register unsigned char *val;
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
625
626 val = malloc (size + overhead);
627 if (val && check_depth == 1)
628 {
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
634 }
635 --check_depth;
636 return val;
637 }
638
639
640 /* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
642
643 static void *
644 overrun_check_realloc (void *block, size_t size)
645 {
646 register unsigned char *val = (unsigned char *) block;
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
650
651 if (val
652 && check_depth == 1
653 && memcmp (xmalloc_overrun_check_header,
654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
656 {
657 size_t osize = xmalloc_get_size (val);
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
664 }
665
666 val = realloc (val, size + overhead);
667
668 if (val && check_depth == 1)
669 {
670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
672 xmalloc_put_size (val, size);
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
675 }
676 --check_depth;
677 return val;
678 }
679
680 /* Like free, but checks block for overrun. */
681
682 static void
683 overrun_check_free (void *block)
684 {
685 unsigned char *val = (unsigned char *) block;
686
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && memcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
693 {
694 size_t osize = xmalloc_get_size (val);
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
697 abort ();
698 #ifdef XMALLOC_CLEAR_FREE_MEMORY
699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 #else
702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
705 #endif
706 }
707
708 free (val);
709 --check_depth;
710 }
711
712 #undef malloc
713 #undef realloc
714 #undef free
715 #define malloc overrun_check_malloc
716 #define realloc overrun_check_realloc
717 #define free overrun_check_free
718 #endif
719
720 #ifdef SYNC_INPUT
721 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723 #define MALLOC_BLOCK_INPUT ((void)0)
724 #define MALLOC_UNBLOCK_INPUT ((void)0)
725 #else
726 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
727 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728 #endif
729
730 /* Like malloc but check for no memory and block interrupt input.. */
731
732 void *
733 xmalloc (size_t size)
734 {
735 void *val;
736
737 MALLOC_BLOCK_INPUT;
738 val = malloc (size);
739 MALLOC_UNBLOCK_INPUT;
740
741 if (!val && size)
742 memory_full (size);
743 return val;
744 }
745
746 /* Like the above, but zeroes out the memory just allocated. */
747
748 void *
749 xzalloc (size_t size)
750 {
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
761 }
762
763 /* Like realloc but check for no memory and block interrupt input.. */
764
765 void *
766 xrealloc (void *block, size_t size)
767 {
768 void *val;
769
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = malloc (size);
775 else
776 val = realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
778
779 if (!val && size)
780 memory_full (size);
781 return val;
782 }
783
784
785 /* Like free but block interrupt input. */
786
787 void
788 xfree (void *block)
789 {
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
798 }
799
800
801 /* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804 verify (INT_MAX <= PTRDIFF_MAX);
805
806
807 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810 void *
811 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
812 {
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
817 }
818
819
820 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
822
823 void *
824 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
825 {
826 eassert (0 <= nitems && 0 < item_size);
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
830 }
831
832
833 /* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
838
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
842
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
847
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 size_t len = strlen (s) + 1;
894 char *p = xmalloc (len);
895 memcpy (p, s, len);
896 return p;
897 }
898
899
900 /* Unwind for SAFE_ALLOCA */
901
902 Lisp_Object
903 safe_alloca_unwind (Lisp_Object arg)
904 {
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
906
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
910 free_misc (arg);
911 return Qnil;
912 }
913
914
915 /* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
917 allocated memory block (for strings, for conses, ...). */
918
919 #if ! USE_LSB_TAG
920 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
921 #endif
922
923 static void *
924 lisp_malloc (size_t nbytes, enum mem_type type)
925 {
926 register void *val;
927
928 MALLOC_BLOCK_INPUT;
929
930 #ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932 #endif
933
934 val = malloc (nbytes);
935
936 #if ! USE_LSB_TAG
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
941 {
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
945 {
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
949 }
950 }
951 #endif
952
953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
954 if (val && type != MEM_TYPE_NON_LISP)
955 mem_insert (val, (char *) val + nbytes, type);
956 #endif
957
958 MALLOC_UNBLOCK_INPUT;
959 if (!val && nbytes)
960 memory_full (nbytes);
961 return val;
962 }
963
964 /* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
966
967 static void
968 lisp_free (void *block)
969 {
970 MALLOC_BLOCK_INPUT;
971 free (block);
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 mem_delete (mem_find (block));
974 #endif
975 MALLOC_UNBLOCK_INPUT;
976 }
977
978 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
979
980 /* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
982
983 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984 #define USE_POSIX_MEMALIGN 1
985 #endif
986
987 /* BLOCK_ALIGN has to be a power of 2. */
988 #define BLOCK_ALIGN (1 << 10)
989
990 /* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
1000 #define BLOCK_PADDING 0
1001 #define BLOCK_BYTES \
1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1003
1004 /* Internal data structures and constants. */
1005
1006 #define ABLOCKS_SIZE 16
1007
1008 /* An aligned block of memory. */
1009 struct ablock
1010 {
1011 union
1012 {
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
1028 #if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
1030 #endif
1031 };
1032
1033 /* A bunch of consecutive aligned blocks. */
1034 struct ablocks
1035 {
1036 struct ablock blocks[ABLOCKS_SIZE];
1037 };
1038
1039 /* Size of the block requested from malloc or posix_memalign. */
1040 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1041
1042 #define ABLOCK_ABASE(block) \
1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1046
1047 /* Virtual `busy' field. */
1048 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1049
1050 /* Pointer to the (not necessarily aligned) malloc block. */
1051 #ifdef USE_POSIX_MEMALIGN
1052 #define ABLOCKS_BASE(abase) (abase)
1053 #else
1054 #define ABLOCKS_BASE(abase) \
1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1056 #endif
1057
1058 /* The list of free ablock. */
1059 static struct ablock *free_ablock;
1060
1061 /* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
1064 static void *
1065 lisp_align_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 void *base, *val;
1068 struct ablocks *abase;
1069
1070 eassert (nbytes <= BLOCK_BYTES);
1071
1072 MALLOC_BLOCK_INPUT;
1073
1074 #ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076 #endif
1077
1078 if (!free_ablock)
1079 {
1080 int i;
1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1082
1083 #ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088 #endif
1089
1090 #ifdef USE_POSIX_MEMALIGN
1091 {
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1093 if (err)
1094 base = NULL;
1095 abase = base;
1096 }
1097 #else
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
1100 #endif
1101
1102 if (base == 0)
1103 {
1104 MALLOC_UNBLOCK_INPUT;
1105 memory_full (ABLOCKS_BYTES);
1106 }
1107
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1111
1112 #ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115 #endif
1116
1117 #if ! USE_LSB_TAG
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1122 {
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1127 {
1128 lisp_malloc_loser = base;
1129 free (base);
1130 MALLOC_UNBLOCK_INPUT;
1131 memory_full (SIZE_MAX);
1132 }
1133 }
1134 #endif
1135
1136 /* Initialize the blocks and put them on the free list.
1137 If `base' was not properly aligned, we can't use the last block. */
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1139 {
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1143 }
1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1145
1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1151 }
1152
1153 abase = ABLOCK_ABASE (free_ablock);
1154 ABLOCKS_BUSY (abase) =
1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1158
1159 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1160 if (type != MEM_TYPE_NON_LISP)
1161 mem_insert (val, (char *) val + nbytes, type);
1162 #endif
1163
1164 MALLOC_UNBLOCK_INPUT;
1165
1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1167 return val;
1168 }
1169
1170 static void
1171 lisp_align_free (void *block)
1172 {
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1175
1176 MALLOC_BLOCK_INPUT;
1177 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179 #endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1186
1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1188 { /* All the blocks are free. */
1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1192
1193 while (*tem)
1194 {
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1196 {
1197 i++;
1198 *tem = (*tem)->x.next_free;
1199 }
1200 else
1201 tem = &(*tem)->x.next_free;
1202 }
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1205 #ifdef USE_POSIX_MEMALIGN
1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1207 #endif
1208 free (ABLOCKS_BASE (abase));
1209 }
1210 MALLOC_UNBLOCK_INPUT;
1211 }
1212
1213 \f
1214 #ifndef SYSTEM_MALLOC
1215
1216 /* Arranging to disable input signals while we're in malloc.
1217
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1221 pair; unfortunately, we have no idea what C library functions
1222 might call malloc, so we can't really protect them unless you're
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
1225
1226 #ifndef SYNC_INPUT
1227 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
1229
1230 #ifndef DOUG_LEA_MALLOC
1231 extern void * (*__malloc_hook) (size_t, const void *);
1232 extern void * (*__realloc_hook) (void *, size_t, const void *);
1233 extern void (*__free_hook) (void *, const void *);
1234 /* Else declared in malloc.h, perhaps with an extra arg. */
1235 #endif /* DOUG_LEA_MALLOC */
1236 static void * (*old_malloc_hook) (size_t, const void *);
1237 static void * (*old_realloc_hook) (void *, size_t, const void*);
1238 static void (*old_free_hook) (void*, const void*);
1239
1240 #ifdef DOUG_LEA_MALLOC
1241 # define BYTES_USED (mallinfo ().uordblks)
1242 #else
1243 # define BYTES_USED _bytes_used
1244 #endif
1245
1246 #ifdef GC_MALLOC_CHECK
1247 static int dont_register_blocks;
1248 #endif
1249
1250 static size_t bytes_used_when_reconsidered;
1251
1252 /* Value of _bytes_used, when spare_memory was freed. */
1253
1254 static size_t bytes_used_when_full;
1255
1256 /* This function is used as the hook for free to call. */
1257
1258 static void
1259 emacs_blocked_free (void *ptr, const void *ptr2)
1260 {
1261 BLOCK_INPUT_ALLOC;
1262
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1265 {
1266 struct mem_node *m;
1267
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1270 {
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1274 }
1275 else
1276 {
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1279 }
1280 }
1281 #endif /* GC_MALLOC_CHECK */
1282
1283 __free_hook = old_free_hook;
1284 free (ptr);
1285
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
1289 if (! NILP (Vmemory_full)
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
1295 > ((bytes_used_when_reconsidered = BYTES_USED)
1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1297 refill_memory_reserve ();
1298
1299 __free_hook = emacs_blocked_free;
1300 UNBLOCK_INPUT_ALLOC;
1301 }
1302
1303
1304 /* This function is the malloc hook that Emacs uses. */
1305
1306 static void *
1307 emacs_blocked_malloc (size_t size, const void *ptr)
1308 {
1309 void *value;
1310
1311 BLOCK_INPUT_ALLOC;
1312 __malloc_hook = old_malloc_hook;
1313 #ifdef DOUG_LEA_MALLOC
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1316 #else
1317 __malloc_extra_blocks = malloc_hysteresis;
1318 #endif
1319
1320 value = malloc (size);
1321
1322 #ifdef GC_MALLOC_CHECK
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1333 }
1334
1335 if (!dont_register_blocks)
1336 {
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1339 }
1340 }
1341 #endif /* GC_MALLOC_CHECK */
1342
1343 __malloc_hook = emacs_blocked_malloc;
1344 UNBLOCK_INPUT_ALLOC;
1345
1346 /* fprintf (stderr, "%p malloc\n", value); */
1347 return value;
1348 }
1349
1350
1351 /* This function is the realloc hook that Emacs uses. */
1352
1353 static void *
1354 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1355 {
1356 void *value;
1357
1358 BLOCK_INPUT_ALLOC;
1359 __realloc_hook = old_realloc_hook;
1360
1361 #ifdef GC_MALLOC_CHECK
1362 if (ptr)
1363 {
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1366 {
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1371 }
1372
1373 mem_delete (m);
1374 }
1375
1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1377
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380 #endif /* GC_MALLOC_CHECK */
1381
1382 value = realloc (ptr, size);
1383
1384 #ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1386
1387 {
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1390 {
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1393 }
1394
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1397 }
1398
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400 #endif /* GC_MALLOC_CHECK */
1401
1402 __realloc_hook = emacs_blocked_realloc;
1403 UNBLOCK_INPUT_ALLOC;
1404
1405 return value;
1406 }
1407
1408
1409 #ifdef HAVE_PTHREAD
1410 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1414
1415 void
1416 reset_malloc_hooks (void)
1417 {
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
1421 }
1422 #endif /* HAVE_PTHREAD */
1423
1424
1425 /* Called from main to set up malloc to use our hooks. */
1426
1427 void
1428 uninterrupt_malloc (void)
1429 {
1430 #ifdef HAVE_PTHREAD
1431 #ifdef DOUG_LEA_MALLOC
1432 pthread_mutexattr_t attr;
1433
1434 /* GLIBC has a faster way to do this, but let's keep it portable.
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
1439 #else /* !DOUG_LEA_MALLOC */
1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443 #endif /* !DOUG_LEA_MALLOC */
1444 #endif /* HAVE_PTHREAD */
1445
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
1448 __free_hook = emacs_blocked_free;
1449
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
1452 __malloc_hook = emacs_blocked_malloc;
1453
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
1456 __realloc_hook = emacs_blocked_realloc;
1457 }
1458
1459 #endif /* not SYNC_INPUT */
1460 #endif /* not SYSTEM_MALLOC */
1461
1462
1463 \f
1464 /***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1467
1468 /* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1470
1471 #define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1473
1474 /* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1476
1477 struct interval_block
1478 {
1479 /* Place `intervals' first, to preserve alignment. */
1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
1481 struct interval_block *next;
1482 };
1483
1484 /* Current interval block. Its `next' pointer points to older
1485 blocks. */
1486
1487 static struct interval_block *interval_block;
1488
1489 /* Index in interval_block above of the next unused interval
1490 structure. */
1491
1492 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1493
1494 /* Number of free and live intervals. */
1495
1496 static EMACS_INT total_free_intervals, total_intervals;
1497
1498 /* List of free intervals. */
1499
1500 static INTERVAL interval_free_list;
1501
1502 /* Return a new interval. */
1503
1504 INTERVAL
1505 make_interval (void)
1506 {
1507 INTERVAL val;
1508
1509 /* eassert (!handling_signal); */
1510
1511 MALLOC_BLOCK_INPUT;
1512
1513 if (interval_free_list)
1514 {
1515 val = interval_free_list;
1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
1517 }
1518 else
1519 {
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1521 {
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1524
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
1529 }
1530 val = &interval_block->intervals[interval_block_index++];
1531 }
1532
1533 MALLOC_UNBLOCK_INPUT;
1534
1535 consing_since_gc += sizeof (struct interval);
1536 intervals_consed++;
1537 total_free_intervals--;
1538 RESET_INTERVAL (val);
1539 val->gcmarkbit = 0;
1540 return val;
1541 }
1542
1543
1544 /* Mark Lisp objects in interval I. */
1545
1546 static void
1547 mark_interval (register INTERVAL i, Lisp_Object dummy)
1548 {
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1554 }
1555
1556
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1562 {
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1568 }
1569
1570
1571 /* Mark the interval tree rooted in I. */
1572
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1578
1579
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1585 \f
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1589
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1596
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1600
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1605
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1612
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1615
1616 #define SBLOCK_SIZE 8188
1617
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1620
1621 #define LARGE_STRING_BYTES 1024
1622
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626 struct sdata
1627 {
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1640
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1644
1645 #else /* not GC_CHECK_STRING_BYTES */
1646
1647 union
1648 {
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1655
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1663 };
1664
1665
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671 struct sblock
1672 {
1673 /* Next in list. */
1674 struct sblock *next;
1675
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682 };
1683
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693 struct string_block
1694 {
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1698 };
1699
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1703
1704 static struct sblock *oldest_sblock, *current_sblock;
1705
1706 /* List of sblocks for large strings. */
1707
1708 static struct sblock *large_sblocks;
1709
1710 /* List of string_block structures. */
1711
1712 static struct string_block *string_blocks;
1713
1714 /* Free-list of Lisp_Strings. */
1715
1716 static struct Lisp_String *string_free_list;
1717
1718 /* Number of live and free Lisp_Strings. */
1719
1720 static EMACS_INT total_strings, total_free_strings;
1721
1722 /* Number of bytes used by live strings. */
1723
1724 static EMACS_INT total_string_bytes;
1725
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1736
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1738
1739
1740 #ifdef GC_CHECK_STRING_OVERRUN
1741
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1745
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1749
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1753
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
1758 #ifdef GC_CHECK_STRING_BYTES
1759
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1765
1766 #else /* not GC_CHECK_STRING_BYTES */
1767
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1772
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1781
1782 #endif /* not GC_CHECK_STRING_BYTES */
1783
1784 /* Extra bytes to allocate for each string. */
1785
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
1801 /* Initialize string allocation. Called from init_alloc_once. */
1802
1803 static void
1804 init_strings (void)
1805 {
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1808 }
1809
1810
1811 #ifdef GC_CHECK_STRING_BYTES
1812
1813 static int check_string_bytes_count;
1814
1815 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1816
1817
1818 /* Like GC_STRING_BYTES, but with debugging check. */
1819
1820 ptrdiff_t
1821 string_bytes (struct Lisp_String *s)
1822 {
1823 ptrdiff_t nbytes =
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1825
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1831 }
1832
1833 /* Check validity of Lisp strings' string_bytes member in B. */
1834
1835 static void
1836 check_sblock (struct sblock *b)
1837 {
1838 struct sdata *from, *end, *from_end;
1839
1840 end = b->next_free;
1841
1842 for (from = &b->first_data; from < end; from = from_end)
1843 {
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
1846 ptrdiff_t nbytes;
1847
1848 /* Check that the string size recorded in the string is the
1849 same as the one recorded in the sdata structure. */
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
1852
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
1857
1858 nbytes = SDATA_SIZE (nbytes);
1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1860 }
1861 }
1862
1863
1864 /* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1867
1868 static void
1869 check_string_bytes (int all_p)
1870 {
1871 if (all_p)
1872 {
1873 struct sblock *b;
1874
1875 for (b = large_sblocks; b; b = b->next)
1876 {
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
1880 }
1881
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
1884 }
1885 else if (current_sblock)
1886 check_sblock (current_sblock);
1887 }
1888
1889 #endif /* GC_CHECK_STRING_BYTES */
1890
1891 #ifdef GC_CHECK_STRING_FREE_LIST
1892
1893 /* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1895
1896 static void
1897 check_string_free_list (void)
1898 {
1899 struct Lisp_String *s;
1900
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1904 {
1905 if ((uintptr_t) s < 1024)
1906 abort ();
1907 s = NEXT_FREE_LISP_STRING (s);
1908 }
1909 }
1910 #else
1911 #define check_string_free_list()
1912 #endif
1913
1914 /* Return a new Lisp_String. */
1915
1916 static struct Lisp_String *
1917 allocate_string (void)
1918 {
1919 struct Lisp_String *s;
1920
1921 /* eassert (!handling_signal); */
1922
1923 MALLOC_BLOCK_INPUT;
1924
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
1928 {
1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1930 int i;
1931
1932 b->next = string_blocks;
1933 string_blocks = b;
1934
1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1936 {
1937 s = b->strings + i;
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
1942 }
1943
1944 total_free_strings += STRING_BLOCK_SIZE;
1945 }
1946
1947 check_string_free_list ();
1948
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
1952
1953 MALLOC_UNBLOCK_INPUT;
1954
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
1959
1960 #ifdef GC_CHECK_STRING_BYTES
1961 if (!noninteractive)
1962 {
1963 if (++check_string_bytes_count == 200)
1964 {
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1967 }
1968 else
1969 check_string_bytes (0);
1970 }
1971 #endif /* GC_CHECK_STRING_BYTES */
1972
1973 return s;
1974 }
1975
1976
1977 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
1982
1983 void
1984 allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
1986 {
1987 struct sdata *data, *old_data;
1988 struct sblock *b;
1989 ptrdiff_t needed, old_nbytes;
1990
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1993
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
1997 if (s->data)
1998 {
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2001 }
2002 else
2003 old_data = NULL;
2004
2005 MALLOC_BLOCK_INPUT;
2006
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2010
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2023
2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2025
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2030
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2040 {
2041 /* Not enough room in the current sblock. */
2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
2055
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
2059 MALLOC_UNBLOCK_INPUT;
2060
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2078 {
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2081 }
2082
2083 consing_since_gc += needed;
2084 }
2085
2086
2087 /* Sweep and compact strings. */
2088
2089 static void
2090 sweep_strings (void)
2091 {
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
2094
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
2097 total_string_bytes = 0;
2098
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2101 {
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2104
2105 next = b->next;
2106
2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2108 {
2109 struct Lisp_String *s = b->strings + i;
2110
2111 if (s->data)
2112 {
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2115 {
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
2118
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2121
2122 ++total_strings;
2123 total_string_bytes += STRING_BYTES (s);
2124 }
2125 else
2126 {
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2129
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
2133 #ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136 #else
2137 data->u.nbytes = GC_STRING_BYTES (s);
2138 #endif
2139 data->string = NULL;
2140
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2144
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2149 }
2150 }
2151 else
2152 {
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2157 }
2158 }
2159
2160 /* Free blocks that contain free Lisp_Strings only, except
2161 the first two of them. */
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2164 {
2165 lisp_free (b);
2166 string_free_list = free_list_before;
2167 }
2168 else
2169 {
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 check_string_free_list ();
2177
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
2181
2182 check_string_free_list ();
2183 }
2184
2185
2186 /* Free dead large strings. */
2187
2188 static void
2189 free_large_strings (void)
2190 {
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
2193
2194 for (b = large_sblocks; b; b = next)
2195 {
2196 next = b->next;
2197
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2201 {
2202 b->next = live_blocks;
2203 live_blocks = b;
2204 }
2205 }
2206
2207 large_sblocks = live_blocks;
2208 }
2209
2210
2211 /* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2213
2214 static void
2215 compact_small_strings (void)
2216 {
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2220
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2226
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2231 {
2232 end = b->next_free;
2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2234
2235 for (from = &b->first_data; from < end; from = from_end)
2236 {
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
2239 ptrdiff_t nbytes;
2240
2241 #ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247 #endif /* GC_CHECK_STRING_BYTES */
2248
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
2252 nbytes = SDATA_NBYTES (from);
2253
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
2256
2257 nbytes = SDATA_SIZE (nbytes);
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2259
2260 #ifdef GC_CHECK_STRING_OVERRUN
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
2264 abort ();
2265 #endif
2266
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2269 {
2270 /* If TB is full, proceed with the next sblock. */
2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2272 if (to_end > tb_end)
2273 {
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2279 }
2280
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2283 {
2284 eassert (tb != b || to < from);
2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
2286 to->string->data = SDATA_DATA (to);
2287 }
2288
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2291 }
2292 }
2293 }
2294
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2298 {
2299 next = b->next;
2300 lisp_free (b);
2301 }
2302
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2306 }
2307
2308 void
2309 string_overflow (void)
2310 {
2311 error ("Maximum string size exceeded");
2312 }
2313
2314 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316 LENGTH must be an integer.
2317 INIT must be an integer that represents a character. */)
2318 (Lisp_Object length, Lisp_Object init)
2319 {
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
2322 int c;
2323 EMACS_INT nbytes;
2324
2325 CHECK_NATNUM (length);
2326 CHECK_CHARACTER (init);
2327
2328 c = XFASTINT (init);
2329 if (ASCII_CHAR_P (c))
2330 {
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2335 while (p != end)
2336 *p++ = c;
2337 }
2338 else
2339 {
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (c, str);
2342 EMACS_INT string_len = XINT (length);
2343
2344 if (string_len > STRING_BYTES_MAX / len)
2345 string_overflow ();
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
2348 p = SDATA (val);
2349 end = p + nbytes;
2350 while (p != end)
2351 {
2352 memcpy (p, str, len);
2353 p += len;
2354 }
2355 }
2356
2357 *p = 0;
2358 return val;
2359 }
2360
2361
2362 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2364 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2365 (Lisp_Object length, Lisp_Object init)
2366 {
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
2371 int bits_per_value;
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2374
2375 CHECK_NATNUM (length);
2376
2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2378
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2380
2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2382
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2385
2386 p = XBOOL_VECTOR (val);
2387 p->size = XFASTINT (length);
2388
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2394
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2398 }
2399
2400 return val;
2401 }
2402
2403
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408 Lisp_Object
2409 make_string (const char *contents, ptrdiff_t nbytes)
2410 {
2411 register Lisp_Object val;
2412 ptrdiff_t nchars, multibyte_nbytes;
2413
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2423 }
2424
2425
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, ptrdiff_t length)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2435 }
2436
2437
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2444 {
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2449 }
2450
2451
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2458 {
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2465 }
2466
2467
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2472
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2476 {
2477 register Lisp_Object val;
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2486 }
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2492 }
2493
2494
2495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2497
2498 Lisp_Object
2499 make_uninit_string (EMACS_INT length)
2500 {
2501 Lisp_Object val;
2502
2503 if (!length)
2504 return empty_unibyte_string;
2505 val = make_uninit_multibyte_string (length, length);
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2508 }
2509
2510
2511 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2513
2514 Lisp_Object
2515 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2516 {
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2519
2520 if (nchars < 0)
2521 abort ();
2522 if (!nbytes)
2523 return empty_multibyte_string;
2524
2525 s = allocate_string ();
2526 s->intervals = NULL_INTERVAL;
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2531 }
2532
2533 /* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2535
2536 Lisp_Object
2537 make_formatted_string (char *buf, const char *format, ...)
2538 {
2539 va_list ap;
2540 int length;
2541
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2546 }
2547
2548 \f
2549 /***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2552
2553 /* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
2556 any new float cells from the latest float_block. */
2557
2558 #define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2563
2564 #define GETMARKBIT(block,n) \
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2567 & 1)
2568
2569 #define SETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2572
2573 #define UNSETMARKBIT(block,n) \
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2576
2577 #define FLOAT_BLOCK(fptr) \
2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2579
2580 #define FLOAT_INDEX(fptr) \
2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2582
2583 struct float_block
2584 {
2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2588 struct float_block *next;
2589 };
2590
2591 #define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593
2594 #define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596
2597 #define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2599
2600 /* Current float_block. */
2601
2602 static struct float_block *float_block;
2603
2604 /* Index of first unused Lisp_Float in the current float_block. */
2605
2606 static int float_block_index = FLOAT_BLOCK_SIZE;
2607
2608 /* Free-list of Lisp_Floats. */
2609
2610 static struct Lisp_Float *float_free_list;
2611
2612 /* Return a new float object with value FLOAT_VALUE. */
2613
2614 Lisp_Object
2615 make_float (double float_value)
2616 {
2617 register Lisp_Object val;
2618
2619 /* eassert (!handling_signal); */
2620
2621 MALLOC_BLOCK_INPUT;
2622
2623 if (float_free_list)
2624 {
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
2628 float_free_list = float_free_list->u.chain;
2629 }
2630 else
2631 {
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 {
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2636 new->next = float_block;
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 float_block = new;
2639 float_block_index = 0;
2640 total_free_floats += FLOAT_BLOCK_SIZE;
2641 }
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2644 }
2645
2646 MALLOC_UNBLOCK_INPUT;
2647
2648 XFLOAT_INIT (val, float_value);
2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
2652 total_free_floats--;
2653 return val;
2654 }
2655
2656
2657 \f
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2666
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2672
2673 #define CONS_BLOCK(fptr) \
2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2675
2676 #define CONS_INDEX(fptr) \
2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2678
2679 struct cons_block
2680 {
2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2684 struct cons_block *next;
2685 };
2686
2687 #define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 #define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 #define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
2696 /* Current cons_block. */
2697
2698 static struct cons_block *cons_block;
2699
2700 /* Index of first unused Lisp_Cons in the current block. */
2701
2702 static int cons_block_index = CONS_BLOCK_SIZE;
2703
2704 /* Free-list of Lisp_Cons structures. */
2705
2706 static struct Lisp_Cons *cons_free_list;
2707
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2709
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2712 {
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 consing_since_gc -= sizeof *ptr;
2719 total_free_conses++;
2720 }
2721
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (Lisp_Object car, Lisp_Object cdr)
2725 {
2726 register Lisp_Object val;
2727
2728 /* eassert (!handling_signal); */
2729
2730 MALLOC_BLOCK_INPUT;
2731
2732 if (cons_free_list)
2733 {
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
2737 cons_free_list = cons_free_list->u.chain;
2738 }
2739 else
2740 {
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2742 {
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
2749 total_free_conses += CONS_BLOCK_SIZE;
2750 }
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2753 }
2754
2755 MALLOC_UNBLOCK_INPUT;
2756
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
2759 eassert (!CONS_MARKED_P (XCONS (val)));
2760 consing_since_gc += sizeof (struct Lisp_Cons);
2761 total_free_conses--;
2762 cons_cells_consed++;
2763 return val;
2764 }
2765
2766 #ifdef GC_CHECK_CONS_LIST
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list (void)
2770 {
2771 struct Lisp_Cons *tail = cons_free_list;
2772
2773 while (tail)
2774 tail = tail->u.chain;
2775 }
2776 #endif
2777
2778 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2779
2780 Lisp_Object
2781 list1 (Lisp_Object arg1)
2782 {
2783 return Fcons (arg1, Qnil);
2784 }
2785
2786 Lisp_Object
2787 list2 (Lisp_Object arg1, Lisp_Object arg2)
2788 {
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2790 }
2791
2792
2793 Lisp_Object
2794 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2795 {
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 }
2798
2799
2800 Lisp_Object
2801 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2802 {
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804 }
2805
2806
2807 Lisp_Object
2808 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2812 }
2813
2814 /* Make a list of COUNT Lisp_Objects, where ARG is the
2815 first one. Allocate conses from pure space if TYPE
2816 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2817
2818 Lisp_Object
2819 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2820 {
2821 va_list ap;
2822 ptrdiff_t i;
2823 Lisp_Object val, *objp;
2824
2825 /* Change to SAFE_ALLOCA if you hit this eassert. */
2826 eassert (count <= MAX_ALLOCA / sizeof (Lisp_Object));
2827
2828 objp = alloca (count * sizeof (Lisp_Object));
2829 objp[0] = arg;
2830 va_start (ap, arg);
2831 for (i = 1; i < count; i++)
2832 objp[i] = va_arg (ap, Lisp_Object);
2833 va_end (ap);
2834
2835 for (i = 0, val = Qnil; i < count; i++)
2836 {
2837 if (type == CONSTYPE_PURE)
2838 val = pure_cons (objp[i], val);
2839 else if (type == CONSTYPE_HEAP)
2840 val = Fcons (objp[i], val);
2841 else
2842 abort ();
2843 }
2844 return val;
2845 }
2846
2847 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2848 doc: /* Return a newly created list with specified arguments as elements.
2849 Any number of arguments, even zero arguments, are allowed.
2850 usage: (list &rest OBJECTS) */)
2851 (ptrdiff_t nargs, Lisp_Object *args)
2852 {
2853 register Lisp_Object val;
2854 val = Qnil;
2855
2856 while (nargs > 0)
2857 {
2858 nargs--;
2859 val = Fcons (args[nargs], val);
2860 }
2861 return val;
2862 }
2863
2864
2865 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2866 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2867 (register Lisp_Object length, Lisp_Object init)
2868 {
2869 register Lisp_Object val;
2870 register EMACS_INT size;
2871
2872 CHECK_NATNUM (length);
2873 size = XFASTINT (length);
2874
2875 val = Qnil;
2876 while (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890
2891 if (size > 0)
2892 {
2893 val = Fcons (init, val);
2894 --size;
2895
2896 if (size > 0)
2897 {
2898 val = Fcons (init, val);
2899 --size;
2900 }
2901 }
2902 }
2903 }
2904
2905 QUIT;
2906 }
2907
2908 return val;
2909 }
2910
2911
2912 \f
2913 /***********************************************************************
2914 Vector Allocation
2915 ***********************************************************************/
2916
2917 /* This value is balanced well enough to avoid too much internal overhead
2918 for the most common cases; it's not required to be a power of two, but
2919 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2920
2921 #define VECTOR_BLOCK_SIZE 4096
2922
2923 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2924 enum
2925 {
2926 roundup_size = COMMON_MULTIPLE (word_size,
2927 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2928 };
2929
2930 /* ROUNDUP_SIZE must be a power of 2. */
2931 verify ((roundup_size & (roundup_size - 1)) == 0);
2932
2933 /* Verify assumptions described above. */
2934 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2935 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2936
2937 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2938
2939 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2940
2941 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2942
2943 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2944
2945 /* Size of the minimal vector allocated from block. */
2946
2947 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2948
2949 /* Size of the largest vector allocated from block. */
2950
2951 #define VBLOCK_BYTES_MAX \
2952 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2953
2954 /* We maintain one free list for each possible block-allocated
2955 vector size, and this is the number of free lists we have. */
2956
2957 #define VECTOR_MAX_FREE_LIST_INDEX \
2958 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2959
2960 /* Common shortcut to advance vector pointer over a block data. */
2961
2962 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2963
2964 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2965
2966 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2967
2968 /* Common shortcut to setup vector on a free list. */
2969
2970 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2971 do { \
2972 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2973 eassert ((nbytes) % roundup_size == 0); \
2974 (index) = VINDEX (nbytes); \
2975 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2976 (v)->header.next.vector = vector_free_lists[index]; \
2977 vector_free_lists[index] = (v); \
2978 total_free_vector_slots += (nbytes) / word_size; \
2979 } while (0)
2980
2981 struct vector_block
2982 {
2983 char data[VECTOR_BLOCK_BYTES];
2984 struct vector_block *next;
2985 };
2986
2987 /* Chain of vector blocks. */
2988
2989 static struct vector_block *vector_blocks;
2990
2991 /* Vector free lists, where NTH item points to a chain of free
2992 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2993
2994 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2995
2996 /* Singly-linked list of large vectors. */
2997
2998 static struct Lisp_Vector *large_vectors;
2999
3000 /* The only vector with 0 slots, allocated from pure space. */
3001
3002 Lisp_Object zero_vector;
3003
3004 /* Number of live vectors. */
3005
3006 static EMACS_INT total_vectors;
3007
3008 /* Total size of live and free vectors, in Lisp_Object units. */
3009
3010 static EMACS_INT total_vector_slots, total_free_vector_slots;
3011
3012 /* Get a new vector block. */
3013
3014 static struct vector_block *
3015 allocate_vector_block (void)
3016 {
3017 struct vector_block *block = xmalloc (sizeof *block);
3018
3019 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3020 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3021 MEM_TYPE_VECTOR_BLOCK);
3022 #endif
3023
3024 block->next = vector_blocks;
3025 vector_blocks = block;
3026 return block;
3027 }
3028
3029 /* Called once to initialize vector allocation. */
3030
3031 static void
3032 init_vectors (void)
3033 {
3034 zero_vector = make_pure_vector (0);
3035 }
3036
3037 /* Allocate vector from a vector block. */
3038
3039 static struct Lisp_Vector *
3040 allocate_vector_from_block (size_t nbytes)
3041 {
3042 struct Lisp_Vector *vector, *rest;
3043 struct vector_block *block;
3044 size_t index, restbytes;
3045
3046 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3047 eassert (nbytes % roundup_size == 0);
3048
3049 /* First, try to allocate from a free list
3050 containing vectors of the requested size. */
3051 index = VINDEX (nbytes);
3052 if (vector_free_lists[index])
3053 {
3054 vector = vector_free_lists[index];
3055 vector_free_lists[index] = vector->header.next.vector;
3056 vector->header.next.nbytes = nbytes;
3057 total_free_vector_slots -= nbytes / word_size;
3058 return vector;
3059 }
3060
3061 /* Next, check free lists containing larger vectors. Since
3062 we will split the result, we should have remaining space
3063 large enough to use for one-slot vector at least. */
3064 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3065 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3066 if (vector_free_lists[index])
3067 {
3068 /* This vector is larger than requested. */
3069 vector = vector_free_lists[index];
3070 vector_free_lists[index] = vector->header.next.vector;
3071 vector->header.next.nbytes = nbytes;
3072 total_free_vector_slots -= nbytes / word_size;
3073
3074 /* Excess bytes are used for the smaller vector,
3075 which should be set on an appropriate free list. */
3076 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3077 eassert (restbytes % roundup_size == 0);
3078 rest = ADVANCE (vector, nbytes);
3079 SETUP_ON_FREE_LIST (rest, restbytes, index);
3080 return vector;
3081 }
3082
3083 /* Finally, need a new vector block. */
3084 block = allocate_vector_block ();
3085
3086 /* New vector will be at the beginning of this block. */
3087 vector = (struct Lisp_Vector *) block->data;
3088 vector->header.next.nbytes = nbytes;
3089
3090 /* If the rest of space from this block is large enough
3091 for one-slot vector at least, set up it on a free list. */
3092 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3093 if (restbytes >= VBLOCK_BYTES_MIN)
3094 {
3095 eassert (restbytes % roundup_size == 0);
3096 rest = ADVANCE (vector, nbytes);
3097 SETUP_ON_FREE_LIST (rest, restbytes, index);
3098 }
3099 return vector;
3100 }
3101
3102 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3103
3104 #define VECTOR_IN_BLOCK(vector, block) \
3105 ((char *) (vector) <= (block)->data \
3106 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3107
3108 /* Number of bytes used by vector-block-allocated object. This is the only
3109 place where we actually use the `nbytes' field of the vector-header.
3110 I.e. we could get rid of the `nbytes' field by computing it based on the
3111 vector-type. */
3112
3113 #define PSEUDOVECTOR_NBYTES(vector) \
3114 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3115 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3116 : vector->header.next.nbytes)
3117
3118 /* Reclaim space used by unmarked vectors. */
3119
3120 static void
3121 sweep_vectors (void)
3122 {
3123 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3124 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3125
3126 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3127 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3128
3129 /* Looking through vector blocks. */
3130
3131 for (block = vector_blocks; block; block = *bprev)
3132 {
3133 int free_this_block = 0;
3134
3135 for (vector = (struct Lisp_Vector *) block->data;
3136 VECTOR_IN_BLOCK (vector, block); vector = next)
3137 {
3138 if (VECTOR_MARKED_P (vector))
3139 {
3140 VECTOR_UNMARK (vector);
3141 total_vectors++;
3142 total_vector_slots += vector->header.next.nbytes / word_size;
3143 next = ADVANCE (vector, vector->header.next.nbytes);
3144 }
3145 else
3146 {
3147 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3148 ptrdiff_t total_bytes = nbytes;
3149
3150 next = ADVANCE (vector, nbytes);
3151
3152 /* While NEXT is not marked, try to coalesce with VECTOR,
3153 thus making VECTOR of the largest possible size. */
3154
3155 while (VECTOR_IN_BLOCK (next, block))
3156 {
3157 if (VECTOR_MARKED_P (next))
3158 break;
3159 nbytes = PSEUDOVECTOR_NBYTES (next);
3160 total_bytes += nbytes;
3161 next = ADVANCE (next, nbytes);
3162 }
3163
3164 eassert (total_bytes % roundup_size == 0);
3165
3166 if (vector == (struct Lisp_Vector *) block->data
3167 && !VECTOR_IN_BLOCK (next, block))
3168 /* This block should be freed because all of it's
3169 space was coalesced into the only free vector. */
3170 free_this_block = 1;
3171 else
3172 {
3173 int tmp;
3174 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3175 }
3176 }
3177 }
3178
3179 if (free_this_block)
3180 {
3181 *bprev = block->next;
3182 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3183 mem_delete (mem_find (block->data));
3184 #endif
3185 xfree (block);
3186 }
3187 else
3188 bprev = &block->next;
3189 }
3190
3191 /* Sweep large vectors. */
3192
3193 for (vector = large_vectors; vector; vector = *vprev)
3194 {
3195 if (VECTOR_MARKED_P (vector))
3196 {
3197 VECTOR_UNMARK (vector);
3198 total_vectors++;
3199 if (vector->header.size & PSEUDOVECTOR_FLAG)
3200 {
3201 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3202
3203 /* All non-bool pseudovectors are small enough to be allocated
3204 from vector blocks. This code should be redesigned if some
3205 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3206 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3207
3208 total_vector_slots
3209 += (bool_header_size
3210 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3211 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3212 }
3213 else
3214 total_vector_slots
3215 += header_size / word_size + vector->header.size;
3216 vprev = &vector->header.next.vector;
3217 }
3218 else
3219 {
3220 *vprev = vector->header.next.vector;
3221 lisp_free (vector);
3222 }
3223 }
3224 }
3225
3226 /* Value is a pointer to a newly allocated Lisp_Vector structure
3227 with room for LEN Lisp_Objects. */
3228
3229 static struct Lisp_Vector *
3230 allocate_vectorlike (ptrdiff_t len)
3231 {
3232 struct Lisp_Vector *p;
3233
3234 MALLOC_BLOCK_INPUT;
3235
3236 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3237 /* eassert (!handling_signal); */
3238
3239 if (len == 0)
3240 p = XVECTOR (zero_vector);
3241 else
3242 {
3243 size_t nbytes = header_size + len * word_size;
3244
3245 #ifdef DOUG_LEA_MALLOC
3246 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3247 because mapped region contents are not preserved in
3248 a dumped Emacs. */
3249 mallopt (M_MMAP_MAX, 0);
3250 #endif
3251
3252 if (nbytes <= VBLOCK_BYTES_MAX)
3253 p = allocate_vector_from_block (vroundup (nbytes));
3254 else
3255 {
3256 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3257 p->header.next.vector = large_vectors;
3258 large_vectors = p;
3259 }
3260
3261 #ifdef DOUG_LEA_MALLOC
3262 /* Back to a reasonable maximum of mmap'ed areas. */
3263 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3264 #endif
3265
3266 consing_since_gc += nbytes;
3267 vector_cells_consed += len;
3268 }
3269
3270 MALLOC_UNBLOCK_INPUT;
3271
3272 return p;
3273 }
3274
3275
3276 /* Allocate a vector with LEN slots. */
3277
3278 struct Lisp_Vector *
3279 allocate_vector (EMACS_INT len)
3280 {
3281 struct Lisp_Vector *v;
3282 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3283
3284 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3285 memory_full (SIZE_MAX);
3286 v = allocate_vectorlike (len);
3287 v->header.size = len;
3288 return v;
3289 }
3290
3291
3292 /* Allocate other vector-like structures. */
3293
3294 struct Lisp_Vector *
3295 allocate_pseudovector (int memlen, int lisplen, int tag)
3296 {
3297 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3298 int i;
3299
3300 /* Only the first lisplen slots will be traced normally by the GC. */
3301 for (i = 0; i < lisplen; ++i)
3302 v->contents[i] = Qnil;
3303
3304 XSETPVECTYPESIZE (v, tag, lisplen);
3305 return v;
3306 }
3307
3308 struct buffer *
3309 allocate_buffer (void)
3310 {
3311 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3312
3313 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3314 - header_size) / word_size);
3315 /* Note that the fields of B are not initialized. */
3316 return b;
3317 }
3318
3319 struct Lisp_Hash_Table *
3320 allocate_hash_table (void)
3321 {
3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3323 }
3324
3325 struct window *
3326 allocate_window (void)
3327 {
3328 struct window *w;
3329
3330 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3331 /* Users assumes that non-Lisp data is zeroed. */
3332 memset (&w->current_matrix, 0,
3333 sizeof (*w) - offsetof (struct window, current_matrix));
3334 return w;
3335 }
3336
3337 struct terminal *
3338 allocate_terminal (void)
3339 {
3340 struct terminal *t;
3341
3342 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3343 /* Users assumes that non-Lisp data is zeroed. */
3344 memset (&t->next_terminal, 0,
3345 sizeof (*t) - offsetof (struct terminal, next_terminal));
3346 return t;
3347 }
3348
3349 struct frame *
3350 allocate_frame (void)
3351 {
3352 struct frame *f;
3353
3354 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3355 /* Users assumes that non-Lisp data is zeroed. */
3356 memset (&f->face_cache, 0,
3357 sizeof (*f) - offsetof (struct frame, face_cache));
3358 return f;
3359 }
3360
3361 struct Lisp_Process *
3362 allocate_process (void)
3363 {
3364 struct Lisp_Process *p;
3365
3366 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3367 /* Users assumes that non-Lisp data is zeroed. */
3368 memset (&p->pid, 0,
3369 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3370 return p;
3371 }
3372
3373 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3374 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3375 See also the function `vector'. */)
3376 (register Lisp_Object length, Lisp_Object init)
3377 {
3378 Lisp_Object vector;
3379 register ptrdiff_t sizei;
3380 register ptrdiff_t i;
3381 register struct Lisp_Vector *p;
3382
3383 CHECK_NATNUM (length);
3384
3385 p = allocate_vector (XFASTINT (length));
3386 sizei = XFASTINT (length);
3387 for (i = 0; i < sizei; i++)
3388 p->contents[i] = init;
3389
3390 XSETVECTOR (vector, p);
3391 return vector;
3392 }
3393
3394
3395 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3396 doc: /* Return a newly created vector with specified arguments as elements.
3397 Any number of arguments, even zero arguments, are allowed.
3398 usage: (vector &rest OBJECTS) */)
3399 (ptrdiff_t nargs, Lisp_Object *args)
3400 {
3401 register Lisp_Object len, val;
3402 ptrdiff_t i;
3403 register struct Lisp_Vector *p;
3404
3405 XSETFASTINT (len, nargs);
3406 val = Fmake_vector (len, Qnil);
3407 p = XVECTOR (val);
3408 for (i = 0; i < nargs; i++)
3409 p->contents[i] = args[i];
3410 return val;
3411 }
3412
3413 void
3414 make_byte_code (struct Lisp_Vector *v)
3415 {
3416 if (v->header.size > 1 && STRINGP (v->contents[1])
3417 && STRING_MULTIBYTE (v->contents[1]))
3418 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3419 earlier because they produced a raw 8-bit string for byte-code
3420 and now such a byte-code string is loaded as multibyte while
3421 raw 8-bit characters converted to multibyte form. Thus, now we
3422 must convert them back to the original unibyte form. */
3423 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3424 XSETPVECTYPE (v, PVEC_COMPILED);
3425 }
3426
3427 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3428 doc: /* Create a byte-code object with specified arguments as elements.
3429 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3430 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3431 and (optional) INTERACTIVE-SPEC.
3432 The first four arguments are required; at most six have any
3433 significance.
3434 The ARGLIST can be either like the one of `lambda', in which case the arguments
3435 will be dynamically bound before executing the byte code, or it can be an
3436 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3437 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3438 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3439 argument to catch the left-over arguments. If such an integer is used, the
3440 arguments will not be dynamically bound but will be instead pushed on the
3441 stack before executing the byte-code.
3442 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3443 (ptrdiff_t nargs, Lisp_Object *args)
3444 {
3445 register Lisp_Object len, val;
3446 ptrdiff_t i;
3447 register struct Lisp_Vector *p;
3448
3449 /* We used to purecopy everything here, if purify-flga was set. This worked
3450 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3451 dangerous, since make-byte-code is used during execution to build
3452 closures, so any closure built during the preload phase would end up
3453 copied into pure space, including its free variables, which is sometimes
3454 just wasteful and other times plainly wrong (e.g. those free vars may want
3455 to be setcar'd). */
3456
3457 XSETFASTINT (len, nargs);
3458 val = Fmake_vector (len, Qnil);
3459
3460 p = XVECTOR (val);
3461 for (i = 0; i < nargs; i++)
3462 p->contents[i] = args[i];
3463 make_byte_code (p);
3464 XSETCOMPILED (val, p);
3465 return val;
3466 }
3467
3468
3469 \f
3470 /***********************************************************************
3471 Symbol Allocation
3472 ***********************************************************************/
3473
3474 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3475 of the required alignment if LSB tags are used. */
3476
3477 union aligned_Lisp_Symbol
3478 {
3479 struct Lisp_Symbol s;
3480 #if USE_LSB_TAG
3481 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3482 & -(1 << GCTYPEBITS)];
3483 #endif
3484 };
3485
3486 /* Each symbol_block is just under 1020 bytes long, since malloc
3487 really allocates in units of powers of two and uses 4 bytes for its
3488 own overhead. */
3489
3490 #define SYMBOL_BLOCK_SIZE \
3491 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3492
3493 struct symbol_block
3494 {
3495 /* Place `symbols' first, to preserve alignment. */
3496 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3497 struct symbol_block *next;
3498 };
3499
3500 /* Current symbol block and index of first unused Lisp_Symbol
3501 structure in it. */
3502
3503 static struct symbol_block *symbol_block;
3504 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3505
3506 /* List of free symbols. */
3507
3508 static struct Lisp_Symbol *symbol_free_list;
3509
3510 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3511 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3512 Its value and function definition are void, and its property list is nil. */)
3513 (Lisp_Object name)
3514 {
3515 register Lisp_Object val;
3516 register struct Lisp_Symbol *p;
3517
3518 CHECK_STRING (name);
3519
3520 /* eassert (!handling_signal); */
3521
3522 MALLOC_BLOCK_INPUT;
3523
3524 if (symbol_free_list)
3525 {
3526 XSETSYMBOL (val, symbol_free_list);
3527 symbol_free_list = symbol_free_list->next;
3528 }
3529 else
3530 {
3531 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3532 {
3533 struct symbol_block *new
3534 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3535 new->next = symbol_block;
3536 symbol_block = new;
3537 symbol_block_index = 0;
3538 total_free_symbols += SYMBOL_BLOCK_SIZE;
3539 }
3540 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3541 symbol_block_index++;
3542 }
3543
3544 MALLOC_UNBLOCK_INPUT;
3545
3546 p = XSYMBOL (val);
3547 p->xname = name;
3548 p->plist = Qnil;
3549 p->redirect = SYMBOL_PLAINVAL;
3550 SET_SYMBOL_VAL (p, Qunbound);
3551 p->function = Qunbound;
3552 p->next = NULL;
3553 p->gcmarkbit = 0;
3554 p->interned = SYMBOL_UNINTERNED;
3555 p->constant = 0;
3556 p->declared_special = 0;
3557 consing_since_gc += sizeof (struct Lisp_Symbol);
3558 symbols_consed++;
3559 total_free_symbols--;
3560 return val;
3561 }
3562
3563
3564 \f
3565 /***********************************************************************
3566 Marker (Misc) Allocation
3567 ***********************************************************************/
3568
3569 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3570 the required alignment when LSB tags are used. */
3571
3572 union aligned_Lisp_Misc
3573 {
3574 union Lisp_Misc m;
3575 #if USE_LSB_TAG
3576 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3577 & -(1 << GCTYPEBITS)];
3578 #endif
3579 };
3580
3581 /* Allocation of markers and other objects that share that structure.
3582 Works like allocation of conses. */
3583
3584 #define MARKER_BLOCK_SIZE \
3585 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3586
3587 struct marker_block
3588 {
3589 /* Place `markers' first, to preserve alignment. */
3590 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3591 struct marker_block *next;
3592 };
3593
3594 static struct marker_block *marker_block;
3595 static int marker_block_index = MARKER_BLOCK_SIZE;
3596
3597 static union Lisp_Misc *marker_free_list;
3598
3599 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3600
3601 static Lisp_Object
3602 allocate_misc (enum Lisp_Misc_Type type)
3603 {
3604 Lisp_Object val;
3605
3606 /* eassert (!handling_signal); */
3607
3608 MALLOC_BLOCK_INPUT;
3609
3610 if (marker_free_list)
3611 {
3612 XSETMISC (val, marker_free_list);
3613 marker_free_list = marker_free_list->u_free.chain;
3614 }
3615 else
3616 {
3617 if (marker_block_index == MARKER_BLOCK_SIZE)
3618 {
3619 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3620 new->next = marker_block;
3621 marker_block = new;
3622 marker_block_index = 0;
3623 total_free_markers += MARKER_BLOCK_SIZE;
3624 }
3625 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3626 marker_block_index++;
3627 }
3628
3629 MALLOC_UNBLOCK_INPUT;
3630
3631 --total_free_markers;
3632 consing_since_gc += sizeof (union Lisp_Misc);
3633 misc_objects_consed++;
3634 XMISCTYPE (val) = type;
3635 XMISCANY (val)->gcmarkbit = 0;
3636 return val;
3637 }
3638
3639 /* Free a Lisp_Misc object */
3640
3641 static void
3642 free_misc (Lisp_Object misc)
3643 {
3644 XMISCTYPE (misc) = Lisp_Misc_Free;
3645 XMISC (misc)->u_free.chain = marker_free_list;
3646 marker_free_list = XMISC (misc);
3647 consing_since_gc -= sizeof (union Lisp_Misc);
3648 total_free_markers++;
3649 }
3650
3651 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3652 INTEGER. This is used to package C values to call record_unwind_protect.
3653 The unwind function can get the C values back using XSAVE_VALUE. */
3654
3655 Lisp_Object
3656 make_save_value (void *pointer, ptrdiff_t integer)
3657 {
3658 register Lisp_Object val;
3659 register struct Lisp_Save_Value *p;
3660
3661 val = allocate_misc (Lisp_Misc_Save_Value);
3662 p = XSAVE_VALUE (val);
3663 p->pointer = pointer;
3664 p->integer = integer;
3665 p->dogc = 0;
3666 return val;
3667 }
3668
3669 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3670
3671 Lisp_Object
3672 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3673 {
3674 register Lisp_Object overlay;
3675
3676 overlay = allocate_misc (Lisp_Misc_Overlay);
3677 OVERLAY_START (overlay) = start;
3678 OVERLAY_END (overlay) = end;
3679 OVERLAY_PLIST (overlay) = plist;
3680 XOVERLAY (overlay)->next = NULL;
3681 return overlay;
3682 }
3683
3684 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3685 doc: /* Return a newly allocated marker which does not point at any place. */)
3686 (void)
3687 {
3688 register Lisp_Object val;
3689 register struct Lisp_Marker *p;
3690
3691 val = allocate_misc (Lisp_Misc_Marker);
3692 p = XMARKER (val);
3693 p->buffer = 0;
3694 p->bytepos = 0;
3695 p->charpos = 0;
3696 p->next = NULL;
3697 p->insertion_type = 0;
3698 return val;
3699 }
3700
3701 /* Return a newly allocated marker which points into BUF
3702 at character position CHARPOS and byte position BYTEPOS. */
3703
3704 Lisp_Object
3705 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3706 {
3707 Lisp_Object obj;
3708 struct Lisp_Marker *m;
3709
3710 /* No dead buffers here. */
3711 eassert (!NILP (BVAR (buf, name)));
3712
3713 /* Every character is at least one byte. */
3714 eassert (charpos <= bytepos);
3715
3716 obj = allocate_misc (Lisp_Misc_Marker);
3717 m = XMARKER (obj);
3718 m->buffer = buf;
3719 m->charpos = charpos;
3720 m->bytepos = bytepos;
3721 m->insertion_type = 0;
3722 m->next = BUF_MARKERS (buf);
3723 BUF_MARKERS (buf) = m;
3724 return obj;
3725 }
3726
3727 /* Put MARKER back on the free list after using it temporarily. */
3728
3729 void
3730 free_marker (Lisp_Object marker)
3731 {
3732 unchain_marker (XMARKER (marker));
3733 free_misc (marker);
3734 }
3735
3736 \f
3737 /* Return a newly created vector or string with specified arguments as
3738 elements. If all the arguments are characters that can fit
3739 in a string of events, make a string; otherwise, make a vector.
3740
3741 Any number of arguments, even zero arguments, are allowed. */
3742
3743 Lisp_Object
3744 make_event_array (register int nargs, Lisp_Object *args)
3745 {
3746 int i;
3747
3748 for (i = 0; i < nargs; i++)
3749 /* The things that fit in a string
3750 are characters that are in 0...127,
3751 after discarding the meta bit and all the bits above it. */
3752 if (!INTEGERP (args[i])
3753 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3754 return Fvector (nargs, args);
3755
3756 /* Since the loop exited, we know that all the things in it are
3757 characters, so we can make a string. */
3758 {
3759 Lisp_Object result;
3760
3761 result = Fmake_string (make_number (nargs), make_number (0));
3762 for (i = 0; i < nargs; i++)
3763 {
3764 SSET (result, i, XINT (args[i]));
3765 /* Move the meta bit to the right place for a string char. */
3766 if (XINT (args[i]) & CHAR_META)
3767 SSET (result, i, SREF (result, i) | 0x80);
3768 }
3769
3770 return result;
3771 }
3772 }
3773
3774
3775 \f
3776 /************************************************************************
3777 Memory Full Handling
3778 ************************************************************************/
3779
3780
3781 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3782 there may have been size_t overflow so that malloc was never
3783 called, or perhaps malloc was invoked successfully but the
3784 resulting pointer had problems fitting into a tagged EMACS_INT. In
3785 either case this counts as memory being full even though malloc did
3786 not fail. */
3787
3788 void
3789 memory_full (size_t nbytes)
3790 {
3791 /* Do not go into hysterics merely because a large request failed. */
3792 int enough_free_memory = 0;
3793 if (SPARE_MEMORY < nbytes)
3794 {
3795 void *p;
3796
3797 MALLOC_BLOCK_INPUT;
3798 p = malloc (SPARE_MEMORY);
3799 if (p)
3800 {
3801 free (p);
3802 enough_free_memory = 1;
3803 }
3804 MALLOC_UNBLOCK_INPUT;
3805 }
3806
3807 if (! enough_free_memory)
3808 {
3809 int i;
3810
3811 Vmemory_full = Qt;
3812
3813 memory_full_cons_threshold = sizeof (struct cons_block);
3814
3815 /* The first time we get here, free the spare memory. */
3816 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3817 if (spare_memory[i])
3818 {
3819 if (i == 0)
3820 free (spare_memory[i]);
3821 else if (i >= 1 && i <= 4)
3822 lisp_align_free (spare_memory[i]);
3823 else
3824 lisp_free (spare_memory[i]);
3825 spare_memory[i] = 0;
3826 }
3827
3828 /* Record the space now used. When it decreases substantially,
3829 we can refill the memory reserve. */
3830 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3831 bytes_used_when_full = BYTES_USED;
3832 #endif
3833 }
3834
3835 /* This used to call error, but if we've run out of memory, we could
3836 get infinite recursion trying to build the string. */
3837 xsignal (Qnil, Vmemory_signal_data);
3838 }
3839
3840 /* If we released our reserve (due to running out of memory),
3841 and we have a fair amount free once again,
3842 try to set aside another reserve in case we run out once more.
3843
3844 This is called when a relocatable block is freed in ralloc.c,
3845 and also directly from this file, in case we're not using ralloc.c. */
3846
3847 void
3848 refill_memory_reserve (void)
3849 {
3850 #ifndef SYSTEM_MALLOC
3851 if (spare_memory[0] == 0)
3852 spare_memory[0] = malloc (SPARE_MEMORY);
3853 if (spare_memory[1] == 0)
3854 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3855 MEM_TYPE_CONS);
3856 if (spare_memory[2] == 0)
3857 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3858 MEM_TYPE_CONS);
3859 if (spare_memory[3] == 0)
3860 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3861 MEM_TYPE_CONS);
3862 if (spare_memory[4] == 0)
3863 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3864 MEM_TYPE_CONS);
3865 if (spare_memory[5] == 0)
3866 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3867 MEM_TYPE_STRING);
3868 if (spare_memory[6] == 0)
3869 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3870 MEM_TYPE_STRING);
3871 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3872 Vmemory_full = Qnil;
3873 #endif
3874 }
3875 \f
3876 /************************************************************************
3877 C Stack Marking
3878 ************************************************************************/
3879
3880 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3881
3882 /* Conservative C stack marking requires a method to identify possibly
3883 live Lisp objects given a pointer value. We do this by keeping
3884 track of blocks of Lisp data that are allocated in a red-black tree
3885 (see also the comment of mem_node which is the type of nodes in
3886 that tree). Function lisp_malloc adds information for an allocated
3887 block to the red-black tree with calls to mem_insert, and function
3888 lisp_free removes it with mem_delete. Functions live_string_p etc
3889 call mem_find to lookup information about a given pointer in the
3890 tree, and use that to determine if the pointer points to a Lisp
3891 object or not. */
3892
3893 /* Initialize this part of alloc.c. */
3894
3895 static void
3896 mem_init (void)
3897 {
3898 mem_z.left = mem_z.right = MEM_NIL;
3899 mem_z.parent = NULL;
3900 mem_z.color = MEM_BLACK;
3901 mem_z.start = mem_z.end = NULL;
3902 mem_root = MEM_NIL;
3903 }
3904
3905
3906 /* Value is a pointer to the mem_node containing START. Value is
3907 MEM_NIL if there is no node in the tree containing START. */
3908
3909 static inline struct mem_node *
3910 mem_find (void *start)
3911 {
3912 struct mem_node *p;
3913
3914 if (start < min_heap_address || start > max_heap_address)
3915 return MEM_NIL;
3916
3917 /* Make the search always successful to speed up the loop below. */
3918 mem_z.start = start;
3919 mem_z.end = (char *) start + 1;
3920
3921 p = mem_root;
3922 while (start < p->start || start >= p->end)
3923 p = start < p->start ? p->left : p->right;
3924 return p;
3925 }
3926
3927
3928 /* Insert a new node into the tree for a block of memory with start
3929 address START, end address END, and type TYPE. Value is a
3930 pointer to the node that was inserted. */
3931
3932 static struct mem_node *
3933 mem_insert (void *start, void *end, enum mem_type type)
3934 {
3935 struct mem_node *c, *parent, *x;
3936
3937 if (min_heap_address == NULL || start < min_heap_address)
3938 min_heap_address = start;
3939 if (max_heap_address == NULL || end > max_heap_address)
3940 max_heap_address = end;
3941
3942 /* See where in the tree a node for START belongs. In this
3943 particular application, it shouldn't happen that a node is already
3944 present. For debugging purposes, let's check that. */
3945 c = mem_root;
3946 parent = NULL;
3947
3948 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3949
3950 while (c != MEM_NIL)
3951 {
3952 if (start >= c->start && start < c->end)
3953 abort ();
3954 parent = c;
3955 c = start < c->start ? c->left : c->right;
3956 }
3957
3958 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3959
3960 while (c != MEM_NIL)
3961 {
3962 parent = c;
3963 c = start < c->start ? c->left : c->right;
3964 }
3965
3966 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3967
3968 /* Create a new node. */
3969 #ifdef GC_MALLOC_CHECK
3970 x = _malloc_internal (sizeof *x);
3971 if (x == NULL)
3972 abort ();
3973 #else
3974 x = xmalloc (sizeof *x);
3975 #endif
3976 x->start = start;
3977 x->end = end;
3978 x->type = type;
3979 x->parent = parent;
3980 x->left = x->right = MEM_NIL;
3981 x->color = MEM_RED;
3982
3983 /* Insert it as child of PARENT or install it as root. */
3984 if (parent)
3985 {
3986 if (start < parent->start)
3987 parent->left = x;
3988 else
3989 parent->right = x;
3990 }
3991 else
3992 mem_root = x;
3993
3994 /* Re-establish red-black tree properties. */
3995 mem_insert_fixup (x);
3996
3997 return x;
3998 }
3999
4000
4001 /* Re-establish the red-black properties of the tree, and thereby
4002 balance the tree, after node X has been inserted; X is always red. */
4003
4004 static void
4005 mem_insert_fixup (struct mem_node *x)
4006 {
4007 while (x != mem_root && x->parent->color == MEM_RED)
4008 {
4009 /* X is red and its parent is red. This is a violation of
4010 red-black tree property #3. */
4011
4012 if (x->parent == x->parent->parent->left)
4013 {
4014 /* We're on the left side of our grandparent, and Y is our
4015 "uncle". */
4016 struct mem_node *y = x->parent->parent->right;
4017
4018 if (y->color == MEM_RED)
4019 {
4020 /* Uncle and parent are red but should be black because
4021 X is red. Change the colors accordingly and proceed
4022 with the grandparent. */
4023 x->parent->color = MEM_BLACK;
4024 y->color = MEM_BLACK;
4025 x->parent->parent->color = MEM_RED;
4026 x = x->parent->parent;
4027 }
4028 else
4029 {
4030 /* Parent and uncle have different colors; parent is
4031 red, uncle is black. */
4032 if (x == x->parent->right)
4033 {
4034 x = x->parent;
4035 mem_rotate_left (x);
4036 }
4037
4038 x->parent->color = MEM_BLACK;
4039 x->parent->parent->color = MEM_RED;
4040 mem_rotate_right (x->parent->parent);
4041 }
4042 }
4043 else
4044 {
4045 /* This is the symmetrical case of above. */
4046 struct mem_node *y = x->parent->parent->left;
4047
4048 if (y->color == MEM_RED)
4049 {
4050 x->parent->color = MEM_BLACK;
4051 y->color = MEM_BLACK;
4052 x->parent->parent->color = MEM_RED;
4053 x = x->parent->parent;
4054 }
4055 else
4056 {
4057 if (x == x->parent->left)
4058 {
4059 x = x->parent;
4060 mem_rotate_right (x);
4061 }
4062
4063 x->parent->color = MEM_BLACK;
4064 x->parent->parent->color = MEM_RED;
4065 mem_rotate_left (x->parent->parent);
4066 }
4067 }
4068 }
4069
4070 /* The root may have been changed to red due to the algorithm. Set
4071 it to black so that property #5 is satisfied. */
4072 mem_root->color = MEM_BLACK;
4073 }
4074
4075
4076 /* (x) (y)
4077 / \ / \
4078 a (y) ===> (x) c
4079 / \ / \
4080 b c a b */
4081
4082 static void
4083 mem_rotate_left (struct mem_node *x)
4084 {
4085 struct mem_node *y;
4086
4087 /* Turn y's left sub-tree into x's right sub-tree. */
4088 y = x->right;
4089 x->right = y->left;
4090 if (y->left != MEM_NIL)
4091 y->left->parent = x;
4092
4093 /* Y's parent was x's parent. */
4094 if (y != MEM_NIL)
4095 y->parent = x->parent;
4096
4097 /* Get the parent to point to y instead of x. */
4098 if (x->parent)
4099 {
4100 if (x == x->parent->left)
4101 x->parent->left = y;
4102 else
4103 x->parent->right = y;
4104 }
4105 else
4106 mem_root = y;
4107
4108 /* Put x on y's left. */
4109 y->left = x;
4110 if (x != MEM_NIL)
4111 x->parent = y;
4112 }
4113
4114
4115 /* (x) (Y)
4116 / \ / \
4117 (y) c ===> a (x)
4118 / \ / \
4119 a b b c */
4120
4121 static void
4122 mem_rotate_right (struct mem_node *x)
4123 {
4124 struct mem_node *y = x->left;
4125
4126 x->left = y->right;
4127 if (y->right != MEM_NIL)
4128 y->right->parent = x;
4129
4130 if (y != MEM_NIL)
4131 y->parent = x->parent;
4132 if (x->parent)
4133 {
4134 if (x == x->parent->right)
4135 x->parent->right = y;
4136 else
4137 x->parent->left = y;
4138 }
4139 else
4140 mem_root = y;
4141
4142 y->right = x;
4143 if (x != MEM_NIL)
4144 x->parent = y;
4145 }
4146
4147
4148 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4149
4150 static void
4151 mem_delete (struct mem_node *z)
4152 {
4153 struct mem_node *x, *y;
4154
4155 if (!z || z == MEM_NIL)
4156 return;
4157
4158 if (z->left == MEM_NIL || z->right == MEM_NIL)
4159 y = z;
4160 else
4161 {
4162 y = z->right;
4163 while (y->left != MEM_NIL)
4164 y = y->left;
4165 }
4166
4167 if (y->left != MEM_NIL)
4168 x = y->left;
4169 else
4170 x = y->right;
4171
4172 x->parent = y->parent;
4173 if (y->parent)
4174 {
4175 if (y == y->parent->left)
4176 y->parent->left = x;
4177 else
4178 y->parent->right = x;
4179 }
4180 else
4181 mem_root = x;
4182
4183 if (y != z)
4184 {
4185 z->start = y->start;
4186 z->end = y->end;
4187 z->type = y->type;
4188 }
4189
4190 if (y->color == MEM_BLACK)
4191 mem_delete_fixup (x);
4192
4193 #ifdef GC_MALLOC_CHECK
4194 _free_internal (y);
4195 #else
4196 xfree (y);
4197 #endif
4198 }
4199
4200
4201 /* Re-establish the red-black properties of the tree, after a
4202 deletion. */
4203
4204 static void
4205 mem_delete_fixup (struct mem_node *x)
4206 {
4207 while (x != mem_root && x->color == MEM_BLACK)
4208 {
4209 if (x == x->parent->left)
4210 {
4211 struct mem_node *w = x->parent->right;
4212
4213 if (w->color == MEM_RED)
4214 {
4215 w->color = MEM_BLACK;
4216 x->parent->color = MEM_RED;
4217 mem_rotate_left (x->parent);
4218 w = x->parent->right;
4219 }
4220
4221 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4222 {
4223 w->color = MEM_RED;
4224 x = x->parent;
4225 }
4226 else
4227 {
4228 if (w->right->color == MEM_BLACK)
4229 {
4230 w->left->color = MEM_BLACK;
4231 w->color = MEM_RED;
4232 mem_rotate_right (w);
4233 w = x->parent->right;
4234 }
4235 w->color = x->parent->color;
4236 x->parent->color = MEM_BLACK;
4237 w->right->color = MEM_BLACK;
4238 mem_rotate_left (x->parent);
4239 x = mem_root;
4240 }
4241 }
4242 else
4243 {
4244 struct mem_node *w = x->parent->left;
4245
4246 if (w->color == MEM_RED)
4247 {
4248 w->color = MEM_BLACK;
4249 x->parent->color = MEM_RED;
4250 mem_rotate_right (x->parent);
4251 w = x->parent->left;
4252 }
4253
4254 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4255 {
4256 w->color = MEM_RED;
4257 x = x->parent;
4258 }
4259 else
4260 {
4261 if (w->left->color == MEM_BLACK)
4262 {
4263 w->right->color = MEM_BLACK;
4264 w->color = MEM_RED;
4265 mem_rotate_left (w);
4266 w = x->parent->left;
4267 }
4268
4269 w->color = x->parent->color;
4270 x->parent->color = MEM_BLACK;
4271 w->left->color = MEM_BLACK;
4272 mem_rotate_right (x->parent);
4273 x = mem_root;
4274 }
4275 }
4276 }
4277
4278 x->color = MEM_BLACK;
4279 }
4280
4281
4282 /* Value is non-zero if P is a pointer to a live Lisp string on
4283 the heap. M is a pointer to the mem_block for P. */
4284
4285 static inline int
4286 live_string_p (struct mem_node *m, void *p)
4287 {
4288 if (m->type == MEM_TYPE_STRING)
4289 {
4290 struct string_block *b = (struct string_block *) m->start;
4291 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4292
4293 /* P must point to the start of a Lisp_String structure, and it
4294 must not be on the free-list. */
4295 return (offset >= 0
4296 && offset % sizeof b->strings[0] == 0
4297 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4298 && ((struct Lisp_String *) p)->data != NULL);
4299 }
4300 else
4301 return 0;
4302 }
4303
4304
4305 /* Value is non-zero if P is a pointer to a live Lisp cons on
4306 the heap. M is a pointer to the mem_block for P. */
4307
4308 static inline int
4309 live_cons_p (struct mem_node *m, void *p)
4310 {
4311 if (m->type == MEM_TYPE_CONS)
4312 {
4313 struct cons_block *b = (struct cons_block *) m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4315
4316 /* P must point to the start of a Lisp_Cons, not be
4317 one of the unused cells in the current cons block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->conses[0] == 0
4321 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4322 && (b != cons_block
4323 || offset / sizeof b->conses[0] < cons_block_index)
4324 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4325 }
4326 else
4327 return 0;
4328 }
4329
4330
4331 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4332 the heap. M is a pointer to the mem_block for P. */
4333
4334 static inline int
4335 live_symbol_p (struct mem_node *m, void *p)
4336 {
4337 if (m->type == MEM_TYPE_SYMBOL)
4338 {
4339 struct symbol_block *b = (struct symbol_block *) m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4341
4342 /* P must point to the start of a Lisp_Symbol, not be
4343 one of the unused cells in the current symbol block,
4344 and not be on the free-list. */
4345 return (offset >= 0
4346 && offset % sizeof b->symbols[0] == 0
4347 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4348 && (b != symbol_block
4349 || offset / sizeof b->symbols[0] < symbol_block_index)
4350 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4351 }
4352 else
4353 return 0;
4354 }
4355
4356
4357 /* Value is non-zero if P is a pointer to a live Lisp float on
4358 the heap. M is a pointer to the mem_block for P. */
4359
4360 static inline int
4361 live_float_p (struct mem_node *m, void *p)
4362 {
4363 if (m->type == MEM_TYPE_FLOAT)
4364 {
4365 struct float_block *b = (struct float_block *) m->start;
4366 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4367
4368 /* P must point to the start of a Lisp_Float and not be
4369 one of the unused cells in the current float block. */
4370 return (offset >= 0
4371 && offset % sizeof b->floats[0] == 0
4372 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4373 && (b != float_block
4374 || offset / sizeof b->floats[0] < float_block_index));
4375 }
4376 else
4377 return 0;
4378 }
4379
4380
4381 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4382 the heap. M is a pointer to the mem_block for P. */
4383
4384 static inline int
4385 live_misc_p (struct mem_node *m, void *p)
4386 {
4387 if (m->type == MEM_TYPE_MISC)
4388 {
4389 struct marker_block *b = (struct marker_block *) m->start;
4390 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4391
4392 /* P must point to the start of a Lisp_Misc, not be
4393 one of the unused cells in the current misc block,
4394 and not be on the free-list. */
4395 return (offset >= 0
4396 && offset % sizeof b->markers[0] == 0
4397 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4398 && (b != marker_block
4399 || offset / sizeof b->markers[0] < marker_block_index)
4400 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4401 }
4402 else
4403 return 0;
4404 }
4405
4406
4407 /* Value is non-zero if P is a pointer to a live vector-like object.
4408 M is a pointer to the mem_block for P. */
4409
4410 static inline int
4411 live_vector_p (struct mem_node *m, void *p)
4412 {
4413 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4414 {
4415 /* This memory node corresponds to a vector block. */
4416 struct vector_block *block = (struct vector_block *) m->start;
4417 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4418
4419 /* P is in the block's allocation range. Scan the block
4420 up to P and see whether P points to the start of some
4421 vector which is not on a free list. FIXME: check whether
4422 some allocation patterns (probably a lot of short vectors)
4423 may cause a substantial overhead of this loop. */
4424 while (VECTOR_IN_BLOCK (vector, block)
4425 && vector <= (struct Lisp_Vector *) p)
4426 {
4427 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4428 vector = ADVANCE (vector, (vector->header.size
4429 & PSEUDOVECTOR_SIZE_MASK));
4430 else if (vector == p)
4431 return 1;
4432 else
4433 vector = ADVANCE (vector, vector->header.next.nbytes);
4434 }
4435 }
4436 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4437 /* This memory node corresponds to a large vector. */
4438 return 1;
4439 return 0;
4440 }
4441
4442
4443 /* Value is non-zero if P is a pointer to a live buffer. M is a
4444 pointer to the mem_block for P. */
4445
4446 static inline int
4447 live_buffer_p (struct mem_node *m, void *p)
4448 {
4449 /* P must point to the start of the block, and the buffer
4450 must not have been killed. */
4451 return (m->type == MEM_TYPE_BUFFER
4452 && p == m->start
4453 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4454 }
4455
4456 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4457
4458 #if GC_MARK_STACK
4459
4460 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4461
4462 /* Array of objects that are kept alive because the C stack contains
4463 a pattern that looks like a reference to them . */
4464
4465 #define MAX_ZOMBIES 10
4466 static Lisp_Object zombies[MAX_ZOMBIES];
4467
4468 /* Number of zombie objects. */
4469
4470 static EMACS_INT nzombies;
4471
4472 /* Number of garbage collections. */
4473
4474 static EMACS_INT ngcs;
4475
4476 /* Average percentage of zombies per collection. */
4477
4478 static double avg_zombies;
4479
4480 /* Max. number of live and zombie objects. */
4481
4482 static EMACS_INT max_live, max_zombies;
4483
4484 /* Average number of live objects per GC. */
4485
4486 static double avg_live;
4487
4488 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4489 doc: /* Show information about live and zombie objects. */)
4490 (void)
4491 {
4492 Lisp_Object args[8], zombie_list = Qnil;
4493 EMACS_INT i;
4494 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4495 zombie_list = Fcons (zombies[i], zombie_list);
4496 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4497 args[1] = make_number (ngcs);
4498 args[2] = make_float (avg_live);
4499 args[3] = make_float (avg_zombies);
4500 args[4] = make_float (avg_zombies / avg_live / 100);
4501 args[5] = make_number (max_live);
4502 args[6] = make_number (max_zombies);
4503 args[7] = zombie_list;
4504 return Fmessage (8, args);
4505 }
4506
4507 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4508
4509
4510 /* Mark OBJ if we can prove it's a Lisp_Object. */
4511
4512 static inline void
4513 mark_maybe_object (Lisp_Object obj)
4514 {
4515 void *po;
4516 struct mem_node *m;
4517
4518 if (INTEGERP (obj))
4519 return;
4520
4521 po = (void *) XPNTR (obj);
4522 m = mem_find (po);
4523
4524 if (m != MEM_NIL)
4525 {
4526 int mark_p = 0;
4527
4528 switch (XTYPE (obj))
4529 {
4530 case Lisp_String:
4531 mark_p = (live_string_p (m, po)
4532 && !STRING_MARKED_P ((struct Lisp_String *) po));
4533 break;
4534
4535 case Lisp_Cons:
4536 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4537 break;
4538
4539 case Lisp_Symbol:
4540 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4541 break;
4542
4543 case Lisp_Float:
4544 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4545 break;
4546
4547 case Lisp_Vectorlike:
4548 /* Note: can't check BUFFERP before we know it's a
4549 buffer because checking that dereferences the pointer
4550 PO which might point anywhere. */
4551 if (live_vector_p (m, po))
4552 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4553 else if (live_buffer_p (m, po))
4554 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4555 break;
4556
4557 case Lisp_Misc:
4558 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4559 break;
4560
4561 default:
4562 break;
4563 }
4564
4565 if (mark_p)
4566 {
4567 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4568 if (nzombies < MAX_ZOMBIES)
4569 zombies[nzombies] = obj;
4570 ++nzombies;
4571 #endif
4572 mark_object (obj);
4573 }
4574 }
4575 }
4576
4577
4578 /* If P points to Lisp data, mark that as live if it isn't already
4579 marked. */
4580
4581 static inline void
4582 mark_maybe_pointer (void *p)
4583 {
4584 struct mem_node *m;
4585
4586 /* Quickly rule out some values which can't point to Lisp data.
4587 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4588 Otherwise, assume that Lisp data is aligned on even addresses. */
4589 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4590 return;
4591
4592 m = mem_find (p);
4593 if (m != MEM_NIL)
4594 {
4595 Lisp_Object obj = Qnil;
4596
4597 switch (m->type)
4598 {
4599 case MEM_TYPE_NON_LISP:
4600 /* Nothing to do; not a pointer to Lisp memory. */
4601 break;
4602
4603 case MEM_TYPE_BUFFER:
4604 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4605 XSETVECTOR (obj, p);
4606 break;
4607
4608 case MEM_TYPE_CONS:
4609 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4610 XSETCONS (obj, p);
4611 break;
4612
4613 case MEM_TYPE_STRING:
4614 if (live_string_p (m, p)
4615 && !STRING_MARKED_P ((struct Lisp_String *) p))
4616 XSETSTRING (obj, p);
4617 break;
4618
4619 case MEM_TYPE_MISC:
4620 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4621 XSETMISC (obj, p);
4622 break;
4623
4624 case MEM_TYPE_SYMBOL:
4625 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4626 XSETSYMBOL (obj, p);
4627 break;
4628
4629 case MEM_TYPE_FLOAT:
4630 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4631 XSETFLOAT (obj, p);
4632 break;
4633
4634 case MEM_TYPE_VECTORLIKE:
4635 case MEM_TYPE_VECTOR_BLOCK:
4636 if (live_vector_p (m, p))
4637 {
4638 Lisp_Object tem;
4639 XSETVECTOR (tem, p);
4640 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4641 obj = tem;
4642 }
4643 break;
4644
4645 default:
4646 abort ();
4647 }
4648
4649 if (!NILP (obj))
4650 mark_object (obj);
4651 }
4652 }
4653
4654
4655 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4656 a smaller alignment than GCC's __alignof__ and mark_memory might
4657 miss objects if __alignof__ were used. */
4658 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4659
4660 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4661 not suffice, which is the typical case. A host where a Lisp_Object is
4662 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4663 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4664 suffice to widen it to to a Lisp_Object and check it that way. */
4665 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4666 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4667 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4668 nor mark_maybe_object can follow the pointers. This should not occur on
4669 any practical porting target. */
4670 # error "MSB type bits straddle pointer-word boundaries"
4671 # endif
4672 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4673 pointer words that hold pointers ORed with type bits. */
4674 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4675 #else
4676 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4677 words that hold unmodified pointers. */
4678 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4679 #endif
4680
4681 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4682 or END+OFFSET..START. */
4683
4684 static void
4685 mark_memory (void *start, void *end)
4686 #if defined (__clang__) && defined (__has_feature)
4687 #if __has_feature(address_sanitizer)
4688 /* Do not allow -faddress-sanitizer to check this function, since it
4689 crosses the function stack boundary, and thus would yield many
4690 false positives. */
4691 __attribute__((no_address_safety_analysis))
4692 #endif
4693 #endif
4694 {
4695 void **pp;
4696 int i;
4697
4698 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4699 nzombies = 0;
4700 #endif
4701
4702 /* Make START the pointer to the start of the memory region,
4703 if it isn't already. */
4704 if (end < start)
4705 {
4706 void *tem = start;
4707 start = end;
4708 end = tem;
4709 }
4710
4711 /* Mark Lisp data pointed to. This is necessary because, in some
4712 situations, the C compiler optimizes Lisp objects away, so that
4713 only a pointer to them remains. Example:
4714
4715 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4716 ()
4717 {
4718 Lisp_Object obj = build_string ("test");
4719 struct Lisp_String *s = XSTRING (obj);
4720 Fgarbage_collect ();
4721 fprintf (stderr, "test `%s'\n", s->data);
4722 return Qnil;
4723 }
4724
4725 Here, `obj' isn't really used, and the compiler optimizes it
4726 away. The only reference to the life string is through the
4727 pointer `s'. */
4728
4729 for (pp = start; (void *) pp < end; pp++)
4730 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4731 {
4732 void *p = *(void **) ((char *) pp + i);
4733 mark_maybe_pointer (p);
4734 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4735 mark_maybe_object (XIL ((intptr_t) p));
4736 }
4737 }
4738
4739 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4740 the GCC system configuration. In gcc 3.2, the only systems for
4741 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4742 by others?) and ns32k-pc532-min. */
4743
4744 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4745
4746 static int setjmp_tested_p, longjmps_done;
4747
4748 #define SETJMP_WILL_LIKELY_WORK "\
4749 \n\
4750 Emacs garbage collector has been changed to use conservative stack\n\
4751 marking. Emacs has determined that the method it uses to do the\n\
4752 marking will likely work on your system, but this isn't sure.\n\
4753 \n\
4754 If you are a system-programmer, or can get the help of a local wizard\n\
4755 who is, please take a look at the function mark_stack in alloc.c, and\n\
4756 verify that the methods used are appropriate for your system.\n\
4757 \n\
4758 Please mail the result to <emacs-devel@gnu.org>.\n\
4759 "
4760
4761 #define SETJMP_WILL_NOT_WORK "\
4762 \n\
4763 Emacs garbage collector has been changed to use conservative stack\n\
4764 marking. Emacs has determined that the default method it uses to do the\n\
4765 marking will not work on your system. We will need a system-dependent\n\
4766 solution for your system.\n\
4767 \n\
4768 Please take a look at the function mark_stack in alloc.c, and\n\
4769 try to find a way to make it work on your system.\n\
4770 \n\
4771 Note that you may get false negatives, depending on the compiler.\n\
4772 In particular, you need to use -O with GCC for this test.\n\
4773 \n\
4774 Please mail the result to <emacs-devel@gnu.org>.\n\
4775 "
4776
4777
4778 /* Perform a quick check if it looks like setjmp saves registers in a
4779 jmp_buf. Print a message to stderr saying so. When this test
4780 succeeds, this is _not_ a proof that setjmp is sufficient for
4781 conservative stack marking. Only the sources or a disassembly
4782 can prove that. */
4783
4784 static void
4785 test_setjmp (void)
4786 {
4787 char buf[10];
4788 register int x;
4789 jmp_buf jbuf;
4790 int result = 0;
4791
4792 /* Arrange for X to be put in a register. */
4793 sprintf (buf, "1");
4794 x = strlen (buf);
4795 x = 2 * x - 1;
4796
4797 setjmp (jbuf);
4798 if (longjmps_done == 1)
4799 {
4800 /* Came here after the longjmp at the end of the function.
4801
4802 If x == 1, the longjmp has restored the register to its
4803 value before the setjmp, and we can hope that setjmp
4804 saves all such registers in the jmp_buf, although that
4805 isn't sure.
4806
4807 For other values of X, either something really strange is
4808 taking place, or the setjmp just didn't save the register. */
4809
4810 if (x == 1)
4811 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4812 else
4813 {
4814 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4815 exit (1);
4816 }
4817 }
4818
4819 ++longjmps_done;
4820 x = 2;
4821 if (longjmps_done == 1)
4822 longjmp (jbuf, 1);
4823 }
4824
4825 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4826
4827
4828 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4829
4830 /* Abort if anything GCPRO'd doesn't survive the GC. */
4831
4832 static void
4833 check_gcpros (void)
4834 {
4835 struct gcpro *p;
4836 ptrdiff_t i;
4837
4838 for (p = gcprolist; p; p = p->next)
4839 for (i = 0; i < p->nvars; ++i)
4840 if (!survives_gc_p (p->var[i]))
4841 /* FIXME: It's not necessarily a bug. It might just be that the
4842 GCPRO is unnecessary or should release the object sooner. */
4843 abort ();
4844 }
4845
4846 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4847
4848 static void
4849 dump_zombies (void)
4850 {
4851 int i;
4852
4853 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4854 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4855 {
4856 fprintf (stderr, " %d = ", i);
4857 debug_print (zombies[i]);
4858 }
4859 }
4860
4861 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4862
4863
4864 /* Mark live Lisp objects on the C stack.
4865
4866 There are several system-dependent problems to consider when
4867 porting this to new architectures:
4868
4869 Processor Registers
4870
4871 We have to mark Lisp objects in CPU registers that can hold local
4872 variables or are used to pass parameters.
4873
4874 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4875 something that either saves relevant registers on the stack, or
4876 calls mark_maybe_object passing it each register's contents.
4877
4878 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4879 implementation assumes that calling setjmp saves registers we need
4880 to see in a jmp_buf which itself lies on the stack. This doesn't
4881 have to be true! It must be verified for each system, possibly
4882 by taking a look at the source code of setjmp.
4883
4884 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4885 can use it as a machine independent method to store all registers
4886 to the stack. In this case the macros described in the previous
4887 two paragraphs are not used.
4888
4889 Stack Layout
4890
4891 Architectures differ in the way their processor stack is organized.
4892 For example, the stack might look like this
4893
4894 +----------------+
4895 | Lisp_Object | size = 4
4896 +----------------+
4897 | something else | size = 2
4898 +----------------+
4899 | Lisp_Object | size = 4
4900 +----------------+
4901 | ... |
4902
4903 In such a case, not every Lisp_Object will be aligned equally. To
4904 find all Lisp_Object on the stack it won't be sufficient to walk
4905 the stack in steps of 4 bytes. Instead, two passes will be
4906 necessary, one starting at the start of the stack, and a second
4907 pass starting at the start of the stack + 2. Likewise, if the
4908 minimal alignment of Lisp_Objects on the stack is 1, four passes
4909 would be necessary, each one starting with one byte more offset
4910 from the stack start. */
4911
4912 static void
4913 mark_stack (void)
4914 {
4915 void *end;
4916
4917 #ifdef HAVE___BUILTIN_UNWIND_INIT
4918 /* Force callee-saved registers and register windows onto the stack.
4919 This is the preferred method if available, obviating the need for
4920 machine dependent methods. */
4921 __builtin_unwind_init ();
4922 end = &end;
4923 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4924 #ifndef GC_SAVE_REGISTERS_ON_STACK
4925 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4926 union aligned_jmpbuf {
4927 Lisp_Object o;
4928 jmp_buf j;
4929 } j;
4930 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4931 #endif
4932 /* This trick flushes the register windows so that all the state of
4933 the process is contained in the stack. */
4934 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4935 needed on ia64 too. See mach_dep.c, where it also says inline
4936 assembler doesn't work with relevant proprietary compilers. */
4937 #ifdef __sparc__
4938 #if defined (__sparc64__) && defined (__FreeBSD__)
4939 /* FreeBSD does not have a ta 3 handler. */
4940 asm ("flushw");
4941 #else
4942 asm ("ta 3");
4943 #endif
4944 #endif
4945
4946 /* Save registers that we need to see on the stack. We need to see
4947 registers used to hold register variables and registers used to
4948 pass parameters. */
4949 #ifdef GC_SAVE_REGISTERS_ON_STACK
4950 GC_SAVE_REGISTERS_ON_STACK (end);
4951 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4952
4953 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4954 setjmp will definitely work, test it
4955 and print a message with the result
4956 of the test. */
4957 if (!setjmp_tested_p)
4958 {
4959 setjmp_tested_p = 1;
4960 test_setjmp ();
4961 }
4962 #endif /* GC_SETJMP_WORKS */
4963
4964 setjmp (j.j);
4965 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4966 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4967 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4968
4969 /* This assumes that the stack is a contiguous region in memory. If
4970 that's not the case, something has to be done here to iterate
4971 over the stack segments. */
4972 mark_memory (stack_base, end);
4973
4974 /* Allow for marking a secondary stack, like the register stack on the
4975 ia64. */
4976 #ifdef GC_MARK_SECONDARY_STACK
4977 GC_MARK_SECONDARY_STACK ();
4978 #endif
4979
4980 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4981 check_gcpros ();
4982 #endif
4983 }
4984
4985 #endif /* GC_MARK_STACK != 0 */
4986
4987
4988 /* Determine whether it is safe to access memory at address P. */
4989 static int
4990 valid_pointer_p (void *p)
4991 {
4992 #ifdef WINDOWSNT
4993 return w32_valid_pointer_p (p, 16);
4994 #else
4995 int fd[2];
4996
4997 /* Obviously, we cannot just access it (we would SEGV trying), so we
4998 trick the o/s to tell us whether p is a valid pointer.
4999 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5000 not validate p in that case. */
5001
5002 if (pipe (fd) == 0)
5003 {
5004 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
5005 emacs_close (fd[1]);
5006 emacs_close (fd[0]);
5007 return valid;
5008 }
5009
5010 return -1;
5011 #endif
5012 }
5013
5014 /* Return 1 if OBJ is a valid lisp object.
5015 Return 0 if OBJ is NOT a valid lisp object.
5016 Return -1 if we cannot validate OBJ.
5017 This function can be quite slow,
5018 so it should only be used in code for manual debugging. */
5019
5020 int
5021 valid_lisp_object_p (Lisp_Object obj)
5022 {
5023 void *p;
5024 #if GC_MARK_STACK
5025 struct mem_node *m;
5026 #endif
5027
5028 if (INTEGERP (obj))
5029 return 1;
5030
5031 p = (void *) XPNTR (obj);
5032 if (PURE_POINTER_P (p))
5033 return 1;
5034
5035 #if !GC_MARK_STACK
5036 return valid_pointer_p (p);
5037 #else
5038
5039 m = mem_find (p);
5040
5041 if (m == MEM_NIL)
5042 {
5043 int valid = valid_pointer_p (p);
5044 if (valid <= 0)
5045 return valid;
5046
5047 if (SUBRP (obj))
5048 return 1;
5049
5050 return 0;
5051 }
5052
5053 switch (m->type)
5054 {
5055 case MEM_TYPE_NON_LISP:
5056 return 0;
5057
5058 case MEM_TYPE_BUFFER:
5059 return live_buffer_p (m, p);
5060
5061 case MEM_TYPE_CONS:
5062 return live_cons_p (m, p);
5063
5064 case MEM_TYPE_STRING:
5065 return live_string_p (m, p);
5066
5067 case MEM_TYPE_MISC:
5068 return live_misc_p (m, p);
5069
5070 case MEM_TYPE_SYMBOL:
5071 return live_symbol_p (m, p);
5072
5073 case MEM_TYPE_FLOAT:
5074 return live_float_p (m, p);
5075
5076 case MEM_TYPE_VECTORLIKE:
5077 case MEM_TYPE_VECTOR_BLOCK:
5078 return live_vector_p (m, p);
5079
5080 default:
5081 break;
5082 }
5083
5084 return 0;
5085 #endif
5086 }
5087
5088
5089
5090 \f
5091 /***********************************************************************
5092 Pure Storage Management
5093 ***********************************************************************/
5094
5095 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5096 pointer to it. TYPE is the Lisp type for which the memory is
5097 allocated. TYPE < 0 means it's not used for a Lisp object. */
5098
5099 static void *
5100 pure_alloc (size_t size, int type)
5101 {
5102 void *result;
5103 #if USE_LSB_TAG
5104 size_t alignment = (1 << GCTYPEBITS);
5105 #else
5106 size_t alignment = sizeof (EMACS_INT);
5107
5108 /* Give Lisp_Floats an extra alignment. */
5109 if (type == Lisp_Float)
5110 {
5111 #if defined __GNUC__ && __GNUC__ >= 2
5112 alignment = __alignof (struct Lisp_Float);
5113 #else
5114 alignment = sizeof (struct Lisp_Float);
5115 #endif
5116 }
5117 #endif
5118
5119 again:
5120 if (type >= 0)
5121 {
5122 /* Allocate space for a Lisp object from the beginning of the free
5123 space with taking account of alignment. */
5124 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5125 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5126 }
5127 else
5128 {
5129 /* Allocate space for a non-Lisp object from the end of the free
5130 space. */
5131 pure_bytes_used_non_lisp += size;
5132 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5133 }
5134 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5135
5136 if (pure_bytes_used <= pure_size)
5137 return result;
5138
5139 /* Don't allocate a large amount here,
5140 because it might get mmap'd and then its address
5141 might not be usable. */
5142 purebeg = xmalloc (10000);
5143 pure_size = 10000;
5144 pure_bytes_used_before_overflow += pure_bytes_used - size;
5145 pure_bytes_used = 0;
5146 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5147 goto again;
5148 }
5149
5150
5151 /* Print a warning if PURESIZE is too small. */
5152
5153 void
5154 check_pure_size (void)
5155 {
5156 if (pure_bytes_used_before_overflow)
5157 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5158 " bytes needed)"),
5159 pure_bytes_used + pure_bytes_used_before_overflow);
5160 }
5161
5162
5163 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5164 the non-Lisp data pool of the pure storage, and return its start
5165 address. Return NULL if not found. */
5166
5167 static char *
5168 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5169 {
5170 int i;
5171 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5172 const unsigned char *p;
5173 char *non_lisp_beg;
5174
5175 if (pure_bytes_used_non_lisp <= nbytes)
5176 return NULL;
5177
5178 /* Set up the Boyer-Moore table. */
5179 skip = nbytes + 1;
5180 for (i = 0; i < 256; i++)
5181 bm_skip[i] = skip;
5182
5183 p = (const unsigned char *) data;
5184 while (--skip > 0)
5185 bm_skip[*p++] = skip;
5186
5187 last_char_skip = bm_skip['\0'];
5188
5189 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5190 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5191
5192 /* See the comments in the function `boyer_moore' (search.c) for the
5193 use of `infinity'. */
5194 infinity = pure_bytes_used_non_lisp + 1;
5195 bm_skip['\0'] = infinity;
5196
5197 p = (const unsigned char *) non_lisp_beg + nbytes;
5198 start = 0;
5199 do
5200 {
5201 /* Check the last character (== '\0'). */
5202 do
5203 {
5204 start += bm_skip[*(p + start)];
5205 }
5206 while (start <= start_max);
5207
5208 if (start < infinity)
5209 /* Couldn't find the last character. */
5210 return NULL;
5211
5212 /* No less than `infinity' means we could find the last
5213 character at `p[start - infinity]'. */
5214 start -= infinity;
5215
5216 /* Check the remaining characters. */
5217 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5218 /* Found. */
5219 return non_lisp_beg + start;
5220
5221 start += last_char_skip;
5222 }
5223 while (start <= start_max);
5224
5225 return NULL;
5226 }
5227
5228
5229 /* Return a string allocated in pure space. DATA is a buffer holding
5230 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5231 non-zero means make the result string multibyte.
5232
5233 Must get an error if pure storage is full, since if it cannot hold
5234 a large string it may be able to hold conses that point to that
5235 string; then the string is not protected from gc. */
5236
5237 Lisp_Object
5238 make_pure_string (const char *data,
5239 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5240 {
5241 Lisp_Object string;
5242 struct Lisp_String *s;
5243
5244 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5245 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5246 if (s->data == NULL)
5247 {
5248 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5249 memcpy (s->data, data, nbytes);
5250 s->data[nbytes] = '\0';
5251 }
5252 s->size = nchars;
5253 s->size_byte = multibyte ? nbytes : -1;
5254 s->intervals = NULL_INTERVAL;
5255 XSETSTRING (string, s);
5256 return string;
5257 }
5258
5259 /* Return a string allocated in pure space. Do not
5260 allocate the string data, just point to DATA. */
5261
5262 Lisp_Object
5263 make_pure_c_string (const char *data, ptrdiff_t nchars)
5264 {
5265 Lisp_Object string;
5266 struct Lisp_String *s;
5267
5268 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5269 s->size = nchars;
5270 s->size_byte = -1;
5271 s->data = (unsigned char *) data;
5272 s->intervals = NULL_INTERVAL;
5273 XSETSTRING (string, s);
5274 return string;
5275 }
5276
5277 /* Return a cons allocated from pure space. Give it pure copies
5278 of CAR as car and CDR as cdr. */
5279
5280 Lisp_Object
5281 pure_cons (Lisp_Object car, Lisp_Object cdr)
5282 {
5283 register Lisp_Object new;
5284 struct Lisp_Cons *p;
5285
5286 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5287 XSETCONS (new, p);
5288 XSETCAR (new, Fpurecopy (car));
5289 XSETCDR (new, Fpurecopy (cdr));
5290 return new;
5291 }
5292
5293
5294 /* Value is a float object with value NUM allocated from pure space. */
5295
5296 static Lisp_Object
5297 make_pure_float (double num)
5298 {
5299 register Lisp_Object new;
5300 struct Lisp_Float *p;
5301
5302 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5303 XSETFLOAT (new, p);
5304 XFLOAT_INIT (new, num);
5305 return new;
5306 }
5307
5308
5309 /* Return a vector with room for LEN Lisp_Objects allocated from
5310 pure space. */
5311
5312 static Lisp_Object
5313 make_pure_vector (ptrdiff_t len)
5314 {
5315 Lisp_Object new;
5316 struct Lisp_Vector *p;
5317 size_t size = header_size + len * word_size;
5318
5319 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5320 XSETVECTOR (new, p);
5321 XVECTOR (new)->header.size = len;
5322 return new;
5323 }
5324
5325
5326 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5327 doc: /* Make a copy of object OBJ in pure storage.
5328 Recursively copies contents of vectors and cons cells.
5329 Does not copy symbols. Copies strings without text properties. */)
5330 (register Lisp_Object obj)
5331 {
5332 if (NILP (Vpurify_flag))
5333 return obj;
5334
5335 if (PURE_POINTER_P (XPNTR (obj)))
5336 return obj;
5337
5338 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5339 {
5340 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5341 if (!NILP (tmp))
5342 return tmp;
5343 }
5344
5345 if (CONSP (obj))
5346 obj = pure_cons (XCAR (obj), XCDR (obj));
5347 else if (FLOATP (obj))
5348 obj = make_pure_float (XFLOAT_DATA (obj));
5349 else if (STRINGP (obj))
5350 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5351 SBYTES (obj),
5352 STRING_MULTIBYTE (obj));
5353 else if (COMPILEDP (obj) || VECTORP (obj))
5354 {
5355 register struct Lisp_Vector *vec;
5356 register ptrdiff_t i;
5357 ptrdiff_t size;
5358
5359 size = ASIZE (obj);
5360 if (size & PSEUDOVECTOR_FLAG)
5361 size &= PSEUDOVECTOR_SIZE_MASK;
5362 vec = XVECTOR (make_pure_vector (size));
5363 for (i = 0; i < size; i++)
5364 vec->contents[i] = Fpurecopy (AREF (obj, i));
5365 if (COMPILEDP (obj))
5366 {
5367 XSETPVECTYPE (vec, PVEC_COMPILED);
5368 XSETCOMPILED (obj, vec);
5369 }
5370 else
5371 XSETVECTOR (obj, vec);
5372 }
5373 else if (MARKERP (obj))
5374 error ("Attempt to copy a marker to pure storage");
5375 else
5376 /* Not purified, don't hash-cons. */
5377 return obj;
5378
5379 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5380 Fputhash (obj, obj, Vpurify_flag);
5381
5382 return obj;
5383 }
5384
5385
5386 \f
5387 /***********************************************************************
5388 Protection from GC
5389 ***********************************************************************/
5390
5391 /* Put an entry in staticvec, pointing at the variable with address
5392 VARADDRESS. */
5393
5394 void
5395 staticpro (Lisp_Object *varaddress)
5396 {
5397 staticvec[staticidx++] = varaddress;
5398 if (staticidx >= NSTATICS)
5399 abort ();
5400 }
5401
5402 \f
5403 /***********************************************************************
5404 Protection from GC
5405 ***********************************************************************/
5406
5407 /* Temporarily prevent garbage collection. */
5408
5409 ptrdiff_t
5410 inhibit_garbage_collection (void)
5411 {
5412 ptrdiff_t count = SPECPDL_INDEX ();
5413
5414 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5415 return count;
5416 }
5417
5418 /* Used to avoid possible overflows when
5419 converting from C to Lisp integers. */
5420
5421 static inline Lisp_Object
5422 bounded_number (EMACS_INT number)
5423 {
5424 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5425 }
5426
5427 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5428 doc: /* Reclaim storage for Lisp objects no longer needed.
5429 Garbage collection happens automatically if you cons more than
5430 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5431 `garbage-collect' normally returns a list with info on amount of space in use,
5432 where each entry has the form (NAME SIZE USED FREE), where:
5433 - NAME is a symbol describing the kind of objects this entry represents,
5434 - SIZE is the number of bytes used by each one,
5435 - USED is the number of those objects that were found live in the heap,
5436 - FREE is the number of those objects that are not live but that Emacs
5437 keeps around for future allocations (maybe because it does not know how
5438 to return them to the OS).
5439 However, if there was overflow in pure space, `garbage-collect'
5440 returns nil, because real GC can't be done.
5441 See Info node `(elisp)Garbage Collection'. */)
5442 (void)
5443 {
5444 register struct specbinding *bind;
5445 register struct buffer *nextb;
5446 char stack_top_variable;
5447 ptrdiff_t i;
5448 int message_p;
5449 Lisp_Object total[11];
5450 ptrdiff_t count = SPECPDL_INDEX ();
5451 EMACS_TIME t1;
5452
5453 if (abort_on_gc)
5454 abort ();
5455
5456 /* Can't GC if pure storage overflowed because we can't determine
5457 if something is a pure object or not. */
5458 if (pure_bytes_used_before_overflow)
5459 return Qnil;
5460
5461 CHECK_CONS_LIST ();
5462
5463 /* Don't keep undo information around forever.
5464 Do this early on, so it is no problem if the user quits. */
5465 FOR_EACH_BUFFER (nextb)
5466 compact_buffer (nextb);
5467
5468 t1 = current_emacs_time ();
5469
5470 /* In case user calls debug_print during GC,
5471 don't let that cause a recursive GC. */
5472 consing_since_gc = 0;
5473
5474 /* Save what's currently displayed in the echo area. */
5475 message_p = push_message ();
5476 record_unwind_protect (pop_message_unwind, Qnil);
5477
5478 /* Save a copy of the contents of the stack, for debugging. */
5479 #if MAX_SAVE_STACK > 0
5480 if (NILP (Vpurify_flag))
5481 {
5482 char *stack;
5483 ptrdiff_t stack_size;
5484 if (&stack_top_variable < stack_bottom)
5485 {
5486 stack = &stack_top_variable;
5487 stack_size = stack_bottom - &stack_top_variable;
5488 }
5489 else
5490 {
5491 stack = stack_bottom;
5492 stack_size = &stack_top_variable - stack_bottom;
5493 }
5494 if (stack_size <= MAX_SAVE_STACK)
5495 {
5496 if (stack_copy_size < stack_size)
5497 {
5498 stack_copy = xrealloc (stack_copy, stack_size);
5499 stack_copy_size = stack_size;
5500 }
5501 memcpy (stack_copy, stack, stack_size);
5502 }
5503 }
5504 #endif /* MAX_SAVE_STACK > 0 */
5505
5506 if (garbage_collection_messages)
5507 message1_nolog ("Garbage collecting...");
5508
5509 BLOCK_INPUT;
5510
5511 shrink_regexp_cache ();
5512
5513 gc_in_progress = 1;
5514
5515 /* Mark all the special slots that serve as the roots of accessibility. */
5516
5517 for (i = 0; i < staticidx; i++)
5518 mark_object (*staticvec[i]);
5519
5520 for (bind = specpdl; bind != specpdl_ptr; bind++)
5521 {
5522 mark_object (bind->symbol);
5523 mark_object (bind->old_value);
5524 }
5525 mark_terminals ();
5526 mark_kboards ();
5527 mark_ttys ();
5528
5529 #ifdef USE_GTK
5530 {
5531 extern void xg_mark_data (void);
5532 xg_mark_data ();
5533 }
5534 #endif
5535
5536 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5537 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5538 mark_stack ();
5539 #else
5540 {
5541 register struct gcpro *tail;
5542 for (tail = gcprolist; tail; tail = tail->next)
5543 for (i = 0; i < tail->nvars; i++)
5544 mark_object (tail->var[i]);
5545 }
5546 mark_byte_stack ();
5547 {
5548 struct catchtag *catch;
5549 struct handler *handler;
5550
5551 for (catch = catchlist; catch; catch = catch->next)
5552 {
5553 mark_object (catch->tag);
5554 mark_object (catch->val);
5555 }
5556 for (handler = handlerlist; handler; handler = handler->next)
5557 {
5558 mark_object (handler->handler);
5559 mark_object (handler->var);
5560 }
5561 }
5562 mark_backtrace ();
5563 #endif
5564
5565 #ifdef HAVE_WINDOW_SYSTEM
5566 mark_fringe_data ();
5567 #endif
5568
5569 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5570 mark_stack ();
5571 #endif
5572
5573 /* Everything is now marked, except for the things that require special
5574 finalization, i.e. the undo_list.
5575 Look thru every buffer's undo list
5576 for elements that update markers that were not marked,
5577 and delete them. */
5578 FOR_EACH_BUFFER (nextb)
5579 {
5580 /* If a buffer's undo list is Qt, that means that undo is
5581 turned off in that buffer. Calling truncate_undo_list on
5582 Qt tends to return NULL, which effectively turns undo back on.
5583 So don't call truncate_undo_list if undo_list is Qt. */
5584 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5585 {
5586 Lisp_Object tail, prev;
5587 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5588 prev = Qnil;
5589 while (CONSP (tail))
5590 {
5591 if (CONSP (XCAR (tail))
5592 && MARKERP (XCAR (XCAR (tail)))
5593 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5594 {
5595 if (NILP (prev))
5596 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5597 else
5598 {
5599 tail = XCDR (tail);
5600 XSETCDR (prev, tail);
5601 }
5602 }
5603 else
5604 {
5605 prev = tail;
5606 tail = XCDR (tail);
5607 }
5608 }
5609 }
5610 /* Now that we have stripped the elements that need not be in the
5611 undo_list any more, we can finally mark the list. */
5612 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5613 }
5614
5615 gc_sweep ();
5616
5617 /* Clear the mark bits that we set in certain root slots. */
5618
5619 unmark_byte_stack ();
5620 VECTOR_UNMARK (&buffer_defaults);
5621 VECTOR_UNMARK (&buffer_local_symbols);
5622
5623 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5624 dump_zombies ();
5625 #endif
5626
5627 UNBLOCK_INPUT;
5628
5629 CHECK_CONS_LIST ();
5630
5631 gc_in_progress = 0;
5632
5633 consing_since_gc = 0;
5634 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5635 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5636
5637 gc_relative_threshold = 0;
5638 if (FLOATP (Vgc_cons_percentage))
5639 { /* Set gc_cons_combined_threshold. */
5640 double tot = 0;
5641
5642 tot += total_conses * sizeof (struct Lisp_Cons);
5643 tot += total_symbols * sizeof (struct Lisp_Symbol);
5644 tot += total_markers * sizeof (union Lisp_Misc);
5645 tot += total_string_bytes;
5646 tot += total_vector_slots * word_size;
5647 tot += total_floats * sizeof (struct Lisp_Float);
5648 tot += total_intervals * sizeof (struct interval);
5649 tot += total_strings * sizeof (struct Lisp_String);
5650
5651 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5652 if (0 < tot)
5653 {
5654 if (tot < TYPE_MAXIMUM (EMACS_INT))
5655 gc_relative_threshold = tot;
5656 else
5657 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5658 }
5659 }
5660
5661 if (garbage_collection_messages)
5662 {
5663 if (message_p || minibuf_level > 0)
5664 restore_message ();
5665 else
5666 message1_nolog ("Garbage collecting...done");
5667 }
5668
5669 unbind_to (count, Qnil);
5670
5671 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5672 bounded_number (total_conses),
5673 bounded_number (total_free_conses));
5674
5675 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5676 bounded_number (total_symbols),
5677 bounded_number (total_free_symbols));
5678
5679 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5680 bounded_number (total_markers),
5681 bounded_number (total_free_markers));
5682
5683 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5684 bounded_number (total_strings),
5685 bounded_number (total_free_strings));
5686
5687 total[4] = list3 (Qstring_bytes, make_number (1),
5688 bounded_number (total_string_bytes));
5689
5690 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5691 bounded_number (total_vectors));
5692
5693 total[6] = list4 (Qvector_slots, make_number (word_size),
5694 bounded_number (total_vector_slots),
5695 bounded_number (total_free_vector_slots));
5696
5697 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5698 bounded_number (total_floats),
5699 bounded_number (total_free_floats));
5700
5701 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5702 bounded_number (total_intervals),
5703 bounded_number (total_free_intervals));
5704
5705 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5706 bounded_number (total_buffers));
5707
5708 total[10] = list4 (Qheap, make_number (1024),
5709 #ifdef DOUG_LEA_MALLOC
5710 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5711 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5712 #else
5713 Qnil, Qnil
5714 #endif
5715 );
5716
5717 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5718 {
5719 /* Compute average percentage of zombies. */
5720 double nlive = 0;
5721
5722 for (i = 0; i < 7; ++i)
5723 if (CONSP (total[i]))
5724 nlive += XFASTINT (XCAR (total[i]));
5725
5726 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5727 max_live = max (nlive, max_live);
5728 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5729 max_zombies = max (nzombies, max_zombies);
5730 ++ngcs;
5731 }
5732 #endif
5733
5734 if (!NILP (Vpost_gc_hook))
5735 {
5736 ptrdiff_t gc_count = inhibit_garbage_collection ();
5737 safe_run_hooks (Qpost_gc_hook);
5738 unbind_to (gc_count, Qnil);
5739 }
5740
5741 /* Accumulate statistics. */
5742 if (FLOATP (Vgc_elapsed))
5743 {
5744 EMACS_TIME t2 = current_emacs_time ();
5745 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5746 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5747 + EMACS_TIME_TO_DOUBLE (t3));
5748 }
5749
5750 gcs_done++;
5751
5752 return Flist (sizeof total / sizeof *total, total);
5753 }
5754
5755
5756 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5757 only interesting objects referenced from glyphs are strings. */
5758
5759 static void
5760 mark_glyph_matrix (struct glyph_matrix *matrix)
5761 {
5762 struct glyph_row *row = matrix->rows;
5763 struct glyph_row *end = row + matrix->nrows;
5764
5765 for (; row < end; ++row)
5766 if (row->enabled_p)
5767 {
5768 int area;
5769 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5770 {
5771 struct glyph *glyph = row->glyphs[area];
5772 struct glyph *end_glyph = glyph + row->used[area];
5773
5774 for (; glyph < end_glyph; ++glyph)
5775 if (STRINGP (glyph->object)
5776 && !STRING_MARKED_P (XSTRING (glyph->object)))
5777 mark_object (glyph->object);
5778 }
5779 }
5780 }
5781
5782
5783 /* Mark Lisp faces in the face cache C. */
5784
5785 static void
5786 mark_face_cache (struct face_cache *c)
5787 {
5788 if (c)
5789 {
5790 int i, j;
5791 for (i = 0; i < c->used; ++i)
5792 {
5793 struct face *face = FACE_FROM_ID (c->f, i);
5794
5795 if (face)
5796 {
5797 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5798 mark_object (face->lface[j]);
5799 }
5800 }
5801 }
5802 }
5803
5804
5805 \f
5806 /* Mark reference to a Lisp_Object.
5807 If the object referred to has not been seen yet, recursively mark
5808 all the references contained in it. */
5809
5810 #define LAST_MARKED_SIZE 500
5811 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5812 static int last_marked_index;
5813
5814 /* For debugging--call abort when we cdr down this many
5815 links of a list, in mark_object. In debugging,
5816 the call to abort will hit a breakpoint.
5817 Normally this is zero and the check never goes off. */
5818 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5819
5820 static void
5821 mark_vectorlike (struct Lisp_Vector *ptr)
5822 {
5823 ptrdiff_t size = ptr->header.size;
5824 ptrdiff_t i;
5825
5826 eassert (!VECTOR_MARKED_P (ptr));
5827 VECTOR_MARK (ptr); /* Else mark it. */
5828 if (size & PSEUDOVECTOR_FLAG)
5829 size &= PSEUDOVECTOR_SIZE_MASK;
5830
5831 /* Note that this size is not the memory-footprint size, but only
5832 the number of Lisp_Object fields that we should trace.
5833 The distinction is used e.g. by Lisp_Process which places extra
5834 non-Lisp_Object fields at the end of the structure... */
5835 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5836 mark_object (ptr->contents[i]);
5837 }
5838
5839 /* Like mark_vectorlike but optimized for char-tables (and
5840 sub-char-tables) assuming that the contents are mostly integers or
5841 symbols. */
5842
5843 static void
5844 mark_char_table (struct Lisp_Vector *ptr)
5845 {
5846 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5847 int i;
5848
5849 eassert (!VECTOR_MARKED_P (ptr));
5850 VECTOR_MARK (ptr);
5851 for (i = 0; i < size; i++)
5852 {
5853 Lisp_Object val = ptr->contents[i];
5854
5855 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5856 continue;
5857 if (SUB_CHAR_TABLE_P (val))
5858 {
5859 if (! VECTOR_MARKED_P (XVECTOR (val)))
5860 mark_char_table (XVECTOR (val));
5861 }
5862 else
5863 mark_object (val);
5864 }
5865 }
5866
5867 /* Mark the chain of overlays starting at PTR. */
5868
5869 static void
5870 mark_overlay (struct Lisp_Overlay *ptr)
5871 {
5872 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5873 {
5874 ptr->gcmarkbit = 1;
5875 mark_object (ptr->start);
5876 mark_object (ptr->end);
5877 mark_object (ptr->plist);
5878 }
5879 }
5880
5881 /* Mark Lisp_Objects and special pointers in BUFFER. */
5882
5883 static void
5884 mark_buffer (struct buffer *buffer)
5885 {
5886 /* This is handled much like other pseudovectors... */
5887 mark_vectorlike ((struct Lisp_Vector *) buffer);
5888
5889 /* ...but there are some buffer-specific things. */
5890
5891 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5892
5893 /* For now, we just don't mark the undo_list. It's done later in
5894 a special way just before the sweep phase, and after stripping
5895 some of its elements that are not needed any more. */
5896
5897 mark_overlay (buffer->overlays_before);
5898 mark_overlay (buffer->overlays_after);
5899
5900 /* If this is an indirect buffer, mark its base buffer. */
5901 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5902 mark_buffer (buffer->base_buffer);
5903 }
5904
5905 /* Determine type of generic Lisp_Object and mark it accordingly. */
5906
5907 void
5908 mark_object (Lisp_Object arg)
5909 {
5910 register Lisp_Object obj = arg;
5911 #ifdef GC_CHECK_MARKED_OBJECTS
5912 void *po;
5913 struct mem_node *m;
5914 #endif
5915 ptrdiff_t cdr_count = 0;
5916
5917 loop:
5918
5919 if (PURE_POINTER_P (XPNTR (obj)))
5920 return;
5921
5922 last_marked[last_marked_index++] = obj;
5923 if (last_marked_index == LAST_MARKED_SIZE)
5924 last_marked_index = 0;
5925
5926 /* Perform some sanity checks on the objects marked here. Abort if
5927 we encounter an object we know is bogus. This increases GC time
5928 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5929 #ifdef GC_CHECK_MARKED_OBJECTS
5930
5931 po = (void *) XPNTR (obj);
5932
5933 /* Check that the object pointed to by PO is known to be a Lisp
5934 structure allocated from the heap. */
5935 #define CHECK_ALLOCATED() \
5936 do { \
5937 m = mem_find (po); \
5938 if (m == MEM_NIL) \
5939 abort (); \
5940 } while (0)
5941
5942 /* Check that the object pointed to by PO is live, using predicate
5943 function LIVEP. */
5944 #define CHECK_LIVE(LIVEP) \
5945 do { \
5946 if (!LIVEP (m, po)) \
5947 abort (); \
5948 } while (0)
5949
5950 /* Check both of the above conditions. */
5951 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5952 do { \
5953 CHECK_ALLOCATED (); \
5954 CHECK_LIVE (LIVEP); \
5955 } while (0) \
5956
5957 #else /* not GC_CHECK_MARKED_OBJECTS */
5958
5959 #define CHECK_LIVE(LIVEP) (void) 0
5960 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5961
5962 #endif /* not GC_CHECK_MARKED_OBJECTS */
5963
5964 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5965 {
5966 case Lisp_String:
5967 {
5968 register struct Lisp_String *ptr = XSTRING (obj);
5969 if (STRING_MARKED_P (ptr))
5970 break;
5971 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5972 MARK_STRING (ptr);
5973 MARK_INTERVAL_TREE (ptr->intervals);
5974 #ifdef GC_CHECK_STRING_BYTES
5975 /* Check that the string size recorded in the string is the
5976 same as the one recorded in the sdata structure. */
5977 CHECK_STRING_BYTES (ptr);
5978 #endif /* GC_CHECK_STRING_BYTES */
5979 }
5980 break;
5981
5982 case Lisp_Vectorlike:
5983 {
5984 register struct Lisp_Vector *ptr = XVECTOR (obj);
5985 register ptrdiff_t pvectype;
5986
5987 if (VECTOR_MARKED_P (ptr))
5988 break;
5989
5990 #ifdef GC_CHECK_MARKED_OBJECTS
5991 m = mem_find (po);
5992 if (m == MEM_NIL && !SUBRP (obj)
5993 && po != &buffer_defaults
5994 && po != &buffer_local_symbols)
5995 abort ();
5996 #endif /* GC_CHECK_MARKED_OBJECTS */
5997
5998 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5999 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6000 >> PSEUDOVECTOR_SIZE_BITS);
6001 else
6002 pvectype = 0;
6003
6004 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6005 CHECK_LIVE (live_vector_p);
6006
6007 switch (pvectype)
6008 {
6009 case PVEC_BUFFER:
6010 #ifdef GC_CHECK_MARKED_OBJECTS
6011 if (po != &buffer_defaults && po != &buffer_local_symbols)
6012 {
6013 struct buffer *b;
6014 FOR_EACH_BUFFER (b)
6015 if (b == po)
6016 break;
6017 if (b == NULL)
6018 abort ();
6019 }
6020 #endif /* GC_CHECK_MARKED_OBJECTS */
6021 mark_buffer ((struct buffer *) ptr);
6022 break;
6023
6024 case PVEC_COMPILED:
6025 { /* We could treat this just like a vector, but it is better
6026 to save the COMPILED_CONSTANTS element for last and avoid
6027 recursion there. */
6028 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6029 int i;
6030
6031 VECTOR_MARK (ptr);
6032 for (i = 0; i < size; i++)
6033 if (i != COMPILED_CONSTANTS)
6034 mark_object (ptr->contents[i]);
6035 if (size > COMPILED_CONSTANTS)
6036 {
6037 obj = ptr->contents[COMPILED_CONSTANTS];
6038 goto loop;
6039 }
6040 }
6041 break;
6042
6043 case PVEC_FRAME:
6044 {
6045 mark_vectorlike (ptr);
6046 mark_face_cache (((struct frame *) ptr)->face_cache);
6047 }
6048 break;
6049
6050 case PVEC_WINDOW:
6051 {
6052 struct window *w = (struct window *) ptr;
6053
6054 mark_vectorlike (ptr);
6055 /* Mark glyphs for leaf windows. Marking window
6056 matrices is sufficient because frame matrices
6057 use the same glyph memory. */
6058 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6059 {
6060 mark_glyph_matrix (w->current_matrix);
6061 mark_glyph_matrix (w->desired_matrix);
6062 }
6063 }
6064 break;
6065
6066 case PVEC_HASH_TABLE:
6067 {
6068 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6069
6070 mark_vectorlike (ptr);
6071 /* If hash table is not weak, mark all keys and values.
6072 For weak tables, mark only the vector. */
6073 if (NILP (h->weak))
6074 mark_object (h->key_and_value);
6075 else
6076 VECTOR_MARK (XVECTOR (h->key_and_value));
6077 }
6078 break;
6079
6080 case PVEC_CHAR_TABLE:
6081 mark_char_table (ptr);
6082 break;
6083
6084 case PVEC_BOOL_VECTOR:
6085 /* No Lisp_Objects to mark in a bool vector. */
6086 VECTOR_MARK (ptr);
6087 break;
6088
6089 case PVEC_SUBR:
6090 break;
6091
6092 case PVEC_FREE:
6093 abort ();
6094
6095 default:
6096 mark_vectorlike (ptr);
6097 }
6098 }
6099 break;
6100
6101 case Lisp_Symbol:
6102 {
6103 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6104 struct Lisp_Symbol *ptrx;
6105
6106 if (ptr->gcmarkbit)
6107 break;
6108 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6109 ptr->gcmarkbit = 1;
6110 mark_object (ptr->function);
6111 mark_object (ptr->plist);
6112 switch (ptr->redirect)
6113 {
6114 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6115 case SYMBOL_VARALIAS:
6116 {
6117 Lisp_Object tem;
6118 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6119 mark_object (tem);
6120 break;
6121 }
6122 case SYMBOL_LOCALIZED:
6123 {
6124 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6125 /* If the value is forwarded to a buffer or keyboard field,
6126 these are marked when we see the corresponding object.
6127 And if it's forwarded to a C variable, either it's not
6128 a Lisp_Object var, or it's staticpro'd already. */
6129 mark_object (blv->where);
6130 mark_object (blv->valcell);
6131 mark_object (blv->defcell);
6132 break;
6133 }
6134 case SYMBOL_FORWARDED:
6135 /* If the value is forwarded to a buffer or keyboard field,
6136 these are marked when we see the corresponding object.
6137 And if it's forwarded to a C variable, either it's not
6138 a Lisp_Object var, or it's staticpro'd already. */
6139 break;
6140 default: abort ();
6141 }
6142 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6143 MARK_STRING (XSTRING (ptr->xname));
6144 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6145
6146 ptr = ptr->next;
6147 if (ptr)
6148 {
6149 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6150 XSETSYMBOL (obj, ptrx);
6151 goto loop;
6152 }
6153 }
6154 break;
6155
6156 case Lisp_Misc:
6157 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6158
6159 if (XMISCANY (obj)->gcmarkbit)
6160 break;
6161
6162 switch (XMISCTYPE (obj))
6163 {
6164 case Lisp_Misc_Marker:
6165 /* DO NOT mark thru the marker's chain.
6166 The buffer's markers chain does not preserve markers from gc;
6167 instead, markers are removed from the chain when freed by gc. */
6168 XMISCANY (obj)->gcmarkbit = 1;
6169 break;
6170
6171 case Lisp_Misc_Save_Value:
6172 XMISCANY (obj)->gcmarkbit = 1;
6173 #if GC_MARK_STACK
6174 {
6175 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6176 /* If DOGC is set, POINTER is the address of a memory
6177 area containing INTEGER potential Lisp_Objects. */
6178 if (ptr->dogc)
6179 {
6180 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6181 ptrdiff_t nelt;
6182 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6183 mark_maybe_object (*p);
6184 }
6185 }
6186 #endif
6187 break;
6188
6189 case Lisp_Misc_Overlay:
6190 mark_overlay (XOVERLAY (obj));
6191 break;
6192
6193 default:
6194 abort ();
6195 }
6196 break;
6197
6198 case Lisp_Cons:
6199 {
6200 register struct Lisp_Cons *ptr = XCONS (obj);
6201 if (CONS_MARKED_P (ptr))
6202 break;
6203 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6204 CONS_MARK (ptr);
6205 /* If the cdr is nil, avoid recursion for the car. */
6206 if (EQ (ptr->u.cdr, Qnil))
6207 {
6208 obj = ptr->car;
6209 cdr_count = 0;
6210 goto loop;
6211 }
6212 mark_object (ptr->car);
6213 obj = ptr->u.cdr;
6214 cdr_count++;
6215 if (cdr_count == mark_object_loop_halt)
6216 abort ();
6217 goto loop;
6218 }
6219
6220 case Lisp_Float:
6221 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6222 FLOAT_MARK (XFLOAT (obj));
6223 break;
6224
6225 case_Lisp_Int:
6226 break;
6227
6228 default:
6229 abort ();
6230 }
6231
6232 #undef CHECK_LIVE
6233 #undef CHECK_ALLOCATED
6234 #undef CHECK_ALLOCATED_AND_LIVE
6235 }
6236 /* Mark the Lisp pointers in the terminal objects.
6237 Called by Fgarbage_collect. */
6238
6239 static void
6240 mark_terminals (void)
6241 {
6242 struct terminal *t;
6243 for (t = terminal_list; t; t = t->next_terminal)
6244 {
6245 eassert (t->name != NULL);
6246 #ifdef HAVE_WINDOW_SYSTEM
6247 /* If a terminal object is reachable from a stacpro'ed object,
6248 it might have been marked already. Make sure the image cache
6249 gets marked. */
6250 mark_image_cache (t->image_cache);
6251 #endif /* HAVE_WINDOW_SYSTEM */
6252 if (!VECTOR_MARKED_P (t))
6253 mark_vectorlike ((struct Lisp_Vector *)t);
6254 }
6255 }
6256
6257
6258
6259 /* Value is non-zero if OBJ will survive the current GC because it's
6260 either marked or does not need to be marked to survive. */
6261
6262 int
6263 survives_gc_p (Lisp_Object obj)
6264 {
6265 int survives_p;
6266
6267 switch (XTYPE (obj))
6268 {
6269 case_Lisp_Int:
6270 survives_p = 1;
6271 break;
6272
6273 case Lisp_Symbol:
6274 survives_p = XSYMBOL (obj)->gcmarkbit;
6275 break;
6276
6277 case Lisp_Misc:
6278 survives_p = XMISCANY (obj)->gcmarkbit;
6279 break;
6280
6281 case Lisp_String:
6282 survives_p = STRING_MARKED_P (XSTRING (obj));
6283 break;
6284
6285 case Lisp_Vectorlike:
6286 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6287 break;
6288
6289 case Lisp_Cons:
6290 survives_p = CONS_MARKED_P (XCONS (obj));
6291 break;
6292
6293 case Lisp_Float:
6294 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6295 break;
6296
6297 default:
6298 abort ();
6299 }
6300
6301 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6302 }
6303
6304
6305 \f
6306 /* Sweep: find all structures not marked, and free them. */
6307
6308 static void
6309 gc_sweep (void)
6310 {
6311 /* Remove or mark entries in weak hash tables.
6312 This must be done before any object is unmarked. */
6313 sweep_weak_hash_tables ();
6314
6315 sweep_strings ();
6316 #ifdef GC_CHECK_STRING_BYTES
6317 if (!noninteractive)
6318 check_string_bytes (1);
6319 #endif
6320
6321 /* Put all unmarked conses on free list */
6322 {
6323 register struct cons_block *cblk;
6324 struct cons_block **cprev = &cons_block;
6325 register int lim = cons_block_index;
6326 EMACS_INT num_free = 0, num_used = 0;
6327
6328 cons_free_list = 0;
6329
6330 for (cblk = cons_block; cblk; cblk = *cprev)
6331 {
6332 register int i = 0;
6333 int this_free = 0;
6334 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6335
6336 /* Scan the mark bits an int at a time. */
6337 for (i = 0; i < ilim; i++)
6338 {
6339 if (cblk->gcmarkbits[i] == -1)
6340 {
6341 /* Fast path - all cons cells for this int are marked. */
6342 cblk->gcmarkbits[i] = 0;
6343 num_used += BITS_PER_INT;
6344 }
6345 else
6346 {
6347 /* Some cons cells for this int are not marked.
6348 Find which ones, and free them. */
6349 int start, pos, stop;
6350
6351 start = i * BITS_PER_INT;
6352 stop = lim - start;
6353 if (stop > BITS_PER_INT)
6354 stop = BITS_PER_INT;
6355 stop += start;
6356
6357 for (pos = start; pos < stop; pos++)
6358 {
6359 if (!CONS_MARKED_P (&cblk->conses[pos]))
6360 {
6361 this_free++;
6362 cblk->conses[pos].u.chain = cons_free_list;
6363 cons_free_list = &cblk->conses[pos];
6364 #if GC_MARK_STACK
6365 cons_free_list->car = Vdead;
6366 #endif
6367 }
6368 else
6369 {
6370 num_used++;
6371 CONS_UNMARK (&cblk->conses[pos]);
6372 }
6373 }
6374 }
6375 }
6376
6377 lim = CONS_BLOCK_SIZE;
6378 /* If this block contains only free conses and we have already
6379 seen more than two blocks worth of free conses then deallocate
6380 this block. */
6381 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6382 {
6383 *cprev = cblk->next;
6384 /* Unhook from the free list. */
6385 cons_free_list = cblk->conses[0].u.chain;
6386 lisp_align_free (cblk);
6387 }
6388 else
6389 {
6390 num_free += this_free;
6391 cprev = &cblk->next;
6392 }
6393 }
6394 total_conses = num_used;
6395 total_free_conses = num_free;
6396 }
6397
6398 /* Put all unmarked floats on free list */
6399 {
6400 register struct float_block *fblk;
6401 struct float_block **fprev = &float_block;
6402 register int lim = float_block_index;
6403 EMACS_INT num_free = 0, num_used = 0;
6404
6405 float_free_list = 0;
6406
6407 for (fblk = float_block; fblk; fblk = *fprev)
6408 {
6409 register int i;
6410 int this_free = 0;
6411 for (i = 0; i < lim; i++)
6412 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6413 {
6414 this_free++;
6415 fblk->floats[i].u.chain = float_free_list;
6416 float_free_list = &fblk->floats[i];
6417 }
6418 else
6419 {
6420 num_used++;
6421 FLOAT_UNMARK (&fblk->floats[i]);
6422 }
6423 lim = FLOAT_BLOCK_SIZE;
6424 /* If this block contains only free floats and we have already
6425 seen more than two blocks worth of free floats then deallocate
6426 this block. */
6427 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6428 {
6429 *fprev = fblk->next;
6430 /* Unhook from the free list. */
6431 float_free_list = fblk->floats[0].u.chain;
6432 lisp_align_free (fblk);
6433 }
6434 else
6435 {
6436 num_free += this_free;
6437 fprev = &fblk->next;
6438 }
6439 }
6440 total_floats = num_used;
6441 total_free_floats = num_free;
6442 }
6443
6444 /* Put all unmarked intervals on free list */
6445 {
6446 register struct interval_block *iblk;
6447 struct interval_block **iprev = &interval_block;
6448 register int lim = interval_block_index;
6449 EMACS_INT num_free = 0, num_used = 0;
6450
6451 interval_free_list = 0;
6452
6453 for (iblk = interval_block; iblk; iblk = *iprev)
6454 {
6455 register int i;
6456 int this_free = 0;
6457
6458 for (i = 0; i < lim; i++)
6459 {
6460 if (!iblk->intervals[i].gcmarkbit)
6461 {
6462 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6463 interval_free_list = &iblk->intervals[i];
6464 this_free++;
6465 }
6466 else
6467 {
6468 num_used++;
6469 iblk->intervals[i].gcmarkbit = 0;
6470 }
6471 }
6472 lim = INTERVAL_BLOCK_SIZE;
6473 /* If this block contains only free intervals and we have already
6474 seen more than two blocks worth of free intervals then
6475 deallocate this block. */
6476 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6477 {
6478 *iprev = iblk->next;
6479 /* Unhook from the free list. */
6480 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6481 lisp_free (iblk);
6482 }
6483 else
6484 {
6485 num_free += this_free;
6486 iprev = &iblk->next;
6487 }
6488 }
6489 total_intervals = num_used;
6490 total_free_intervals = num_free;
6491 }
6492
6493 /* Put all unmarked symbols on free list */
6494 {
6495 register struct symbol_block *sblk;
6496 struct symbol_block **sprev = &symbol_block;
6497 register int lim = symbol_block_index;
6498 EMACS_INT num_free = 0, num_used = 0;
6499
6500 symbol_free_list = NULL;
6501
6502 for (sblk = symbol_block; sblk; sblk = *sprev)
6503 {
6504 int this_free = 0;
6505 union aligned_Lisp_Symbol *sym = sblk->symbols;
6506 union aligned_Lisp_Symbol *end = sym + lim;
6507
6508 for (; sym < end; ++sym)
6509 {
6510 /* Check if the symbol was created during loadup. In such a case
6511 it might be pointed to by pure bytecode which we don't trace,
6512 so we conservatively assume that it is live. */
6513 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6514
6515 if (!sym->s.gcmarkbit && !pure_p)
6516 {
6517 if (sym->s.redirect == SYMBOL_LOCALIZED)
6518 xfree (SYMBOL_BLV (&sym->s));
6519 sym->s.next = symbol_free_list;
6520 symbol_free_list = &sym->s;
6521 #if GC_MARK_STACK
6522 symbol_free_list->function = Vdead;
6523 #endif
6524 ++this_free;
6525 }
6526 else
6527 {
6528 ++num_used;
6529 if (!pure_p)
6530 UNMARK_STRING (XSTRING (sym->s.xname));
6531 sym->s.gcmarkbit = 0;
6532 }
6533 }
6534
6535 lim = SYMBOL_BLOCK_SIZE;
6536 /* If this block contains only free symbols and we have already
6537 seen more than two blocks worth of free symbols then deallocate
6538 this block. */
6539 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6540 {
6541 *sprev = sblk->next;
6542 /* Unhook from the free list. */
6543 symbol_free_list = sblk->symbols[0].s.next;
6544 lisp_free (sblk);
6545 }
6546 else
6547 {
6548 num_free += this_free;
6549 sprev = &sblk->next;
6550 }
6551 }
6552 total_symbols = num_used;
6553 total_free_symbols = num_free;
6554 }
6555
6556 /* Put all unmarked misc's on free list.
6557 For a marker, first unchain it from the buffer it points into. */
6558 {
6559 register struct marker_block *mblk;
6560 struct marker_block **mprev = &marker_block;
6561 register int lim = marker_block_index;
6562 EMACS_INT num_free = 0, num_used = 0;
6563
6564 marker_free_list = 0;
6565
6566 for (mblk = marker_block; mblk; mblk = *mprev)
6567 {
6568 register int i;
6569 int this_free = 0;
6570
6571 for (i = 0; i < lim; i++)
6572 {
6573 if (!mblk->markers[i].m.u_any.gcmarkbit)
6574 {
6575 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6576 unchain_marker (&mblk->markers[i].m.u_marker);
6577 /* Set the type of the freed object to Lisp_Misc_Free.
6578 We could leave the type alone, since nobody checks it,
6579 but this might catch bugs faster. */
6580 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6581 mblk->markers[i].m.u_free.chain = marker_free_list;
6582 marker_free_list = &mblk->markers[i].m;
6583 this_free++;
6584 }
6585 else
6586 {
6587 num_used++;
6588 mblk->markers[i].m.u_any.gcmarkbit = 0;
6589 }
6590 }
6591 lim = MARKER_BLOCK_SIZE;
6592 /* If this block contains only free markers and we have already
6593 seen more than two blocks worth of free markers then deallocate
6594 this block. */
6595 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6596 {
6597 *mprev = mblk->next;
6598 /* Unhook from the free list. */
6599 marker_free_list = mblk->markers[0].m.u_free.chain;
6600 lisp_free (mblk);
6601 }
6602 else
6603 {
6604 num_free += this_free;
6605 mprev = &mblk->next;
6606 }
6607 }
6608
6609 total_markers = num_used;
6610 total_free_markers = num_free;
6611 }
6612
6613 /* Free all unmarked buffers */
6614 {
6615 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6616
6617 total_buffers = 0;
6618 while (buffer)
6619 if (!VECTOR_MARKED_P (buffer))
6620 {
6621 if (prev)
6622 prev->header.next = buffer->header.next;
6623 else
6624 all_buffers = buffer->header.next.buffer;
6625 next = buffer->header.next.buffer;
6626 lisp_free (buffer);
6627 buffer = next;
6628 }
6629 else
6630 {
6631 VECTOR_UNMARK (buffer);
6632 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6633 total_buffers++;
6634 prev = buffer, buffer = buffer->header.next.buffer;
6635 }
6636 }
6637
6638 sweep_vectors ();
6639
6640 #ifdef GC_CHECK_STRING_BYTES
6641 if (!noninteractive)
6642 check_string_bytes (1);
6643 #endif
6644 }
6645
6646
6647
6648 \f
6649 /* Debugging aids. */
6650
6651 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6652 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6653 This may be helpful in debugging Emacs's memory usage.
6654 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6655 (void)
6656 {
6657 Lisp_Object end;
6658
6659 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6660
6661 return end;
6662 }
6663
6664 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6665 doc: /* Return a list of counters that measure how much consing there has been.
6666 Each of these counters increments for a certain kind of object.
6667 The counters wrap around from the largest positive integer to zero.
6668 Garbage collection does not decrease them.
6669 The elements of the value are as follows:
6670 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6671 All are in units of 1 = one object consed
6672 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6673 objects consed.
6674 MISCS include overlays, markers, and some internal types.
6675 Frames, windows, buffers, and subprocesses count as vectors
6676 (but the contents of a buffer's text do not count here). */)
6677 (void)
6678 {
6679 return listn (CONSTYPE_HEAP, 8,
6680 bounded_number (cons_cells_consed),
6681 bounded_number (floats_consed),
6682 bounded_number (vector_cells_consed),
6683 bounded_number (symbols_consed),
6684 bounded_number (string_chars_consed),
6685 bounded_number (misc_objects_consed),
6686 bounded_number (intervals_consed),
6687 bounded_number (strings_consed));
6688 }
6689
6690 /* Find at most FIND_MAX symbols which have OBJ as their value or
6691 function. This is used in gdbinit's `xwhichsymbols' command. */
6692
6693 Lisp_Object
6694 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6695 {
6696 struct symbol_block *sblk;
6697 ptrdiff_t gc_count = inhibit_garbage_collection ();
6698 Lisp_Object found = Qnil;
6699
6700 if (! DEADP (obj))
6701 {
6702 for (sblk = symbol_block; sblk; sblk = sblk->next)
6703 {
6704 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6705 int bn;
6706
6707 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6708 {
6709 struct Lisp_Symbol *sym = &aligned_sym->s;
6710 Lisp_Object val;
6711 Lisp_Object tem;
6712
6713 if (sblk == symbol_block && bn >= symbol_block_index)
6714 break;
6715
6716 XSETSYMBOL (tem, sym);
6717 val = find_symbol_value (tem);
6718 if (EQ (val, obj)
6719 || EQ (sym->function, obj)
6720 || (!NILP (sym->function)
6721 && COMPILEDP (sym->function)
6722 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6723 || (!NILP (val)
6724 && COMPILEDP (val)
6725 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6726 {
6727 found = Fcons (tem, found);
6728 if (--find_max == 0)
6729 goto out;
6730 }
6731 }
6732 }
6733 }
6734
6735 out:
6736 unbind_to (gc_count, Qnil);
6737 return found;
6738 }
6739
6740 #ifdef ENABLE_CHECKING
6741 int suppress_checking;
6742
6743 void
6744 die (const char *msg, const char *file, int line)
6745 {
6746 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6747 file, line, msg);
6748 abort ();
6749 }
6750 #endif
6751 \f
6752 /* Initialization */
6753
6754 void
6755 init_alloc_once (void)
6756 {
6757 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6758 purebeg = PUREBEG;
6759 pure_size = PURESIZE;
6760
6761 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6762 mem_init ();
6763 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6764 #endif
6765
6766 #ifdef DOUG_LEA_MALLOC
6767 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6768 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6769 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6770 #endif
6771 init_strings ();
6772 init_vectors ();
6773
6774 #ifdef REL_ALLOC
6775 malloc_hysteresis = 32;
6776 #else
6777 malloc_hysteresis = 0;
6778 #endif
6779
6780 refill_memory_reserve ();
6781 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6782 }
6783
6784 void
6785 init_alloc (void)
6786 {
6787 gcprolist = 0;
6788 byte_stack_list = 0;
6789 #if GC_MARK_STACK
6790 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6791 setjmp_tested_p = longjmps_done = 0;
6792 #endif
6793 #endif
6794 Vgc_elapsed = make_float (0.0);
6795 gcs_done = 0;
6796 }
6797
6798 void
6799 syms_of_alloc (void)
6800 {
6801 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6802 doc: /* Number of bytes of consing between garbage collections.
6803 Garbage collection can happen automatically once this many bytes have been
6804 allocated since the last garbage collection. All data types count.
6805
6806 Garbage collection happens automatically only when `eval' is called.
6807
6808 By binding this temporarily to a large number, you can effectively
6809 prevent garbage collection during a part of the program.
6810 See also `gc-cons-percentage'. */);
6811
6812 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6813 doc: /* Portion of the heap used for allocation.
6814 Garbage collection can happen automatically once this portion of the heap
6815 has been allocated since the last garbage collection.
6816 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6817 Vgc_cons_percentage = make_float (0.1);
6818
6819 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6820 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6821
6822 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6823 doc: /* Number of cons cells that have been consed so far. */);
6824
6825 DEFVAR_INT ("floats-consed", floats_consed,
6826 doc: /* Number of floats that have been consed so far. */);
6827
6828 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6829 doc: /* Number of vector cells that have been consed so far. */);
6830
6831 DEFVAR_INT ("symbols-consed", symbols_consed,
6832 doc: /* Number of symbols that have been consed so far. */);
6833
6834 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6835 doc: /* Number of string characters that have been consed so far. */);
6836
6837 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6838 doc: /* Number of miscellaneous objects that have been consed so far.
6839 These include markers and overlays, plus certain objects not visible
6840 to users. */);
6841
6842 DEFVAR_INT ("intervals-consed", intervals_consed,
6843 doc: /* Number of intervals that have been consed so far. */);
6844
6845 DEFVAR_INT ("strings-consed", strings_consed,
6846 doc: /* Number of strings that have been consed so far. */);
6847
6848 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6849 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6850 This means that certain objects should be allocated in shared (pure) space.
6851 It can also be set to a hash-table, in which case this table is used to
6852 do hash-consing of the objects allocated to pure space. */);
6853
6854 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6855 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6856 garbage_collection_messages = 0;
6857
6858 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6859 doc: /* Hook run after garbage collection has finished. */);
6860 Vpost_gc_hook = Qnil;
6861 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6862
6863 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6864 doc: /* Precomputed `signal' argument for memory-full error. */);
6865 /* We build this in advance because if we wait until we need it, we might
6866 not be able to allocate the memory to hold it. */
6867 Vmemory_signal_data
6868 = listn (CONSTYPE_PURE, 2, Qerror,
6869 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6870
6871 DEFVAR_LISP ("memory-full", Vmemory_full,
6872 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6873 Vmemory_full = Qnil;
6874
6875 DEFSYM (Qstring_bytes, "string-bytes");
6876 DEFSYM (Qvector_slots, "vector-slots");
6877 DEFSYM (Qheap, "heap");
6878
6879 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6880 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6881
6882 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6883 doc: /* Accumulated time elapsed in garbage collections.
6884 The time is in seconds as a floating point value. */);
6885 DEFVAR_INT ("gcs-done", gcs_done,
6886 doc: /* Accumulated number of garbage collections done. */);
6887
6888 defsubr (&Scons);
6889 defsubr (&Slist);
6890 defsubr (&Svector);
6891 defsubr (&Smake_byte_code);
6892 defsubr (&Smake_list);
6893 defsubr (&Smake_vector);
6894 defsubr (&Smake_string);
6895 defsubr (&Smake_bool_vector);
6896 defsubr (&Smake_symbol);
6897 defsubr (&Smake_marker);
6898 defsubr (&Spurecopy);
6899 defsubr (&Sgarbage_collect);
6900 defsubr (&Smemory_limit);
6901 defsubr (&Smemory_use_counts);
6902
6903 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6904 defsubr (&Sgc_status);
6905 #endif
6906 }
6907
6908 /* Make some symbols visible to GDB. This section is last, so that
6909 the #undef lines don't mess up later code. */
6910
6911 /* When compiled with GCC, GDB might say "No enum type named
6912 pvec_type" if we don't have at least one symbol with that type, and
6913 then xbacktrace could fail. Similarly for the other enums and
6914 their values. */
6915 union
6916 {
6917 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6918 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6919 enum Lisp_Bits Lisp_Bits;
6920 enum More_Lisp_Bits More_Lisp_Bits;
6921 enum pvec_type pvec_type;
6922 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6923
6924 /* These symbols cannot be done as enums, since values might not be
6925 in 'int' range. Each symbol X has a corresponding X_VAL symbol,
6926 verified to have the correct value. */
6927
6928 #define ARRAY_MARK_FLAG_VAL PTRDIFF_MIN
6929 #define PSEUDOVECTOR_FLAG_VAL (PTRDIFF_MAX - PTRDIFF_MAX / 2)
6930 #define VALMASK_VAL (USE_LSB_TAG ? -1 << GCTYPEBITS : VAL_MAX)
6931
6932 verify (ARRAY_MARK_FLAG_VAL == ARRAY_MARK_FLAG);
6933 verify (PSEUDOVECTOR_FLAG_VAL == PSEUDOVECTOR_FLAG);
6934 verify (VALMASK_VAL == VALMASK);
6935
6936 #undef ARRAY_MARK_FLAG
6937 #undef PSEUDOVECTOR_FLAG
6938 #undef VALMASK
6939
6940 ptrdiff_t const EXTERNALLY_VISIBLE
6941 ARRAY_MARK_FLAG = ARRAY_MARK_FLAG_VAL,
6942 PSEUDOVECTOR_FLAG = PSEUDOVECTOR_FLAG_VAL;
6943
6944 EMACS_INT const EXTERNALLY_VISIBLE
6945 VALMASK = VALMASK_VAL;