merge trunk
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf cl-getf cl-get cl-tailp cl-list-length
8 ;;;;;; cl-nreconc cl-revappend cl-concatenate cl-subseq cl-float-limits
9 ;;;;;; cl-random-state-p cl-make-random-state cl-random cl-signum
10 ;;;;;; cl-rem cl-mod cl-round cl-truncate cl-ceiling cl-floor cl-isqrt
11 ;;;;;; cl-lcm cl-gcd cl-progv-before cl-set-frame-visible-p cl-map-overlays
12 ;;;;;; cl-map-intervals cl-map-keymap-recursively cl-notevery cl-notany
13 ;;;;;; cl-every cl-some cl-mapcon cl-mapcan cl-mapl cl-maplist cl-map
14 ;;;;;; cl-mapcar-many cl-equalp cl-coerce) "cl-extra" "cl-extra.el"
15 ;;;;;; "acc0000b09b27fb51f5ba23a4b9254e2")
16 ;;; Generated autoloads from cl-extra.el
17
18 (autoload 'cl-coerce "cl-extra" "\
19 Coerce OBJECT to type TYPE.
20 TYPE is a Common Lisp type specifier.
21
22 \(fn OBJECT TYPE)" nil nil)
23
24 (autoload 'cl-equalp "cl-extra" "\
25 Return t if two Lisp objects have similar structures and contents.
26 This is like `equal', except that it accepts numerically equal
27 numbers of different types (float vs. integer), and also compares
28 strings case-insensitively.
29
30 \(fn X Y)" nil nil)
31
32 (autoload 'cl-mapcar-many "cl-extra" "\
33
34
35 \(fn CL-FUNC CL-SEQS)" nil nil)
36
37 (autoload 'cl-map "cl-extra" "\
38 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
39 TYPE is the sequence type to return.
40
41 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42
43 (autoload 'cl-maplist "cl-extra" "\
44 Map FUNCTION to each sublist of LIST or LISTs.
45 Like `mapcar', except applies to lists and their cdr's rather than to
46 the elements themselves.
47
48 \(fn FUNCTION LIST...)" nil nil)
49
50 (autoload 'cl-mapl "cl-extra" "\
51 Like `cl-maplist', but does not accumulate values returned by the function.
52
53 \(fn FUNCTION LIST...)" nil nil)
54
55 (autoload 'cl-mapcan "cl-extra" "\
56 Like `mapcar', but nconc's together the values returned by the function.
57
58 \(fn FUNCTION SEQUENCE...)" nil nil)
59
60 (autoload 'cl-mapcon "cl-extra" "\
61 Like `cl-maplist', but nconc's together the values returned by the function.
62
63 \(fn FUNCTION LIST...)" nil nil)
64
65 (autoload 'cl-some "cl-extra" "\
66 Return true if PREDICATE is true of any element of SEQ or SEQs.
67 If so, return the true (non-nil) value returned by PREDICATE.
68
69 \(fn PREDICATE SEQ...)" nil nil)
70
71 (autoload 'cl-every "cl-extra" "\
72 Return true if PREDICATE is true of every element of SEQ or SEQs.
73
74 \(fn PREDICATE SEQ...)" nil nil)
75
76 (autoload 'cl-notany "cl-extra" "\
77 Return true if PREDICATE is false of every element of SEQ or SEQs.
78
79 \(fn PREDICATE SEQ...)" nil nil)
80
81 (autoload 'cl-notevery "cl-extra" "\
82 Return true if PREDICATE is false of some element of SEQ or SEQs.
83
84 \(fn PREDICATE SEQ...)" nil nil)
85
86 (defalias 'cl-map-keymap 'map-keymap)
87
88 (autoload 'cl-map-keymap-recursively "cl-extra" "\
89
90
91 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
92
93 (autoload 'cl-map-intervals "cl-extra" "\
94
95
96 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
97
98 (autoload 'cl-map-overlays "cl-extra" "\
99
100
101 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
102
103 (autoload 'cl-set-frame-visible-p "cl-extra" "\
104
105
106 \(fn FRAME VAL)" nil nil)
107
108 (autoload 'cl-progv-before "cl-extra" "\
109
110
111 \(fn SYMS VALUES)" nil nil)
112
113 (autoload 'cl-gcd "cl-extra" "\
114 Return the greatest common divisor of the arguments.
115
116 \(fn &rest ARGS)" nil nil)
117
118 (autoload 'cl-lcm "cl-extra" "\
119 Return the least common multiple of the arguments.
120
121 \(fn &rest ARGS)" nil nil)
122
123 (autoload 'cl-isqrt "cl-extra" "\
124 Return the integer square root of the argument.
125
126 \(fn X)" nil nil)
127
128 (autoload 'cl-floor "cl-extra" "\
129 Return a list of the floor of X and the fractional part of X.
130 With two arguments, return floor and remainder of their quotient.
131
132 \(fn X &optional Y)" nil nil)
133
134 (autoload 'cl-ceiling "cl-extra" "\
135 Return a list of the ceiling of X and the fractional part of X.
136 With two arguments, return ceiling and remainder of their quotient.
137
138 \(fn X &optional Y)" nil nil)
139
140 (autoload 'cl-truncate "cl-extra" "\
141 Return a list of the integer part of X and the fractional part of X.
142 With two arguments, return truncation and remainder of their quotient.
143
144 \(fn X &optional Y)" nil nil)
145
146 (autoload 'cl-round "cl-extra" "\
147 Return a list of X rounded to the nearest integer and the remainder.
148 With two arguments, return rounding and remainder of their quotient.
149
150 \(fn X &optional Y)" nil nil)
151
152 (autoload 'cl-mod "cl-extra" "\
153 The remainder of X divided by Y, with the same sign as Y.
154
155 \(fn X Y)" nil nil)
156
157 (autoload 'cl-rem "cl-extra" "\
158 The remainder of X divided by Y, with the same sign as X.
159
160 \(fn X Y)" nil nil)
161
162 (autoload 'cl-signum "cl-extra" "\
163 Return 1 if X is positive, -1 if negative, 0 if zero.
164
165 \(fn X)" nil nil)
166
167 (autoload 'cl-random "cl-extra" "\
168 Return a random nonnegative number less than LIM, an integer or float.
169 Optional second arg STATE is a random-state object.
170
171 \(fn LIM &optional STATE)" nil nil)
172
173 (autoload 'cl-make-random-state "cl-extra" "\
174 Return a copy of random-state STATE, or of the internal state if omitted.
175 If STATE is t, return a new state object seeded from the time of day.
176
177 \(fn &optional STATE)" nil nil)
178
179 (autoload 'cl-random-state-p "cl-extra" "\
180 Return t if OBJECT is a random-state object.
181
182 \(fn OBJECT)" nil nil)
183
184 (autoload 'cl-float-limits "cl-extra" "\
185 Initialize the Common Lisp floating-point parameters.
186 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
187 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
188 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
189 `cl-least-negative-normalized-float'.
190
191 \(fn)" nil nil)
192
193 (autoload 'cl-subseq "cl-extra" "\
194 Return the subsequence of SEQ from START to END.
195 If END is omitted, it defaults to the length of the sequence.
196 If START or END is negative, it counts from the end.
197
198 \(fn SEQ START &optional END)" nil nil)
199
200 (autoload 'cl-concatenate "cl-extra" "\
201 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
202
203 \(fn TYPE SEQUENCE...)" nil nil)
204
205 (autoload 'cl-revappend "cl-extra" "\
206 Equivalent to (append (reverse X) Y).
207
208 \(fn X Y)" nil nil)
209
210 (autoload 'cl-nreconc "cl-extra" "\
211 Equivalent to (nconc (nreverse X) Y).
212
213 \(fn X Y)" nil nil)
214
215 (autoload 'cl-list-length "cl-extra" "\
216 Return the length of list X. Return nil if list is circular.
217
218 \(fn X)" nil nil)
219
220 (autoload 'cl-tailp "cl-extra" "\
221 Return true if SUBLIST is a tail of LIST.
222
223 \(fn SUBLIST LIST)" nil nil)
224
225 (autoload 'cl-get "cl-extra" "\
226 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
227
228 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-getf "cl-extra" "\
231 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
232 PROPLIST is a list of the sort returned by `symbol-plist'.
233
234 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
235
236 (autoload 'cl-set-getf "cl-extra" "\
237
238
239 \(fn PLIST TAG VAL)" nil nil)
240
241 (autoload 'cl-do-remf "cl-extra" "\
242
243
244 \(fn PLIST TAG)" nil nil)
245
246 (autoload 'cl-remprop "cl-extra" "\
247 Remove from SYMBOL's plist the property PROPNAME and its value.
248
249 \(fn SYMBOL PROPNAME)" nil nil)
250
251 (defalias 'cl-gethash 'gethash)
252
253 (defalias 'cl-puthash 'puthash)
254
255 (defalias 'cl-remhash 'remhash)
256
257 (defalias 'cl-clrhash 'clrhash)
258
259 (defalias 'cl-maphash 'maphash)
260
261 (defalias 'cl-make-hash-table 'make-hash-table)
262
263 (defalias 'cl-hash-table-p 'hash-table-p)
264
265 (defalias 'cl-hash-table-count 'hash-table-count)
266
267 (autoload 'cl-macroexpand-all "cl-extra" "\
268 Expand all macro calls through a Lisp FORM.
269 This also does some trivial optimizations to make the form prettier.
270
271 \(fn FORM &optional ENV)" nil nil)
272
273 (autoload 'cl-prettyexpand "cl-extra" "\
274
275
276 \(fn FORM &optional FULL)" nil nil)
277
278 ;;;***
279 \f
280 ;;;### (autoloads (cl-defsubst cl-compiler-macroexpand cl-define-compiler-macro
281 ;;;;;; cl-assert cl-check-type cl-typep cl-deftype cl-struct-setf-expander
282 ;;;;;; cl-defstruct cl-define-modify-macro cl-callf2 cl-callf cl-letf*
283 ;;;;;; cl-letf cl-rotatef cl-shiftf cl-remf cl-do-pop cl-psetf cl-setf
284 ;;;;;; cl-get-setf-method cl-defsetf cl-define-setf-method cl-declare
285 ;;;;;; cl-the cl-locally cl-multiple-value-setq cl-multiple-value-bind
286 ;;;;;; cl-lexical-let* cl-lexical-let cl-symbol-macrolet cl-macrolet
287 ;;;;;; cl-labels cl-flet cl-progv cl-psetq cl-do-all-symbols cl-do-symbols
288 ;;;;;; cl-dotimes cl-dolist cl-do* cl-do cl-loop cl-return-from
289 ;;;;;; cl-return cl-block cl-etypecase cl-typecase cl-ecase cl-case
290 ;;;;;; cl-load-time-value cl-eval-when cl-destructuring-bind cl-function
291 ;;;;;; cl-defmacro cl-defun cl-gentemp cl-gensym) "cl-macs" "cl-macs.el"
292 ;;;;;; "35e128b3ab7780c4f9c25da5a0adea7a")
293 ;;; Generated autoloads from cl-macs.el
294
295 (autoload 'cl-gensym "cl-macs" "\
296 Generate a new uninterned symbol.
297 The name is made by appending a number to PREFIX, default \"G\".
298
299 \(fn &optional PREFIX)" nil nil)
300
301 (autoload 'cl-gentemp "cl-macs" "\
302 Generate a new interned symbol with a unique name.
303 The name is made by appending a number to PREFIX, default \"G\".
304
305 \(fn &optional PREFIX)" nil nil)
306
307 (autoload 'cl-defun "cl-macs" "\
308 Define NAME as a function.
309 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (cl-block NAME ...).
311
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
313
314 (put 'cl-defun 'lisp-indent-function '2)
315
316 (put 'cl-defun 'doc-string-elt '3)
317
318 (autoload 'cl-defmacro "cl-macs" "\
319 Define NAME as a macro.
320 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
321 and BODY is implicitly surrounded by (cl-block NAME ...).
322
323 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
324
325 (put 'cl-defmacro 'lisp-indent-function '2)
326
327 (put 'cl-defmacro 'doc-string-elt '3)
328
329 (autoload 'cl-function "cl-macs" "\
330 Introduce a function.
331 Like normal `function', except that if argument is a lambda form,
332 its argument list allows full Common Lisp conventions.
333
334 \(fn FUNC)" nil (quote macro))
335
336 (autoload 'cl-destructuring-bind "cl-macs" "\
337
338
339 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
340
341 (put 'cl-destructuring-bind 'lisp-indent-function '2)
342
343 (autoload 'cl-eval-when "cl-macs" "\
344 Control when BODY is evaluated.
345 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
346 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
347 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
348
349 \(fn (WHEN...) BODY...)" nil (quote macro))
350
351 (put 'cl-eval-when 'lisp-indent-function '1)
352
353 (autoload 'cl-load-time-value "cl-macs" "\
354 Like `progn', but evaluates the body at load time.
355 The result of the body appears to the compiler as a quoted constant.
356
357 \(fn FORM &optional READ-ONLY)" nil (quote macro))
358
359 (autoload 'cl-case "cl-macs" "\
360 Eval EXPR and choose among clauses on that value.
361 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
362 against each key in each KEYLIST; the corresponding BODY is evaluated.
363 If no clause succeeds, cl-case returns nil. A single atom may be used in
364 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
365 allowed only in the final clause, and matches if no other keys match.
366 Key values are compared by `eql'.
367
368 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
369
370 (put 'cl-case 'lisp-indent-function '1)
371
372 (autoload 'cl-ecase "cl-macs" "\
373 Like `cl-case', but error if no cl-case fits.
374 `otherwise'-clauses are not allowed.
375
376 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
377
378 (put 'cl-ecase 'lisp-indent-function '1)
379
380 (autoload 'cl-typecase "cl-macs" "\
381 Evals EXPR, chooses among clauses on that value.
382 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
383 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
384 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
385 final clause, and matches if no other keys match.
386
387 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
388
389 (put 'cl-typecase 'lisp-indent-function '1)
390
391 (autoload 'cl-etypecase "cl-macs" "\
392 Like `cl-typecase', but error if no case fits.
393 `otherwise'-clauses are not allowed.
394
395 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
396
397 (put 'cl-etypecase 'lisp-indent-function '1)
398
399 (autoload 'cl-block "cl-macs" "\
400 Define a lexically-scoped block named NAME.
401 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
402 to jump prematurely out of the block. This differs from `catch' and `throw'
403 in two respects: First, the NAME is an unevaluated symbol rather than a
404 quoted symbol or other form; and second, NAME is lexically rather than
405 dynamically scoped: Only references to it within BODY will work. These
406 references may appear inside macro expansions, but not inside functions
407 called from BODY.
408
409 \(fn NAME &rest BODY)" nil (quote macro))
410
411 (put 'cl-block 'lisp-indent-function '1)
412
413 (autoload 'cl-return "cl-macs" "\
414 Return from the block named nil.
415 This is equivalent to `(cl-return-from nil RESULT)'.
416
417 \(fn &optional RESULT)" nil (quote macro))
418
419 (autoload 'cl-return-from "cl-macs" "\
420 Return from the block named NAME.
421 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
422 returning RESULT from that form (or nil if RESULT is omitted).
423 This is compatible with Common Lisp, but note that `defun' and
424 `defmacro' do not create implicit blocks as they do in Common Lisp.
425
426 \(fn NAME &optional RESULT)" nil (quote macro))
427
428 (put 'cl-return-from 'lisp-indent-function '1)
429
430 (autoload 'cl-loop "cl-macs" "\
431 The Common Lisp `cl-loop' macro.
432 Valid clauses are:
433 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
434 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
435 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
436 always COND, never COND, thereis COND, collect EXPR into VAR,
437 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
438 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
439 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
440 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
441 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
442 finally return EXPR, named NAME.
443
444 \(fn CLAUSE...)" nil (quote macro))
445
446 (autoload 'cl-do "cl-macs" "\
447 The Common Lisp `cl-do' loop.
448
449 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
450
451 (put 'cl-do 'lisp-indent-function '2)
452
453 (autoload 'cl-do* "cl-macs" "\
454 The Common Lisp `cl-do*' loop.
455
456 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
457
458 (put 'cl-do* 'lisp-indent-function '2)
459
460 (autoload 'cl-dolist "cl-macs" "\
461 Loop over a list.
462 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
463 Then evaluate RESULT to get return value, default nil.
464 An implicit nil block is established around the loop.
465
466 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
467
468 (autoload 'cl-dotimes "cl-macs" "\
469 Loop a certain number of times.
470 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
471 to COUNT, exclusive. Then evaluate RESULT to get return value, default
472 nil.
473
474 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
475
476 (autoload 'cl-do-symbols "cl-macs" "\
477 Loop over all symbols.
478 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
479 from OBARRAY.
480
481 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
482
483 (put 'cl-do-symbols 'lisp-indent-function '1)
484
485 (autoload 'cl-do-all-symbols "cl-macs" "\
486
487
488 \(fn SPEC &rest BODY)" nil (quote macro))
489
490 (put 'cl-do-all-symbols 'lisp-indent-function '1)
491
492 (autoload 'cl-psetq "cl-macs" "\
493 Set SYMs to the values VALs in parallel.
494 This is like `setq', except that all VAL forms are evaluated (in order)
495 before assigning any symbols SYM to the corresponding values.
496
497 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
498
499 (autoload 'cl-progv "cl-macs" "\
500 Bind SYMBOLS to VALUES dynamically in BODY.
501 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
502 Each symbol in the first list is bound to the corresponding value in the
503 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
504 BODY forms are executed and their result is returned. This is much like
505 a `let' form, except that the list of symbols can be computed at run-time.
506
507 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
508
509 (put 'cl-progv 'lisp-indent-function '2)
510
511 (autoload 'cl-flet "cl-macs" "\
512 Make temporary function definitions.
513 This is an analogue of `let' that operates on the function cell of FUNC
514 rather than its value cell. The FORMs are evaluated with the specified
515 function definitions in place, then the definitions are undone (the FUNCs
516 go back to their previous definitions, or lack thereof).
517
518 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
519
520 (put 'cl-flet 'lisp-indent-function '1)
521
522 (autoload 'cl-labels "cl-macs" "\
523 Make temporary function bindings.
524 This is like `cl-flet', except the bindings are lexical instead of dynamic.
525 Unlike `cl-flet', this macro is fully compliant with the Common Lisp standard.
526
527 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
528
529 (put 'cl-labels 'lisp-indent-function '1)
530
531 (autoload 'cl-macrolet "cl-macs" "\
532 Make temporary macro definitions.
533 This is like `cl-flet', but for macros instead of functions.
534
535 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
536
537 (put 'cl-macrolet 'lisp-indent-function '1)
538
539 (autoload 'cl-symbol-macrolet "cl-macs" "\
540 Make symbol macro definitions.
541 Within the body FORMs, references to the variable NAME will be replaced
542 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
543
544 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
545
546 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
547
548 (autoload 'cl-lexical-let "cl-macs" "\
549 Like `let', but lexically scoped.
550 The main visible difference is that lambdas inside BODY will create
551 lexical closures as in Common Lisp.
552
553 \(fn BINDINGS BODY)" nil (quote macro))
554
555 (put 'cl-lexical-let 'lisp-indent-function '1)
556
557 (autoload 'cl-lexical-let* "cl-macs" "\
558 Like `let*', but lexically scoped.
559 The main visible difference is that lambdas inside BODY, and in
560 successive bindings within BINDINGS, will create lexical closures
561 as in Common Lisp. This is similar to the behavior of `let*' in
562 Common Lisp.
563
564 \(fn BINDINGS BODY)" nil (quote macro))
565
566 (put 'cl-lexical-let* 'lisp-indent-function '1)
567
568 (autoload 'cl-multiple-value-bind "cl-macs" "\
569 Collect multiple return values.
570 FORM must return a list; the BODY is then executed with the first N elements
571 of this list bound (`let'-style) to each of the symbols SYM in turn. This
572 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
573 simulate true multiple return values. For compatibility, (cl-values A B C) is
574 a synonym for (list A B C).
575
576 \(fn (SYM...) FORM BODY)" nil (quote macro))
577
578 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
579
580 (autoload 'cl-multiple-value-setq "cl-macs" "\
581 Collect multiple return values.
582 FORM must return a list; the first N elements of this list are stored in
583 each of the symbols SYM in turn. This is analogous to the Common Lisp
584 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
585 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
586
587 \(fn (SYM...) FORM)" nil (quote macro))
588
589 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
590
591 (autoload 'cl-locally "cl-macs" "\
592
593
594 \(fn &rest BODY)" nil (quote macro))
595
596 (autoload 'cl-the "cl-macs" "\
597
598
599 \(fn TYPE FORM)" nil (quote macro))
600
601 (put 'cl-the 'lisp-indent-function '1)
602
603 (autoload 'cl-declare "cl-macs" "\
604 Declare SPECS about the current function while compiling.
605 For instance
606
607 (cl-declare (warn 0))
608
609 will turn off byte-compile warnings in the function.
610 See Info node `(cl)Declarations' for details.
611
612 \(fn &rest SPECS)" nil (quote macro))
613
614 (autoload 'cl-define-setf-method "cl-macs" "\
615 Define a `cl-setf' method.
616 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
617 The argument forms ARGS are bound according to ARGLIST, as if NAME were
618 going to be expanded as a macro, then the BODY forms are executed and must
619 return a list of five elements: a temporary-variables list, a value-forms
620 list, a store-variables list (of length one), a store-form, and an access-
621 form. See `cl-defsetf' for a simpler way to define most setf-methods.
622
623 \(fn NAME ARGLIST BODY...)" nil (quote macro))
624
625 (autoload 'cl-defsetf "cl-macs" "\
626 Define a `cl-setf' method.
627 This macro is an easy-to-use substitute for `cl-define-setf-method' that works
628 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
629 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
630 calls of the form (FUNC ARGS... VAL). Example:
631
632 (cl-defsetf aref aset)
633
634 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
635 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
636 according to ARGLIST, binding the value form VAL to STORE, then executing
637 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
638 Actually, ARGLIST and STORE may be bound to temporary variables which are
639 introduced automatically to preserve proper execution order of the arguments.
640 Example:
641
642 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
643
644 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
645
646 (autoload 'cl-get-setf-method "cl-macs" "\
647 Return a list of five values describing the setf-method for PLACE.
648 PLACE may be any Lisp form which can appear as the PLACE argument to
649 a macro like `cl-setf' or `cl-incf'.
650
651 \(fn PLACE &optional ENV)" nil nil)
652
653 (autoload 'cl-setf "cl-macs" "\
654 Set each PLACE to the value of its VAL.
655 This is a generalized version of `setq'; the PLACEs may be symbolic
656 references such as (car x) or (aref x i), as well as plain symbols.
657 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
658 The return value is the last VAL in the list.
659
660 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
661
662 (autoload 'cl-psetf "cl-macs" "\
663 Set PLACEs to the values VALs in parallel.
664 This is like `cl-setf', except that all VAL forms are evaluated (in order)
665 before assigning any PLACEs to the corresponding values.
666
667 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
668
669 (autoload 'cl-do-pop "cl-macs" "\
670
671
672 \(fn PLACE)" nil nil)
673
674 (autoload 'cl-remf "cl-macs" "\
675 Remove TAG from property list PLACE.
676 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
677 The form returns true if TAG was found and removed, nil otherwise.
678
679 \(fn PLACE TAG)" nil (quote macro))
680
681 (autoload 'cl-shiftf "cl-macs" "\
682 Shift left among PLACEs.
683 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
684 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
685
686 \(fn PLACE... VAL)" nil (quote macro))
687
688 (autoload 'cl-rotatef "cl-macs" "\
689 Rotate left among PLACEs.
690 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
691 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
692
693 \(fn PLACE...)" nil (quote macro))
694
695 (autoload 'cl-letf "cl-macs" "\
696 Temporarily bind to PLACEs.
697 This is the analogue of `let', but with generalized variables (in the
698 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
699 VALUE, then the BODY forms are executed. On exit, either normally or
700 because of a `throw' or error, the PLACEs are set back to their original
701 values. Note that this macro is *not* available in Common Lisp.
702 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
703 the PLACE is not modified before executing BODY.
704
705 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
706
707 (put 'cl-letf 'lisp-indent-function '1)
708
709 (autoload 'cl-letf* "cl-macs" "\
710 Temporarily bind to PLACEs.
711 This is the analogue of `let*', but with generalized variables (in the
712 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
713 VALUE, then the BODY forms are executed. On exit, either normally or
714 because of a `throw' or error, the PLACEs are set back to their original
715 values. Note that this macro is *not* available in Common Lisp.
716 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
717 the PLACE is not modified before executing BODY.
718
719 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
720
721 (put 'cl-letf* 'lisp-indent-function '1)
722
723 (autoload 'cl-callf "cl-macs" "\
724 Set PLACE to (FUNC PLACE ARGS...).
725 FUNC should be an unquoted function name. PLACE may be a symbol,
726 or any generalized variable allowed by `cl-setf'.
727
728 \(fn FUNC PLACE ARGS...)" nil (quote macro))
729
730 (put 'cl-callf 'lisp-indent-function '2)
731
732 (autoload 'cl-callf2 "cl-macs" "\
733 Set PLACE to (FUNC ARG1 PLACE ARGS...).
734 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
735
736 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
737
738 (put 'cl-callf2 'lisp-indent-function '3)
739
740 (autoload 'cl-define-modify-macro "cl-macs" "\
741 Define a `cl-setf'-like modify macro.
742 If NAME is called, it combines its PLACE argument with the other arguments
743 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)
744
745 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
746
747 (autoload 'cl-defstruct "cl-macs" "\
748 Define a struct type.
749 This macro defines a new data type called NAME that stores data
750 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
751 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
752 You can use the accessors to set the corresponding slots, via `cl-setf'.
753
754 NAME may instead take the form (NAME OPTIONS...), where each
755 OPTION is either a single keyword or (KEYWORD VALUE).
756 See Info node `(cl)Structures' for a list of valid keywords.
757
758 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
759 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
760 one keyword is supported, `:read-only'. If this has a non-nil
761 value, that slot cannot be set via `cl-setf'.
762
763 \(fn NAME SLOTS...)" nil (quote macro))
764
765 (put 'cl-defstruct 'doc-string-elt '2)
766
767 (autoload 'cl-struct-setf-expander "cl-macs" "\
768
769
770 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
771
772 (autoload 'cl-deftype "cl-macs" "\
773 Define NAME as a new data type.
774 The type name can then be used in `cl-typecase', `cl-check-type', etc.
775
776 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
777
778 (put 'cl-deftype 'doc-string-elt '3)
779
780 (autoload 'cl-typep "cl-macs" "\
781 Check that OBJECT is of type TYPE.
782 TYPE is a Common Lisp-style type specifier.
783
784 \(fn OBJECT TYPE)" nil nil)
785
786 (autoload 'cl-check-type "cl-macs" "\
787 Verify that FORM is of type TYPE; signal an error if not.
788 STRING is an optional description of the desired type.
789
790 \(fn FORM TYPE &optional STRING)" nil (quote macro))
791
792 (autoload 'cl-assert "cl-macs" "\
793 Verify that FORM returns non-nil; signal an error if not.
794 Second arg SHOW-ARGS means to include arguments of FORM in message.
795 Other args STRING and ARGS... are arguments to be passed to `error'.
796 They are not evaluated unless the assertion fails. If STRING is
797 omitted, a default message listing FORM itself is used.
798
799 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
800
801 (autoload 'cl-define-compiler-macro "cl-macs" "\
802 Define a compiler-only macro.
803 This is like `defmacro', but macro expansion occurs only if the call to
804 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
805 for optimizing the way calls to FUNC are compiled; the form returned by
806 BODY should do the same thing as a call to the normal function called
807 FUNC, though possibly more efficiently. Note that, like regular macros,
808 compiler macros are expanded repeatedly until no further expansions are
809 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
810 original function call alone by declaring an initial `&whole foo' parameter
811 and then returning foo.
812
813 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
814
815 (autoload 'cl-compiler-macroexpand "cl-macs" "\
816
817
818 \(fn FORM)" nil nil)
819
820 (autoload 'cl-defsubst "cl-macs" "\
821 Define NAME as a function.
822 Like `defun', except the function is automatically declared `inline',
823 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
824 surrounded by (cl-block NAME ...).
825
826 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
827
828 ;;;***
829 \f
830 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
831 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
832 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
833 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
834 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
835 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
836 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
837 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
838 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
839 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
840 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
841 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
842 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "d3eaca7a24bdb10b381bb94729c5d7e9")
843 ;;; Generated autoloads from cl-seq.el
844
845 (autoload 'cl-reduce "cl-seq" "\
846 Reduce two-argument FUNCTION across SEQ.
847
848 Keywords supported: :start :end :from-end :initial-value :key
849
850 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
851
852 (autoload 'cl-fill "cl-seq" "\
853 Fill the elements of SEQ with ITEM.
854
855 Keywords supported: :start :end
856
857 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
858
859 (autoload 'cl-replace "cl-seq" "\
860 Replace the elements of SEQ1 with the elements of SEQ2.
861 SEQ1 is destructively modified, then returned.
862
863 Keywords supported: :start1 :end1 :start2 :end2
864
865 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
866
867 (autoload 'cl-remove "cl-seq" "\
868 Remove all occurrences of ITEM in SEQ.
869 This is a non-destructive function; it makes a copy of SEQ if necessary
870 to avoid corrupting the original SEQ.
871
872 Keywords supported: :test :test-not :key :count :start :end :from-end
873
874 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
875
876 (autoload 'cl-remove-if "cl-seq" "\
877 Remove all items satisfying PREDICATE in SEQ.
878 This is a non-destructive function; it makes a copy of SEQ if necessary
879 to avoid corrupting the original SEQ.
880
881 Keywords supported: :key :count :start :end :from-end
882
883 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
884
885 (autoload 'cl-remove-if-not "cl-seq" "\
886 Remove all items not satisfying PREDICATE in SEQ.
887 This is a non-destructive function; it makes a copy of SEQ if necessary
888 to avoid corrupting the original SEQ.
889
890 Keywords supported: :key :count :start :end :from-end
891
892 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
893
894 (autoload 'cl-delete "cl-seq" "\
895 Remove all occurrences of ITEM in SEQ.
896 This is a destructive function; it reuses the storage of SEQ whenever possible.
897
898 Keywords supported: :test :test-not :key :count :start :end :from-end
899
900 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
901
902 (autoload 'cl-delete-if "cl-seq" "\
903 Remove all items satisfying PREDICATE in SEQ.
904 This is a destructive function; it reuses the storage of SEQ whenever possible.
905
906 Keywords supported: :key :count :start :end :from-end
907
908 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
909
910 (autoload 'cl-delete-if-not "cl-seq" "\
911 Remove all items not satisfying PREDICATE in SEQ.
912 This is a destructive function; it reuses the storage of SEQ whenever possible.
913
914 Keywords supported: :key :count :start :end :from-end
915
916 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
917
918 (autoload 'cl-remove-duplicates "cl-seq" "\
919 Return a copy of SEQ with all duplicate elements removed.
920
921 Keywords supported: :test :test-not :key :start :end :from-end
922
923 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
924
925 (autoload 'cl-delete-duplicates "cl-seq" "\
926 Remove all duplicate elements from SEQ (destructively).
927
928 Keywords supported: :test :test-not :key :start :end :from-end
929
930 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
931
932 (autoload 'cl-substitute "cl-seq" "\
933 Substitute NEW for OLD in SEQ.
934 This is a non-destructive function; it makes a copy of SEQ if necessary
935 to avoid corrupting the original SEQ.
936
937 Keywords supported: :test :test-not :key :count :start :end :from-end
938
939 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
940
941 (autoload 'cl-substitute-if "cl-seq" "\
942 Substitute NEW for all items satisfying PREDICATE in SEQ.
943 This is a non-destructive function; it makes a copy of SEQ if necessary
944 to avoid corrupting the original SEQ.
945
946 Keywords supported: :key :count :start :end :from-end
947
948 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
949
950 (autoload 'cl-substitute-if-not "cl-seq" "\
951 Substitute NEW for all items not satisfying PREDICATE in SEQ.
952 This is a non-destructive function; it makes a copy of SEQ if necessary
953 to avoid corrupting the original SEQ.
954
955 Keywords supported: :key :count :start :end :from-end
956
957 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
958
959 (autoload 'cl-nsubstitute "cl-seq" "\
960 Substitute NEW for OLD in SEQ.
961 This is a destructive function; it reuses the storage of SEQ whenever possible.
962
963 Keywords supported: :test :test-not :key :count :start :end :from-end
964
965 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
966
967 (autoload 'cl-nsubstitute-if "cl-seq" "\
968 Substitute NEW for all items satisfying PREDICATE in SEQ.
969 This is a destructive function; it reuses the storage of SEQ whenever possible.
970
971 Keywords supported: :key :count :start :end :from-end
972
973 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
974
975 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
976 Substitute NEW for all items not satisfying PREDICATE in SEQ.
977 This is a destructive function; it reuses the storage of SEQ whenever possible.
978
979 Keywords supported: :key :count :start :end :from-end
980
981 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
982
983 (autoload 'cl-find "cl-seq" "\
984 Find the first occurrence of ITEM in SEQ.
985 Return the matching ITEM, or nil if not found.
986
987 Keywords supported: :test :test-not :key :start :end :from-end
988
989 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
990
991 (autoload 'cl-find-if "cl-seq" "\
992 Find the first item satisfying PREDICATE in SEQ.
993 Return the matching item, or nil if not found.
994
995 Keywords supported: :key :start :end :from-end
996
997 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
998
999 (autoload 'cl-find-if-not "cl-seq" "\
1000 Find the first item not satisfying PREDICATE in SEQ.
1001 Return the matching item, or nil if not found.
1002
1003 Keywords supported: :key :start :end :from-end
1004
1005 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1006
1007 (autoload 'cl-position "cl-seq" "\
1008 Find the first occurrence of ITEM in SEQ.
1009 Return the index of the matching item, or nil if not found.
1010
1011 Keywords supported: :test :test-not :key :start :end :from-end
1012
1013 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
1014
1015 (autoload 'cl-position-if "cl-seq" "\
1016 Find the first item satisfying PREDICATE in SEQ.
1017 Return the index of the matching item, or nil if not found.
1018
1019 Keywords supported: :key :start :end :from-end
1020
1021 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1022
1023 (autoload 'cl-position-if-not "cl-seq" "\
1024 Find the first item not satisfying PREDICATE in SEQ.
1025 Return the index of the matching item, or nil if not found.
1026
1027 Keywords supported: :key :start :end :from-end
1028
1029 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1030
1031 (autoload 'cl-count "cl-seq" "\
1032 Count the number of occurrences of ITEM in SEQ.
1033
1034 Keywords supported: :test :test-not :key :start :end
1035
1036 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
1037
1038 (autoload 'cl-count-if "cl-seq" "\
1039 Count the number of items satisfying PREDICATE in SEQ.
1040
1041 Keywords supported: :key :start :end
1042
1043 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1044
1045 (autoload 'cl-count-if-not "cl-seq" "\
1046 Count the number of items not satisfying PREDICATE in SEQ.
1047
1048 Keywords supported: :key :start :end
1049
1050 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1051
1052 (autoload 'cl-mismatch "cl-seq" "\
1053 Compare SEQ1 with SEQ2, return index of first mismatching element.
1054 Return nil if the sequences match. If one sequence is a prefix of the
1055 other, the return value indicates the end of the shorter sequence.
1056
1057 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1058
1059 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1060
1061 (autoload 'cl-search "cl-seq" "\
1062 Search for SEQ1 as a subsequence of SEQ2.
1063 Return the index of the leftmost element of the first match found;
1064 return nil if there are no matches.
1065
1066 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1067
1068 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1069
1070 (autoload 'cl-sort "cl-seq" "\
1071 Sort the argument SEQ according to PREDICATE.
1072 This is a destructive function; it reuses the storage of SEQ if possible.
1073
1074 Keywords supported: :key
1075
1076 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1077
1078 (autoload 'cl-stable-sort "cl-seq" "\
1079 Sort the argument SEQ stably according to PREDICATE.
1080 This is a destructive function; it reuses the storage of SEQ if possible.
1081
1082 Keywords supported: :key
1083
1084 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1085
1086 (autoload 'cl-merge "cl-seq" "\
1087 Destructively merge the two sequences to produce a new sequence.
1088 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1089 sequences, and PREDICATE is a `less-than' predicate on the elements.
1090
1091 Keywords supported: :key
1092
1093 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1094
1095 (autoload 'cl-member "cl-seq" "\
1096 Find the first occurrence of ITEM in LIST.
1097 Return the sublist of LIST whose car is ITEM.
1098
1099 Keywords supported: :test :test-not :key
1100
1101 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1102
1103 (autoload 'cl-member-if "cl-seq" "\
1104 Find the first item satisfying PREDICATE in LIST.
1105 Return the sublist of LIST whose car matches.
1106
1107 Keywords supported: :key
1108
1109 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1110
1111 (autoload 'cl-member-if-not "cl-seq" "\
1112 Find the first item not satisfying PREDICATE in LIST.
1113 Return the sublist of LIST whose car matches.
1114
1115 Keywords supported: :key
1116
1117 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1118
1119 (autoload 'cl--adjoin "cl-seq" "\
1120
1121
1122 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1123
1124 (autoload 'cl-assoc "cl-seq" "\
1125 Find the first item whose car matches ITEM in LIST.
1126
1127 Keywords supported: :test :test-not :key
1128
1129 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1130
1131 (autoload 'cl-assoc-if "cl-seq" "\
1132 Find the first item whose car satisfies PREDICATE in LIST.
1133
1134 Keywords supported: :key
1135
1136 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1137
1138 (autoload 'cl-assoc-if-not "cl-seq" "\
1139 Find the first item whose car does not satisfy PREDICATE in LIST.
1140
1141 Keywords supported: :key
1142
1143 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1144
1145 (autoload 'cl-rassoc "cl-seq" "\
1146 Find the first item whose cdr matches ITEM in LIST.
1147
1148 Keywords supported: :test :test-not :key
1149
1150 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1151
1152 (autoload 'cl-rassoc-if "cl-seq" "\
1153 Find the first item whose cdr satisfies PREDICATE in LIST.
1154
1155 Keywords supported: :key
1156
1157 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1158
1159 (autoload 'cl-rassoc-if-not "cl-seq" "\
1160 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1161
1162 Keywords supported: :key
1163
1164 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1165
1166 (autoload 'cl-union "cl-seq" "\
1167 Combine LIST1 and LIST2 using a set-union operation.
1168 The resulting list contains all items that appear in either LIST1 or LIST2.
1169 This is a non-destructive function; it makes a copy of the data if necessary
1170 to avoid corrupting the original LIST1 and LIST2.
1171
1172 Keywords supported: :test :test-not :key
1173
1174 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1175
1176 (autoload 'cl-nunion "cl-seq" "\
1177 Combine LIST1 and LIST2 using a set-union operation.
1178 The resulting list contains all items that appear in either LIST1 or LIST2.
1179 This is a destructive function; it reuses the storage of LIST1 and LIST2
1180 whenever possible.
1181
1182 Keywords supported: :test :test-not :key
1183
1184 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1185
1186 (autoload 'cl-intersection "cl-seq" "\
1187 Combine LIST1 and LIST2 using a set-intersection operation.
1188 The resulting list contains all items that appear in both LIST1 and LIST2.
1189 This is a non-destructive function; it makes a copy of the data if necessary
1190 to avoid corrupting the original LIST1 and LIST2.
1191
1192 Keywords supported: :test :test-not :key
1193
1194 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1195
1196 (autoload 'cl-nintersection "cl-seq" "\
1197 Combine LIST1 and LIST2 using a set-intersection operation.
1198 The resulting list contains all items that appear in both LIST1 and LIST2.
1199 This is a destructive function; it reuses the storage of LIST1 and LIST2
1200 whenever possible.
1201
1202 Keywords supported: :test :test-not :key
1203
1204 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1205
1206 (autoload 'cl-set-difference "cl-seq" "\
1207 Combine LIST1 and LIST2 using a set-difference operation.
1208 The resulting list contains all items that appear in LIST1 but not LIST2.
1209 This is a non-destructive function; it makes a copy of the data if necessary
1210 to avoid corrupting the original LIST1 and LIST2.
1211
1212 Keywords supported: :test :test-not :key
1213
1214 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1215
1216 (autoload 'cl-nset-difference "cl-seq" "\
1217 Combine LIST1 and LIST2 using a set-difference operation.
1218 The resulting list contains all items that appear in LIST1 but not LIST2.
1219 This is a destructive function; it reuses the storage of LIST1 and LIST2
1220 whenever possible.
1221
1222 Keywords supported: :test :test-not :key
1223
1224 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1225
1226 (autoload 'cl-set-exclusive-or "cl-seq" "\
1227 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1228 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1229 This is a non-destructive function; it makes a copy of the data if necessary
1230 to avoid corrupting the original LIST1 and LIST2.
1231
1232 Keywords supported: :test :test-not :key
1233
1234 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1235
1236 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1237 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1238 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1239 This is a destructive function; it reuses the storage of LIST1 and LIST2
1240 whenever possible.
1241
1242 Keywords supported: :test :test-not :key
1243
1244 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1245
1246 (autoload 'cl-subsetp "cl-seq" "\
1247 Return true if LIST1 is a subset of LIST2.
1248 I.e., if every element of LIST1 also appears in LIST2.
1249
1250 Keywords supported: :test :test-not :key
1251
1252 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1253
1254 (autoload 'cl-subst-if "cl-seq" "\
1255 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1256 Return a copy of TREE with all matching elements replaced by NEW.
1257
1258 Keywords supported: :key
1259
1260 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1261
1262 (autoload 'cl-subst-if-not "cl-seq" "\
1263 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1264 Return a copy of TREE with all non-matching elements replaced by NEW.
1265
1266 Keywords supported: :key
1267
1268 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1269
1270 (autoload 'cl-nsubst "cl-seq" "\
1271 Substitute NEW for OLD everywhere in TREE (destructively).
1272 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1273 to `setcar').
1274
1275 Keywords supported: :test :test-not :key
1276
1277 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1278
1279 (autoload 'cl-nsubst-if "cl-seq" "\
1280 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1281 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1282
1283 Keywords supported: :key
1284
1285 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1286
1287 (autoload 'cl-nsubst-if-not "cl-seq" "\
1288 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1289 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1290
1291 Keywords supported: :key
1292
1293 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1294
1295 (autoload 'cl-sublis "cl-seq" "\
1296 Perform substitutions indicated by ALIST in TREE (non-destructively).
1297 Return a copy of TREE with all matching elements replaced.
1298
1299 Keywords supported: :test :test-not :key
1300
1301 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1302
1303 (autoload 'cl-nsublis "cl-seq" "\
1304 Perform substitutions indicated by ALIST in TREE (destructively).
1305 Any matching element of TREE is changed via a call to `setcar'.
1306
1307 Keywords supported: :test :test-not :key
1308
1309 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1310
1311 (autoload 'cl-tree-equal "cl-seq" "\
1312 Return t if trees TREE1 and TREE2 have `eql' leaves.
1313 Atoms are compared by `eql'; cons cells are compared recursively.
1314
1315 Keywords supported: :test :test-not :key
1316
1317 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1318
1319 ;;;***
1320 \f
1321 ;; Local Variables:
1322 ;; version-control: never
1323 ;; no-byte-compile: t
1324 ;; no-update-autoloads: t
1325 ;; coding: utf-8
1326 ;; End:
1327 ;;; cl-loaddefs.el ends here