Revision: miles@gnu.org--gnu-2004/emacs--unicode--0--patch-15
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "character.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
159
160 /* Number of live and free conses etc. */
161
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
165
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169 static char *spare_memory;
170
171 /* Amount of spare memory to keep in reserve. */
172
173 #define SPARE_MEMORY (1 << 14)
174
175 /* Number of extra blocks malloc should get when it needs more core. */
176
177 static int malloc_hysteresis;
178
179 /* Non-nil means defun should do purecopy on the function definition. */
180
181 Lisp_Object Vpurify_flag;
182
183 /* Non-nil means we are handling a memory-full error. */
184
185 Lisp_Object Vmemory_full;
186
187 #ifndef HAVE_SHM
188
189 /* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
191
192 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193 #define PUREBEG (char *) pure
194
195 #else /* HAVE_SHM */
196
197 #define pure PURE_SEG_BITS /* Use shared memory segment */
198 #define PUREBEG (char *)PURE_SEG_BITS
199
200 #endif /* HAVE_SHM */
201
202 /* Pointer to the pure area, and its size. */
203
204 static char *purebeg;
205 static size_t pure_size;
206
207 /* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210 static size_t pure_bytes_used_before_overflow;
211
212 /* Value is non-zero if P points into pure space. */
213
214 #define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
219
220 /* Index in pure at which next pure object will be allocated.. */
221
222 EMACS_INT pure_bytes_used;
223
224 /* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
227 char *pending_malloc_warning;
228
229 /* Pre-computed signal argument for use when memory is exhausted. */
230
231 Lisp_Object Vmemory_signal_data;
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 char *stack_copy;
242 int stack_copy_size;
243
244 /* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
247 int ignore_warnings;
248
249 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250
251 /* Hook run after GC has finished. */
252
253 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
255 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256 EMACS_INT gcs_done; /* accumulated GCs */
257
258 static void mark_buffer P_ ((Lisp_Object));
259 extern void mark_kboards P_ ((void));
260 extern void mark_backtrace P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 #define NSTATICS 1280
414 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 int staticidx = 0;
419
420 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
426 #define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
429
430
431 \f
432 /************************************************************************
433 Malloc
434 ************************************************************************/
435
436 /* Function malloc calls this if it finds we are near exhausting storage. */
437
438 void
439 malloc_warning (str)
440 char *str;
441 {
442 pending_malloc_warning = str;
443 }
444
445
446 /* Display an already-pending malloc warning. */
447
448 void
449 display_malloc_warning ()
450 {
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
456 }
457
458
459 #ifdef DOUG_LEA_MALLOC
460 # define BYTES_USED (mallinfo ().arena)
461 #else
462 # define BYTES_USED _bytes_used
463 #endif
464
465
466 /* Called if malloc returns zero. */
467
468 void
469 memory_full ()
470 {
471 Vmemory_full = Qt;
472
473 #ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475 #endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
488 }
489
490
491 /* Called if we can't allocate relocatable space for a buffer. */
492
493 void
494 buffer_memory_full ()
495 {
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
502
503 #ifndef REL_ALLOC
504 memory_full ();
505 #endif
506
507 Vmemory_full = Qt;
508
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
513 }
514
515
516 /* Like malloc but check for no memory and block interrupt input.. */
517
518 POINTER_TYPE *
519 xmalloc (size)
520 size_t size;
521 {
522 register POINTER_TYPE *val;
523
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
527
528 if (!val && size)
529 memory_full ();
530 return val;
531 }
532
533
534 /* Like realloc but check for no memory and block interrupt input.. */
535
536 POINTER_TYPE *
537 xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
540 {
541 register POINTER_TYPE *val;
542
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
551
552 if (!val && size) memory_full ();
553 return val;
554 }
555
556
557 /* Like free but block interrupt input. */
558
559 void
560 xfree (block)
561 POINTER_TYPE *block;
562 {
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566 }
567
568
569 /* Like strdup, but uses xmalloc. */
570
571 char *
572 xstrdup (s)
573 const char *s;
574 {
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579 }
580
581
582 /* Like malloc but used for allocating Lisp data. NBYTES is the
583 number of bytes to allocate, TYPE describes the intended use of the
584 allcated memory block (for strings, for conses, ...). */
585
586 static void *lisp_malloc_loser;
587
588 static POINTER_TYPE *
589 lisp_malloc (nbytes, type)
590 size_t nbytes;
591 enum mem_type type;
592 {
593 register void *val;
594
595 BLOCK_INPUT;
596
597 #ifdef GC_MALLOC_CHECK
598 allocated_mem_type = type;
599 #endif
600
601 val = (void *) malloc (nbytes);
602
603 #ifndef USE_LSB_TAG
604 /* If the memory just allocated cannot be addressed thru a Lisp
605 object's pointer, and it needs to be,
606 that's equivalent to running out of memory. */
607 if (val && type != MEM_TYPE_NON_LISP)
608 {
609 Lisp_Object tem;
610 XSETCONS (tem, (char *) val + nbytes - 1);
611 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
612 {
613 lisp_malloc_loser = val;
614 free (val);
615 val = 0;
616 }
617 }
618 #endif
619
620 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
621 if (val && type != MEM_TYPE_NON_LISP)
622 mem_insert (val, (char *) val + nbytes, type);
623 #endif
624
625 UNBLOCK_INPUT;
626 if (!val && nbytes)
627 memory_full ();
628 return val;
629 }
630
631 /* Free BLOCK. This must be called to free memory allocated with a
632 call to lisp_malloc. */
633
634 static void
635 lisp_free (block)
636 POINTER_TYPE *block;
637 {
638 BLOCK_INPUT;
639 free (block);
640 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
641 mem_delete (mem_find (block));
642 #endif
643 UNBLOCK_INPUT;
644 }
645
646 /* Allocation of aligned blocks of memory to store Lisp data. */
647 /* The entry point is lisp_align_malloc which returns blocks of at most */
648 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
649
650
651 /* BLOCK_ALIGN has to be a power of 2. */
652 #define BLOCK_ALIGN (1 << 10)
653
654 /* Padding to leave at the end of a malloc'd block. This is to give
655 malloc a chance to minimize the amount of memory wasted to alignment.
656 It should be tuned to the particular malloc library used.
657 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
658 posix_memalign on the other hand would ideally prefer a value of 4
659 because otherwise, there's 1020 bytes wasted between each ablocks.
660 But testing shows that those 1020 will most of the time be efficiently
661 used by malloc to place other objects, so a value of 0 is still preferable
662 unless you have a lot of cons&floats and virtually nothing else. */
663 #define BLOCK_PADDING 0
664 #define BLOCK_BYTES \
665 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
666
667 /* Internal data structures and constants. */
668
669 #define ABLOCKS_SIZE 16
670
671 /* An aligned block of memory. */
672 struct ablock
673 {
674 union
675 {
676 char payload[BLOCK_BYTES];
677 struct ablock *next_free;
678 } x;
679 /* `abase' is the aligned base of the ablocks. */
680 /* It is overloaded to hold the virtual `busy' field that counts
681 the number of used ablock in the parent ablocks.
682 The first ablock has the `busy' field, the others have the `abase'
683 field. To tell the difference, we assume that pointers will have
684 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
685 is used to tell whether the real base of the parent ablocks is `abase'
686 (if not, the word before the first ablock holds a pointer to the
687 real base). */
688 struct ablocks *abase;
689 /* The padding of all but the last ablock is unused. The padding of
690 the last ablock in an ablocks is not allocated. */
691 #if BLOCK_PADDING
692 char padding[BLOCK_PADDING];
693 #endif
694 };
695
696 /* A bunch of consecutive aligned blocks. */
697 struct ablocks
698 {
699 struct ablock blocks[ABLOCKS_SIZE];
700 };
701
702 /* Size of the block requested from malloc or memalign. */
703 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
704
705 #define ABLOCK_ABASE(block) \
706 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
707 ? (struct ablocks *)(block) \
708 : (block)->abase)
709
710 /* Virtual `busy' field. */
711 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
712
713 /* Pointer to the (not necessarily aligned) malloc block. */
714 #ifdef HAVE_POSIX_MEMALIGN
715 #define ABLOCKS_BASE(abase) (abase)
716 #else
717 #define ABLOCKS_BASE(abase) \
718 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
719 #endif
720
721 /* The list of free ablock. */
722 static struct ablock *free_ablock;
723
724 /* Allocate an aligned block of nbytes.
725 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
726 smaller or equal to BLOCK_BYTES. */
727 static POINTER_TYPE *
728 lisp_align_malloc (nbytes, type)
729 size_t nbytes;
730 enum mem_type type;
731 {
732 void *base, *val;
733 struct ablocks *abase;
734
735 eassert (nbytes <= BLOCK_BYTES);
736
737 BLOCK_INPUT;
738
739 #ifdef GC_MALLOC_CHECK
740 allocated_mem_type = type;
741 #endif
742
743 if (!free_ablock)
744 {
745 int i;
746 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
747
748 #ifdef DOUG_LEA_MALLOC
749 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
750 because mapped region contents are not preserved in
751 a dumped Emacs. */
752 mallopt (M_MMAP_MAX, 0);
753 #endif
754
755 #ifdef HAVE_POSIX_MEMALIGN
756 {
757 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
758 if (err)
759 base = NULL;
760 abase = base;
761 }
762 #else
763 base = malloc (ABLOCKS_BYTES);
764 abase = ALIGN (base, BLOCK_ALIGN);
765 #endif
766
767 if (base == 0)
768 {
769 UNBLOCK_INPUT;
770 memory_full ();
771 }
772
773 aligned = (base == abase);
774 if (!aligned)
775 ((void**)abase)[-1] = base;
776
777 #ifdef DOUG_LEA_MALLOC
778 /* Back to a reasonable maximum of mmap'ed areas. */
779 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
780 #endif
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be, that's equivalent to
785 running out of memory. */
786 if (type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 char *end = (char *) base + ABLOCKS_BYTES - 1;
790 XSETCONS (tem, end);
791 if ((char *) XCONS (tem) != end)
792 {
793 lisp_malloc_loser = base;
794 free (base);
795 UNBLOCK_INPUT;
796 memory_full ();
797 }
798 }
799 #endif
800
801 /* Initialize the blocks and put them on the free list.
802 Is `base' was not properly aligned, we can't use the last block. */
803 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
804 {
805 abase->blocks[i].abase = abase;
806 abase->blocks[i].x.next_free = free_ablock;
807 free_ablock = &abase->blocks[i];
808 }
809 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
810
811 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
812 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
813 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
814 eassert (ABLOCKS_BASE (abase) == base);
815 eassert (aligned == (long) ABLOCKS_BUSY (abase));
816 }
817
818 abase = ABLOCK_ABASE (free_ablock);
819 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
820 val = free_ablock;
821 free_ablock = free_ablock->x.next_free;
822
823 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
824 if (val && type != MEM_TYPE_NON_LISP)
825 mem_insert (val, (char *) val + nbytes, type);
826 #endif
827
828 UNBLOCK_INPUT;
829 if (!val && nbytes)
830 memory_full ();
831
832 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
833 return val;
834 }
835
836 static void
837 lisp_align_free (block)
838 POINTER_TYPE *block;
839 {
840 struct ablock *ablock = block;
841 struct ablocks *abase = ABLOCK_ABASE (ablock);
842
843 BLOCK_INPUT;
844 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
845 mem_delete (mem_find (block));
846 #endif
847 /* Put on free list. */
848 ablock->x.next_free = free_ablock;
849 free_ablock = ablock;
850 /* Update busy count. */
851 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
852
853 if (2 > (long) ABLOCKS_BUSY (abase))
854 { /* All the blocks are free. */
855 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
856 struct ablock **tem = &free_ablock;
857 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
858
859 while (*tem)
860 {
861 if (*tem >= (struct ablock *) abase && *tem < atop)
862 {
863 i++;
864 *tem = (*tem)->x.next_free;
865 }
866 else
867 tem = &(*tem)->x.next_free;
868 }
869 eassert ((aligned & 1) == aligned);
870 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
871 free (ABLOCKS_BASE (abase));
872 }
873 UNBLOCK_INPUT;
874 }
875
876 /* Return a new buffer structure allocated from the heap with
877 a call to lisp_malloc. */
878
879 struct buffer *
880 allocate_buffer ()
881 {
882 struct buffer *b
883 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
884 MEM_TYPE_BUFFER);
885 return b;
886 }
887
888 \f
889 /* Arranging to disable input signals while we're in malloc.
890
891 This only works with GNU malloc. To help out systems which can't
892 use GNU malloc, all the calls to malloc, realloc, and free
893 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
894 pairs; unfortunately, we have no idea what C library functions
895 might call malloc, so we can't really protect them unless you're
896 using GNU malloc. Fortunately, most of the major operating systems
897 can use GNU malloc. */
898
899 #ifndef SYSTEM_MALLOC
900 #ifndef DOUG_LEA_MALLOC
901 extern void * (*__malloc_hook) P_ ((size_t));
902 extern void * (*__realloc_hook) P_ ((void *, size_t));
903 extern void (*__free_hook) P_ ((void *));
904 /* Else declared in malloc.h, perhaps with an extra arg. */
905 #endif /* DOUG_LEA_MALLOC */
906 static void * (*old_malloc_hook) ();
907 static void * (*old_realloc_hook) ();
908 static void (*old_free_hook) ();
909
910 /* This function is used as the hook for free to call. */
911
912 static void
913 emacs_blocked_free (ptr)
914 void *ptr;
915 {
916 BLOCK_INPUT;
917
918 #ifdef GC_MALLOC_CHECK
919 if (ptr)
920 {
921 struct mem_node *m;
922
923 m = mem_find (ptr);
924 if (m == MEM_NIL || m->start != ptr)
925 {
926 fprintf (stderr,
927 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
928 abort ();
929 }
930 else
931 {
932 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
933 mem_delete (m);
934 }
935 }
936 #endif /* GC_MALLOC_CHECK */
937
938 __free_hook = old_free_hook;
939 free (ptr);
940
941 /* If we released our reserve (due to running out of memory),
942 and we have a fair amount free once again,
943 try to set aside another reserve in case we run out once more. */
944 if (spare_memory == 0
945 /* Verify there is enough space that even with the malloc
946 hysteresis this call won't run out again.
947 The code here is correct as long as SPARE_MEMORY
948 is substantially larger than the block size malloc uses. */
949 && (bytes_used_when_full
950 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
951 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
952
953 __free_hook = emacs_blocked_free;
954 UNBLOCK_INPUT;
955 }
956
957
958 /* If we released our reserve (due to running out of memory),
959 and we have a fair amount free once again,
960 try to set aside another reserve in case we run out once more.
961
962 This is called when a relocatable block is freed in ralloc.c. */
963
964 void
965 refill_memory_reserve ()
966 {
967 if (spare_memory == 0)
968 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
969 }
970
971
972 /* This function is the malloc hook that Emacs uses. */
973
974 static void *
975 emacs_blocked_malloc (size)
976 size_t size;
977 {
978 void *value;
979
980 BLOCK_INPUT;
981 __malloc_hook = old_malloc_hook;
982 #ifdef DOUG_LEA_MALLOC
983 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
984 #else
985 __malloc_extra_blocks = malloc_hysteresis;
986 #endif
987
988 value = (void *) malloc (size);
989
990 #ifdef GC_MALLOC_CHECK
991 {
992 struct mem_node *m = mem_find (value);
993 if (m != MEM_NIL)
994 {
995 fprintf (stderr, "Malloc returned %p which is already in use\n",
996 value);
997 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
998 m->start, m->end, (char *) m->end - (char *) m->start,
999 m->type);
1000 abort ();
1001 }
1002
1003 if (!dont_register_blocks)
1004 {
1005 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1006 allocated_mem_type = MEM_TYPE_NON_LISP;
1007 }
1008 }
1009 #endif /* GC_MALLOC_CHECK */
1010
1011 __malloc_hook = emacs_blocked_malloc;
1012 UNBLOCK_INPUT;
1013
1014 /* fprintf (stderr, "%p malloc\n", value); */
1015 return value;
1016 }
1017
1018
1019 /* This function is the realloc hook that Emacs uses. */
1020
1021 static void *
1022 emacs_blocked_realloc (ptr, size)
1023 void *ptr;
1024 size_t size;
1025 {
1026 void *value;
1027
1028 BLOCK_INPUT;
1029 __realloc_hook = old_realloc_hook;
1030
1031 #ifdef GC_MALLOC_CHECK
1032 if (ptr)
1033 {
1034 struct mem_node *m = mem_find (ptr);
1035 if (m == MEM_NIL || m->start != ptr)
1036 {
1037 fprintf (stderr,
1038 "Realloc of %p which wasn't allocated with malloc\n",
1039 ptr);
1040 abort ();
1041 }
1042
1043 mem_delete (m);
1044 }
1045
1046 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1047
1048 /* Prevent malloc from registering blocks. */
1049 dont_register_blocks = 1;
1050 #endif /* GC_MALLOC_CHECK */
1051
1052 value = (void *) realloc (ptr, size);
1053
1054 #ifdef GC_MALLOC_CHECK
1055 dont_register_blocks = 0;
1056
1057 {
1058 struct mem_node *m = mem_find (value);
1059 if (m != MEM_NIL)
1060 {
1061 fprintf (stderr, "Realloc returns memory that is already in use\n");
1062 abort ();
1063 }
1064
1065 /* Can't handle zero size regions in the red-black tree. */
1066 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1067 }
1068
1069 /* fprintf (stderr, "%p <- realloc\n", value); */
1070 #endif /* GC_MALLOC_CHECK */
1071
1072 __realloc_hook = emacs_blocked_realloc;
1073 UNBLOCK_INPUT;
1074
1075 return value;
1076 }
1077
1078
1079 /* Called from main to set up malloc to use our hooks. */
1080
1081 void
1082 uninterrupt_malloc ()
1083 {
1084 if (__free_hook != emacs_blocked_free)
1085 old_free_hook = __free_hook;
1086 __free_hook = emacs_blocked_free;
1087
1088 if (__malloc_hook != emacs_blocked_malloc)
1089 old_malloc_hook = __malloc_hook;
1090 __malloc_hook = emacs_blocked_malloc;
1091
1092 if (__realloc_hook != emacs_blocked_realloc)
1093 old_realloc_hook = __realloc_hook;
1094 __realloc_hook = emacs_blocked_realloc;
1095 }
1096
1097 #endif /* not SYSTEM_MALLOC */
1098
1099
1100 \f
1101 /***********************************************************************
1102 Interval Allocation
1103 ***********************************************************************/
1104
1105 /* Number of intervals allocated in an interval_block structure.
1106 The 1020 is 1024 minus malloc overhead. */
1107
1108 #define INTERVAL_BLOCK_SIZE \
1109 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1110
1111 /* Intervals are allocated in chunks in form of an interval_block
1112 structure. */
1113
1114 struct interval_block
1115 {
1116 /* Place `intervals' first, to preserve alignment. */
1117 struct interval intervals[INTERVAL_BLOCK_SIZE];
1118 struct interval_block *next;
1119 };
1120
1121 /* Current interval block. Its `next' pointer points to older
1122 blocks. */
1123
1124 struct interval_block *interval_block;
1125
1126 /* Index in interval_block above of the next unused interval
1127 structure. */
1128
1129 static int interval_block_index;
1130
1131 /* Number of free and live intervals. */
1132
1133 static int total_free_intervals, total_intervals;
1134
1135 /* List of free intervals. */
1136
1137 INTERVAL interval_free_list;
1138
1139 /* Total number of interval blocks now in use. */
1140
1141 int n_interval_blocks;
1142
1143
1144 /* Initialize interval allocation. */
1145
1146 static void
1147 init_intervals ()
1148 {
1149 interval_block = NULL;
1150 interval_block_index = INTERVAL_BLOCK_SIZE;
1151 interval_free_list = 0;
1152 n_interval_blocks = 0;
1153 }
1154
1155
1156 /* Return a new interval. */
1157
1158 INTERVAL
1159 make_interval ()
1160 {
1161 INTERVAL val;
1162
1163 if (interval_free_list)
1164 {
1165 val = interval_free_list;
1166 interval_free_list = INTERVAL_PARENT (interval_free_list);
1167 }
1168 else
1169 {
1170 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1171 {
1172 register struct interval_block *newi;
1173
1174 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1175 MEM_TYPE_NON_LISP);
1176
1177 newi->next = interval_block;
1178 interval_block = newi;
1179 interval_block_index = 0;
1180 n_interval_blocks++;
1181 }
1182 val = &interval_block->intervals[interval_block_index++];
1183 }
1184 consing_since_gc += sizeof (struct interval);
1185 intervals_consed++;
1186 RESET_INTERVAL (val);
1187 val->gcmarkbit = 0;
1188 return val;
1189 }
1190
1191
1192 /* Mark Lisp objects in interval I. */
1193
1194 static void
1195 mark_interval (i, dummy)
1196 register INTERVAL i;
1197 Lisp_Object dummy;
1198 {
1199 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1200 i->gcmarkbit = 1;
1201 mark_object (i->plist);
1202 }
1203
1204
1205 /* Mark the interval tree rooted in TREE. Don't call this directly;
1206 use the macro MARK_INTERVAL_TREE instead. */
1207
1208 static void
1209 mark_interval_tree (tree)
1210 register INTERVAL tree;
1211 {
1212 /* No need to test if this tree has been marked already; this
1213 function is always called through the MARK_INTERVAL_TREE macro,
1214 which takes care of that. */
1215
1216 traverse_intervals_noorder (tree, mark_interval, Qnil);
1217 }
1218
1219
1220 /* Mark the interval tree rooted in I. */
1221
1222 #define MARK_INTERVAL_TREE(i) \
1223 do { \
1224 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1225 mark_interval_tree (i); \
1226 } while (0)
1227
1228
1229 #define UNMARK_BALANCE_INTERVALS(i) \
1230 do { \
1231 if (! NULL_INTERVAL_P (i)) \
1232 (i) = balance_intervals (i); \
1233 } while (0)
1234
1235 \f
1236 /* Number support. If NO_UNION_TYPE isn't in effect, we
1237 can't create number objects in macros. */
1238 #ifndef make_number
1239 Lisp_Object
1240 make_number (n)
1241 int n;
1242 {
1243 Lisp_Object obj;
1244 obj.s.val = n;
1245 obj.s.type = Lisp_Int;
1246 return obj;
1247 }
1248 #endif
1249 \f
1250 /***********************************************************************
1251 String Allocation
1252 ***********************************************************************/
1253
1254 /* Lisp_Strings are allocated in string_block structures. When a new
1255 string_block is allocated, all the Lisp_Strings it contains are
1256 added to a free-list string_free_list. When a new Lisp_String is
1257 needed, it is taken from that list. During the sweep phase of GC,
1258 string_blocks that are entirely free are freed, except two which
1259 we keep.
1260
1261 String data is allocated from sblock structures. Strings larger
1262 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1263 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1264
1265 Sblocks consist internally of sdata structures, one for each
1266 Lisp_String. The sdata structure points to the Lisp_String it
1267 belongs to. The Lisp_String points back to the `u.data' member of
1268 its sdata structure.
1269
1270 When a Lisp_String is freed during GC, it is put back on
1271 string_free_list, and its `data' member and its sdata's `string'
1272 pointer is set to null. The size of the string is recorded in the
1273 `u.nbytes' member of the sdata. So, sdata structures that are no
1274 longer used, can be easily recognized, and it's easy to compact the
1275 sblocks of small strings which we do in compact_small_strings. */
1276
1277 /* Size in bytes of an sblock structure used for small strings. This
1278 is 8192 minus malloc overhead. */
1279
1280 #define SBLOCK_SIZE 8188
1281
1282 /* Strings larger than this are considered large strings. String data
1283 for large strings is allocated from individual sblocks. */
1284
1285 #define LARGE_STRING_BYTES 1024
1286
1287 /* Structure describing string memory sub-allocated from an sblock.
1288 This is where the contents of Lisp strings are stored. */
1289
1290 struct sdata
1291 {
1292 /* Back-pointer to the string this sdata belongs to. If null, this
1293 structure is free, and the NBYTES member of the union below
1294 contains the string's byte size (the same value that STRING_BYTES
1295 would return if STRING were non-null). If non-null, STRING_BYTES
1296 (STRING) is the size of the data, and DATA contains the string's
1297 contents. */
1298 struct Lisp_String *string;
1299
1300 #ifdef GC_CHECK_STRING_BYTES
1301
1302 EMACS_INT nbytes;
1303 unsigned char data[1];
1304
1305 #define SDATA_NBYTES(S) (S)->nbytes
1306 #define SDATA_DATA(S) (S)->data
1307
1308 #else /* not GC_CHECK_STRING_BYTES */
1309
1310 union
1311 {
1312 /* When STRING in non-null. */
1313 unsigned char data[1];
1314
1315 /* When STRING is null. */
1316 EMACS_INT nbytes;
1317 } u;
1318
1319
1320 #define SDATA_NBYTES(S) (S)->u.nbytes
1321 #define SDATA_DATA(S) (S)->u.data
1322
1323 #endif /* not GC_CHECK_STRING_BYTES */
1324 };
1325
1326
1327 /* Structure describing a block of memory which is sub-allocated to
1328 obtain string data memory for strings. Blocks for small strings
1329 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1330 as large as needed. */
1331
1332 struct sblock
1333 {
1334 /* Next in list. */
1335 struct sblock *next;
1336
1337 /* Pointer to the next free sdata block. This points past the end
1338 of the sblock if there isn't any space left in this block. */
1339 struct sdata *next_free;
1340
1341 /* Start of data. */
1342 struct sdata first_data;
1343 };
1344
1345 /* Number of Lisp strings in a string_block structure. The 1020 is
1346 1024 minus malloc overhead. */
1347
1348 #define STRING_BLOCK_SIZE \
1349 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1350
1351 /* Structure describing a block from which Lisp_String structures
1352 are allocated. */
1353
1354 struct string_block
1355 {
1356 /* Place `strings' first, to preserve alignment. */
1357 struct Lisp_String strings[STRING_BLOCK_SIZE];
1358 struct string_block *next;
1359 };
1360
1361 /* Head and tail of the list of sblock structures holding Lisp string
1362 data. We always allocate from current_sblock. The NEXT pointers
1363 in the sblock structures go from oldest_sblock to current_sblock. */
1364
1365 static struct sblock *oldest_sblock, *current_sblock;
1366
1367 /* List of sblocks for large strings. */
1368
1369 static struct sblock *large_sblocks;
1370
1371 /* List of string_block structures, and how many there are. */
1372
1373 static struct string_block *string_blocks;
1374 static int n_string_blocks;
1375
1376 /* Free-list of Lisp_Strings. */
1377
1378 static struct Lisp_String *string_free_list;
1379
1380 /* Number of live and free Lisp_Strings. */
1381
1382 static int total_strings, total_free_strings;
1383
1384 /* Number of bytes used by live strings. */
1385
1386 static int total_string_size;
1387
1388 /* Given a pointer to a Lisp_String S which is on the free-list
1389 string_free_list, return a pointer to its successor in the
1390 free-list. */
1391
1392 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1393
1394 /* Return a pointer to the sdata structure belonging to Lisp string S.
1395 S must be live, i.e. S->data must not be null. S->data is actually
1396 a pointer to the `u.data' member of its sdata structure; the
1397 structure starts at a constant offset in front of that. */
1398
1399 #ifdef GC_CHECK_STRING_BYTES
1400
1401 #define SDATA_OF_STRING(S) \
1402 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1403 - sizeof (EMACS_INT)))
1404
1405 #else /* not GC_CHECK_STRING_BYTES */
1406
1407 #define SDATA_OF_STRING(S) \
1408 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1409
1410 #endif /* not GC_CHECK_STRING_BYTES */
1411
1412 /* Value is the size of an sdata structure large enough to hold NBYTES
1413 bytes of string data. The value returned includes a terminating
1414 NUL byte, the size of the sdata structure, and padding. */
1415
1416 #ifdef GC_CHECK_STRING_BYTES
1417
1418 #define SDATA_SIZE(NBYTES) \
1419 ((sizeof (struct Lisp_String *) \
1420 + (NBYTES) + 1 \
1421 + sizeof (EMACS_INT) \
1422 + sizeof (EMACS_INT) - 1) \
1423 & ~(sizeof (EMACS_INT) - 1))
1424
1425 #else /* not GC_CHECK_STRING_BYTES */
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((sizeof (struct Lisp_String *) \
1429 + (NBYTES) + 1 \
1430 + sizeof (EMACS_INT) - 1) \
1431 & ~(sizeof (EMACS_INT) - 1))
1432
1433 #endif /* not GC_CHECK_STRING_BYTES */
1434
1435 /* Initialize string allocation. Called from init_alloc_once. */
1436
1437 void
1438 init_strings ()
1439 {
1440 total_strings = total_free_strings = total_string_size = 0;
1441 oldest_sblock = current_sblock = large_sblocks = NULL;
1442 string_blocks = NULL;
1443 n_string_blocks = 0;
1444 string_free_list = NULL;
1445 }
1446
1447
1448 #ifdef GC_CHECK_STRING_BYTES
1449
1450 static int check_string_bytes_count;
1451
1452 void check_string_bytes P_ ((int));
1453 void check_sblock P_ ((struct sblock *));
1454
1455 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1456
1457
1458 /* Like GC_STRING_BYTES, but with debugging check. */
1459
1460 int
1461 string_bytes (s)
1462 struct Lisp_String *s;
1463 {
1464 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1465 if (!PURE_POINTER_P (s)
1466 && s->data
1467 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1468 abort ();
1469 return nbytes;
1470 }
1471
1472 /* Check validity of Lisp strings' string_bytes member in B. */
1473
1474 void
1475 check_sblock (b)
1476 struct sblock *b;
1477 {
1478 struct sdata *from, *end, *from_end;
1479
1480 end = b->next_free;
1481
1482 for (from = &b->first_data; from < end; from = from_end)
1483 {
1484 /* Compute the next FROM here because copying below may
1485 overwrite data we need to compute it. */
1486 int nbytes;
1487
1488 /* Check that the string size recorded in the string is the
1489 same as the one recorded in the sdata structure. */
1490 if (from->string)
1491 CHECK_STRING_BYTES (from->string);
1492
1493 if (from->string)
1494 nbytes = GC_STRING_BYTES (from->string);
1495 else
1496 nbytes = SDATA_NBYTES (from);
1497
1498 nbytes = SDATA_SIZE (nbytes);
1499 from_end = (struct sdata *) ((char *) from + nbytes);
1500 }
1501 }
1502
1503
1504 /* Check validity of Lisp strings' string_bytes member. ALL_P
1505 non-zero means check all strings, otherwise check only most
1506 recently allocated strings. Used for hunting a bug. */
1507
1508 void
1509 check_string_bytes (all_p)
1510 int all_p;
1511 {
1512 if (all_p)
1513 {
1514 struct sblock *b;
1515
1516 for (b = large_sblocks; b; b = b->next)
1517 {
1518 struct Lisp_String *s = b->first_data.string;
1519 if (s)
1520 CHECK_STRING_BYTES (s);
1521 }
1522
1523 for (b = oldest_sblock; b; b = b->next)
1524 check_sblock (b);
1525 }
1526 else
1527 check_sblock (current_sblock);
1528 }
1529
1530 #endif /* GC_CHECK_STRING_BYTES */
1531
1532
1533 /* Return a new Lisp_String. */
1534
1535 static struct Lisp_String *
1536 allocate_string ()
1537 {
1538 struct Lisp_String *s;
1539
1540 /* If the free-list is empty, allocate a new string_block, and
1541 add all the Lisp_Strings in it to the free-list. */
1542 if (string_free_list == NULL)
1543 {
1544 struct string_block *b;
1545 int i;
1546
1547 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1548 bzero (b, sizeof *b);
1549 b->next = string_blocks;
1550 string_blocks = b;
1551 ++n_string_blocks;
1552
1553 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1554 {
1555 s = b->strings + i;
1556 NEXT_FREE_LISP_STRING (s) = string_free_list;
1557 string_free_list = s;
1558 }
1559
1560 total_free_strings += STRING_BLOCK_SIZE;
1561 }
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 string_free_list = NEXT_FREE_LISP_STRING (s);
1566
1567 /* Probably not strictly necessary, but play it safe. */
1568 bzero (s, sizeof *s);
1569
1570 --total_free_strings;
1571 ++total_strings;
1572 ++strings_consed;
1573 consing_since_gc += sizeof *s;
1574
1575 #ifdef GC_CHECK_STRING_BYTES
1576 if (!noninteractive
1577 #ifdef MAC_OS8
1578 && current_sblock
1579 #endif
1580 )
1581 {
1582 if (++check_string_bytes_count == 200)
1583 {
1584 check_string_bytes_count = 0;
1585 check_string_bytes (1);
1586 }
1587 else
1588 check_string_bytes (0);
1589 }
1590 #endif /* GC_CHECK_STRING_BYTES */
1591
1592 return s;
1593 }
1594
1595
1596 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1597 plus a NUL byte at the end. Allocate an sdata structure for S, and
1598 set S->data to its `u.data' member. Store a NUL byte at the end of
1599 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1600 S->data if it was initially non-null. */
1601
1602 void
1603 allocate_string_data (s, nchars, nbytes)
1604 struct Lisp_String *s;
1605 int nchars, nbytes;
1606 {
1607 struct sdata *data, *old_data;
1608 struct sblock *b;
1609 int needed, old_nbytes;
1610
1611 /* Determine the number of bytes needed to store NBYTES bytes
1612 of string data. */
1613 needed = SDATA_SIZE (nbytes);
1614
1615 if (nbytes > LARGE_STRING_BYTES)
1616 {
1617 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1618
1619 #ifdef DOUG_LEA_MALLOC
1620 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1621 because mapped region contents are not preserved in
1622 a dumped Emacs.
1623
1624 In case you think of allowing it in a dumped Emacs at the
1625 cost of not being able to re-dump, there's another reason:
1626 mmap'ed data typically have an address towards the top of the
1627 address space, which won't fit into an EMACS_INT (at least on
1628 32-bit systems with the current tagging scheme). --fx */
1629 mallopt (M_MMAP_MAX, 0);
1630 #endif
1631
1632 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1633
1634 #ifdef DOUG_LEA_MALLOC
1635 /* Back to a reasonable maximum of mmap'ed areas. */
1636 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1637 #endif
1638
1639 b->next_free = &b->first_data;
1640 b->first_data.string = NULL;
1641 b->next = large_sblocks;
1642 large_sblocks = b;
1643 }
1644 else if (current_sblock == NULL
1645 || (((char *) current_sblock + SBLOCK_SIZE
1646 - (char *) current_sblock->next_free)
1647 < needed))
1648 {
1649 /* Not enough room in the current sblock. */
1650 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1651 b->next_free = &b->first_data;
1652 b->first_data.string = NULL;
1653 b->next = NULL;
1654
1655 if (current_sblock)
1656 current_sblock->next = b;
1657 else
1658 oldest_sblock = b;
1659 current_sblock = b;
1660 }
1661 else
1662 b = current_sblock;
1663
1664 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1665 old_nbytes = GC_STRING_BYTES (s);
1666
1667 data = b->next_free;
1668 data->string = s;
1669 s->data = SDATA_DATA (data);
1670 #ifdef GC_CHECK_STRING_BYTES
1671 SDATA_NBYTES (data) = nbytes;
1672 #endif
1673 s->size = nchars;
1674 s->size_byte = nbytes;
1675 s->data[nbytes] = '\0';
1676 b->next_free = (struct sdata *) ((char *) data + needed);
1677
1678 /* If S had already data assigned, mark that as free by setting its
1679 string back-pointer to null, and recording the size of the data
1680 in it. */
1681 if (old_data)
1682 {
1683 SDATA_NBYTES (old_data) = old_nbytes;
1684 old_data->string = NULL;
1685 }
1686
1687 consing_since_gc += needed;
1688 }
1689
1690
1691 /* Sweep and compact strings. */
1692
1693 static void
1694 sweep_strings ()
1695 {
1696 struct string_block *b, *next;
1697 struct string_block *live_blocks = NULL;
1698
1699 string_free_list = NULL;
1700 total_strings = total_free_strings = 0;
1701 total_string_size = 0;
1702
1703 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1704 for (b = string_blocks; b; b = next)
1705 {
1706 int i, nfree = 0;
1707 struct Lisp_String *free_list_before = string_free_list;
1708
1709 next = b->next;
1710
1711 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1712 {
1713 struct Lisp_String *s = b->strings + i;
1714
1715 if (s->data)
1716 {
1717 /* String was not on free-list before. */
1718 if (STRING_MARKED_P (s))
1719 {
1720 /* String is live; unmark it and its intervals. */
1721 UNMARK_STRING (s);
1722
1723 if (!NULL_INTERVAL_P (s->intervals))
1724 UNMARK_BALANCE_INTERVALS (s->intervals);
1725
1726 ++total_strings;
1727 total_string_size += STRING_BYTES (s);
1728 }
1729 else
1730 {
1731 /* String is dead. Put it on the free-list. */
1732 struct sdata *data = SDATA_OF_STRING (s);
1733
1734 /* Save the size of S in its sdata so that we know
1735 how large that is. Reset the sdata's string
1736 back-pointer so that we know it's free. */
1737 #ifdef GC_CHECK_STRING_BYTES
1738 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1739 abort ();
1740 #else
1741 data->u.nbytes = GC_STRING_BYTES (s);
1742 #endif
1743 data->string = NULL;
1744
1745 /* Reset the strings's `data' member so that we
1746 know it's free. */
1747 s->data = NULL;
1748
1749 /* Put the string on the free-list. */
1750 NEXT_FREE_LISP_STRING (s) = string_free_list;
1751 string_free_list = s;
1752 ++nfree;
1753 }
1754 }
1755 else
1756 {
1757 /* S was on the free-list before. Put it there again. */
1758 NEXT_FREE_LISP_STRING (s) = string_free_list;
1759 string_free_list = s;
1760 ++nfree;
1761 }
1762 }
1763
1764 /* Free blocks that contain free Lisp_Strings only, except
1765 the first two of them. */
1766 if (nfree == STRING_BLOCK_SIZE
1767 && total_free_strings > STRING_BLOCK_SIZE)
1768 {
1769 lisp_free (b);
1770 --n_string_blocks;
1771 string_free_list = free_list_before;
1772 }
1773 else
1774 {
1775 total_free_strings += nfree;
1776 b->next = live_blocks;
1777 live_blocks = b;
1778 }
1779 }
1780
1781 string_blocks = live_blocks;
1782 free_large_strings ();
1783 compact_small_strings ();
1784 }
1785
1786
1787 /* Free dead large strings. */
1788
1789 static void
1790 free_large_strings ()
1791 {
1792 struct sblock *b, *next;
1793 struct sblock *live_blocks = NULL;
1794
1795 for (b = large_sblocks; b; b = next)
1796 {
1797 next = b->next;
1798
1799 if (b->first_data.string == NULL)
1800 lisp_free (b);
1801 else
1802 {
1803 b->next = live_blocks;
1804 live_blocks = b;
1805 }
1806 }
1807
1808 large_sblocks = live_blocks;
1809 }
1810
1811
1812 /* Compact data of small strings. Free sblocks that don't contain
1813 data of live strings after compaction. */
1814
1815 static void
1816 compact_small_strings ()
1817 {
1818 struct sblock *b, *tb, *next;
1819 struct sdata *from, *to, *end, *tb_end;
1820 struct sdata *to_end, *from_end;
1821
1822 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1823 to, and TB_END is the end of TB. */
1824 tb = oldest_sblock;
1825 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1826 to = &tb->first_data;
1827
1828 /* Step through the blocks from the oldest to the youngest. We
1829 expect that old blocks will stabilize over time, so that less
1830 copying will happen this way. */
1831 for (b = oldest_sblock; b; b = b->next)
1832 {
1833 end = b->next_free;
1834 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1835
1836 for (from = &b->first_data; from < end; from = from_end)
1837 {
1838 /* Compute the next FROM here because copying below may
1839 overwrite data we need to compute it. */
1840 int nbytes;
1841
1842 #ifdef GC_CHECK_STRING_BYTES
1843 /* Check that the string size recorded in the string is the
1844 same as the one recorded in the sdata structure. */
1845 if (from->string
1846 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1847 abort ();
1848 #endif /* GC_CHECK_STRING_BYTES */
1849
1850 if (from->string)
1851 nbytes = GC_STRING_BYTES (from->string);
1852 else
1853 nbytes = SDATA_NBYTES (from);
1854
1855 nbytes = SDATA_SIZE (nbytes);
1856 from_end = (struct sdata *) ((char *) from + nbytes);
1857
1858 /* FROM->string non-null means it's alive. Copy its data. */
1859 if (from->string)
1860 {
1861 /* If TB is full, proceed with the next sblock. */
1862 to_end = (struct sdata *) ((char *) to + nbytes);
1863 if (to_end > tb_end)
1864 {
1865 tb->next_free = to;
1866 tb = tb->next;
1867 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1868 to = &tb->first_data;
1869 to_end = (struct sdata *) ((char *) to + nbytes);
1870 }
1871
1872 /* Copy, and update the string's `data' pointer. */
1873 if (from != to)
1874 {
1875 xassert (tb != b || to <= from);
1876 safe_bcopy ((char *) from, (char *) to, nbytes);
1877 to->string->data = SDATA_DATA (to);
1878 }
1879
1880 /* Advance past the sdata we copied to. */
1881 to = to_end;
1882 }
1883 }
1884 }
1885
1886 /* The rest of the sblocks following TB don't contain live data, so
1887 we can free them. */
1888 for (b = tb->next; b; b = next)
1889 {
1890 next = b->next;
1891 lisp_free (b);
1892 }
1893
1894 tb->next_free = to;
1895 tb->next = NULL;
1896 current_sblock = tb;
1897 }
1898
1899
1900 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1901 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1902 LENGTH must be an integer.
1903 INIT must be an integer that represents a character. */)
1904 (length, init)
1905 Lisp_Object length, init;
1906 {
1907 register Lisp_Object val;
1908 register unsigned char *p, *end;
1909 int c, nbytes;
1910
1911 CHECK_NATNUM (length);
1912 CHECK_NUMBER (init);
1913
1914 c = XINT (init);
1915 if (ASCII_CHAR_P (c))
1916 {
1917 nbytes = XINT (length);
1918 val = make_uninit_string (nbytes);
1919 p = SDATA (val);
1920 end = p + SCHARS (val);
1921 while (p != end)
1922 *p++ = c;
1923 }
1924 else
1925 {
1926 unsigned char str[MAX_MULTIBYTE_LENGTH];
1927 int len = CHAR_STRING (c, str);
1928
1929 nbytes = len * XINT (length);
1930 val = make_uninit_multibyte_string (XINT (length), nbytes);
1931 p = SDATA (val);
1932 end = p + nbytes;
1933 while (p != end)
1934 {
1935 bcopy (str, p, len);
1936 p += len;
1937 }
1938 }
1939
1940 *p = 0;
1941 return val;
1942 }
1943
1944
1945 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1946 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1947 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1948 (length, init)
1949 Lisp_Object length, init;
1950 {
1951 register Lisp_Object val;
1952 struct Lisp_Bool_Vector *p;
1953 int real_init, i;
1954 int length_in_chars, length_in_elts, bits_per_value;
1955
1956 CHECK_NATNUM (length);
1957
1958 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1959
1960 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1961 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1962 / BOOL_VECTOR_BITS_PER_CHAR);
1963
1964 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1965 slot `size' of the struct Lisp_Bool_Vector. */
1966 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1967 p = XBOOL_VECTOR (val);
1968
1969 /* Get rid of any bits that would cause confusion. */
1970 p->vector_size = 0;
1971 XSETBOOL_VECTOR (val, p);
1972 p->size = XFASTINT (length);
1973
1974 real_init = (NILP (init) ? 0 : -1);
1975 for (i = 0; i < length_in_chars ; i++)
1976 p->data[i] = real_init;
1977
1978 /* Clear the extraneous bits in the last byte. */
1979 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1980 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1981 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1982
1983 return val;
1984 }
1985
1986
1987 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1988 of characters from the contents. This string may be unibyte or
1989 multibyte, depending on the contents. */
1990
1991 Lisp_Object
1992 make_string (contents, nbytes)
1993 const char *contents;
1994 int nbytes;
1995 {
1996 register Lisp_Object val;
1997 int nchars, multibyte_nbytes;
1998
1999 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2000 if (nbytes == nchars || nbytes != multibyte_nbytes)
2001 /* CONTENTS contains no multibyte sequences or contains an invalid
2002 multibyte sequence. We must make unibyte string. */
2003 val = make_unibyte_string (contents, nbytes);
2004 else
2005 val = make_multibyte_string (contents, nchars, nbytes);
2006 return val;
2007 }
2008
2009
2010 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2011
2012 Lisp_Object
2013 make_unibyte_string (contents, length)
2014 const char *contents;
2015 int length;
2016 {
2017 register Lisp_Object val;
2018 val = make_uninit_string (length);
2019 bcopy (contents, SDATA (val), length);
2020 STRING_SET_UNIBYTE (val);
2021 return val;
2022 }
2023
2024
2025 /* Make a multibyte string from NCHARS characters occupying NBYTES
2026 bytes at CONTENTS. */
2027
2028 Lisp_Object
2029 make_multibyte_string (contents, nchars, nbytes)
2030 const char *contents;
2031 int nchars, nbytes;
2032 {
2033 register Lisp_Object val;
2034 val = make_uninit_multibyte_string (nchars, nbytes);
2035 bcopy (contents, SDATA (val), nbytes);
2036 return val;
2037 }
2038
2039
2040 /* Make a string from NCHARS characters occupying NBYTES bytes at
2041 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2042
2043 Lisp_Object
2044 make_string_from_bytes (contents, nchars, nbytes)
2045 const char *contents;
2046 int nchars, nbytes;
2047 {
2048 register Lisp_Object val;
2049 val = make_uninit_multibyte_string (nchars, nbytes);
2050 bcopy (contents, SDATA (val), nbytes);
2051 if (SBYTES (val) == SCHARS (val))
2052 STRING_SET_UNIBYTE (val);
2053 return val;
2054 }
2055
2056
2057 /* Make a string from NCHARS characters occupying NBYTES bytes at
2058 CONTENTS. The argument MULTIBYTE controls whether to label the
2059 string as multibyte. If NCHARS is negative, it counts the number of
2060 characters by itself. */
2061
2062 Lisp_Object
2063 make_specified_string (contents, nchars, nbytes, multibyte)
2064 const char *contents;
2065 int nchars, nbytes;
2066 int multibyte;
2067 {
2068 register Lisp_Object val;
2069
2070 if (nchars < 0)
2071 {
2072 if (multibyte)
2073 nchars = multibyte_chars_in_text (contents, nbytes);
2074 else
2075 nchars = nbytes;
2076 }
2077 val = make_uninit_multibyte_string (nchars, nbytes);
2078 bcopy (contents, SDATA (val), nbytes);
2079 if (!multibyte)
2080 STRING_SET_UNIBYTE (val);
2081 return val;
2082 }
2083
2084
2085 /* Make a string from the data at STR, treating it as multibyte if the
2086 data warrants. */
2087
2088 Lisp_Object
2089 build_string (str)
2090 const char *str;
2091 {
2092 return make_string (str, strlen (str));
2093 }
2094
2095
2096 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2097 occupying LENGTH bytes. */
2098
2099 Lisp_Object
2100 make_uninit_string (length)
2101 int length;
2102 {
2103 Lisp_Object val;
2104 val = make_uninit_multibyte_string (length, length);
2105 STRING_SET_UNIBYTE (val);
2106 return val;
2107 }
2108
2109
2110 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2111 which occupy NBYTES bytes. */
2112
2113 Lisp_Object
2114 make_uninit_multibyte_string (nchars, nbytes)
2115 int nchars, nbytes;
2116 {
2117 Lisp_Object string;
2118 struct Lisp_String *s;
2119
2120 if (nchars < 0)
2121 abort ();
2122
2123 s = allocate_string ();
2124 allocate_string_data (s, nchars, nbytes);
2125 XSETSTRING (string, s);
2126 string_chars_consed += nbytes;
2127 return string;
2128 }
2129
2130
2131 \f
2132 /***********************************************************************
2133 Float Allocation
2134 ***********************************************************************/
2135
2136 /* We store float cells inside of float_blocks, allocating a new
2137 float_block with malloc whenever necessary. Float cells reclaimed
2138 by GC are put on a free list to be reallocated before allocating
2139 any new float cells from the latest float_block. */
2140
2141 #define FLOAT_BLOCK_SIZE \
2142 (((BLOCK_BYTES - sizeof (struct float_block *) \
2143 /* The compiler might add padding at the end. */ \
2144 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2145 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2146
2147 #define GETMARKBIT(block,n) \
2148 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2149 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2150 & 1)
2151
2152 #define SETMARKBIT(block,n) \
2153 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2154 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2155
2156 #define UNSETMARKBIT(block,n) \
2157 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2158 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2159
2160 #define FLOAT_BLOCK(fptr) \
2161 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2162
2163 #define FLOAT_INDEX(fptr) \
2164 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2165
2166 struct float_block
2167 {
2168 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2169 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2170 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2171 struct float_block *next;
2172 };
2173
2174 #define FLOAT_MARKED_P(fptr) \
2175 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2176
2177 #define FLOAT_MARK(fptr) \
2178 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2179
2180 #define FLOAT_UNMARK(fptr) \
2181 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2182
2183 /* Current float_block. */
2184
2185 struct float_block *float_block;
2186
2187 /* Index of first unused Lisp_Float in the current float_block. */
2188
2189 int float_block_index;
2190
2191 /* Total number of float blocks now in use. */
2192
2193 int n_float_blocks;
2194
2195 /* Free-list of Lisp_Floats. */
2196
2197 struct Lisp_Float *float_free_list;
2198
2199
2200 /* Initialize float allocation. */
2201
2202 void
2203 init_float ()
2204 {
2205 float_block = NULL;
2206 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2207 float_free_list = 0;
2208 n_float_blocks = 0;
2209 }
2210
2211
2212 /* Explicitly free a float cell by putting it on the free-list. */
2213
2214 void
2215 free_float (ptr)
2216 struct Lisp_Float *ptr;
2217 {
2218 *(struct Lisp_Float **)&ptr->data = float_free_list;
2219 float_free_list = ptr;
2220 }
2221
2222
2223 /* Return a new float object with value FLOAT_VALUE. */
2224
2225 Lisp_Object
2226 make_float (float_value)
2227 double float_value;
2228 {
2229 register Lisp_Object val;
2230
2231 if (float_free_list)
2232 {
2233 /* We use the data field for chaining the free list
2234 so that we won't use the same field that has the mark bit. */
2235 XSETFLOAT (val, float_free_list);
2236 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2237 }
2238 else
2239 {
2240 if (float_block_index == FLOAT_BLOCK_SIZE)
2241 {
2242 register struct float_block *new;
2243
2244 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2245 MEM_TYPE_FLOAT);
2246 new->next = float_block;
2247 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2248 float_block = new;
2249 float_block_index = 0;
2250 n_float_blocks++;
2251 }
2252 XSETFLOAT (val, &float_block->floats[float_block_index]);
2253 float_block_index++;
2254 }
2255
2256 XFLOAT_DATA (val) = float_value;
2257 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2258 consing_since_gc += sizeof (struct Lisp_Float);
2259 floats_consed++;
2260 return val;
2261 }
2262
2263
2264 \f
2265 /***********************************************************************
2266 Cons Allocation
2267 ***********************************************************************/
2268
2269 /* We store cons cells inside of cons_blocks, allocating a new
2270 cons_block with malloc whenever necessary. Cons cells reclaimed by
2271 GC are put on a free list to be reallocated before allocating
2272 any new cons cells from the latest cons_block. */
2273
2274 #define CONS_BLOCK_SIZE \
2275 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2276 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2277
2278 #define CONS_BLOCK(fptr) \
2279 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2280
2281 #define CONS_INDEX(fptr) \
2282 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2283
2284 struct cons_block
2285 {
2286 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2287 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2288 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2289 struct cons_block *next;
2290 };
2291
2292 #define CONS_MARKED_P(fptr) \
2293 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2294
2295 #define CONS_MARK(fptr) \
2296 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2297
2298 #define CONS_UNMARK(fptr) \
2299 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2300
2301 /* Current cons_block. */
2302
2303 struct cons_block *cons_block;
2304
2305 /* Index of first unused Lisp_Cons in the current block. */
2306
2307 int cons_block_index;
2308
2309 /* Free-list of Lisp_Cons structures. */
2310
2311 struct Lisp_Cons *cons_free_list;
2312
2313 /* Total number of cons blocks now in use. */
2314
2315 int n_cons_blocks;
2316
2317
2318 /* Initialize cons allocation. */
2319
2320 void
2321 init_cons ()
2322 {
2323 cons_block = NULL;
2324 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2325 cons_free_list = 0;
2326 n_cons_blocks = 0;
2327 }
2328
2329
2330 /* Explicitly free a cons cell by putting it on the free-list. */
2331
2332 void
2333 free_cons (ptr)
2334 struct Lisp_Cons *ptr;
2335 {
2336 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2337 #if GC_MARK_STACK
2338 ptr->car = Vdead;
2339 #endif
2340 cons_free_list = ptr;
2341 }
2342
2343 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2344 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2345 (car, cdr)
2346 Lisp_Object car, cdr;
2347 {
2348 register Lisp_Object val;
2349
2350 if (cons_free_list)
2351 {
2352 /* We use the cdr for chaining the free list
2353 so that we won't use the same field that has the mark bit. */
2354 XSETCONS (val, cons_free_list);
2355 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2356 }
2357 else
2358 {
2359 if (cons_block_index == CONS_BLOCK_SIZE)
2360 {
2361 register struct cons_block *new;
2362 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2363 MEM_TYPE_CONS);
2364 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2365 new->next = cons_block;
2366 cons_block = new;
2367 cons_block_index = 0;
2368 n_cons_blocks++;
2369 }
2370 XSETCONS (val, &cons_block->conses[cons_block_index]);
2371 cons_block_index++;
2372 }
2373
2374 XSETCAR (val, car);
2375 XSETCDR (val, cdr);
2376 eassert (!CONS_MARKED_P (XCONS (val)));
2377 consing_since_gc += sizeof (struct Lisp_Cons);
2378 cons_cells_consed++;
2379 return val;
2380 }
2381
2382
2383 /* Make a list of 2, 3, 4 or 5 specified objects. */
2384
2385 Lisp_Object
2386 list2 (arg1, arg2)
2387 Lisp_Object arg1, arg2;
2388 {
2389 return Fcons (arg1, Fcons (arg2, Qnil));
2390 }
2391
2392
2393 Lisp_Object
2394 list3 (arg1, arg2, arg3)
2395 Lisp_Object arg1, arg2, arg3;
2396 {
2397 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2398 }
2399
2400
2401 Lisp_Object
2402 list4 (arg1, arg2, arg3, arg4)
2403 Lisp_Object arg1, arg2, arg3, arg4;
2404 {
2405 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2406 }
2407
2408
2409 Lisp_Object
2410 list5 (arg1, arg2, arg3, arg4, arg5)
2411 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2412 {
2413 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2414 Fcons (arg5, Qnil)))));
2415 }
2416
2417
2418 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2419 doc: /* Return a newly created list with specified arguments as elements.
2420 Any number of arguments, even zero arguments, are allowed.
2421 usage: (list &rest OBJECTS) */)
2422 (nargs, args)
2423 int nargs;
2424 register Lisp_Object *args;
2425 {
2426 register Lisp_Object val;
2427 val = Qnil;
2428
2429 while (nargs > 0)
2430 {
2431 nargs--;
2432 val = Fcons (args[nargs], val);
2433 }
2434 return val;
2435 }
2436
2437
2438 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2439 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2440 (length, init)
2441 register Lisp_Object length, init;
2442 {
2443 register Lisp_Object val;
2444 register int size;
2445
2446 CHECK_NATNUM (length);
2447 size = XFASTINT (length);
2448
2449 val = Qnil;
2450 while (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469
2470 if (size > 0)
2471 {
2472 val = Fcons (init, val);
2473 --size;
2474 }
2475 }
2476 }
2477 }
2478
2479 QUIT;
2480 }
2481
2482 return val;
2483 }
2484
2485
2486 \f
2487 /***********************************************************************
2488 Vector Allocation
2489 ***********************************************************************/
2490
2491 /* Singly-linked list of all vectors. */
2492
2493 struct Lisp_Vector *all_vectors;
2494
2495 /* Total number of vector-like objects now in use. */
2496
2497 int n_vectors;
2498
2499
2500 /* Value is a pointer to a newly allocated Lisp_Vector structure
2501 with room for LEN Lisp_Objects. */
2502
2503 static struct Lisp_Vector *
2504 allocate_vectorlike (len, type)
2505 EMACS_INT len;
2506 enum mem_type type;
2507 {
2508 struct Lisp_Vector *p;
2509 size_t nbytes;
2510
2511 #ifdef DOUG_LEA_MALLOC
2512 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2513 because mapped region contents are not preserved in
2514 a dumped Emacs. */
2515 BLOCK_INPUT;
2516 mallopt (M_MMAP_MAX, 0);
2517 UNBLOCK_INPUT;
2518 #endif
2519
2520 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2521 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2522
2523 #ifdef DOUG_LEA_MALLOC
2524 /* Back to a reasonable maximum of mmap'ed areas. */
2525 BLOCK_INPUT;
2526 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2527 UNBLOCK_INPUT;
2528 #endif
2529
2530 consing_since_gc += nbytes;
2531 vector_cells_consed += len;
2532
2533 p->next = all_vectors;
2534 all_vectors = p;
2535 ++n_vectors;
2536 return p;
2537 }
2538
2539
2540 /* Allocate a vector with NSLOTS slots. */
2541
2542 struct Lisp_Vector *
2543 allocate_vector (nslots)
2544 EMACS_INT nslots;
2545 {
2546 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2547 v->size = nslots;
2548 return v;
2549 }
2550
2551
2552 /* Allocate other vector-like structures. */
2553
2554 struct Lisp_Hash_Table *
2555 allocate_hash_table ()
2556 {
2557 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2558 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2559 EMACS_INT i;
2560
2561 v->size = len;
2562 for (i = 0; i < len; ++i)
2563 v->contents[i] = Qnil;
2564
2565 return (struct Lisp_Hash_Table *) v;
2566 }
2567
2568
2569 struct window *
2570 allocate_window ()
2571 {
2572 EMACS_INT len = VECSIZE (struct window);
2573 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2574 EMACS_INT i;
2575
2576 for (i = 0; i < len; ++i)
2577 v->contents[i] = Qnil;
2578 v->size = len;
2579
2580 return (struct window *) v;
2581 }
2582
2583
2584 struct frame *
2585 allocate_frame ()
2586 {
2587 EMACS_INT len = VECSIZE (struct frame);
2588 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2589 EMACS_INT i;
2590
2591 for (i = 0; i < len; ++i)
2592 v->contents[i] = make_number (0);
2593 v->size = len;
2594 return (struct frame *) v;
2595 }
2596
2597
2598 struct Lisp_Process *
2599 allocate_process ()
2600 {
2601 EMACS_INT len = VECSIZE (struct Lisp_Process);
2602 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2603 EMACS_INT i;
2604
2605 for (i = 0; i < len; ++i)
2606 v->contents[i] = Qnil;
2607 v->size = len;
2608
2609 return (struct Lisp_Process *) v;
2610 }
2611
2612
2613 struct Lisp_Vector *
2614 allocate_other_vector (len)
2615 EMACS_INT len;
2616 {
2617 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2618 EMACS_INT i;
2619
2620 for (i = 0; i < len; ++i)
2621 v->contents[i] = Qnil;
2622 v->size = len;
2623
2624 return v;
2625 }
2626
2627
2628 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2629 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2630 See also the function `vector'. */)
2631 (length, init)
2632 register Lisp_Object length, init;
2633 {
2634 Lisp_Object vector;
2635 register EMACS_INT sizei;
2636 register int index;
2637 register struct Lisp_Vector *p;
2638
2639 CHECK_NATNUM (length);
2640 sizei = XFASTINT (length);
2641
2642 p = allocate_vector (sizei);
2643 for (index = 0; index < sizei; index++)
2644 p->contents[index] = init;
2645
2646 XSETVECTOR (vector, p);
2647 return vector;
2648 }
2649
2650
2651 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2652 doc: /* Return a newly created vector with specified arguments as elements.
2653 Any number of arguments, even zero arguments, are allowed.
2654 usage: (vector &rest OBJECTS) */)
2655 (nargs, args)
2656 register int nargs;
2657 Lisp_Object *args;
2658 {
2659 register Lisp_Object len, val;
2660 register int index;
2661 register struct Lisp_Vector *p;
2662
2663 XSETFASTINT (len, nargs);
2664 val = Fmake_vector (len, Qnil);
2665 p = XVECTOR (val);
2666 for (index = 0; index < nargs; index++)
2667 p->contents[index] = args[index];
2668 return val;
2669 }
2670
2671
2672 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2673 doc: /* Create a byte-code object with specified arguments as elements.
2674 The arguments should be the arglist, bytecode-string, constant vector,
2675 stack size, (optional) doc string, and (optional) interactive spec.
2676 The first four arguments are required; at most six have any
2677 significance.
2678 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2679 (nargs, args)
2680 register int nargs;
2681 Lisp_Object *args;
2682 {
2683 register Lisp_Object len, val;
2684 register int index;
2685 register struct Lisp_Vector *p;
2686
2687 XSETFASTINT (len, nargs);
2688 if (!NILP (Vpurify_flag))
2689 val = make_pure_vector ((EMACS_INT) nargs);
2690 else
2691 val = Fmake_vector (len, Qnil);
2692
2693 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2694 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2695 earlier because they produced a raw 8-bit string for byte-code
2696 and now such a byte-code string is loaded as multibyte while
2697 raw 8-bit characters converted to multibyte form. Thus, now we
2698 must convert them back to the original unibyte form. */
2699 args[1] = Fstring_as_unibyte (args[1]);
2700
2701 p = XVECTOR (val);
2702 for (index = 0; index < nargs; index++)
2703 {
2704 if (!NILP (Vpurify_flag))
2705 args[index] = Fpurecopy (args[index]);
2706 p->contents[index] = args[index];
2707 }
2708 XSETCOMPILED (val, p);
2709 return val;
2710 }
2711
2712
2713 \f
2714 /***********************************************************************
2715 Symbol Allocation
2716 ***********************************************************************/
2717
2718 /* Each symbol_block is just under 1020 bytes long, since malloc
2719 really allocates in units of powers of two and uses 4 bytes for its
2720 own overhead. */
2721
2722 #define SYMBOL_BLOCK_SIZE \
2723 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2724
2725 struct symbol_block
2726 {
2727 /* Place `symbols' first, to preserve alignment. */
2728 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2729 struct symbol_block *next;
2730 };
2731
2732 /* Current symbol block and index of first unused Lisp_Symbol
2733 structure in it. */
2734
2735 struct symbol_block *symbol_block;
2736 int symbol_block_index;
2737
2738 /* List of free symbols. */
2739
2740 struct Lisp_Symbol *symbol_free_list;
2741
2742 /* Total number of symbol blocks now in use. */
2743
2744 int n_symbol_blocks;
2745
2746
2747 /* Initialize symbol allocation. */
2748
2749 void
2750 init_symbol ()
2751 {
2752 symbol_block = NULL;
2753 symbol_block_index = SYMBOL_BLOCK_SIZE;
2754 symbol_free_list = 0;
2755 n_symbol_blocks = 0;
2756 }
2757
2758
2759 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2760 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2761 Its value and function definition are void, and its property list is nil. */)
2762 (name)
2763 Lisp_Object name;
2764 {
2765 register Lisp_Object val;
2766 register struct Lisp_Symbol *p;
2767
2768 CHECK_STRING (name);
2769
2770 if (symbol_free_list)
2771 {
2772 XSETSYMBOL (val, symbol_free_list);
2773 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2774 }
2775 else
2776 {
2777 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2778 {
2779 struct symbol_block *new;
2780 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2781 MEM_TYPE_SYMBOL);
2782 new->next = symbol_block;
2783 symbol_block = new;
2784 symbol_block_index = 0;
2785 n_symbol_blocks++;
2786 }
2787 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2788 symbol_block_index++;
2789 }
2790
2791 p = XSYMBOL (val);
2792 p->xname = name;
2793 p->plist = Qnil;
2794 p->value = Qunbound;
2795 p->function = Qunbound;
2796 p->next = NULL;
2797 p->gcmarkbit = 0;
2798 p->interned = SYMBOL_UNINTERNED;
2799 p->constant = 0;
2800 p->indirect_variable = 0;
2801 consing_since_gc += sizeof (struct Lisp_Symbol);
2802 symbols_consed++;
2803 return val;
2804 }
2805
2806
2807 \f
2808 /***********************************************************************
2809 Marker (Misc) Allocation
2810 ***********************************************************************/
2811
2812 /* Allocation of markers and other objects that share that structure.
2813 Works like allocation of conses. */
2814
2815 #define MARKER_BLOCK_SIZE \
2816 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2817
2818 struct marker_block
2819 {
2820 /* Place `markers' first, to preserve alignment. */
2821 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2822 struct marker_block *next;
2823 };
2824
2825 struct marker_block *marker_block;
2826 int marker_block_index;
2827
2828 union Lisp_Misc *marker_free_list;
2829
2830 /* Total number of marker blocks now in use. */
2831
2832 int n_marker_blocks;
2833
2834 void
2835 init_marker ()
2836 {
2837 marker_block = NULL;
2838 marker_block_index = MARKER_BLOCK_SIZE;
2839 marker_free_list = 0;
2840 n_marker_blocks = 0;
2841 }
2842
2843 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2844
2845 Lisp_Object
2846 allocate_misc ()
2847 {
2848 Lisp_Object val;
2849
2850 if (marker_free_list)
2851 {
2852 XSETMISC (val, marker_free_list);
2853 marker_free_list = marker_free_list->u_free.chain;
2854 }
2855 else
2856 {
2857 if (marker_block_index == MARKER_BLOCK_SIZE)
2858 {
2859 struct marker_block *new;
2860 new = (struct marker_block *) lisp_malloc (sizeof *new,
2861 MEM_TYPE_MISC);
2862 new->next = marker_block;
2863 marker_block = new;
2864 marker_block_index = 0;
2865 n_marker_blocks++;
2866 }
2867 XSETMISC (val, &marker_block->markers[marker_block_index]);
2868 marker_block_index++;
2869 }
2870
2871 consing_since_gc += sizeof (union Lisp_Misc);
2872 misc_objects_consed++;
2873 XMARKER (val)->gcmarkbit = 0;
2874 return val;
2875 }
2876
2877 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2878 INTEGER. This is used to package C values to call record_unwind_protect.
2879 The unwind function can get the C values back using XSAVE_VALUE. */
2880
2881 Lisp_Object
2882 make_save_value (pointer, integer)
2883 void *pointer;
2884 int integer;
2885 {
2886 register Lisp_Object val;
2887 register struct Lisp_Save_Value *p;
2888
2889 val = allocate_misc ();
2890 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2891 p = XSAVE_VALUE (val);
2892 p->pointer = pointer;
2893 p->integer = integer;
2894 return val;
2895 }
2896
2897 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2898 doc: /* Return a newly allocated marker which does not point at any place. */)
2899 ()
2900 {
2901 register Lisp_Object val;
2902 register struct Lisp_Marker *p;
2903
2904 val = allocate_misc ();
2905 XMISCTYPE (val) = Lisp_Misc_Marker;
2906 p = XMARKER (val);
2907 p->buffer = 0;
2908 p->bytepos = 0;
2909 p->charpos = 0;
2910 p->next = NULL;
2911 p->insertion_type = 0;
2912 return val;
2913 }
2914
2915 /* Put MARKER back on the free list after using it temporarily. */
2916
2917 void
2918 free_marker (marker)
2919 Lisp_Object marker;
2920 {
2921 unchain_marker (XMARKER (marker));
2922
2923 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2924 XMISC (marker)->u_free.chain = marker_free_list;
2925 marker_free_list = XMISC (marker);
2926
2927 total_free_markers++;
2928 }
2929
2930 \f
2931 /* Return a newly created vector or string with specified arguments as
2932 elements. If all the arguments are characters that can fit
2933 in a string of events, make a string; otherwise, make a vector.
2934
2935 Any number of arguments, even zero arguments, are allowed. */
2936
2937 Lisp_Object
2938 make_event_array (nargs, args)
2939 register int nargs;
2940 Lisp_Object *args;
2941 {
2942 int i;
2943
2944 for (i = 0; i < nargs; i++)
2945 /* The things that fit in a string
2946 are characters that are in 0...127,
2947 after discarding the meta bit and all the bits above it. */
2948 if (!INTEGERP (args[i])
2949 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2950 return Fvector (nargs, args);
2951
2952 /* Since the loop exited, we know that all the things in it are
2953 characters, so we can make a string. */
2954 {
2955 Lisp_Object result;
2956
2957 result = Fmake_string (make_number (nargs), make_number (0));
2958 for (i = 0; i < nargs; i++)
2959 {
2960 SSET (result, i, XINT (args[i]));
2961 /* Move the meta bit to the right place for a string char. */
2962 if (XINT (args[i]) & CHAR_META)
2963 SSET (result, i, SREF (result, i) | 0x80);
2964 }
2965
2966 return result;
2967 }
2968 }
2969
2970
2971 \f
2972 /************************************************************************
2973 C Stack Marking
2974 ************************************************************************/
2975
2976 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2977
2978 /* Conservative C stack marking requires a method to identify possibly
2979 live Lisp objects given a pointer value. We do this by keeping
2980 track of blocks of Lisp data that are allocated in a red-black tree
2981 (see also the comment of mem_node which is the type of nodes in
2982 that tree). Function lisp_malloc adds information for an allocated
2983 block to the red-black tree with calls to mem_insert, and function
2984 lisp_free removes it with mem_delete. Functions live_string_p etc
2985 call mem_find to lookup information about a given pointer in the
2986 tree, and use that to determine if the pointer points to a Lisp
2987 object or not. */
2988
2989 /* Initialize this part of alloc.c. */
2990
2991 static void
2992 mem_init ()
2993 {
2994 mem_z.left = mem_z.right = MEM_NIL;
2995 mem_z.parent = NULL;
2996 mem_z.color = MEM_BLACK;
2997 mem_z.start = mem_z.end = NULL;
2998 mem_root = MEM_NIL;
2999 }
3000
3001
3002 /* Value is a pointer to the mem_node containing START. Value is
3003 MEM_NIL if there is no node in the tree containing START. */
3004
3005 static INLINE struct mem_node *
3006 mem_find (start)
3007 void *start;
3008 {
3009 struct mem_node *p;
3010
3011 if (start < min_heap_address || start > max_heap_address)
3012 return MEM_NIL;
3013
3014 /* Make the search always successful to speed up the loop below. */
3015 mem_z.start = start;
3016 mem_z.end = (char *) start + 1;
3017
3018 p = mem_root;
3019 while (start < p->start || start >= p->end)
3020 p = start < p->start ? p->left : p->right;
3021 return p;
3022 }
3023
3024
3025 /* Insert a new node into the tree for a block of memory with start
3026 address START, end address END, and type TYPE. Value is a
3027 pointer to the node that was inserted. */
3028
3029 static struct mem_node *
3030 mem_insert (start, end, type)
3031 void *start, *end;
3032 enum mem_type type;
3033 {
3034 struct mem_node *c, *parent, *x;
3035
3036 if (start < min_heap_address)
3037 min_heap_address = start;
3038 if (end > max_heap_address)
3039 max_heap_address = end;
3040
3041 /* See where in the tree a node for START belongs. In this
3042 particular application, it shouldn't happen that a node is already
3043 present. For debugging purposes, let's check that. */
3044 c = mem_root;
3045 parent = NULL;
3046
3047 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3048
3049 while (c != MEM_NIL)
3050 {
3051 if (start >= c->start && start < c->end)
3052 abort ();
3053 parent = c;
3054 c = start < c->start ? c->left : c->right;
3055 }
3056
3057 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3058
3059 while (c != MEM_NIL)
3060 {
3061 parent = c;
3062 c = start < c->start ? c->left : c->right;
3063 }
3064
3065 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3066
3067 /* Create a new node. */
3068 #ifdef GC_MALLOC_CHECK
3069 x = (struct mem_node *) _malloc_internal (sizeof *x);
3070 if (x == NULL)
3071 abort ();
3072 #else
3073 x = (struct mem_node *) xmalloc (sizeof *x);
3074 #endif
3075 x->start = start;
3076 x->end = end;
3077 x->type = type;
3078 x->parent = parent;
3079 x->left = x->right = MEM_NIL;
3080 x->color = MEM_RED;
3081
3082 /* Insert it as child of PARENT or install it as root. */
3083 if (parent)
3084 {
3085 if (start < parent->start)
3086 parent->left = x;
3087 else
3088 parent->right = x;
3089 }
3090 else
3091 mem_root = x;
3092
3093 /* Re-establish red-black tree properties. */
3094 mem_insert_fixup (x);
3095
3096 return x;
3097 }
3098
3099
3100 /* Re-establish the red-black properties of the tree, and thereby
3101 balance the tree, after node X has been inserted; X is always red. */
3102
3103 static void
3104 mem_insert_fixup (x)
3105 struct mem_node *x;
3106 {
3107 while (x != mem_root && x->parent->color == MEM_RED)
3108 {
3109 /* X is red and its parent is red. This is a violation of
3110 red-black tree property #3. */
3111
3112 if (x->parent == x->parent->parent->left)
3113 {
3114 /* We're on the left side of our grandparent, and Y is our
3115 "uncle". */
3116 struct mem_node *y = x->parent->parent->right;
3117
3118 if (y->color == MEM_RED)
3119 {
3120 /* Uncle and parent are red but should be black because
3121 X is red. Change the colors accordingly and proceed
3122 with the grandparent. */
3123 x->parent->color = MEM_BLACK;
3124 y->color = MEM_BLACK;
3125 x->parent->parent->color = MEM_RED;
3126 x = x->parent->parent;
3127 }
3128 else
3129 {
3130 /* Parent and uncle have different colors; parent is
3131 red, uncle is black. */
3132 if (x == x->parent->right)
3133 {
3134 x = x->parent;
3135 mem_rotate_left (x);
3136 }
3137
3138 x->parent->color = MEM_BLACK;
3139 x->parent->parent->color = MEM_RED;
3140 mem_rotate_right (x->parent->parent);
3141 }
3142 }
3143 else
3144 {
3145 /* This is the symmetrical case of above. */
3146 struct mem_node *y = x->parent->parent->left;
3147
3148 if (y->color == MEM_RED)
3149 {
3150 x->parent->color = MEM_BLACK;
3151 y->color = MEM_BLACK;
3152 x->parent->parent->color = MEM_RED;
3153 x = x->parent->parent;
3154 }
3155 else
3156 {
3157 if (x == x->parent->left)
3158 {
3159 x = x->parent;
3160 mem_rotate_right (x);
3161 }
3162
3163 x->parent->color = MEM_BLACK;
3164 x->parent->parent->color = MEM_RED;
3165 mem_rotate_left (x->parent->parent);
3166 }
3167 }
3168 }
3169
3170 /* The root may have been changed to red due to the algorithm. Set
3171 it to black so that property #5 is satisfied. */
3172 mem_root->color = MEM_BLACK;
3173 }
3174
3175
3176 /* (x) (y)
3177 / \ / \
3178 a (y) ===> (x) c
3179 / \ / \
3180 b c a b */
3181
3182 static void
3183 mem_rotate_left (x)
3184 struct mem_node *x;
3185 {
3186 struct mem_node *y;
3187
3188 /* Turn y's left sub-tree into x's right sub-tree. */
3189 y = x->right;
3190 x->right = y->left;
3191 if (y->left != MEM_NIL)
3192 y->left->parent = x;
3193
3194 /* Y's parent was x's parent. */
3195 if (y != MEM_NIL)
3196 y->parent = x->parent;
3197
3198 /* Get the parent to point to y instead of x. */
3199 if (x->parent)
3200 {
3201 if (x == x->parent->left)
3202 x->parent->left = y;
3203 else
3204 x->parent->right = y;
3205 }
3206 else
3207 mem_root = y;
3208
3209 /* Put x on y's left. */
3210 y->left = x;
3211 if (x != MEM_NIL)
3212 x->parent = y;
3213 }
3214
3215
3216 /* (x) (Y)
3217 / \ / \
3218 (y) c ===> a (x)
3219 / \ / \
3220 a b b c */
3221
3222 static void
3223 mem_rotate_right (x)
3224 struct mem_node *x;
3225 {
3226 struct mem_node *y = x->left;
3227
3228 x->left = y->right;
3229 if (y->right != MEM_NIL)
3230 y->right->parent = x;
3231
3232 if (y != MEM_NIL)
3233 y->parent = x->parent;
3234 if (x->parent)
3235 {
3236 if (x == x->parent->right)
3237 x->parent->right = y;
3238 else
3239 x->parent->left = y;
3240 }
3241 else
3242 mem_root = y;
3243
3244 y->right = x;
3245 if (x != MEM_NIL)
3246 x->parent = y;
3247 }
3248
3249
3250 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3251
3252 static void
3253 mem_delete (z)
3254 struct mem_node *z;
3255 {
3256 struct mem_node *x, *y;
3257
3258 if (!z || z == MEM_NIL)
3259 return;
3260
3261 if (z->left == MEM_NIL || z->right == MEM_NIL)
3262 y = z;
3263 else
3264 {
3265 y = z->right;
3266 while (y->left != MEM_NIL)
3267 y = y->left;
3268 }
3269
3270 if (y->left != MEM_NIL)
3271 x = y->left;
3272 else
3273 x = y->right;
3274
3275 x->parent = y->parent;
3276 if (y->parent)
3277 {
3278 if (y == y->parent->left)
3279 y->parent->left = x;
3280 else
3281 y->parent->right = x;
3282 }
3283 else
3284 mem_root = x;
3285
3286 if (y != z)
3287 {
3288 z->start = y->start;
3289 z->end = y->end;
3290 z->type = y->type;
3291 }
3292
3293 if (y->color == MEM_BLACK)
3294 mem_delete_fixup (x);
3295
3296 #ifdef GC_MALLOC_CHECK
3297 _free_internal (y);
3298 #else
3299 xfree (y);
3300 #endif
3301 }
3302
3303
3304 /* Re-establish the red-black properties of the tree, after a
3305 deletion. */
3306
3307 static void
3308 mem_delete_fixup (x)
3309 struct mem_node *x;
3310 {
3311 while (x != mem_root && x->color == MEM_BLACK)
3312 {
3313 if (x == x->parent->left)
3314 {
3315 struct mem_node *w = x->parent->right;
3316
3317 if (w->color == MEM_RED)
3318 {
3319 w->color = MEM_BLACK;
3320 x->parent->color = MEM_RED;
3321 mem_rotate_left (x->parent);
3322 w = x->parent->right;
3323 }
3324
3325 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3326 {
3327 w->color = MEM_RED;
3328 x = x->parent;
3329 }
3330 else
3331 {
3332 if (w->right->color == MEM_BLACK)
3333 {
3334 w->left->color = MEM_BLACK;
3335 w->color = MEM_RED;
3336 mem_rotate_right (w);
3337 w = x->parent->right;
3338 }
3339 w->color = x->parent->color;
3340 x->parent->color = MEM_BLACK;
3341 w->right->color = MEM_BLACK;
3342 mem_rotate_left (x->parent);
3343 x = mem_root;
3344 }
3345 }
3346 else
3347 {
3348 struct mem_node *w = x->parent->left;
3349
3350 if (w->color == MEM_RED)
3351 {
3352 w->color = MEM_BLACK;
3353 x->parent->color = MEM_RED;
3354 mem_rotate_right (x->parent);
3355 w = x->parent->left;
3356 }
3357
3358 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3359 {
3360 w->color = MEM_RED;
3361 x = x->parent;
3362 }
3363 else
3364 {
3365 if (w->left->color == MEM_BLACK)
3366 {
3367 w->right->color = MEM_BLACK;
3368 w->color = MEM_RED;
3369 mem_rotate_left (w);
3370 w = x->parent->left;
3371 }
3372
3373 w->color = x->parent->color;
3374 x->parent->color = MEM_BLACK;
3375 w->left->color = MEM_BLACK;
3376 mem_rotate_right (x->parent);
3377 x = mem_root;
3378 }
3379 }
3380 }
3381
3382 x->color = MEM_BLACK;
3383 }
3384
3385
3386 /* Value is non-zero if P is a pointer to a live Lisp string on
3387 the heap. M is a pointer to the mem_block for P. */
3388
3389 static INLINE int
3390 live_string_p (m, p)
3391 struct mem_node *m;
3392 void *p;
3393 {
3394 if (m->type == MEM_TYPE_STRING)
3395 {
3396 struct string_block *b = (struct string_block *) m->start;
3397 int offset = (char *) p - (char *) &b->strings[0];
3398
3399 /* P must point to the start of a Lisp_String structure, and it
3400 must not be on the free-list. */
3401 return (offset >= 0
3402 && offset % sizeof b->strings[0] == 0
3403 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3404 && ((struct Lisp_String *) p)->data != NULL);
3405 }
3406 else
3407 return 0;
3408 }
3409
3410
3411 /* Value is non-zero if P is a pointer to a live Lisp cons on
3412 the heap. M is a pointer to the mem_block for P. */
3413
3414 static INLINE int
3415 live_cons_p (m, p)
3416 struct mem_node *m;
3417 void *p;
3418 {
3419 if (m->type == MEM_TYPE_CONS)
3420 {
3421 struct cons_block *b = (struct cons_block *) m->start;
3422 int offset = (char *) p - (char *) &b->conses[0];
3423
3424 /* P must point to the start of a Lisp_Cons, not be
3425 one of the unused cells in the current cons block,
3426 and not be on the free-list. */
3427 return (offset >= 0
3428 && offset % sizeof b->conses[0] == 0
3429 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3430 && (b != cons_block
3431 || offset / sizeof b->conses[0] < cons_block_index)
3432 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3433 }
3434 else
3435 return 0;
3436 }
3437
3438
3439 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3440 the heap. M is a pointer to the mem_block for P. */
3441
3442 static INLINE int
3443 live_symbol_p (m, p)
3444 struct mem_node *m;
3445 void *p;
3446 {
3447 if (m->type == MEM_TYPE_SYMBOL)
3448 {
3449 struct symbol_block *b = (struct symbol_block *) m->start;
3450 int offset = (char *) p - (char *) &b->symbols[0];
3451
3452 /* P must point to the start of a Lisp_Symbol, not be
3453 one of the unused cells in the current symbol block,
3454 and not be on the free-list. */
3455 return (offset >= 0
3456 && offset % sizeof b->symbols[0] == 0
3457 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3458 && (b != symbol_block
3459 || offset / sizeof b->symbols[0] < symbol_block_index)
3460 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3461 }
3462 else
3463 return 0;
3464 }
3465
3466
3467 /* Value is non-zero if P is a pointer to a live Lisp float on
3468 the heap. M is a pointer to the mem_block for P. */
3469
3470 static INLINE int
3471 live_float_p (m, p)
3472 struct mem_node *m;
3473 void *p;
3474 {
3475 if (m->type == MEM_TYPE_FLOAT)
3476 {
3477 struct float_block *b = (struct float_block *) m->start;
3478 int offset = (char *) p - (char *) &b->floats[0];
3479
3480 /* P must point to the start of a Lisp_Float and not be
3481 one of the unused cells in the current float block. */
3482 return (offset >= 0
3483 && offset % sizeof b->floats[0] == 0
3484 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3485 && (b != float_block
3486 || offset / sizeof b->floats[0] < float_block_index));
3487 }
3488 else
3489 return 0;
3490 }
3491
3492
3493 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3494 the heap. M is a pointer to the mem_block for P. */
3495
3496 static INLINE int
3497 live_misc_p (m, p)
3498 struct mem_node *m;
3499 void *p;
3500 {
3501 if (m->type == MEM_TYPE_MISC)
3502 {
3503 struct marker_block *b = (struct marker_block *) m->start;
3504 int offset = (char *) p - (char *) &b->markers[0];
3505
3506 /* P must point to the start of a Lisp_Misc, not be
3507 one of the unused cells in the current misc block,
3508 and not be on the free-list. */
3509 return (offset >= 0
3510 && offset % sizeof b->markers[0] == 0
3511 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3512 && (b != marker_block
3513 || offset / sizeof b->markers[0] < marker_block_index)
3514 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3515 }
3516 else
3517 return 0;
3518 }
3519
3520
3521 /* Value is non-zero if P is a pointer to a live vector-like object.
3522 M is a pointer to the mem_block for P. */
3523
3524 static INLINE int
3525 live_vector_p (m, p)
3526 struct mem_node *m;
3527 void *p;
3528 {
3529 return (p == m->start
3530 && m->type >= MEM_TYPE_VECTOR
3531 && m->type <= MEM_TYPE_WINDOW);
3532 }
3533
3534
3535 /* Value is non-zero if P is a pointer to a live buffer. M is a
3536 pointer to the mem_block for P. */
3537
3538 static INLINE int
3539 live_buffer_p (m, p)
3540 struct mem_node *m;
3541 void *p;
3542 {
3543 /* P must point to the start of the block, and the buffer
3544 must not have been killed. */
3545 return (m->type == MEM_TYPE_BUFFER
3546 && p == m->start
3547 && !NILP (((struct buffer *) p)->name));
3548 }
3549
3550 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3551
3552 #if GC_MARK_STACK
3553
3554 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3555
3556 /* Array of objects that are kept alive because the C stack contains
3557 a pattern that looks like a reference to them . */
3558
3559 #define MAX_ZOMBIES 10
3560 static Lisp_Object zombies[MAX_ZOMBIES];
3561
3562 /* Number of zombie objects. */
3563
3564 static int nzombies;
3565
3566 /* Number of garbage collections. */
3567
3568 static int ngcs;
3569
3570 /* Average percentage of zombies per collection. */
3571
3572 static double avg_zombies;
3573
3574 /* Max. number of live and zombie objects. */
3575
3576 static int max_live, max_zombies;
3577
3578 /* Average number of live objects per GC. */
3579
3580 static double avg_live;
3581
3582 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3583 doc: /* Show information about live and zombie objects. */)
3584 ()
3585 {
3586 Lisp_Object args[8], zombie_list = Qnil;
3587 int i;
3588 for (i = 0; i < nzombies; i++)
3589 zombie_list = Fcons (zombies[i], zombie_list);
3590 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3591 args[1] = make_number (ngcs);
3592 args[2] = make_float (avg_live);
3593 args[3] = make_float (avg_zombies);
3594 args[4] = make_float (avg_zombies / avg_live / 100);
3595 args[5] = make_number (max_live);
3596 args[6] = make_number (max_zombies);
3597 args[7] = zombie_list;
3598 return Fmessage (8, args);
3599 }
3600
3601 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3602
3603
3604 /* Mark OBJ if we can prove it's a Lisp_Object. */
3605
3606 static INLINE void
3607 mark_maybe_object (obj)
3608 Lisp_Object obj;
3609 {
3610 void *po = (void *) XPNTR (obj);
3611 struct mem_node *m = mem_find (po);
3612
3613 if (m != MEM_NIL)
3614 {
3615 int mark_p = 0;
3616
3617 switch (XGCTYPE (obj))
3618 {
3619 case Lisp_String:
3620 mark_p = (live_string_p (m, po)
3621 && !STRING_MARKED_P ((struct Lisp_String *) po));
3622 break;
3623
3624 case Lisp_Cons:
3625 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3626 break;
3627
3628 case Lisp_Symbol:
3629 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3630 break;
3631
3632 case Lisp_Float:
3633 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3634 break;
3635
3636 case Lisp_Vectorlike:
3637 /* Note: can't check GC_BUFFERP before we know it's a
3638 buffer because checking that dereferences the pointer
3639 PO which might point anywhere. */
3640 if (live_vector_p (m, po))
3641 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3642 else if (live_buffer_p (m, po))
3643 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3644 break;
3645
3646 case Lisp_Misc:
3647 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3648 break;
3649
3650 case Lisp_Int:
3651 case Lisp_Type_Limit:
3652 break;
3653 }
3654
3655 if (mark_p)
3656 {
3657 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3658 if (nzombies < MAX_ZOMBIES)
3659 zombies[nzombies] = obj;
3660 ++nzombies;
3661 #endif
3662 mark_object (obj);
3663 }
3664 }
3665 }
3666
3667
3668 /* If P points to Lisp data, mark that as live if it isn't already
3669 marked. */
3670
3671 static INLINE void
3672 mark_maybe_pointer (p)
3673 void *p;
3674 {
3675 struct mem_node *m;
3676
3677 /* Quickly rule out some values which can't point to Lisp data. We
3678 assume that Lisp data is aligned on even addresses. */
3679 if ((EMACS_INT) p & 1)
3680 return;
3681
3682 m = mem_find (p);
3683 if (m != MEM_NIL)
3684 {
3685 Lisp_Object obj = Qnil;
3686
3687 switch (m->type)
3688 {
3689 case MEM_TYPE_NON_LISP:
3690 /* Nothing to do; not a pointer to Lisp memory. */
3691 break;
3692
3693 case MEM_TYPE_BUFFER:
3694 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3695 XSETVECTOR (obj, p);
3696 break;
3697
3698 case MEM_TYPE_CONS:
3699 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3700 XSETCONS (obj, p);
3701 break;
3702
3703 case MEM_TYPE_STRING:
3704 if (live_string_p (m, p)
3705 && !STRING_MARKED_P ((struct Lisp_String *) p))
3706 XSETSTRING (obj, p);
3707 break;
3708
3709 case MEM_TYPE_MISC:
3710 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3711 XSETMISC (obj, p);
3712 break;
3713
3714 case MEM_TYPE_SYMBOL:
3715 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3716 XSETSYMBOL (obj, p);
3717 break;
3718
3719 case MEM_TYPE_FLOAT:
3720 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3721 XSETFLOAT (obj, p);
3722 break;
3723
3724 case MEM_TYPE_VECTOR:
3725 case MEM_TYPE_PROCESS:
3726 case MEM_TYPE_HASH_TABLE:
3727 case MEM_TYPE_FRAME:
3728 case MEM_TYPE_WINDOW:
3729 if (live_vector_p (m, p))
3730 {
3731 Lisp_Object tem;
3732 XSETVECTOR (tem, p);
3733 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3734 obj = tem;
3735 }
3736 break;
3737
3738 default:
3739 abort ();
3740 }
3741
3742 if (!GC_NILP (obj))
3743 mark_object (obj);
3744 }
3745 }
3746
3747
3748 /* Mark Lisp objects referenced from the address range START..END. */
3749
3750 static void
3751 mark_memory (start, end)
3752 void *start, *end;
3753 {
3754 Lisp_Object *p;
3755 void **pp;
3756
3757 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3758 nzombies = 0;
3759 #endif
3760
3761 /* Make START the pointer to the start of the memory region,
3762 if it isn't already. */
3763 if (end < start)
3764 {
3765 void *tem = start;
3766 start = end;
3767 end = tem;
3768 }
3769
3770 /* Mark Lisp_Objects. */
3771 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3772 mark_maybe_object (*p);
3773
3774 /* Mark Lisp data pointed to. This is necessary because, in some
3775 situations, the C compiler optimizes Lisp objects away, so that
3776 only a pointer to them remains. Example:
3777
3778 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3779 ()
3780 {
3781 Lisp_Object obj = build_string ("test");
3782 struct Lisp_String *s = XSTRING (obj);
3783 Fgarbage_collect ();
3784 fprintf (stderr, "test `%s'\n", s->data);
3785 return Qnil;
3786 }
3787
3788 Here, `obj' isn't really used, and the compiler optimizes it
3789 away. The only reference to the life string is through the
3790 pointer `s'. */
3791
3792 for (pp = (void **) start; (void *) pp < end; ++pp)
3793 mark_maybe_pointer (*pp);
3794 }
3795
3796 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3797 the GCC system configuration. In gcc 3.2, the only systems for
3798 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3799 by others?) and ns32k-pc532-min. */
3800
3801 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3802
3803 static int setjmp_tested_p, longjmps_done;
3804
3805 #define SETJMP_WILL_LIKELY_WORK "\
3806 \n\
3807 Emacs garbage collector has been changed to use conservative stack\n\
3808 marking. Emacs has determined that the method it uses to do the\n\
3809 marking will likely work on your system, but this isn't sure.\n\
3810 \n\
3811 If you are a system-programmer, or can get the help of a local wizard\n\
3812 who is, please take a look at the function mark_stack in alloc.c, and\n\
3813 verify that the methods used are appropriate for your system.\n\
3814 \n\
3815 Please mail the result to <emacs-devel@gnu.org>.\n\
3816 "
3817
3818 #define SETJMP_WILL_NOT_WORK "\
3819 \n\
3820 Emacs garbage collector has been changed to use conservative stack\n\
3821 marking. Emacs has determined that the default method it uses to do the\n\
3822 marking will not work on your system. We will need a system-dependent\n\
3823 solution for your system.\n\
3824 \n\
3825 Please take a look at the function mark_stack in alloc.c, and\n\
3826 try to find a way to make it work on your system.\n\
3827 \n\
3828 Note that you may get false negatives, depending on the compiler.\n\
3829 In particular, you need to use -O with GCC for this test.\n\
3830 \n\
3831 Please mail the result to <emacs-devel@gnu.org>.\n\
3832 "
3833
3834
3835 /* Perform a quick check if it looks like setjmp saves registers in a
3836 jmp_buf. Print a message to stderr saying so. When this test
3837 succeeds, this is _not_ a proof that setjmp is sufficient for
3838 conservative stack marking. Only the sources or a disassembly
3839 can prove that. */
3840
3841 static void
3842 test_setjmp ()
3843 {
3844 char buf[10];
3845 register int x;
3846 jmp_buf jbuf;
3847 int result = 0;
3848
3849 /* Arrange for X to be put in a register. */
3850 sprintf (buf, "1");
3851 x = strlen (buf);
3852 x = 2 * x - 1;
3853
3854 setjmp (jbuf);
3855 if (longjmps_done == 1)
3856 {
3857 /* Came here after the longjmp at the end of the function.
3858
3859 If x == 1, the longjmp has restored the register to its
3860 value before the setjmp, and we can hope that setjmp
3861 saves all such registers in the jmp_buf, although that
3862 isn't sure.
3863
3864 For other values of X, either something really strange is
3865 taking place, or the setjmp just didn't save the register. */
3866
3867 if (x == 1)
3868 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3869 else
3870 {
3871 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3872 exit (1);
3873 }
3874 }
3875
3876 ++longjmps_done;
3877 x = 2;
3878 if (longjmps_done == 1)
3879 longjmp (jbuf, 1);
3880 }
3881
3882 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3883
3884
3885 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3886
3887 /* Abort if anything GCPRO'd doesn't survive the GC. */
3888
3889 static void
3890 check_gcpros ()
3891 {
3892 struct gcpro *p;
3893 int i;
3894
3895 for (p = gcprolist; p; p = p->next)
3896 for (i = 0; i < p->nvars; ++i)
3897 if (!survives_gc_p (p->var[i]))
3898 /* FIXME: It's not necessarily a bug. It might just be that the
3899 GCPRO is unnecessary or should release the object sooner. */
3900 abort ();
3901 }
3902
3903 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3904
3905 static void
3906 dump_zombies ()
3907 {
3908 int i;
3909
3910 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3911 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3912 {
3913 fprintf (stderr, " %d = ", i);
3914 debug_print (zombies[i]);
3915 }
3916 }
3917
3918 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3919
3920
3921 /* Mark live Lisp objects on the C stack.
3922
3923 There are several system-dependent problems to consider when
3924 porting this to new architectures:
3925
3926 Processor Registers
3927
3928 We have to mark Lisp objects in CPU registers that can hold local
3929 variables or are used to pass parameters.
3930
3931 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3932 something that either saves relevant registers on the stack, or
3933 calls mark_maybe_object passing it each register's contents.
3934
3935 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3936 implementation assumes that calling setjmp saves registers we need
3937 to see in a jmp_buf which itself lies on the stack. This doesn't
3938 have to be true! It must be verified for each system, possibly
3939 by taking a look at the source code of setjmp.
3940
3941 Stack Layout
3942
3943 Architectures differ in the way their processor stack is organized.
3944 For example, the stack might look like this
3945
3946 +----------------+
3947 | Lisp_Object | size = 4
3948 +----------------+
3949 | something else | size = 2
3950 +----------------+
3951 | Lisp_Object | size = 4
3952 +----------------+
3953 | ... |
3954
3955 In such a case, not every Lisp_Object will be aligned equally. To
3956 find all Lisp_Object on the stack it won't be sufficient to walk
3957 the stack in steps of 4 bytes. Instead, two passes will be
3958 necessary, one starting at the start of the stack, and a second
3959 pass starting at the start of the stack + 2. Likewise, if the
3960 minimal alignment of Lisp_Objects on the stack is 1, four passes
3961 would be necessary, each one starting with one byte more offset
3962 from the stack start.
3963
3964 The current code assumes by default that Lisp_Objects are aligned
3965 equally on the stack. */
3966
3967 static void
3968 mark_stack ()
3969 {
3970 int i;
3971 jmp_buf j;
3972 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3973 void *end;
3974
3975 /* This trick flushes the register windows so that all the state of
3976 the process is contained in the stack. */
3977 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3978 needed on ia64 too. See mach_dep.c, where it also says inline
3979 assembler doesn't work with relevant proprietary compilers. */
3980 #ifdef sparc
3981 asm ("ta 3");
3982 #endif
3983
3984 /* Save registers that we need to see on the stack. We need to see
3985 registers used to hold register variables and registers used to
3986 pass parameters. */
3987 #ifdef GC_SAVE_REGISTERS_ON_STACK
3988 GC_SAVE_REGISTERS_ON_STACK (end);
3989 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3990
3991 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3992 setjmp will definitely work, test it
3993 and print a message with the result
3994 of the test. */
3995 if (!setjmp_tested_p)
3996 {
3997 setjmp_tested_p = 1;
3998 test_setjmp ();
3999 }
4000 #endif /* GC_SETJMP_WORKS */
4001
4002 setjmp (j);
4003 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4004 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4005
4006 /* This assumes that the stack is a contiguous region in memory. If
4007 that's not the case, something has to be done here to iterate
4008 over the stack segments. */
4009 #ifndef GC_LISP_OBJECT_ALIGNMENT
4010 #ifdef __GNUC__
4011 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4012 #else
4013 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4014 #endif
4015 #endif
4016 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4017 mark_memory ((char *) stack_base + i, end);
4018
4019 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4020 check_gcpros ();
4021 #endif
4022 }
4023
4024
4025 #endif /* GC_MARK_STACK != 0 */
4026
4027
4028 \f
4029 /***********************************************************************
4030 Pure Storage Management
4031 ***********************************************************************/
4032
4033 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4034 pointer to it. TYPE is the Lisp type for which the memory is
4035 allocated. TYPE < 0 means it's not used for a Lisp object.
4036
4037 If store_pure_type_info is set and TYPE is >= 0, the type of
4038 the allocated object is recorded in pure_types. */
4039
4040 static POINTER_TYPE *
4041 pure_alloc (size, type)
4042 size_t size;
4043 int type;
4044 {
4045 POINTER_TYPE *result;
4046 #ifdef USE_LSB_TAG
4047 size_t alignment = (1 << GCTYPEBITS);
4048 #else
4049 size_t alignment = sizeof (EMACS_INT);
4050
4051 /* Give Lisp_Floats an extra alignment. */
4052 if (type == Lisp_Float)
4053 {
4054 #if defined __GNUC__ && __GNUC__ >= 2
4055 alignment = __alignof (struct Lisp_Float);
4056 #else
4057 alignment = sizeof (struct Lisp_Float);
4058 #endif
4059 }
4060 #endif
4061
4062 again:
4063 result = ALIGN (purebeg + pure_bytes_used, alignment);
4064 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4065
4066 if (pure_bytes_used <= pure_size)
4067 return result;
4068
4069 /* Don't allocate a large amount here,
4070 because it might get mmap'd and then its address
4071 might not be usable. */
4072 purebeg = (char *) xmalloc (10000);
4073 pure_size = 10000;
4074 pure_bytes_used_before_overflow += pure_bytes_used - size;
4075 pure_bytes_used = 0;
4076 goto again;
4077 }
4078
4079
4080 /* Print a warning if PURESIZE is too small. */
4081
4082 void
4083 check_pure_size ()
4084 {
4085 if (pure_bytes_used_before_overflow)
4086 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4087 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4088 }
4089
4090
4091 /* Return a string allocated in pure space. DATA is a buffer holding
4092 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4093 non-zero means make the result string multibyte.
4094
4095 Must get an error if pure storage is full, since if it cannot hold
4096 a large string it may be able to hold conses that point to that
4097 string; then the string is not protected from gc. */
4098
4099 Lisp_Object
4100 make_pure_string (data, nchars, nbytes, multibyte)
4101 char *data;
4102 int nchars, nbytes;
4103 int multibyte;
4104 {
4105 Lisp_Object string;
4106 struct Lisp_String *s;
4107
4108 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4109 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4110 s->size = nchars;
4111 s->size_byte = multibyte ? nbytes : -1;
4112 bcopy (data, s->data, nbytes);
4113 s->data[nbytes] = '\0';
4114 s->intervals = NULL_INTERVAL;
4115 XSETSTRING (string, s);
4116 return string;
4117 }
4118
4119
4120 /* Return a cons allocated from pure space. Give it pure copies
4121 of CAR as car and CDR as cdr. */
4122
4123 Lisp_Object
4124 pure_cons (car, cdr)
4125 Lisp_Object car, cdr;
4126 {
4127 register Lisp_Object new;
4128 struct Lisp_Cons *p;
4129
4130 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4131 XSETCONS (new, p);
4132 XSETCAR (new, Fpurecopy (car));
4133 XSETCDR (new, Fpurecopy (cdr));
4134 return new;
4135 }
4136
4137
4138 /* Value is a float object with value NUM allocated from pure space. */
4139
4140 Lisp_Object
4141 make_pure_float (num)
4142 double num;
4143 {
4144 register Lisp_Object new;
4145 struct Lisp_Float *p;
4146
4147 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4148 XSETFLOAT (new, p);
4149 XFLOAT_DATA (new) = num;
4150 return new;
4151 }
4152
4153
4154 /* Return a vector with room for LEN Lisp_Objects allocated from
4155 pure space. */
4156
4157 Lisp_Object
4158 make_pure_vector (len)
4159 EMACS_INT len;
4160 {
4161 Lisp_Object new;
4162 struct Lisp_Vector *p;
4163 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4164
4165 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4166 XSETVECTOR (new, p);
4167 XVECTOR (new)->size = len;
4168 return new;
4169 }
4170
4171
4172 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4173 doc: /* Make a copy of OBJECT in pure storage.
4174 Recursively copies contents of vectors and cons cells.
4175 Does not copy symbols. Copies strings without text properties. */)
4176 (obj)
4177 register Lisp_Object obj;
4178 {
4179 if (NILP (Vpurify_flag))
4180 return obj;
4181
4182 if (PURE_POINTER_P (XPNTR (obj)))
4183 return obj;
4184
4185 if (CONSP (obj))
4186 return pure_cons (XCAR (obj), XCDR (obj));
4187 else if (FLOATP (obj))
4188 return make_pure_float (XFLOAT_DATA (obj));
4189 else if (STRINGP (obj))
4190 return make_pure_string (SDATA (obj), SCHARS (obj),
4191 SBYTES (obj),
4192 STRING_MULTIBYTE (obj));
4193 else if (COMPILEDP (obj) || VECTORP (obj))
4194 {
4195 register struct Lisp_Vector *vec;
4196 register int i;
4197 EMACS_INT size;
4198
4199 size = XVECTOR (obj)->size;
4200 if (size & PSEUDOVECTOR_FLAG)
4201 size &= PSEUDOVECTOR_SIZE_MASK;
4202 vec = XVECTOR (make_pure_vector (size));
4203 for (i = 0; i < size; i++)
4204 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4205 if (COMPILEDP (obj))
4206 XSETCOMPILED (obj, vec);
4207 else
4208 XSETVECTOR (obj, vec);
4209 return obj;
4210 }
4211 else if (MARKERP (obj))
4212 error ("Attempt to copy a marker to pure storage");
4213
4214 return obj;
4215 }
4216
4217
4218 \f
4219 /***********************************************************************
4220 Protection from GC
4221 ***********************************************************************/
4222
4223 /* Put an entry in staticvec, pointing at the variable with address
4224 VARADDRESS. */
4225
4226 void
4227 staticpro (varaddress)
4228 Lisp_Object *varaddress;
4229 {
4230 staticvec[staticidx++] = varaddress;
4231 if (staticidx >= NSTATICS)
4232 abort ();
4233 }
4234
4235 struct catchtag
4236 {
4237 Lisp_Object tag;
4238 Lisp_Object val;
4239 struct catchtag *next;
4240 };
4241
4242 \f
4243 /***********************************************************************
4244 Protection from GC
4245 ***********************************************************************/
4246
4247 /* Temporarily prevent garbage collection. */
4248
4249 int
4250 inhibit_garbage_collection ()
4251 {
4252 int count = SPECPDL_INDEX ();
4253 int nbits = min (VALBITS, BITS_PER_INT);
4254
4255 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4256 return count;
4257 }
4258
4259
4260 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4261 doc: /* Reclaim storage for Lisp objects no longer needed.
4262 Garbage collection happens automatically if you cons more than
4263 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4264 `garbage-collect' normally returns a list with info on amount of space in use:
4265 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4266 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4267 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4268 (USED-STRINGS . FREE-STRINGS))
4269 However, if there was overflow in pure space, `garbage-collect'
4270 returns nil, because real GC can't be done. */)
4271 ()
4272 {
4273 register struct specbinding *bind;
4274 struct catchtag *catch;
4275 struct handler *handler;
4276 char stack_top_variable;
4277 register int i;
4278 int message_p;
4279 Lisp_Object total[8];
4280 int count = SPECPDL_INDEX ();
4281 EMACS_TIME t1, t2, t3;
4282
4283 if (abort_on_gc)
4284 abort ();
4285
4286 EMACS_GET_TIME (t1);
4287
4288 /* Can't GC if pure storage overflowed because we can't determine
4289 if something is a pure object or not. */
4290 if (pure_bytes_used_before_overflow)
4291 return Qnil;
4292
4293 /* In case user calls debug_print during GC,
4294 don't let that cause a recursive GC. */
4295 consing_since_gc = 0;
4296
4297 /* Save what's currently displayed in the echo area. */
4298 message_p = push_message ();
4299 record_unwind_protect (pop_message_unwind, Qnil);
4300
4301 /* Save a copy of the contents of the stack, for debugging. */
4302 #if MAX_SAVE_STACK > 0
4303 if (NILP (Vpurify_flag))
4304 {
4305 i = &stack_top_variable - stack_bottom;
4306 if (i < 0) i = -i;
4307 if (i < MAX_SAVE_STACK)
4308 {
4309 if (stack_copy == 0)
4310 stack_copy = (char *) xmalloc (stack_copy_size = i);
4311 else if (stack_copy_size < i)
4312 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4313 if (stack_copy)
4314 {
4315 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4316 bcopy (stack_bottom, stack_copy, i);
4317 else
4318 bcopy (&stack_top_variable, stack_copy, i);
4319 }
4320 }
4321 }
4322 #endif /* MAX_SAVE_STACK > 0 */
4323
4324 if (garbage_collection_messages)
4325 message1_nolog ("Garbage collecting...");
4326
4327 BLOCK_INPUT;
4328
4329 shrink_regexp_cache ();
4330
4331 /* Don't keep undo information around forever. */
4332 {
4333 register struct buffer *nextb = all_buffers;
4334
4335 while (nextb)
4336 {
4337 /* If a buffer's undo list is Qt, that means that undo is
4338 turned off in that buffer. Calling truncate_undo_list on
4339 Qt tends to return NULL, which effectively turns undo back on.
4340 So don't call truncate_undo_list if undo_list is Qt. */
4341 if (! EQ (nextb->undo_list, Qt))
4342 nextb->undo_list
4343 = truncate_undo_list (nextb->undo_list, undo_limit,
4344 undo_strong_limit, undo_outer_limit);
4345
4346 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4347 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4348 {
4349 /* If a buffer's gap size is more than 10% of the buffer
4350 size, or larger than 2000 bytes, then shrink it
4351 accordingly. Keep a minimum size of 20 bytes. */
4352 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4353
4354 if (nextb->text->gap_size > size)
4355 {
4356 struct buffer *save_current = current_buffer;
4357 current_buffer = nextb;
4358 make_gap (-(nextb->text->gap_size - size));
4359 current_buffer = save_current;
4360 }
4361 }
4362
4363 nextb = nextb->next;
4364 }
4365 }
4366
4367 gc_in_progress = 1;
4368
4369 /* clear_marks (); */
4370
4371 /* Mark all the special slots that serve as the roots of accessibility. */
4372
4373 for (i = 0; i < staticidx; i++)
4374 mark_object (*staticvec[i]);
4375
4376 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4377 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4378 mark_stack ();
4379 #else
4380 {
4381 register struct gcpro *tail;
4382 for (tail = gcprolist; tail; tail = tail->next)
4383 for (i = 0; i < tail->nvars; i++)
4384 mark_object (tail->var[i]);
4385 }
4386 #endif
4387
4388 mark_byte_stack ();
4389 for (bind = specpdl; bind != specpdl_ptr; bind++)
4390 {
4391 mark_object (bind->symbol);
4392 mark_object (bind->old_value);
4393 }
4394 for (catch = catchlist; catch; catch = catch->next)
4395 {
4396 mark_object (catch->tag);
4397 mark_object (catch->val);
4398 }
4399 for (handler = handlerlist; handler; handler = handler->next)
4400 {
4401 mark_object (handler->handler);
4402 mark_object (handler->var);
4403 }
4404 mark_backtrace ();
4405 mark_kboards ();
4406
4407 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408 mark_stack ();
4409 #endif
4410
4411 #ifdef USE_GTK
4412 {
4413 extern void xg_mark_data ();
4414 xg_mark_data ();
4415 }
4416 #endif
4417
4418 /* Everything is now marked, except for the things that require special
4419 finalization, i.e. the undo_list.
4420 Look thru every buffer's undo list
4421 for elements that update markers that were not marked,
4422 and delete them. */
4423 {
4424 register struct buffer *nextb = all_buffers;
4425
4426 while (nextb)
4427 {
4428 /* If a buffer's undo list is Qt, that means that undo is
4429 turned off in that buffer. Calling truncate_undo_list on
4430 Qt tends to return NULL, which effectively turns undo back on.
4431 So don't call truncate_undo_list if undo_list is Qt. */
4432 if (! EQ (nextb->undo_list, Qt))
4433 {
4434 Lisp_Object tail, prev;
4435 tail = nextb->undo_list;
4436 prev = Qnil;
4437 while (CONSP (tail))
4438 {
4439 if (GC_CONSP (XCAR (tail))
4440 && GC_MARKERP (XCAR (XCAR (tail)))
4441 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4442 {
4443 if (NILP (prev))
4444 nextb->undo_list = tail = XCDR (tail);
4445 else
4446 {
4447 tail = XCDR (tail);
4448 XSETCDR (prev, tail);
4449 }
4450 }
4451 else
4452 {
4453 prev = tail;
4454 tail = XCDR (tail);
4455 }
4456 }
4457 }
4458 /* Now that we have stripped the elements that need not be in the
4459 undo_list any more, we can finally mark the list. */
4460 mark_object (nextb->undo_list);
4461
4462 nextb = nextb->next;
4463 }
4464 }
4465
4466 gc_sweep ();
4467
4468 /* Clear the mark bits that we set in certain root slots. */
4469
4470 unmark_byte_stack ();
4471 VECTOR_UNMARK (&buffer_defaults);
4472 VECTOR_UNMARK (&buffer_local_symbols);
4473
4474 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4475 dump_zombies ();
4476 #endif
4477
4478 UNBLOCK_INPUT;
4479
4480 /* clear_marks (); */
4481 gc_in_progress = 0;
4482
4483 consing_since_gc = 0;
4484 if (gc_cons_threshold < 10000)
4485 gc_cons_threshold = 10000;
4486
4487 if (garbage_collection_messages)
4488 {
4489 if (message_p || minibuf_level > 0)
4490 restore_message ();
4491 else
4492 message1_nolog ("Garbage collecting...done");
4493 }
4494
4495 unbind_to (count, Qnil);
4496
4497 total[0] = Fcons (make_number (total_conses),
4498 make_number (total_free_conses));
4499 total[1] = Fcons (make_number (total_symbols),
4500 make_number (total_free_symbols));
4501 total[2] = Fcons (make_number (total_markers),
4502 make_number (total_free_markers));
4503 total[3] = make_number (total_string_size);
4504 total[4] = make_number (total_vector_size);
4505 total[5] = Fcons (make_number (total_floats),
4506 make_number (total_free_floats));
4507 total[6] = Fcons (make_number (total_intervals),
4508 make_number (total_free_intervals));
4509 total[7] = Fcons (make_number (total_strings),
4510 make_number (total_free_strings));
4511
4512 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4513 {
4514 /* Compute average percentage of zombies. */
4515 double nlive = 0;
4516
4517 for (i = 0; i < 7; ++i)
4518 if (CONSP (total[i]))
4519 nlive += XFASTINT (XCAR (total[i]));
4520
4521 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4522 max_live = max (nlive, max_live);
4523 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4524 max_zombies = max (nzombies, max_zombies);
4525 ++ngcs;
4526 }
4527 #endif
4528
4529 if (!NILP (Vpost_gc_hook))
4530 {
4531 int count = inhibit_garbage_collection ();
4532 safe_run_hooks (Qpost_gc_hook);
4533 unbind_to (count, Qnil);
4534 }
4535
4536 /* Accumulate statistics. */
4537 EMACS_GET_TIME (t2);
4538 EMACS_SUB_TIME (t3, t2, t1);
4539 if (FLOATP (Vgc_elapsed))
4540 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4541 EMACS_SECS (t3) +
4542 EMACS_USECS (t3) * 1.0e-6);
4543 gcs_done++;
4544
4545 return Flist (sizeof total / sizeof *total, total);
4546 }
4547
4548
4549 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4550 only interesting objects referenced from glyphs are strings. */
4551
4552 static void
4553 mark_glyph_matrix (matrix)
4554 struct glyph_matrix *matrix;
4555 {
4556 struct glyph_row *row = matrix->rows;
4557 struct glyph_row *end = row + matrix->nrows;
4558
4559 for (; row < end; ++row)
4560 if (row->enabled_p)
4561 {
4562 int area;
4563 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4564 {
4565 struct glyph *glyph = row->glyphs[area];
4566 struct glyph *end_glyph = glyph + row->used[area];
4567
4568 for (; glyph < end_glyph; ++glyph)
4569 if (GC_STRINGP (glyph->object)
4570 && !STRING_MARKED_P (XSTRING (glyph->object)))
4571 mark_object (glyph->object);
4572 }
4573 }
4574 }
4575
4576
4577 /* Mark Lisp faces in the face cache C. */
4578
4579 static void
4580 mark_face_cache (c)
4581 struct face_cache *c;
4582 {
4583 if (c)
4584 {
4585 int i, j;
4586 for (i = 0; i < c->used; ++i)
4587 {
4588 struct face *face = FACE_FROM_ID (c->f, i);
4589
4590 if (face)
4591 {
4592 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4593 mark_object (face->lface[j]);
4594 }
4595 }
4596 }
4597 }
4598
4599
4600 #ifdef HAVE_WINDOW_SYSTEM
4601
4602 /* Mark Lisp objects in image IMG. */
4603
4604 static void
4605 mark_image (img)
4606 struct image *img;
4607 {
4608 mark_object (img->spec);
4609
4610 if (!NILP (img->data.lisp_val))
4611 mark_object (img->data.lisp_val);
4612 }
4613
4614
4615 /* Mark Lisp objects in image cache of frame F. It's done this way so
4616 that we don't have to include xterm.h here. */
4617
4618 static void
4619 mark_image_cache (f)
4620 struct frame *f;
4621 {
4622 forall_images_in_image_cache (f, mark_image);
4623 }
4624
4625 #endif /* HAVE_X_WINDOWS */
4626
4627
4628 \f
4629 /* Mark reference to a Lisp_Object.
4630 If the object referred to has not been seen yet, recursively mark
4631 all the references contained in it. */
4632
4633 #define LAST_MARKED_SIZE 500
4634 Lisp_Object last_marked[LAST_MARKED_SIZE];
4635 int last_marked_index;
4636
4637 /* For debugging--call abort when we cdr down this many
4638 links of a list, in mark_object. In debugging,
4639 the call to abort will hit a breakpoint.
4640 Normally this is zero and the check never goes off. */
4641 int mark_object_loop_halt;
4642
4643 void
4644 mark_object (arg)
4645 Lisp_Object arg;
4646 {
4647 register Lisp_Object obj = arg;
4648 #ifdef GC_CHECK_MARKED_OBJECTS
4649 void *po;
4650 struct mem_node *m;
4651 #endif
4652 int cdr_count = 0;
4653
4654 loop:
4655
4656 if (PURE_POINTER_P (XPNTR (obj)))
4657 return;
4658
4659 last_marked[last_marked_index++] = obj;
4660 if (last_marked_index == LAST_MARKED_SIZE)
4661 last_marked_index = 0;
4662
4663 /* Perform some sanity checks on the objects marked here. Abort if
4664 we encounter an object we know is bogus. This increases GC time
4665 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4666 #ifdef GC_CHECK_MARKED_OBJECTS
4667
4668 po = (void *) XPNTR (obj);
4669
4670 /* Check that the object pointed to by PO is known to be a Lisp
4671 structure allocated from the heap. */
4672 #define CHECK_ALLOCATED() \
4673 do { \
4674 m = mem_find (po); \
4675 if (m == MEM_NIL) \
4676 abort (); \
4677 } while (0)
4678
4679 /* Check that the object pointed to by PO is live, using predicate
4680 function LIVEP. */
4681 #define CHECK_LIVE(LIVEP) \
4682 do { \
4683 if (!LIVEP (m, po)) \
4684 abort (); \
4685 } while (0)
4686
4687 /* Check both of the above conditions. */
4688 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4689 do { \
4690 CHECK_ALLOCATED (); \
4691 CHECK_LIVE (LIVEP); \
4692 } while (0) \
4693
4694 #else /* not GC_CHECK_MARKED_OBJECTS */
4695
4696 #define CHECK_ALLOCATED() (void) 0
4697 #define CHECK_LIVE(LIVEP) (void) 0
4698 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4699
4700 #endif /* not GC_CHECK_MARKED_OBJECTS */
4701
4702 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4703 {
4704 case Lisp_String:
4705 {
4706 register struct Lisp_String *ptr = XSTRING (obj);
4707 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4708 MARK_INTERVAL_TREE (ptr->intervals);
4709 MARK_STRING (ptr);
4710 #ifdef GC_CHECK_STRING_BYTES
4711 /* Check that the string size recorded in the string is the
4712 same as the one recorded in the sdata structure. */
4713 CHECK_STRING_BYTES (ptr);
4714 #endif /* GC_CHECK_STRING_BYTES */
4715 }
4716 break;
4717
4718 case Lisp_Vectorlike:
4719 #ifdef GC_CHECK_MARKED_OBJECTS
4720 m = mem_find (po);
4721 if (m == MEM_NIL && !GC_SUBRP (obj)
4722 && po != &buffer_defaults
4723 && po != &buffer_local_symbols)
4724 abort ();
4725 #endif /* GC_CHECK_MARKED_OBJECTS */
4726
4727 if (GC_BUFFERP (obj))
4728 {
4729 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4730 {
4731 #ifdef GC_CHECK_MARKED_OBJECTS
4732 if (po != &buffer_defaults && po != &buffer_local_symbols)
4733 {
4734 struct buffer *b;
4735 for (b = all_buffers; b && b != po; b = b->next)
4736 ;
4737 if (b == NULL)
4738 abort ();
4739 }
4740 #endif /* GC_CHECK_MARKED_OBJECTS */
4741 mark_buffer (obj);
4742 }
4743 }
4744 else if (GC_SUBRP (obj))
4745 break;
4746 else if (GC_COMPILEDP (obj))
4747 /* We could treat this just like a vector, but it is better to
4748 save the COMPILED_CONSTANTS element for last and avoid
4749 recursion there. */
4750 {
4751 register struct Lisp_Vector *ptr = XVECTOR (obj);
4752 register EMACS_INT size = ptr->size;
4753 register int i;
4754
4755 if (VECTOR_MARKED_P (ptr))
4756 break; /* Already marked */
4757
4758 CHECK_LIVE (live_vector_p);
4759 VECTOR_MARK (ptr); /* Else mark it */
4760 size &= PSEUDOVECTOR_SIZE_MASK;
4761 for (i = 0; i < size; i++) /* and then mark its elements */
4762 {
4763 if (i != COMPILED_CONSTANTS)
4764 mark_object (ptr->contents[i]);
4765 }
4766 obj = ptr->contents[COMPILED_CONSTANTS];
4767 goto loop;
4768 }
4769 else if (GC_FRAMEP (obj))
4770 {
4771 register struct frame *ptr = XFRAME (obj);
4772
4773 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4774 VECTOR_MARK (ptr); /* Else mark it */
4775
4776 CHECK_LIVE (live_vector_p);
4777 mark_object (ptr->name);
4778 mark_object (ptr->icon_name);
4779 mark_object (ptr->title);
4780 mark_object (ptr->focus_frame);
4781 mark_object (ptr->selected_window);
4782 mark_object (ptr->minibuffer_window);
4783 mark_object (ptr->param_alist);
4784 mark_object (ptr->scroll_bars);
4785 mark_object (ptr->condemned_scroll_bars);
4786 mark_object (ptr->menu_bar_items);
4787 mark_object (ptr->face_alist);
4788 mark_object (ptr->menu_bar_vector);
4789 mark_object (ptr->buffer_predicate);
4790 mark_object (ptr->buffer_list);
4791 mark_object (ptr->menu_bar_window);
4792 mark_object (ptr->tool_bar_window);
4793 mark_face_cache (ptr->face_cache);
4794 #ifdef HAVE_WINDOW_SYSTEM
4795 mark_image_cache (ptr);
4796 mark_object (ptr->tool_bar_items);
4797 mark_object (ptr->desired_tool_bar_string);
4798 mark_object (ptr->current_tool_bar_string);
4799 #endif /* HAVE_WINDOW_SYSTEM */
4800 }
4801 else if (GC_BOOL_VECTOR_P (obj))
4802 {
4803 register struct Lisp_Vector *ptr = XVECTOR (obj);
4804
4805 if (VECTOR_MARKED_P (ptr))
4806 break; /* Already marked */
4807 CHECK_LIVE (live_vector_p);
4808 VECTOR_MARK (ptr); /* Else mark it */
4809 }
4810 else if (GC_WINDOWP (obj))
4811 {
4812 register struct Lisp_Vector *ptr = XVECTOR (obj);
4813 struct window *w = XWINDOW (obj);
4814 register int i;
4815
4816 /* Stop if already marked. */
4817 if (VECTOR_MARKED_P (ptr))
4818 break;
4819
4820 /* Mark it. */
4821 CHECK_LIVE (live_vector_p);
4822 VECTOR_MARK (ptr);
4823
4824 /* There is no Lisp data above The member CURRENT_MATRIX in
4825 struct WINDOW. Stop marking when that slot is reached. */
4826 for (i = 0;
4827 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4828 i++)
4829 mark_object (ptr->contents[i]);
4830
4831 /* Mark glyphs for leaf windows. Marking window matrices is
4832 sufficient because frame matrices use the same glyph
4833 memory. */
4834 if (NILP (w->hchild)
4835 && NILP (w->vchild)
4836 && w->current_matrix)
4837 {
4838 mark_glyph_matrix (w->current_matrix);
4839 mark_glyph_matrix (w->desired_matrix);
4840 }
4841 }
4842 else if (GC_HASH_TABLE_P (obj))
4843 {
4844 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4845
4846 /* Stop if already marked. */
4847 if (VECTOR_MARKED_P (h))
4848 break;
4849
4850 /* Mark it. */
4851 CHECK_LIVE (live_vector_p);
4852 VECTOR_MARK (h);
4853
4854 /* Mark contents. */
4855 /* Do not mark next_free or next_weak.
4856 Being in the next_weak chain
4857 should not keep the hash table alive.
4858 No need to mark `count' since it is an integer. */
4859 mark_object (h->test);
4860 mark_object (h->weak);
4861 mark_object (h->rehash_size);
4862 mark_object (h->rehash_threshold);
4863 mark_object (h->hash);
4864 mark_object (h->next);
4865 mark_object (h->index);
4866 mark_object (h->user_hash_function);
4867 mark_object (h->user_cmp_function);
4868
4869 /* If hash table is not weak, mark all keys and values.
4870 For weak tables, mark only the vector. */
4871 if (GC_NILP (h->weak))
4872 mark_object (h->key_and_value);
4873 else
4874 VECTOR_MARK (XVECTOR (h->key_and_value));
4875 }
4876 else
4877 {
4878 register struct Lisp_Vector *ptr = XVECTOR (obj);
4879 register EMACS_INT size = ptr->size;
4880 register int i;
4881
4882 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4883 CHECK_LIVE (live_vector_p);
4884 VECTOR_MARK (ptr); /* Else mark it */
4885 if (size & PSEUDOVECTOR_FLAG)
4886 size &= PSEUDOVECTOR_SIZE_MASK;
4887
4888 for (i = 0; i < size; i++) /* and then mark its elements */
4889 mark_object (ptr->contents[i]);
4890 }
4891 break;
4892
4893 case Lisp_Symbol:
4894 {
4895 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4896 struct Lisp_Symbol *ptrx;
4897
4898 if (ptr->gcmarkbit) break;
4899 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4900 ptr->gcmarkbit = 1;
4901 mark_object (ptr->value);
4902 mark_object (ptr->function);
4903 mark_object (ptr->plist);
4904
4905 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4906 MARK_STRING (XSTRING (ptr->xname));
4907 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4908
4909 /* Note that we do not mark the obarray of the symbol.
4910 It is safe not to do so because nothing accesses that
4911 slot except to check whether it is nil. */
4912 ptr = ptr->next;
4913 if (ptr)
4914 {
4915 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4916 XSETSYMBOL (obj, ptrx);
4917 goto loop;
4918 }
4919 }
4920 break;
4921
4922 case Lisp_Misc:
4923 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4924 if (XMARKER (obj)->gcmarkbit)
4925 break;
4926 XMARKER (obj)->gcmarkbit = 1;
4927 switch (XMISCTYPE (obj))
4928 {
4929 case Lisp_Misc_Buffer_Local_Value:
4930 case Lisp_Misc_Some_Buffer_Local_Value:
4931 {
4932 register struct Lisp_Buffer_Local_Value *ptr
4933 = XBUFFER_LOCAL_VALUE (obj);
4934 /* If the cdr is nil, avoid recursion for the car. */
4935 if (EQ (ptr->cdr, Qnil))
4936 {
4937 obj = ptr->realvalue;
4938 goto loop;
4939 }
4940 mark_object (ptr->realvalue);
4941 mark_object (ptr->buffer);
4942 mark_object (ptr->frame);
4943 obj = ptr->cdr;
4944 goto loop;
4945 }
4946
4947 case Lisp_Misc_Marker:
4948 /* DO NOT mark thru the marker's chain.
4949 The buffer's markers chain does not preserve markers from gc;
4950 instead, markers are removed from the chain when freed by gc. */
4951 case Lisp_Misc_Intfwd:
4952 case Lisp_Misc_Boolfwd:
4953 case Lisp_Misc_Objfwd:
4954 case Lisp_Misc_Buffer_Objfwd:
4955 case Lisp_Misc_Kboard_Objfwd:
4956 /* Don't bother with Lisp_Buffer_Objfwd,
4957 since all markable slots in current buffer marked anyway. */
4958 /* Don't need to do Lisp_Objfwd, since the places they point
4959 are protected with staticpro. */
4960 case Lisp_Misc_Save_Value:
4961 break;
4962
4963 case Lisp_Misc_Overlay:
4964 {
4965 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4966 mark_object (ptr->start);
4967 mark_object (ptr->end);
4968 mark_object (ptr->plist);
4969 if (ptr->next)
4970 {
4971 XSETMISC (obj, ptr->next);
4972 goto loop;
4973 }
4974 }
4975 break;
4976
4977 default:
4978 abort ();
4979 }
4980 break;
4981
4982 case Lisp_Cons:
4983 {
4984 register struct Lisp_Cons *ptr = XCONS (obj);
4985 if (CONS_MARKED_P (ptr)) break;
4986 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4987 CONS_MARK (ptr);
4988 /* If the cdr is nil, avoid recursion for the car. */
4989 if (EQ (ptr->cdr, Qnil))
4990 {
4991 obj = ptr->car;
4992 cdr_count = 0;
4993 goto loop;
4994 }
4995 mark_object (ptr->car);
4996 obj = ptr->cdr;
4997 cdr_count++;
4998 if (cdr_count == mark_object_loop_halt)
4999 abort ();
5000 goto loop;
5001 }
5002
5003 case Lisp_Float:
5004 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5005 FLOAT_MARK (XFLOAT (obj));
5006 break;
5007
5008 case Lisp_Int:
5009 break;
5010
5011 default:
5012 abort ();
5013 }
5014
5015 #undef CHECK_LIVE
5016 #undef CHECK_ALLOCATED
5017 #undef CHECK_ALLOCATED_AND_LIVE
5018 }
5019
5020 /* Mark the pointers in a buffer structure. */
5021
5022 static void
5023 mark_buffer (buf)
5024 Lisp_Object buf;
5025 {
5026 register struct buffer *buffer = XBUFFER (buf);
5027 register Lisp_Object *ptr, tmp;
5028 Lisp_Object base_buffer;
5029
5030 VECTOR_MARK (buffer);
5031
5032 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5033
5034 /* For now, we just don't mark the undo_list. It's done later in
5035 a special way just before the sweep phase, and after stripping
5036 some of its elements that are not needed any more. */
5037
5038 if (buffer->overlays_before)
5039 {
5040 XSETMISC (tmp, buffer->overlays_before);
5041 mark_object (tmp);
5042 }
5043 if (buffer->overlays_after)
5044 {
5045 XSETMISC (tmp, buffer->overlays_after);
5046 mark_object (tmp);
5047 }
5048
5049 for (ptr = &buffer->name;
5050 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5051 ptr++)
5052 mark_object (*ptr);
5053
5054 /* If this is an indirect buffer, mark its base buffer. */
5055 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5056 {
5057 XSETBUFFER (base_buffer, buffer->base_buffer);
5058 mark_buffer (base_buffer);
5059 }
5060 }
5061
5062
5063 /* Value is non-zero if OBJ will survive the current GC because it's
5064 either marked or does not need to be marked to survive. */
5065
5066 int
5067 survives_gc_p (obj)
5068 Lisp_Object obj;
5069 {
5070 int survives_p;
5071
5072 switch (XGCTYPE (obj))
5073 {
5074 case Lisp_Int:
5075 survives_p = 1;
5076 break;
5077
5078 case Lisp_Symbol:
5079 survives_p = XSYMBOL (obj)->gcmarkbit;
5080 break;
5081
5082 case Lisp_Misc:
5083 survives_p = XMARKER (obj)->gcmarkbit;
5084 break;
5085
5086 case Lisp_String:
5087 survives_p = STRING_MARKED_P (XSTRING (obj));
5088 break;
5089
5090 case Lisp_Vectorlike:
5091 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5092 break;
5093
5094 case Lisp_Cons:
5095 survives_p = CONS_MARKED_P (XCONS (obj));
5096 break;
5097
5098 case Lisp_Float:
5099 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5100 break;
5101
5102 default:
5103 abort ();
5104 }
5105
5106 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5107 }
5108
5109
5110 \f
5111 /* Sweep: find all structures not marked, and free them. */
5112
5113 static void
5114 gc_sweep ()
5115 {
5116 /* Remove or mark entries in weak hash tables.
5117 This must be done before any object is unmarked. */
5118 sweep_weak_hash_tables ();
5119
5120 sweep_strings ();
5121 #ifdef GC_CHECK_STRING_BYTES
5122 if (!noninteractive)
5123 check_string_bytes (1);
5124 #endif
5125
5126 /* Put all unmarked conses on free list */
5127 {
5128 register struct cons_block *cblk;
5129 struct cons_block **cprev = &cons_block;
5130 register int lim = cons_block_index;
5131 register int num_free = 0, num_used = 0;
5132
5133 cons_free_list = 0;
5134
5135 for (cblk = cons_block; cblk; cblk = *cprev)
5136 {
5137 register int i;
5138 int this_free = 0;
5139 for (i = 0; i < lim; i++)
5140 if (!CONS_MARKED_P (&cblk->conses[i]))
5141 {
5142 this_free++;
5143 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5144 cons_free_list = &cblk->conses[i];
5145 #if GC_MARK_STACK
5146 cons_free_list->car = Vdead;
5147 #endif
5148 }
5149 else
5150 {
5151 num_used++;
5152 CONS_UNMARK (&cblk->conses[i]);
5153 }
5154 lim = CONS_BLOCK_SIZE;
5155 /* If this block contains only free conses and we have already
5156 seen more than two blocks worth of free conses then deallocate
5157 this block. */
5158 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5159 {
5160 *cprev = cblk->next;
5161 /* Unhook from the free list. */
5162 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5163 lisp_align_free (cblk);
5164 n_cons_blocks--;
5165 }
5166 else
5167 {
5168 num_free += this_free;
5169 cprev = &cblk->next;
5170 }
5171 }
5172 total_conses = num_used;
5173 total_free_conses = num_free;
5174 }
5175
5176 /* Put all unmarked floats on free list */
5177 {
5178 register struct float_block *fblk;
5179 struct float_block **fprev = &float_block;
5180 register int lim = float_block_index;
5181 register int num_free = 0, num_used = 0;
5182
5183 float_free_list = 0;
5184
5185 for (fblk = float_block; fblk; fblk = *fprev)
5186 {
5187 register int i;
5188 int this_free = 0;
5189 for (i = 0; i < lim; i++)
5190 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5191 {
5192 this_free++;
5193 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5194 float_free_list = &fblk->floats[i];
5195 }
5196 else
5197 {
5198 num_used++;
5199 FLOAT_UNMARK (&fblk->floats[i]);
5200 }
5201 lim = FLOAT_BLOCK_SIZE;
5202 /* If this block contains only free floats and we have already
5203 seen more than two blocks worth of free floats then deallocate
5204 this block. */
5205 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5206 {
5207 *fprev = fblk->next;
5208 /* Unhook from the free list. */
5209 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5210 lisp_align_free (fblk);
5211 n_float_blocks--;
5212 }
5213 else
5214 {
5215 num_free += this_free;
5216 fprev = &fblk->next;
5217 }
5218 }
5219 total_floats = num_used;
5220 total_free_floats = num_free;
5221 }
5222
5223 /* Put all unmarked intervals on free list */
5224 {
5225 register struct interval_block *iblk;
5226 struct interval_block **iprev = &interval_block;
5227 register int lim = interval_block_index;
5228 register int num_free = 0, num_used = 0;
5229
5230 interval_free_list = 0;
5231
5232 for (iblk = interval_block; iblk; iblk = *iprev)
5233 {
5234 register int i;
5235 int this_free = 0;
5236
5237 for (i = 0; i < lim; i++)
5238 {
5239 if (!iblk->intervals[i].gcmarkbit)
5240 {
5241 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5242 interval_free_list = &iblk->intervals[i];
5243 this_free++;
5244 }
5245 else
5246 {
5247 num_used++;
5248 iblk->intervals[i].gcmarkbit = 0;
5249 }
5250 }
5251 lim = INTERVAL_BLOCK_SIZE;
5252 /* If this block contains only free intervals and we have already
5253 seen more than two blocks worth of free intervals then
5254 deallocate this block. */
5255 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5256 {
5257 *iprev = iblk->next;
5258 /* Unhook from the free list. */
5259 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5260 lisp_free (iblk);
5261 n_interval_blocks--;
5262 }
5263 else
5264 {
5265 num_free += this_free;
5266 iprev = &iblk->next;
5267 }
5268 }
5269 total_intervals = num_used;
5270 total_free_intervals = num_free;
5271 }
5272
5273 /* Put all unmarked symbols on free list */
5274 {
5275 register struct symbol_block *sblk;
5276 struct symbol_block **sprev = &symbol_block;
5277 register int lim = symbol_block_index;
5278 register int num_free = 0, num_used = 0;
5279
5280 symbol_free_list = NULL;
5281
5282 for (sblk = symbol_block; sblk; sblk = *sprev)
5283 {
5284 int this_free = 0;
5285 struct Lisp_Symbol *sym = sblk->symbols;
5286 struct Lisp_Symbol *end = sym + lim;
5287
5288 for (; sym < end; ++sym)
5289 {
5290 /* Check if the symbol was created during loadup. In such a case
5291 it might be pointed to by pure bytecode which we don't trace,
5292 so we conservatively assume that it is live. */
5293 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5294
5295 if (!sym->gcmarkbit && !pure_p)
5296 {
5297 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5298 symbol_free_list = sym;
5299 #if GC_MARK_STACK
5300 symbol_free_list->function = Vdead;
5301 #endif
5302 ++this_free;
5303 }
5304 else
5305 {
5306 ++num_used;
5307 if (!pure_p)
5308 UNMARK_STRING (XSTRING (sym->xname));
5309 sym->gcmarkbit = 0;
5310 }
5311 }
5312
5313 lim = SYMBOL_BLOCK_SIZE;
5314 /* If this block contains only free symbols and we have already
5315 seen more than two blocks worth of free symbols then deallocate
5316 this block. */
5317 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5318 {
5319 *sprev = sblk->next;
5320 /* Unhook from the free list. */
5321 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5322 lisp_free (sblk);
5323 n_symbol_blocks--;
5324 }
5325 else
5326 {
5327 num_free += this_free;
5328 sprev = &sblk->next;
5329 }
5330 }
5331 total_symbols = num_used;
5332 total_free_symbols = num_free;
5333 }
5334
5335 /* Put all unmarked misc's on free list.
5336 For a marker, first unchain it from the buffer it points into. */
5337 {
5338 register struct marker_block *mblk;
5339 struct marker_block **mprev = &marker_block;
5340 register int lim = marker_block_index;
5341 register int num_free = 0, num_used = 0;
5342
5343 marker_free_list = 0;
5344
5345 for (mblk = marker_block; mblk; mblk = *mprev)
5346 {
5347 register int i;
5348 int this_free = 0;
5349
5350 for (i = 0; i < lim; i++)
5351 {
5352 if (!mblk->markers[i].u_marker.gcmarkbit)
5353 {
5354 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5355 unchain_marker (&mblk->markers[i].u_marker);
5356 /* Set the type of the freed object to Lisp_Misc_Free.
5357 We could leave the type alone, since nobody checks it,
5358 but this might catch bugs faster. */
5359 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5360 mblk->markers[i].u_free.chain = marker_free_list;
5361 marker_free_list = &mblk->markers[i];
5362 this_free++;
5363 }
5364 else
5365 {
5366 num_used++;
5367 mblk->markers[i].u_marker.gcmarkbit = 0;
5368 }
5369 }
5370 lim = MARKER_BLOCK_SIZE;
5371 /* If this block contains only free markers and we have already
5372 seen more than two blocks worth of free markers then deallocate
5373 this block. */
5374 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5375 {
5376 *mprev = mblk->next;
5377 /* Unhook from the free list. */
5378 marker_free_list = mblk->markers[0].u_free.chain;
5379 lisp_free (mblk);
5380 n_marker_blocks--;
5381 }
5382 else
5383 {
5384 num_free += this_free;
5385 mprev = &mblk->next;
5386 }
5387 }
5388
5389 total_markers = num_used;
5390 total_free_markers = num_free;
5391 }
5392
5393 /* Free all unmarked buffers */
5394 {
5395 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5396
5397 while (buffer)
5398 if (!VECTOR_MARKED_P (buffer))
5399 {
5400 if (prev)
5401 prev->next = buffer->next;
5402 else
5403 all_buffers = buffer->next;
5404 next = buffer->next;
5405 lisp_free (buffer);
5406 buffer = next;
5407 }
5408 else
5409 {
5410 VECTOR_UNMARK (buffer);
5411 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5412 prev = buffer, buffer = buffer->next;
5413 }
5414 }
5415
5416 /* Free all unmarked vectors */
5417 {
5418 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5419 total_vector_size = 0;
5420
5421 while (vector)
5422 if (!VECTOR_MARKED_P (vector))
5423 {
5424 if (prev)
5425 prev->next = vector->next;
5426 else
5427 all_vectors = vector->next;
5428 next = vector->next;
5429 lisp_free (vector);
5430 n_vectors--;
5431 vector = next;
5432
5433 }
5434 else
5435 {
5436 VECTOR_UNMARK (vector);
5437 if (vector->size & PSEUDOVECTOR_FLAG)
5438 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5439 else
5440 total_vector_size += vector->size;
5441 prev = vector, vector = vector->next;
5442 }
5443 }
5444
5445 #ifdef GC_CHECK_STRING_BYTES
5446 if (!noninteractive)
5447 check_string_bytes (1);
5448 #endif
5449 }
5450
5451
5452
5453 \f
5454 /* Debugging aids. */
5455
5456 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5457 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5458 This may be helpful in debugging Emacs's memory usage.
5459 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5460 ()
5461 {
5462 Lisp_Object end;
5463
5464 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5465
5466 return end;
5467 }
5468
5469 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5470 doc: /* Return a list of counters that measure how much consing there has been.
5471 Each of these counters increments for a certain kind of object.
5472 The counters wrap around from the largest positive integer to zero.
5473 Garbage collection does not decrease them.
5474 The elements of the value are as follows:
5475 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5476 All are in units of 1 = one object consed
5477 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5478 objects consed.
5479 MISCS include overlays, markers, and some internal types.
5480 Frames, windows, buffers, and subprocesses count as vectors
5481 (but the contents of a buffer's text do not count here). */)
5482 ()
5483 {
5484 Lisp_Object consed[8];
5485
5486 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5487 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5488 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5489 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5490 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5491 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5492 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5493 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5494
5495 return Flist (8, consed);
5496 }
5497
5498 int suppress_checking;
5499 void
5500 die (msg, file, line)
5501 const char *msg;
5502 const char *file;
5503 int line;
5504 {
5505 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5506 file, line, msg);
5507 abort ();
5508 }
5509 \f
5510 /* Initialization */
5511
5512 void
5513 init_alloc_once ()
5514 {
5515 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5516 purebeg = PUREBEG;
5517 pure_size = PURESIZE;
5518 pure_bytes_used = 0;
5519 pure_bytes_used_before_overflow = 0;
5520
5521 /* Initialize the list of free aligned blocks. */
5522 free_ablock = NULL;
5523
5524 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5525 mem_init ();
5526 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5527 #endif
5528
5529 all_vectors = 0;
5530 ignore_warnings = 1;
5531 #ifdef DOUG_LEA_MALLOC
5532 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5533 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5534 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5535 #endif
5536 init_strings ();
5537 init_cons ();
5538 init_symbol ();
5539 init_marker ();
5540 init_float ();
5541 init_intervals ();
5542
5543 #ifdef REL_ALLOC
5544 malloc_hysteresis = 32;
5545 #else
5546 malloc_hysteresis = 0;
5547 #endif
5548
5549 spare_memory = (char *) malloc (SPARE_MEMORY);
5550
5551 ignore_warnings = 0;
5552 gcprolist = 0;
5553 byte_stack_list = 0;
5554 staticidx = 0;
5555 consing_since_gc = 0;
5556 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5557 #ifdef VIRT_ADDR_VARIES
5558 malloc_sbrk_unused = 1<<22; /* A large number */
5559 malloc_sbrk_used = 100000; /* as reasonable as any number */
5560 #endif /* VIRT_ADDR_VARIES */
5561 }
5562
5563 void
5564 init_alloc ()
5565 {
5566 gcprolist = 0;
5567 byte_stack_list = 0;
5568 #if GC_MARK_STACK
5569 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5570 setjmp_tested_p = longjmps_done = 0;
5571 #endif
5572 #endif
5573 Vgc_elapsed = make_float (0.0);
5574 gcs_done = 0;
5575 }
5576
5577 void
5578 syms_of_alloc ()
5579 {
5580 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5581 doc: /* *Number of bytes of consing between garbage collections.
5582 Garbage collection can happen automatically once this many bytes have been
5583 allocated since the last garbage collection. All data types count.
5584
5585 Garbage collection happens automatically only when `eval' is called.
5586
5587 By binding this temporarily to a large number, you can effectively
5588 prevent garbage collection during a part of the program. */);
5589
5590 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5591 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5592
5593 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5594 doc: /* Number of cons cells that have been consed so far. */);
5595
5596 DEFVAR_INT ("floats-consed", &floats_consed,
5597 doc: /* Number of floats that have been consed so far. */);
5598
5599 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5600 doc: /* Number of vector cells that have been consed so far. */);
5601
5602 DEFVAR_INT ("symbols-consed", &symbols_consed,
5603 doc: /* Number of symbols that have been consed so far. */);
5604
5605 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5606 doc: /* Number of string characters that have been consed so far. */);
5607
5608 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5609 doc: /* Number of miscellaneous objects that have been consed so far. */);
5610
5611 DEFVAR_INT ("intervals-consed", &intervals_consed,
5612 doc: /* Number of intervals that have been consed so far. */);
5613
5614 DEFVAR_INT ("strings-consed", &strings_consed,
5615 doc: /* Number of strings that have been consed so far. */);
5616
5617 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5618 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5619 This means that certain objects should be allocated in shared (pure) space. */);
5620
5621 DEFVAR_INT ("undo-limit", &undo_limit,
5622 doc: /* Keep no more undo information once it exceeds this size.
5623 This limit is applied when garbage collection happens.
5624 The size is counted as the number of bytes occupied,
5625 which includes both saved text and other data. */);
5626 undo_limit = 20000;
5627
5628 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5629 doc: /* Don't keep more than this much size of undo information.
5630 A previous command which pushes the undo list past this size
5631 is entirely forgotten when GC happens.
5632 The size is counted as the number of bytes occupied,
5633 which includes both saved text and other data. */);
5634 undo_strong_limit = 30000;
5635
5636 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5637 doc: /* Don't keep more than this much size of undo information.
5638 If the current command has produced more than this much undo information,
5639 GC discards it. This is a last-ditch limit to prevent memory overflow.
5640 The size is counted as the number of bytes occupied,
5641 which includes both saved text and other data. */);
5642 undo_outer_limit = 300000;
5643
5644 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5645 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5646 garbage_collection_messages = 0;
5647
5648 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5649 doc: /* Hook run after garbage collection has finished. */);
5650 Vpost_gc_hook = Qnil;
5651 Qpost_gc_hook = intern ("post-gc-hook");
5652 staticpro (&Qpost_gc_hook);
5653
5654 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5655 doc: /* Precomputed `signal' argument for memory-full error. */);
5656 /* We build this in advance because if we wait until we need it, we might
5657 not be able to allocate the memory to hold it. */
5658 Vmemory_signal_data
5659 = list2 (Qerror,
5660 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5661
5662 DEFVAR_LISP ("memory-full", &Vmemory_full,
5663 doc: /* Non-nil means we are handling a memory-full error. */);
5664 Vmemory_full = Qnil;
5665
5666 staticpro (&Qgc_cons_threshold);
5667 Qgc_cons_threshold = intern ("gc-cons-threshold");
5668
5669 staticpro (&Qchar_table_extra_slots);
5670 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5671
5672 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5673 doc: /* Accumulated time elapsed in garbage collections.
5674 The time is in seconds as a floating point value. */);
5675 DEFVAR_INT ("gcs-done", &gcs_done,
5676 doc: /* Accumulated number of garbage collections done. */);
5677
5678 defsubr (&Scons);
5679 defsubr (&Slist);
5680 defsubr (&Svector);
5681 defsubr (&Smake_byte_code);
5682 defsubr (&Smake_list);
5683 defsubr (&Smake_vector);
5684 defsubr (&Smake_string);
5685 defsubr (&Smake_bool_vector);
5686 defsubr (&Smake_symbol);
5687 defsubr (&Smake_marker);
5688 defsubr (&Spurecopy);
5689 defsubr (&Sgarbage_collect);
5690 defsubr (&Smemory_limit);
5691 defsubr (&Smemory_use_counts);
5692
5693 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5694 defsubr (&Sgc_status);
5695 #endif
5696 }
5697
5698 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5699 (do not change this comment) */