Let integers use up 2 tags to give them one extra bit and double their range.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 #include <signal.h>
35
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
39
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
43
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
58
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
61
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
65
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
71
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
79
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
84
85 #ifdef DOUG_LEA_MALLOC
86
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #else /* not DOUG_LEA_MALLOC */
99
100 /* The following come from gmalloc.c. */
101
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
105
106 #endif /* not DOUG_LEA_MALLOC */
107
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
109
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
114
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
121
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
126
127 static pthread_mutex_t alloc_mutex;
128
129 #define BLOCK_INPUT_ALLOC \
130 do \
131 { \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
135 } \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
139 { \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
143 } \
144 while (0)
145
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
147
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
150
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
152
153 /* Value of _bytes_used, when spare_memory was freed. */
154
155 static __malloc_size_t bytes_used_when_full;
156
157 static __malloc_size_t bytes_used_when_reconsidered;
158
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
161
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
165
166 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
169
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
174
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
177
178 /* Number of bytes of consing done since the last gc. */
179
180 int consing_since_gc;
181
182 /* Count the amount of consing of various sorts of space. */
183
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
192
193 /* Minimum number of bytes of consing since GC before next GC. */
194
195 EMACS_INT gc_cons_threshold;
196
197 /* Similar minimum, computed from Vgc_cons_percentage. */
198
199 EMACS_INT gc_relative_threshold;
200
201 static Lisp_Object Vgc_cons_percentage;
202
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
205
206 EMACS_INT memory_full_cons_threshold;
207
208 /* Nonzero during GC. */
209
210 int gc_in_progress;
211
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
215
216 int abort_on_gc;
217
218 /* Nonzero means display messages at beginning and end of GC. */
219
220 int garbage_collection_messages;
221
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
226
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
231
232 /* Number of live and free conses etc. */
233
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
237
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
241
242 static char *spare_memory[7];
243
244 /* Amount of spare memory to keep in large reserve block. */
245
246 #define SPARE_MEMORY (1 << 14)
247
248 /* Number of extra blocks malloc should get when it needs more core. */
249
250 static int malloc_hysteresis;
251
252 /* Non-nil means defun should do purecopy on the function definition. */
253
254 Lisp_Object Vpurify_flag;
255
256 /* Non-nil means we are handling a memory-full error. */
257
258 Lisp_Object Vmemory_full;
259
260 #ifndef HAVE_SHM
261
262 /* Initialize it to a nonzero value to force it into data space
263 (rather than bss space). That way unexec will remap it into text
264 space (pure), on some systems. We have not implemented the
265 remapping on more recent systems because this is less important
266 nowadays than in the days of small memories and timesharing. */
267
268 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
269 #define PUREBEG (char *) pure
270
271 #else /* HAVE_SHM */
272
273 #define pure PURE_SEG_BITS /* Use shared memory segment */
274 #define PUREBEG (char *)PURE_SEG_BITS
275
276 #endif /* HAVE_SHM */
277
278 /* Pointer to the pure area, and its size. */
279
280 static char *purebeg;
281 static size_t pure_size;
282
283 /* Number of bytes of pure storage used before pure storage overflowed.
284 If this is non-zero, this implies that an overflow occurred. */
285
286 static size_t pure_bytes_used_before_overflow;
287
288 /* Value is non-zero if P points into pure space. */
289
290 #define PURE_POINTER_P(P) \
291 (((PNTR_COMPARISON_TYPE) (P) \
292 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
293 && ((PNTR_COMPARISON_TYPE) (P) \
294 >= (PNTR_COMPARISON_TYPE) purebeg))
295
296 /* Total number of bytes allocated in pure storage. */
297
298 EMACS_INT pure_bytes_used;
299
300 /* Index in pure at which next pure Lisp object will be allocated.. */
301
302 static EMACS_INT pure_bytes_used_lisp;
303
304 /* Number of bytes allocated for non-Lisp objects in pure storage. */
305
306 static EMACS_INT pure_bytes_used_non_lisp;
307
308 /* If nonzero, this is a warning delivered by malloc and not yet
309 displayed. */
310
311 char *pending_malloc_warning;
312
313 /* Pre-computed signal argument for use when memory is exhausted. */
314
315 Lisp_Object Vmemory_signal_data;
316
317 /* Maximum amount of C stack to save when a GC happens. */
318
319 #ifndef MAX_SAVE_STACK
320 #define MAX_SAVE_STACK 16000
321 #endif
322
323 /* Buffer in which we save a copy of the C stack at each GC. */
324
325 static char *stack_copy;
326 static int stack_copy_size;
327
328 /* Non-zero means ignore malloc warnings. Set during initialization.
329 Currently not used. */
330
331 static int ignore_warnings;
332
333 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
334
335 /* Hook run after GC has finished. */
336
337 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
338
339 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
340 EMACS_INT gcs_done; /* accumulated GCs */
341
342 static void mark_buffer P_ ((Lisp_Object));
343 static void mark_terminals P_ ((void));
344 extern void mark_kboards P_ ((void));
345 extern void mark_ttys P_ ((void));
346 extern void mark_backtrace P_ ((void));
347 static void gc_sweep P_ ((void));
348 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
349 static void mark_face_cache P_ ((struct face_cache *));
350
351 #ifdef HAVE_WINDOW_SYSTEM
352 extern void mark_fringe_data P_ ((void));
353 #endif /* HAVE_WINDOW_SYSTEM */
354
355 static struct Lisp_String *allocate_string P_ ((void));
356 static void compact_small_strings P_ ((void));
357 static void free_large_strings P_ ((void));
358 static void sweep_strings P_ ((void));
359
360 extern int message_enable_multibyte;
361
362 /* When scanning the C stack for live Lisp objects, Emacs keeps track
363 of what memory allocated via lisp_malloc is intended for what
364 purpose. This enumeration specifies the type of memory. */
365
366 enum mem_type
367 {
368 MEM_TYPE_NON_LISP,
369 MEM_TYPE_BUFFER,
370 MEM_TYPE_CONS,
371 MEM_TYPE_STRING,
372 MEM_TYPE_MISC,
373 MEM_TYPE_SYMBOL,
374 MEM_TYPE_FLOAT,
375 /* We used to keep separate mem_types for subtypes of vectors such as
376 process, hash_table, frame, terminal, and window, but we never made
377 use of the distinction, so it only caused source-code complexity
378 and runtime slowdown. Minor but pointless. */
379 MEM_TYPE_VECTORLIKE
380 };
381
382 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
383 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
384 void refill_memory_reserve ();
385
386
387 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
388
389 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
390 #include <stdio.h> /* For fprintf. */
391 #endif
392
393 /* A unique object in pure space used to make some Lisp objects
394 on free lists recognizable in O(1). */
395
396 static Lisp_Object Vdead;
397
398 #ifdef GC_MALLOC_CHECK
399
400 enum mem_type allocated_mem_type;
401 static int dont_register_blocks;
402
403 #endif /* GC_MALLOC_CHECK */
404
405 /* A node in the red-black tree describing allocated memory containing
406 Lisp data. Each such block is recorded with its start and end
407 address when it is allocated, and removed from the tree when it
408 is freed.
409
410 A red-black tree is a balanced binary tree with the following
411 properties:
412
413 1. Every node is either red or black.
414 2. Every leaf is black.
415 3. If a node is red, then both of its children are black.
416 4. Every simple path from a node to a descendant leaf contains
417 the same number of black nodes.
418 5. The root is always black.
419
420 When nodes are inserted into the tree, or deleted from the tree,
421 the tree is "fixed" so that these properties are always true.
422
423 A red-black tree with N internal nodes has height at most 2
424 log(N+1). Searches, insertions and deletions are done in O(log N).
425 Please see a text book about data structures for a detailed
426 description of red-black trees. Any book worth its salt should
427 describe them. */
428
429 struct mem_node
430 {
431 /* Children of this node. These pointers are never NULL. When there
432 is no child, the value is MEM_NIL, which points to a dummy node. */
433 struct mem_node *left, *right;
434
435 /* The parent of this node. In the root node, this is NULL. */
436 struct mem_node *parent;
437
438 /* Start and end of allocated region. */
439 void *start, *end;
440
441 /* Node color. */
442 enum {MEM_BLACK, MEM_RED} color;
443
444 /* Memory type. */
445 enum mem_type type;
446 };
447
448 /* Base address of stack. Set in main. */
449
450 Lisp_Object *stack_base;
451
452 /* Root of the tree describing allocated Lisp memory. */
453
454 static struct mem_node *mem_root;
455
456 /* Lowest and highest known address in the heap. */
457
458 static void *min_heap_address, *max_heap_address;
459
460 /* Sentinel node of the tree. */
461
462 static struct mem_node mem_z;
463 #define MEM_NIL &mem_z
464
465 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
466 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
467 static void lisp_free P_ ((POINTER_TYPE *));
468 static void mark_stack P_ ((void));
469 static int live_vector_p P_ ((struct mem_node *, void *));
470 static int live_buffer_p P_ ((struct mem_node *, void *));
471 static int live_string_p P_ ((struct mem_node *, void *));
472 static int live_cons_p P_ ((struct mem_node *, void *));
473 static int live_symbol_p P_ ((struct mem_node *, void *));
474 static int live_float_p P_ ((struct mem_node *, void *));
475 static int live_misc_p P_ ((struct mem_node *, void *));
476 static void mark_maybe_object P_ ((Lisp_Object));
477 static void mark_memory P_ ((void *, void *, int));
478 static void mem_init P_ ((void));
479 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
480 static void mem_insert_fixup P_ ((struct mem_node *));
481 static void mem_rotate_left P_ ((struct mem_node *));
482 static void mem_rotate_right P_ ((struct mem_node *));
483 static void mem_delete P_ ((struct mem_node *));
484 static void mem_delete_fixup P_ ((struct mem_node *));
485 static INLINE struct mem_node *mem_find P_ ((void *));
486
487
488 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
489 static void check_gcpros P_ ((void));
490 #endif
491
492 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
493
494 /* Recording what needs to be marked for gc. */
495
496 struct gcpro *gcprolist;
497
498 /* Addresses of staticpro'd variables. Initialize it to a nonzero
499 value; otherwise some compilers put it into BSS. */
500
501 #define NSTATICS 0x640
502 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
503
504 /* Index of next unused slot in staticvec. */
505
506 static int staticidx = 0;
507
508 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
509
510
511 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
512 ALIGNMENT must be a power of 2. */
513
514 #define ALIGN(ptr, ALIGNMENT) \
515 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
516 & ~((ALIGNMENT) - 1)))
517
518
519 \f
520 /************************************************************************
521 Malloc
522 ************************************************************************/
523
524 /* Function malloc calls this if it finds we are near exhausting storage. */
525
526 void
527 malloc_warning (str)
528 char *str;
529 {
530 pending_malloc_warning = str;
531 }
532
533
534 /* Display an already-pending malloc warning. */
535
536 void
537 display_malloc_warning ()
538 {
539 call3 (intern ("display-warning"),
540 intern ("alloc"),
541 build_string (pending_malloc_warning),
542 intern ("emergency"));
543 pending_malloc_warning = 0;
544 }
545
546
547 #ifdef DOUG_LEA_MALLOC
548 # define BYTES_USED (mallinfo ().uordblks)
549 #else
550 # define BYTES_USED _bytes_used
551 #endif
552 \f
553 /* Called if we can't allocate relocatable space for a buffer. */
554
555 void
556 buffer_memory_full ()
557 {
558 /* If buffers use the relocating allocator, no need to free
559 spare_memory, because we may have plenty of malloc space left
560 that we could get, and if we don't, the malloc that fails will
561 itself cause spare_memory to be freed. If buffers don't use the
562 relocating allocator, treat this like any other failing
563 malloc. */
564
565 #ifndef REL_ALLOC
566 memory_full ();
567 #endif
568
569 /* This used to call error, but if we've run out of memory, we could
570 get infinite recursion trying to build the string. */
571 xsignal (Qnil, Vmemory_signal_data);
572 }
573
574
575 #ifdef XMALLOC_OVERRUN_CHECK
576
577 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
579
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
582
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
586 */
587
588
589 #define XMALLOC_OVERRUN_CHECK_SIZE 16
590
591 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
595
596 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
601
602 /* Macros to insert and extract the block size in the header. */
603
604 #define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
609
610 #define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
615
616
617 /* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
626 add overhead again, return 10032
627 xmalloc returns 10032.
628
629 (time passes).
630
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
635
636 static int check_depth;
637
638 /* Like malloc, but wraps allocated block with header and trailer. */
639
640 POINTER_TYPE *
641 overrun_check_malloc (size)
642 size_t size;
643 {
644 register unsigned char *val;
645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
646
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
649 {
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
651 val += XMALLOC_OVERRUN_CHECK_SIZE;
652 XMALLOC_PUT_SIZE(val, size);
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
654 }
655 --check_depth;
656 return (POINTER_TYPE *)val;
657 }
658
659
660 /* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
662
663 POINTER_TYPE *
664 overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
667 {
668 register unsigned char *val = (unsigned char *)block;
669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
670
671 if (val
672 && check_depth == 1
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
676 {
677 size_t osize = XMALLOC_GET_SIZE (val);
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
685 }
686
687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
688
689 if (val && check_depth == 1)
690 {
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
692 val += XMALLOC_OVERRUN_CHECK_SIZE;
693 XMALLOC_PUT_SIZE(val, size);
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
695 }
696 --check_depth;
697 return (POINTER_TYPE *)val;
698 }
699
700 /* Like free, but checks block for overrun. */
701
702 void
703 overrun_check_free (block)
704 POINTER_TYPE *block;
705 {
706 unsigned char *val = (unsigned char *)block;
707
708 ++check_depth;
709 if (val
710 && check_depth == 1
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
714 {
715 size_t osize = XMALLOC_GET_SIZE (val);
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
720 #ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723 #else
724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
727 #endif
728 }
729
730 free (val);
731 --check_depth;
732 }
733
734 #undef malloc
735 #undef realloc
736 #undef free
737 #define malloc overrun_check_malloc
738 #define realloc overrun_check_realloc
739 #define free overrun_check_free
740 #endif
741
742 #ifdef SYNC_INPUT
743 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
744 there's no need to block input around malloc. */
745 #define MALLOC_BLOCK_INPUT ((void)0)
746 #define MALLOC_UNBLOCK_INPUT ((void)0)
747 #else
748 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
749 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
750 #endif
751
752 /* Like malloc but check for no memory and block interrupt input.. */
753
754 POINTER_TYPE *
755 xmalloc (size)
756 size_t size;
757 {
758 register POINTER_TYPE *val;
759
760 MALLOC_BLOCK_INPUT;
761 val = (POINTER_TYPE *) malloc (size);
762 MALLOC_UNBLOCK_INPUT;
763
764 if (!val && size)
765 memory_full ();
766 return val;
767 }
768
769
770 /* Like realloc but check for no memory and block interrupt input.. */
771
772 POINTER_TYPE *
773 xrealloc (block, size)
774 POINTER_TYPE *block;
775 size_t size;
776 {
777 register POINTER_TYPE *val;
778
779 MALLOC_BLOCK_INPUT;
780 /* We must call malloc explicitly when BLOCK is 0, since some
781 reallocs don't do this. */
782 if (! block)
783 val = (POINTER_TYPE *) malloc (size);
784 else
785 val = (POINTER_TYPE *) realloc (block, size);
786 MALLOC_UNBLOCK_INPUT;
787
788 if (!val && size) memory_full ();
789 return val;
790 }
791
792
793 /* Like free but block interrupt input. */
794
795 void
796 xfree (block)
797 POINTER_TYPE *block;
798 {
799 if (!block)
800 return;
801 MALLOC_BLOCK_INPUT;
802 free (block);
803 MALLOC_UNBLOCK_INPUT;
804 /* We don't call refill_memory_reserve here
805 because that duplicates doing so in emacs_blocked_free
806 and the criterion should go there. */
807 }
808
809
810 /* Like strdup, but uses xmalloc. */
811
812 char *
813 xstrdup (s)
814 const char *s;
815 {
816 size_t len = strlen (s) + 1;
817 char *p = (char *) xmalloc (len);
818 bcopy (s, p, len);
819 return p;
820 }
821
822
823 /* Unwind for SAFE_ALLOCA */
824
825 Lisp_Object
826 safe_alloca_unwind (arg)
827 Lisp_Object arg;
828 {
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
830
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
836 }
837
838
839 /* Like malloc but used for allocating Lisp data. NBYTES is the
840 number of bytes to allocate, TYPE describes the intended use of the
841 allcated memory block (for strings, for conses, ...). */
842
843 #ifndef USE_LSB_TAG
844 static void *lisp_malloc_loser;
845 #endif
846
847 static POINTER_TYPE *
848 lisp_malloc (nbytes, type)
849 size_t nbytes;
850 enum mem_type type;
851 {
852 register void *val;
853
854 MALLOC_BLOCK_INPUT;
855
856 #ifdef GC_MALLOC_CHECK
857 allocated_mem_type = type;
858 #endif
859
860 val = (void *) malloc (nbytes);
861
862 #ifndef USE_LSB_TAG
863 /* If the memory just allocated cannot be addressed thru a Lisp
864 object's pointer, and it needs to be,
865 that's equivalent to running out of memory. */
866 if (val && type != MEM_TYPE_NON_LISP)
867 {
868 Lisp_Object tem;
869 XSETCONS (tem, (char *) val + nbytes - 1);
870 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
871 {
872 lisp_malloc_loser = val;
873 free (val);
874 val = 0;
875 }
876 }
877 #endif
878
879 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
880 if (val && type != MEM_TYPE_NON_LISP)
881 mem_insert (val, (char *) val + nbytes, type);
882 #endif
883
884 MALLOC_UNBLOCK_INPUT;
885 if (!val && nbytes)
886 memory_full ();
887 return val;
888 }
889
890 /* Free BLOCK. This must be called to free memory allocated with a
891 call to lisp_malloc. */
892
893 static void
894 lisp_free (block)
895 POINTER_TYPE *block;
896 {
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
900 mem_delete (mem_find (block));
901 #endif
902 MALLOC_UNBLOCK_INPUT;
903 }
904
905 /* Allocation of aligned blocks of memory to store Lisp data. */
906 /* The entry point is lisp_align_malloc which returns blocks of at most */
907 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
908
909 /* Use posix_memalloc if the system has it and we're using the system's
910 malloc (because our gmalloc.c routines don't have posix_memalign although
911 its memalloc could be used). */
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static POINTER_TYPE *
994 lisp_align_malloc (nbytes, type)
995 size_t nbytes;
996 enum mem_type type;
997 {
998 void *base, *val;
999 struct ablocks *abase;
1000
1001 eassert (nbytes <= BLOCK_BYTES);
1002
1003 MALLOC_BLOCK_INPUT;
1004
1005 #ifdef GC_MALLOC_CHECK
1006 allocated_mem_type = type;
1007 #endif
1008
1009 if (!free_ablock)
1010 {
1011 int i;
1012 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1013
1014 #ifdef DOUG_LEA_MALLOC
1015 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1016 because mapped region contents are not preserved in
1017 a dumped Emacs. */
1018 mallopt (M_MMAP_MAX, 0);
1019 #endif
1020
1021 #ifdef USE_POSIX_MEMALIGN
1022 {
1023 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1024 if (err)
1025 base = NULL;
1026 abase = base;
1027 }
1028 #else
1029 base = malloc (ABLOCKS_BYTES);
1030 abase = ALIGN (base, BLOCK_ALIGN);
1031 #endif
1032
1033 if (base == 0)
1034 {
1035 MALLOC_UNBLOCK_INPUT;
1036 memory_full ();
1037 }
1038
1039 aligned = (base == abase);
1040 if (!aligned)
1041 ((void**)abase)[-1] = base;
1042
1043 #ifdef DOUG_LEA_MALLOC
1044 /* Back to a reasonable maximum of mmap'ed areas. */
1045 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1046 #endif
1047
1048 #ifndef USE_LSB_TAG
1049 /* If the memory just allocated cannot be addressed thru a Lisp
1050 object's pointer, and it needs to be, that's equivalent to
1051 running out of memory. */
1052 if (type != MEM_TYPE_NON_LISP)
1053 {
1054 Lisp_Object tem;
1055 char *end = (char *) base + ABLOCKS_BYTES - 1;
1056 XSETCONS (tem, end);
1057 if ((char *) XCONS (tem) != end)
1058 {
1059 lisp_malloc_loser = base;
1060 free (base);
1061 MALLOC_UNBLOCK_INPUT;
1062 memory_full ();
1063 }
1064 }
1065 #endif
1066
1067 /* Initialize the blocks and put them on the free list.
1068 Is `base' was not properly aligned, we can't use the last block. */
1069 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1070 {
1071 abase->blocks[i].abase = abase;
1072 abase->blocks[i].x.next_free = free_ablock;
1073 free_ablock = &abase->blocks[i];
1074 }
1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1076
1077 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1078 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1079 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1080 eassert (ABLOCKS_BASE (abase) == base);
1081 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1082 }
1083
1084 abase = ABLOCK_ABASE (free_ablock);
1085 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1088
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 if (val && type != MEM_TYPE_NON_LISP)
1091 mem_insert (val, (char *) val + nbytes, type);
1092 #endif
1093
1094 MALLOC_UNBLOCK_INPUT;
1095 if (!val && nbytes)
1096 memory_full ();
1097
1098 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1099 return val;
1100 }
1101
1102 static void
1103 lisp_align_free (block)
1104 POINTER_TYPE *block;
1105 {
1106 struct ablock *ablock = block;
1107 struct ablocks *abase = ABLOCK_ABASE (ablock);
1108
1109 MALLOC_BLOCK_INPUT;
1110 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1111 mem_delete (mem_find (block));
1112 #endif
1113 /* Put on free list. */
1114 ablock->x.next_free = free_ablock;
1115 free_ablock = ablock;
1116 /* Update busy count. */
1117 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1118
1119 if (2 > (long) ABLOCKS_BUSY (abase))
1120 { /* All the blocks are free. */
1121 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1122 struct ablock **tem = &free_ablock;
1123 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1124
1125 while (*tem)
1126 {
1127 if (*tem >= (struct ablock *) abase && *tem < atop)
1128 {
1129 i++;
1130 *tem = (*tem)->x.next_free;
1131 }
1132 else
1133 tem = &(*tem)->x.next_free;
1134 }
1135 eassert ((aligned & 1) == aligned);
1136 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1137 #ifdef USE_POSIX_MEMALIGN
1138 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1139 #endif
1140 free (ABLOCKS_BASE (abase));
1141 }
1142 MALLOC_UNBLOCK_INPUT;
1143 }
1144
1145 /* Return a new buffer structure allocated from the heap with
1146 a call to lisp_malloc. */
1147
1148 struct buffer *
1149 allocate_buffer ()
1150 {
1151 struct buffer *b
1152 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1153 MEM_TYPE_BUFFER);
1154 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1155 XSETPVECTYPE (b, PVEC_BUFFER);
1156 return b;
1157 }
1158
1159 \f
1160 #ifndef SYSTEM_MALLOC
1161
1162 /* Arranging to disable input signals while we're in malloc.
1163
1164 This only works with GNU malloc. To help out systems which can't
1165 use GNU malloc, all the calls to malloc, realloc, and free
1166 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1167 pair; unfortunately, we have no idea what C library functions
1168 might call malloc, so we can't really protect them unless you're
1169 using GNU malloc. Fortunately, most of the major operating systems
1170 can use GNU malloc. */
1171
1172 #ifndef SYNC_INPUT
1173 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1174 there's no need to block input around malloc. */
1175
1176 #ifndef DOUG_LEA_MALLOC
1177 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1178 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1179 extern void (*__free_hook) P_ ((void *, const void *));
1180 /* Else declared in malloc.h, perhaps with an extra arg. */
1181 #endif /* DOUG_LEA_MALLOC */
1182 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1183 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1184 static void (*old_free_hook) P_ ((void*, const void*));
1185
1186 /* This function is used as the hook for free to call. */
1187
1188 static void
1189 emacs_blocked_free (ptr, ptr2)
1190 void *ptr;
1191 const void *ptr2;
1192 {
1193 BLOCK_INPUT_ALLOC;
1194
1195 #ifdef GC_MALLOC_CHECK
1196 if (ptr)
1197 {
1198 struct mem_node *m;
1199
1200 m = mem_find (ptr);
1201 if (m == MEM_NIL || m->start != ptr)
1202 {
1203 fprintf (stderr,
1204 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1205 abort ();
1206 }
1207 else
1208 {
1209 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1210 mem_delete (m);
1211 }
1212 }
1213 #endif /* GC_MALLOC_CHECK */
1214
1215 __free_hook = old_free_hook;
1216 free (ptr);
1217
1218 /* If we released our reserve (due to running out of memory),
1219 and we have a fair amount free once again,
1220 try to set aside another reserve in case we run out once more. */
1221 if (! NILP (Vmemory_full)
1222 /* Verify there is enough space that even with the malloc
1223 hysteresis this call won't run out again.
1224 The code here is correct as long as SPARE_MEMORY
1225 is substantially larger than the block size malloc uses. */
1226 && (bytes_used_when_full
1227 > ((bytes_used_when_reconsidered = BYTES_USED)
1228 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1229 refill_memory_reserve ();
1230
1231 __free_hook = emacs_blocked_free;
1232 UNBLOCK_INPUT_ALLOC;
1233 }
1234
1235
1236 /* This function is the malloc hook that Emacs uses. */
1237
1238 static void *
1239 emacs_blocked_malloc (size, ptr)
1240 size_t size;
1241 const void *ptr;
1242 {
1243 void *value;
1244
1245 BLOCK_INPUT_ALLOC;
1246 __malloc_hook = old_malloc_hook;
1247 #ifdef DOUG_LEA_MALLOC
1248 /* Segfaults on my system. --lorentey */
1249 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1250 #else
1251 __malloc_extra_blocks = malloc_hysteresis;
1252 #endif
1253
1254 value = (void *) malloc (size);
1255
1256 #ifdef GC_MALLOC_CHECK
1257 {
1258 struct mem_node *m = mem_find (value);
1259 if (m != MEM_NIL)
1260 {
1261 fprintf (stderr, "Malloc returned %p which is already in use\n",
1262 value);
1263 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1264 m->start, m->end, (char *) m->end - (char *) m->start,
1265 m->type);
1266 abort ();
1267 }
1268
1269 if (!dont_register_blocks)
1270 {
1271 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1272 allocated_mem_type = MEM_TYPE_NON_LISP;
1273 }
1274 }
1275 #endif /* GC_MALLOC_CHECK */
1276
1277 __malloc_hook = emacs_blocked_malloc;
1278 UNBLOCK_INPUT_ALLOC;
1279
1280 /* fprintf (stderr, "%p malloc\n", value); */
1281 return value;
1282 }
1283
1284
1285 /* This function is the realloc hook that Emacs uses. */
1286
1287 static void *
1288 emacs_blocked_realloc (ptr, size, ptr2)
1289 void *ptr;
1290 size_t size;
1291 const void *ptr2;
1292 {
1293 void *value;
1294
1295 BLOCK_INPUT_ALLOC;
1296 __realloc_hook = old_realloc_hook;
1297
1298 #ifdef GC_MALLOC_CHECK
1299 if (ptr)
1300 {
1301 struct mem_node *m = mem_find (ptr);
1302 if (m == MEM_NIL || m->start != ptr)
1303 {
1304 fprintf (stderr,
1305 "Realloc of %p which wasn't allocated with malloc\n",
1306 ptr);
1307 abort ();
1308 }
1309
1310 mem_delete (m);
1311 }
1312
1313 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1314
1315 /* Prevent malloc from registering blocks. */
1316 dont_register_blocks = 1;
1317 #endif /* GC_MALLOC_CHECK */
1318
1319 value = (void *) realloc (ptr, size);
1320
1321 #ifdef GC_MALLOC_CHECK
1322 dont_register_blocks = 0;
1323
1324 {
1325 struct mem_node *m = mem_find (value);
1326 if (m != MEM_NIL)
1327 {
1328 fprintf (stderr, "Realloc returns memory that is already in use\n");
1329 abort ();
1330 }
1331
1332 /* Can't handle zero size regions in the red-black tree. */
1333 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1334 }
1335
1336 /* fprintf (stderr, "%p <- realloc\n", value); */
1337 #endif /* GC_MALLOC_CHECK */
1338
1339 __realloc_hook = emacs_blocked_realloc;
1340 UNBLOCK_INPUT_ALLOC;
1341
1342 return value;
1343 }
1344
1345
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1348 normal malloc. Some thread implementations need this as they call
1349 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1350 calls malloc because it is the first call, and we have an endless loop. */
1351
1352 void
1353 reset_malloc_hooks ()
1354 {
1355 __free_hook = old_free_hook;
1356 __malloc_hook = old_malloc_hook;
1357 __realloc_hook = old_realloc_hook;
1358 }
1359 #endif /* HAVE_GTK_AND_PTHREAD */
1360
1361
1362 /* Called from main to set up malloc to use our hooks. */
1363
1364 void
1365 uninterrupt_malloc ()
1366 {
1367 #ifdef HAVE_GTK_AND_PTHREAD
1368 #ifdef DOUG_LEA_MALLOC
1369 pthread_mutexattr_t attr;
1370
1371 /* GLIBC has a faster way to do this, but lets keep it portable.
1372 This is according to the Single UNIX Specification. */
1373 pthread_mutexattr_init (&attr);
1374 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1375 pthread_mutex_init (&alloc_mutex, &attr);
1376 #else /* !DOUG_LEA_MALLOC */
1377 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1378 and the bundled gmalloc.c doesn't require it. */
1379 pthread_mutex_init (&alloc_mutex, NULL);
1380 #endif /* !DOUG_LEA_MALLOC */
1381 #endif /* HAVE_GTK_AND_PTHREAD */
1382
1383 if (__free_hook != emacs_blocked_free)
1384 old_free_hook = __free_hook;
1385 __free_hook = emacs_blocked_free;
1386
1387 if (__malloc_hook != emacs_blocked_malloc)
1388 old_malloc_hook = __malloc_hook;
1389 __malloc_hook = emacs_blocked_malloc;
1390
1391 if (__realloc_hook != emacs_blocked_realloc)
1392 old_realloc_hook = __realloc_hook;
1393 __realloc_hook = emacs_blocked_realloc;
1394 }
1395
1396 #endif /* not SYNC_INPUT */
1397 #endif /* not SYSTEM_MALLOC */
1398
1399
1400 \f
1401 /***********************************************************************
1402 Interval Allocation
1403 ***********************************************************************/
1404
1405 /* Number of intervals allocated in an interval_block structure.
1406 The 1020 is 1024 minus malloc overhead. */
1407
1408 #define INTERVAL_BLOCK_SIZE \
1409 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1410
1411 /* Intervals are allocated in chunks in form of an interval_block
1412 structure. */
1413
1414 struct interval_block
1415 {
1416 /* Place `intervals' first, to preserve alignment. */
1417 struct interval intervals[INTERVAL_BLOCK_SIZE];
1418 struct interval_block *next;
1419 };
1420
1421 /* Current interval block. Its `next' pointer points to older
1422 blocks. */
1423
1424 static struct interval_block *interval_block;
1425
1426 /* Index in interval_block above of the next unused interval
1427 structure. */
1428
1429 static int interval_block_index;
1430
1431 /* Number of free and live intervals. */
1432
1433 static int total_free_intervals, total_intervals;
1434
1435 /* List of free intervals. */
1436
1437 INTERVAL interval_free_list;
1438
1439 /* Total number of interval blocks now in use. */
1440
1441 static int n_interval_blocks;
1442
1443
1444 /* Initialize interval allocation. */
1445
1446 static void
1447 init_intervals ()
1448 {
1449 interval_block = NULL;
1450 interval_block_index = INTERVAL_BLOCK_SIZE;
1451 interval_free_list = 0;
1452 n_interval_blocks = 0;
1453 }
1454
1455
1456 /* Return a new interval. */
1457
1458 INTERVAL
1459 make_interval ()
1460 {
1461 INTERVAL val;
1462
1463 /* eassert (!handling_signal); */
1464
1465 MALLOC_BLOCK_INPUT;
1466
1467 if (interval_free_list)
1468 {
1469 val = interval_free_list;
1470 interval_free_list = INTERVAL_PARENT (interval_free_list);
1471 }
1472 else
1473 {
1474 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1475 {
1476 register struct interval_block *newi;
1477
1478 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1479 MEM_TYPE_NON_LISP);
1480
1481 newi->next = interval_block;
1482 interval_block = newi;
1483 interval_block_index = 0;
1484 n_interval_blocks++;
1485 }
1486 val = &interval_block->intervals[interval_block_index++];
1487 }
1488
1489 MALLOC_UNBLOCK_INPUT;
1490
1491 consing_since_gc += sizeof (struct interval);
1492 intervals_consed++;
1493 RESET_INTERVAL (val);
1494 val->gcmarkbit = 0;
1495 return val;
1496 }
1497
1498
1499 /* Mark Lisp objects in interval I. */
1500
1501 static void
1502 mark_interval (i, dummy)
1503 register INTERVAL i;
1504 Lisp_Object dummy;
1505 {
1506 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1507 i->gcmarkbit = 1;
1508 mark_object (i->plist);
1509 }
1510
1511
1512 /* Mark the interval tree rooted in TREE. Don't call this directly;
1513 use the macro MARK_INTERVAL_TREE instead. */
1514
1515 static void
1516 mark_interval_tree (tree)
1517 register INTERVAL tree;
1518 {
1519 /* No need to test if this tree has been marked already; this
1520 function is always called through the MARK_INTERVAL_TREE macro,
1521 which takes care of that. */
1522
1523 traverse_intervals_noorder (tree, mark_interval, Qnil);
1524 }
1525
1526
1527 /* Mark the interval tree rooted in I. */
1528
1529 #define MARK_INTERVAL_TREE(i) \
1530 do { \
1531 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1532 mark_interval_tree (i); \
1533 } while (0)
1534
1535
1536 #define UNMARK_BALANCE_INTERVALS(i) \
1537 do { \
1538 if (! NULL_INTERVAL_P (i)) \
1539 (i) = balance_intervals (i); \
1540 } while (0)
1541
1542 \f
1543 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1544 can't create number objects in macros. */
1545 #ifndef make_number
1546 Lisp_Object
1547 make_number (n)
1548 EMACS_INT n;
1549 {
1550 Lisp_Object obj;
1551 obj.s.val = n;
1552 obj.s.type = Lisp_Int;
1553 return obj;
1554 }
1555 #endif
1556 \f
1557 /***********************************************************************
1558 String Allocation
1559 ***********************************************************************/
1560
1561 /* Lisp_Strings are allocated in string_block structures. When a new
1562 string_block is allocated, all the Lisp_Strings it contains are
1563 added to a free-list string_free_list. When a new Lisp_String is
1564 needed, it is taken from that list. During the sweep phase of GC,
1565 string_blocks that are entirely free are freed, except two which
1566 we keep.
1567
1568 String data is allocated from sblock structures. Strings larger
1569 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1570 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1571
1572 Sblocks consist internally of sdata structures, one for each
1573 Lisp_String. The sdata structure points to the Lisp_String it
1574 belongs to. The Lisp_String points back to the `u.data' member of
1575 its sdata structure.
1576
1577 When a Lisp_String is freed during GC, it is put back on
1578 string_free_list, and its `data' member and its sdata's `string'
1579 pointer is set to null. The size of the string is recorded in the
1580 `u.nbytes' member of the sdata. So, sdata structures that are no
1581 longer used, can be easily recognized, and it's easy to compact the
1582 sblocks of small strings which we do in compact_small_strings. */
1583
1584 /* Size in bytes of an sblock structure used for small strings. This
1585 is 8192 minus malloc overhead. */
1586
1587 #define SBLOCK_SIZE 8188
1588
1589 /* Strings larger than this are considered large strings. String data
1590 for large strings is allocated from individual sblocks. */
1591
1592 #define LARGE_STRING_BYTES 1024
1593
1594 /* Structure describing string memory sub-allocated from an sblock.
1595 This is where the contents of Lisp strings are stored. */
1596
1597 struct sdata
1598 {
1599 /* Back-pointer to the string this sdata belongs to. If null, this
1600 structure is free, and the NBYTES member of the union below
1601 contains the string's byte size (the same value that STRING_BYTES
1602 would return if STRING were non-null). If non-null, STRING_BYTES
1603 (STRING) is the size of the data, and DATA contains the string's
1604 contents. */
1605 struct Lisp_String *string;
1606
1607 #ifdef GC_CHECK_STRING_BYTES
1608
1609 EMACS_INT nbytes;
1610 unsigned char data[1];
1611
1612 #define SDATA_NBYTES(S) (S)->nbytes
1613 #define SDATA_DATA(S) (S)->data
1614
1615 #else /* not GC_CHECK_STRING_BYTES */
1616
1617 union
1618 {
1619 /* When STRING in non-null. */
1620 unsigned char data[1];
1621
1622 /* When STRING is null. */
1623 EMACS_INT nbytes;
1624 } u;
1625
1626
1627 #define SDATA_NBYTES(S) (S)->u.nbytes
1628 #define SDATA_DATA(S) (S)->u.data
1629
1630 #endif /* not GC_CHECK_STRING_BYTES */
1631 };
1632
1633
1634 /* Structure describing a block of memory which is sub-allocated to
1635 obtain string data memory for strings. Blocks for small strings
1636 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1637 as large as needed. */
1638
1639 struct sblock
1640 {
1641 /* Next in list. */
1642 struct sblock *next;
1643
1644 /* Pointer to the next free sdata block. This points past the end
1645 of the sblock if there isn't any space left in this block. */
1646 struct sdata *next_free;
1647
1648 /* Start of data. */
1649 struct sdata first_data;
1650 };
1651
1652 /* Number of Lisp strings in a string_block structure. The 1020 is
1653 1024 minus malloc overhead. */
1654
1655 #define STRING_BLOCK_SIZE \
1656 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1657
1658 /* Structure describing a block from which Lisp_String structures
1659 are allocated. */
1660
1661 struct string_block
1662 {
1663 /* Place `strings' first, to preserve alignment. */
1664 struct Lisp_String strings[STRING_BLOCK_SIZE];
1665 struct string_block *next;
1666 };
1667
1668 /* Head and tail of the list of sblock structures holding Lisp string
1669 data. We always allocate from current_sblock. The NEXT pointers
1670 in the sblock structures go from oldest_sblock to current_sblock. */
1671
1672 static struct sblock *oldest_sblock, *current_sblock;
1673
1674 /* List of sblocks for large strings. */
1675
1676 static struct sblock *large_sblocks;
1677
1678 /* List of string_block structures, and how many there are. */
1679
1680 static struct string_block *string_blocks;
1681 static int n_string_blocks;
1682
1683 /* Free-list of Lisp_Strings. */
1684
1685 static struct Lisp_String *string_free_list;
1686
1687 /* Number of live and free Lisp_Strings. */
1688
1689 static int total_strings, total_free_strings;
1690
1691 /* Number of bytes used by live strings. */
1692
1693 static int total_string_size;
1694
1695 /* Given a pointer to a Lisp_String S which is on the free-list
1696 string_free_list, return a pointer to its successor in the
1697 free-list. */
1698
1699 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1700
1701 /* Return a pointer to the sdata structure belonging to Lisp string S.
1702 S must be live, i.e. S->data must not be null. S->data is actually
1703 a pointer to the `u.data' member of its sdata structure; the
1704 structure starts at a constant offset in front of that. */
1705
1706 #ifdef GC_CHECK_STRING_BYTES
1707
1708 #define SDATA_OF_STRING(S) \
1709 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1710 - sizeof (EMACS_INT)))
1711
1712 #else /* not GC_CHECK_STRING_BYTES */
1713
1714 #define SDATA_OF_STRING(S) \
1715 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1716
1717 #endif /* not GC_CHECK_STRING_BYTES */
1718
1719
1720 #ifdef GC_CHECK_STRING_OVERRUN
1721
1722 /* We check for overrun in string data blocks by appending a small
1723 "cookie" after each allocated string data block, and check for the
1724 presence of this cookie during GC. */
1725
1726 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1727 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1728 { 0xde, 0xad, 0xbe, 0xef };
1729
1730 #else
1731 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1732 #endif
1733
1734 /* Value is the size of an sdata structure large enough to hold NBYTES
1735 bytes of string data. The value returned includes a terminating
1736 NUL byte, the size of the sdata structure, and padding. */
1737
1738 #ifdef GC_CHECK_STRING_BYTES
1739
1740 #define SDATA_SIZE(NBYTES) \
1741 ((sizeof (struct Lisp_String *) \
1742 + (NBYTES) + 1 \
1743 + sizeof (EMACS_INT) \
1744 + sizeof (EMACS_INT) - 1) \
1745 & ~(sizeof (EMACS_INT) - 1))
1746
1747 #else /* not GC_CHECK_STRING_BYTES */
1748
1749 #define SDATA_SIZE(NBYTES) \
1750 ((sizeof (struct Lisp_String *) \
1751 + (NBYTES) + 1 \
1752 + sizeof (EMACS_INT) - 1) \
1753 & ~(sizeof (EMACS_INT) - 1))
1754
1755 #endif /* not GC_CHECK_STRING_BYTES */
1756
1757 /* Extra bytes to allocate for each string. */
1758
1759 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1760
1761 /* Initialize string allocation. Called from init_alloc_once. */
1762
1763 static void
1764 init_strings ()
1765 {
1766 total_strings = total_free_strings = total_string_size = 0;
1767 oldest_sblock = current_sblock = large_sblocks = NULL;
1768 string_blocks = NULL;
1769 n_string_blocks = 0;
1770 string_free_list = NULL;
1771 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1772 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1773 }
1774
1775
1776 #ifdef GC_CHECK_STRING_BYTES
1777
1778 static int check_string_bytes_count;
1779
1780 static void check_string_bytes P_ ((int));
1781 static void check_sblock P_ ((struct sblock *));
1782
1783 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1784
1785
1786 /* Like GC_STRING_BYTES, but with debugging check. */
1787
1788 int
1789 string_bytes (s)
1790 struct Lisp_String *s;
1791 {
1792 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1793 if (!PURE_POINTER_P (s)
1794 && s->data
1795 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1796 abort ();
1797 return nbytes;
1798 }
1799
1800 /* Check validity of Lisp strings' string_bytes member in B. */
1801
1802 static void
1803 check_sblock (b)
1804 struct sblock *b;
1805 {
1806 struct sdata *from, *end, *from_end;
1807
1808 end = b->next_free;
1809
1810 for (from = &b->first_data; from < end; from = from_end)
1811 {
1812 /* Compute the next FROM here because copying below may
1813 overwrite data we need to compute it. */
1814 int nbytes;
1815
1816 /* Check that the string size recorded in the string is the
1817 same as the one recorded in the sdata structure. */
1818 if (from->string)
1819 CHECK_STRING_BYTES (from->string);
1820
1821 if (from->string)
1822 nbytes = GC_STRING_BYTES (from->string);
1823 else
1824 nbytes = SDATA_NBYTES (from);
1825
1826 nbytes = SDATA_SIZE (nbytes);
1827 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1828 }
1829 }
1830
1831
1832 /* Check validity of Lisp strings' string_bytes member. ALL_P
1833 non-zero means check all strings, otherwise check only most
1834 recently allocated strings. Used for hunting a bug. */
1835
1836 static void
1837 check_string_bytes (all_p)
1838 int all_p;
1839 {
1840 if (all_p)
1841 {
1842 struct sblock *b;
1843
1844 for (b = large_sblocks; b; b = b->next)
1845 {
1846 struct Lisp_String *s = b->first_data.string;
1847 if (s)
1848 CHECK_STRING_BYTES (s);
1849 }
1850
1851 for (b = oldest_sblock; b; b = b->next)
1852 check_sblock (b);
1853 }
1854 else
1855 check_sblock (current_sblock);
1856 }
1857
1858 #endif /* GC_CHECK_STRING_BYTES */
1859
1860 #ifdef GC_CHECK_STRING_FREE_LIST
1861
1862 /* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1864
1865 static void
1866 check_string_free_list ()
1867 {
1868 struct Lisp_String *s;
1869
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 while (s != NULL)
1873 {
1874 if ((unsigned)s < 1024)
1875 abort();
1876 s = NEXT_FREE_LISP_STRING (s);
1877 }
1878 }
1879 #else
1880 #define check_string_free_list()
1881 #endif
1882
1883 /* Return a new Lisp_String. */
1884
1885 static struct Lisp_String *
1886 allocate_string ()
1887 {
1888 struct Lisp_String *s;
1889
1890 /* eassert (!handling_signal); */
1891
1892 MALLOC_BLOCK_INPUT;
1893
1894 /* If the free-list is empty, allocate a new string_block, and
1895 add all the Lisp_Strings in it to the free-list. */
1896 if (string_free_list == NULL)
1897 {
1898 struct string_block *b;
1899 int i;
1900
1901 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1902 bzero (b, sizeof *b);
1903 b->next = string_blocks;
1904 string_blocks = b;
1905 ++n_string_blocks;
1906
1907 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1908 {
1909 s = b->strings + i;
1910 NEXT_FREE_LISP_STRING (s) = string_free_list;
1911 string_free_list = s;
1912 }
1913
1914 total_free_strings += STRING_BLOCK_SIZE;
1915 }
1916
1917 check_string_free_list ();
1918
1919 /* Pop a Lisp_String off the free-list. */
1920 s = string_free_list;
1921 string_free_list = NEXT_FREE_LISP_STRING (s);
1922
1923 MALLOC_UNBLOCK_INPUT;
1924
1925 /* Probably not strictly necessary, but play it safe. */
1926 bzero (s, sizeof *s);
1927
1928 --total_free_strings;
1929 ++total_strings;
1930 ++strings_consed;
1931 consing_since_gc += sizeof *s;
1932
1933 #ifdef GC_CHECK_STRING_BYTES
1934 if (!noninteractive)
1935 {
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
1943 }
1944 #endif /* GC_CHECK_STRING_BYTES */
1945
1946 return s;
1947 }
1948
1949
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1955
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1960 {
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1964
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
1971 MALLOC_BLOCK_INPUT;
1972
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1989
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1991
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 MALLOC_UNBLOCK_INPUT;
2026
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2039
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2044 {
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2047 }
2048
2049 consing_since_gc += needed;
2050 }
2051
2052
2053 /* Sweep and compact strings. */
2054
2055 static void
2056 sweep_strings ()
2057 {
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2060
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2084
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 check_string_free_list ();
2144
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2148
2149 check_string_free_list ();
2150 }
2151
2152
2153 /* Free dead large strings. */
2154
2155 static void
2156 free_large_strings ()
2157 {
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2160
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175 }
2176
2177
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181 static void
2182 compact_small_strings ()
2183 {
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2201
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2215
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2220
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2223
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2233
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 }
2247
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273 }
2274
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2282 {
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2289
2290 c = XINT (init);
2291 if (ASCII_CHAR_P (c))
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
2315
2316 *p = 0;
2317 return val;
2318 }
2319
2320
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2326 {
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
2332 CHECK_NATNUM (length);
2333
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2343
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 static void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 static void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 MALLOC_BLOCK_INPUT;
2617
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2641 }
2642
2643 MALLOC_UNBLOCK_INPUT;
2644
2645 XFLOAT_INIT (val, float_value);
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650 }
2651
2652
2653 \f
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2662
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 int cons_block_index;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 struct Lisp_Cons *cons_free_list;
2701
2702 /* Total number of cons blocks now in use. */
2703
2704 static int n_cons_blocks;
2705
2706
2707 /* Initialize cons allocation. */
2708
2709 static void
2710 init_cons ()
2711 {
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2716 }
2717
2718
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2720
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724 {
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2730 }
2731
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2736 {
2737 register Lisp_Object val;
2738
2739 /* eassert (!handling_signal); */
2740
2741 MALLOC_BLOCK_INPUT;
2742
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2765 }
2766
2767 MALLOC_UNBLOCK_INPUT;
2768
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775 }
2776
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2780 {
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2783
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2787 }
2788
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2794 {
2795 return Fcons (arg1, Qnil);
2796 }
2797
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801 {
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803 }
2804
2805
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828 }
2829
2830
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2838 {
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848 }
2849
2850
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2855 {
2856 register Lisp_Object val;
2857 register int size;
2858
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
2894
2895 return val;
2896 }
2897
2898
2899 \f
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2903
2904 /* Singly-linked list of all vectors. */
2905
2906 static struct Lisp_Vector *all_vectors;
2907
2908 /* Total number of vector-like objects now in use. */
2909
2910 static int n_vectors;
2911
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2919 {
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2922
2923 MALLOC_BLOCK_INPUT;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2942
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
2948
2949 MALLOC_UNBLOCK_INPUT;
2950
2951 ++n_vectors;
2952 return p;
2953 }
2954
2955
2956 /* Allocate a vector with NSLOTS slots. */
2957
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2961 {
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2974 {
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2977
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2982
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985 }
2986
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table (void)
2989 {
2990 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2991 }
2992
2993
2994 struct window *
2995 allocate_window ()
2996 {
2997 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2998 }
2999
3000
3001 struct terminal *
3002 allocate_terminal ()
3003 {
3004 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3005 next_terminal, PVEC_TERMINAL);
3006 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3007 bzero (&(t->next_terminal),
3008 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3009
3010 return t;
3011 }
3012
3013 struct frame *
3014 allocate_frame ()
3015 {
3016 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3017 face_cache, PVEC_FRAME);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 bzero (&(f->face_cache),
3020 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3021 return f;
3022 }
3023
3024
3025 struct Lisp_Process *
3026 allocate_process ()
3027 {
3028 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3029 }
3030
3031
3032 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3033 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3034 See also the function `vector'. */)
3035 (length, init)
3036 register Lisp_Object length, init;
3037 {
3038 Lisp_Object vector;
3039 register EMACS_INT sizei;
3040 register int index;
3041 register struct Lisp_Vector *p;
3042
3043 CHECK_NATNUM (length);
3044 sizei = XFASTINT (length);
3045
3046 p = allocate_vector (sizei);
3047 for (index = 0; index < sizei; index++)
3048 p->contents[index] = init;
3049
3050 XSETVECTOR (vector, p);
3051 return vector;
3052 }
3053
3054
3055 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3056 doc: /* Return a newly created vector with specified arguments as elements.
3057 Any number of arguments, even zero arguments, are allowed.
3058 usage: (vector &rest OBJECTS) */)
3059 (nargs, args)
3060 register int nargs;
3061 Lisp_Object *args;
3062 {
3063 register Lisp_Object len, val;
3064 register int index;
3065 register struct Lisp_Vector *p;
3066
3067 XSETFASTINT (len, nargs);
3068 val = Fmake_vector (len, Qnil);
3069 p = XVECTOR (val);
3070 for (index = 0; index < nargs; index++)
3071 p->contents[index] = args[index];
3072 return val;
3073 }
3074
3075
3076 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3077 doc: /* Create a byte-code object with specified arguments as elements.
3078 The arguments should be the arglist, bytecode-string, constant vector,
3079 stack size, (optional) doc string, and (optional) interactive spec.
3080 The first four arguments are required; at most six have any
3081 significance.
3082 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3083 (nargs, args)
3084 register int nargs;
3085 Lisp_Object *args;
3086 {
3087 register Lisp_Object len, val;
3088 register int index;
3089 register struct Lisp_Vector *p;
3090
3091 XSETFASTINT (len, nargs);
3092 if (!NILP (Vpurify_flag))
3093 val = make_pure_vector ((EMACS_INT) nargs);
3094 else
3095 val = Fmake_vector (len, Qnil);
3096
3097 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3104
3105 p = XVECTOR (val);
3106 for (index = 0; index < nargs; index++)
3107 {
3108 if (!NILP (Vpurify_flag))
3109 args[index] = Fpurecopy (args[index]);
3110 p->contents[index] = args[index];
3111 }
3112 XSETPVECTYPE (p, PVEC_COMPILED);
3113 XSETCOMPILED (val, p);
3114 return val;
3115 }
3116
3117
3118 \f
3119 /***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
3122
3123 /* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
3126
3127 #define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3129
3130 struct symbol_block
3131 {
3132 /* Place `symbols' first, to preserve alignment. */
3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3134 struct symbol_block *next;
3135 };
3136
3137 /* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3139
3140 static struct symbol_block *symbol_block;
3141 static int symbol_block_index;
3142
3143 /* List of free symbols. */
3144
3145 static struct Lisp_Symbol *symbol_free_list;
3146
3147 /* Total number of symbol blocks now in use. */
3148
3149 static int n_symbol_blocks;
3150
3151
3152 /* Initialize symbol allocation. */
3153
3154 static void
3155 init_symbol ()
3156 {
3157 symbol_block = NULL;
3158 symbol_block_index = SYMBOL_BLOCK_SIZE;
3159 symbol_free_list = 0;
3160 n_symbol_blocks = 0;
3161 }
3162
3163
3164 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3165 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3166 Its value and function definition are void, and its property list is nil. */)
3167 (name)
3168 Lisp_Object name;
3169 {
3170 register Lisp_Object val;
3171 register struct Lisp_Symbol *p;
3172
3173 CHECK_STRING (name);
3174
3175 /* eassert (!handling_signal); */
3176
3177 MALLOC_BLOCK_INPUT;
3178
3179 if (symbol_free_list)
3180 {
3181 XSETSYMBOL (val, symbol_free_list);
3182 symbol_free_list = symbol_free_list->next;
3183 }
3184 else
3185 {
3186 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3187 {
3188 struct symbol_block *new;
3189 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3190 MEM_TYPE_SYMBOL);
3191 new->next = symbol_block;
3192 symbol_block = new;
3193 symbol_block_index = 0;
3194 n_symbol_blocks++;
3195 }
3196 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3197 symbol_block_index++;
3198 }
3199
3200 MALLOC_UNBLOCK_INPUT;
3201
3202 p = XSYMBOL (val);
3203 p->xname = name;
3204 p->plist = Qnil;
3205 p->value = Qunbound;
3206 p->function = Qunbound;
3207 p->next = NULL;
3208 p->gcmarkbit = 0;
3209 p->interned = SYMBOL_UNINTERNED;
3210 p->constant = 0;
3211 p->indirect_variable = 0;
3212 consing_since_gc += sizeof (struct Lisp_Symbol);
3213 symbols_consed++;
3214 return val;
3215 }
3216
3217
3218 \f
3219 /***********************************************************************
3220 Marker (Misc) Allocation
3221 ***********************************************************************/
3222
3223 /* Allocation of markers and other objects that share that structure.
3224 Works like allocation of conses. */
3225
3226 #define MARKER_BLOCK_SIZE \
3227 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3228
3229 struct marker_block
3230 {
3231 /* Place `markers' first, to preserve alignment. */
3232 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3233 struct marker_block *next;
3234 };
3235
3236 static struct marker_block *marker_block;
3237 static int marker_block_index;
3238
3239 static union Lisp_Misc *marker_free_list;
3240
3241 /* Total number of marker blocks now in use. */
3242
3243 static int n_marker_blocks;
3244
3245 static void
3246 init_marker ()
3247 {
3248 marker_block = NULL;
3249 marker_block_index = MARKER_BLOCK_SIZE;
3250 marker_free_list = 0;
3251 n_marker_blocks = 0;
3252 }
3253
3254 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3255
3256 Lisp_Object
3257 allocate_misc ()
3258 {
3259 Lisp_Object val;
3260
3261 /* eassert (!handling_signal); */
3262
3263 MALLOC_BLOCK_INPUT;
3264
3265 if (marker_free_list)
3266 {
3267 XSETMISC (val, marker_free_list);
3268 marker_free_list = marker_free_list->u_free.chain;
3269 }
3270 else
3271 {
3272 if (marker_block_index == MARKER_BLOCK_SIZE)
3273 {
3274 struct marker_block *new;
3275 new = (struct marker_block *) lisp_malloc (sizeof *new,
3276 MEM_TYPE_MISC);
3277 new->next = marker_block;
3278 marker_block = new;
3279 marker_block_index = 0;
3280 n_marker_blocks++;
3281 total_free_markers += MARKER_BLOCK_SIZE;
3282 }
3283 XSETMISC (val, &marker_block->markers[marker_block_index]);
3284 marker_block_index++;
3285 }
3286
3287 MALLOC_UNBLOCK_INPUT;
3288
3289 --total_free_markers;
3290 consing_since_gc += sizeof (union Lisp_Misc);
3291 misc_objects_consed++;
3292 XMISCANY (val)->gcmarkbit = 0;
3293 return val;
3294 }
3295
3296 /* Free a Lisp_Misc object */
3297
3298 void
3299 free_misc (misc)
3300 Lisp_Object misc;
3301 {
3302 XMISCTYPE (misc) = Lisp_Misc_Free;
3303 XMISC (misc)->u_free.chain = marker_free_list;
3304 marker_free_list = XMISC (misc);
3305
3306 total_free_markers++;
3307 }
3308
3309 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3310 INTEGER. This is used to package C values to call record_unwind_protect.
3311 The unwind function can get the C values back using XSAVE_VALUE. */
3312
3313 Lisp_Object
3314 make_save_value (pointer, integer)
3315 void *pointer;
3316 int integer;
3317 {
3318 register Lisp_Object val;
3319 register struct Lisp_Save_Value *p;
3320
3321 val = allocate_misc ();
3322 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3323 p = XSAVE_VALUE (val);
3324 p->pointer = pointer;
3325 p->integer = integer;
3326 p->dogc = 0;
3327 return val;
3328 }
3329
3330 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3331 doc: /* Return a newly allocated marker which does not point at any place. */)
3332 ()
3333 {
3334 register Lisp_Object val;
3335 register struct Lisp_Marker *p;
3336
3337 val = allocate_misc ();
3338 XMISCTYPE (val) = Lisp_Misc_Marker;
3339 p = XMARKER (val);
3340 p->buffer = 0;
3341 p->bytepos = 0;
3342 p->charpos = 0;
3343 p->next = NULL;
3344 p->insertion_type = 0;
3345 return val;
3346 }
3347
3348 /* Put MARKER back on the free list after using it temporarily. */
3349
3350 void
3351 free_marker (marker)
3352 Lisp_Object marker;
3353 {
3354 unchain_marker (XMARKER (marker));
3355 free_misc (marker);
3356 }
3357
3358 \f
3359 /* Return a newly created vector or string with specified arguments as
3360 elements. If all the arguments are characters that can fit
3361 in a string of events, make a string; otherwise, make a vector.
3362
3363 Any number of arguments, even zero arguments, are allowed. */
3364
3365 Lisp_Object
3366 make_event_array (nargs, args)
3367 register int nargs;
3368 Lisp_Object *args;
3369 {
3370 int i;
3371
3372 for (i = 0; i < nargs; i++)
3373 /* The things that fit in a string
3374 are characters that are in 0...127,
3375 after discarding the meta bit and all the bits above it. */
3376 if (!INTEGERP (args[i])
3377 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3378 return Fvector (nargs, args);
3379
3380 /* Since the loop exited, we know that all the things in it are
3381 characters, so we can make a string. */
3382 {
3383 Lisp_Object result;
3384
3385 result = Fmake_string (make_number (nargs), make_number (0));
3386 for (i = 0; i < nargs; i++)
3387 {
3388 SSET (result, i, XINT (args[i]));
3389 /* Move the meta bit to the right place for a string char. */
3390 if (XINT (args[i]) & CHAR_META)
3391 SSET (result, i, SREF (result, i) | 0x80);
3392 }
3393
3394 return result;
3395 }
3396 }
3397
3398
3399 \f
3400 /************************************************************************
3401 Memory Full Handling
3402 ************************************************************************/
3403
3404
3405 /* Called if malloc returns zero. */
3406
3407 void
3408 memory_full ()
3409 {
3410 int i;
3411
3412 Vmemory_full = Qt;
3413
3414 memory_full_cons_threshold = sizeof (struct cons_block);
3415
3416 /* The first time we get here, free the spare memory. */
3417 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3418 if (spare_memory[i])
3419 {
3420 if (i == 0)
3421 free (spare_memory[i]);
3422 else if (i >= 1 && i <= 4)
3423 lisp_align_free (spare_memory[i]);
3424 else
3425 lisp_free (spare_memory[i]);
3426 spare_memory[i] = 0;
3427 }
3428
3429 /* Record the space now used. When it decreases substantially,
3430 we can refill the memory reserve. */
3431 #ifndef SYSTEM_MALLOC
3432 bytes_used_when_full = BYTES_USED;
3433 #endif
3434
3435 /* This used to call error, but if we've run out of memory, we could
3436 get infinite recursion trying to build the string. */
3437 xsignal (Qnil, Vmemory_signal_data);
3438 }
3439
3440 /* If we released our reserve (due to running out of memory),
3441 and we have a fair amount free once again,
3442 try to set aside another reserve in case we run out once more.
3443
3444 This is called when a relocatable block is freed in ralloc.c,
3445 and also directly from this file, in case we're not using ralloc.c. */
3446
3447 void
3448 refill_memory_reserve ()
3449 {
3450 #ifndef SYSTEM_MALLOC
3451 if (spare_memory[0] == 0)
3452 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3453 if (spare_memory[1] == 0)
3454 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[2] == 0)
3457 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3458 MEM_TYPE_CONS);
3459 if (spare_memory[3] == 0)
3460 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[4] == 0)
3463 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[5] == 0)
3466 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3467 MEM_TYPE_STRING);
3468 if (spare_memory[6] == 0)
3469 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3470 MEM_TYPE_STRING);
3471 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3472 Vmemory_full = Qnil;
3473 #endif
3474 }
3475 \f
3476 /************************************************************************
3477 C Stack Marking
3478 ************************************************************************/
3479
3480 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3481
3482 /* Conservative C stack marking requires a method to identify possibly
3483 live Lisp objects given a pointer value. We do this by keeping
3484 track of blocks of Lisp data that are allocated in a red-black tree
3485 (see also the comment of mem_node which is the type of nodes in
3486 that tree). Function lisp_malloc adds information for an allocated
3487 block to the red-black tree with calls to mem_insert, and function
3488 lisp_free removes it with mem_delete. Functions live_string_p etc
3489 call mem_find to lookup information about a given pointer in the
3490 tree, and use that to determine if the pointer points to a Lisp
3491 object or not. */
3492
3493 /* Initialize this part of alloc.c. */
3494
3495 static void
3496 mem_init ()
3497 {
3498 mem_z.left = mem_z.right = MEM_NIL;
3499 mem_z.parent = NULL;
3500 mem_z.color = MEM_BLACK;
3501 mem_z.start = mem_z.end = NULL;
3502 mem_root = MEM_NIL;
3503 }
3504
3505
3506 /* Value is a pointer to the mem_node containing START. Value is
3507 MEM_NIL if there is no node in the tree containing START. */
3508
3509 static INLINE struct mem_node *
3510 mem_find (start)
3511 void *start;
3512 {
3513 struct mem_node *p;
3514
3515 if (start < min_heap_address || start > max_heap_address)
3516 return MEM_NIL;
3517
3518 /* Make the search always successful to speed up the loop below. */
3519 mem_z.start = start;
3520 mem_z.end = (char *) start + 1;
3521
3522 p = mem_root;
3523 while (start < p->start || start >= p->end)
3524 p = start < p->start ? p->left : p->right;
3525 return p;
3526 }
3527
3528
3529 /* Insert a new node into the tree for a block of memory with start
3530 address START, end address END, and type TYPE. Value is a
3531 pointer to the node that was inserted. */
3532
3533 static struct mem_node *
3534 mem_insert (start, end, type)
3535 void *start, *end;
3536 enum mem_type type;
3537 {
3538 struct mem_node *c, *parent, *x;
3539
3540 if (min_heap_address == NULL || start < min_heap_address)
3541 min_heap_address = start;
3542 if (max_heap_address == NULL || end > max_heap_address)
3543 max_heap_address = end;
3544
3545 /* See where in the tree a node for START belongs. In this
3546 particular application, it shouldn't happen that a node is already
3547 present. For debugging purposes, let's check that. */
3548 c = mem_root;
3549 parent = NULL;
3550
3551 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3552
3553 while (c != MEM_NIL)
3554 {
3555 if (start >= c->start && start < c->end)
3556 abort ();
3557 parent = c;
3558 c = start < c->start ? c->left : c->right;
3559 }
3560
3561 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3562
3563 while (c != MEM_NIL)
3564 {
3565 parent = c;
3566 c = start < c->start ? c->left : c->right;
3567 }
3568
3569 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3570
3571 /* Create a new node. */
3572 #ifdef GC_MALLOC_CHECK
3573 x = (struct mem_node *) _malloc_internal (sizeof *x);
3574 if (x == NULL)
3575 abort ();
3576 #else
3577 x = (struct mem_node *) xmalloc (sizeof *x);
3578 #endif
3579 x->start = start;
3580 x->end = end;
3581 x->type = type;
3582 x->parent = parent;
3583 x->left = x->right = MEM_NIL;
3584 x->color = MEM_RED;
3585
3586 /* Insert it as child of PARENT or install it as root. */
3587 if (parent)
3588 {
3589 if (start < parent->start)
3590 parent->left = x;
3591 else
3592 parent->right = x;
3593 }
3594 else
3595 mem_root = x;
3596
3597 /* Re-establish red-black tree properties. */
3598 mem_insert_fixup (x);
3599
3600 return x;
3601 }
3602
3603
3604 /* Re-establish the red-black properties of the tree, and thereby
3605 balance the tree, after node X has been inserted; X is always red. */
3606
3607 static void
3608 mem_insert_fixup (x)
3609 struct mem_node *x;
3610 {
3611 while (x != mem_root && x->parent->color == MEM_RED)
3612 {
3613 /* X is red and its parent is red. This is a violation of
3614 red-black tree property #3. */
3615
3616 if (x->parent == x->parent->parent->left)
3617 {
3618 /* We're on the left side of our grandparent, and Y is our
3619 "uncle". */
3620 struct mem_node *y = x->parent->parent->right;
3621
3622 if (y->color == MEM_RED)
3623 {
3624 /* Uncle and parent are red but should be black because
3625 X is red. Change the colors accordingly and proceed
3626 with the grandparent. */
3627 x->parent->color = MEM_BLACK;
3628 y->color = MEM_BLACK;
3629 x->parent->parent->color = MEM_RED;
3630 x = x->parent->parent;
3631 }
3632 else
3633 {
3634 /* Parent and uncle have different colors; parent is
3635 red, uncle is black. */
3636 if (x == x->parent->right)
3637 {
3638 x = x->parent;
3639 mem_rotate_left (x);
3640 }
3641
3642 x->parent->color = MEM_BLACK;
3643 x->parent->parent->color = MEM_RED;
3644 mem_rotate_right (x->parent->parent);
3645 }
3646 }
3647 else
3648 {
3649 /* This is the symmetrical case of above. */
3650 struct mem_node *y = x->parent->parent->left;
3651
3652 if (y->color == MEM_RED)
3653 {
3654 x->parent->color = MEM_BLACK;
3655 y->color = MEM_BLACK;
3656 x->parent->parent->color = MEM_RED;
3657 x = x->parent->parent;
3658 }
3659 else
3660 {
3661 if (x == x->parent->left)
3662 {
3663 x = x->parent;
3664 mem_rotate_right (x);
3665 }
3666
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_left (x->parent->parent);
3670 }
3671 }
3672 }
3673
3674 /* The root may have been changed to red due to the algorithm. Set
3675 it to black so that property #5 is satisfied. */
3676 mem_root->color = MEM_BLACK;
3677 }
3678
3679
3680 /* (x) (y)
3681 / \ / \
3682 a (y) ===> (x) c
3683 / \ / \
3684 b c a b */
3685
3686 static void
3687 mem_rotate_left (x)
3688 struct mem_node *x;
3689 {
3690 struct mem_node *y;
3691
3692 /* Turn y's left sub-tree into x's right sub-tree. */
3693 y = x->right;
3694 x->right = y->left;
3695 if (y->left != MEM_NIL)
3696 y->left->parent = x;
3697
3698 /* Y's parent was x's parent. */
3699 if (y != MEM_NIL)
3700 y->parent = x->parent;
3701
3702 /* Get the parent to point to y instead of x. */
3703 if (x->parent)
3704 {
3705 if (x == x->parent->left)
3706 x->parent->left = y;
3707 else
3708 x->parent->right = y;
3709 }
3710 else
3711 mem_root = y;
3712
3713 /* Put x on y's left. */
3714 y->left = x;
3715 if (x != MEM_NIL)
3716 x->parent = y;
3717 }
3718
3719
3720 /* (x) (Y)
3721 / \ / \
3722 (y) c ===> a (x)
3723 / \ / \
3724 a b b c */
3725
3726 static void
3727 mem_rotate_right (x)
3728 struct mem_node *x;
3729 {
3730 struct mem_node *y = x->left;
3731
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
3735
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3739 {
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3744 }
3745 else
3746 mem_root = y;
3747
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3751 }
3752
3753
3754 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3755
3756 static void
3757 mem_delete (z)
3758 struct mem_node *z;
3759 {
3760 struct mem_node *x, *y;
3761
3762 if (!z || z == MEM_NIL)
3763 return;
3764
3765 if (z->left == MEM_NIL || z->right == MEM_NIL)
3766 y = z;
3767 else
3768 {
3769 y = z->right;
3770 while (y->left != MEM_NIL)
3771 y = y->left;
3772 }
3773
3774 if (y->left != MEM_NIL)
3775 x = y->left;
3776 else
3777 x = y->right;
3778
3779 x->parent = y->parent;
3780 if (y->parent)
3781 {
3782 if (y == y->parent->left)
3783 y->parent->left = x;
3784 else
3785 y->parent->right = x;
3786 }
3787 else
3788 mem_root = x;
3789
3790 if (y != z)
3791 {
3792 z->start = y->start;
3793 z->end = y->end;
3794 z->type = y->type;
3795 }
3796
3797 if (y->color == MEM_BLACK)
3798 mem_delete_fixup (x);
3799
3800 #ifdef GC_MALLOC_CHECK
3801 _free_internal (y);
3802 #else
3803 xfree (y);
3804 #endif
3805 }
3806
3807
3808 /* Re-establish the red-black properties of the tree, after a
3809 deletion. */
3810
3811 static void
3812 mem_delete_fixup (x)
3813 struct mem_node *x;
3814 {
3815 while (x != mem_root && x->color == MEM_BLACK)
3816 {
3817 if (x == x->parent->left)
3818 {
3819 struct mem_node *w = x->parent->right;
3820
3821 if (w->color == MEM_RED)
3822 {
3823 w->color = MEM_BLACK;
3824 x->parent->color = MEM_RED;
3825 mem_rotate_left (x->parent);
3826 w = x->parent->right;
3827 }
3828
3829 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3830 {
3831 w->color = MEM_RED;
3832 x = x->parent;
3833 }
3834 else
3835 {
3836 if (w->right->color == MEM_BLACK)
3837 {
3838 w->left->color = MEM_BLACK;
3839 w->color = MEM_RED;
3840 mem_rotate_right (w);
3841 w = x->parent->right;
3842 }
3843 w->color = x->parent->color;
3844 x->parent->color = MEM_BLACK;
3845 w->right->color = MEM_BLACK;
3846 mem_rotate_left (x->parent);
3847 x = mem_root;
3848 }
3849 }
3850 else
3851 {
3852 struct mem_node *w = x->parent->left;
3853
3854 if (w->color == MEM_RED)
3855 {
3856 w->color = MEM_BLACK;
3857 x->parent->color = MEM_RED;
3858 mem_rotate_right (x->parent);
3859 w = x->parent->left;
3860 }
3861
3862 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3863 {
3864 w->color = MEM_RED;
3865 x = x->parent;
3866 }
3867 else
3868 {
3869 if (w->left->color == MEM_BLACK)
3870 {
3871 w->right->color = MEM_BLACK;
3872 w->color = MEM_RED;
3873 mem_rotate_left (w);
3874 w = x->parent->left;
3875 }
3876
3877 w->color = x->parent->color;
3878 x->parent->color = MEM_BLACK;
3879 w->left->color = MEM_BLACK;
3880 mem_rotate_right (x->parent);
3881 x = mem_root;
3882 }
3883 }
3884 }
3885
3886 x->color = MEM_BLACK;
3887 }
3888
3889
3890 /* Value is non-zero if P is a pointer to a live Lisp string on
3891 the heap. M is a pointer to the mem_block for P. */
3892
3893 static INLINE int
3894 live_string_p (m, p)
3895 struct mem_node *m;
3896 void *p;
3897 {
3898 if (m->type == MEM_TYPE_STRING)
3899 {
3900 struct string_block *b = (struct string_block *) m->start;
3901 int offset = (char *) p - (char *) &b->strings[0];
3902
3903 /* P must point to the start of a Lisp_String structure, and it
3904 must not be on the free-list. */
3905 return (offset >= 0
3906 && offset % sizeof b->strings[0] == 0
3907 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3908 && ((struct Lisp_String *) p)->data != NULL);
3909 }
3910 else
3911 return 0;
3912 }
3913
3914
3915 /* Value is non-zero if P is a pointer to a live Lisp cons on
3916 the heap. M is a pointer to the mem_block for P. */
3917
3918 static INLINE int
3919 live_cons_p (m, p)
3920 struct mem_node *m;
3921 void *p;
3922 {
3923 if (m->type == MEM_TYPE_CONS)
3924 {
3925 struct cons_block *b = (struct cons_block *) m->start;
3926 int offset = (char *) p - (char *) &b->conses[0];
3927
3928 /* P must point to the start of a Lisp_Cons, not be
3929 one of the unused cells in the current cons block,
3930 and not be on the free-list. */
3931 return (offset >= 0
3932 && offset % sizeof b->conses[0] == 0
3933 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3934 && (b != cons_block
3935 || offset / sizeof b->conses[0] < cons_block_index)
3936 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3937 }
3938 else
3939 return 0;
3940 }
3941
3942
3943 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3944 the heap. M is a pointer to the mem_block for P. */
3945
3946 static INLINE int
3947 live_symbol_p (m, p)
3948 struct mem_node *m;
3949 void *p;
3950 {
3951 if (m->type == MEM_TYPE_SYMBOL)
3952 {
3953 struct symbol_block *b = (struct symbol_block *) m->start;
3954 int offset = (char *) p - (char *) &b->symbols[0];
3955
3956 /* P must point to the start of a Lisp_Symbol, not be
3957 one of the unused cells in the current symbol block,
3958 and not be on the free-list. */
3959 return (offset >= 0
3960 && offset % sizeof b->symbols[0] == 0
3961 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3962 && (b != symbol_block
3963 || offset / sizeof b->symbols[0] < symbol_block_index)
3964 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3965 }
3966 else
3967 return 0;
3968 }
3969
3970
3971 /* Value is non-zero if P is a pointer to a live Lisp float on
3972 the heap. M is a pointer to the mem_block for P. */
3973
3974 static INLINE int
3975 live_float_p (m, p)
3976 struct mem_node *m;
3977 void *p;
3978 {
3979 if (m->type == MEM_TYPE_FLOAT)
3980 {
3981 struct float_block *b = (struct float_block *) m->start;
3982 int offset = (char *) p - (char *) &b->floats[0];
3983
3984 /* P must point to the start of a Lisp_Float and not be
3985 one of the unused cells in the current float block. */
3986 return (offset >= 0
3987 && offset % sizeof b->floats[0] == 0
3988 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3989 && (b != float_block
3990 || offset / sizeof b->floats[0] < float_block_index));
3991 }
3992 else
3993 return 0;
3994 }
3995
3996
3997 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3998 the heap. M is a pointer to the mem_block for P. */
3999
4000 static INLINE int
4001 live_misc_p (m, p)
4002 struct mem_node *m;
4003 void *p;
4004 {
4005 if (m->type == MEM_TYPE_MISC)
4006 {
4007 struct marker_block *b = (struct marker_block *) m->start;
4008 int offset = (char *) p - (char *) &b->markers[0];
4009
4010 /* P must point to the start of a Lisp_Misc, not be
4011 one of the unused cells in the current misc block,
4012 and not be on the free-list. */
4013 return (offset >= 0
4014 && offset % sizeof b->markers[0] == 0
4015 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4016 && (b != marker_block
4017 || offset / sizeof b->markers[0] < marker_block_index)
4018 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4019 }
4020 else
4021 return 0;
4022 }
4023
4024
4025 /* Value is non-zero if P is a pointer to a live vector-like object.
4026 M is a pointer to the mem_block for P. */
4027
4028 static INLINE int
4029 live_vector_p (m, p)
4030 struct mem_node *m;
4031 void *p;
4032 {
4033 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4034 }
4035
4036
4037 /* Value is non-zero if P is a pointer to a live buffer. M is a
4038 pointer to the mem_block for P. */
4039
4040 static INLINE int
4041 live_buffer_p (m, p)
4042 struct mem_node *m;
4043 void *p;
4044 {
4045 /* P must point to the start of the block, and the buffer
4046 must not have been killed. */
4047 return (m->type == MEM_TYPE_BUFFER
4048 && p == m->start
4049 && !NILP (((struct buffer *) p)->name));
4050 }
4051
4052 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4053
4054 #if GC_MARK_STACK
4055
4056 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4057
4058 /* Array of objects that are kept alive because the C stack contains
4059 a pattern that looks like a reference to them . */
4060
4061 #define MAX_ZOMBIES 10
4062 static Lisp_Object zombies[MAX_ZOMBIES];
4063
4064 /* Number of zombie objects. */
4065
4066 static int nzombies;
4067
4068 /* Number of garbage collections. */
4069
4070 static int ngcs;
4071
4072 /* Average percentage of zombies per collection. */
4073
4074 static double avg_zombies;
4075
4076 /* Max. number of live and zombie objects. */
4077
4078 static int max_live, max_zombies;
4079
4080 /* Average number of live objects per GC. */
4081
4082 static double avg_live;
4083
4084 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4085 doc: /* Show information about live and zombie objects. */)
4086 ()
4087 {
4088 Lisp_Object args[8], zombie_list = Qnil;
4089 int i;
4090 for (i = 0; i < nzombies; i++)
4091 zombie_list = Fcons (zombies[i], zombie_list);
4092 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4093 args[1] = make_number (ngcs);
4094 args[2] = make_float (avg_live);
4095 args[3] = make_float (avg_zombies);
4096 args[4] = make_float (avg_zombies / avg_live / 100);
4097 args[5] = make_number (max_live);
4098 args[6] = make_number (max_zombies);
4099 args[7] = zombie_list;
4100 return Fmessage (8, args);
4101 }
4102
4103 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4104
4105
4106 /* Mark OBJ if we can prove it's a Lisp_Object. */
4107
4108 static INLINE void
4109 mark_maybe_object (obj)
4110 Lisp_Object obj;
4111 {
4112 void *po = (void *) XPNTR (obj);
4113 struct mem_node *m = mem_find (po);
4114
4115 if (m != MEM_NIL)
4116 {
4117 int mark_p = 0;
4118
4119 switch (XTYPE (obj))
4120 {
4121 case Lisp_String:
4122 mark_p = (live_string_p (m, po)
4123 && !STRING_MARKED_P ((struct Lisp_String *) po));
4124 break;
4125
4126 case Lisp_Cons:
4127 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4128 break;
4129
4130 case Lisp_Symbol:
4131 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4132 break;
4133
4134 case Lisp_Float:
4135 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4136 break;
4137
4138 case Lisp_Vectorlike:
4139 /* Note: can't check BUFFERP before we know it's a
4140 buffer because checking that dereferences the pointer
4141 PO which might point anywhere. */
4142 if (live_vector_p (m, po))
4143 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4144 else if (live_buffer_p (m, po))
4145 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4146 break;
4147
4148 case Lisp_Misc:
4149 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4150 break;
4151
4152 default:
4153 break;
4154 }
4155
4156 if (mark_p)
4157 {
4158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 if (nzombies < MAX_ZOMBIES)
4160 zombies[nzombies] = obj;
4161 ++nzombies;
4162 #endif
4163 mark_object (obj);
4164 }
4165 }
4166 }
4167
4168
4169 /* If P points to Lisp data, mark that as live if it isn't already
4170 marked. */
4171
4172 static INLINE void
4173 mark_maybe_pointer (p)
4174 void *p;
4175 {
4176 struct mem_node *m;
4177
4178 /* Quickly rule out some values which can't point to Lisp data. */
4179 if ((EMACS_INT) p %
4180 #ifdef USE_LSB_TAG
4181 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4182 #else
4183 2 /* We assume that Lisp data is aligned on even addresses. */
4184 #endif
4185 )
4186 return;
4187
4188 m = mem_find (p);
4189 if (m != MEM_NIL)
4190 {
4191 Lisp_Object obj = Qnil;
4192
4193 switch (m->type)
4194 {
4195 case MEM_TYPE_NON_LISP:
4196 /* Nothing to do; not a pointer to Lisp memory. */
4197 break;
4198
4199 case MEM_TYPE_BUFFER:
4200 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4201 XSETVECTOR (obj, p);
4202 break;
4203
4204 case MEM_TYPE_CONS:
4205 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4206 XSETCONS (obj, p);
4207 break;
4208
4209 case MEM_TYPE_STRING:
4210 if (live_string_p (m, p)
4211 && !STRING_MARKED_P ((struct Lisp_String *) p))
4212 XSETSTRING (obj, p);
4213 break;
4214
4215 case MEM_TYPE_MISC:
4216 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4217 XSETMISC (obj, p);
4218 break;
4219
4220 case MEM_TYPE_SYMBOL:
4221 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4222 XSETSYMBOL (obj, p);
4223 break;
4224
4225 case MEM_TYPE_FLOAT:
4226 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4227 XSETFLOAT (obj, p);
4228 break;
4229
4230 case MEM_TYPE_VECTORLIKE:
4231 if (live_vector_p (m, p))
4232 {
4233 Lisp_Object tem;
4234 XSETVECTOR (tem, p);
4235 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4236 obj = tem;
4237 }
4238 break;
4239
4240 default:
4241 abort ();
4242 }
4243
4244 if (!NILP (obj))
4245 mark_object (obj);
4246 }
4247 }
4248
4249
4250 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4251 or END+OFFSET..START. */
4252
4253 static void
4254 mark_memory (start, end, offset)
4255 void *start, *end;
4256 int offset;
4257 {
4258 Lisp_Object *p;
4259 void **pp;
4260
4261 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4262 nzombies = 0;
4263 #endif
4264
4265 /* Make START the pointer to the start of the memory region,
4266 if it isn't already. */
4267 if (end < start)
4268 {
4269 void *tem = start;
4270 start = end;
4271 end = tem;
4272 }
4273
4274 /* Mark Lisp_Objects. */
4275 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4276 mark_maybe_object (*p);
4277
4278 /* Mark Lisp data pointed to. This is necessary because, in some
4279 situations, the C compiler optimizes Lisp objects away, so that
4280 only a pointer to them remains. Example:
4281
4282 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4283 ()
4284 {
4285 Lisp_Object obj = build_string ("test");
4286 struct Lisp_String *s = XSTRING (obj);
4287 Fgarbage_collect ();
4288 fprintf (stderr, "test `%s'\n", s->data);
4289 return Qnil;
4290 }
4291
4292 Here, `obj' isn't really used, and the compiler optimizes it
4293 away. The only reference to the life string is through the
4294 pointer `s'. */
4295
4296 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4297 mark_maybe_pointer (*pp);
4298 }
4299
4300 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4301 the GCC system configuration. In gcc 3.2, the only systems for
4302 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4303 by others?) and ns32k-pc532-min. */
4304
4305 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4306
4307 static int setjmp_tested_p, longjmps_done;
4308
4309 #define SETJMP_WILL_LIKELY_WORK "\
4310 \n\
4311 Emacs garbage collector has been changed to use conservative stack\n\
4312 marking. Emacs has determined that the method it uses to do the\n\
4313 marking will likely work on your system, but this isn't sure.\n\
4314 \n\
4315 If you are a system-programmer, or can get the help of a local wizard\n\
4316 who is, please take a look at the function mark_stack in alloc.c, and\n\
4317 verify that the methods used are appropriate for your system.\n\
4318 \n\
4319 Please mail the result to <emacs-devel@gnu.org>.\n\
4320 "
4321
4322 #define SETJMP_WILL_NOT_WORK "\
4323 \n\
4324 Emacs garbage collector has been changed to use conservative stack\n\
4325 marking. Emacs has determined that the default method it uses to do the\n\
4326 marking will not work on your system. We will need a system-dependent\n\
4327 solution for your system.\n\
4328 \n\
4329 Please take a look at the function mark_stack in alloc.c, and\n\
4330 try to find a way to make it work on your system.\n\
4331 \n\
4332 Note that you may get false negatives, depending on the compiler.\n\
4333 In particular, you need to use -O with GCC for this test.\n\
4334 \n\
4335 Please mail the result to <emacs-devel@gnu.org>.\n\
4336 "
4337
4338
4339 /* Perform a quick check if it looks like setjmp saves registers in a
4340 jmp_buf. Print a message to stderr saying so. When this test
4341 succeeds, this is _not_ a proof that setjmp is sufficient for
4342 conservative stack marking. Only the sources or a disassembly
4343 can prove that. */
4344
4345 static void
4346 test_setjmp ()
4347 {
4348 char buf[10];
4349 register int x;
4350 jmp_buf jbuf;
4351 int result = 0;
4352
4353 /* Arrange for X to be put in a register. */
4354 sprintf (buf, "1");
4355 x = strlen (buf);
4356 x = 2 * x - 1;
4357
4358 setjmp (jbuf);
4359 if (longjmps_done == 1)
4360 {
4361 /* Came here after the longjmp at the end of the function.
4362
4363 If x == 1, the longjmp has restored the register to its
4364 value before the setjmp, and we can hope that setjmp
4365 saves all such registers in the jmp_buf, although that
4366 isn't sure.
4367
4368 For other values of X, either something really strange is
4369 taking place, or the setjmp just didn't save the register. */
4370
4371 if (x == 1)
4372 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4373 else
4374 {
4375 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4376 exit (1);
4377 }
4378 }
4379
4380 ++longjmps_done;
4381 x = 2;
4382 if (longjmps_done == 1)
4383 longjmp (jbuf, 1);
4384 }
4385
4386 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4387
4388
4389 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4390
4391 /* Abort if anything GCPRO'd doesn't survive the GC. */
4392
4393 static void
4394 check_gcpros ()
4395 {
4396 struct gcpro *p;
4397 int i;
4398
4399 for (p = gcprolist; p; p = p->next)
4400 for (i = 0; i < p->nvars; ++i)
4401 if (!survives_gc_p (p->var[i]))
4402 /* FIXME: It's not necessarily a bug. It might just be that the
4403 GCPRO is unnecessary or should release the object sooner. */
4404 abort ();
4405 }
4406
4407 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409 static void
4410 dump_zombies ()
4411 {
4412 int i;
4413
4414 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4415 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4416 {
4417 fprintf (stderr, " %d = ", i);
4418 debug_print (zombies[i]);
4419 }
4420 }
4421
4422 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4423
4424
4425 /* Mark live Lisp objects on the C stack.
4426
4427 There are several system-dependent problems to consider when
4428 porting this to new architectures:
4429
4430 Processor Registers
4431
4432 We have to mark Lisp objects in CPU registers that can hold local
4433 variables or are used to pass parameters.
4434
4435 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4436 something that either saves relevant registers on the stack, or
4437 calls mark_maybe_object passing it each register's contents.
4438
4439 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4440 implementation assumes that calling setjmp saves registers we need
4441 to see in a jmp_buf which itself lies on the stack. This doesn't
4442 have to be true! It must be verified for each system, possibly
4443 by taking a look at the source code of setjmp.
4444
4445 Stack Layout
4446
4447 Architectures differ in the way their processor stack is organized.
4448 For example, the stack might look like this
4449
4450 +----------------+
4451 | Lisp_Object | size = 4
4452 +----------------+
4453 | something else | size = 2
4454 +----------------+
4455 | Lisp_Object | size = 4
4456 +----------------+
4457 | ... |
4458
4459 In such a case, not every Lisp_Object will be aligned equally. To
4460 find all Lisp_Object on the stack it won't be sufficient to walk
4461 the stack in steps of 4 bytes. Instead, two passes will be
4462 necessary, one starting at the start of the stack, and a second
4463 pass starting at the start of the stack + 2. Likewise, if the
4464 minimal alignment of Lisp_Objects on the stack is 1, four passes
4465 would be necessary, each one starting with one byte more offset
4466 from the stack start.
4467
4468 The current code assumes by default that Lisp_Objects are aligned
4469 equally on the stack. */
4470
4471 static void
4472 mark_stack ()
4473 {
4474 int i;
4475 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4476 union aligned_jmpbuf {
4477 Lisp_Object o;
4478 jmp_buf j;
4479 } j;
4480 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4481 void *end;
4482
4483 /* This trick flushes the register windows so that all the state of
4484 the process is contained in the stack. */
4485 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4486 needed on ia64 too. See mach_dep.c, where it also says inline
4487 assembler doesn't work with relevant proprietary compilers. */
4488 #ifdef __sparc__
4489 #if defined (__sparc64__) && defined (__FreeBSD__)
4490 /* FreeBSD does not have a ta 3 handler. */
4491 asm ("flushw");
4492 #else
4493 asm ("ta 3");
4494 #endif
4495 #endif
4496
4497 /* Save registers that we need to see on the stack. We need to see
4498 registers used to hold register variables and registers used to
4499 pass parameters. */
4500 #ifdef GC_SAVE_REGISTERS_ON_STACK
4501 GC_SAVE_REGISTERS_ON_STACK (end);
4502 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4503
4504 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4505 setjmp will definitely work, test it
4506 and print a message with the result
4507 of the test. */
4508 if (!setjmp_tested_p)
4509 {
4510 setjmp_tested_p = 1;
4511 test_setjmp ();
4512 }
4513 #endif /* GC_SETJMP_WORKS */
4514
4515 setjmp (j.j);
4516 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4517 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4518
4519 /* This assumes that the stack is a contiguous region in memory. If
4520 that's not the case, something has to be done here to iterate
4521 over the stack segments. */
4522 #ifndef GC_LISP_OBJECT_ALIGNMENT
4523 #ifdef __GNUC__
4524 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4525 #else
4526 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4527 #endif
4528 #endif
4529 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4530 mark_memory (stack_base, end, i);
4531 /* Allow for marking a secondary stack, like the register stack on the
4532 ia64. */
4533 #ifdef GC_MARK_SECONDARY_STACK
4534 GC_MARK_SECONDARY_STACK ();
4535 #endif
4536
4537 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4538 check_gcpros ();
4539 #endif
4540 }
4541
4542 #endif /* GC_MARK_STACK != 0 */
4543
4544
4545 /* Determine whether it is safe to access memory at address P. */
4546 static int
4547 valid_pointer_p (p)
4548 void *p;
4549 {
4550 #ifdef WINDOWSNT
4551 return w32_valid_pointer_p (p, 16);
4552 #else
4553 int fd;
4554
4555 /* Obviously, we cannot just access it (we would SEGV trying), so we
4556 trick the o/s to tell us whether p is a valid pointer.
4557 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4558 not validate p in that case. */
4559
4560 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4561 {
4562 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4563 emacs_close (fd);
4564 unlink ("__Valid__Lisp__Object__");
4565 return valid;
4566 }
4567
4568 return -1;
4569 #endif
4570 }
4571
4572 /* Return 1 if OBJ is a valid lisp object.
4573 Return 0 if OBJ is NOT a valid lisp object.
4574 Return -1 if we cannot validate OBJ.
4575 This function can be quite slow,
4576 so it should only be used in code for manual debugging. */
4577
4578 int
4579 valid_lisp_object_p (obj)
4580 Lisp_Object obj;
4581 {
4582 void *p;
4583 #if GC_MARK_STACK
4584 struct mem_node *m;
4585 #endif
4586
4587 if (INTEGERP (obj))
4588 return 1;
4589
4590 p = (void *) XPNTR (obj);
4591 if (PURE_POINTER_P (p))
4592 return 1;
4593
4594 #if !GC_MARK_STACK
4595 return valid_pointer_p (p);
4596 #else
4597
4598 m = mem_find (p);
4599
4600 if (m == MEM_NIL)
4601 {
4602 int valid = valid_pointer_p (p);
4603 if (valid <= 0)
4604 return valid;
4605
4606 if (SUBRP (obj))
4607 return 1;
4608
4609 return 0;
4610 }
4611
4612 switch (m->type)
4613 {
4614 case MEM_TYPE_NON_LISP:
4615 return 0;
4616
4617 case MEM_TYPE_BUFFER:
4618 return live_buffer_p (m, p);
4619
4620 case MEM_TYPE_CONS:
4621 return live_cons_p (m, p);
4622
4623 case MEM_TYPE_STRING:
4624 return live_string_p (m, p);
4625
4626 case MEM_TYPE_MISC:
4627 return live_misc_p (m, p);
4628
4629 case MEM_TYPE_SYMBOL:
4630 return live_symbol_p (m, p);
4631
4632 case MEM_TYPE_FLOAT:
4633 return live_float_p (m, p);
4634
4635 case MEM_TYPE_VECTORLIKE:
4636 return live_vector_p (m, p);
4637
4638 default:
4639 break;
4640 }
4641
4642 return 0;
4643 #endif
4644 }
4645
4646
4647
4648 \f
4649 /***********************************************************************
4650 Pure Storage Management
4651 ***********************************************************************/
4652
4653 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4654 pointer to it. TYPE is the Lisp type for which the memory is
4655 allocated. TYPE < 0 means it's not used for a Lisp object. */
4656
4657 static POINTER_TYPE *
4658 pure_alloc (size, type)
4659 size_t size;
4660 int type;
4661 {
4662 POINTER_TYPE *result;
4663 #ifdef USE_LSB_TAG
4664 size_t alignment = (1 << GCTYPEBITS);
4665 #else
4666 size_t alignment = sizeof (EMACS_INT);
4667
4668 /* Give Lisp_Floats an extra alignment. */
4669 if (type == Lisp_Float)
4670 {
4671 #if defined __GNUC__ && __GNUC__ >= 2
4672 alignment = __alignof (struct Lisp_Float);
4673 #else
4674 alignment = sizeof (struct Lisp_Float);
4675 #endif
4676 }
4677 #endif
4678
4679 again:
4680 if (type >= 0)
4681 {
4682 /* Allocate space for a Lisp object from the beginning of the free
4683 space with taking account of alignment. */
4684 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4685 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4686 }
4687 else
4688 {
4689 /* Allocate space for a non-Lisp object from the end of the free
4690 space. */
4691 pure_bytes_used_non_lisp += size;
4692 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4693 }
4694 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4695
4696 if (pure_bytes_used <= pure_size)
4697 return result;
4698
4699 /* Don't allocate a large amount here,
4700 because it might get mmap'd and then its address
4701 might not be usable. */
4702 purebeg = (char *) xmalloc (10000);
4703 pure_size = 10000;
4704 pure_bytes_used_before_overflow += pure_bytes_used - size;
4705 pure_bytes_used = 0;
4706 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4707 goto again;
4708 }
4709
4710
4711 /* Print a warning if PURESIZE is too small. */
4712
4713 void
4714 check_pure_size ()
4715 {
4716 if (pure_bytes_used_before_overflow)
4717 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4718 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4719 }
4720
4721
4722 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4723 the non-Lisp data pool of the pure storage, and return its start
4724 address. Return NULL if not found. */
4725
4726 static char *
4727 find_string_data_in_pure (data, nbytes)
4728 char *data;
4729 int nbytes;
4730 {
4731 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4732 unsigned char *p;
4733 char *non_lisp_beg;
4734
4735 if (pure_bytes_used_non_lisp < nbytes + 1)
4736 return NULL;
4737
4738 /* Set up the Boyer-Moore table. */
4739 skip = nbytes + 1;
4740 for (i = 0; i < 256; i++)
4741 bm_skip[i] = skip;
4742
4743 p = (unsigned char *) data;
4744 while (--skip > 0)
4745 bm_skip[*p++] = skip;
4746
4747 last_char_skip = bm_skip['\0'];
4748
4749 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4750 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4751
4752 /* See the comments in the function `boyer_moore' (search.c) for the
4753 use of `infinity'. */
4754 infinity = pure_bytes_used_non_lisp + 1;
4755 bm_skip['\0'] = infinity;
4756
4757 p = (unsigned char *) non_lisp_beg + nbytes;
4758 start = 0;
4759 do
4760 {
4761 /* Check the last character (== '\0'). */
4762 do
4763 {
4764 start += bm_skip[*(p + start)];
4765 }
4766 while (start <= start_max);
4767
4768 if (start < infinity)
4769 /* Couldn't find the last character. */
4770 return NULL;
4771
4772 /* No less than `infinity' means we could find the last
4773 character at `p[start - infinity]'. */
4774 start -= infinity;
4775
4776 /* Check the remaining characters. */
4777 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4778 /* Found. */
4779 return non_lisp_beg + start;
4780
4781 start += last_char_skip;
4782 }
4783 while (start <= start_max);
4784
4785 return NULL;
4786 }
4787
4788
4789 /* Return a string allocated in pure space. DATA is a buffer holding
4790 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4791 non-zero means make the result string multibyte.
4792
4793 Must get an error if pure storage is full, since if it cannot hold
4794 a large string it may be able to hold conses that point to that
4795 string; then the string is not protected from gc. */
4796
4797 Lisp_Object
4798 make_pure_string (data, nchars, nbytes, multibyte)
4799 char *data;
4800 int nchars, nbytes;
4801 int multibyte;
4802 {
4803 Lisp_Object string;
4804 struct Lisp_String *s;
4805
4806 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4807 s->data = find_string_data_in_pure (data, nbytes);
4808 if (s->data == NULL)
4809 {
4810 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4811 bcopy (data, s->data, nbytes);
4812 s->data[nbytes] = '\0';
4813 }
4814 s->size = nchars;
4815 s->size_byte = multibyte ? nbytes : -1;
4816 s->intervals = NULL_INTERVAL;
4817 XSETSTRING (string, s);
4818 return string;
4819 }
4820
4821 /* Return a string a string allocated in pure space. Do not allocate
4822 the string data, just point to DATA. */
4823
4824 Lisp_Object
4825 make_pure_c_string (const char *data)
4826 {
4827 Lisp_Object string;
4828 struct Lisp_String *s;
4829 int nchars = strlen (data);
4830
4831 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4832 s->size = nchars;
4833 s->size_byte = -1;
4834 s->data = (unsigned char *) data;
4835 s->intervals = NULL_INTERVAL;
4836 XSETSTRING (string, s);
4837 return string;
4838 }
4839
4840 /* Return a cons allocated from pure space. Give it pure copies
4841 of CAR as car and CDR as cdr. */
4842
4843 Lisp_Object
4844 pure_cons (car, cdr)
4845 Lisp_Object car, cdr;
4846 {
4847 register Lisp_Object new;
4848 struct Lisp_Cons *p;
4849
4850 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4851 XSETCONS (new, p);
4852 XSETCAR (new, Fpurecopy (car));
4853 XSETCDR (new, Fpurecopy (cdr));
4854 return new;
4855 }
4856
4857
4858 /* Value is a float object with value NUM allocated from pure space. */
4859
4860 static Lisp_Object
4861 make_pure_float (num)
4862 double num;
4863 {
4864 register Lisp_Object new;
4865 struct Lisp_Float *p;
4866
4867 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4868 XSETFLOAT (new, p);
4869 XFLOAT_INIT (new, num);
4870 return new;
4871 }
4872
4873
4874 /* Return a vector with room for LEN Lisp_Objects allocated from
4875 pure space. */
4876
4877 Lisp_Object
4878 make_pure_vector (len)
4879 EMACS_INT len;
4880 {
4881 Lisp_Object new;
4882 struct Lisp_Vector *p;
4883 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4884
4885 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4886 XSETVECTOR (new, p);
4887 XVECTOR (new)->size = len;
4888 return new;
4889 }
4890
4891
4892 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4893 doc: /* Make a copy of object OBJ in pure storage.
4894 Recursively copies contents of vectors and cons cells.
4895 Does not copy symbols. Copies strings without text properties. */)
4896 (obj)
4897 register Lisp_Object obj;
4898 {
4899 if (NILP (Vpurify_flag))
4900 return obj;
4901
4902 if (PURE_POINTER_P (XPNTR (obj)))
4903 return obj;
4904
4905 if (CONSP (obj))
4906 return pure_cons (XCAR (obj), XCDR (obj));
4907 else if (FLOATP (obj))
4908 return make_pure_float (XFLOAT_DATA (obj));
4909 else if (STRINGP (obj))
4910 return make_pure_string (SDATA (obj), SCHARS (obj),
4911 SBYTES (obj),
4912 STRING_MULTIBYTE (obj));
4913 else if (COMPILEDP (obj) || VECTORP (obj))
4914 {
4915 register struct Lisp_Vector *vec;
4916 register int i;
4917 EMACS_INT size;
4918
4919 size = XVECTOR (obj)->size;
4920 if (size & PSEUDOVECTOR_FLAG)
4921 size &= PSEUDOVECTOR_SIZE_MASK;
4922 vec = XVECTOR (make_pure_vector (size));
4923 for (i = 0; i < size; i++)
4924 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4925 if (COMPILEDP (obj))
4926 {
4927 XSETPVECTYPE (vec, PVEC_COMPILED);
4928 XSETCOMPILED (obj, vec);
4929 }
4930 else
4931 XSETVECTOR (obj, vec);
4932 return obj;
4933 }
4934 else if (MARKERP (obj))
4935 error ("Attempt to copy a marker to pure storage");
4936
4937 return obj;
4938 }
4939
4940
4941 \f
4942 /***********************************************************************
4943 Protection from GC
4944 ***********************************************************************/
4945
4946 /* Put an entry in staticvec, pointing at the variable with address
4947 VARADDRESS. */
4948
4949 void
4950 staticpro (varaddress)
4951 Lisp_Object *varaddress;
4952 {
4953 staticvec[staticidx++] = varaddress;
4954 if (staticidx >= NSTATICS)
4955 abort ();
4956 }
4957
4958 \f
4959 /***********************************************************************
4960 Protection from GC
4961 ***********************************************************************/
4962
4963 /* Temporarily prevent garbage collection. */
4964
4965 int
4966 inhibit_garbage_collection ()
4967 {
4968 int count = SPECPDL_INDEX ();
4969 int nbits = min (VALBITS, BITS_PER_INT);
4970
4971 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4972 return count;
4973 }
4974
4975
4976 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4977 doc: /* Reclaim storage for Lisp objects no longer needed.
4978 Garbage collection happens automatically if you cons more than
4979 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4980 `garbage-collect' normally returns a list with info on amount of space in use:
4981 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4982 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4983 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4984 (USED-STRINGS . FREE-STRINGS))
4985 However, if there was overflow in pure space, `garbage-collect'
4986 returns nil, because real GC can't be done. */)
4987 ()
4988 {
4989 register struct specbinding *bind;
4990 struct catchtag *catch;
4991 struct handler *handler;
4992 char stack_top_variable;
4993 register int i;
4994 int message_p;
4995 Lisp_Object total[8];
4996 int count = SPECPDL_INDEX ();
4997 EMACS_TIME t1, t2, t3;
4998
4999 if (abort_on_gc)
5000 abort ();
5001
5002 /* Can't GC if pure storage overflowed because we can't determine
5003 if something is a pure object or not. */
5004 if (pure_bytes_used_before_overflow)
5005 return Qnil;
5006
5007 CHECK_CONS_LIST ();
5008
5009 /* Don't keep undo information around forever.
5010 Do this early on, so it is no problem if the user quits. */
5011 {
5012 register struct buffer *nextb = all_buffers;
5013
5014 while (nextb)
5015 {
5016 /* If a buffer's undo list is Qt, that means that undo is
5017 turned off in that buffer. Calling truncate_undo_list on
5018 Qt tends to return NULL, which effectively turns undo back on.
5019 So don't call truncate_undo_list if undo_list is Qt. */
5020 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5021 truncate_undo_list (nextb);
5022
5023 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5024 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5025 && ! nextb->text->inhibit_shrinking)
5026 {
5027 /* If a buffer's gap size is more than 10% of the buffer
5028 size, or larger than 2000 bytes, then shrink it
5029 accordingly. Keep a minimum size of 20 bytes. */
5030 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5031
5032 if (nextb->text->gap_size > size)
5033 {
5034 struct buffer *save_current = current_buffer;
5035 current_buffer = nextb;
5036 make_gap (-(nextb->text->gap_size - size));
5037 current_buffer = save_current;
5038 }
5039 }
5040
5041 nextb = nextb->next;
5042 }
5043 }
5044
5045 EMACS_GET_TIME (t1);
5046
5047 /* In case user calls debug_print during GC,
5048 don't let that cause a recursive GC. */
5049 consing_since_gc = 0;
5050
5051 /* Save what's currently displayed in the echo area. */
5052 message_p = push_message ();
5053 record_unwind_protect (pop_message_unwind, Qnil);
5054
5055 /* Save a copy of the contents of the stack, for debugging. */
5056 #if MAX_SAVE_STACK > 0
5057 if (NILP (Vpurify_flag))
5058 {
5059 i = &stack_top_variable - stack_bottom;
5060 if (i < 0) i = -i;
5061 if (i < MAX_SAVE_STACK)
5062 {
5063 if (stack_copy == 0)
5064 stack_copy = (char *) xmalloc (stack_copy_size = i);
5065 else if (stack_copy_size < i)
5066 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5067 if (stack_copy)
5068 {
5069 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5070 bcopy (stack_bottom, stack_copy, i);
5071 else
5072 bcopy (&stack_top_variable, stack_copy, i);
5073 }
5074 }
5075 }
5076 #endif /* MAX_SAVE_STACK > 0 */
5077
5078 if (garbage_collection_messages)
5079 message1_nolog ("Garbage collecting...");
5080
5081 BLOCK_INPUT;
5082
5083 shrink_regexp_cache ();
5084
5085 gc_in_progress = 1;
5086
5087 /* clear_marks (); */
5088
5089 /* Mark all the special slots that serve as the roots of accessibility. */
5090
5091 for (i = 0; i < staticidx; i++)
5092 mark_object (*staticvec[i]);
5093
5094 for (bind = specpdl; bind != specpdl_ptr; bind++)
5095 {
5096 mark_object (bind->symbol);
5097 mark_object (bind->old_value);
5098 }
5099 mark_terminals ();
5100 mark_kboards ();
5101 mark_ttys ();
5102
5103 #ifdef USE_GTK
5104 {
5105 extern void xg_mark_data ();
5106 xg_mark_data ();
5107 }
5108 #endif
5109
5110 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5111 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5112 mark_stack ();
5113 #else
5114 {
5115 register struct gcpro *tail;
5116 for (tail = gcprolist; tail; tail = tail->next)
5117 for (i = 0; i < tail->nvars; i++)
5118 mark_object (tail->var[i]);
5119 }
5120 #endif
5121
5122 mark_byte_stack ();
5123 for (catch = catchlist; catch; catch = catch->next)
5124 {
5125 mark_object (catch->tag);
5126 mark_object (catch->val);
5127 }
5128 for (handler = handlerlist; handler; handler = handler->next)
5129 {
5130 mark_object (handler->handler);
5131 mark_object (handler->var);
5132 }
5133 mark_backtrace ();
5134
5135 #ifdef HAVE_WINDOW_SYSTEM
5136 mark_fringe_data ();
5137 #endif
5138
5139 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5140 mark_stack ();
5141 #endif
5142
5143 /* Everything is now marked, except for the things that require special
5144 finalization, i.e. the undo_list.
5145 Look thru every buffer's undo list
5146 for elements that update markers that were not marked,
5147 and delete them. */
5148 {
5149 register struct buffer *nextb = all_buffers;
5150
5151 while (nextb)
5152 {
5153 /* If a buffer's undo list is Qt, that means that undo is
5154 turned off in that buffer. Calling truncate_undo_list on
5155 Qt tends to return NULL, which effectively turns undo back on.
5156 So don't call truncate_undo_list if undo_list is Qt. */
5157 if (! EQ (nextb->undo_list, Qt))
5158 {
5159 Lisp_Object tail, prev;
5160 tail = nextb->undo_list;
5161 prev = Qnil;
5162 while (CONSP (tail))
5163 {
5164 if (CONSP (XCAR (tail))
5165 && MARKERP (XCAR (XCAR (tail)))
5166 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5167 {
5168 if (NILP (prev))
5169 nextb->undo_list = tail = XCDR (tail);
5170 else
5171 {
5172 tail = XCDR (tail);
5173 XSETCDR (prev, tail);
5174 }
5175 }
5176 else
5177 {
5178 prev = tail;
5179 tail = XCDR (tail);
5180 }
5181 }
5182 }
5183 /* Now that we have stripped the elements that need not be in the
5184 undo_list any more, we can finally mark the list. */
5185 mark_object (nextb->undo_list);
5186
5187 nextb = nextb->next;
5188 }
5189 }
5190
5191 gc_sweep ();
5192
5193 /* Clear the mark bits that we set in certain root slots. */
5194
5195 unmark_byte_stack ();
5196 VECTOR_UNMARK (&buffer_defaults);
5197 VECTOR_UNMARK (&buffer_local_symbols);
5198
5199 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5200 dump_zombies ();
5201 #endif
5202
5203 UNBLOCK_INPUT;
5204
5205 CHECK_CONS_LIST ();
5206
5207 /* clear_marks (); */
5208 gc_in_progress = 0;
5209
5210 consing_since_gc = 0;
5211 if (gc_cons_threshold < 10000)
5212 gc_cons_threshold = 10000;
5213
5214 if (FLOATP (Vgc_cons_percentage))
5215 { /* Set gc_cons_combined_threshold. */
5216 EMACS_INT total = 0;
5217
5218 total += total_conses * sizeof (struct Lisp_Cons);
5219 total += total_symbols * sizeof (struct Lisp_Symbol);
5220 total += total_markers * sizeof (union Lisp_Misc);
5221 total += total_string_size;
5222 total += total_vector_size * sizeof (Lisp_Object);
5223 total += total_floats * sizeof (struct Lisp_Float);
5224 total += total_intervals * sizeof (struct interval);
5225 total += total_strings * sizeof (struct Lisp_String);
5226
5227 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5228 }
5229 else
5230 gc_relative_threshold = 0;
5231
5232 if (garbage_collection_messages)
5233 {
5234 if (message_p || minibuf_level > 0)
5235 restore_message ();
5236 else
5237 message1_nolog ("Garbage collecting...done");
5238 }
5239
5240 unbind_to (count, Qnil);
5241
5242 total[0] = Fcons (make_number (total_conses),
5243 make_number (total_free_conses));
5244 total[1] = Fcons (make_number (total_symbols),
5245 make_number (total_free_symbols));
5246 total[2] = Fcons (make_number (total_markers),
5247 make_number (total_free_markers));
5248 total[3] = make_number (total_string_size);
5249 total[4] = make_number (total_vector_size);
5250 total[5] = Fcons (make_number (total_floats),
5251 make_number (total_free_floats));
5252 total[6] = Fcons (make_number (total_intervals),
5253 make_number (total_free_intervals));
5254 total[7] = Fcons (make_number (total_strings),
5255 make_number (total_free_strings));
5256
5257 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5258 {
5259 /* Compute average percentage of zombies. */
5260 double nlive = 0;
5261
5262 for (i = 0; i < 7; ++i)
5263 if (CONSP (total[i]))
5264 nlive += XFASTINT (XCAR (total[i]));
5265
5266 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5267 max_live = max (nlive, max_live);
5268 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5269 max_zombies = max (nzombies, max_zombies);
5270 ++ngcs;
5271 }
5272 #endif
5273
5274 if (!NILP (Vpost_gc_hook))
5275 {
5276 int count = inhibit_garbage_collection ();
5277 safe_run_hooks (Qpost_gc_hook);
5278 unbind_to (count, Qnil);
5279 }
5280
5281 /* Accumulate statistics. */
5282 EMACS_GET_TIME (t2);
5283 EMACS_SUB_TIME (t3, t2, t1);
5284 if (FLOATP (Vgc_elapsed))
5285 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5286 EMACS_SECS (t3) +
5287 EMACS_USECS (t3) * 1.0e-6);
5288 gcs_done++;
5289
5290 return Flist (sizeof total / sizeof *total, total);
5291 }
5292
5293
5294 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5295 only interesting objects referenced from glyphs are strings. */
5296
5297 static void
5298 mark_glyph_matrix (matrix)
5299 struct glyph_matrix *matrix;
5300 {
5301 struct glyph_row *row = matrix->rows;
5302 struct glyph_row *end = row + matrix->nrows;
5303
5304 for (; row < end; ++row)
5305 if (row->enabled_p)
5306 {
5307 int area;
5308 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5309 {
5310 struct glyph *glyph = row->glyphs[area];
5311 struct glyph *end_glyph = glyph + row->used[area];
5312
5313 for (; glyph < end_glyph; ++glyph)
5314 if (STRINGP (glyph->object)
5315 && !STRING_MARKED_P (XSTRING (glyph->object)))
5316 mark_object (glyph->object);
5317 }
5318 }
5319 }
5320
5321
5322 /* Mark Lisp faces in the face cache C. */
5323
5324 static void
5325 mark_face_cache (c)
5326 struct face_cache *c;
5327 {
5328 if (c)
5329 {
5330 int i, j;
5331 for (i = 0; i < c->used; ++i)
5332 {
5333 struct face *face = FACE_FROM_ID (c->f, i);
5334
5335 if (face)
5336 {
5337 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5338 mark_object (face->lface[j]);
5339 }
5340 }
5341 }
5342 }
5343
5344
5345 \f
5346 /* Mark reference to a Lisp_Object.
5347 If the object referred to has not been seen yet, recursively mark
5348 all the references contained in it. */
5349
5350 #define LAST_MARKED_SIZE 500
5351 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5352 int last_marked_index;
5353
5354 /* For debugging--call abort when we cdr down this many
5355 links of a list, in mark_object. In debugging,
5356 the call to abort will hit a breakpoint.
5357 Normally this is zero and the check never goes off. */
5358 static int mark_object_loop_halt;
5359
5360 /* Return non-zero if the object was not yet marked. */
5361 static int
5362 mark_vectorlike (ptr)
5363 struct Lisp_Vector *ptr;
5364 {
5365 register EMACS_INT size = ptr->size;
5366 register int i;
5367
5368 if (VECTOR_MARKED_P (ptr))
5369 return 0; /* Already marked */
5370 VECTOR_MARK (ptr); /* Else mark it */
5371 if (size & PSEUDOVECTOR_FLAG)
5372 size &= PSEUDOVECTOR_SIZE_MASK;
5373
5374 /* Note that this size is not the memory-footprint size, but only
5375 the number of Lisp_Object fields that we should trace.
5376 The distinction is used e.g. by Lisp_Process which places extra
5377 non-Lisp_Object fields at the end of the structure. */
5378 for (i = 0; i < size; i++) /* and then mark its elements */
5379 mark_object (ptr->contents[i]);
5380 return 1;
5381 }
5382
5383 /* Like mark_vectorlike but optimized for char-tables (and
5384 sub-char-tables) assuming that the contents are mostly integers or
5385 symbols. */
5386
5387 static void
5388 mark_char_table (ptr)
5389 struct Lisp_Vector *ptr;
5390 {
5391 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5392 register int i;
5393
5394 VECTOR_MARK (ptr);
5395 for (i = 0; i < size; i++)
5396 {
5397 Lisp_Object val = ptr->contents[i];
5398
5399 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5400 continue;
5401 if (SUB_CHAR_TABLE_P (val))
5402 {
5403 if (! VECTOR_MARKED_P (XVECTOR (val)))
5404 mark_char_table (XVECTOR (val));
5405 }
5406 else
5407 mark_object (val);
5408 }
5409 }
5410
5411 void
5412 mark_object (arg)
5413 Lisp_Object arg;
5414 {
5415 register Lisp_Object obj = arg;
5416 #ifdef GC_CHECK_MARKED_OBJECTS
5417 void *po;
5418 struct mem_node *m;
5419 #endif
5420 int cdr_count = 0;
5421
5422 loop:
5423
5424 if (PURE_POINTER_P (XPNTR (obj)))
5425 return;
5426
5427 last_marked[last_marked_index++] = obj;
5428 if (last_marked_index == LAST_MARKED_SIZE)
5429 last_marked_index = 0;
5430
5431 /* Perform some sanity checks on the objects marked here. Abort if
5432 we encounter an object we know is bogus. This increases GC time
5433 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5434 #ifdef GC_CHECK_MARKED_OBJECTS
5435
5436 po = (void *) XPNTR (obj);
5437
5438 /* Check that the object pointed to by PO is known to be a Lisp
5439 structure allocated from the heap. */
5440 #define CHECK_ALLOCATED() \
5441 do { \
5442 m = mem_find (po); \
5443 if (m == MEM_NIL) \
5444 abort (); \
5445 } while (0)
5446
5447 /* Check that the object pointed to by PO is live, using predicate
5448 function LIVEP. */
5449 #define CHECK_LIVE(LIVEP) \
5450 do { \
5451 if (!LIVEP (m, po)) \
5452 abort (); \
5453 } while (0)
5454
5455 /* Check both of the above conditions. */
5456 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5457 do { \
5458 CHECK_ALLOCATED (); \
5459 CHECK_LIVE (LIVEP); \
5460 } while (0) \
5461
5462 #else /* not GC_CHECK_MARKED_OBJECTS */
5463
5464 #define CHECK_ALLOCATED() (void) 0
5465 #define CHECK_LIVE(LIVEP) (void) 0
5466 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5467
5468 #endif /* not GC_CHECK_MARKED_OBJECTS */
5469
5470 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5471 {
5472 case Lisp_String:
5473 {
5474 register struct Lisp_String *ptr = XSTRING (obj);
5475 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5476 MARK_INTERVAL_TREE (ptr->intervals);
5477 MARK_STRING (ptr);
5478 #ifdef GC_CHECK_STRING_BYTES
5479 /* Check that the string size recorded in the string is the
5480 same as the one recorded in the sdata structure. */
5481 CHECK_STRING_BYTES (ptr);
5482 #endif /* GC_CHECK_STRING_BYTES */
5483 }
5484 break;
5485
5486 case Lisp_Vectorlike:
5487 #ifdef GC_CHECK_MARKED_OBJECTS
5488 m = mem_find (po);
5489 if (m == MEM_NIL && !SUBRP (obj)
5490 && po != &buffer_defaults
5491 && po != &buffer_local_symbols)
5492 abort ();
5493 #endif /* GC_CHECK_MARKED_OBJECTS */
5494
5495 if (BUFFERP (obj))
5496 {
5497 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5498 {
5499 #ifdef GC_CHECK_MARKED_OBJECTS
5500 if (po != &buffer_defaults && po != &buffer_local_symbols)
5501 {
5502 struct buffer *b;
5503 for (b = all_buffers; b && b != po; b = b->next)
5504 ;
5505 if (b == NULL)
5506 abort ();
5507 }
5508 #endif /* GC_CHECK_MARKED_OBJECTS */
5509 mark_buffer (obj);
5510 }
5511 }
5512 else if (SUBRP (obj))
5513 break;
5514 else if (COMPILEDP (obj))
5515 /* We could treat this just like a vector, but it is better to
5516 save the COMPILED_CONSTANTS element for last and avoid
5517 recursion there. */
5518 {
5519 register struct Lisp_Vector *ptr = XVECTOR (obj);
5520 register EMACS_INT size = ptr->size;
5521 register int i;
5522
5523 if (VECTOR_MARKED_P (ptr))
5524 break; /* Already marked */
5525
5526 CHECK_LIVE (live_vector_p);
5527 VECTOR_MARK (ptr); /* Else mark it */
5528 size &= PSEUDOVECTOR_SIZE_MASK;
5529 for (i = 0; i < size; i++) /* and then mark its elements */
5530 {
5531 if (i != COMPILED_CONSTANTS)
5532 mark_object (ptr->contents[i]);
5533 }
5534 obj = ptr->contents[COMPILED_CONSTANTS];
5535 goto loop;
5536 }
5537 else if (FRAMEP (obj))
5538 {
5539 register struct frame *ptr = XFRAME (obj);
5540 if (mark_vectorlike (XVECTOR (obj)))
5541 mark_face_cache (ptr->face_cache);
5542 }
5543 else if (WINDOWP (obj))
5544 {
5545 register struct Lisp_Vector *ptr = XVECTOR (obj);
5546 struct window *w = XWINDOW (obj);
5547 if (mark_vectorlike (ptr))
5548 {
5549 /* Mark glyphs for leaf windows. Marking window matrices is
5550 sufficient because frame matrices use the same glyph
5551 memory. */
5552 if (NILP (w->hchild)
5553 && NILP (w->vchild)
5554 && w->current_matrix)
5555 {
5556 mark_glyph_matrix (w->current_matrix);
5557 mark_glyph_matrix (w->desired_matrix);
5558 }
5559 }
5560 }
5561 else if (HASH_TABLE_P (obj))
5562 {
5563 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5564 if (mark_vectorlike ((struct Lisp_Vector *)h))
5565 { /* If hash table is not weak, mark all keys and values.
5566 For weak tables, mark only the vector. */
5567 if (NILP (h->weak))
5568 mark_object (h->key_and_value);
5569 else
5570 VECTOR_MARK (XVECTOR (h->key_and_value));
5571 }
5572 }
5573 else if (CHAR_TABLE_P (obj))
5574 {
5575 if (! VECTOR_MARKED_P (XVECTOR (obj)))
5576 mark_char_table (XVECTOR (obj));
5577 }
5578 else
5579 mark_vectorlike (XVECTOR (obj));
5580 break;
5581
5582 case Lisp_Symbol:
5583 {
5584 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5585 struct Lisp_Symbol *ptrx;
5586
5587 if (ptr->gcmarkbit) break;
5588 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5589 ptr->gcmarkbit = 1;
5590 mark_object (ptr->value);
5591 mark_object (ptr->function);
5592 mark_object (ptr->plist);
5593
5594 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5595 MARK_STRING (XSTRING (ptr->xname));
5596 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5597
5598 /* Note that we do not mark the obarray of the symbol.
5599 It is safe not to do so because nothing accesses that
5600 slot except to check whether it is nil. */
5601 ptr = ptr->next;
5602 if (ptr)
5603 {
5604 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5605 XSETSYMBOL (obj, ptrx);
5606 goto loop;
5607 }
5608 }
5609 break;
5610
5611 case Lisp_Misc:
5612 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5613 if (XMISCANY (obj)->gcmarkbit)
5614 break;
5615 XMISCANY (obj)->gcmarkbit = 1;
5616
5617 switch (XMISCTYPE (obj))
5618 {
5619 case Lisp_Misc_Buffer_Local_Value:
5620 {
5621 register struct Lisp_Buffer_Local_Value *ptr
5622 = XBUFFER_LOCAL_VALUE (obj);
5623 /* If the cdr is nil, avoid recursion for the car. */
5624 if (EQ (ptr->cdr, Qnil))
5625 {
5626 obj = ptr->realvalue;
5627 goto loop;
5628 }
5629 mark_object (ptr->realvalue);
5630 mark_object (ptr->buffer);
5631 mark_object (ptr->frame);
5632 obj = ptr->cdr;
5633 goto loop;
5634 }
5635
5636 case Lisp_Misc_Marker:
5637 /* DO NOT mark thru the marker's chain.
5638 The buffer's markers chain does not preserve markers from gc;
5639 instead, markers are removed from the chain when freed by gc. */
5640 break;
5641
5642 case Lisp_Misc_Intfwd:
5643 case Lisp_Misc_Boolfwd:
5644 case Lisp_Misc_Objfwd:
5645 case Lisp_Misc_Buffer_Objfwd:
5646 case Lisp_Misc_Kboard_Objfwd:
5647 /* Don't bother with Lisp_Buffer_Objfwd,
5648 since all markable slots in current buffer marked anyway. */
5649 /* Don't need to do Lisp_Objfwd, since the places they point
5650 are protected with staticpro. */
5651 break;
5652
5653 case Lisp_Misc_Save_Value:
5654 #if GC_MARK_STACK
5655 {
5656 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5657 /* If DOGC is set, POINTER is the address of a memory
5658 area containing INTEGER potential Lisp_Objects. */
5659 if (ptr->dogc)
5660 {
5661 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5662 int nelt;
5663 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5664 mark_maybe_object (*p);
5665 }
5666 }
5667 #endif
5668 break;
5669
5670 case Lisp_Misc_Overlay:
5671 {
5672 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5673 mark_object (ptr->start);
5674 mark_object (ptr->end);
5675 mark_object (ptr->plist);
5676 if (ptr->next)
5677 {
5678 XSETMISC (obj, ptr->next);
5679 goto loop;
5680 }
5681 }
5682 break;
5683
5684 default:
5685 abort ();
5686 }
5687 break;
5688
5689 case Lisp_Cons:
5690 {
5691 register struct Lisp_Cons *ptr = XCONS (obj);
5692 if (CONS_MARKED_P (ptr)) break;
5693 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5694 CONS_MARK (ptr);
5695 /* If the cdr is nil, avoid recursion for the car. */
5696 if (EQ (ptr->u.cdr, Qnil))
5697 {
5698 obj = ptr->car;
5699 cdr_count = 0;
5700 goto loop;
5701 }
5702 mark_object (ptr->car);
5703 obj = ptr->u.cdr;
5704 cdr_count++;
5705 if (cdr_count == mark_object_loop_halt)
5706 abort ();
5707 goto loop;
5708 }
5709
5710 case Lisp_Float:
5711 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5712 FLOAT_MARK (XFLOAT (obj));
5713 break;
5714
5715 case_Lisp_Int:
5716 break;
5717
5718 default:
5719 abort ();
5720 }
5721
5722 #undef CHECK_LIVE
5723 #undef CHECK_ALLOCATED
5724 #undef CHECK_ALLOCATED_AND_LIVE
5725 }
5726
5727 /* Mark the pointers in a buffer structure. */
5728
5729 static void
5730 mark_buffer (buf)
5731 Lisp_Object buf;
5732 {
5733 register struct buffer *buffer = XBUFFER (buf);
5734 register Lisp_Object *ptr, tmp;
5735 Lisp_Object base_buffer;
5736
5737 VECTOR_MARK (buffer);
5738
5739 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5740
5741 /* For now, we just don't mark the undo_list. It's done later in
5742 a special way just before the sweep phase, and after stripping
5743 some of its elements that are not needed any more. */
5744
5745 if (buffer->overlays_before)
5746 {
5747 XSETMISC (tmp, buffer->overlays_before);
5748 mark_object (tmp);
5749 }
5750 if (buffer->overlays_after)
5751 {
5752 XSETMISC (tmp, buffer->overlays_after);
5753 mark_object (tmp);
5754 }
5755
5756 /* buffer-local Lisp variables start at `undo_list',
5757 tho only the ones from `name' on are GC'd normally. */
5758 for (ptr = &buffer->name;
5759 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5760 ptr++)
5761 mark_object (*ptr);
5762
5763 /* If this is an indirect buffer, mark its base buffer. */
5764 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5765 {
5766 XSETBUFFER (base_buffer, buffer->base_buffer);
5767 mark_buffer (base_buffer);
5768 }
5769 }
5770
5771 /* Mark the Lisp pointers in the terminal objects.
5772 Called by the Fgarbage_collector. */
5773
5774 static void
5775 mark_terminals (void)
5776 {
5777 struct terminal *t;
5778 for (t = terminal_list; t; t = t->next_terminal)
5779 {
5780 eassert (t->name != NULL);
5781 #ifdef HAVE_WINDOW_SYSTEM
5782 mark_image_cache (t->image_cache);
5783 #endif /* HAVE_WINDOW_SYSTEM */
5784 mark_vectorlike ((struct Lisp_Vector *)t);
5785 }
5786 }
5787
5788
5789
5790 /* Value is non-zero if OBJ will survive the current GC because it's
5791 either marked or does not need to be marked to survive. */
5792
5793 int
5794 survives_gc_p (obj)
5795 Lisp_Object obj;
5796 {
5797 int survives_p;
5798
5799 switch (XTYPE (obj))
5800 {
5801 case_Lisp_Int:
5802 survives_p = 1;
5803 break;
5804
5805 case Lisp_Symbol:
5806 survives_p = XSYMBOL (obj)->gcmarkbit;
5807 break;
5808
5809 case Lisp_Misc:
5810 survives_p = XMISCANY (obj)->gcmarkbit;
5811 break;
5812
5813 case Lisp_String:
5814 survives_p = STRING_MARKED_P (XSTRING (obj));
5815 break;
5816
5817 case Lisp_Vectorlike:
5818 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5819 break;
5820
5821 case Lisp_Cons:
5822 survives_p = CONS_MARKED_P (XCONS (obj));
5823 break;
5824
5825 case Lisp_Float:
5826 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5827 break;
5828
5829 default:
5830 abort ();
5831 }
5832
5833 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5834 }
5835
5836
5837 \f
5838 /* Sweep: find all structures not marked, and free them. */
5839
5840 static void
5841 gc_sweep ()
5842 {
5843 /* Remove or mark entries in weak hash tables.
5844 This must be done before any object is unmarked. */
5845 sweep_weak_hash_tables ();
5846
5847 sweep_strings ();
5848 #ifdef GC_CHECK_STRING_BYTES
5849 if (!noninteractive)
5850 check_string_bytes (1);
5851 #endif
5852
5853 /* Put all unmarked conses on free list */
5854 {
5855 register struct cons_block *cblk;
5856 struct cons_block **cprev = &cons_block;
5857 register int lim = cons_block_index;
5858 register int num_free = 0, num_used = 0;
5859
5860 cons_free_list = 0;
5861
5862 for (cblk = cons_block; cblk; cblk = *cprev)
5863 {
5864 register int i = 0;
5865 int this_free = 0;
5866 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5867
5868 /* Scan the mark bits an int at a time. */
5869 for (i = 0; i <= ilim; i++)
5870 {
5871 if (cblk->gcmarkbits[i] == -1)
5872 {
5873 /* Fast path - all cons cells for this int are marked. */
5874 cblk->gcmarkbits[i] = 0;
5875 num_used += BITS_PER_INT;
5876 }
5877 else
5878 {
5879 /* Some cons cells for this int are not marked.
5880 Find which ones, and free them. */
5881 int start, pos, stop;
5882
5883 start = i * BITS_PER_INT;
5884 stop = lim - start;
5885 if (stop > BITS_PER_INT)
5886 stop = BITS_PER_INT;
5887 stop += start;
5888
5889 for (pos = start; pos < stop; pos++)
5890 {
5891 if (!CONS_MARKED_P (&cblk->conses[pos]))
5892 {
5893 this_free++;
5894 cblk->conses[pos].u.chain = cons_free_list;
5895 cons_free_list = &cblk->conses[pos];
5896 #if GC_MARK_STACK
5897 cons_free_list->car = Vdead;
5898 #endif
5899 }
5900 else
5901 {
5902 num_used++;
5903 CONS_UNMARK (&cblk->conses[pos]);
5904 }
5905 }
5906 }
5907 }
5908
5909 lim = CONS_BLOCK_SIZE;
5910 /* If this block contains only free conses and we have already
5911 seen more than two blocks worth of free conses then deallocate
5912 this block. */
5913 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5914 {
5915 *cprev = cblk->next;
5916 /* Unhook from the free list. */
5917 cons_free_list = cblk->conses[0].u.chain;
5918 lisp_align_free (cblk);
5919 n_cons_blocks--;
5920 }
5921 else
5922 {
5923 num_free += this_free;
5924 cprev = &cblk->next;
5925 }
5926 }
5927 total_conses = num_used;
5928 total_free_conses = num_free;
5929 }
5930
5931 /* Put all unmarked floats on free list */
5932 {
5933 register struct float_block *fblk;
5934 struct float_block **fprev = &float_block;
5935 register int lim = float_block_index;
5936 register int num_free = 0, num_used = 0;
5937
5938 float_free_list = 0;
5939
5940 for (fblk = float_block; fblk; fblk = *fprev)
5941 {
5942 register int i;
5943 int this_free = 0;
5944 for (i = 0; i < lim; i++)
5945 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5946 {
5947 this_free++;
5948 fblk->floats[i].u.chain = float_free_list;
5949 float_free_list = &fblk->floats[i];
5950 }
5951 else
5952 {
5953 num_used++;
5954 FLOAT_UNMARK (&fblk->floats[i]);
5955 }
5956 lim = FLOAT_BLOCK_SIZE;
5957 /* If this block contains only free floats and we have already
5958 seen more than two blocks worth of free floats then deallocate
5959 this block. */
5960 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5961 {
5962 *fprev = fblk->next;
5963 /* Unhook from the free list. */
5964 float_free_list = fblk->floats[0].u.chain;
5965 lisp_align_free (fblk);
5966 n_float_blocks--;
5967 }
5968 else
5969 {
5970 num_free += this_free;
5971 fprev = &fblk->next;
5972 }
5973 }
5974 total_floats = num_used;
5975 total_free_floats = num_free;
5976 }
5977
5978 /* Put all unmarked intervals on free list */
5979 {
5980 register struct interval_block *iblk;
5981 struct interval_block **iprev = &interval_block;
5982 register int lim = interval_block_index;
5983 register int num_free = 0, num_used = 0;
5984
5985 interval_free_list = 0;
5986
5987 for (iblk = interval_block; iblk; iblk = *iprev)
5988 {
5989 register int i;
5990 int this_free = 0;
5991
5992 for (i = 0; i < lim; i++)
5993 {
5994 if (!iblk->intervals[i].gcmarkbit)
5995 {
5996 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5997 interval_free_list = &iblk->intervals[i];
5998 this_free++;
5999 }
6000 else
6001 {
6002 num_used++;
6003 iblk->intervals[i].gcmarkbit = 0;
6004 }
6005 }
6006 lim = INTERVAL_BLOCK_SIZE;
6007 /* If this block contains only free intervals and we have already
6008 seen more than two blocks worth of free intervals then
6009 deallocate this block. */
6010 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6011 {
6012 *iprev = iblk->next;
6013 /* Unhook from the free list. */
6014 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6015 lisp_free (iblk);
6016 n_interval_blocks--;
6017 }
6018 else
6019 {
6020 num_free += this_free;
6021 iprev = &iblk->next;
6022 }
6023 }
6024 total_intervals = num_used;
6025 total_free_intervals = num_free;
6026 }
6027
6028 /* Put all unmarked symbols on free list */
6029 {
6030 register struct symbol_block *sblk;
6031 struct symbol_block **sprev = &symbol_block;
6032 register int lim = symbol_block_index;
6033 register int num_free = 0, num_used = 0;
6034
6035 symbol_free_list = NULL;
6036
6037 for (sblk = symbol_block; sblk; sblk = *sprev)
6038 {
6039 int this_free = 0;
6040 struct Lisp_Symbol *sym = sblk->symbols;
6041 struct Lisp_Symbol *end = sym + lim;
6042
6043 for (; sym < end; ++sym)
6044 {
6045 /* Check if the symbol was created during loadup. In such a case
6046 it might be pointed to by pure bytecode which we don't trace,
6047 so we conservatively assume that it is live. */
6048 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6049
6050 if (!sym->gcmarkbit && !pure_p)
6051 {
6052 sym->next = symbol_free_list;
6053 symbol_free_list = sym;
6054 #if GC_MARK_STACK
6055 symbol_free_list->function = Vdead;
6056 #endif
6057 ++this_free;
6058 }
6059 else
6060 {
6061 ++num_used;
6062 if (!pure_p)
6063 UNMARK_STRING (XSTRING (sym->xname));
6064 sym->gcmarkbit = 0;
6065 }
6066 }
6067
6068 lim = SYMBOL_BLOCK_SIZE;
6069 /* If this block contains only free symbols and we have already
6070 seen more than two blocks worth of free symbols then deallocate
6071 this block. */
6072 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6073 {
6074 *sprev = sblk->next;
6075 /* Unhook from the free list. */
6076 symbol_free_list = sblk->symbols[0].next;
6077 lisp_free (sblk);
6078 n_symbol_blocks--;
6079 }
6080 else
6081 {
6082 num_free += this_free;
6083 sprev = &sblk->next;
6084 }
6085 }
6086 total_symbols = num_used;
6087 total_free_symbols = num_free;
6088 }
6089
6090 /* Put all unmarked misc's on free list.
6091 For a marker, first unchain it from the buffer it points into. */
6092 {
6093 register struct marker_block *mblk;
6094 struct marker_block **mprev = &marker_block;
6095 register int lim = marker_block_index;
6096 register int num_free = 0, num_used = 0;
6097
6098 marker_free_list = 0;
6099
6100 for (mblk = marker_block; mblk; mblk = *mprev)
6101 {
6102 register int i;
6103 int this_free = 0;
6104
6105 for (i = 0; i < lim; i++)
6106 {
6107 if (!mblk->markers[i].u_any.gcmarkbit)
6108 {
6109 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6110 unchain_marker (&mblk->markers[i].u_marker);
6111 /* Set the type of the freed object to Lisp_Misc_Free.
6112 We could leave the type alone, since nobody checks it,
6113 but this might catch bugs faster. */
6114 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6115 mblk->markers[i].u_free.chain = marker_free_list;
6116 marker_free_list = &mblk->markers[i];
6117 this_free++;
6118 }
6119 else
6120 {
6121 num_used++;
6122 mblk->markers[i].u_any.gcmarkbit = 0;
6123 }
6124 }
6125 lim = MARKER_BLOCK_SIZE;
6126 /* If this block contains only free markers and we have already
6127 seen more than two blocks worth of free markers then deallocate
6128 this block. */
6129 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6130 {
6131 *mprev = mblk->next;
6132 /* Unhook from the free list. */
6133 marker_free_list = mblk->markers[0].u_free.chain;
6134 lisp_free (mblk);
6135 n_marker_blocks--;
6136 }
6137 else
6138 {
6139 num_free += this_free;
6140 mprev = &mblk->next;
6141 }
6142 }
6143
6144 total_markers = num_used;
6145 total_free_markers = num_free;
6146 }
6147
6148 /* Free all unmarked buffers */
6149 {
6150 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6151
6152 while (buffer)
6153 if (!VECTOR_MARKED_P (buffer))
6154 {
6155 if (prev)
6156 prev->next = buffer->next;
6157 else
6158 all_buffers = buffer->next;
6159 next = buffer->next;
6160 lisp_free (buffer);
6161 buffer = next;
6162 }
6163 else
6164 {
6165 VECTOR_UNMARK (buffer);
6166 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6167 prev = buffer, buffer = buffer->next;
6168 }
6169 }
6170
6171 /* Free all unmarked vectors */
6172 {
6173 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6174 total_vector_size = 0;
6175
6176 while (vector)
6177 if (!VECTOR_MARKED_P (vector))
6178 {
6179 if (prev)
6180 prev->next = vector->next;
6181 else
6182 all_vectors = vector->next;
6183 next = vector->next;
6184 lisp_free (vector);
6185 n_vectors--;
6186 vector = next;
6187
6188 }
6189 else
6190 {
6191 VECTOR_UNMARK (vector);
6192 if (vector->size & PSEUDOVECTOR_FLAG)
6193 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6194 else
6195 total_vector_size += vector->size;
6196 prev = vector, vector = vector->next;
6197 }
6198 }
6199
6200 #ifdef GC_CHECK_STRING_BYTES
6201 if (!noninteractive)
6202 check_string_bytes (1);
6203 #endif
6204 }
6205
6206
6207
6208 \f
6209 /* Debugging aids. */
6210
6211 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6212 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6213 This may be helpful in debugging Emacs's memory usage.
6214 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6215 ()
6216 {
6217 Lisp_Object end;
6218
6219 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6220
6221 return end;
6222 }
6223
6224 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6225 doc: /* Return a list of counters that measure how much consing there has been.
6226 Each of these counters increments for a certain kind of object.
6227 The counters wrap around from the largest positive integer to zero.
6228 Garbage collection does not decrease them.
6229 The elements of the value are as follows:
6230 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6231 All are in units of 1 = one object consed
6232 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6233 objects consed.
6234 MISCS include overlays, markers, and some internal types.
6235 Frames, windows, buffers, and subprocesses count as vectors
6236 (but the contents of a buffer's text do not count here). */)
6237 ()
6238 {
6239 Lisp_Object consed[8];
6240
6241 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6242 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6243 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6244 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6245 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6246 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6247 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6248 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6249
6250 return Flist (8, consed);
6251 }
6252
6253 int suppress_checking;
6254
6255 void
6256 die (msg, file, line)
6257 const char *msg;
6258 const char *file;
6259 int line;
6260 {
6261 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6262 file, line, msg);
6263 abort ();
6264 }
6265 \f
6266 /* Initialization */
6267
6268 void
6269 init_alloc_once ()
6270 {
6271 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6272 purebeg = PUREBEG;
6273 pure_size = PURESIZE;
6274 pure_bytes_used = 0;
6275 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6276 pure_bytes_used_before_overflow = 0;
6277
6278 /* Initialize the list of free aligned blocks. */
6279 free_ablock = NULL;
6280
6281 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6282 mem_init ();
6283 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6284 #endif
6285
6286 all_vectors = 0;
6287 ignore_warnings = 1;
6288 #ifdef DOUG_LEA_MALLOC
6289 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6290 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6291 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6292 #endif
6293 init_strings ();
6294 init_cons ();
6295 init_symbol ();
6296 init_marker ();
6297 init_float ();
6298 init_intervals ();
6299 init_weak_hash_tables ();
6300
6301 #ifdef REL_ALLOC
6302 malloc_hysteresis = 32;
6303 #else
6304 malloc_hysteresis = 0;
6305 #endif
6306
6307 refill_memory_reserve ();
6308
6309 ignore_warnings = 0;
6310 gcprolist = 0;
6311 byte_stack_list = 0;
6312 staticidx = 0;
6313 consing_since_gc = 0;
6314 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6315 gc_relative_threshold = 0;
6316
6317 #ifdef VIRT_ADDR_VARIES
6318 malloc_sbrk_unused = 1<<22; /* A large number */
6319 malloc_sbrk_used = 100000; /* as reasonable as any number */
6320 #endif /* VIRT_ADDR_VARIES */
6321 }
6322
6323 void
6324 init_alloc ()
6325 {
6326 gcprolist = 0;
6327 byte_stack_list = 0;
6328 #if GC_MARK_STACK
6329 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6330 setjmp_tested_p = longjmps_done = 0;
6331 #endif
6332 #endif
6333 Vgc_elapsed = make_float (0.0);
6334 gcs_done = 0;
6335 }
6336
6337 void
6338 syms_of_alloc ()
6339 {
6340 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6341 doc: /* *Number of bytes of consing between garbage collections.
6342 Garbage collection can happen automatically once this many bytes have been
6343 allocated since the last garbage collection. All data types count.
6344
6345 Garbage collection happens automatically only when `eval' is called.
6346
6347 By binding this temporarily to a large number, you can effectively
6348 prevent garbage collection during a part of the program.
6349 See also `gc-cons-percentage'. */);
6350
6351 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6352 doc: /* *Portion of the heap used for allocation.
6353 Garbage collection can happen automatically once this portion of the heap
6354 has been allocated since the last garbage collection.
6355 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6356 Vgc_cons_percentage = make_float (0.1);
6357
6358 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6359 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6360
6361 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6362 doc: /* Number of cons cells that have been consed so far. */);
6363
6364 DEFVAR_INT ("floats-consed", &floats_consed,
6365 doc: /* Number of floats that have been consed so far. */);
6366
6367 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6368 doc: /* Number of vector cells that have been consed so far. */);
6369
6370 DEFVAR_INT ("symbols-consed", &symbols_consed,
6371 doc: /* Number of symbols that have been consed so far. */);
6372
6373 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6374 doc: /* Number of string characters that have been consed so far. */);
6375
6376 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6377 doc: /* Number of miscellaneous objects that have been consed so far. */);
6378
6379 DEFVAR_INT ("intervals-consed", &intervals_consed,
6380 doc: /* Number of intervals that have been consed so far. */);
6381
6382 DEFVAR_INT ("strings-consed", &strings_consed,
6383 doc: /* Number of strings that have been consed so far. */);
6384
6385 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6386 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6387 This means that certain objects should be allocated in shared (pure) space. */);
6388
6389 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6390 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6391 garbage_collection_messages = 0;
6392
6393 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6394 doc: /* Hook run after garbage collection has finished. */);
6395 Vpost_gc_hook = Qnil;
6396 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6397 staticpro (&Qpost_gc_hook);
6398
6399 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6400 doc: /* Precomputed `signal' argument for memory-full error. */);
6401 /* We build this in advance because if we wait until we need it, we might
6402 not be able to allocate the memory to hold it. */
6403 Vmemory_signal_data
6404 = list2 (Qerror,
6405 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6406
6407 DEFVAR_LISP ("memory-full", &Vmemory_full,
6408 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6409 Vmemory_full = Qnil;
6410
6411 staticpro (&Qgc_cons_threshold);
6412 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6413
6414 staticpro (&Qchar_table_extra_slots);
6415 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6416
6417 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6418 doc: /* Accumulated time elapsed in garbage collections.
6419 The time is in seconds as a floating point value. */);
6420 DEFVAR_INT ("gcs-done", &gcs_done,
6421 doc: /* Accumulated number of garbage collections done. */);
6422
6423 defsubr (&Scons);
6424 defsubr (&Slist);
6425 defsubr (&Svector);
6426 defsubr (&Smake_byte_code);
6427 defsubr (&Smake_list);
6428 defsubr (&Smake_vector);
6429 defsubr (&Smake_string);
6430 defsubr (&Smake_bool_vector);
6431 defsubr (&Smake_symbol);
6432 defsubr (&Smake_marker);
6433 defsubr (&Spurecopy);
6434 defsubr (&Sgarbage_collect);
6435 defsubr (&Smemory_limit);
6436 defsubr (&Smemory_use_counts);
6437
6438 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6439 defsubr (&Sgc_status);
6440 #endif
6441 }
6442
6443 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6444 (do not change this comment) */