Don't purify in Fmake_byte_code.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "character.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x640
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #ifdef USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #ifndef USE_LSB_TAG
897 static void *lisp_malloc_loser;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #ifndef USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #ifndef USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587
1588 \f
1589 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1590 can't create number objects in macros. */
1591 #ifndef make_number
1592 Lisp_Object
1593 make_number (EMACS_INT n)
1594 {
1595 Lisp_Object obj;
1596 obj.s.val = n;
1597 obj.s.type = Lisp_Int;
1598 return obj;
1599 }
1600 #endif
1601 \f
1602 /* Convert the pointer-sized word P to EMACS_INT while preserving its
1603 type and ptr fields. */
1604 static Lisp_Object
1605 widen_to_Lisp_Object (void *p)
1606 {
1607 intptr_t i = (intptr_t) p;
1608 #ifdef USE_LISP_UNION_TYPE
1609 Lisp_Object obj;
1610 obj.i = i;
1611 return obj;
1612 #else
1613 return i;
1614 #endif
1615 }
1616 \f
1617 /***********************************************************************
1618 String Allocation
1619 ***********************************************************************/
1620
1621 /* Lisp_Strings are allocated in string_block structures. When a new
1622 string_block is allocated, all the Lisp_Strings it contains are
1623 added to a free-list string_free_list. When a new Lisp_String is
1624 needed, it is taken from that list. During the sweep phase of GC,
1625 string_blocks that are entirely free are freed, except two which
1626 we keep.
1627
1628 String data is allocated from sblock structures. Strings larger
1629 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1630 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1631
1632 Sblocks consist internally of sdata structures, one for each
1633 Lisp_String. The sdata structure points to the Lisp_String it
1634 belongs to. The Lisp_String points back to the `u.data' member of
1635 its sdata structure.
1636
1637 When a Lisp_String is freed during GC, it is put back on
1638 string_free_list, and its `data' member and its sdata's `string'
1639 pointer is set to null. The size of the string is recorded in the
1640 `u.nbytes' member of the sdata. So, sdata structures that are no
1641 longer used, can be easily recognized, and it's easy to compact the
1642 sblocks of small strings which we do in compact_small_strings. */
1643
1644 /* Size in bytes of an sblock structure used for small strings. This
1645 is 8192 minus malloc overhead. */
1646
1647 #define SBLOCK_SIZE 8188
1648
1649 /* Strings larger than this are considered large strings. String data
1650 for large strings is allocated from individual sblocks. */
1651
1652 #define LARGE_STRING_BYTES 1024
1653
1654 /* Structure describing string memory sub-allocated from an sblock.
1655 This is where the contents of Lisp strings are stored. */
1656
1657 struct sdata
1658 {
1659 /* Back-pointer to the string this sdata belongs to. If null, this
1660 structure is free, and the NBYTES member of the union below
1661 contains the string's byte size (the same value that STRING_BYTES
1662 would return if STRING were non-null). If non-null, STRING_BYTES
1663 (STRING) is the size of the data, and DATA contains the string's
1664 contents. */
1665 struct Lisp_String *string;
1666
1667 #ifdef GC_CHECK_STRING_BYTES
1668
1669 ptrdiff_t nbytes;
1670 unsigned char data[1];
1671
1672 #define SDATA_NBYTES(S) (S)->nbytes
1673 #define SDATA_DATA(S) (S)->data
1674 #define SDATA_SELECTOR(member) member
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 union
1679 {
1680 /* When STRING is non-null. */
1681 unsigned char data[1];
1682
1683 /* When STRING is null. */
1684 ptrdiff_t nbytes;
1685 } u;
1686
1687 #define SDATA_NBYTES(S) (S)->u.nbytes
1688 #define SDATA_DATA(S) (S)->u.data
1689 #define SDATA_SELECTOR(member) u.member
1690
1691 #endif /* not GC_CHECK_STRING_BYTES */
1692
1693 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1694 };
1695
1696
1697 /* Structure describing a block of memory which is sub-allocated to
1698 obtain string data memory for strings. Blocks for small strings
1699 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1700 as large as needed. */
1701
1702 struct sblock
1703 {
1704 /* Next in list. */
1705 struct sblock *next;
1706
1707 /* Pointer to the next free sdata block. This points past the end
1708 of the sblock if there isn't any space left in this block. */
1709 struct sdata *next_free;
1710
1711 /* Start of data. */
1712 struct sdata first_data;
1713 };
1714
1715 /* Number of Lisp strings in a string_block structure. The 1020 is
1716 1024 minus malloc overhead. */
1717
1718 #define STRING_BLOCK_SIZE \
1719 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1720
1721 /* Structure describing a block from which Lisp_String structures
1722 are allocated. */
1723
1724 struct string_block
1725 {
1726 /* Place `strings' first, to preserve alignment. */
1727 struct Lisp_String strings[STRING_BLOCK_SIZE];
1728 struct string_block *next;
1729 };
1730
1731 /* Head and tail of the list of sblock structures holding Lisp string
1732 data. We always allocate from current_sblock. The NEXT pointers
1733 in the sblock structures go from oldest_sblock to current_sblock. */
1734
1735 static struct sblock *oldest_sblock, *current_sblock;
1736
1737 /* List of sblocks for large strings. */
1738
1739 static struct sblock *large_sblocks;
1740
1741 /* List of string_block structures. */
1742
1743 static struct string_block *string_blocks;
1744
1745 /* Free-list of Lisp_Strings. */
1746
1747 static struct Lisp_String *string_free_list;
1748
1749 /* Number of live and free Lisp_Strings. */
1750
1751 static EMACS_INT total_strings, total_free_strings;
1752
1753 /* Number of bytes used by live strings. */
1754
1755 static EMACS_INT total_string_size;
1756
1757 /* Given a pointer to a Lisp_String S which is on the free-list
1758 string_free_list, return a pointer to its successor in the
1759 free-list. */
1760
1761 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1762
1763 /* Return a pointer to the sdata structure belonging to Lisp string S.
1764 S must be live, i.e. S->data must not be null. S->data is actually
1765 a pointer to the `u.data' member of its sdata structure; the
1766 structure starts at a constant offset in front of that. */
1767
1768 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1769
1770
1771 #ifdef GC_CHECK_STRING_OVERRUN
1772
1773 /* We check for overrun in string data blocks by appending a small
1774 "cookie" after each allocated string data block, and check for the
1775 presence of this cookie during GC. */
1776
1777 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1778 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1779 { '\xde', '\xad', '\xbe', '\xef' };
1780
1781 #else
1782 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1783 #endif
1784
1785 /* Value is the size of an sdata structure large enough to hold NBYTES
1786 bytes of string data. The value returned includes a terminating
1787 NUL byte, the size of the sdata structure, and padding. */
1788
1789 #ifdef GC_CHECK_STRING_BYTES
1790
1791 #define SDATA_SIZE(NBYTES) \
1792 ((SDATA_DATA_OFFSET \
1793 + (NBYTES) + 1 \
1794 + sizeof (ptrdiff_t) - 1) \
1795 & ~(sizeof (ptrdiff_t) - 1))
1796
1797 #else /* not GC_CHECK_STRING_BYTES */
1798
1799 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1800 less than the size of that member. The 'max' is not needed when
1801 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1802 alignment code reserves enough space. */
1803
1804 #define SDATA_SIZE(NBYTES) \
1805 ((SDATA_DATA_OFFSET \
1806 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1807 ? NBYTES \
1808 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1809 + 1 \
1810 + sizeof (ptrdiff_t) - 1) \
1811 & ~(sizeof (ptrdiff_t) - 1))
1812
1813 #endif /* not GC_CHECK_STRING_BYTES */
1814
1815 /* Extra bytes to allocate for each string. */
1816
1817 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1818
1819 /* Exact bound on the number of bytes in a string, not counting the
1820 terminating null. A string cannot contain more bytes than
1821 STRING_BYTES_BOUND, nor can it be so long that the size_t
1822 arithmetic in allocate_string_data would overflow while it is
1823 calculating a value to be passed to malloc. */
1824 #define STRING_BYTES_MAX \
1825 min (STRING_BYTES_BOUND, \
1826 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1827 - GC_STRING_EXTRA \
1828 - offsetof (struct sblock, first_data) \
1829 - SDATA_DATA_OFFSET) \
1830 & ~(sizeof (EMACS_INT) - 1)))
1831
1832 /* Initialize string allocation. Called from init_alloc_once. */
1833
1834 static void
1835 init_strings (void)
1836 {
1837 total_strings = total_free_strings = total_string_size = 0;
1838 oldest_sblock = current_sblock = large_sblocks = NULL;
1839 string_blocks = NULL;
1840 string_free_list = NULL;
1841 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1842 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1843 }
1844
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847
1848 static int check_string_bytes_count;
1849
1850 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1851
1852
1853 /* Like GC_STRING_BYTES, but with debugging check. */
1854
1855 ptrdiff_t
1856 string_bytes (struct Lisp_String *s)
1857 {
1858 ptrdiff_t nbytes =
1859 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1860
1861 if (!PURE_POINTER_P (s)
1862 && s->data
1863 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1864 abort ();
1865 return nbytes;
1866 }
1867
1868 /* Check validity of Lisp strings' string_bytes member in B. */
1869
1870 static void
1871 check_sblock (struct sblock *b)
1872 {
1873 struct sdata *from, *end, *from_end;
1874
1875 end = b->next_free;
1876
1877 for (from = &b->first_data; from < end; from = from_end)
1878 {
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882
1883 /* Check that the string size recorded in the string is the
1884 same as the one recorded in the sdata structure. */
1885 if (from->string)
1886 CHECK_STRING_BYTES (from->string);
1887
1888 if (from->string)
1889 nbytes = GC_STRING_BYTES (from->string);
1890 else
1891 nbytes = SDATA_NBYTES (from);
1892
1893 nbytes = SDATA_SIZE (nbytes);
1894 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1895 }
1896 }
1897
1898
1899 /* Check validity of Lisp strings' string_bytes member. ALL_P
1900 non-zero means check all strings, otherwise check only most
1901 recently allocated strings. Used for hunting a bug. */
1902
1903 static void
1904 check_string_bytes (int all_p)
1905 {
1906 if (all_p)
1907 {
1908 struct sblock *b;
1909
1910 for (b = large_sblocks; b; b = b->next)
1911 {
1912 struct Lisp_String *s = b->first_data.string;
1913 if (s)
1914 CHECK_STRING_BYTES (s);
1915 }
1916
1917 for (b = oldest_sblock; b; b = b->next)
1918 check_sblock (b);
1919 }
1920 else
1921 check_sblock (current_sblock);
1922 }
1923
1924 #endif /* GC_CHECK_STRING_BYTES */
1925
1926 #ifdef GC_CHECK_STRING_FREE_LIST
1927
1928 /* Walk through the string free list looking for bogus next pointers.
1929 This may catch buffer overrun from a previous string. */
1930
1931 static void
1932 check_string_free_list (void)
1933 {
1934 struct Lisp_String *s;
1935
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 while (s != NULL)
1939 {
1940 if ((uintptr_t) s < 1024)
1941 abort ();
1942 s = NEXT_FREE_LISP_STRING (s);
1943 }
1944 }
1945 #else
1946 #define check_string_free_list()
1947 #endif
1948
1949 /* Return a new Lisp_String. */
1950
1951 static struct Lisp_String *
1952 allocate_string (void)
1953 {
1954 struct Lisp_String *s;
1955
1956 /* eassert (!handling_signal); */
1957
1958 MALLOC_BLOCK_INPUT;
1959
1960 /* If the free-list is empty, allocate a new string_block, and
1961 add all the Lisp_Strings in it to the free-list. */
1962 if (string_free_list == NULL)
1963 {
1964 struct string_block *b;
1965 int i;
1966
1967 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1968 memset (b, 0, sizeof *b);
1969 b->next = string_blocks;
1970 string_blocks = b;
1971
1972 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1973 {
1974 s = b->strings + i;
1975 NEXT_FREE_LISP_STRING (s) = string_free_list;
1976 string_free_list = s;
1977 }
1978
1979 total_free_strings += STRING_BLOCK_SIZE;
1980 }
1981
1982 check_string_free_list ();
1983
1984 /* Pop a Lisp_String off the free-list. */
1985 s = string_free_list;
1986 string_free_list = NEXT_FREE_LISP_STRING (s);
1987
1988 MALLOC_UNBLOCK_INPUT;
1989
1990 /* Probably not strictly necessary, but play it safe. */
1991 memset (s, 0, sizeof *s);
1992
1993 --total_free_strings;
1994 ++total_strings;
1995 ++strings_consed;
1996 consing_since_gc += sizeof *s;
1997
1998 #ifdef GC_CHECK_STRING_BYTES
1999 if (!noninteractive)
2000 {
2001 if (++check_string_bytes_count == 200)
2002 {
2003 check_string_bytes_count = 0;
2004 check_string_bytes (1);
2005 }
2006 else
2007 check_string_bytes (0);
2008 }
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 return s;
2012 }
2013
2014
2015 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2016 plus a NUL byte at the end. Allocate an sdata structure for S, and
2017 set S->data to its `u.data' member. Store a NUL byte at the end of
2018 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2019 S->data if it was initially non-null. */
2020
2021 void
2022 allocate_string_data (struct Lisp_String *s,
2023 EMACS_INT nchars, EMACS_INT nbytes)
2024 {
2025 struct sdata *data, *old_data;
2026 struct sblock *b;
2027 ptrdiff_t needed, old_nbytes;
2028
2029 if (STRING_BYTES_MAX < nbytes)
2030 string_overflow ();
2031
2032 /* Determine the number of bytes needed to store NBYTES bytes
2033 of string data. */
2034 needed = SDATA_SIZE (nbytes);
2035 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2036 old_nbytes = GC_STRING_BYTES (s);
2037
2038 MALLOC_BLOCK_INPUT;
2039
2040 if (nbytes > LARGE_STRING_BYTES)
2041 {
2042 size_t size = offsetof (struct sblock, first_data) + needed;
2043
2044 #ifdef DOUG_LEA_MALLOC
2045 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2046 because mapped region contents are not preserved in
2047 a dumped Emacs.
2048
2049 In case you think of allowing it in a dumped Emacs at the
2050 cost of not being able to re-dump, there's another reason:
2051 mmap'ed data typically have an address towards the top of the
2052 address space, which won't fit into an EMACS_INT (at least on
2053 32-bit systems with the current tagging scheme). --fx */
2054 mallopt (M_MMAP_MAX, 0);
2055 #endif
2056
2057 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2058
2059 #ifdef DOUG_LEA_MALLOC
2060 /* Back to a reasonable maximum of mmap'ed areas. */
2061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2062 #endif
2063
2064 b->next_free = &b->first_data;
2065 b->first_data.string = NULL;
2066 b->next = large_sblocks;
2067 large_sblocks = b;
2068 }
2069 else if (current_sblock == NULL
2070 || (((char *) current_sblock + SBLOCK_SIZE
2071 - (char *) current_sblock->next_free)
2072 < (needed + GC_STRING_EXTRA)))
2073 {
2074 /* Not enough room in the current sblock. */
2075 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2076 b->next_free = &b->first_data;
2077 b->first_data.string = NULL;
2078 b->next = NULL;
2079
2080 if (current_sblock)
2081 current_sblock->next = b;
2082 else
2083 oldest_sblock = b;
2084 current_sblock = b;
2085 }
2086 else
2087 b = current_sblock;
2088
2089 data = b->next_free;
2090 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2091
2092 MALLOC_UNBLOCK_INPUT;
2093
2094 data->string = s;
2095 s->data = SDATA_DATA (data);
2096 #ifdef GC_CHECK_STRING_BYTES
2097 SDATA_NBYTES (data) = nbytes;
2098 #endif
2099 s->size = nchars;
2100 s->size_byte = nbytes;
2101 s->data[nbytes] = '\0';
2102 #ifdef GC_CHECK_STRING_OVERRUN
2103 memcpy ((char *) data + needed, string_overrun_cookie,
2104 GC_STRING_OVERRUN_COOKIE_SIZE);
2105 #endif
2106
2107 /* If S had already data assigned, mark that as free by setting its
2108 string back-pointer to null, and recording the size of the data
2109 in it. */
2110 if (old_data)
2111 {
2112 SDATA_NBYTES (old_data) = old_nbytes;
2113 old_data->string = NULL;
2114 }
2115
2116 consing_since_gc += needed;
2117 }
2118
2119
2120 /* Sweep and compact strings. */
2121
2122 static void
2123 sweep_strings (void)
2124 {
2125 struct string_block *b, *next;
2126 struct string_block *live_blocks = NULL;
2127
2128 string_free_list = NULL;
2129 total_strings = total_free_strings = 0;
2130 total_string_size = 0;
2131
2132 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2133 for (b = string_blocks; b; b = next)
2134 {
2135 int i, nfree = 0;
2136 struct Lisp_String *free_list_before = string_free_list;
2137
2138 next = b->next;
2139
2140 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2141 {
2142 struct Lisp_String *s = b->strings + i;
2143
2144 if (s->data)
2145 {
2146 /* String was not on free-list before. */
2147 if (STRING_MARKED_P (s))
2148 {
2149 /* String is live; unmark it and its intervals. */
2150 UNMARK_STRING (s);
2151
2152 if (!NULL_INTERVAL_P (s->intervals))
2153 UNMARK_BALANCE_INTERVALS (s->intervals);
2154
2155 ++total_strings;
2156 total_string_size += STRING_BYTES (s);
2157 }
2158 else
2159 {
2160 /* String is dead. Put it on the free-list. */
2161 struct sdata *data = SDATA_OF_STRING (s);
2162
2163 /* Save the size of S in its sdata so that we know
2164 how large that is. Reset the sdata's string
2165 back-pointer so that we know it's free. */
2166 #ifdef GC_CHECK_STRING_BYTES
2167 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2168 abort ();
2169 #else
2170 data->u.nbytes = GC_STRING_BYTES (s);
2171 #endif
2172 data->string = NULL;
2173
2174 /* Reset the strings's `data' member so that we
2175 know it's free. */
2176 s->data = NULL;
2177
2178 /* Put the string on the free-list. */
2179 NEXT_FREE_LISP_STRING (s) = string_free_list;
2180 string_free_list = s;
2181 ++nfree;
2182 }
2183 }
2184 else
2185 {
2186 /* S was on the free-list before. Put it there again. */
2187 NEXT_FREE_LISP_STRING (s) = string_free_list;
2188 string_free_list = s;
2189 ++nfree;
2190 }
2191 }
2192
2193 /* Free blocks that contain free Lisp_Strings only, except
2194 the first two of them. */
2195 if (nfree == STRING_BLOCK_SIZE
2196 && total_free_strings > STRING_BLOCK_SIZE)
2197 {
2198 lisp_free (b);
2199 string_free_list = free_list_before;
2200 }
2201 else
2202 {
2203 total_free_strings += nfree;
2204 b->next = live_blocks;
2205 live_blocks = b;
2206 }
2207 }
2208
2209 check_string_free_list ();
2210
2211 string_blocks = live_blocks;
2212 free_large_strings ();
2213 compact_small_strings ();
2214
2215 check_string_free_list ();
2216 }
2217
2218
2219 /* Free dead large strings. */
2220
2221 static void
2222 free_large_strings (void)
2223 {
2224 struct sblock *b, *next;
2225 struct sblock *live_blocks = NULL;
2226
2227 for (b = large_sblocks; b; b = next)
2228 {
2229 next = b->next;
2230
2231 if (b->first_data.string == NULL)
2232 lisp_free (b);
2233 else
2234 {
2235 b->next = live_blocks;
2236 live_blocks = b;
2237 }
2238 }
2239
2240 large_sblocks = live_blocks;
2241 }
2242
2243
2244 /* Compact data of small strings. Free sblocks that don't contain
2245 data of live strings after compaction. */
2246
2247 static void
2248 compact_small_strings (void)
2249 {
2250 struct sblock *b, *tb, *next;
2251 struct sdata *from, *to, *end, *tb_end;
2252 struct sdata *to_end, *from_end;
2253
2254 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2255 to, and TB_END is the end of TB. */
2256 tb = oldest_sblock;
2257 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = &tb->first_data;
2259
2260 /* Step through the blocks from the oldest to the youngest. We
2261 expect that old blocks will stabilize over time, so that less
2262 copying will happen this way. */
2263 for (b = oldest_sblock; b; b = b->next)
2264 {
2265 end = b->next_free;
2266 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2267
2268 for (from = &b->first_data; from < end; from = from_end)
2269 {
2270 /* Compute the next FROM here because copying below may
2271 overwrite data we need to compute it. */
2272 ptrdiff_t nbytes;
2273
2274 #ifdef GC_CHECK_STRING_BYTES
2275 /* Check that the string size recorded in the string is the
2276 same as the one recorded in the sdata structure. */
2277 if (from->string
2278 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2279 abort ();
2280 #endif /* GC_CHECK_STRING_BYTES */
2281
2282 if (from->string)
2283 nbytes = GC_STRING_BYTES (from->string);
2284 else
2285 nbytes = SDATA_NBYTES (from);
2286
2287 if (nbytes > LARGE_STRING_BYTES)
2288 abort ();
2289
2290 nbytes = SDATA_SIZE (nbytes);
2291 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2292
2293 #ifdef GC_CHECK_STRING_OVERRUN
2294 if (memcmp (string_overrun_cookie,
2295 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2296 GC_STRING_OVERRUN_COOKIE_SIZE))
2297 abort ();
2298 #endif
2299
2300 /* FROM->string non-null means it's alive. Copy its data. */
2301 if (from->string)
2302 {
2303 /* If TB is full, proceed with the next sblock. */
2304 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2305 if (to_end > tb_end)
2306 {
2307 tb->next_free = to;
2308 tb = tb->next;
2309 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2310 to = &tb->first_data;
2311 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2312 }
2313
2314 /* Copy, and update the string's `data' pointer. */
2315 if (from != to)
2316 {
2317 xassert (tb != b || to < from);
2318 memmove (to, from, nbytes + GC_STRING_EXTRA);
2319 to->string->data = SDATA_DATA (to);
2320 }
2321
2322 /* Advance past the sdata we copied to. */
2323 to = to_end;
2324 }
2325 }
2326 }
2327
2328 /* The rest of the sblocks following TB don't contain live data, so
2329 we can free them. */
2330 for (b = tb->next; b; b = next)
2331 {
2332 next = b->next;
2333 lisp_free (b);
2334 }
2335
2336 tb->next_free = to;
2337 tb->next = NULL;
2338 current_sblock = tb;
2339 }
2340
2341 void
2342 string_overflow (void)
2343 {
2344 error ("Maximum string size exceeded");
2345 }
2346
2347 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2348 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2349 LENGTH must be an integer.
2350 INIT must be an integer that represents a character. */)
2351 (Lisp_Object length, Lisp_Object init)
2352 {
2353 register Lisp_Object val;
2354 register unsigned char *p, *end;
2355 int c;
2356 EMACS_INT nbytes;
2357
2358 CHECK_NATNUM (length);
2359 CHECK_CHARACTER (init);
2360
2361 c = XFASTINT (init);
2362 if (ASCII_CHAR_P (c))
2363 {
2364 nbytes = XINT (length);
2365 val = make_uninit_string (nbytes);
2366 p = SDATA (val);
2367 end = p + SCHARS (val);
2368 while (p != end)
2369 *p++ = c;
2370 }
2371 else
2372 {
2373 unsigned char str[MAX_MULTIBYTE_LENGTH];
2374 int len = CHAR_STRING (c, str);
2375 EMACS_INT string_len = XINT (length);
2376
2377 if (string_len > STRING_BYTES_MAX / len)
2378 string_overflow ();
2379 nbytes = len * string_len;
2380 val = make_uninit_multibyte_string (string_len, nbytes);
2381 p = SDATA (val);
2382 end = p + nbytes;
2383 while (p != end)
2384 {
2385 memcpy (p, str, len);
2386 p += len;
2387 }
2388 }
2389
2390 *p = 0;
2391 return val;
2392 }
2393
2394
2395 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2396 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2397 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2398 (Lisp_Object length, Lisp_Object init)
2399 {
2400 register Lisp_Object val;
2401 struct Lisp_Bool_Vector *p;
2402 ptrdiff_t length_in_chars;
2403 EMACS_INT length_in_elts;
2404 int bits_per_value;
2405
2406 CHECK_NATNUM (length);
2407
2408 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2409
2410 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2411
2412 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2413 slot `size' of the struct Lisp_Bool_Vector. */
2414 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2415
2416 /* No Lisp_Object to trace in there. */
2417 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2418
2419 p = XBOOL_VECTOR (val);
2420 p->size = XFASTINT (length);
2421
2422 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2423 / BOOL_VECTOR_BITS_PER_CHAR);
2424 if (length_in_chars)
2425 {
2426 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2427
2428 /* Clear any extraneous bits in the last byte. */
2429 p->data[length_in_chars - 1]
2430 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2431 }
2432
2433 return val;
2434 }
2435
2436
2437 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2438 of characters from the contents. This string may be unibyte or
2439 multibyte, depending on the contents. */
2440
2441 Lisp_Object
2442 make_string (const char *contents, ptrdiff_t nbytes)
2443 {
2444 register Lisp_Object val;
2445 ptrdiff_t nchars, multibyte_nbytes;
2446
2447 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2448 &nchars, &multibyte_nbytes);
2449 if (nbytes == nchars || nbytes != multibyte_nbytes)
2450 /* CONTENTS contains no multibyte sequences or contains an invalid
2451 multibyte sequence. We must make unibyte string. */
2452 val = make_unibyte_string (contents, nbytes);
2453 else
2454 val = make_multibyte_string (contents, nchars, nbytes);
2455 return val;
2456 }
2457
2458
2459 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2460
2461 Lisp_Object
2462 make_unibyte_string (const char *contents, ptrdiff_t length)
2463 {
2464 register Lisp_Object val;
2465 val = make_uninit_string (length);
2466 memcpy (SDATA (val), contents, length);
2467 return val;
2468 }
2469
2470
2471 /* Make a multibyte string from NCHARS characters occupying NBYTES
2472 bytes at CONTENTS. */
2473
2474 Lisp_Object
2475 make_multibyte_string (const char *contents,
2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2477 {
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
2480 memcpy (SDATA (val), contents, nbytes);
2481 return val;
2482 }
2483
2484
2485 /* Make a string from NCHARS characters occupying NBYTES bytes at
2486 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2487
2488 Lisp_Object
2489 make_string_from_bytes (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes)
2491 {
2492 register Lisp_Object val;
2493 val = make_uninit_multibyte_string (nchars, nbytes);
2494 memcpy (SDATA (val), contents, nbytes);
2495 if (SBYTES (val) == SCHARS (val))
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2498 }
2499
2500
2501 /* Make a string from NCHARS characters occupying NBYTES bytes at
2502 CONTENTS. The argument MULTIBYTE controls whether to label the
2503 string as multibyte. If NCHARS is negative, it counts the number of
2504 characters by itself. */
2505
2506 Lisp_Object
2507 make_specified_string (const char *contents,
2508 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2509 {
2510 register Lisp_Object val;
2511
2512 if (nchars < 0)
2513 {
2514 if (multibyte)
2515 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2516 nbytes);
2517 else
2518 nchars = nbytes;
2519 }
2520 val = make_uninit_multibyte_string (nchars, nbytes);
2521 memcpy (SDATA (val), contents, nbytes);
2522 if (!multibyte)
2523 STRING_SET_UNIBYTE (val);
2524 return val;
2525 }
2526
2527
2528 /* Make a string from the data at STR, treating it as multibyte if the
2529 data warrants. */
2530
2531 Lisp_Object
2532 build_string (const char *str)
2533 {
2534 return make_string (str, strlen (str));
2535 }
2536
2537
2538 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2539 occupying LENGTH bytes. */
2540
2541 Lisp_Object
2542 make_uninit_string (EMACS_INT length)
2543 {
2544 Lisp_Object val;
2545
2546 if (!length)
2547 return empty_unibyte_string;
2548 val = make_uninit_multibyte_string (length, length);
2549 STRING_SET_UNIBYTE (val);
2550 return val;
2551 }
2552
2553
2554 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2555 which occupy NBYTES bytes. */
2556
2557 Lisp_Object
2558 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2559 {
2560 Lisp_Object string;
2561 struct Lisp_String *s;
2562
2563 if (nchars < 0)
2564 abort ();
2565 if (!nbytes)
2566 return empty_multibyte_string;
2567
2568 s = allocate_string ();
2569 allocate_string_data (s, nchars, nbytes);
2570 XSETSTRING (string, s);
2571 string_chars_consed += nbytes;
2572 return string;
2573 }
2574
2575
2576 \f
2577 /***********************************************************************
2578 Float Allocation
2579 ***********************************************************************/
2580
2581 /* We store float cells inside of float_blocks, allocating a new
2582 float_block with malloc whenever necessary. Float cells reclaimed
2583 by GC are put on a free list to be reallocated before allocating
2584 any new float cells from the latest float_block. */
2585
2586 #define FLOAT_BLOCK_SIZE \
2587 (((BLOCK_BYTES - sizeof (struct float_block *) \
2588 /* The compiler might add padding at the end. */ \
2589 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2590 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2591
2592 #define GETMARKBIT(block,n) \
2593 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2594 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2595 & 1)
2596
2597 #define SETMARKBIT(block,n) \
2598 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2599 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2600
2601 #define UNSETMARKBIT(block,n) \
2602 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2603 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2604
2605 #define FLOAT_BLOCK(fptr) \
2606 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2607
2608 #define FLOAT_INDEX(fptr) \
2609 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2610
2611 struct float_block
2612 {
2613 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2614 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2615 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2616 struct float_block *next;
2617 };
2618
2619 #define FLOAT_MARKED_P(fptr) \
2620 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621
2622 #define FLOAT_MARK(fptr) \
2623 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624
2625 #define FLOAT_UNMARK(fptr) \
2626 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2627
2628 /* Current float_block. */
2629
2630 static struct float_block *float_block;
2631
2632 /* Index of first unused Lisp_Float in the current float_block. */
2633
2634 static int float_block_index;
2635
2636 /* Free-list of Lisp_Floats. */
2637
2638 static struct Lisp_Float *float_free_list;
2639
2640
2641 /* Initialize float allocation. */
2642
2643 static void
2644 init_float (void)
2645 {
2646 float_block = NULL;
2647 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2648 float_free_list = 0;
2649 }
2650
2651
2652 /* Return a new float object with value FLOAT_VALUE. */
2653
2654 Lisp_Object
2655 make_float (double float_value)
2656 {
2657 register Lisp_Object val;
2658
2659 /* eassert (!handling_signal); */
2660
2661 MALLOC_BLOCK_INPUT;
2662
2663 if (float_free_list)
2664 {
2665 /* We use the data field for chaining the free list
2666 so that we won't use the same field that has the mark bit. */
2667 XSETFLOAT (val, float_free_list);
2668 float_free_list = float_free_list->u.chain;
2669 }
2670 else
2671 {
2672 if (float_block_index == FLOAT_BLOCK_SIZE)
2673 {
2674 register struct float_block *new;
2675
2676 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2677 MEM_TYPE_FLOAT);
2678 new->next = float_block;
2679 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2680 float_block = new;
2681 float_block_index = 0;
2682 }
2683 XSETFLOAT (val, &float_block->floats[float_block_index]);
2684 float_block_index++;
2685 }
2686
2687 MALLOC_UNBLOCK_INPUT;
2688
2689 XFLOAT_INIT (val, float_value);
2690 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2691 consing_since_gc += sizeof (struct Lisp_Float);
2692 floats_consed++;
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Cons Allocation
2700 ***********************************************************************/
2701
2702 /* We store cons cells inside of cons_blocks, allocating a new
2703 cons_block with malloc whenever necessary. Cons cells reclaimed by
2704 GC are put on a free list to be reallocated before allocating
2705 any new cons cells from the latest cons_block. */
2706
2707 #define CONS_BLOCK_SIZE \
2708 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2709 /* The compiler might add padding at the end. */ \
2710 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2711 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2712
2713 #define CONS_BLOCK(fptr) \
2714 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2715
2716 #define CONS_INDEX(fptr) \
2717 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2718
2719 struct cons_block
2720 {
2721 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2722 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2723 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2724 struct cons_block *next;
2725 };
2726
2727 #define CONS_MARKED_P(fptr) \
2728 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2729
2730 #define CONS_MARK(fptr) \
2731 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2732
2733 #define CONS_UNMARK(fptr) \
2734 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2735
2736 /* Current cons_block. */
2737
2738 static struct cons_block *cons_block;
2739
2740 /* Index of first unused Lisp_Cons in the current block. */
2741
2742 static int cons_block_index;
2743
2744 /* Free-list of Lisp_Cons structures. */
2745
2746 static struct Lisp_Cons *cons_free_list;
2747
2748
2749 /* Initialize cons allocation. */
2750
2751 static void
2752 init_cons (void)
2753 {
2754 cons_block = NULL;
2755 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2756 cons_free_list = 0;
2757 }
2758
2759
2760 /* Explicitly free a cons cell by putting it on the free-list. */
2761
2762 void
2763 free_cons (struct Lisp_Cons *ptr)
2764 {
2765 ptr->u.chain = cons_free_list;
2766 #if GC_MARK_STACK
2767 ptr->car = Vdead;
2768 #endif
2769 cons_free_list = ptr;
2770 }
2771
2772 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2773 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2774 (Lisp_Object car, Lisp_Object cdr)
2775 {
2776 register Lisp_Object val;
2777
2778 /* eassert (!handling_signal); */
2779
2780 MALLOC_BLOCK_INPUT;
2781
2782 if (cons_free_list)
2783 {
2784 /* We use the cdr for chaining the free list
2785 so that we won't use the same field that has the mark bit. */
2786 XSETCONS (val, cons_free_list);
2787 cons_free_list = cons_free_list->u.chain;
2788 }
2789 else
2790 {
2791 if (cons_block_index == CONS_BLOCK_SIZE)
2792 {
2793 register struct cons_block *new;
2794 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2795 MEM_TYPE_CONS);
2796 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2797 new->next = cons_block;
2798 cons_block = new;
2799 cons_block_index = 0;
2800 }
2801 XSETCONS (val, &cons_block->conses[cons_block_index]);
2802 cons_block_index++;
2803 }
2804
2805 MALLOC_UNBLOCK_INPUT;
2806
2807 XSETCAR (val, car);
2808 XSETCDR (val, cdr);
2809 eassert (!CONS_MARKED_P (XCONS (val)));
2810 consing_since_gc += sizeof (struct Lisp_Cons);
2811 cons_cells_consed++;
2812 return val;
2813 }
2814
2815 #ifdef GC_CHECK_CONS_LIST
2816 /* Get an error now if there's any junk in the cons free list. */
2817 void
2818 check_cons_list (void)
2819 {
2820 struct Lisp_Cons *tail = cons_free_list;
2821
2822 while (tail)
2823 tail = tail->u.chain;
2824 }
2825 #endif
2826
2827 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2828
2829 Lisp_Object
2830 list1 (Lisp_Object arg1)
2831 {
2832 return Fcons (arg1, Qnil);
2833 }
2834
2835 Lisp_Object
2836 list2 (Lisp_Object arg1, Lisp_Object arg2)
2837 {
2838 return Fcons (arg1, Fcons (arg2, Qnil));
2839 }
2840
2841
2842 Lisp_Object
2843 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2844 {
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2846 }
2847
2848
2849 Lisp_Object
2850 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2851 {
2852 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2853 }
2854
2855
2856 Lisp_Object
2857 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2858 {
2859 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2860 Fcons (arg5, Qnil)))));
2861 }
2862
2863
2864 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2865 doc: /* Return a newly created list with specified arguments as elements.
2866 Any number of arguments, even zero arguments, are allowed.
2867 usage: (list &rest OBJECTS) */)
2868 (ptrdiff_t nargs, Lisp_Object *args)
2869 {
2870 register Lisp_Object val;
2871 val = Qnil;
2872
2873 while (nargs > 0)
2874 {
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2877 }
2878 return val;
2879 }
2880
2881
2882 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2884 (register Lisp_Object length, Lisp_Object init)
2885 {
2886 register Lisp_Object val;
2887 register EMACS_INT size;
2888
2889 CHECK_NATNUM (length);
2890 size = XFASTINT (length);
2891
2892 val = Qnil;
2893 while (size > 0)
2894 {
2895 val = Fcons (init, val);
2896 --size;
2897
2898 if (size > 0)
2899 {
2900 val = Fcons (init, val);
2901 --size;
2902
2903 if (size > 0)
2904 {
2905 val = Fcons (init, val);
2906 --size;
2907
2908 if (size > 0)
2909 {
2910 val = Fcons (init, val);
2911 --size;
2912
2913 if (size > 0)
2914 {
2915 val = Fcons (init, val);
2916 --size;
2917 }
2918 }
2919 }
2920 }
2921
2922 QUIT;
2923 }
2924
2925 return val;
2926 }
2927
2928
2929 \f
2930 /***********************************************************************
2931 Vector Allocation
2932 ***********************************************************************/
2933
2934 /* This value is balanced well enough to avoid too much internal overhead
2935 for the most common cases; it's not required to be a power of two, but
2936 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2937
2938 #define VECTOR_BLOCK_SIZE 4096
2939
2940 /* Handy constants for vectorlike objects. */
2941 enum
2942 {
2943 header_size = offsetof (struct Lisp_Vector, contents),
2944 word_size = sizeof (Lisp_Object),
2945 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2946 #ifdef USE_LSB_TAG
2947 8 /* Helps to maintain alignment constraints imposed by
2948 assumption that least 3 bits of pointers are always 0. */
2949 #else
2950 1 /* If alignment doesn't matter, should round up
2951 to sizeof (Lisp_Object) at least. */
2952 #endif
2953 )
2954 };
2955
2956 /* Round up X to nearest mult-of-ROUNDUP_SIZE,
2957 assuming ROUNDUP_SIZE is a power of 2. */
2958
2959 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2960
2961 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2962
2963 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2964
2965 /* Size of the minimal vector allocated from block. */
2966
2967 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2968
2969 /* Size of the largest vector allocated from block. */
2970
2971 #define VBLOCK_BYTES_MAX \
2972 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2973
2974 /* We maintain one free list for each possible block-allocated
2975 vector size, and this is the number of free lists we have. */
2976
2977 #define VECTOR_MAX_FREE_LIST_INDEX \
2978 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2979
2980 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2981 this special value ORed with vector's memory footprint size. */
2982
2983 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2984 | (VECTOR_BLOCK_SIZE - 1)))
2985
2986 /* Common shortcut to advance vector pointer over a block data. */
2987
2988 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2989
2990 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2991
2992 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2993
2994 /* Common shortcut to setup vector on a free list. */
2995
2996 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2997 do { \
2998 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2999 eassert ((nbytes) % roundup_size == 0); \
3000 (index) = VINDEX (nbytes); \
3001 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
3002 (v)->header.next.vector = vector_free_lists[index]; \
3003 vector_free_lists[index] = (v); \
3004 } while (0)
3005
3006 struct vector_block
3007 {
3008 char data[VECTOR_BLOCK_BYTES];
3009 struct vector_block *next;
3010 };
3011
3012 /* Chain of vector blocks. */
3013
3014 static struct vector_block *vector_blocks;
3015
3016 /* Vector free lists, where NTH item points to a chain of free
3017 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3018
3019 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3020
3021 /* Singly-linked list of large vectors. */
3022
3023 static struct Lisp_Vector *large_vectors;
3024
3025 /* The only vector with 0 slots, allocated from pure space. */
3026
3027 static struct Lisp_Vector *zero_vector;
3028
3029 /* Get a new vector block. */
3030
3031 static struct vector_block *
3032 allocate_vector_block (void)
3033 {
3034 struct vector_block *block;
3035
3036 #ifdef DOUG_LEA_MALLOC
3037 mallopt (M_MMAP_MAX, 0);
3038 #endif
3039
3040 block = xmalloc (sizeof (struct vector_block));
3041
3042 #ifdef DOUG_LEA_MALLOC
3043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3044 #endif
3045
3046 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049 #endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054 }
3055
3056 /* Called once to initialize vector allocation. */
3057
3058 static void
3059 init_vectors (void)
3060 {
3061 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3062 zero_vector->header.size = 0;
3063 }
3064
3065 /* Allocate vector from a vector block. */
3066
3067 static struct Lisp_Vector *
3068 allocate_vector_from_block (size_t nbytes)
3069 {
3070 struct Lisp_Vector *vector, *rest;
3071 struct vector_block *block;
3072 size_t index, restbytes;
3073
3074 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3075 eassert (nbytes % roundup_size == 0);
3076
3077 /* First, try to allocate from a free list
3078 containing vectors of the requested size. */
3079 index = VINDEX (nbytes);
3080 if (vector_free_lists[index])
3081 {
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = vector->header.next.vector;
3084 vector->header.next.nbytes = nbytes;
3085 return vector;
3086 }
3087
3088 /* Next, check free lists containing larger vectors. Since
3089 we will split the result, we should have remaining space
3090 large enough to use for one-slot vector at least. */
3091 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3092 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3093 if (vector_free_lists[index])
3094 {
3095 /* This vector is larger than requested. */
3096 vector = vector_free_lists[index];
3097 vector_free_lists[index] = vector->header.next.vector;
3098 vector->header.next.nbytes = nbytes;
3099
3100 /* Excess bytes are used for the smaller vector,
3101 which should be set on an appropriate free list. */
3102 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3103 eassert (restbytes % roundup_size == 0);
3104 rest = ADVANCE (vector, nbytes);
3105 SETUP_ON_FREE_LIST (rest, restbytes, index);
3106 return vector;
3107 }
3108
3109 /* Finally, need a new vector block. */
3110 block = allocate_vector_block ();
3111
3112 /* New vector will be at the beginning of this block. */
3113 vector = (struct Lisp_Vector *) block->data;
3114 vector->header.next.nbytes = nbytes;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 rest = ADVANCE (vector, nbytes);
3123 SETUP_ON_FREE_LIST (rest, restbytes, index);
3124 }
3125 return vector;
3126 }
3127
3128 /* Return how many Lisp_Objects can be stored in V. */
3129
3130 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3131 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3132 (v)->header.size)
3133
3134 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136 #define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140 /* Reclaim space used by unmarked vectors. */
3141
3142 static void
3143 sweep_vectors (void)
3144 {
3145 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3146 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3147
3148 total_vector_size = 0;
3149 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3150
3151 /* Looking through vector blocks. */
3152
3153 for (block = vector_blocks; block; block = *bprev)
3154 {
3155 int free_this_block = 0;
3156
3157 for (vector = (struct Lisp_Vector *) block->data;
3158 VECTOR_IN_BLOCK (vector, block); vector = next)
3159 {
3160 if (VECTOR_MARKED_P (vector))
3161 {
3162 VECTOR_UNMARK (vector);
3163 total_vector_size += VECTOR_SIZE (vector);
3164 next = ADVANCE (vector, vector->header.next.nbytes);
3165 }
3166 else
3167 {
3168 ptrdiff_t nbytes;
3169
3170 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3171 == VECTOR_FREE_LIST_FLAG)
3172 vector->header.next.nbytes =
3173 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3174
3175 next = ADVANCE (vector, vector->header.next.nbytes);
3176
3177 /* While NEXT is not marked, try to coalesce with VECTOR,
3178 thus making VECTOR of the largest possible size. */
3179
3180 while (VECTOR_IN_BLOCK (next, block))
3181 {
3182 if (VECTOR_MARKED_P (next))
3183 break;
3184 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3185 == VECTOR_FREE_LIST_FLAG)
3186 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3187 else
3188 nbytes = next->header.next.nbytes;
3189 vector->header.next.nbytes += nbytes;
3190 next = ADVANCE (next, nbytes);
3191 }
3192
3193 eassert (vector->header.next.nbytes % roundup_size == 0);
3194
3195 if (vector == (struct Lisp_Vector *) block->data
3196 && !VECTOR_IN_BLOCK (next, block))
3197 /* This block should be freed because all of it's
3198 space was coalesced into the only free vector. */
3199 free_this_block = 1;
3200 else
3201 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3202 }
3203 }
3204
3205 if (free_this_block)
3206 {
3207 *bprev = block->next;
3208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3209 mem_delete (mem_find (block->data));
3210 #endif
3211 xfree (block);
3212 }
3213 else
3214 bprev = &block->next;
3215 }
3216
3217 /* Sweep large vectors. */
3218
3219 for (vector = large_vectors; vector; vector = *vprev)
3220 {
3221 if (VECTOR_MARKED_P (vector))
3222 {
3223 VECTOR_UNMARK (vector);
3224 total_vector_size += VECTOR_SIZE (vector);
3225 vprev = &vector->header.next.vector;
3226 }
3227 else
3228 {
3229 *vprev = vector->header.next.vector;
3230 lisp_free (vector);
3231 }
3232 }
3233 }
3234
3235 /* Value is a pointer to a newly allocated Lisp_Vector structure
3236 with room for LEN Lisp_Objects. */
3237
3238 static struct Lisp_Vector *
3239 allocate_vectorlike (ptrdiff_t len)
3240 {
3241 struct Lisp_Vector *p;
3242 size_t nbytes;
3243
3244 MALLOC_BLOCK_INPUT;
3245
3246 #ifdef DOUG_LEA_MALLOC
3247 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3248 because mapped region contents are not preserved in
3249 a dumped Emacs. */
3250 mallopt (M_MMAP_MAX, 0);
3251 #endif
3252
3253 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3254 /* eassert (!handling_signal); */
3255
3256 if (len == 0)
3257 {
3258 MALLOC_UNBLOCK_INPUT;
3259 return zero_vector;
3260 }
3261
3262 nbytes = header_size + len * word_size;
3263
3264 if (nbytes <= VBLOCK_BYTES_MAX)
3265 p = allocate_vector_from_block (vroundup (nbytes));
3266 else
3267 {
3268 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3269 p->header.next.vector = large_vectors;
3270 large_vectors = p;
3271 }
3272
3273 #ifdef DOUG_LEA_MALLOC
3274 /* Back to a reasonable maximum of mmap'ed areas. */
3275 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3276 #endif
3277
3278 consing_since_gc += nbytes;
3279 vector_cells_consed += len;
3280
3281 MALLOC_UNBLOCK_INPUT;
3282
3283 return p;
3284 }
3285
3286
3287 /* Allocate a vector with LEN slots. */
3288
3289 struct Lisp_Vector *
3290 allocate_vector (EMACS_INT len)
3291 {
3292 struct Lisp_Vector *v;
3293 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3294
3295 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3296 memory_full (SIZE_MAX);
3297 v = allocate_vectorlike (len);
3298 v->header.size = len;
3299 return v;
3300 }
3301
3302
3303 /* Allocate other vector-like structures. */
3304
3305 struct Lisp_Vector *
3306 allocate_pseudovector (int memlen, int lisplen, int tag)
3307 {
3308 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3309 int i;
3310
3311 /* Only the first lisplen slots will be traced normally by the GC. */
3312 for (i = 0; i < lisplen; ++i)
3313 v->contents[i] = Qnil;
3314
3315 XSETPVECTYPESIZE (v, tag, lisplen);
3316 return v;
3317 }
3318
3319 struct Lisp_Hash_Table *
3320 allocate_hash_table (void)
3321 {
3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3323 }
3324
3325
3326 struct window *
3327 allocate_window (void)
3328 {
3329 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3330 }
3331
3332
3333 struct terminal *
3334 allocate_terminal (void)
3335 {
3336 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3337 next_terminal, PVEC_TERMINAL);
3338 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3339 memset (&t->next_terminal, 0,
3340 (char*) (t + 1) - (char*) &t->next_terminal);
3341
3342 return t;
3343 }
3344
3345 struct frame *
3346 allocate_frame (void)
3347 {
3348 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3349 face_cache, PVEC_FRAME);
3350 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3351 memset (&f->face_cache, 0,
3352 (char *) (f + 1) - (char *) &f->face_cache);
3353 return f;
3354 }
3355
3356
3357 struct Lisp_Process *
3358 allocate_process (void)
3359 {
3360 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3361 }
3362
3363
3364 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3365 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3366 See also the function `vector'. */)
3367 (register Lisp_Object length, Lisp_Object init)
3368 {
3369 Lisp_Object vector;
3370 register ptrdiff_t sizei;
3371 register ptrdiff_t i;
3372 register struct Lisp_Vector *p;
3373
3374 CHECK_NATNUM (length);
3375
3376 p = allocate_vector (XFASTINT (length));
3377 sizei = XFASTINT (length);
3378 for (i = 0; i < sizei; i++)
3379 p->contents[i] = init;
3380
3381 XSETVECTOR (vector, p);
3382 return vector;
3383 }
3384
3385
3386 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3387 doc: /* Return a newly created vector with specified arguments as elements.
3388 Any number of arguments, even zero arguments, are allowed.
3389 usage: (vector &rest OBJECTS) */)
3390 (ptrdiff_t nargs, Lisp_Object *args)
3391 {
3392 register Lisp_Object len, val;
3393 ptrdiff_t i;
3394 register struct Lisp_Vector *p;
3395
3396 XSETFASTINT (len, nargs);
3397 val = Fmake_vector (len, Qnil);
3398 p = XVECTOR (val);
3399 for (i = 0; i < nargs; i++)
3400 p->contents[i] = args[i];
3401 return val;
3402 }
3403
3404 void
3405 make_byte_code (struct Lisp_Vector *v)
3406 {
3407 if (v->header.size > 1 && STRINGP (v->contents[1])
3408 && STRING_MULTIBYTE (v->contents[1]))
3409 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3410 earlier because they produced a raw 8-bit string for byte-code
3411 and now such a byte-code string is loaded as multibyte while
3412 raw 8-bit characters converted to multibyte form. Thus, now we
3413 must convert them back to the original unibyte form. */
3414 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3415 XSETPVECTYPE (v, PVEC_COMPILED);
3416 }
3417
3418 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3419 doc: /* Create a byte-code object with specified arguments as elements.
3420 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3421 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3422 and (optional) INTERACTIVE-SPEC.
3423 The first four arguments are required; at most six have any
3424 significance.
3425 The ARGLIST can be either like the one of `lambda', in which case the arguments
3426 will be dynamically bound before executing the byte code, or it can be an
3427 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3428 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3429 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3430 argument to catch the left-over arguments. If such an integer is used, the
3431 arguments will not be dynamically bound but will be instead pushed on the
3432 stack before executing the byte-code.
3433 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3434 (ptrdiff_t nargs, Lisp_Object *args)
3435 {
3436 register Lisp_Object len, val;
3437 ptrdiff_t i;
3438 register struct Lisp_Vector *p;
3439
3440 /* We used to purecopy everything here, if purify-flga was set. This worked
3441 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3442 dangerous, since make-byte-code is used during execution to build
3443 closures, so any closure built during the preload phase would end up
3444 copied into pure space, including its free variables, which is sometimes
3445 just wasteful and other times plainly wrong (e.g. those free vars may want
3446 to be setcar'd). */
3447
3448 XSETFASTINT (len, nargs);
3449 val = Fmake_vector (len, Qnil);
3450
3451 p = XVECTOR (val);
3452 for (i = 0; i < nargs; i++)
3453 p->contents[i] = args[i];
3454 make_byte_code (p);
3455 XSETCOMPILED (val, p);
3456 return val;
3457 }
3458
3459
3460 \f
3461 /***********************************************************************
3462 Symbol Allocation
3463 ***********************************************************************/
3464
3465 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3466 of the required alignment if LSB tags are used. */
3467
3468 union aligned_Lisp_Symbol
3469 {
3470 struct Lisp_Symbol s;
3471 #ifdef USE_LSB_TAG
3472 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3473 & -(1 << GCTYPEBITS)];
3474 #endif
3475 };
3476
3477 /* Each symbol_block is just under 1020 bytes long, since malloc
3478 really allocates in units of powers of two and uses 4 bytes for its
3479 own overhead. */
3480
3481 #define SYMBOL_BLOCK_SIZE \
3482 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3483
3484 struct symbol_block
3485 {
3486 /* Place `symbols' first, to preserve alignment. */
3487 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3488 struct symbol_block *next;
3489 };
3490
3491 /* Current symbol block and index of first unused Lisp_Symbol
3492 structure in it. */
3493
3494 static struct symbol_block *symbol_block;
3495 static int symbol_block_index;
3496
3497 /* List of free symbols. */
3498
3499 static struct Lisp_Symbol *symbol_free_list;
3500
3501
3502 /* Initialize symbol allocation. */
3503
3504 static void
3505 init_symbol (void)
3506 {
3507 symbol_block = NULL;
3508 symbol_block_index = SYMBOL_BLOCK_SIZE;
3509 symbol_free_list = 0;
3510 }
3511
3512
3513 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3514 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3515 Its value and function definition are void, and its property list is nil. */)
3516 (Lisp_Object name)
3517 {
3518 register Lisp_Object val;
3519 register struct Lisp_Symbol *p;
3520
3521 CHECK_STRING (name);
3522
3523 /* eassert (!handling_signal); */
3524
3525 MALLOC_BLOCK_INPUT;
3526
3527 if (symbol_free_list)
3528 {
3529 XSETSYMBOL (val, symbol_free_list);
3530 symbol_free_list = symbol_free_list->next;
3531 }
3532 else
3533 {
3534 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3535 {
3536 struct symbol_block *new;
3537 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3538 MEM_TYPE_SYMBOL);
3539 new->next = symbol_block;
3540 symbol_block = new;
3541 symbol_block_index = 0;
3542 }
3543 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3544 symbol_block_index++;
3545 }
3546
3547 MALLOC_UNBLOCK_INPUT;
3548
3549 p = XSYMBOL (val);
3550 p->xname = name;
3551 p->plist = Qnil;
3552 p->redirect = SYMBOL_PLAINVAL;
3553 SET_SYMBOL_VAL (p, Qunbound);
3554 p->function = Qunbound;
3555 p->next = NULL;
3556 p->gcmarkbit = 0;
3557 p->interned = SYMBOL_UNINTERNED;
3558 p->constant = 0;
3559 p->declared_special = 0;
3560 consing_since_gc += sizeof (struct Lisp_Symbol);
3561 symbols_consed++;
3562 return val;
3563 }
3564
3565
3566 \f
3567 /***********************************************************************
3568 Marker (Misc) Allocation
3569 ***********************************************************************/
3570
3571 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3572 the required alignment when LSB tags are used. */
3573
3574 union aligned_Lisp_Misc
3575 {
3576 union Lisp_Misc m;
3577 #ifdef USE_LSB_TAG
3578 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3579 & -(1 << GCTYPEBITS)];
3580 #endif
3581 };
3582
3583 /* Allocation of markers and other objects that share that structure.
3584 Works like allocation of conses. */
3585
3586 #define MARKER_BLOCK_SIZE \
3587 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3588
3589 struct marker_block
3590 {
3591 /* Place `markers' first, to preserve alignment. */
3592 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3593 struct marker_block *next;
3594 };
3595
3596 static struct marker_block *marker_block;
3597 static int marker_block_index;
3598
3599 static union Lisp_Misc *marker_free_list;
3600
3601 static void
3602 init_marker (void)
3603 {
3604 marker_block = NULL;
3605 marker_block_index = MARKER_BLOCK_SIZE;
3606 marker_free_list = 0;
3607 }
3608
3609 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3610
3611 Lisp_Object
3612 allocate_misc (void)
3613 {
3614 Lisp_Object val;
3615
3616 /* eassert (!handling_signal); */
3617
3618 MALLOC_BLOCK_INPUT;
3619
3620 if (marker_free_list)
3621 {
3622 XSETMISC (val, marker_free_list);
3623 marker_free_list = marker_free_list->u_free.chain;
3624 }
3625 else
3626 {
3627 if (marker_block_index == MARKER_BLOCK_SIZE)
3628 {
3629 struct marker_block *new;
3630 new = (struct marker_block *) lisp_malloc (sizeof *new,
3631 MEM_TYPE_MISC);
3632 new->next = marker_block;
3633 marker_block = new;
3634 marker_block_index = 0;
3635 total_free_markers += MARKER_BLOCK_SIZE;
3636 }
3637 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3638 marker_block_index++;
3639 }
3640
3641 MALLOC_UNBLOCK_INPUT;
3642
3643 --total_free_markers;
3644 consing_since_gc += sizeof (union Lisp_Misc);
3645 misc_objects_consed++;
3646 XMISCANY (val)->gcmarkbit = 0;
3647 return val;
3648 }
3649
3650 /* Free a Lisp_Misc object */
3651
3652 static void
3653 free_misc (Lisp_Object misc)
3654 {
3655 XMISCTYPE (misc) = Lisp_Misc_Free;
3656 XMISC (misc)->u_free.chain = marker_free_list;
3657 marker_free_list = XMISC (misc);
3658
3659 total_free_markers++;
3660 }
3661
3662 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3663 INTEGER. This is used to package C values to call record_unwind_protect.
3664 The unwind function can get the C values back using XSAVE_VALUE. */
3665
3666 Lisp_Object
3667 make_save_value (void *pointer, ptrdiff_t integer)
3668 {
3669 register Lisp_Object val;
3670 register struct Lisp_Save_Value *p;
3671
3672 val = allocate_misc ();
3673 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3674 p = XSAVE_VALUE (val);
3675 p->pointer = pointer;
3676 p->integer = integer;
3677 p->dogc = 0;
3678 return val;
3679 }
3680
3681 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3682 doc: /* Return a newly allocated marker which does not point at any place. */)
3683 (void)
3684 {
3685 register Lisp_Object val;
3686 register struct Lisp_Marker *p;
3687
3688 val = allocate_misc ();
3689 XMISCTYPE (val) = Lisp_Misc_Marker;
3690 p = XMARKER (val);
3691 p->buffer = 0;
3692 p->bytepos = 0;
3693 p->charpos = 0;
3694 p->next = NULL;
3695 p->insertion_type = 0;
3696 return val;
3697 }
3698
3699 /* Put MARKER back on the free list after using it temporarily. */
3700
3701 void
3702 free_marker (Lisp_Object marker)
3703 {
3704 unchain_marker (XMARKER (marker));
3705 free_misc (marker);
3706 }
3707
3708 \f
3709 /* Return a newly created vector or string with specified arguments as
3710 elements. If all the arguments are characters that can fit
3711 in a string of events, make a string; otherwise, make a vector.
3712
3713 Any number of arguments, even zero arguments, are allowed. */
3714
3715 Lisp_Object
3716 make_event_array (register int nargs, Lisp_Object *args)
3717 {
3718 int i;
3719
3720 for (i = 0; i < nargs; i++)
3721 /* The things that fit in a string
3722 are characters that are in 0...127,
3723 after discarding the meta bit and all the bits above it. */
3724 if (!INTEGERP (args[i])
3725 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3726 return Fvector (nargs, args);
3727
3728 /* Since the loop exited, we know that all the things in it are
3729 characters, so we can make a string. */
3730 {
3731 Lisp_Object result;
3732
3733 result = Fmake_string (make_number (nargs), make_number (0));
3734 for (i = 0; i < nargs; i++)
3735 {
3736 SSET (result, i, XINT (args[i]));
3737 /* Move the meta bit to the right place for a string char. */
3738 if (XINT (args[i]) & CHAR_META)
3739 SSET (result, i, SREF (result, i) | 0x80);
3740 }
3741
3742 return result;
3743 }
3744 }
3745
3746
3747 \f
3748 /************************************************************************
3749 Memory Full Handling
3750 ************************************************************************/
3751
3752
3753 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3754 there may have been size_t overflow so that malloc was never
3755 called, or perhaps malloc was invoked successfully but the
3756 resulting pointer had problems fitting into a tagged EMACS_INT. In
3757 either case this counts as memory being full even though malloc did
3758 not fail. */
3759
3760 void
3761 memory_full (size_t nbytes)
3762 {
3763 /* Do not go into hysterics merely because a large request failed. */
3764 int enough_free_memory = 0;
3765 if (SPARE_MEMORY < nbytes)
3766 {
3767 void *p;
3768
3769 MALLOC_BLOCK_INPUT;
3770 p = malloc (SPARE_MEMORY);
3771 if (p)
3772 {
3773 free (p);
3774 enough_free_memory = 1;
3775 }
3776 MALLOC_UNBLOCK_INPUT;
3777 }
3778
3779 if (! enough_free_memory)
3780 {
3781 int i;
3782
3783 Vmemory_full = Qt;
3784
3785 memory_full_cons_threshold = sizeof (struct cons_block);
3786
3787 /* The first time we get here, free the spare memory. */
3788 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3789 if (spare_memory[i])
3790 {
3791 if (i == 0)
3792 free (spare_memory[i]);
3793 else if (i >= 1 && i <= 4)
3794 lisp_align_free (spare_memory[i]);
3795 else
3796 lisp_free (spare_memory[i]);
3797 spare_memory[i] = 0;
3798 }
3799
3800 /* Record the space now used. When it decreases substantially,
3801 we can refill the memory reserve. */
3802 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3803 bytes_used_when_full = BYTES_USED;
3804 #endif
3805 }
3806
3807 /* This used to call error, but if we've run out of memory, we could
3808 get infinite recursion trying to build the string. */
3809 xsignal (Qnil, Vmemory_signal_data);
3810 }
3811
3812 /* If we released our reserve (due to running out of memory),
3813 and we have a fair amount free once again,
3814 try to set aside another reserve in case we run out once more.
3815
3816 This is called when a relocatable block is freed in ralloc.c,
3817 and also directly from this file, in case we're not using ralloc.c. */
3818
3819 void
3820 refill_memory_reserve (void)
3821 {
3822 #ifndef SYSTEM_MALLOC
3823 if (spare_memory[0] == 0)
3824 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3825 if (spare_memory[1] == 0)
3826 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3827 MEM_TYPE_CONS);
3828 if (spare_memory[2] == 0)
3829 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3830 MEM_TYPE_CONS);
3831 if (spare_memory[3] == 0)
3832 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3833 MEM_TYPE_CONS);
3834 if (spare_memory[4] == 0)
3835 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3836 MEM_TYPE_CONS);
3837 if (spare_memory[5] == 0)
3838 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3839 MEM_TYPE_STRING);
3840 if (spare_memory[6] == 0)
3841 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3842 MEM_TYPE_STRING);
3843 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3844 Vmemory_full = Qnil;
3845 #endif
3846 }
3847 \f
3848 /************************************************************************
3849 C Stack Marking
3850 ************************************************************************/
3851
3852 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3853
3854 /* Conservative C stack marking requires a method to identify possibly
3855 live Lisp objects given a pointer value. We do this by keeping
3856 track of blocks of Lisp data that are allocated in a red-black tree
3857 (see also the comment of mem_node which is the type of nodes in
3858 that tree). Function lisp_malloc adds information for an allocated
3859 block to the red-black tree with calls to mem_insert, and function
3860 lisp_free removes it with mem_delete. Functions live_string_p etc
3861 call mem_find to lookup information about a given pointer in the
3862 tree, and use that to determine if the pointer points to a Lisp
3863 object or not. */
3864
3865 /* Initialize this part of alloc.c. */
3866
3867 static void
3868 mem_init (void)
3869 {
3870 mem_z.left = mem_z.right = MEM_NIL;
3871 mem_z.parent = NULL;
3872 mem_z.color = MEM_BLACK;
3873 mem_z.start = mem_z.end = NULL;
3874 mem_root = MEM_NIL;
3875 }
3876
3877
3878 /* Value is a pointer to the mem_node containing START. Value is
3879 MEM_NIL if there is no node in the tree containing START. */
3880
3881 static inline struct mem_node *
3882 mem_find (void *start)
3883 {
3884 struct mem_node *p;
3885
3886 if (start < min_heap_address || start > max_heap_address)
3887 return MEM_NIL;
3888
3889 /* Make the search always successful to speed up the loop below. */
3890 mem_z.start = start;
3891 mem_z.end = (char *) start + 1;
3892
3893 p = mem_root;
3894 while (start < p->start || start >= p->end)
3895 p = start < p->start ? p->left : p->right;
3896 return p;
3897 }
3898
3899
3900 /* Insert a new node into the tree for a block of memory with start
3901 address START, end address END, and type TYPE. Value is a
3902 pointer to the node that was inserted. */
3903
3904 static struct mem_node *
3905 mem_insert (void *start, void *end, enum mem_type type)
3906 {
3907 struct mem_node *c, *parent, *x;
3908
3909 if (min_heap_address == NULL || start < min_heap_address)
3910 min_heap_address = start;
3911 if (max_heap_address == NULL || end > max_heap_address)
3912 max_heap_address = end;
3913
3914 /* See where in the tree a node for START belongs. In this
3915 particular application, it shouldn't happen that a node is already
3916 present. For debugging purposes, let's check that. */
3917 c = mem_root;
3918 parent = NULL;
3919
3920 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3921
3922 while (c != MEM_NIL)
3923 {
3924 if (start >= c->start && start < c->end)
3925 abort ();
3926 parent = c;
3927 c = start < c->start ? c->left : c->right;
3928 }
3929
3930 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3931
3932 while (c != MEM_NIL)
3933 {
3934 parent = c;
3935 c = start < c->start ? c->left : c->right;
3936 }
3937
3938 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3939
3940 /* Create a new node. */
3941 #ifdef GC_MALLOC_CHECK
3942 x = (struct mem_node *) _malloc_internal (sizeof *x);
3943 if (x == NULL)
3944 abort ();
3945 #else
3946 x = (struct mem_node *) xmalloc (sizeof *x);
3947 #endif
3948 x->start = start;
3949 x->end = end;
3950 x->type = type;
3951 x->parent = parent;
3952 x->left = x->right = MEM_NIL;
3953 x->color = MEM_RED;
3954
3955 /* Insert it as child of PARENT or install it as root. */
3956 if (parent)
3957 {
3958 if (start < parent->start)
3959 parent->left = x;
3960 else
3961 parent->right = x;
3962 }
3963 else
3964 mem_root = x;
3965
3966 /* Re-establish red-black tree properties. */
3967 mem_insert_fixup (x);
3968
3969 return x;
3970 }
3971
3972
3973 /* Re-establish the red-black properties of the tree, and thereby
3974 balance the tree, after node X has been inserted; X is always red. */
3975
3976 static void
3977 mem_insert_fixup (struct mem_node *x)
3978 {
3979 while (x != mem_root && x->parent->color == MEM_RED)
3980 {
3981 /* X is red and its parent is red. This is a violation of
3982 red-black tree property #3. */
3983
3984 if (x->parent == x->parent->parent->left)
3985 {
3986 /* We're on the left side of our grandparent, and Y is our
3987 "uncle". */
3988 struct mem_node *y = x->parent->parent->right;
3989
3990 if (y->color == MEM_RED)
3991 {
3992 /* Uncle and parent are red but should be black because
3993 X is red. Change the colors accordingly and proceed
3994 with the grandparent. */
3995 x->parent->color = MEM_BLACK;
3996 y->color = MEM_BLACK;
3997 x->parent->parent->color = MEM_RED;
3998 x = x->parent->parent;
3999 }
4000 else
4001 {
4002 /* Parent and uncle have different colors; parent is
4003 red, uncle is black. */
4004 if (x == x->parent->right)
4005 {
4006 x = x->parent;
4007 mem_rotate_left (x);
4008 }
4009
4010 x->parent->color = MEM_BLACK;
4011 x->parent->parent->color = MEM_RED;
4012 mem_rotate_right (x->parent->parent);
4013 }
4014 }
4015 else
4016 {
4017 /* This is the symmetrical case of above. */
4018 struct mem_node *y = x->parent->parent->left;
4019
4020 if (y->color == MEM_RED)
4021 {
4022 x->parent->color = MEM_BLACK;
4023 y->color = MEM_BLACK;
4024 x->parent->parent->color = MEM_RED;
4025 x = x->parent->parent;
4026 }
4027 else
4028 {
4029 if (x == x->parent->left)
4030 {
4031 x = x->parent;
4032 mem_rotate_right (x);
4033 }
4034
4035 x->parent->color = MEM_BLACK;
4036 x->parent->parent->color = MEM_RED;
4037 mem_rotate_left (x->parent->parent);
4038 }
4039 }
4040 }
4041
4042 /* The root may have been changed to red due to the algorithm. Set
4043 it to black so that property #5 is satisfied. */
4044 mem_root->color = MEM_BLACK;
4045 }
4046
4047
4048 /* (x) (y)
4049 / \ / \
4050 a (y) ===> (x) c
4051 / \ / \
4052 b c a b */
4053
4054 static void
4055 mem_rotate_left (struct mem_node *x)
4056 {
4057 struct mem_node *y;
4058
4059 /* Turn y's left sub-tree into x's right sub-tree. */
4060 y = x->right;
4061 x->right = y->left;
4062 if (y->left != MEM_NIL)
4063 y->left->parent = x;
4064
4065 /* Y's parent was x's parent. */
4066 if (y != MEM_NIL)
4067 y->parent = x->parent;
4068
4069 /* Get the parent to point to y instead of x. */
4070 if (x->parent)
4071 {
4072 if (x == x->parent->left)
4073 x->parent->left = y;
4074 else
4075 x->parent->right = y;
4076 }
4077 else
4078 mem_root = y;
4079
4080 /* Put x on y's left. */
4081 y->left = x;
4082 if (x != MEM_NIL)
4083 x->parent = y;
4084 }
4085
4086
4087 /* (x) (Y)
4088 / \ / \
4089 (y) c ===> a (x)
4090 / \ / \
4091 a b b c */
4092
4093 static void
4094 mem_rotate_right (struct mem_node *x)
4095 {
4096 struct mem_node *y = x->left;
4097
4098 x->left = y->right;
4099 if (y->right != MEM_NIL)
4100 y->right->parent = x;
4101
4102 if (y != MEM_NIL)
4103 y->parent = x->parent;
4104 if (x->parent)
4105 {
4106 if (x == x->parent->right)
4107 x->parent->right = y;
4108 else
4109 x->parent->left = y;
4110 }
4111 else
4112 mem_root = y;
4113
4114 y->right = x;
4115 if (x != MEM_NIL)
4116 x->parent = y;
4117 }
4118
4119
4120 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4121
4122 static void
4123 mem_delete (struct mem_node *z)
4124 {
4125 struct mem_node *x, *y;
4126
4127 if (!z || z == MEM_NIL)
4128 return;
4129
4130 if (z->left == MEM_NIL || z->right == MEM_NIL)
4131 y = z;
4132 else
4133 {
4134 y = z->right;
4135 while (y->left != MEM_NIL)
4136 y = y->left;
4137 }
4138
4139 if (y->left != MEM_NIL)
4140 x = y->left;
4141 else
4142 x = y->right;
4143
4144 x->parent = y->parent;
4145 if (y->parent)
4146 {
4147 if (y == y->parent->left)
4148 y->parent->left = x;
4149 else
4150 y->parent->right = x;
4151 }
4152 else
4153 mem_root = x;
4154
4155 if (y != z)
4156 {
4157 z->start = y->start;
4158 z->end = y->end;
4159 z->type = y->type;
4160 }
4161
4162 if (y->color == MEM_BLACK)
4163 mem_delete_fixup (x);
4164
4165 #ifdef GC_MALLOC_CHECK
4166 _free_internal (y);
4167 #else
4168 xfree (y);
4169 #endif
4170 }
4171
4172
4173 /* Re-establish the red-black properties of the tree, after a
4174 deletion. */
4175
4176 static void
4177 mem_delete_fixup (struct mem_node *x)
4178 {
4179 while (x != mem_root && x->color == MEM_BLACK)
4180 {
4181 if (x == x->parent->left)
4182 {
4183 struct mem_node *w = x->parent->right;
4184
4185 if (w->color == MEM_RED)
4186 {
4187 w->color = MEM_BLACK;
4188 x->parent->color = MEM_RED;
4189 mem_rotate_left (x->parent);
4190 w = x->parent->right;
4191 }
4192
4193 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4194 {
4195 w->color = MEM_RED;
4196 x = x->parent;
4197 }
4198 else
4199 {
4200 if (w->right->color == MEM_BLACK)
4201 {
4202 w->left->color = MEM_BLACK;
4203 w->color = MEM_RED;
4204 mem_rotate_right (w);
4205 w = x->parent->right;
4206 }
4207 w->color = x->parent->color;
4208 x->parent->color = MEM_BLACK;
4209 w->right->color = MEM_BLACK;
4210 mem_rotate_left (x->parent);
4211 x = mem_root;
4212 }
4213 }
4214 else
4215 {
4216 struct mem_node *w = x->parent->left;
4217
4218 if (w->color == MEM_RED)
4219 {
4220 w->color = MEM_BLACK;
4221 x->parent->color = MEM_RED;
4222 mem_rotate_right (x->parent);
4223 w = x->parent->left;
4224 }
4225
4226 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4227 {
4228 w->color = MEM_RED;
4229 x = x->parent;
4230 }
4231 else
4232 {
4233 if (w->left->color == MEM_BLACK)
4234 {
4235 w->right->color = MEM_BLACK;
4236 w->color = MEM_RED;
4237 mem_rotate_left (w);
4238 w = x->parent->left;
4239 }
4240
4241 w->color = x->parent->color;
4242 x->parent->color = MEM_BLACK;
4243 w->left->color = MEM_BLACK;
4244 mem_rotate_right (x->parent);
4245 x = mem_root;
4246 }
4247 }
4248 }
4249
4250 x->color = MEM_BLACK;
4251 }
4252
4253
4254 /* Value is non-zero if P is a pointer to a live Lisp string on
4255 the heap. M is a pointer to the mem_block for P. */
4256
4257 static inline int
4258 live_string_p (struct mem_node *m, void *p)
4259 {
4260 if (m->type == MEM_TYPE_STRING)
4261 {
4262 struct string_block *b = (struct string_block *) m->start;
4263 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4264
4265 /* P must point to the start of a Lisp_String structure, and it
4266 must not be on the free-list. */
4267 return (offset >= 0
4268 && offset % sizeof b->strings[0] == 0
4269 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4270 && ((struct Lisp_String *) p)->data != NULL);
4271 }
4272 else
4273 return 0;
4274 }
4275
4276
4277 /* Value is non-zero if P is a pointer to a live Lisp cons on
4278 the heap. M is a pointer to the mem_block for P. */
4279
4280 static inline int
4281 live_cons_p (struct mem_node *m, void *p)
4282 {
4283 if (m->type == MEM_TYPE_CONS)
4284 {
4285 struct cons_block *b = (struct cons_block *) m->start;
4286 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4287
4288 /* P must point to the start of a Lisp_Cons, not be
4289 one of the unused cells in the current cons block,
4290 and not be on the free-list. */
4291 return (offset >= 0
4292 && offset % sizeof b->conses[0] == 0
4293 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4294 && (b != cons_block
4295 || offset / sizeof b->conses[0] < cons_block_index)
4296 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4297 }
4298 else
4299 return 0;
4300 }
4301
4302
4303 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4304 the heap. M is a pointer to the mem_block for P. */
4305
4306 static inline int
4307 live_symbol_p (struct mem_node *m, void *p)
4308 {
4309 if (m->type == MEM_TYPE_SYMBOL)
4310 {
4311 struct symbol_block *b = (struct symbol_block *) m->start;
4312 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4313
4314 /* P must point to the start of a Lisp_Symbol, not be
4315 one of the unused cells in the current symbol block,
4316 and not be on the free-list. */
4317 return (offset >= 0
4318 && offset % sizeof b->symbols[0] == 0
4319 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4320 && (b != symbol_block
4321 || offset / sizeof b->symbols[0] < symbol_block_index)
4322 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4323 }
4324 else
4325 return 0;
4326 }
4327
4328
4329 /* Value is non-zero if P is a pointer to a live Lisp float on
4330 the heap. M is a pointer to the mem_block for P. */
4331
4332 static inline int
4333 live_float_p (struct mem_node *m, void *p)
4334 {
4335 if (m->type == MEM_TYPE_FLOAT)
4336 {
4337 struct float_block *b = (struct float_block *) m->start;
4338 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4339
4340 /* P must point to the start of a Lisp_Float and not be
4341 one of the unused cells in the current float block. */
4342 return (offset >= 0
4343 && offset % sizeof b->floats[0] == 0
4344 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4345 && (b != float_block
4346 || offset / sizeof b->floats[0] < float_block_index));
4347 }
4348 else
4349 return 0;
4350 }
4351
4352
4353 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4354 the heap. M is a pointer to the mem_block for P. */
4355
4356 static inline int
4357 live_misc_p (struct mem_node *m, void *p)
4358 {
4359 if (m->type == MEM_TYPE_MISC)
4360 {
4361 struct marker_block *b = (struct marker_block *) m->start;
4362 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4363
4364 /* P must point to the start of a Lisp_Misc, not be
4365 one of the unused cells in the current misc block,
4366 and not be on the free-list. */
4367 return (offset >= 0
4368 && offset % sizeof b->markers[0] == 0
4369 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4370 && (b != marker_block
4371 || offset / sizeof b->markers[0] < marker_block_index)
4372 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4373 }
4374 else
4375 return 0;
4376 }
4377
4378
4379 /* Value is non-zero if P is a pointer to a live vector-like object.
4380 M is a pointer to the mem_block for P. */
4381
4382 static inline int
4383 live_vector_p (struct mem_node *m, void *p)
4384 {
4385 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4386 {
4387 /* This memory node corresponds to a vector block. */
4388 struct vector_block *block = (struct vector_block *) m->start;
4389 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4390
4391 /* P is in the block's allocation range. Scan the block
4392 up to P and see whether P points to the start of some
4393 vector which is not on a free list. FIXME: check whether
4394 some allocation patterns (probably a lot of short vectors)
4395 may cause a substantial overhead of this loop. */
4396 while (VECTOR_IN_BLOCK (vector, block)
4397 && vector <= (struct Lisp_Vector *) p)
4398 {
4399 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4400 == VECTOR_FREE_LIST_FLAG)
4401 vector = ADVANCE (vector, (vector->header.size
4402 & (VECTOR_BLOCK_SIZE - 1)));
4403 else if (vector == p)
4404 return 1;
4405 else
4406 vector = ADVANCE (vector, vector->header.next.nbytes);
4407 }
4408 }
4409 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4410 /* This memory node corresponds to a large vector. */
4411 return 1;
4412 return 0;
4413 }
4414
4415
4416 /* Value is non-zero if P is a pointer to a live buffer. M is a
4417 pointer to the mem_block for P. */
4418
4419 static inline int
4420 live_buffer_p (struct mem_node *m, void *p)
4421 {
4422 /* P must point to the start of the block, and the buffer
4423 must not have been killed. */
4424 return (m->type == MEM_TYPE_BUFFER
4425 && p == m->start
4426 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4427 }
4428
4429 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4430
4431 #if GC_MARK_STACK
4432
4433 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4434
4435 /* Array of objects that are kept alive because the C stack contains
4436 a pattern that looks like a reference to them . */
4437
4438 #define MAX_ZOMBIES 10
4439 static Lisp_Object zombies[MAX_ZOMBIES];
4440
4441 /* Number of zombie objects. */
4442
4443 static EMACS_INT nzombies;
4444
4445 /* Number of garbage collections. */
4446
4447 static EMACS_INT ngcs;
4448
4449 /* Average percentage of zombies per collection. */
4450
4451 static double avg_zombies;
4452
4453 /* Max. number of live and zombie objects. */
4454
4455 static EMACS_INT max_live, max_zombies;
4456
4457 /* Average number of live objects per GC. */
4458
4459 static double avg_live;
4460
4461 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4462 doc: /* Show information about live and zombie objects. */)
4463 (void)
4464 {
4465 Lisp_Object args[8], zombie_list = Qnil;
4466 EMACS_INT i;
4467 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4468 zombie_list = Fcons (zombies[i], zombie_list);
4469 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4470 args[1] = make_number (ngcs);
4471 args[2] = make_float (avg_live);
4472 args[3] = make_float (avg_zombies);
4473 args[4] = make_float (avg_zombies / avg_live / 100);
4474 args[5] = make_number (max_live);
4475 args[6] = make_number (max_zombies);
4476 args[7] = zombie_list;
4477 return Fmessage (8, args);
4478 }
4479
4480 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4481
4482
4483 /* Mark OBJ if we can prove it's a Lisp_Object. */
4484
4485 static inline void
4486 mark_maybe_object (Lisp_Object obj)
4487 {
4488 void *po;
4489 struct mem_node *m;
4490
4491 if (INTEGERP (obj))
4492 return;
4493
4494 po = (void *) XPNTR (obj);
4495 m = mem_find (po);
4496
4497 if (m != MEM_NIL)
4498 {
4499 int mark_p = 0;
4500
4501 switch (XTYPE (obj))
4502 {
4503 case Lisp_String:
4504 mark_p = (live_string_p (m, po)
4505 && !STRING_MARKED_P ((struct Lisp_String *) po));
4506 break;
4507
4508 case Lisp_Cons:
4509 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4510 break;
4511
4512 case Lisp_Symbol:
4513 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4514 break;
4515
4516 case Lisp_Float:
4517 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4518 break;
4519
4520 case Lisp_Vectorlike:
4521 /* Note: can't check BUFFERP before we know it's a
4522 buffer because checking that dereferences the pointer
4523 PO which might point anywhere. */
4524 if (live_vector_p (m, po))
4525 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4526 else if (live_buffer_p (m, po))
4527 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4528 break;
4529
4530 case Lisp_Misc:
4531 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4532 break;
4533
4534 default:
4535 break;
4536 }
4537
4538 if (mark_p)
4539 {
4540 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4541 if (nzombies < MAX_ZOMBIES)
4542 zombies[nzombies] = obj;
4543 ++nzombies;
4544 #endif
4545 mark_object (obj);
4546 }
4547 }
4548 }
4549
4550
4551 /* If P points to Lisp data, mark that as live if it isn't already
4552 marked. */
4553
4554 static inline void
4555 mark_maybe_pointer (void *p)
4556 {
4557 struct mem_node *m;
4558
4559 /* Quickly rule out some values which can't point to Lisp data. */
4560 if ((intptr_t) p %
4561 #ifdef USE_LSB_TAG
4562 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4563 #else
4564 2 /* We assume that Lisp data is aligned on even addresses. */
4565 #endif
4566 )
4567 return;
4568
4569 m = mem_find (p);
4570 if (m != MEM_NIL)
4571 {
4572 Lisp_Object obj = Qnil;
4573
4574 switch (m->type)
4575 {
4576 case MEM_TYPE_NON_LISP:
4577 /* Nothing to do; not a pointer to Lisp memory. */
4578 break;
4579
4580 case MEM_TYPE_BUFFER:
4581 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4582 XSETVECTOR (obj, p);
4583 break;
4584
4585 case MEM_TYPE_CONS:
4586 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4587 XSETCONS (obj, p);
4588 break;
4589
4590 case MEM_TYPE_STRING:
4591 if (live_string_p (m, p)
4592 && !STRING_MARKED_P ((struct Lisp_String *) p))
4593 XSETSTRING (obj, p);
4594 break;
4595
4596 case MEM_TYPE_MISC:
4597 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4598 XSETMISC (obj, p);
4599 break;
4600
4601 case MEM_TYPE_SYMBOL:
4602 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4603 XSETSYMBOL (obj, p);
4604 break;
4605
4606 case MEM_TYPE_FLOAT:
4607 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4608 XSETFLOAT (obj, p);
4609 break;
4610
4611 case MEM_TYPE_VECTORLIKE:
4612 case MEM_TYPE_VECTOR_BLOCK:
4613 if (live_vector_p (m, p))
4614 {
4615 Lisp_Object tem;
4616 XSETVECTOR (tem, p);
4617 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4618 obj = tem;
4619 }
4620 break;
4621
4622 default:
4623 abort ();
4624 }
4625
4626 if (!NILP (obj))
4627 mark_object (obj);
4628 }
4629 }
4630
4631
4632 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4633 a smaller alignment than GCC's __alignof__ and mark_memory might
4634 miss objects if __alignof__ were used. */
4635 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4636
4637 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4638 not suffice, which is the typical case. A host where a Lisp_Object is
4639 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4640 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4641 suffice to widen it to to a Lisp_Object and check it that way. */
4642 #if defined USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4643 # if !defined USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4644 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4645 nor mark_maybe_object can follow the pointers. This should not occur on
4646 any practical porting target. */
4647 # error "MSB type bits straddle pointer-word boundaries"
4648 # endif
4649 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4650 pointer words that hold pointers ORed with type bits. */
4651 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4652 #else
4653 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4654 words that hold unmodified pointers. */
4655 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4656 #endif
4657
4658 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4659 or END+OFFSET..START. */
4660
4661 static void
4662 mark_memory (void *start, void *end)
4663 {
4664 void **pp;
4665 int i;
4666
4667 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4668 nzombies = 0;
4669 #endif
4670
4671 /* Make START the pointer to the start of the memory region,
4672 if it isn't already. */
4673 if (end < start)
4674 {
4675 void *tem = start;
4676 start = end;
4677 end = tem;
4678 }
4679
4680 /* Mark Lisp data pointed to. This is necessary because, in some
4681 situations, the C compiler optimizes Lisp objects away, so that
4682 only a pointer to them remains. Example:
4683
4684 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4685 ()
4686 {
4687 Lisp_Object obj = build_string ("test");
4688 struct Lisp_String *s = XSTRING (obj);
4689 Fgarbage_collect ();
4690 fprintf (stderr, "test `%s'\n", s->data);
4691 return Qnil;
4692 }
4693
4694 Here, `obj' isn't really used, and the compiler optimizes it
4695 away. The only reference to the life string is through the
4696 pointer `s'. */
4697
4698 for (pp = start; (void *) pp < end; pp++)
4699 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4700 {
4701 void *p = *(void **) ((char *) pp + i);
4702 mark_maybe_pointer (p);
4703 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4704 mark_maybe_object (widen_to_Lisp_Object (p));
4705 }
4706 }
4707
4708 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4709 the GCC system configuration. In gcc 3.2, the only systems for
4710 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4711 by others?) and ns32k-pc532-min. */
4712
4713 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4714
4715 static int setjmp_tested_p, longjmps_done;
4716
4717 #define SETJMP_WILL_LIKELY_WORK "\
4718 \n\
4719 Emacs garbage collector has been changed to use conservative stack\n\
4720 marking. Emacs has determined that the method it uses to do the\n\
4721 marking will likely work on your system, but this isn't sure.\n\
4722 \n\
4723 If you are a system-programmer, or can get the help of a local wizard\n\
4724 who is, please take a look at the function mark_stack in alloc.c, and\n\
4725 verify that the methods used are appropriate for your system.\n\
4726 \n\
4727 Please mail the result to <emacs-devel@gnu.org>.\n\
4728 "
4729
4730 #define SETJMP_WILL_NOT_WORK "\
4731 \n\
4732 Emacs garbage collector has been changed to use conservative stack\n\
4733 marking. Emacs has determined that the default method it uses to do the\n\
4734 marking will not work on your system. We will need a system-dependent\n\
4735 solution for your system.\n\
4736 \n\
4737 Please take a look at the function mark_stack in alloc.c, and\n\
4738 try to find a way to make it work on your system.\n\
4739 \n\
4740 Note that you may get false negatives, depending on the compiler.\n\
4741 In particular, you need to use -O with GCC for this test.\n\
4742 \n\
4743 Please mail the result to <emacs-devel@gnu.org>.\n\
4744 "
4745
4746
4747 /* Perform a quick check if it looks like setjmp saves registers in a
4748 jmp_buf. Print a message to stderr saying so. When this test
4749 succeeds, this is _not_ a proof that setjmp is sufficient for
4750 conservative stack marking. Only the sources or a disassembly
4751 can prove that. */
4752
4753 static void
4754 test_setjmp (void)
4755 {
4756 char buf[10];
4757 register int x;
4758 jmp_buf jbuf;
4759 int result = 0;
4760
4761 /* Arrange for X to be put in a register. */
4762 sprintf (buf, "1");
4763 x = strlen (buf);
4764 x = 2 * x - 1;
4765
4766 setjmp (jbuf);
4767 if (longjmps_done == 1)
4768 {
4769 /* Came here after the longjmp at the end of the function.
4770
4771 If x == 1, the longjmp has restored the register to its
4772 value before the setjmp, and we can hope that setjmp
4773 saves all such registers in the jmp_buf, although that
4774 isn't sure.
4775
4776 For other values of X, either something really strange is
4777 taking place, or the setjmp just didn't save the register. */
4778
4779 if (x == 1)
4780 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4781 else
4782 {
4783 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4784 exit (1);
4785 }
4786 }
4787
4788 ++longjmps_done;
4789 x = 2;
4790 if (longjmps_done == 1)
4791 longjmp (jbuf, 1);
4792 }
4793
4794 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4795
4796
4797 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4798
4799 /* Abort if anything GCPRO'd doesn't survive the GC. */
4800
4801 static void
4802 check_gcpros (void)
4803 {
4804 struct gcpro *p;
4805 ptrdiff_t i;
4806
4807 for (p = gcprolist; p; p = p->next)
4808 for (i = 0; i < p->nvars; ++i)
4809 if (!survives_gc_p (p->var[i]))
4810 /* FIXME: It's not necessarily a bug. It might just be that the
4811 GCPRO is unnecessary or should release the object sooner. */
4812 abort ();
4813 }
4814
4815 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4816
4817 static void
4818 dump_zombies (void)
4819 {
4820 int i;
4821
4822 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4823 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4824 {
4825 fprintf (stderr, " %d = ", i);
4826 debug_print (zombies[i]);
4827 }
4828 }
4829
4830 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4831
4832
4833 /* Mark live Lisp objects on the C stack.
4834
4835 There are several system-dependent problems to consider when
4836 porting this to new architectures:
4837
4838 Processor Registers
4839
4840 We have to mark Lisp objects in CPU registers that can hold local
4841 variables or are used to pass parameters.
4842
4843 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4844 something that either saves relevant registers on the stack, or
4845 calls mark_maybe_object passing it each register's contents.
4846
4847 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4848 implementation assumes that calling setjmp saves registers we need
4849 to see in a jmp_buf which itself lies on the stack. This doesn't
4850 have to be true! It must be verified for each system, possibly
4851 by taking a look at the source code of setjmp.
4852
4853 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4854 can use it as a machine independent method to store all registers
4855 to the stack. In this case the macros described in the previous
4856 two paragraphs are not used.
4857
4858 Stack Layout
4859
4860 Architectures differ in the way their processor stack is organized.
4861 For example, the stack might look like this
4862
4863 +----------------+
4864 | Lisp_Object | size = 4
4865 +----------------+
4866 | something else | size = 2
4867 +----------------+
4868 | Lisp_Object | size = 4
4869 +----------------+
4870 | ... |
4871
4872 In such a case, not every Lisp_Object will be aligned equally. To
4873 find all Lisp_Object on the stack it won't be sufficient to walk
4874 the stack in steps of 4 bytes. Instead, two passes will be
4875 necessary, one starting at the start of the stack, and a second
4876 pass starting at the start of the stack + 2. Likewise, if the
4877 minimal alignment of Lisp_Objects on the stack is 1, four passes
4878 would be necessary, each one starting with one byte more offset
4879 from the stack start. */
4880
4881 static void
4882 mark_stack (void)
4883 {
4884 void *end;
4885
4886 #ifdef HAVE___BUILTIN_UNWIND_INIT
4887 /* Force callee-saved registers and register windows onto the stack.
4888 This is the preferred method if available, obviating the need for
4889 machine dependent methods. */
4890 __builtin_unwind_init ();
4891 end = &end;
4892 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4893 #ifndef GC_SAVE_REGISTERS_ON_STACK
4894 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4895 union aligned_jmpbuf {
4896 Lisp_Object o;
4897 jmp_buf j;
4898 } j;
4899 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4900 #endif
4901 /* This trick flushes the register windows so that all the state of
4902 the process is contained in the stack. */
4903 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4904 needed on ia64 too. See mach_dep.c, where it also says inline
4905 assembler doesn't work with relevant proprietary compilers. */
4906 #ifdef __sparc__
4907 #if defined (__sparc64__) && defined (__FreeBSD__)
4908 /* FreeBSD does not have a ta 3 handler. */
4909 asm ("flushw");
4910 #else
4911 asm ("ta 3");
4912 #endif
4913 #endif
4914
4915 /* Save registers that we need to see on the stack. We need to see
4916 registers used to hold register variables and registers used to
4917 pass parameters. */
4918 #ifdef GC_SAVE_REGISTERS_ON_STACK
4919 GC_SAVE_REGISTERS_ON_STACK (end);
4920 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4921
4922 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4923 setjmp will definitely work, test it
4924 and print a message with the result
4925 of the test. */
4926 if (!setjmp_tested_p)
4927 {
4928 setjmp_tested_p = 1;
4929 test_setjmp ();
4930 }
4931 #endif /* GC_SETJMP_WORKS */
4932
4933 setjmp (j.j);
4934 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4935 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4936 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4937
4938 /* This assumes that the stack is a contiguous region in memory. If
4939 that's not the case, something has to be done here to iterate
4940 over the stack segments. */
4941 mark_memory (stack_base, end);
4942
4943 /* Allow for marking a secondary stack, like the register stack on the
4944 ia64. */
4945 #ifdef GC_MARK_SECONDARY_STACK
4946 GC_MARK_SECONDARY_STACK ();
4947 #endif
4948
4949 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4950 check_gcpros ();
4951 #endif
4952 }
4953
4954 #endif /* GC_MARK_STACK != 0 */
4955
4956
4957 /* Determine whether it is safe to access memory at address P. */
4958 static int
4959 valid_pointer_p (void *p)
4960 {
4961 #ifdef WINDOWSNT
4962 return w32_valid_pointer_p (p, 16);
4963 #else
4964 int fd[2];
4965
4966 /* Obviously, we cannot just access it (we would SEGV trying), so we
4967 trick the o/s to tell us whether p is a valid pointer.
4968 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4969 not validate p in that case. */
4970
4971 if (pipe (fd) == 0)
4972 {
4973 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4974 emacs_close (fd[1]);
4975 emacs_close (fd[0]);
4976 return valid;
4977 }
4978
4979 return -1;
4980 #endif
4981 }
4982
4983 /* Return 1 if OBJ is a valid lisp object.
4984 Return 0 if OBJ is NOT a valid lisp object.
4985 Return -1 if we cannot validate OBJ.
4986 This function can be quite slow,
4987 so it should only be used in code for manual debugging. */
4988
4989 int
4990 valid_lisp_object_p (Lisp_Object obj)
4991 {
4992 void *p;
4993 #if GC_MARK_STACK
4994 struct mem_node *m;
4995 #endif
4996
4997 if (INTEGERP (obj))
4998 return 1;
4999
5000 p = (void *) XPNTR (obj);
5001 if (PURE_POINTER_P (p))
5002 return 1;
5003
5004 #if !GC_MARK_STACK
5005 return valid_pointer_p (p);
5006 #else
5007
5008 m = mem_find (p);
5009
5010 if (m == MEM_NIL)
5011 {
5012 int valid = valid_pointer_p (p);
5013 if (valid <= 0)
5014 return valid;
5015
5016 if (SUBRP (obj))
5017 return 1;
5018
5019 return 0;
5020 }
5021
5022 switch (m->type)
5023 {
5024 case MEM_TYPE_NON_LISP:
5025 return 0;
5026
5027 case MEM_TYPE_BUFFER:
5028 return live_buffer_p (m, p);
5029
5030 case MEM_TYPE_CONS:
5031 return live_cons_p (m, p);
5032
5033 case MEM_TYPE_STRING:
5034 return live_string_p (m, p);
5035
5036 case MEM_TYPE_MISC:
5037 return live_misc_p (m, p);
5038
5039 case MEM_TYPE_SYMBOL:
5040 return live_symbol_p (m, p);
5041
5042 case MEM_TYPE_FLOAT:
5043 return live_float_p (m, p);
5044
5045 case MEM_TYPE_VECTORLIKE:
5046 case MEM_TYPE_VECTOR_BLOCK:
5047 return live_vector_p (m, p);
5048
5049 default:
5050 break;
5051 }
5052
5053 return 0;
5054 #endif
5055 }
5056
5057
5058
5059 \f
5060 /***********************************************************************
5061 Pure Storage Management
5062 ***********************************************************************/
5063
5064 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5065 pointer to it. TYPE is the Lisp type for which the memory is
5066 allocated. TYPE < 0 means it's not used for a Lisp object. */
5067
5068 static void *
5069 pure_alloc (size_t size, int type)
5070 {
5071 void *result;
5072 #ifdef USE_LSB_TAG
5073 size_t alignment = (1 << GCTYPEBITS);
5074 #else
5075 size_t alignment = sizeof (EMACS_INT);
5076
5077 /* Give Lisp_Floats an extra alignment. */
5078 if (type == Lisp_Float)
5079 {
5080 #if defined __GNUC__ && __GNUC__ >= 2
5081 alignment = __alignof (struct Lisp_Float);
5082 #else
5083 alignment = sizeof (struct Lisp_Float);
5084 #endif
5085 }
5086 #endif
5087
5088 again:
5089 if (type >= 0)
5090 {
5091 /* Allocate space for a Lisp object from the beginning of the free
5092 space with taking account of alignment. */
5093 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5094 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5095 }
5096 else
5097 {
5098 /* Allocate space for a non-Lisp object from the end of the free
5099 space. */
5100 pure_bytes_used_non_lisp += size;
5101 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5102 }
5103 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5104
5105 if (pure_bytes_used <= pure_size)
5106 return result;
5107
5108 /* Don't allocate a large amount here,
5109 because it might get mmap'd and then its address
5110 might not be usable. */
5111 purebeg = (char *) xmalloc (10000);
5112 pure_size = 10000;
5113 pure_bytes_used_before_overflow += pure_bytes_used - size;
5114 pure_bytes_used = 0;
5115 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5116 goto again;
5117 }
5118
5119
5120 /* Print a warning if PURESIZE is too small. */
5121
5122 void
5123 check_pure_size (void)
5124 {
5125 if (pure_bytes_used_before_overflow)
5126 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5127 " bytes needed)"),
5128 pure_bytes_used + pure_bytes_used_before_overflow);
5129 }
5130
5131
5132 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5133 the non-Lisp data pool of the pure storage, and return its start
5134 address. Return NULL if not found. */
5135
5136 static char *
5137 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5138 {
5139 int i;
5140 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5141 const unsigned char *p;
5142 char *non_lisp_beg;
5143
5144 if (pure_bytes_used_non_lisp <= nbytes)
5145 return NULL;
5146
5147 /* Set up the Boyer-Moore table. */
5148 skip = nbytes + 1;
5149 for (i = 0; i < 256; i++)
5150 bm_skip[i] = skip;
5151
5152 p = (const unsigned char *) data;
5153 while (--skip > 0)
5154 bm_skip[*p++] = skip;
5155
5156 last_char_skip = bm_skip['\0'];
5157
5158 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5159 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5160
5161 /* See the comments in the function `boyer_moore' (search.c) for the
5162 use of `infinity'. */
5163 infinity = pure_bytes_used_non_lisp + 1;
5164 bm_skip['\0'] = infinity;
5165
5166 p = (const unsigned char *) non_lisp_beg + nbytes;
5167 start = 0;
5168 do
5169 {
5170 /* Check the last character (== '\0'). */
5171 do
5172 {
5173 start += bm_skip[*(p + start)];
5174 }
5175 while (start <= start_max);
5176
5177 if (start < infinity)
5178 /* Couldn't find the last character. */
5179 return NULL;
5180
5181 /* No less than `infinity' means we could find the last
5182 character at `p[start - infinity]'. */
5183 start -= infinity;
5184
5185 /* Check the remaining characters. */
5186 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5187 /* Found. */
5188 return non_lisp_beg + start;
5189
5190 start += last_char_skip;
5191 }
5192 while (start <= start_max);
5193
5194 return NULL;
5195 }
5196
5197
5198 /* Return a string allocated in pure space. DATA is a buffer holding
5199 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5200 non-zero means make the result string multibyte.
5201
5202 Must get an error if pure storage is full, since if it cannot hold
5203 a large string it may be able to hold conses that point to that
5204 string; then the string is not protected from gc. */
5205
5206 Lisp_Object
5207 make_pure_string (const char *data,
5208 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5209 {
5210 Lisp_Object string;
5211 struct Lisp_String *s;
5212
5213 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5214 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5215 if (s->data == NULL)
5216 {
5217 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5218 memcpy (s->data, data, nbytes);
5219 s->data[nbytes] = '\0';
5220 }
5221 s->size = nchars;
5222 s->size_byte = multibyte ? nbytes : -1;
5223 s->intervals = NULL_INTERVAL;
5224 XSETSTRING (string, s);
5225 return string;
5226 }
5227
5228 /* Return a string a string allocated in pure space. Do not allocate
5229 the string data, just point to DATA. */
5230
5231 Lisp_Object
5232 make_pure_c_string (const char *data)
5233 {
5234 Lisp_Object string;
5235 struct Lisp_String *s;
5236 ptrdiff_t nchars = strlen (data);
5237
5238 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5239 s->size = nchars;
5240 s->size_byte = -1;
5241 s->data = (unsigned char *) data;
5242 s->intervals = NULL_INTERVAL;
5243 XSETSTRING (string, s);
5244 return string;
5245 }
5246
5247 /* Return a cons allocated from pure space. Give it pure copies
5248 of CAR as car and CDR as cdr. */
5249
5250 Lisp_Object
5251 pure_cons (Lisp_Object car, Lisp_Object cdr)
5252 {
5253 register Lisp_Object new;
5254 struct Lisp_Cons *p;
5255
5256 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5257 XSETCONS (new, p);
5258 XSETCAR (new, Fpurecopy (car));
5259 XSETCDR (new, Fpurecopy (cdr));
5260 return new;
5261 }
5262
5263
5264 /* Value is a float object with value NUM allocated from pure space. */
5265
5266 static Lisp_Object
5267 make_pure_float (double num)
5268 {
5269 register Lisp_Object new;
5270 struct Lisp_Float *p;
5271
5272 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5273 XSETFLOAT (new, p);
5274 XFLOAT_INIT (new, num);
5275 return new;
5276 }
5277
5278
5279 /* Return a vector with room for LEN Lisp_Objects allocated from
5280 pure space. */
5281
5282 static Lisp_Object
5283 make_pure_vector (ptrdiff_t len)
5284 {
5285 Lisp_Object new;
5286 struct Lisp_Vector *p;
5287 size_t size = (offsetof (struct Lisp_Vector, contents)
5288 + len * sizeof (Lisp_Object));
5289
5290 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5291 XSETVECTOR (new, p);
5292 XVECTOR (new)->header.size = len;
5293 return new;
5294 }
5295
5296
5297 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5298 doc: /* Make a copy of object OBJ in pure storage.
5299 Recursively copies contents of vectors and cons cells.
5300 Does not copy symbols. Copies strings without text properties. */)
5301 (register Lisp_Object obj)
5302 {
5303 if (NILP (Vpurify_flag))
5304 return obj;
5305
5306 if (PURE_POINTER_P (XPNTR (obj)))
5307 return obj;
5308
5309 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5310 {
5311 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5312 if (!NILP (tmp))
5313 return tmp;
5314 }
5315
5316 if (CONSP (obj))
5317 obj = pure_cons (XCAR (obj), XCDR (obj));
5318 else if (FLOATP (obj))
5319 obj = make_pure_float (XFLOAT_DATA (obj));
5320 else if (STRINGP (obj))
5321 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5322 SBYTES (obj),
5323 STRING_MULTIBYTE (obj));
5324 else if (COMPILEDP (obj) || VECTORP (obj))
5325 {
5326 register struct Lisp_Vector *vec;
5327 register ptrdiff_t i;
5328 ptrdiff_t size;
5329
5330 size = ASIZE (obj);
5331 if (size & PSEUDOVECTOR_FLAG)
5332 size &= PSEUDOVECTOR_SIZE_MASK;
5333 vec = XVECTOR (make_pure_vector (size));
5334 for (i = 0; i < size; i++)
5335 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
5336 if (COMPILEDP (obj))
5337 {
5338 XSETPVECTYPE (vec, PVEC_COMPILED);
5339 XSETCOMPILED (obj, vec);
5340 }
5341 else
5342 XSETVECTOR (obj, vec);
5343 }
5344 else if (MARKERP (obj))
5345 error ("Attempt to copy a marker to pure storage");
5346 else
5347 /* Not purified, don't hash-cons. */
5348 return obj;
5349
5350 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5351 Fputhash (obj, obj, Vpurify_flag);
5352
5353 return obj;
5354 }
5355
5356
5357 \f
5358 /***********************************************************************
5359 Protection from GC
5360 ***********************************************************************/
5361
5362 /* Put an entry in staticvec, pointing at the variable with address
5363 VARADDRESS. */
5364
5365 void
5366 staticpro (Lisp_Object *varaddress)
5367 {
5368 staticvec[staticidx++] = varaddress;
5369 if (staticidx >= NSTATICS)
5370 abort ();
5371 }
5372
5373 \f
5374 /***********************************************************************
5375 Protection from GC
5376 ***********************************************************************/
5377
5378 /* Temporarily prevent garbage collection. */
5379
5380 ptrdiff_t
5381 inhibit_garbage_collection (void)
5382 {
5383 ptrdiff_t count = SPECPDL_INDEX ();
5384
5385 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5386 return count;
5387 }
5388
5389
5390 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5391 doc: /* Reclaim storage for Lisp objects no longer needed.
5392 Garbage collection happens automatically if you cons more than
5393 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5394 `garbage-collect' normally returns a list with info on amount of space in use:
5395 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5396 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5397 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5398 (USED-STRINGS . FREE-STRINGS))
5399 However, if there was overflow in pure space, `garbage-collect'
5400 returns nil, because real GC can't be done.
5401 See Info node `(elisp)Garbage Collection'. */)
5402 (void)
5403 {
5404 register struct specbinding *bind;
5405 char stack_top_variable;
5406 ptrdiff_t i;
5407 int message_p;
5408 Lisp_Object total[8];
5409 ptrdiff_t count = SPECPDL_INDEX ();
5410 EMACS_TIME t1, t2, t3;
5411
5412 if (abort_on_gc)
5413 abort ();
5414
5415 /* Can't GC if pure storage overflowed because we can't determine
5416 if something is a pure object or not. */
5417 if (pure_bytes_used_before_overflow)
5418 return Qnil;
5419
5420 CHECK_CONS_LIST ();
5421
5422 /* Don't keep undo information around forever.
5423 Do this early on, so it is no problem if the user quits. */
5424 {
5425 register struct buffer *nextb = all_buffers;
5426
5427 while (nextb)
5428 {
5429 /* If a buffer's undo list is Qt, that means that undo is
5430 turned off in that buffer. Calling truncate_undo_list on
5431 Qt tends to return NULL, which effectively turns undo back on.
5432 So don't call truncate_undo_list if undo_list is Qt. */
5433 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5434 truncate_undo_list (nextb);
5435
5436 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5437 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5438 && ! nextb->text->inhibit_shrinking)
5439 {
5440 /* If a buffer's gap size is more than 10% of the buffer
5441 size, or larger than 2000 bytes, then shrink it
5442 accordingly. Keep a minimum size of 20 bytes. */
5443 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5444
5445 if (nextb->text->gap_size > size)
5446 {
5447 struct buffer *save_current = current_buffer;
5448 current_buffer = nextb;
5449 make_gap (-(nextb->text->gap_size - size));
5450 current_buffer = save_current;
5451 }
5452 }
5453
5454 nextb = nextb->header.next.buffer;
5455 }
5456 }
5457
5458 EMACS_GET_TIME (t1);
5459
5460 /* In case user calls debug_print during GC,
5461 don't let that cause a recursive GC. */
5462 consing_since_gc = 0;
5463
5464 /* Save what's currently displayed in the echo area. */
5465 message_p = push_message ();
5466 record_unwind_protect (pop_message_unwind, Qnil);
5467
5468 /* Save a copy of the contents of the stack, for debugging. */
5469 #if MAX_SAVE_STACK > 0
5470 if (NILP (Vpurify_flag))
5471 {
5472 char *stack;
5473 ptrdiff_t stack_size;
5474 if (&stack_top_variable < stack_bottom)
5475 {
5476 stack = &stack_top_variable;
5477 stack_size = stack_bottom - &stack_top_variable;
5478 }
5479 else
5480 {
5481 stack = stack_bottom;
5482 stack_size = &stack_top_variable - stack_bottom;
5483 }
5484 if (stack_size <= MAX_SAVE_STACK)
5485 {
5486 if (stack_copy_size < stack_size)
5487 {
5488 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5489 stack_copy_size = stack_size;
5490 }
5491 memcpy (stack_copy, stack, stack_size);
5492 }
5493 }
5494 #endif /* MAX_SAVE_STACK > 0 */
5495
5496 if (garbage_collection_messages)
5497 message1_nolog ("Garbage collecting...");
5498
5499 BLOCK_INPUT;
5500
5501 shrink_regexp_cache ();
5502
5503 gc_in_progress = 1;
5504
5505 /* clear_marks (); */
5506
5507 /* Mark all the special slots that serve as the roots of accessibility. */
5508
5509 for (i = 0; i < staticidx; i++)
5510 mark_object (*staticvec[i]);
5511
5512 for (bind = specpdl; bind != specpdl_ptr; bind++)
5513 {
5514 mark_object (bind->symbol);
5515 mark_object (bind->old_value);
5516 }
5517 mark_terminals ();
5518 mark_kboards ();
5519 mark_ttys ();
5520
5521 #ifdef USE_GTK
5522 {
5523 extern void xg_mark_data (void);
5524 xg_mark_data ();
5525 }
5526 #endif
5527
5528 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5529 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5530 mark_stack ();
5531 #else
5532 {
5533 register struct gcpro *tail;
5534 for (tail = gcprolist; tail; tail = tail->next)
5535 for (i = 0; i < tail->nvars; i++)
5536 mark_object (tail->var[i]);
5537 }
5538 mark_byte_stack ();
5539 {
5540 struct catchtag *catch;
5541 struct handler *handler;
5542
5543 for (catch = catchlist; catch; catch = catch->next)
5544 {
5545 mark_object (catch->tag);
5546 mark_object (catch->val);
5547 }
5548 for (handler = handlerlist; handler; handler = handler->next)
5549 {
5550 mark_object (handler->handler);
5551 mark_object (handler->var);
5552 }
5553 }
5554 mark_backtrace ();
5555 #endif
5556
5557 #ifdef HAVE_WINDOW_SYSTEM
5558 mark_fringe_data ();
5559 #endif
5560
5561 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5562 mark_stack ();
5563 #endif
5564
5565 /* Everything is now marked, except for the things that require special
5566 finalization, i.e. the undo_list.
5567 Look thru every buffer's undo list
5568 for elements that update markers that were not marked,
5569 and delete them. */
5570 {
5571 register struct buffer *nextb = all_buffers;
5572
5573 while (nextb)
5574 {
5575 /* If a buffer's undo list is Qt, that means that undo is
5576 turned off in that buffer. Calling truncate_undo_list on
5577 Qt tends to return NULL, which effectively turns undo back on.
5578 So don't call truncate_undo_list if undo_list is Qt. */
5579 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5580 {
5581 Lisp_Object tail, prev;
5582 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5583 prev = Qnil;
5584 while (CONSP (tail))
5585 {
5586 if (CONSP (XCAR (tail))
5587 && MARKERP (XCAR (XCAR (tail)))
5588 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5589 {
5590 if (NILP (prev))
5591 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5592 else
5593 {
5594 tail = XCDR (tail);
5595 XSETCDR (prev, tail);
5596 }
5597 }
5598 else
5599 {
5600 prev = tail;
5601 tail = XCDR (tail);
5602 }
5603 }
5604 }
5605 /* Now that we have stripped the elements that need not be in the
5606 undo_list any more, we can finally mark the list. */
5607 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5608
5609 nextb = nextb->header.next.buffer;
5610 }
5611 }
5612
5613 gc_sweep ();
5614
5615 /* Clear the mark bits that we set in certain root slots. */
5616
5617 unmark_byte_stack ();
5618 VECTOR_UNMARK (&buffer_defaults);
5619 VECTOR_UNMARK (&buffer_local_symbols);
5620
5621 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5622 dump_zombies ();
5623 #endif
5624
5625 UNBLOCK_INPUT;
5626
5627 CHECK_CONS_LIST ();
5628
5629 /* clear_marks (); */
5630 gc_in_progress = 0;
5631
5632 consing_since_gc = 0;
5633 if (gc_cons_threshold < 10000)
5634 gc_cons_threshold = 10000;
5635
5636 gc_relative_threshold = 0;
5637 if (FLOATP (Vgc_cons_percentage))
5638 { /* Set gc_cons_combined_threshold. */
5639 double tot = 0;
5640
5641 tot += total_conses * sizeof (struct Lisp_Cons);
5642 tot += total_symbols * sizeof (struct Lisp_Symbol);
5643 tot += total_markers * sizeof (union Lisp_Misc);
5644 tot += total_string_size;
5645 tot += total_vector_size * sizeof (Lisp_Object);
5646 tot += total_floats * sizeof (struct Lisp_Float);
5647 tot += total_intervals * sizeof (struct interval);
5648 tot += total_strings * sizeof (struct Lisp_String);
5649
5650 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5651 if (0 < tot)
5652 {
5653 if (tot < TYPE_MAXIMUM (EMACS_INT))
5654 gc_relative_threshold = tot;
5655 else
5656 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5657 }
5658 }
5659
5660 if (garbage_collection_messages)
5661 {
5662 if (message_p || minibuf_level > 0)
5663 restore_message ();
5664 else
5665 message1_nolog ("Garbage collecting...done");
5666 }
5667
5668 unbind_to (count, Qnil);
5669
5670 total[0] = Fcons (make_number (total_conses),
5671 make_number (total_free_conses));
5672 total[1] = Fcons (make_number (total_symbols),
5673 make_number (total_free_symbols));
5674 total[2] = Fcons (make_number (total_markers),
5675 make_number (total_free_markers));
5676 total[3] = make_number (total_string_size);
5677 total[4] = make_number (total_vector_size);
5678 total[5] = Fcons (make_number (total_floats),
5679 make_number (total_free_floats));
5680 total[6] = Fcons (make_number (total_intervals),
5681 make_number (total_free_intervals));
5682 total[7] = Fcons (make_number (total_strings),
5683 make_number (total_free_strings));
5684
5685 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5686 {
5687 /* Compute average percentage of zombies. */
5688 double nlive = 0;
5689
5690 for (i = 0; i < 7; ++i)
5691 if (CONSP (total[i]))
5692 nlive += XFASTINT (XCAR (total[i]));
5693
5694 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5695 max_live = max (nlive, max_live);
5696 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5697 max_zombies = max (nzombies, max_zombies);
5698 ++ngcs;
5699 }
5700 #endif
5701
5702 if (!NILP (Vpost_gc_hook))
5703 {
5704 ptrdiff_t gc_count = inhibit_garbage_collection ();
5705 safe_run_hooks (Qpost_gc_hook);
5706 unbind_to (gc_count, Qnil);
5707 }
5708
5709 /* Accumulate statistics. */
5710 EMACS_GET_TIME (t2);
5711 EMACS_SUB_TIME (t3, t2, t1);
5712 if (FLOATP (Vgc_elapsed))
5713 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5714 EMACS_SECS (t3) +
5715 EMACS_USECS (t3) * 1.0e-6);
5716 gcs_done++;
5717
5718 return Flist (sizeof total / sizeof *total, total);
5719 }
5720
5721
5722 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5723 only interesting objects referenced from glyphs are strings. */
5724
5725 static void
5726 mark_glyph_matrix (struct glyph_matrix *matrix)
5727 {
5728 struct glyph_row *row = matrix->rows;
5729 struct glyph_row *end = row + matrix->nrows;
5730
5731 for (; row < end; ++row)
5732 if (row->enabled_p)
5733 {
5734 int area;
5735 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5736 {
5737 struct glyph *glyph = row->glyphs[area];
5738 struct glyph *end_glyph = glyph + row->used[area];
5739
5740 for (; glyph < end_glyph; ++glyph)
5741 if (STRINGP (glyph->object)
5742 && !STRING_MARKED_P (XSTRING (glyph->object)))
5743 mark_object (glyph->object);
5744 }
5745 }
5746 }
5747
5748
5749 /* Mark Lisp faces in the face cache C. */
5750
5751 static void
5752 mark_face_cache (struct face_cache *c)
5753 {
5754 if (c)
5755 {
5756 int i, j;
5757 for (i = 0; i < c->used; ++i)
5758 {
5759 struct face *face = FACE_FROM_ID (c->f, i);
5760
5761 if (face)
5762 {
5763 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5764 mark_object (face->lface[j]);
5765 }
5766 }
5767 }
5768 }
5769
5770
5771 \f
5772 /* Mark reference to a Lisp_Object.
5773 If the object referred to has not been seen yet, recursively mark
5774 all the references contained in it. */
5775
5776 #define LAST_MARKED_SIZE 500
5777 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5778 static int last_marked_index;
5779
5780 /* For debugging--call abort when we cdr down this many
5781 links of a list, in mark_object. In debugging,
5782 the call to abort will hit a breakpoint.
5783 Normally this is zero and the check never goes off. */
5784 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5785
5786 static void
5787 mark_vectorlike (struct Lisp_Vector *ptr)
5788 {
5789 ptrdiff_t size = ptr->header.size;
5790 ptrdiff_t i;
5791
5792 eassert (!VECTOR_MARKED_P (ptr));
5793 VECTOR_MARK (ptr); /* Else mark it */
5794 if (size & PSEUDOVECTOR_FLAG)
5795 size &= PSEUDOVECTOR_SIZE_MASK;
5796
5797 /* Note that this size is not the memory-footprint size, but only
5798 the number of Lisp_Object fields that we should trace.
5799 The distinction is used e.g. by Lisp_Process which places extra
5800 non-Lisp_Object fields at the end of the structure. */
5801 for (i = 0; i < size; i++) /* and then mark its elements */
5802 mark_object (ptr->contents[i]);
5803 }
5804
5805 /* Like mark_vectorlike but optimized for char-tables (and
5806 sub-char-tables) assuming that the contents are mostly integers or
5807 symbols. */
5808
5809 static void
5810 mark_char_table (struct Lisp_Vector *ptr)
5811 {
5812 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5813 int i;
5814
5815 eassert (!VECTOR_MARKED_P (ptr));
5816 VECTOR_MARK (ptr);
5817 for (i = 0; i < size; i++)
5818 {
5819 Lisp_Object val = ptr->contents[i];
5820
5821 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5822 continue;
5823 if (SUB_CHAR_TABLE_P (val))
5824 {
5825 if (! VECTOR_MARKED_P (XVECTOR (val)))
5826 mark_char_table (XVECTOR (val));
5827 }
5828 else
5829 mark_object (val);
5830 }
5831 }
5832
5833 void
5834 mark_object (Lisp_Object arg)
5835 {
5836 register Lisp_Object obj = arg;
5837 #ifdef GC_CHECK_MARKED_OBJECTS
5838 void *po;
5839 struct mem_node *m;
5840 #endif
5841 ptrdiff_t cdr_count = 0;
5842
5843 loop:
5844
5845 if (PURE_POINTER_P (XPNTR (obj)))
5846 return;
5847
5848 last_marked[last_marked_index++] = obj;
5849 if (last_marked_index == LAST_MARKED_SIZE)
5850 last_marked_index = 0;
5851
5852 /* Perform some sanity checks on the objects marked here. Abort if
5853 we encounter an object we know is bogus. This increases GC time
5854 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5855 #ifdef GC_CHECK_MARKED_OBJECTS
5856
5857 po = (void *) XPNTR (obj);
5858
5859 /* Check that the object pointed to by PO is known to be a Lisp
5860 structure allocated from the heap. */
5861 #define CHECK_ALLOCATED() \
5862 do { \
5863 m = mem_find (po); \
5864 if (m == MEM_NIL) \
5865 abort (); \
5866 } while (0)
5867
5868 /* Check that the object pointed to by PO is live, using predicate
5869 function LIVEP. */
5870 #define CHECK_LIVE(LIVEP) \
5871 do { \
5872 if (!LIVEP (m, po)) \
5873 abort (); \
5874 } while (0)
5875
5876 /* Check both of the above conditions. */
5877 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5878 do { \
5879 CHECK_ALLOCATED (); \
5880 CHECK_LIVE (LIVEP); \
5881 } while (0) \
5882
5883 #else /* not GC_CHECK_MARKED_OBJECTS */
5884
5885 #define CHECK_LIVE(LIVEP) (void) 0
5886 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5887
5888 #endif /* not GC_CHECK_MARKED_OBJECTS */
5889
5890 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5891 {
5892 case Lisp_String:
5893 {
5894 register struct Lisp_String *ptr = XSTRING (obj);
5895 if (STRING_MARKED_P (ptr))
5896 break;
5897 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5898 MARK_INTERVAL_TREE (ptr->intervals);
5899 MARK_STRING (ptr);
5900 #ifdef GC_CHECK_STRING_BYTES
5901 /* Check that the string size recorded in the string is the
5902 same as the one recorded in the sdata structure. */
5903 CHECK_STRING_BYTES (ptr);
5904 #endif /* GC_CHECK_STRING_BYTES */
5905 }
5906 break;
5907
5908 case Lisp_Vectorlike:
5909 if (VECTOR_MARKED_P (XVECTOR (obj)))
5910 break;
5911 #ifdef GC_CHECK_MARKED_OBJECTS
5912 m = mem_find (po);
5913 if (m == MEM_NIL && !SUBRP (obj)
5914 && po != &buffer_defaults
5915 && po != &buffer_local_symbols)
5916 abort ();
5917 #endif /* GC_CHECK_MARKED_OBJECTS */
5918
5919 if (BUFFERP (obj))
5920 {
5921 #ifdef GC_CHECK_MARKED_OBJECTS
5922 if (po != &buffer_defaults && po != &buffer_local_symbols)
5923 {
5924 struct buffer *b;
5925 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5926 ;
5927 if (b == NULL)
5928 abort ();
5929 }
5930 #endif /* GC_CHECK_MARKED_OBJECTS */
5931 mark_buffer (obj);
5932 }
5933 else if (SUBRP (obj))
5934 break;
5935 else if (COMPILEDP (obj))
5936 /* We could treat this just like a vector, but it is better to
5937 save the COMPILED_CONSTANTS element for last and avoid
5938 recursion there. */
5939 {
5940 register struct Lisp_Vector *ptr = XVECTOR (obj);
5941 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5942 int i;
5943
5944 CHECK_LIVE (live_vector_p);
5945 VECTOR_MARK (ptr); /* Else mark it */
5946 for (i = 0; i < size; i++) /* and then mark its elements */
5947 {
5948 if (i != COMPILED_CONSTANTS)
5949 mark_object (ptr->contents[i]);
5950 }
5951 obj = ptr->contents[COMPILED_CONSTANTS];
5952 goto loop;
5953 }
5954 else if (FRAMEP (obj))
5955 {
5956 register struct frame *ptr = XFRAME (obj);
5957 mark_vectorlike (XVECTOR (obj));
5958 mark_face_cache (ptr->face_cache);
5959 }
5960 else if (WINDOWP (obj))
5961 {
5962 register struct Lisp_Vector *ptr = XVECTOR (obj);
5963 struct window *w = XWINDOW (obj);
5964 mark_vectorlike (ptr);
5965 /* Mark glyphs for leaf windows. Marking window matrices is
5966 sufficient because frame matrices use the same glyph
5967 memory. */
5968 if (NILP (w->hchild)
5969 && NILP (w->vchild)
5970 && w->current_matrix)
5971 {
5972 mark_glyph_matrix (w->current_matrix);
5973 mark_glyph_matrix (w->desired_matrix);
5974 }
5975 }
5976 else if (HASH_TABLE_P (obj))
5977 {
5978 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5979 mark_vectorlike ((struct Lisp_Vector *)h);
5980 /* If hash table is not weak, mark all keys and values.
5981 For weak tables, mark only the vector. */
5982 if (NILP (h->weak))
5983 mark_object (h->key_and_value);
5984 else
5985 VECTOR_MARK (XVECTOR (h->key_and_value));
5986 }
5987 else if (CHAR_TABLE_P (obj))
5988 mark_char_table (XVECTOR (obj));
5989 else
5990 mark_vectorlike (XVECTOR (obj));
5991 break;
5992
5993 case Lisp_Symbol:
5994 {
5995 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5996 struct Lisp_Symbol *ptrx;
5997
5998 if (ptr->gcmarkbit)
5999 break;
6000 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6001 ptr->gcmarkbit = 1;
6002 mark_object (ptr->function);
6003 mark_object (ptr->plist);
6004 switch (ptr->redirect)
6005 {
6006 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6007 case SYMBOL_VARALIAS:
6008 {
6009 Lisp_Object tem;
6010 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6011 mark_object (tem);
6012 break;
6013 }
6014 case SYMBOL_LOCALIZED:
6015 {
6016 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6017 /* If the value is forwarded to a buffer or keyboard field,
6018 these are marked when we see the corresponding object.
6019 And if it's forwarded to a C variable, either it's not
6020 a Lisp_Object var, or it's staticpro'd already. */
6021 mark_object (blv->where);
6022 mark_object (blv->valcell);
6023 mark_object (blv->defcell);
6024 break;
6025 }
6026 case SYMBOL_FORWARDED:
6027 /* If the value is forwarded to a buffer or keyboard field,
6028 these are marked when we see the corresponding object.
6029 And if it's forwarded to a C variable, either it's not
6030 a Lisp_Object var, or it's staticpro'd already. */
6031 break;
6032 default: abort ();
6033 }
6034 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6035 MARK_STRING (XSTRING (ptr->xname));
6036 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6037
6038 ptr = ptr->next;
6039 if (ptr)
6040 {
6041 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
6042 XSETSYMBOL (obj, ptrx);
6043 goto loop;
6044 }
6045 }
6046 break;
6047
6048 case Lisp_Misc:
6049 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6050 if (XMISCANY (obj)->gcmarkbit)
6051 break;
6052 XMISCANY (obj)->gcmarkbit = 1;
6053
6054 switch (XMISCTYPE (obj))
6055 {
6056
6057 case Lisp_Misc_Marker:
6058 /* DO NOT mark thru the marker's chain.
6059 The buffer's markers chain does not preserve markers from gc;
6060 instead, markers are removed from the chain when freed by gc. */
6061 break;
6062
6063 case Lisp_Misc_Save_Value:
6064 #if GC_MARK_STACK
6065 {
6066 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6067 /* If DOGC is set, POINTER is the address of a memory
6068 area containing INTEGER potential Lisp_Objects. */
6069 if (ptr->dogc)
6070 {
6071 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6072 ptrdiff_t nelt;
6073 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6074 mark_maybe_object (*p);
6075 }
6076 }
6077 #endif
6078 break;
6079
6080 case Lisp_Misc_Overlay:
6081 {
6082 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6083 mark_object (ptr->start);
6084 mark_object (ptr->end);
6085 mark_object (ptr->plist);
6086 if (ptr->next)
6087 {
6088 XSETMISC (obj, ptr->next);
6089 goto loop;
6090 }
6091 }
6092 break;
6093
6094 default:
6095 abort ();
6096 }
6097 break;
6098
6099 case Lisp_Cons:
6100 {
6101 register struct Lisp_Cons *ptr = XCONS (obj);
6102 if (CONS_MARKED_P (ptr))
6103 break;
6104 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6105 CONS_MARK (ptr);
6106 /* If the cdr is nil, avoid recursion for the car. */
6107 if (EQ (ptr->u.cdr, Qnil))
6108 {
6109 obj = ptr->car;
6110 cdr_count = 0;
6111 goto loop;
6112 }
6113 mark_object (ptr->car);
6114 obj = ptr->u.cdr;
6115 cdr_count++;
6116 if (cdr_count == mark_object_loop_halt)
6117 abort ();
6118 goto loop;
6119 }
6120
6121 case Lisp_Float:
6122 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6123 FLOAT_MARK (XFLOAT (obj));
6124 break;
6125
6126 case_Lisp_Int:
6127 break;
6128
6129 default:
6130 abort ();
6131 }
6132
6133 #undef CHECK_LIVE
6134 #undef CHECK_ALLOCATED
6135 #undef CHECK_ALLOCATED_AND_LIVE
6136 }
6137
6138 /* Mark the pointers in a buffer structure. */
6139
6140 static void
6141 mark_buffer (Lisp_Object buf)
6142 {
6143 register struct buffer *buffer = XBUFFER (buf);
6144 register Lisp_Object *ptr, tmp;
6145 Lisp_Object base_buffer;
6146
6147 eassert (!VECTOR_MARKED_P (buffer));
6148 VECTOR_MARK (buffer);
6149
6150 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6151
6152 /* For now, we just don't mark the undo_list. It's done later in
6153 a special way just before the sweep phase, and after stripping
6154 some of its elements that are not needed any more. */
6155
6156 if (buffer->overlays_before)
6157 {
6158 XSETMISC (tmp, buffer->overlays_before);
6159 mark_object (tmp);
6160 }
6161 if (buffer->overlays_after)
6162 {
6163 XSETMISC (tmp, buffer->overlays_after);
6164 mark_object (tmp);
6165 }
6166
6167 /* buffer-local Lisp variables start at `undo_list',
6168 tho only the ones from `name' on are GC'd normally. */
6169 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6170 ptr <= &PER_BUFFER_VALUE (buffer,
6171 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6172 ptr++)
6173 mark_object (*ptr);
6174
6175 /* If this is an indirect buffer, mark its base buffer. */
6176 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6177 {
6178 XSETBUFFER (base_buffer, buffer->base_buffer);
6179 mark_buffer (base_buffer);
6180 }
6181 }
6182
6183 /* Mark the Lisp pointers in the terminal objects.
6184 Called by Fgarbage_collect. */
6185
6186 static void
6187 mark_terminals (void)
6188 {
6189 struct terminal *t;
6190 for (t = terminal_list; t; t = t->next_terminal)
6191 {
6192 eassert (t->name != NULL);
6193 #ifdef HAVE_WINDOW_SYSTEM
6194 /* If a terminal object is reachable from a stacpro'ed object,
6195 it might have been marked already. Make sure the image cache
6196 gets marked. */
6197 mark_image_cache (t->image_cache);
6198 #endif /* HAVE_WINDOW_SYSTEM */
6199 if (!VECTOR_MARKED_P (t))
6200 mark_vectorlike ((struct Lisp_Vector *)t);
6201 }
6202 }
6203
6204
6205
6206 /* Value is non-zero if OBJ will survive the current GC because it's
6207 either marked or does not need to be marked to survive. */
6208
6209 int
6210 survives_gc_p (Lisp_Object obj)
6211 {
6212 int survives_p;
6213
6214 switch (XTYPE (obj))
6215 {
6216 case_Lisp_Int:
6217 survives_p = 1;
6218 break;
6219
6220 case Lisp_Symbol:
6221 survives_p = XSYMBOL (obj)->gcmarkbit;
6222 break;
6223
6224 case Lisp_Misc:
6225 survives_p = XMISCANY (obj)->gcmarkbit;
6226 break;
6227
6228 case Lisp_String:
6229 survives_p = STRING_MARKED_P (XSTRING (obj));
6230 break;
6231
6232 case Lisp_Vectorlike:
6233 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6234 break;
6235
6236 case Lisp_Cons:
6237 survives_p = CONS_MARKED_P (XCONS (obj));
6238 break;
6239
6240 case Lisp_Float:
6241 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6242 break;
6243
6244 default:
6245 abort ();
6246 }
6247
6248 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6249 }
6250
6251
6252 \f
6253 /* Sweep: find all structures not marked, and free them. */
6254
6255 static void
6256 gc_sweep (void)
6257 {
6258 /* Remove or mark entries in weak hash tables.
6259 This must be done before any object is unmarked. */
6260 sweep_weak_hash_tables ();
6261
6262 sweep_strings ();
6263 #ifdef GC_CHECK_STRING_BYTES
6264 if (!noninteractive)
6265 check_string_bytes (1);
6266 #endif
6267
6268 /* Put all unmarked conses on free list */
6269 {
6270 register struct cons_block *cblk;
6271 struct cons_block **cprev = &cons_block;
6272 register int lim = cons_block_index;
6273 EMACS_INT num_free = 0, num_used = 0;
6274
6275 cons_free_list = 0;
6276
6277 for (cblk = cons_block; cblk; cblk = *cprev)
6278 {
6279 register int i = 0;
6280 int this_free = 0;
6281 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6282
6283 /* Scan the mark bits an int at a time. */
6284 for (i = 0; i < ilim; i++)
6285 {
6286 if (cblk->gcmarkbits[i] == -1)
6287 {
6288 /* Fast path - all cons cells for this int are marked. */
6289 cblk->gcmarkbits[i] = 0;
6290 num_used += BITS_PER_INT;
6291 }
6292 else
6293 {
6294 /* Some cons cells for this int are not marked.
6295 Find which ones, and free them. */
6296 int start, pos, stop;
6297
6298 start = i * BITS_PER_INT;
6299 stop = lim - start;
6300 if (stop > BITS_PER_INT)
6301 stop = BITS_PER_INT;
6302 stop += start;
6303
6304 for (pos = start; pos < stop; pos++)
6305 {
6306 if (!CONS_MARKED_P (&cblk->conses[pos]))
6307 {
6308 this_free++;
6309 cblk->conses[pos].u.chain = cons_free_list;
6310 cons_free_list = &cblk->conses[pos];
6311 #if GC_MARK_STACK
6312 cons_free_list->car = Vdead;
6313 #endif
6314 }
6315 else
6316 {
6317 num_used++;
6318 CONS_UNMARK (&cblk->conses[pos]);
6319 }
6320 }
6321 }
6322 }
6323
6324 lim = CONS_BLOCK_SIZE;
6325 /* If this block contains only free conses and we have already
6326 seen more than two blocks worth of free conses then deallocate
6327 this block. */
6328 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6329 {
6330 *cprev = cblk->next;
6331 /* Unhook from the free list. */
6332 cons_free_list = cblk->conses[0].u.chain;
6333 lisp_align_free (cblk);
6334 }
6335 else
6336 {
6337 num_free += this_free;
6338 cprev = &cblk->next;
6339 }
6340 }
6341 total_conses = num_used;
6342 total_free_conses = num_free;
6343 }
6344
6345 /* Put all unmarked floats on free list */
6346 {
6347 register struct float_block *fblk;
6348 struct float_block **fprev = &float_block;
6349 register int lim = float_block_index;
6350 EMACS_INT num_free = 0, num_used = 0;
6351
6352 float_free_list = 0;
6353
6354 for (fblk = float_block; fblk; fblk = *fprev)
6355 {
6356 register int i;
6357 int this_free = 0;
6358 for (i = 0; i < lim; i++)
6359 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6360 {
6361 this_free++;
6362 fblk->floats[i].u.chain = float_free_list;
6363 float_free_list = &fblk->floats[i];
6364 }
6365 else
6366 {
6367 num_used++;
6368 FLOAT_UNMARK (&fblk->floats[i]);
6369 }
6370 lim = FLOAT_BLOCK_SIZE;
6371 /* If this block contains only free floats and we have already
6372 seen more than two blocks worth of free floats then deallocate
6373 this block. */
6374 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6375 {
6376 *fprev = fblk->next;
6377 /* Unhook from the free list. */
6378 float_free_list = fblk->floats[0].u.chain;
6379 lisp_align_free (fblk);
6380 }
6381 else
6382 {
6383 num_free += this_free;
6384 fprev = &fblk->next;
6385 }
6386 }
6387 total_floats = num_used;
6388 total_free_floats = num_free;
6389 }
6390
6391 /* Put all unmarked intervals on free list */
6392 {
6393 register struct interval_block *iblk;
6394 struct interval_block **iprev = &interval_block;
6395 register int lim = interval_block_index;
6396 EMACS_INT num_free = 0, num_used = 0;
6397
6398 interval_free_list = 0;
6399
6400 for (iblk = interval_block; iblk; iblk = *iprev)
6401 {
6402 register int i;
6403 int this_free = 0;
6404
6405 for (i = 0; i < lim; i++)
6406 {
6407 if (!iblk->intervals[i].gcmarkbit)
6408 {
6409 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6410 interval_free_list = &iblk->intervals[i];
6411 this_free++;
6412 }
6413 else
6414 {
6415 num_used++;
6416 iblk->intervals[i].gcmarkbit = 0;
6417 }
6418 }
6419 lim = INTERVAL_BLOCK_SIZE;
6420 /* If this block contains only free intervals and we have already
6421 seen more than two blocks worth of free intervals then
6422 deallocate this block. */
6423 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6424 {
6425 *iprev = iblk->next;
6426 /* Unhook from the free list. */
6427 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6428 lisp_free (iblk);
6429 }
6430 else
6431 {
6432 num_free += this_free;
6433 iprev = &iblk->next;
6434 }
6435 }
6436 total_intervals = num_used;
6437 total_free_intervals = num_free;
6438 }
6439
6440 /* Put all unmarked symbols on free list */
6441 {
6442 register struct symbol_block *sblk;
6443 struct symbol_block **sprev = &symbol_block;
6444 register int lim = symbol_block_index;
6445 EMACS_INT num_free = 0, num_used = 0;
6446
6447 symbol_free_list = NULL;
6448
6449 for (sblk = symbol_block; sblk; sblk = *sprev)
6450 {
6451 int this_free = 0;
6452 union aligned_Lisp_Symbol *sym = sblk->symbols;
6453 union aligned_Lisp_Symbol *end = sym + lim;
6454
6455 for (; sym < end; ++sym)
6456 {
6457 /* Check if the symbol was created during loadup. In such a case
6458 it might be pointed to by pure bytecode which we don't trace,
6459 so we conservatively assume that it is live. */
6460 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6461
6462 if (!sym->s.gcmarkbit && !pure_p)
6463 {
6464 if (sym->s.redirect == SYMBOL_LOCALIZED)
6465 xfree (SYMBOL_BLV (&sym->s));
6466 sym->s.next = symbol_free_list;
6467 symbol_free_list = &sym->s;
6468 #if GC_MARK_STACK
6469 symbol_free_list->function = Vdead;
6470 #endif
6471 ++this_free;
6472 }
6473 else
6474 {
6475 ++num_used;
6476 if (!pure_p)
6477 UNMARK_STRING (XSTRING (sym->s.xname));
6478 sym->s.gcmarkbit = 0;
6479 }
6480 }
6481
6482 lim = SYMBOL_BLOCK_SIZE;
6483 /* If this block contains only free symbols and we have already
6484 seen more than two blocks worth of free symbols then deallocate
6485 this block. */
6486 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6487 {
6488 *sprev = sblk->next;
6489 /* Unhook from the free list. */
6490 symbol_free_list = sblk->symbols[0].s.next;
6491 lisp_free (sblk);
6492 }
6493 else
6494 {
6495 num_free += this_free;
6496 sprev = &sblk->next;
6497 }
6498 }
6499 total_symbols = num_used;
6500 total_free_symbols = num_free;
6501 }
6502
6503 /* Put all unmarked misc's on free list.
6504 For a marker, first unchain it from the buffer it points into. */
6505 {
6506 register struct marker_block *mblk;
6507 struct marker_block **mprev = &marker_block;
6508 register int lim = marker_block_index;
6509 EMACS_INT num_free = 0, num_used = 0;
6510
6511 marker_free_list = 0;
6512
6513 for (mblk = marker_block; mblk; mblk = *mprev)
6514 {
6515 register int i;
6516 int this_free = 0;
6517
6518 for (i = 0; i < lim; i++)
6519 {
6520 if (!mblk->markers[i].m.u_any.gcmarkbit)
6521 {
6522 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6523 unchain_marker (&mblk->markers[i].m.u_marker);
6524 /* Set the type of the freed object to Lisp_Misc_Free.
6525 We could leave the type alone, since nobody checks it,
6526 but this might catch bugs faster. */
6527 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6528 mblk->markers[i].m.u_free.chain = marker_free_list;
6529 marker_free_list = &mblk->markers[i].m;
6530 this_free++;
6531 }
6532 else
6533 {
6534 num_used++;
6535 mblk->markers[i].m.u_any.gcmarkbit = 0;
6536 }
6537 }
6538 lim = MARKER_BLOCK_SIZE;
6539 /* If this block contains only free markers and we have already
6540 seen more than two blocks worth of free markers then deallocate
6541 this block. */
6542 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6543 {
6544 *mprev = mblk->next;
6545 /* Unhook from the free list. */
6546 marker_free_list = mblk->markers[0].m.u_free.chain;
6547 lisp_free (mblk);
6548 }
6549 else
6550 {
6551 num_free += this_free;
6552 mprev = &mblk->next;
6553 }
6554 }
6555
6556 total_markers = num_used;
6557 total_free_markers = num_free;
6558 }
6559
6560 /* Free all unmarked buffers */
6561 {
6562 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6563
6564 while (buffer)
6565 if (!VECTOR_MARKED_P (buffer))
6566 {
6567 if (prev)
6568 prev->header.next = buffer->header.next;
6569 else
6570 all_buffers = buffer->header.next.buffer;
6571 next = buffer->header.next.buffer;
6572 lisp_free (buffer);
6573 buffer = next;
6574 }
6575 else
6576 {
6577 VECTOR_UNMARK (buffer);
6578 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6579 prev = buffer, buffer = buffer->header.next.buffer;
6580 }
6581 }
6582
6583 sweep_vectors ();
6584
6585 #ifdef GC_CHECK_STRING_BYTES
6586 if (!noninteractive)
6587 check_string_bytes (1);
6588 #endif
6589 }
6590
6591
6592
6593 \f
6594 /* Debugging aids. */
6595
6596 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6597 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6598 This may be helpful in debugging Emacs's memory usage.
6599 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6600 (void)
6601 {
6602 Lisp_Object end;
6603
6604 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6605
6606 return end;
6607 }
6608
6609 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6610 doc: /* Return a list of counters that measure how much consing there has been.
6611 Each of these counters increments for a certain kind of object.
6612 The counters wrap around from the largest positive integer to zero.
6613 Garbage collection does not decrease them.
6614 The elements of the value are as follows:
6615 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6616 All are in units of 1 = one object consed
6617 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6618 objects consed.
6619 MISCS include overlays, markers, and some internal types.
6620 Frames, windows, buffers, and subprocesses count as vectors
6621 (but the contents of a buffer's text do not count here). */)
6622 (void)
6623 {
6624 Lisp_Object consed[8];
6625
6626 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6627 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6628 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6629 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6630 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6631 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6632 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6633 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6634
6635 return Flist (8, consed);
6636 }
6637
6638 /* Find at most FIND_MAX symbols which have OBJ as their value or
6639 function. This is used in gdbinit's `xwhichsymbols' command. */
6640
6641 Lisp_Object
6642 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6643 {
6644 struct symbol_block *sblk;
6645 ptrdiff_t gc_count = inhibit_garbage_collection ();
6646 Lisp_Object found = Qnil;
6647
6648 if (! DEADP (obj))
6649 {
6650 for (sblk = symbol_block; sblk; sblk = sblk->next)
6651 {
6652 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6653 int bn;
6654
6655 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6656 {
6657 struct Lisp_Symbol *sym = &aligned_sym->s;
6658 Lisp_Object val;
6659 Lisp_Object tem;
6660
6661 if (sblk == symbol_block && bn >= symbol_block_index)
6662 break;
6663
6664 XSETSYMBOL (tem, sym);
6665 val = find_symbol_value (tem);
6666 if (EQ (val, obj)
6667 || EQ (sym->function, obj)
6668 || (!NILP (sym->function)
6669 && COMPILEDP (sym->function)
6670 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6671 || (!NILP (val)
6672 && COMPILEDP (val)
6673 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6674 {
6675 found = Fcons (tem, found);
6676 if (--find_max == 0)
6677 goto out;
6678 }
6679 }
6680 }
6681 }
6682
6683 out:
6684 unbind_to (gc_count, Qnil);
6685 return found;
6686 }
6687
6688 #ifdef ENABLE_CHECKING
6689 int suppress_checking;
6690
6691 void
6692 die (const char *msg, const char *file, int line)
6693 {
6694 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6695 file, line, msg);
6696 abort ();
6697 }
6698 #endif
6699 \f
6700 /* Initialization */
6701
6702 void
6703 init_alloc_once (void)
6704 {
6705 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6706 purebeg = PUREBEG;
6707 pure_size = PURESIZE;
6708 pure_bytes_used = 0;
6709 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6710 pure_bytes_used_before_overflow = 0;
6711
6712 /* Initialize the list of free aligned blocks. */
6713 free_ablock = NULL;
6714
6715 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6716 mem_init ();
6717 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6718 #endif
6719
6720 ignore_warnings = 1;
6721 #ifdef DOUG_LEA_MALLOC
6722 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6723 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6724 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6725 #endif
6726 init_strings ();
6727 init_cons ();
6728 init_symbol ();
6729 init_marker ();
6730 init_float ();
6731 init_intervals ();
6732 init_vectors ();
6733 init_weak_hash_tables ();
6734
6735 #ifdef REL_ALLOC
6736 malloc_hysteresis = 32;
6737 #else
6738 malloc_hysteresis = 0;
6739 #endif
6740
6741 refill_memory_reserve ();
6742
6743 ignore_warnings = 0;
6744 gcprolist = 0;
6745 byte_stack_list = 0;
6746 staticidx = 0;
6747 consing_since_gc = 0;
6748 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6749 gc_relative_threshold = 0;
6750 }
6751
6752 void
6753 init_alloc (void)
6754 {
6755 gcprolist = 0;
6756 byte_stack_list = 0;
6757 #if GC_MARK_STACK
6758 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6759 setjmp_tested_p = longjmps_done = 0;
6760 #endif
6761 #endif
6762 Vgc_elapsed = make_float (0.0);
6763 gcs_done = 0;
6764 }
6765
6766 void
6767 syms_of_alloc (void)
6768 {
6769 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6770 doc: /* Number of bytes of consing between garbage collections.
6771 Garbage collection can happen automatically once this many bytes have been
6772 allocated since the last garbage collection. All data types count.
6773
6774 Garbage collection happens automatically only when `eval' is called.
6775
6776 By binding this temporarily to a large number, you can effectively
6777 prevent garbage collection during a part of the program.
6778 See also `gc-cons-percentage'. */);
6779
6780 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6781 doc: /* Portion of the heap used for allocation.
6782 Garbage collection can happen automatically once this portion of the heap
6783 has been allocated since the last garbage collection.
6784 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6785 Vgc_cons_percentage = make_float (0.1);
6786
6787 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6788 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6789
6790 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6791 doc: /* Number of cons cells that have been consed so far. */);
6792
6793 DEFVAR_INT ("floats-consed", floats_consed,
6794 doc: /* Number of floats that have been consed so far. */);
6795
6796 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6797 doc: /* Number of vector cells that have been consed so far. */);
6798
6799 DEFVAR_INT ("symbols-consed", symbols_consed,
6800 doc: /* Number of symbols that have been consed so far. */);
6801
6802 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6803 doc: /* Number of string characters that have been consed so far. */);
6804
6805 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6806 doc: /* Number of miscellaneous objects that have been consed so far.
6807 These include markers and overlays, plus certain objects not visible
6808 to users. */);
6809
6810 DEFVAR_INT ("intervals-consed", intervals_consed,
6811 doc: /* Number of intervals that have been consed so far. */);
6812
6813 DEFVAR_INT ("strings-consed", strings_consed,
6814 doc: /* Number of strings that have been consed so far. */);
6815
6816 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6817 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6818 This means that certain objects should be allocated in shared (pure) space.
6819 It can also be set to a hash-table, in which case this table is used to
6820 do hash-consing of the objects allocated to pure space. */);
6821
6822 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6823 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6824 garbage_collection_messages = 0;
6825
6826 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6827 doc: /* Hook run after garbage collection has finished. */);
6828 Vpost_gc_hook = Qnil;
6829 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6830
6831 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6832 doc: /* Precomputed `signal' argument for memory-full error. */);
6833 /* We build this in advance because if we wait until we need it, we might
6834 not be able to allocate the memory to hold it. */
6835 Vmemory_signal_data
6836 = pure_cons (Qerror,
6837 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6838
6839 DEFVAR_LISP ("memory-full", Vmemory_full,
6840 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6841 Vmemory_full = Qnil;
6842
6843 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6844 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6845
6846 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6847 doc: /* Accumulated time elapsed in garbage collections.
6848 The time is in seconds as a floating point value. */);
6849 DEFVAR_INT ("gcs-done", gcs_done,
6850 doc: /* Accumulated number of garbage collections done. */);
6851
6852 defsubr (&Scons);
6853 defsubr (&Slist);
6854 defsubr (&Svector);
6855 defsubr (&Smake_byte_code);
6856 defsubr (&Smake_list);
6857 defsubr (&Smake_vector);
6858 defsubr (&Smake_string);
6859 defsubr (&Smake_bool_vector);
6860 defsubr (&Smake_symbol);
6861 defsubr (&Smake_marker);
6862 defsubr (&Spurecopy);
6863 defsubr (&Sgarbage_collect);
6864 defsubr (&Smemory_limit);
6865 defsubr (&Smemory_use_counts);
6866
6867 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6868 defsubr (&Sgc_status);
6869 #endif
6870 }