Merge from emacs--rel--22
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
59
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
72
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
80
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #else /* not DOUG_LEA_MALLOC */
100
101 /* The following come from gmalloc.c. */
102
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
128 static pthread_mutex_t alloc_mutex;
129
130 #define BLOCK_INPUT_ALLOC \
131 do \
132 { \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
136 } \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 UNBLOCK_INPUT; \
144 } \
145 while (0)
146
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154 /* Value of _bytes_used, when spare_memory was freed. */
155
156 static __malloc_size_t bytes_used_when_full;
157
158 static __malloc_size_t bytes_used_when_reconsidered;
159
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178
179 /* Number of bytes of consing done since the last gc. */
180
181 int consing_since_gc;
182
183 /* Count the amount of consing of various sorts of space. */
184
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
193
194 /* Minimum number of bytes of consing since GC before next GC. */
195
196 EMACS_INT gc_cons_threshold;
197
198 /* Similar minimum, computed from Vgc_cons_percentage. */
199
200 EMACS_INT gc_relative_threshold;
201
202 static Lisp_Object Vgc_cons_percentage;
203
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207 EMACS_INT memory_full_cons_threshold;
208
209 /* Nonzero during GC. */
210
211 int gc_in_progress;
212
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217 int abort_on_gc;
218
219 /* Nonzero means display messages at beginning and end of GC. */
220
221 int garbage_collection_messages;
222
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
227
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
232
233 /* Number of live and free conses etc. */
234
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
238
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
242
243 char *spare_memory[7];
244
245 /* Amount of spare memory to keep in large reserve block. */
246
247 #define SPARE_MEMORY (1 << 14)
248
249 /* Number of extra blocks malloc should get when it needs more core. */
250
251 static int malloc_hysteresis;
252
253 /* Non-nil means defun should do purecopy on the function definition. */
254
255 Lisp_Object Vpurify_flag;
256
257 /* Non-nil means we are handling a memory-full error. */
258
259 Lisp_Object Vmemory_full;
260
261 #ifndef HAVE_SHM
262
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
268
269 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
271
272 #else /* HAVE_SHM */
273
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
276
277 #endif /* HAVE_SHM */
278
279 /* Pointer to the pure area, and its size. */
280
281 static char *purebeg;
282 static size_t pure_size;
283
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287 static size_t pure_bytes_used_before_overflow;
288
289 /* Value is non-zero if P points into pure space. */
290
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
296
297 /* Total number of bytes allocated in pure storage. */
298
299 EMACS_INT pure_bytes_used;
300
301 /* Index in pure at which next pure Lisp object will be allocated.. */
302
303 static EMACS_INT pure_bytes_used_lisp;
304
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307 static EMACS_INT pure_bytes_used_non_lisp;
308
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
312 char *pending_malloc_warning;
313
314 /* Pre-computed signal argument for use when memory is exhausted. */
315
316 Lisp_Object Vmemory_signal_data;
317
318 /* Maximum amount of C stack to save when a GC happens. */
319
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
323
324 /* Buffer in which we save a copy of the C stack at each GC. */
325
326 char *stack_copy;
327 int stack_copy_size;
328
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
332 int ignore_warnings;
333
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336 /* Hook run after GC has finished. */
337
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
342
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
349
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
355
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
360
361 extern int message_enable_multibyte;
362
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367 enum mem_type
368 {
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746
747 /* Like malloc but check for no memory and block interrupt input.. */
748
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
752 {
753 register POINTER_TYPE *val;
754
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
758
759 if (!val && size)
760 memory_full ();
761 return val;
762 }
763
764
765 /* Like realloc but check for no memory and block interrupt input.. */
766
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
771 {
772 register POINTER_TYPE *val;
773
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
782
783 if (!val && size) memory_full ();
784 return val;
785 }
786
787
788 /* Like free but block interrupt input. */
789
790 void
791 xfree (block)
792 POINTER_TYPE *block;
793 {
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
800 }
801
802
803 /* Like strdup, but uses xmalloc. */
804
805 char *
806 xstrdup (s)
807 const char *s;
808 {
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
813 }
814
815
816 /* Unwind for SAFE_ALLOCA */
817
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
821 {
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
823
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
829 }
830
831
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
835
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
839
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
844 {
845 register void *val;
846
847 BLOCK_INPUT;
848
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
852
853 val = (void *) malloc (nbytes);
854
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
860 {
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
864 {
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
868 }
869 }
870 #endif
871
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
876
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
881 }
882
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
885
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
889 {
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
896 }
897
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
901
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
908
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
911
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
925
926 /* Internal data structures and constants. */
927
928 #define ABLOCKS_SIZE 16
929
930 /* An aligned block of memory. */
931 struct ablock
932 {
933 union
934 {
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
953 };
954
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
957 {
958 struct ablock blocks[ABLOCKS_SIZE];
959 };
960
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
968
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
979
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
982
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
990 {
991 void *base, *val;
992 struct ablocks *abase;
993
994 eassert (nbytes <= BLOCK_BYTES);
995
996 BLOCK_INPUT;
997
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1001
1002 if (!free_ablock)
1003 {
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1006
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1013
1014 #ifdef USE_POSIX_MEMALIGN
1015 {
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1020 }
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1025
1026 if (base == 0)
1027 {
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1035
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1040
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1046 {
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1051 {
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1056 }
1057 }
1058 #endif
1059
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1063 {
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1067 }
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1069
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1075 }
1076
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1081
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1086
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1090
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1093 }
1094
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1098 {
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1101
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1111
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1117
1118 while (*tem)
1119 {
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1121 {
1122 i++;
1123 *tem = (*tem)->x.next_free;
1124 }
1125 else
1126 tem = &(*tem)->x.next_free;
1127 }
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1134 }
1135 UNBLOCK_INPUT;
1136 }
1137
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1140
1141 struct buffer *
1142 allocate_buffer ()
1143 {
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1148 }
1149
1150 \f
1151 #ifndef SYSTEM_MALLOC
1152
1153 /* Arranging to disable input signals while we're in malloc.
1154
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1162
1163 #ifndef SYNC_INPUT
1164
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1174
1175 /* This function is used as the hook for free to call. */
1176
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1181 {
1182 BLOCK_INPUT_ALLOC;
1183
1184 #ifdef GC_MALLOC_CHECK
1185 if (ptr)
1186 {
1187 struct mem_node *m;
1188
1189 m = mem_find (ptr);
1190 if (m == MEM_NIL || m->start != ptr)
1191 {
1192 fprintf (stderr,
1193 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1194 abort ();
1195 }
1196 else
1197 {
1198 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1199 mem_delete (m);
1200 }
1201 }
1202 #endif /* GC_MALLOC_CHECK */
1203
1204 __free_hook = old_free_hook;
1205 free (ptr);
1206
1207 /* If we released our reserve (due to running out of memory),
1208 and we have a fair amount free once again,
1209 try to set aside another reserve in case we run out once more. */
1210 if (! NILP (Vmemory_full)
1211 /* Verify there is enough space that even with the malloc
1212 hysteresis this call won't run out again.
1213 The code here is correct as long as SPARE_MEMORY
1214 is substantially larger than the block size malloc uses. */
1215 && (bytes_used_when_full
1216 > ((bytes_used_when_reconsidered = BYTES_USED)
1217 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1218 refill_memory_reserve ();
1219
1220 __free_hook = emacs_blocked_free;
1221 UNBLOCK_INPUT_ALLOC;
1222 }
1223
1224
1225 /* This function is the malloc hook that Emacs uses. */
1226
1227 static void *
1228 emacs_blocked_malloc (size, ptr)
1229 size_t size;
1230 const void *ptr;
1231 {
1232 void *value;
1233
1234 BLOCK_INPUT_ALLOC;
1235 __malloc_hook = old_malloc_hook;
1236 #ifdef DOUG_LEA_MALLOC
1237 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1238 #else
1239 __malloc_extra_blocks = malloc_hysteresis;
1240 #endif
1241
1242 value = (void *) malloc (size);
1243
1244 #ifdef GC_MALLOC_CHECK
1245 {
1246 struct mem_node *m = mem_find (value);
1247 if (m != MEM_NIL)
1248 {
1249 fprintf (stderr, "Malloc returned %p which is already in use\n",
1250 value);
1251 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1252 m->start, m->end, (char *) m->end - (char *) m->start,
1253 m->type);
1254 abort ();
1255 }
1256
1257 if (!dont_register_blocks)
1258 {
1259 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1260 allocated_mem_type = MEM_TYPE_NON_LISP;
1261 }
1262 }
1263 #endif /* GC_MALLOC_CHECK */
1264
1265 __malloc_hook = emacs_blocked_malloc;
1266 UNBLOCK_INPUT_ALLOC;
1267
1268 /* fprintf (stderr, "%p malloc\n", value); */
1269 return value;
1270 }
1271
1272
1273 /* This function is the realloc hook that Emacs uses. */
1274
1275 static void *
1276 emacs_blocked_realloc (ptr, size, ptr2)
1277 void *ptr;
1278 size_t size;
1279 const void *ptr2;
1280 {
1281 void *value;
1282
1283 BLOCK_INPUT_ALLOC;
1284 __realloc_hook = old_realloc_hook;
1285
1286 #ifdef GC_MALLOC_CHECK
1287 if (ptr)
1288 {
1289 struct mem_node *m = mem_find (ptr);
1290 if (m == MEM_NIL || m->start != ptr)
1291 {
1292 fprintf (stderr,
1293 "Realloc of %p which wasn't allocated with malloc\n",
1294 ptr);
1295 abort ();
1296 }
1297
1298 mem_delete (m);
1299 }
1300
1301 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1302
1303 /* Prevent malloc from registering blocks. */
1304 dont_register_blocks = 1;
1305 #endif /* GC_MALLOC_CHECK */
1306
1307 value = (void *) realloc (ptr, size);
1308
1309 #ifdef GC_MALLOC_CHECK
1310 dont_register_blocks = 0;
1311
1312 {
1313 struct mem_node *m = mem_find (value);
1314 if (m != MEM_NIL)
1315 {
1316 fprintf (stderr, "Realloc returns memory that is already in use\n");
1317 abort ();
1318 }
1319
1320 /* Can't handle zero size regions in the red-black tree. */
1321 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1322 }
1323
1324 /* fprintf (stderr, "%p <- realloc\n", value); */
1325 #endif /* GC_MALLOC_CHECK */
1326
1327 __realloc_hook = emacs_blocked_realloc;
1328 UNBLOCK_INPUT_ALLOC;
1329
1330 return value;
1331 }
1332
1333
1334 #ifdef HAVE_GTK_AND_PTHREAD
1335 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1336 normal malloc. Some thread implementations need this as they call
1337 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1338 calls malloc because it is the first call, and we have an endless loop. */
1339
1340 void
1341 reset_malloc_hooks ()
1342 {
1343 __free_hook = 0;
1344 __malloc_hook = 0;
1345 __realloc_hook = 0;
1346 }
1347 #endif /* HAVE_GTK_AND_PTHREAD */
1348
1349
1350 /* Called from main to set up malloc to use our hooks. */
1351
1352 void
1353 uninterrupt_malloc ()
1354 {
1355 #ifdef HAVE_GTK_AND_PTHREAD
1356 pthread_mutexattr_t attr;
1357
1358 /* GLIBC has a faster way to do this, but lets keep it portable.
1359 This is according to the Single UNIX Specification. */
1360 pthread_mutexattr_init (&attr);
1361 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1362 pthread_mutex_init (&alloc_mutex, &attr);
1363 #endif /* HAVE_GTK_AND_PTHREAD */
1364
1365 if (__free_hook != emacs_blocked_free)
1366 old_free_hook = __free_hook;
1367 __free_hook = emacs_blocked_free;
1368
1369 if (__malloc_hook != emacs_blocked_malloc)
1370 old_malloc_hook = __malloc_hook;
1371 __malloc_hook = emacs_blocked_malloc;
1372
1373 if (__realloc_hook != emacs_blocked_realloc)
1374 old_realloc_hook = __realloc_hook;
1375 __realloc_hook = emacs_blocked_realloc;
1376 }
1377
1378 #endif /* not SYNC_INPUT */
1379 #endif /* not SYSTEM_MALLOC */
1380
1381
1382 \f
1383 /***********************************************************************
1384 Interval Allocation
1385 ***********************************************************************/
1386
1387 /* Number of intervals allocated in an interval_block structure.
1388 The 1020 is 1024 minus malloc overhead. */
1389
1390 #define INTERVAL_BLOCK_SIZE \
1391 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1392
1393 /* Intervals are allocated in chunks in form of an interval_block
1394 structure. */
1395
1396 struct interval_block
1397 {
1398 /* Place `intervals' first, to preserve alignment. */
1399 struct interval intervals[INTERVAL_BLOCK_SIZE];
1400 struct interval_block *next;
1401 };
1402
1403 /* Current interval block. Its `next' pointer points to older
1404 blocks. */
1405
1406 struct interval_block *interval_block;
1407
1408 /* Index in interval_block above of the next unused interval
1409 structure. */
1410
1411 static int interval_block_index;
1412
1413 /* Number of free and live intervals. */
1414
1415 static int total_free_intervals, total_intervals;
1416
1417 /* List of free intervals. */
1418
1419 INTERVAL interval_free_list;
1420
1421 /* Total number of interval blocks now in use. */
1422
1423 int n_interval_blocks;
1424
1425
1426 /* Initialize interval allocation. */
1427
1428 static void
1429 init_intervals ()
1430 {
1431 interval_block = NULL;
1432 interval_block_index = INTERVAL_BLOCK_SIZE;
1433 interval_free_list = 0;
1434 n_interval_blocks = 0;
1435 }
1436
1437
1438 /* Return a new interval. */
1439
1440 INTERVAL
1441 make_interval ()
1442 {
1443 INTERVAL val;
1444
1445 /* eassert (!handling_signal); */
1446
1447 #ifndef SYNC_INPUT
1448 BLOCK_INPUT;
1449 #endif
1450
1451 if (interval_free_list)
1452 {
1453 val = interval_free_list;
1454 interval_free_list = INTERVAL_PARENT (interval_free_list);
1455 }
1456 else
1457 {
1458 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1459 {
1460 register struct interval_block *newi;
1461
1462 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1463 MEM_TYPE_NON_LISP);
1464
1465 newi->next = interval_block;
1466 interval_block = newi;
1467 interval_block_index = 0;
1468 n_interval_blocks++;
1469 }
1470 val = &interval_block->intervals[interval_block_index++];
1471 }
1472
1473 #ifndef SYNC_INPUT
1474 UNBLOCK_INPUT;
1475 #endif
1476
1477 consing_since_gc += sizeof (struct interval);
1478 intervals_consed++;
1479 RESET_INTERVAL (val);
1480 val->gcmarkbit = 0;
1481 return val;
1482 }
1483
1484
1485 /* Mark Lisp objects in interval I. */
1486
1487 static void
1488 mark_interval (i, dummy)
1489 register INTERVAL i;
1490 Lisp_Object dummy;
1491 {
1492 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1493 i->gcmarkbit = 1;
1494 mark_object (i->plist);
1495 }
1496
1497
1498 /* Mark the interval tree rooted in TREE. Don't call this directly;
1499 use the macro MARK_INTERVAL_TREE instead. */
1500
1501 static void
1502 mark_interval_tree (tree)
1503 register INTERVAL tree;
1504 {
1505 /* No need to test if this tree has been marked already; this
1506 function is always called through the MARK_INTERVAL_TREE macro,
1507 which takes care of that. */
1508
1509 traverse_intervals_noorder (tree, mark_interval, Qnil);
1510 }
1511
1512
1513 /* Mark the interval tree rooted in I. */
1514
1515 #define MARK_INTERVAL_TREE(i) \
1516 do { \
1517 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1518 mark_interval_tree (i); \
1519 } while (0)
1520
1521
1522 #define UNMARK_BALANCE_INTERVALS(i) \
1523 do { \
1524 if (! NULL_INTERVAL_P (i)) \
1525 (i) = balance_intervals (i); \
1526 } while (0)
1527
1528 \f
1529 /* Number support. If NO_UNION_TYPE isn't in effect, we
1530 can't create number objects in macros. */
1531 #ifndef make_number
1532 Lisp_Object
1533 make_number (n)
1534 EMACS_INT n;
1535 {
1536 Lisp_Object obj;
1537 obj.s.val = n;
1538 obj.s.type = Lisp_Int;
1539 return obj;
1540 }
1541 #endif
1542 \f
1543 /***********************************************************************
1544 String Allocation
1545 ***********************************************************************/
1546
1547 /* Lisp_Strings are allocated in string_block structures. When a new
1548 string_block is allocated, all the Lisp_Strings it contains are
1549 added to a free-list string_free_list. When a new Lisp_String is
1550 needed, it is taken from that list. During the sweep phase of GC,
1551 string_blocks that are entirely free are freed, except two which
1552 we keep.
1553
1554 String data is allocated from sblock structures. Strings larger
1555 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1556 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1557
1558 Sblocks consist internally of sdata structures, one for each
1559 Lisp_String. The sdata structure points to the Lisp_String it
1560 belongs to. The Lisp_String points back to the `u.data' member of
1561 its sdata structure.
1562
1563 When a Lisp_String is freed during GC, it is put back on
1564 string_free_list, and its `data' member and its sdata's `string'
1565 pointer is set to null. The size of the string is recorded in the
1566 `u.nbytes' member of the sdata. So, sdata structures that are no
1567 longer used, can be easily recognized, and it's easy to compact the
1568 sblocks of small strings which we do in compact_small_strings. */
1569
1570 /* Size in bytes of an sblock structure used for small strings. This
1571 is 8192 minus malloc overhead. */
1572
1573 #define SBLOCK_SIZE 8188
1574
1575 /* Strings larger than this are considered large strings. String data
1576 for large strings is allocated from individual sblocks. */
1577
1578 #define LARGE_STRING_BYTES 1024
1579
1580 /* Structure describing string memory sub-allocated from an sblock.
1581 This is where the contents of Lisp strings are stored. */
1582
1583 struct sdata
1584 {
1585 /* Back-pointer to the string this sdata belongs to. If null, this
1586 structure is free, and the NBYTES member of the union below
1587 contains the string's byte size (the same value that STRING_BYTES
1588 would return if STRING were non-null). If non-null, STRING_BYTES
1589 (STRING) is the size of the data, and DATA contains the string's
1590 contents. */
1591 struct Lisp_String *string;
1592
1593 #ifdef GC_CHECK_STRING_BYTES
1594
1595 EMACS_INT nbytes;
1596 unsigned char data[1];
1597
1598 #define SDATA_NBYTES(S) (S)->nbytes
1599 #define SDATA_DATA(S) (S)->data
1600
1601 #else /* not GC_CHECK_STRING_BYTES */
1602
1603 union
1604 {
1605 /* When STRING in non-null. */
1606 unsigned char data[1];
1607
1608 /* When STRING is null. */
1609 EMACS_INT nbytes;
1610 } u;
1611
1612
1613 #define SDATA_NBYTES(S) (S)->u.nbytes
1614 #define SDATA_DATA(S) (S)->u.data
1615
1616 #endif /* not GC_CHECK_STRING_BYTES */
1617 };
1618
1619
1620 /* Structure describing a block of memory which is sub-allocated to
1621 obtain string data memory for strings. Blocks for small strings
1622 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1623 as large as needed. */
1624
1625 struct sblock
1626 {
1627 /* Next in list. */
1628 struct sblock *next;
1629
1630 /* Pointer to the next free sdata block. This points past the end
1631 of the sblock if there isn't any space left in this block. */
1632 struct sdata *next_free;
1633
1634 /* Start of data. */
1635 struct sdata first_data;
1636 };
1637
1638 /* Number of Lisp strings in a string_block structure. The 1020 is
1639 1024 minus malloc overhead. */
1640
1641 #define STRING_BLOCK_SIZE \
1642 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1643
1644 /* Structure describing a block from which Lisp_String structures
1645 are allocated. */
1646
1647 struct string_block
1648 {
1649 /* Place `strings' first, to preserve alignment. */
1650 struct Lisp_String strings[STRING_BLOCK_SIZE];
1651 struct string_block *next;
1652 };
1653
1654 /* Head and tail of the list of sblock structures holding Lisp string
1655 data. We always allocate from current_sblock. The NEXT pointers
1656 in the sblock structures go from oldest_sblock to current_sblock. */
1657
1658 static struct sblock *oldest_sblock, *current_sblock;
1659
1660 /* List of sblocks for large strings. */
1661
1662 static struct sblock *large_sblocks;
1663
1664 /* List of string_block structures, and how many there are. */
1665
1666 static struct string_block *string_blocks;
1667 static int n_string_blocks;
1668
1669 /* Free-list of Lisp_Strings. */
1670
1671 static struct Lisp_String *string_free_list;
1672
1673 /* Number of live and free Lisp_Strings. */
1674
1675 static int total_strings, total_free_strings;
1676
1677 /* Number of bytes used by live strings. */
1678
1679 static int total_string_size;
1680
1681 /* Given a pointer to a Lisp_String S which is on the free-list
1682 string_free_list, return a pointer to its successor in the
1683 free-list. */
1684
1685 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1686
1687 /* Return a pointer to the sdata structure belonging to Lisp string S.
1688 S must be live, i.e. S->data must not be null. S->data is actually
1689 a pointer to the `u.data' member of its sdata structure; the
1690 structure starts at a constant offset in front of that. */
1691
1692 #ifdef GC_CHECK_STRING_BYTES
1693
1694 #define SDATA_OF_STRING(S) \
1695 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1696 - sizeof (EMACS_INT)))
1697
1698 #else /* not GC_CHECK_STRING_BYTES */
1699
1700 #define SDATA_OF_STRING(S) \
1701 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1702
1703 #endif /* not GC_CHECK_STRING_BYTES */
1704
1705
1706 #ifdef GC_CHECK_STRING_OVERRUN
1707
1708 /* We check for overrun in string data blocks by appending a small
1709 "cookie" after each allocated string data block, and check for the
1710 presence of this cookie during GC. */
1711
1712 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1713 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1714 { 0xde, 0xad, 0xbe, 0xef };
1715
1716 #else
1717 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1718 #endif
1719
1720 /* Value is the size of an sdata structure large enough to hold NBYTES
1721 bytes of string data. The value returned includes a terminating
1722 NUL byte, the size of the sdata structure, and padding. */
1723
1724 #ifdef GC_CHECK_STRING_BYTES
1725
1726 #define SDATA_SIZE(NBYTES) \
1727 ((sizeof (struct Lisp_String *) \
1728 + (NBYTES) + 1 \
1729 + sizeof (EMACS_INT) \
1730 + sizeof (EMACS_INT) - 1) \
1731 & ~(sizeof (EMACS_INT) - 1))
1732
1733 #else /* not GC_CHECK_STRING_BYTES */
1734
1735 #define SDATA_SIZE(NBYTES) \
1736 ((sizeof (struct Lisp_String *) \
1737 + (NBYTES) + 1 \
1738 + sizeof (EMACS_INT) - 1) \
1739 & ~(sizeof (EMACS_INT) - 1))
1740
1741 #endif /* not GC_CHECK_STRING_BYTES */
1742
1743 /* Extra bytes to allocate for each string. */
1744
1745 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1746
1747 /* Initialize string allocation. Called from init_alloc_once. */
1748
1749 void
1750 init_strings ()
1751 {
1752 total_strings = total_free_strings = total_string_size = 0;
1753 oldest_sblock = current_sblock = large_sblocks = NULL;
1754 string_blocks = NULL;
1755 n_string_blocks = 0;
1756 string_free_list = NULL;
1757 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1758 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1759 }
1760
1761
1762 #ifdef GC_CHECK_STRING_BYTES
1763
1764 static int check_string_bytes_count;
1765
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1768
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1770
1771
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1773
1774 int
1775 string_bytes (s)
1776 struct Lisp_String *s;
1777 {
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1784 }
1785
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1787
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1791 {
1792 struct sdata *from, *end, *from_end;
1793
1794 end = b->next_free;
1795
1796 for (from = &b->first_data; from < end; from = from_end)
1797 {
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1801
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1806
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1811
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1814 }
1815 }
1816
1817
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1821
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1825 {
1826 if (all_p)
1827 {
1828 struct sblock *b;
1829
1830 for (b = large_sblocks; b; b = b->next)
1831 {
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1835 }
1836
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1839 }
1840 else
1841 check_sblock (current_sblock);
1842 }
1843
1844 #endif /* GC_CHECK_STRING_BYTES */
1845
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1847
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1850
1851 static void
1852 check_string_free_list ()
1853 {
1854 struct Lisp_String *s;
1855
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1859 {
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1863 }
1864 }
1865 #else
1866 #define check_string_free_list()
1867 #endif
1868
1869 /* Return a new Lisp_String. */
1870
1871 static struct Lisp_String *
1872 allocate_string ()
1873 {
1874 struct Lisp_String *s;
1875
1876 /* eassert (!handling_signal); */
1877
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1881
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1885 {
1886 struct string_block *b;
1887 int i;
1888
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1894
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1896 {
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1900 }
1901
1902 total_free_strings += STRING_BLOCK_SIZE;
1903 }
1904
1905 check_string_free_list ();
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1910
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1914
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1917
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1922
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1928 )
1929 {
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
1937 }
1938 #endif /* GC_CHECK_STRING_BYTES */
1939
1940 return s;
1941 }
1942
1943
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1949
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1954 {
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1958
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1964
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1968
1969 if (nbytes > LARGE_STRING_BYTES)
1970 {
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1972
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1977
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1987
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1989
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2028
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2041
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2046 {
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2049 }
2050
2051 consing_since_gc += needed;
2052 }
2053
2054
2055 /* Sweep and compact strings. */
2056
2057 static void
2058 sweep_strings ()
2059 {
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2062
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2066
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2069 {
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2072
2073 next = b->next;
2074
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076 {
2077 struct Lisp_String *s = b->strings + i;
2078
2079 if (s->data)
2080 {
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2083 {
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2086
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2089
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2092 }
2093 else
2094 {
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2097
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2108
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2112
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119 else
2120 {
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2125 }
2126 }
2127
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2132 {
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2136 }
2137 else
2138 {
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
2145 check_string_free_list ();
2146
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2150
2151 check_string_free_list ();
2152 }
2153
2154
2155 /* Free dead large strings. */
2156
2157 static void
2158 free_large_strings ()
2159 {
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2162
2163 for (b = large_sblocks; b; b = next)
2164 {
2165 next = b->next;
2166
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2170 {
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 large_sblocks = live_blocks;
2177 }
2178
2179
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2182
2183 static void
2184 compact_small_strings ()
2185 {
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2189
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2195
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2200 {
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203
2204 for (from = &b->first_data; from < end; from = from_end)
2205 {
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2209
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2217
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2222
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2225
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2235
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2238 {
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2242 {
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2248 }
2249
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2252 {
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2256 }
2257
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2260 }
2261 }
2262 }
2263
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2267 {
2268 next = b->next;
2269 lisp_free (b);
2270 }
2271
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2275 }
2276
2277
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2284 {
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2288
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2291
2292 c = XINT (init);
2293 if (SINGLE_BYTE_CHAR_P (c))
2294 {
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2301 }
2302 else
2303 {
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2306
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2312 {
2313 bcopy (str, p, len);
2314 p += len;
2315 }
2316 }
2317
2318 *p = 0;
2319 return val;
2320 }
2321
2322
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2328 {
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2333
2334 CHECK_NATNUM (length);
2335
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2341
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2346
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 #ifndef SYNC_INPUT
2617 BLOCK_INPUT;
2618 #endif
2619
2620 if (float_free_list)
2621 {
2622 /* We use the data field for chaining the free list
2623 so that we won't use the same field that has the mark bit. */
2624 XSETFLOAT (val, float_free_list);
2625 float_free_list = float_free_list->u.chain;
2626 }
2627 else
2628 {
2629 if (float_block_index == FLOAT_BLOCK_SIZE)
2630 {
2631 register struct float_block *new;
2632
2633 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2634 MEM_TYPE_FLOAT);
2635 new->next = float_block;
2636 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2637 float_block = new;
2638 float_block_index = 0;
2639 n_float_blocks++;
2640 }
2641 XSETFLOAT (val, &float_block->floats[float_block_index]);
2642 float_block_index++;
2643 }
2644
2645 #ifndef SYNC_INPUT
2646 UNBLOCK_INPUT;
2647 #endif
2648
2649 XFLOAT_DATA (val) = float_value;
2650 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2651 consing_since_gc += sizeof (struct Lisp_Float);
2652 floats_consed++;
2653 return val;
2654 }
2655
2656
2657 \f
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2666
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2669 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2670
2671 #define CONS_BLOCK(fptr) \
2672 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2673
2674 #define CONS_INDEX(fptr) \
2675 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2676
2677 struct cons_block
2678 {
2679 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2680 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2681 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2682 struct cons_block *next;
2683 };
2684
2685 #define CONS_MARKED_P(fptr) \
2686 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687
2688 #define CONS_MARK(fptr) \
2689 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690
2691 #define CONS_UNMARK(fptr) \
2692 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2693
2694 /* Current cons_block. */
2695
2696 struct cons_block *cons_block;
2697
2698 /* Index of first unused Lisp_Cons in the current block. */
2699
2700 int cons_block_index;
2701
2702 /* Free-list of Lisp_Cons structures. */
2703
2704 struct Lisp_Cons *cons_free_list;
2705
2706 /* Total number of cons blocks now in use. */
2707
2708 int n_cons_blocks;
2709
2710
2711 /* Initialize cons allocation. */
2712
2713 void
2714 init_cons ()
2715 {
2716 cons_block = NULL;
2717 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2718 cons_free_list = 0;
2719 n_cons_blocks = 0;
2720 }
2721
2722
2723 /* Explicitly free a cons cell by putting it on the free-list. */
2724
2725 void
2726 free_cons (ptr)
2727 struct Lisp_Cons *ptr;
2728 {
2729 ptr->u.chain = cons_free_list;
2730 #if GC_MARK_STACK
2731 ptr->car = Vdead;
2732 #endif
2733 cons_free_list = ptr;
2734 }
2735
2736 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2737 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2738 (car, cdr)
2739 Lisp_Object car, cdr;
2740 {
2741 register Lisp_Object val;
2742
2743 /* eassert (!handling_signal); */
2744
2745 #ifndef SYNC_INPUT
2746 BLOCK_INPUT;
2747 #endif
2748
2749 if (cons_free_list)
2750 {
2751 /* We use the cdr for chaining the free list
2752 so that we won't use the same field that has the mark bit. */
2753 XSETCONS (val, cons_free_list);
2754 cons_free_list = cons_free_list->u.chain;
2755 }
2756 else
2757 {
2758 if (cons_block_index == CONS_BLOCK_SIZE)
2759 {
2760 register struct cons_block *new;
2761 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2762 MEM_TYPE_CONS);
2763 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2764 new->next = cons_block;
2765 cons_block = new;
2766 cons_block_index = 0;
2767 n_cons_blocks++;
2768 }
2769 XSETCONS (val, &cons_block->conses[cons_block_index]);
2770 cons_block_index++;
2771 }
2772
2773 #ifndef SYNC_INPUT
2774 UNBLOCK_INPUT;
2775 #endif
2776
2777 XSETCAR (val, car);
2778 XSETCDR (val, cdr);
2779 eassert (!CONS_MARKED_P (XCONS (val)));
2780 consing_since_gc += sizeof (struct Lisp_Cons);
2781 cons_cells_consed++;
2782 return val;
2783 }
2784
2785 /* Get an error now if there's any junk in the cons free list. */
2786 void
2787 check_cons_list ()
2788 {
2789 #ifdef GC_CHECK_CONS_LIST
2790 struct Lisp_Cons *tail = cons_free_list;
2791
2792 while (tail)
2793 tail = tail->u.chain;
2794 #endif
2795 }
2796
2797 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2798
2799 Lisp_Object
2800 list1 (arg1)
2801 Lisp_Object arg1;
2802 {
2803 return Fcons (arg1, Qnil);
2804 }
2805
2806 Lisp_Object
2807 list2 (arg1, arg2)
2808 Lisp_Object arg1, arg2;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Qnil));
2811 }
2812
2813
2814 Lisp_Object
2815 list3 (arg1, arg2, arg3)
2816 Lisp_Object arg1, arg2, arg3;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2819 }
2820
2821
2822 Lisp_Object
2823 list4 (arg1, arg2, arg3, arg4)
2824 Lisp_Object arg1, arg2, arg3, arg4;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2827 }
2828
2829
2830 Lisp_Object
2831 list5 (arg1, arg2, arg3, arg4, arg5)
2832 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2833 {
2834 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2835 Fcons (arg5, Qnil)))));
2836 }
2837
2838
2839 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2840 doc: /* Return a newly created list with specified arguments as elements.
2841 Any number of arguments, even zero arguments, are allowed.
2842 usage: (list &rest OBJECTS) */)
2843 (nargs, args)
2844 int nargs;
2845 register Lisp_Object *args;
2846 {
2847 register Lisp_Object val;
2848 val = Qnil;
2849
2850 while (nargs > 0)
2851 {
2852 nargs--;
2853 val = Fcons (args[nargs], val);
2854 }
2855 return val;
2856 }
2857
2858
2859 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2860 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2861 (length, init)
2862 register Lisp_Object length, init;
2863 {
2864 register Lisp_Object val;
2865 register int size;
2866
2867 CHECK_NATNUM (length);
2868 size = XFASTINT (length);
2869
2870 val = Qnil;
2871 while (size > 0)
2872 {
2873 val = Fcons (init, val);
2874 --size;
2875
2876 if (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890
2891 if (size > 0)
2892 {
2893 val = Fcons (init, val);
2894 --size;
2895 }
2896 }
2897 }
2898 }
2899
2900 QUIT;
2901 }
2902
2903 return val;
2904 }
2905
2906
2907 \f
2908 /***********************************************************************
2909 Vector Allocation
2910 ***********************************************************************/
2911
2912 /* Singly-linked list of all vectors. */
2913
2914 struct Lisp_Vector *all_vectors;
2915
2916 /* Total number of vector-like objects now in use. */
2917
2918 int n_vectors;
2919
2920
2921 /* Value is a pointer to a newly allocated Lisp_Vector structure
2922 with room for LEN Lisp_Objects. */
2923
2924 static struct Lisp_Vector *
2925 allocate_vectorlike (len, type)
2926 EMACS_INT len;
2927 enum mem_type type;
2928 {
2929 struct Lisp_Vector *p;
2930 size_t nbytes;
2931
2932 #ifdef DOUG_LEA_MALLOC
2933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2934 because mapped region contents are not preserved in
2935 a dumped Emacs. */
2936 BLOCK_INPUT;
2937 mallopt (M_MMAP_MAX, 0);
2938 UNBLOCK_INPUT;
2939 #endif
2940
2941 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2942 /* eassert (!handling_signal); */
2943
2944 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2945 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2946
2947 #ifdef DOUG_LEA_MALLOC
2948 /* Back to a reasonable maximum of mmap'ed areas. */
2949 BLOCK_INPUT;
2950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2951 UNBLOCK_INPUT;
2952 #endif
2953
2954 consing_since_gc += nbytes;
2955 vector_cells_consed += len;
2956
2957 #ifndef SYNC_INPUT
2958 BLOCK_INPUT;
2959 #endif
2960
2961 p->next = all_vectors;
2962 all_vectors = p;
2963
2964 #ifndef SYNC_INPUT
2965 UNBLOCK_INPUT;
2966 #endif
2967
2968 ++n_vectors;
2969 return p;
2970 }
2971
2972
2973 /* Allocate a vector with NSLOTS slots. */
2974
2975 struct Lisp_Vector *
2976 allocate_vector (nslots)
2977 EMACS_INT nslots;
2978 {
2979 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2980 v->size = nslots;
2981 return v;
2982 }
2983
2984
2985 /* Allocate other vector-like structures. */
2986
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table ()
2989 {
2990 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2991 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2992 EMACS_INT i;
2993
2994 v->size = len;
2995 for (i = 0; i < len; ++i)
2996 v->contents[i] = Qnil;
2997
2998 return (struct Lisp_Hash_Table *) v;
2999 }
3000
3001
3002 struct window *
3003 allocate_window ()
3004 {
3005 EMACS_INT len = VECSIZE (struct window);
3006 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3007 EMACS_INT i;
3008
3009 for (i = 0; i < len; ++i)
3010 v->contents[i] = Qnil;
3011 v->size = len;
3012
3013 return (struct window *) v;
3014 }
3015
3016
3017 struct frame *
3018 allocate_frame ()
3019 {
3020 EMACS_INT len = VECSIZE (struct frame);
3021 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3022 EMACS_INT i;
3023
3024 for (i = 0; i < len; ++i)
3025 v->contents[i] = make_number (0);
3026 v->size = len;
3027 return (struct frame *) v;
3028 }
3029
3030
3031 struct Lisp_Process *
3032 allocate_process ()
3033 {
3034 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3035 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3036 /* Size if we only count the actual Lisp_Object fields (which need to be
3037 traced by the GC). */
3038 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3039 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3040 EMACS_INT i;
3041
3042 for (i = 0; i < lisplen; ++i)
3043 v->contents[i] = Qnil;
3044 v->size = lisplen;
3045
3046 return (struct Lisp_Process *) v;
3047 }
3048
3049
3050 struct Lisp_Vector *
3051 allocate_other_vector (len)
3052 EMACS_INT len;
3053 {
3054 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3055 EMACS_INT i;
3056
3057 for (i = 0; i < len; ++i)
3058 v->contents[i] = Qnil;
3059 v->size = len;
3060
3061 return v;
3062 }
3063
3064
3065 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3066 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3067 See also the function `vector'. */)
3068 (length, init)
3069 register Lisp_Object length, init;
3070 {
3071 Lisp_Object vector;
3072 register EMACS_INT sizei;
3073 register int index;
3074 register struct Lisp_Vector *p;
3075
3076 CHECK_NATNUM (length);
3077 sizei = XFASTINT (length);
3078
3079 p = allocate_vector (sizei);
3080 for (index = 0; index < sizei; index++)
3081 p->contents[index] = init;
3082
3083 XSETVECTOR (vector, p);
3084 return vector;
3085 }
3086
3087
3088 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3089 doc: /* Return a newly created char-table, with purpose PURPOSE.
3090 Each element is initialized to INIT, which defaults to nil.
3091 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3092 The property's value should be an integer between 0 and 10. */)
3093 (purpose, init)
3094 register Lisp_Object purpose, init;
3095 {
3096 Lisp_Object vector;
3097 Lisp_Object n;
3098 CHECK_SYMBOL (purpose);
3099 n = Fget (purpose, Qchar_table_extra_slots);
3100 CHECK_NUMBER (n);
3101 if (XINT (n) < 0 || XINT (n) > 10)
3102 args_out_of_range (n, Qnil);
3103 /* Add 2 to the size for the defalt and parent slots. */
3104 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3105 init);
3106 XCHAR_TABLE (vector)->top = Qt;
3107 XCHAR_TABLE (vector)->parent = Qnil;
3108 XCHAR_TABLE (vector)->purpose = purpose;
3109 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3110 return vector;
3111 }
3112
3113
3114 /* Return a newly created sub char table with slots initialized by INIT.
3115 Since a sub char table does not appear as a top level Emacs Lisp
3116 object, we don't need a Lisp interface to make it. */
3117
3118 Lisp_Object
3119 make_sub_char_table (init)
3120 Lisp_Object init;
3121 {
3122 Lisp_Object vector
3123 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3124 XCHAR_TABLE (vector)->top = Qnil;
3125 XCHAR_TABLE (vector)->defalt = Qnil;
3126 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3127 return vector;
3128 }
3129
3130
3131 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3132 doc: /* Return a newly created vector with specified arguments as elements.
3133 Any number of arguments, even zero arguments, are allowed.
3134 usage: (vector &rest OBJECTS) */)
3135 (nargs, args)
3136 register int nargs;
3137 Lisp_Object *args;
3138 {
3139 register Lisp_Object len, val;
3140 register int index;
3141 register struct Lisp_Vector *p;
3142
3143 XSETFASTINT (len, nargs);
3144 val = Fmake_vector (len, Qnil);
3145 p = XVECTOR (val);
3146 for (index = 0; index < nargs; index++)
3147 p->contents[index] = args[index];
3148 return val;
3149 }
3150
3151
3152 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3153 doc: /* Create a byte-code object with specified arguments as elements.
3154 The arguments should be the arglist, bytecode-string, constant vector,
3155 stack size, (optional) doc string, and (optional) interactive spec.
3156 The first four arguments are required; at most six have any
3157 significance.
3158 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3159 (nargs, args)
3160 register int nargs;
3161 Lisp_Object *args;
3162 {
3163 register Lisp_Object len, val;
3164 register int index;
3165 register struct Lisp_Vector *p;
3166
3167 XSETFASTINT (len, nargs);
3168 if (!NILP (Vpurify_flag))
3169 val = make_pure_vector ((EMACS_INT) nargs);
3170 else
3171 val = Fmake_vector (len, Qnil);
3172
3173 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3174 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3175 earlier because they produced a raw 8-bit string for byte-code
3176 and now such a byte-code string is loaded as multibyte while
3177 raw 8-bit characters converted to multibyte form. Thus, now we
3178 must convert them back to the original unibyte form. */
3179 args[1] = Fstring_as_unibyte (args[1]);
3180
3181 p = XVECTOR (val);
3182 for (index = 0; index < nargs; index++)
3183 {
3184 if (!NILP (Vpurify_flag))
3185 args[index] = Fpurecopy (args[index]);
3186 p->contents[index] = args[index];
3187 }
3188 XSETCOMPILED (val, p);
3189 return val;
3190 }
3191
3192
3193 \f
3194 /***********************************************************************
3195 Symbol Allocation
3196 ***********************************************************************/
3197
3198 /* Each symbol_block is just under 1020 bytes long, since malloc
3199 really allocates in units of powers of two and uses 4 bytes for its
3200 own overhead. */
3201
3202 #define SYMBOL_BLOCK_SIZE \
3203 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3204
3205 struct symbol_block
3206 {
3207 /* Place `symbols' first, to preserve alignment. */
3208 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3209 struct symbol_block *next;
3210 };
3211
3212 /* Current symbol block and index of first unused Lisp_Symbol
3213 structure in it. */
3214
3215 struct symbol_block *symbol_block;
3216 int symbol_block_index;
3217
3218 /* List of free symbols. */
3219
3220 struct Lisp_Symbol *symbol_free_list;
3221
3222 /* Total number of symbol blocks now in use. */
3223
3224 int n_symbol_blocks;
3225
3226
3227 /* Initialize symbol allocation. */
3228
3229 void
3230 init_symbol ()
3231 {
3232 symbol_block = NULL;
3233 symbol_block_index = SYMBOL_BLOCK_SIZE;
3234 symbol_free_list = 0;
3235 n_symbol_blocks = 0;
3236 }
3237
3238
3239 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3240 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3241 Its value and function definition are void, and its property list is nil. */)
3242 (name)
3243 Lisp_Object name;
3244 {
3245 register Lisp_Object val;
3246 register struct Lisp_Symbol *p;
3247
3248 CHECK_STRING (name);
3249
3250 /* eassert (!handling_signal); */
3251
3252 #ifndef SYNC_INPUT
3253 BLOCK_INPUT;
3254 #endif
3255
3256 if (symbol_free_list)
3257 {
3258 XSETSYMBOL (val, symbol_free_list);
3259 symbol_free_list = symbol_free_list->next;
3260 }
3261 else
3262 {
3263 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3264 {
3265 struct symbol_block *new;
3266 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3267 MEM_TYPE_SYMBOL);
3268 new->next = symbol_block;
3269 symbol_block = new;
3270 symbol_block_index = 0;
3271 n_symbol_blocks++;
3272 }
3273 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3274 symbol_block_index++;
3275 }
3276
3277 #ifndef SYNC_INPUT
3278 UNBLOCK_INPUT;
3279 #endif
3280
3281 p = XSYMBOL (val);
3282 p->xname = name;
3283 p->plist = Qnil;
3284 p->value = Qunbound;
3285 p->function = Qunbound;
3286 p->next = NULL;
3287 p->gcmarkbit = 0;
3288 p->interned = SYMBOL_UNINTERNED;
3289 p->constant = 0;
3290 p->indirect_variable = 0;
3291 consing_since_gc += sizeof (struct Lisp_Symbol);
3292 symbols_consed++;
3293 return val;
3294 }
3295
3296
3297 \f
3298 /***********************************************************************
3299 Marker (Misc) Allocation
3300 ***********************************************************************/
3301
3302 /* Allocation of markers and other objects that share that structure.
3303 Works like allocation of conses. */
3304
3305 #define MARKER_BLOCK_SIZE \
3306 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3307
3308 struct marker_block
3309 {
3310 /* Place `markers' first, to preserve alignment. */
3311 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3312 struct marker_block *next;
3313 };
3314
3315 struct marker_block *marker_block;
3316 int marker_block_index;
3317
3318 union Lisp_Misc *marker_free_list;
3319
3320 /* Total number of marker blocks now in use. */
3321
3322 int n_marker_blocks;
3323
3324 void
3325 init_marker ()
3326 {
3327 marker_block = NULL;
3328 marker_block_index = MARKER_BLOCK_SIZE;
3329 marker_free_list = 0;
3330 n_marker_blocks = 0;
3331 }
3332
3333 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3334
3335 Lisp_Object
3336 allocate_misc ()
3337 {
3338 Lisp_Object val;
3339
3340 /* eassert (!handling_signal); */
3341
3342 #ifndef SYNC_INPUT
3343 BLOCK_INPUT;
3344 #endif
3345
3346 if (marker_free_list)
3347 {
3348 XSETMISC (val, marker_free_list);
3349 marker_free_list = marker_free_list->u_free.chain;
3350 }
3351 else
3352 {
3353 if (marker_block_index == MARKER_BLOCK_SIZE)
3354 {
3355 struct marker_block *new;
3356 new = (struct marker_block *) lisp_malloc (sizeof *new,
3357 MEM_TYPE_MISC);
3358 new->next = marker_block;
3359 marker_block = new;
3360 marker_block_index = 0;
3361 n_marker_blocks++;
3362 total_free_markers += MARKER_BLOCK_SIZE;
3363 }
3364 XSETMISC (val, &marker_block->markers[marker_block_index]);
3365 marker_block_index++;
3366 }
3367
3368 #ifndef SYNC_INPUT
3369 UNBLOCK_INPUT;
3370 #endif
3371
3372 --total_free_markers;
3373 consing_since_gc += sizeof (union Lisp_Misc);
3374 misc_objects_consed++;
3375 XMARKER (val)->gcmarkbit = 0;
3376 return val;
3377 }
3378
3379 /* Free a Lisp_Misc object */
3380
3381 void
3382 free_misc (misc)
3383 Lisp_Object misc;
3384 {
3385 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3386 XMISC (misc)->u_free.chain = marker_free_list;
3387 marker_free_list = XMISC (misc);
3388
3389 total_free_markers++;
3390 }
3391
3392 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3393 INTEGER. This is used to package C values to call record_unwind_protect.
3394 The unwind function can get the C values back using XSAVE_VALUE. */
3395
3396 Lisp_Object
3397 make_save_value (pointer, integer)
3398 void *pointer;
3399 int integer;
3400 {
3401 register Lisp_Object val;
3402 register struct Lisp_Save_Value *p;
3403
3404 val = allocate_misc ();
3405 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3406 p = XSAVE_VALUE (val);
3407 p->pointer = pointer;
3408 p->integer = integer;
3409 p->dogc = 0;
3410 return val;
3411 }
3412
3413 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3414 doc: /* Return a newly allocated marker which does not point at any place. */)
3415 ()
3416 {
3417 register Lisp_Object val;
3418 register struct Lisp_Marker *p;
3419
3420 val = allocate_misc ();
3421 XMISCTYPE (val) = Lisp_Misc_Marker;
3422 p = XMARKER (val);
3423 p->buffer = 0;
3424 p->bytepos = 0;
3425 p->charpos = 0;
3426 p->next = NULL;
3427 p->insertion_type = 0;
3428 return val;
3429 }
3430
3431 /* Put MARKER back on the free list after using it temporarily. */
3432
3433 void
3434 free_marker (marker)
3435 Lisp_Object marker;
3436 {
3437 unchain_marker (XMARKER (marker));
3438 free_misc (marker);
3439 }
3440
3441 \f
3442 /* Return a newly created vector or string with specified arguments as
3443 elements. If all the arguments are characters that can fit
3444 in a string of events, make a string; otherwise, make a vector.
3445
3446 Any number of arguments, even zero arguments, are allowed. */
3447
3448 Lisp_Object
3449 make_event_array (nargs, args)
3450 register int nargs;
3451 Lisp_Object *args;
3452 {
3453 int i;
3454
3455 for (i = 0; i < nargs; i++)
3456 /* The things that fit in a string
3457 are characters that are in 0...127,
3458 after discarding the meta bit and all the bits above it. */
3459 if (!INTEGERP (args[i])
3460 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3461 return Fvector (nargs, args);
3462
3463 /* Since the loop exited, we know that all the things in it are
3464 characters, so we can make a string. */
3465 {
3466 Lisp_Object result;
3467
3468 result = Fmake_string (make_number (nargs), make_number (0));
3469 for (i = 0; i < nargs; i++)
3470 {
3471 SSET (result, i, XINT (args[i]));
3472 /* Move the meta bit to the right place for a string char. */
3473 if (XINT (args[i]) & CHAR_META)
3474 SSET (result, i, SREF (result, i) | 0x80);
3475 }
3476
3477 return result;
3478 }
3479 }
3480
3481
3482 \f
3483 /************************************************************************
3484 Memory Full Handling
3485 ************************************************************************/
3486
3487
3488 /* Called if malloc returns zero. */
3489
3490 void
3491 memory_full ()
3492 {
3493 int i;
3494
3495 Vmemory_full = Qt;
3496
3497 memory_full_cons_threshold = sizeof (struct cons_block);
3498
3499 /* The first time we get here, free the spare memory. */
3500 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3501 if (spare_memory[i])
3502 {
3503 if (i == 0)
3504 free (spare_memory[i]);
3505 else if (i >= 1 && i <= 4)
3506 lisp_align_free (spare_memory[i]);
3507 else
3508 lisp_free (spare_memory[i]);
3509 spare_memory[i] = 0;
3510 }
3511
3512 /* Record the space now used. When it decreases substantially,
3513 we can refill the memory reserve. */
3514 #ifndef SYSTEM_MALLOC
3515 bytes_used_when_full = BYTES_USED;
3516 #endif
3517
3518 /* This used to call error, but if we've run out of memory, we could
3519 get infinite recursion trying to build the string. */
3520 xsignal (Qnil, Vmemory_signal_data);
3521 }
3522
3523 /* If we released our reserve (due to running out of memory),
3524 and we have a fair amount free once again,
3525 try to set aside another reserve in case we run out once more.
3526
3527 This is called when a relocatable block is freed in ralloc.c,
3528 and also directly from this file, in case we're not using ralloc.c. */
3529
3530 void
3531 refill_memory_reserve ()
3532 {
3533 #ifndef SYSTEM_MALLOC
3534 if (spare_memory[0] == 0)
3535 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3536 if (spare_memory[1] == 0)
3537 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3538 MEM_TYPE_CONS);
3539 if (spare_memory[2] == 0)
3540 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3541 MEM_TYPE_CONS);
3542 if (spare_memory[3] == 0)
3543 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3544 MEM_TYPE_CONS);
3545 if (spare_memory[4] == 0)
3546 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3547 MEM_TYPE_CONS);
3548 if (spare_memory[5] == 0)
3549 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3550 MEM_TYPE_STRING);
3551 if (spare_memory[6] == 0)
3552 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3553 MEM_TYPE_STRING);
3554 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3555 Vmemory_full = Qnil;
3556 #endif
3557 }
3558 \f
3559 /************************************************************************
3560 C Stack Marking
3561 ************************************************************************/
3562
3563 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3564
3565 /* Conservative C stack marking requires a method to identify possibly
3566 live Lisp objects given a pointer value. We do this by keeping
3567 track of blocks of Lisp data that are allocated in a red-black tree
3568 (see also the comment of mem_node which is the type of nodes in
3569 that tree). Function lisp_malloc adds information for an allocated
3570 block to the red-black tree with calls to mem_insert, and function
3571 lisp_free removes it with mem_delete. Functions live_string_p etc
3572 call mem_find to lookup information about a given pointer in the
3573 tree, and use that to determine if the pointer points to a Lisp
3574 object or not. */
3575
3576 /* Initialize this part of alloc.c. */
3577
3578 static void
3579 mem_init ()
3580 {
3581 mem_z.left = mem_z.right = MEM_NIL;
3582 mem_z.parent = NULL;
3583 mem_z.color = MEM_BLACK;
3584 mem_z.start = mem_z.end = NULL;
3585 mem_root = MEM_NIL;
3586 }
3587
3588
3589 /* Value is a pointer to the mem_node containing START. Value is
3590 MEM_NIL if there is no node in the tree containing START. */
3591
3592 static INLINE struct mem_node *
3593 mem_find (start)
3594 void *start;
3595 {
3596 struct mem_node *p;
3597
3598 if (start < min_heap_address || start > max_heap_address)
3599 return MEM_NIL;
3600
3601 /* Make the search always successful to speed up the loop below. */
3602 mem_z.start = start;
3603 mem_z.end = (char *) start + 1;
3604
3605 p = mem_root;
3606 while (start < p->start || start >= p->end)
3607 p = start < p->start ? p->left : p->right;
3608 return p;
3609 }
3610
3611
3612 /* Insert a new node into the tree for a block of memory with start
3613 address START, end address END, and type TYPE. Value is a
3614 pointer to the node that was inserted. */
3615
3616 static struct mem_node *
3617 mem_insert (start, end, type)
3618 void *start, *end;
3619 enum mem_type type;
3620 {
3621 struct mem_node *c, *parent, *x;
3622
3623 if (min_heap_address == NULL || start < min_heap_address)
3624 min_heap_address = start;
3625 if (max_heap_address == NULL || end > max_heap_address)
3626 max_heap_address = end;
3627
3628 /* See where in the tree a node for START belongs. In this
3629 particular application, it shouldn't happen that a node is already
3630 present. For debugging purposes, let's check that. */
3631 c = mem_root;
3632 parent = NULL;
3633
3634 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3635
3636 while (c != MEM_NIL)
3637 {
3638 if (start >= c->start && start < c->end)
3639 abort ();
3640 parent = c;
3641 c = start < c->start ? c->left : c->right;
3642 }
3643
3644 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3645
3646 while (c != MEM_NIL)
3647 {
3648 parent = c;
3649 c = start < c->start ? c->left : c->right;
3650 }
3651
3652 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3653
3654 /* Create a new node. */
3655 #ifdef GC_MALLOC_CHECK
3656 x = (struct mem_node *) _malloc_internal (sizeof *x);
3657 if (x == NULL)
3658 abort ();
3659 #else
3660 x = (struct mem_node *) xmalloc (sizeof *x);
3661 #endif
3662 x->start = start;
3663 x->end = end;
3664 x->type = type;
3665 x->parent = parent;
3666 x->left = x->right = MEM_NIL;
3667 x->color = MEM_RED;
3668
3669 /* Insert it as child of PARENT or install it as root. */
3670 if (parent)
3671 {
3672 if (start < parent->start)
3673 parent->left = x;
3674 else
3675 parent->right = x;
3676 }
3677 else
3678 mem_root = x;
3679
3680 /* Re-establish red-black tree properties. */
3681 mem_insert_fixup (x);
3682
3683 return x;
3684 }
3685
3686
3687 /* Re-establish the red-black properties of the tree, and thereby
3688 balance the tree, after node X has been inserted; X is always red. */
3689
3690 static void
3691 mem_insert_fixup (x)
3692 struct mem_node *x;
3693 {
3694 while (x != mem_root && x->parent->color == MEM_RED)
3695 {
3696 /* X is red and its parent is red. This is a violation of
3697 red-black tree property #3. */
3698
3699 if (x->parent == x->parent->parent->left)
3700 {
3701 /* We're on the left side of our grandparent, and Y is our
3702 "uncle". */
3703 struct mem_node *y = x->parent->parent->right;
3704
3705 if (y->color == MEM_RED)
3706 {
3707 /* Uncle and parent are red but should be black because
3708 X is red. Change the colors accordingly and proceed
3709 with the grandparent. */
3710 x->parent->color = MEM_BLACK;
3711 y->color = MEM_BLACK;
3712 x->parent->parent->color = MEM_RED;
3713 x = x->parent->parent;
3714 }
3715 else
3716 {
3717 /* Parent and uncle have different colors; parent is
3718 red, uncle is black. */
3719 if (x == x->parent->right)
3720 {
3721 x = x->parent;
3722 mem_rotate_left (x);
3723 }
3724
3725 x->parent->color = MEM_BLACK;
3726 x->parent->parent->color = MEM_RED;
3727 mem_rotate_right (x->parent->parent);
3728 }
3729 }
3730 else
3731 {
3732 /* This is the symmetrical case of above. */
3733 struct mem_node *y = x->parent->parent->left;
3734
3735 if (y->color == MEM_RED)
3736 {
3737 x->parent->color = MEM_BLACK;
3738 y->color = MEM_BLACK;
3739 x->parent->parent->color = MEM_RED;
3740 x = x->parent->parent;
3741 }
3742 else
3743 {
3744 if (x == x->parent->left)
3745 {
3746 x = x->parent;
3747 mem_rotate_right (x);
3748 }
3749
3750 x->parent->color = MEM_BLACK;
3751 x->parent->parent->color = MEM_RED;
3752 mem_rotate_left (x->parent->parent);
3753 }
3754 }
3755 }
3756
3757 /* The root may have been changed to red due to the algorithm. Set
3758 it to black so that property #5 is satisfied. */
3759 mem_root->color = MEM_BLACK;
3760 }
3761
3762
3763 /* (x) (y)
3764 / \ / \
3765 a (y) ===> (x) c
3766 / \ / \
3767 b c a b */
3768
3769 static void
3770 mem_rotate_left (x)
3771 struct mem_node *x;
3772 {
3773 struct mem_node *y;
3774
3775 /* Turn y's left sub-tree into x's right sub-tree. */
3776 y = x->right;
3777 x->right = y->left;
3778 if (y->left != MEM_NIL)
3779 y->left->parent = x;
3780
3781 /* Y's parent was x's parent. */
3782 if (y != MEM_NIL)
3783 y->parent = x->parent;
3784
3785 /* Get the parent to point to y instead of x. */
3786 if (x->parent)
3787 {
3788 if (x == x->parent->left)
3789 x->parent->left = y;
3790 else
3791 x->parent->right = y;
3792 }
3793 else
3794 mem_root = y;
3795
3796 /* Put x on y's left. */
3797 y->left = x;
3798 if (x != MEM_NIL)
3799 x->parent = y;
3800 }
3801
3802
3803 /* (x) (Y)
3804 / \ / \
3805 (y) c ===> a (x)
3806 / \ / \
3807 a b b c */
3808
3809 static void
3810 mem_rotate_right (x)
3811 struct mem_node *x;
3812 {
3813 struct mem_node *y = x->left;
3814
3815 x->left = y->right;
3816 if (y->right != MEM_NIL)
3817 y->right->parent = x;
3818
3819 if (y != MEM_NIL)
3820 y->parent = x->parent;
3821 if (x->parent)
3822 {
3823 if (x == x->parent->right)
3824 x->parent->right = y;
3825 else
3826 x->parent->left = y;
3827 }
3828 else
3829 mem_root = y;
3830
3831 y->right = x;
3832 if (x != MEM_NIL)
3833 x->parent = y;
3834 }
3835
3836
3837 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3838
3839 static void
3840 mem_delete (z)
3841 struct mem_node *z;
3842 {
3843 struct mem_node *x, *y;
3844
3845 if (!z || z == MEM_NIL)
3846 return;
3847
3848 if (z->left == MEM_NIL || z->right == MEM_NIL)
3849 y = z;
3850 else
3851 {
3852 y = z->right;
3853 while (y->left != MEM_NIL)
3854 y = y->left;
3855 }
3856
3857 if (y->left != MEM_NIL)
3858 x = y->left;
3859 else
3860 x = y->right;
3861
3862 x->parent = y->parent;
3863 if (y->parent)
3864 {
3865 if (y == y->parent->left)
3866 y->parent->left = x;
3867 else
3868 y->parent->right = x;
3869 }
3870 else
3871 mem_root = x;
3872
3873 if (y != z)
3874 {
3875 z->start = y->start;
3876 z->end = y->end;
3877 z->type = y->type;
3878 }
3879
3880 if (y->color == MEM_BLACK)
3881 mem_delete_fixup (x);
3882
3883 #ifdef GC_MALLOC_CHECK
3884 _free_internal (y);
3885 #else
3886 xfree (y);
3887 #endif
3888 }
3889
3890
3891 /* Re-establish the red-black properties of the tree, after a
3892 deletion. */
3893
3894 static void
3895 mem_delete_fixup (x)
3896 struct mem_node *x;
3897 {
3898 while (x != mem_root && x->color == MEM_BLACK)
3899 {
3900 if (x == x->parent->left)
3901 {
3902 struct mem_node *w = x->parent->right;
3903
3904 if (w->color == MEM_RED)
3905 {
3906 w->color = MEM_BLACK;
3907 x->parent->color = MEM_RED;
3908 mem_rotate_left (x->parent);
3909 w = x->parent->right;
3910 }
3911
3912 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3913 {
3914 w->color = MEM_RED;
3915 x = x->parent;
3916 }
3917 else
3918 {
3919 if (w->right->color == MEM_BLACK)
3920 {
3921 w->left->color = MEM_BLACK;
3922 w->color = MEM_RED;
3923 mem_rotate_right (w);
3924 w = x->parent->right;
3925 }
3926 w->color = x->parent->color;
3927 x->parent->color = MEM_BLACK;
3928 w->right->color = MEM_BLACK;
3929 mem_rotate_left (x->parent);
3930 x = mem_root;
3931 }
3932 }
3933 else
3934 {
3935 struct mem_node *w = x->parent->left;
3936
3937 if (w->color == MEM_RED)
3938 {
3939 w->color = MEM_BLACK;
3940 x->parent->color = MEM_RED;
3941 mem_rotate_right (x->parent);
3942 w = x->parent->left;
3943 }
3944
3945 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3946 {
3947 w->color = MEM_RED;
3948 x = x->parent;
3949 }
3950 else
3951 {
3952 if (w->left->color == MEM_BLACK)
3953 {
3954 w->right->color = MEM_BLACK;
3955 w->color = MEM_RED;
3956 mem_rotate_left (w);
3957 w = x->parent->left;
3958 }
3959
3960 w->color = x->parent->color;
3961 x->parent->color = MEM_BLACK;
3962 w->left->color = MEM_BLACK;
3963 mem_rotate_right (x->parent);
3964 x = mem_root;
3965 }
3966 }
3967 }
3968
3969 x->color = MEM_BLACK;
3970 }
3971
3972
3973 /* Value is non-zero if P is a pointer to a live Lisp string on
3974 the heap. M is a pointer to the mem_block for P. */
3975
3976 static INLINE int
3977 live_string_p (m, p)
3978 struct mem_node *m;
3979 void *p;
3980 {
3981 if (m->type == MEM_TYPE_STRING)
3982 {
3983 struct string_block *b = (struct string_block *) m->start;
3984 int offset = (char *) p - (char *) &b->strings[0];
3985
3986 /* P must point to the start of a Lisp_String structure, and it
3987 must not be on the free-list. */
3988 return (offset >= 0
3989 && offset % sizeof b->strings[0] == 0
3990 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3991 && ((struct Lisp_String *) p)->data != NULL);
3992 }
3993 else
3994 return 0;
3995 }
3996
3997
3998 /* Value is non-zero if P is a pointer to a live Lisp cons on
3999 the heap. M is a pointer to the mem_block for P. */
4000
4001 static INLINE int
4002 live_cons_p (m, p)
4003 struct mem_node *m;
4004 void *p;
4005 {
4006 if (m->type == MEM_TYPE_CONS)
4007 {
4008 struct cons_block *b = (struct cons_block *) m->start;
4009 int offset = (char *) p - (char *) &b->conses[0];
4010
4011 /* P must point to the start of a Lisp_Cons, not be
4012 one of the unused cells in the current cons block,
4013 and not be on the free-list. */
4014 return (offset >= 0
4015 && offset % sizeof b->conses[0] == 0
4016 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4017 && (b != cons_block
4018 || offset / sizeof b->conses[0] < cons_block_index)
4019 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4020 }
4021 else
4022 return 0;
4023 }
4024
4025
4026 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4027 the heap. M is a pointer to the mem_block for P. */
4028
4029 static INLINE int
4030 live_symbol_p (m, p)
4031 struct mem_node *m;
4032 void *p;
4033 {
4034 if (m->type == MEM_TYPE_SYMBOL)
4035 {
4036 struct symbol_block *b = (struct symbol_block *) m->start;
4037 int offset = (char *) p - (char *) &b->symbols[0];
4038
4039 /* P must point to the start of a Lisp_Symbol, not be
4040 one of the unused cells in the current symbol block,
4041 and not be on the free-list. */
4042 return (offset >= 0
4043 && offset % sizeof b->symbols[0] == 0
4044 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4045 && (b != symbol_block
4046 || offset / sizeof b->symbols[0] < symbol_block_index)
4047 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4048 }
4049 else
4050 return 0;
4051 }
4052
4053
4054 /* Value is non-zero if P is a pointer to a live Lisp float on
4055 the heap. M is a pointer to the mem_block for P. */
4056
4057 static INLINE int
4058 live_float_p (m, p)
4059 struct mem_node *m;
4060 void *p;
4061 {
4062 if (m->type == MEM_TYPE_FLOAT)
4063 {
4064 struct float_block *b = (struct float_block *) m->start;
4065 int offset = (char *) p - (char *) &b->floats[0];
4066
4067 /* P must point to the start of a Lisp_Float and not be
4068 one of the unused cells in the current float block. */
4069 return (offset >= 0
4070 && offset % sizeof b->floats[0] == 0
4071 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4072 && (b != float_block
4073 || offset / sizeof b->floats[0] < float_block_index));
4074 }
4075 else
4076 return 0;
4077 }
4078
4079
4080 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4081 the heap. M is a pointer to the mem_block for P. */
4082
4083 static INLINE int
4084 live_misc_p (m, p)
4085 struct mem_node *m;
4086 void *p;
4087 {
4088 if (m->type == MEM_TYPE_MISC)
4089 {
4090 struct marker_block *b = (struct marker_block *) m->start;
4091 int offset = (char *) p - (char *) &b->markers[0];
4092
4093 /* P must point to the start of a Lisp_Misc, not be
4094 one of the unused cells in the current misc block,
4095 and not be on the free-list. */
4096 return (offset >= 0
4097 && offset % sizeof b->markers[0] == 0
4098 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4099 && (b != marker_block
4100 || offset / sizeof b->markers[0] < marker_block_index)
4101 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4102 }
4103 else
4104 return 0;
4105 }
4106
4107
4108 /* Value is non-zero if P is a pointer to a live vector-like object.
4109 M is a pointer to the mem_block for P. */
4110
4111 static INLINE int
4112 live_vector_p (m, p)
4113 struct mem_node *m;
4114 void *p;
4115 {
4116 return (p == m->start
4117 && m->type >= MEM_TYPE_VECTOR
4118 && m->type <= MEM_TYPE_WINDOW);
4119 }
4120
4121
4122 /* Value is non-zero if P is a pointer to a live buffer. M is a
4123 pointer to the mem_block for P. */
4124
4125 static INLINE int
4126 live_buffer_p (m, p)
4127 struct mem_node *m;
4128 void *p;
4129 {
4130 /* P must point to the start of the block, and the buffer
4131 must not have been killed. */
4132 return (m->type == MEM_TYPE_BUFFER
4133 && p == m->start
4134 && !NILP (((struct buffer *) p)->name));
4135 }
4136
4137 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4138
4139 #if GC_MARK_STACK
4140
4141 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4142
4143 /* Array of objects that are kept alive because the C stack contains
4144 a pattern that looks like a reference to them . */
4145
4146 #define MAX_ZOMBIES 10
4147 static Lisp_Object zombies[MAX_ZOMBIES];
4148
4149 /* Number of zombie objects. */
4150
4151 static int nzombies;
4152
4153 /* Number of garbage collections. */
4154
4155 static int ngcs;
4156
4157 /* Average percentage of zombies per collection. */
4158
4159 static double avg_zombies;
4160
4161 /* Max. number of live and zombie objects. */
4162
4163 static int max_live, max_zombies;
4164
4165 /* Average number of live objects per GC. */
4166
4167 static double avg_live;
4168
4169 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4170 doc: /* Show information about live and zombie objects. */)
4171 ()
4172 {
4173 Lisp_Object args[8], zombie_list = Qnil;
4174 int i;
4175 for (i = 0; i < nzombies; i++)
4176 zombie_list = Fcons (zombies[i], zombie_list);
4177 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4178 args[1] = make_number (ngcs);
4179 args[2] = make_float (avg_live);
4180 args[3] = make_float (avg_zombies);
4181 args[4] = make_float (avg_zombies / avg_live / 100);
4182 args[5] = make_number (max_live);
4183 args[6] = make_number (max_zombies);
4184 args[7] = zombie_list;
4185 return Fmessage (8, args);
4186 }
4187
4188 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4189
4190
4191 /* Mark OBJ if we can prove it's a Lisp_Object. */
4192
4193 static INLINE void
4194 mark_maybe_object (obj)
4195 Lisp_Object obj;
4196 {
4197 void *po = (void *) XPNTR (obj);
4198 struct mem_node *m = mem_find (po);
4199
4200 if (m != MEM_NIL)
4201 {
4202 int mark_p = 0;
4203
4204 switch (XGCTYPE (obj))
4205 {
4206 case Lisp_String:
4207 mark_p = (live_string_p (m, po)
4208 && !STRING_MARKED_P ((struct Lisp_String *) po));
4209 break;
4210
4211 case Lisp_Cons:
4212 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4213 break;
4214
4215 case Lisp_Symbol:
4216 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4217 break;
4218
4219 case Lisp_Float:
4220 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4221 break;
4222
4223 case Lisp_Vectorlike:
4224 /* Note: can't check GC_BUFFERP before we know it's a
4225 buffer because checking that dereferences the pointer
4226 PO which might point anywhere. */
4227 if (live_vector_p (m, po))
4228 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4229 else if (live_buffer_p (m, po))
4230 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4231 break;
4232
4233 case Lisp_Misc:
4234 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4235 break;
4236
4237 case Lisp_Int:
4238 case Lisp_Type_Limit:
4239 break;
4240 }
4241
4242 if (mark_p)
4243 {
4244 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4245 if (nzombies < MAX_ZOMBIES)
4246 zombies[nzombies] = obj;
4247 ++nzombies;
4248 #endif
4249 mark_object (obj);
4250 }
4251 }
4252 }
4253
4254
4255 /* If P points to Lisp data, mark that as live if it isn't already
4256 marked. */
4257
4258 static INLINE void
4259 mark_maybe_pointer (p)
4260 void *p;
4261 {
4262 struct mem_node *m;
4263
4264 /* Quickly rule out some values which can't point to Lisp data. */
4265 if ((EMACS_INT) p %
4266 #ifdef USE_LSB_TAG
4267 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4268 #else
4269 2 /* We assume that Lisp data is aligned on even addresses. */
4270 #endif
4271 )
4272 return;
4273
4274 m = mem_find (p);
4275 if (m != MEM_NIL)
4276 {
4277 Lisp_Object obj = Qnil;
4278
4279 switch (m->type)
4280 {
4281 case MEM_TYPE_NON_LISP:
4282 /* Nothing to do; not a pointer to Lisp memory. */
4283 break;
4284
4285 case MEM_TYPE_BUFFER:
4286 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4287 XSETVECTOR (obj, p);
4288 break;
4289
4290 case MEM_TYPE_CONS:
4291 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4292 XSETCONS (obj, p);
4293 break;
4294
4295 case MEM_TYPE_STRING:
4296 if (live_string_p (m, p)
4297 && !STRING_MARKED_P ((struct Lisp_String *) p))
4298 XSETSTRING (obj, p);
4299 break;
4300
4301 case MEM_TYPE_MISC:
4302 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4303 XSETMISC (obj, p);
4304 break;
4305
4306 case MEM_TYPE_SYMBOL:
4307 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4308 XSETSYMBOL (obj, p);
4309 break;
4310
4311 case MEM_TYPE_FLOAT:
4312 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4313 XSETFLOAT (obj, p);
4314 break;
4315
4316 case MEM_TYPE_VECTOR:
4317 case MEM_TYPE_PROCESS:
4318 case MEM_TYPE_HASH_TABLE:
4319 case MEM_TYPE_FRAME:
4320 case MEM_TYPE_WINDOW:
4321 if (live_vector_p (m, p))
4322 {
4323 Lisp_Object tem;
4324 XSETVECTOR (tem, p);
4325 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4326 obj = tem;
4327 }
4328 break;
4329
4330 default:
4331 abort ();
4332 }
4333
4334 if (!GC_NILP (obj))
4335 mark_object (obj);
4336 }
4337 }
4338
4339
4340 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4341 or END+OFFSET..START. */
4342
4343 static void
4344 mark_memory (start, end, offset)
4345 void *start, *end;
4346 int offset;
4347 {
4348 Lisp_Object *p;
4349 void **pp;
4350
4351 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4352 nzombies = 0;
4353 #endif
4354
4355 /* Make START the pointer to the start of the memory region,
4356 if it isn't already. */
4357 if (end < start)
4358 {
4359 void *tem = start;
4360 start = end;
4361 end = tem;
4362 }
4363
4364 /* Mark Lisp_Objects. */
4365 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4366 mark_maybe_object (*p);
4367
4368 /* Mark Lisp data pointed to. This is necessary because, in some
4369 situations, the C compiler optimizes Lisp objects away, so that
4370 only a pointer to them remains. Example:
4371
4372 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4373 ()
4374 {
4375 Lisp_Object obj = build_string ("test");
4376 struct Lisp_String *s = XSTRING (obj);
4377 Fgarbage_collect ();
4378 fprintf (stderr, "test `%s'\n", s->data);
4379 return Qnil;
4380 }
4381
4382 Here, `obj' isn't really used, and the compiler optimizes it
4383 away. The only reference to the life string is through the
4384 pointer `s'. */
4385
4386 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4387 mark_maybe_pointer (*pp);
4388 }
4389
4390 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4391 the GCC system configuration. In gcc 3.2, the only systems for
4392 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4393 by others?) and ns32k-pc532-min. */
4394
4395 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4396
4397 static int setjmp_tested_p, longjmps_done;
4398
4399 #define SETJMP_WILL_LIKELY_WORK "\
4400 \n\
4401 Emacs garbage collector has been changed to use conservative stack\n\
4402 marking. Emacs has determined that the method it uses to do the\n\
4403 marking will likely work on your system, but this isn't sure.\n\
4404 \n\
4405 If you are a system-programmer, or can get the help of a local wizard\n\
4406 who is, please take a look at the function mark_stack in alloc.c, and\n\
4407 verify that the methods used are appropriate for your system.\n\
4408 \n\
4409 Please mail the result to <emacs-devel@gnu.org>.\n\
4410 "
4411
4412 #define SETJMP_WILL_NOT_WORK "\
4413 \n\
4414 Emacs garbage collector has been changed to use conservative stack\n\
4415 marking. Emacs has determined that the default method it uses to do the\n\
4416 marking will not work on your system. We will need a system-dependent\n\
4417 solution for your system.\n\
4418 \n\
4419 Please take a look at the function mark_stack in alloc.c, and\n\
4420 try to find a way to make it work on your system.\n\
4421 \n\
4422 Note that you may get false negatives, depending on the compiler.\n\
4423 In particular, you need to use -O with GCC for this test.\n\
4424 \n\
4425 Please mail the result to <emacs-devel@gnu.org>.\n\
4426 "
4427
4428
4429 /* Perform a quick check if it looks like setjmp saves registers in a
4430 jmp_buf. Print a message to stderr saying so. When this test
4431 succeeds, this is _not_ a proof that setjmp is sufficient for
4432 conservative stack marking. Only the sources or a disassembly
4433 can prove that. */
4434
4435 static void
4436 test_setjmp ()
4437 {
4438 char buf[10];
4439 register int x;
4440 jmp_buf jbuf;
4441 int result = 0;
4442
4443 /* Arrange for X to be put in a register. */
4444 sprintf (buf, "1");
4445 x = strlen (buf);
4446 x = 2 * x - 1;
4447
4448 setjmp (jbuf);
4449 if (longjmps_done == 1)
4450 {
4451 /* Came here after the longjmp at the end of the function.
4452
4453 If x == 1, the longjmp has restored the register to its
4454 value before the setjmp, and we can hope that setjmp
4455 saves all such registers in the jmp_buf, although that
4456 isn't sure.
4457
4458 For other values of X, either something really strange is
4459 taking place, or the setjmp just didn't save the register. */
4460
4461 if (x == 1)
4462 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4463 else
4464 {
4465 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4466 exit (1);
4467 }
4468 }
4469
4470 ++longjmps_done;
4471 x = 2;
4472 if (longjmps_done == 1)
4473 longjmp (jbuf, 1);
4474 }
4475
4476 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4477
4478
4479 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4480
4481 /* Abort if anything GCPRO'd doesn't survive the GC. */
4482
4483 static void
4484 check_gcpros ()
4485 {
4486 struct gcpro *p;
4487 int i;
4488
4489 for (p = gcprolist; p; p = p->next)
4490 for (i = 0; i < p->nvars; ++i)
4491 if (!survives_gc_p (p->var[i]))
4492 /* FIXME: It's not necessarily a bug. It might just be that the
4493 GCPRO is unnecessary or should release the object sooner. */
4494 abort ();
4495 }
4496
4497 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4498
4499 static void
4500 dump_zombies ()
4501 {
4502 int i;
4503
4504 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4505 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4506 {
4507 fprintf (stderr, " %d = ", i);
4508 debug_print (zombies[i]);
4509 }
4510 }
4511
4512 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4513
4514
4515 /* Mark live Lisp objects on the C stack.
4516
4517 There are several system-dependent problems to consider when
4518 porting this to new architectures:
4519
4520 Processor Registers
4521
4522 We have to mark Lisp objects in CPU registers that can hold local
4523 variables or are used to pass parameters.
4524
4525 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4526 something that either saves relevant registers on the stack, or
4527 calls mark_maybe_object passing it each register's contents.
4528
4529 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4530 implementation assumes that calling setjmp saves registers we need
4531 to see in a jmp_buf which itself lies on the stack. This doesn't
4532 have to be true! It must be verified for each system, possibly
4533 by taking a look at the source code of setjmp.
4534
4535 Stack Layout
4536
4537 Architectures differ in the way their processor stack is organized.
4538 For example, the stack might look like this
4539
4540 +----------------+
4541 | Lisp_Object | size = 4
4542 +----------------+
4543 | something else | size = 2
4544 +----------------+
4545 | Lisp_Object | size = 4
4546 +----------------+
4547 | ... |
4548
4549 In such a case, not every Lisp_Object will be aligned equally. To
4550 find all Lisp_Object on the stack it won't be sufficient to walk
4551 the stack in steps of 4 bytes. Instead, two passes will be
4552 necessary, one starting at the start of the stack, and a second
4553 pass starting at the start of the stack + 2. Likewise, if the
4554 minimal alignment of Lisp_Objects on the stack is 1, four passes
4555 would be necessary, each one starting with one byte more offset
4556 from the stack start.
4557
4558 The current code assumes by default that Lisp_Objects are aligned
4559 equally on the stack. */
4560
4561 static void
4562 mark_stack ()
4563 {
4564 int i;
4565 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4566 union aligned_jmpbuf {
4567 Lisp_Object o;
4568 jmp_buf j;
4569 } j;
4570 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4571 void *end;
4572
4573 /* This trick flushes the register windows so that all the state of
4574 the process is contained in the stack. */
4575 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4576 needed on ia64 too. See mach_dep.c, where it also says inline
4577 assembler doesn't work with relevant proprietary compilers. */
4578 #ifdef sparc
4579 asm ("ta 3");
4580 #endif
4581
4582 /* Save registers that we need to see on the stack. We need to see
4583 registers used to hold register variables and registers used to
4584 pass parameters. */
4585 #ifdef GC_SAVE_REGISTERS_ON_STACK
4586 GC_SAVE_REGISTERS_ON_STACK (end);
4587 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4588
4589 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4590 setjmp will definitely work, test it
4591 and print a message with the result
4592 of the test. */
4593 if (!setjmp_tested_p)
4594 {
4595 setjmp_tested_p = 1;
4596 test_setjmp ();
4597 }
4598 #endif /* GC_SETJMP_WORKS */
4599
4600 setjmp (j.j);
4601 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4602 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4603
4604 /* This assumes that the stack is a contiguous region in memory. If
4605 that's not the case, something has to be done here to iterate
4606 over the stack segments. */
4607 #ifndef GC_LISP_OBJECT_ALIGNMENT
4608 #ifdef __GNUC__
4609 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4610 #else
4611 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4612 #endif
4613 #endif
4614 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4615 mark_memory (stack_base, end, i);
4616 /* Allow for marking a secondary stack, like the register stack on the
4617 ia64. */
4618 #ifdef GC_MARK_SECONDARY_STACK
4619 GC_MARK_SECONDARY_STACK ();
4620 #endif
4621
4622 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4623 check_gcpros ();
4624 #endif
4625 }
4626
4627 #endif /* GC_MARK_STACK != 0 */
4628
4629
4630 /* Determine whether it is safe to access memory at address P. */
4631 int
4632 valid_pointer_p (p)
4633 void *p;
4634 {
4635 #ifdef WINDOWSNT
4636 return w32_valid_pointer_p (p, 16);
4637 #else
4638 int fd;
4639
4640 /* Obviously, we cannot just access it (we would SEGV trying), so we
4641 trick the o/s to tell us whether p is a valid pointer.
4642 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4643 not validate p in that case. */
4644
4645 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4646 {
4647 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4648 emacs_close (fd);
4649 unlink ("__Valid__Lisp__Object__");
4650 return valid;
4651 }
4652
4653 return -1;
4654 #endif
4655 }
4656
4657 /* Return 1 if OBJ is a valid lisp object.
4658 Return 0 if OBJ is NOT a valid lisp object.
4659 Return -1 if we cannot validate OBJ.
4660 This function can be quite slow,
4661 so it should only be used in code for manual debugging. */
4662
4663 int
4664 valid_lisp_object_p (obj)
4665 Lisp_Object obj;
4666 {
4667 void *p;
4668 #if GC_MARK_STACK
4669 struct mem_node *m;
4670 #endif
4671
4672 if (INTEGERP (obj))
4673 return 1;
4674
4675 p = (void *) XPNTR (obj);
4676 if (PURE_POINTER_P (p))
4677 return 1;
4678
4679 #if !GC_MARK_STACK
4680 return valid_pointer_p (p);
4681 #else
4682
4683 m = mem_find (p);
4684
4685 if (m == MEM_NIL)
4686 {
4687 int valid = valid_pointer_p (p);
4688 if (valid <= 0)
4689 return valid;
4690
4691 if (SUBRP (obj))
4692 return 1;
4693
4694 return 0;
4695 }
4696
4697 switch (m->type)
4698 {
4699 case MEM_TYPE_NON_LISP:
4700 return 0;
4701
4702 case MEM_TYPE_BUFFER:
4703 return live_buffer_p (m, p);
4704
4705 case MEM_TYPE_CONS:
4706 return live_cons_p (m, p);
4707
4708 case MEM_TYPE_STRING:
4709 return live_string_p (m, p);
4710
4711 case MEM_TYPE_MISC:
4712 return live_misc_p (m, p);
4713
4714 case MEM_TYPE_SYMBOL:
4715 return live_symbol_p (m, p);
4716
4717 case MEM_TYPE_FLOAT:
4718 return live_float_p (m, p);
4719
4720 case MEM_TYPE_VECTOR:
4721 case MEM_TYPE_PROCESS:
4722 case MEM_TYPE_HASH_TABLE:
4723 case MEM_TYPE_FRAME:
4724 case MEM_TYPE_WINDOW:
4725 return live_vector_p (m, p);
4726
4727 default:
4728 break;
4729 }
4730
4731 return 0;
4732 #endif
4733 }
4734
4735
4736
4737 \f
4738 /***********************************************************************
4739 Pure Storage Management
4740 ***********************************************************************/
4741
4742 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4743 pointer to it. TYPE is the Lisp type for which the memory is
4744 allocated. TYPE < 0 means it's not used for a Lisp object. */
4745
4746 static POINTER_TYPE *
4747 pure_alloc (size, type)
4748 size_t size;
4749 int type;
4750 {
4751 POINTER_TYPE *result;
4752 #ifdef USE_LSB_TAG
4753 size_t alignment = (1 << GCTYPEBITS);
4754 #else
4755 size_t alignment = sizeof (EMACS_INT);
4756
4757 /* Give Lisp_Floats an extra alignment. */
4758 if (type == Lisp_Float)
4759 {
4760 #if defined __GNUC__ && __GNUC__ >= 2
4761 alignment = __alignof (struct Lisp_Float);
4762 #else
4763 alignment = sizeof (struct Lisp_Float);
4764 #endif
4765 }
4766 #endif
4767
4768 again:
4769 if (type >= 0)
4770 {
4771 /* Allocate space for a Lisp object from the beginning of the free
4772 space with taking account of alignment. */
4773 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4774 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4775 }
4776 else
4777 {
4778 /* Allocate space for a non-Lisp object from the end of the free
4779 space. */
4780 pure_bytes_used_non_lisp += size;
4781 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4782 }
4783 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4784
4785 if (pure_bytes_used <= pure_size)
4786 return result;
4787
4788 /* Don't allocate a large amount here,
4789 because it might get mmap'd and then its address
4790 might not be usable. */
4791 purebeg = (char *) xmalloc (10000);
4792 pure_size = 10000;
4793 pure_bytes_used_before_overflow += pure_bytes_used - size;
4794 pure_bytes_used = 0;
4795 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4796 goto again;
4797 }
4798
4799
4800 /* Print a warning if PURESIZE is too small. */
4801
4802 void
4803 check_pure_size ()
4804 {
4805 if (pure_bytes_used_before_overflow)
4806 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4807 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4808 }
4809
4810
4811 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4812 the non-Lisp data pool of the pure storage, and return its start
4813 address. Return NULL if not found. */
4814
4815 static char *
4816 find_string_data_in_pure (data, nbytes)
4817 char *data;
4818 int nbytes;
4819 {
4820 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4821 unsigned char *p;
4822 char *non_lisp_beg;
4823
4824 if (pure_bytes_used_non_lisp < nbytes + 1)
4825 return NULL;
4826
4827 /* Set up the Boyer-Moore table. */
4828 skip = nbytes + 1;
4829 for (i = 0; i < 256; i++)
4830 bm_skip[i] = skip;
4831
4832 p = (unsigned char *) data;
4833 while (--skip > 0)
4834 bm_skip[*p++] = skip;
4835
4836 last_char_skip = bm_skip['\0'];
4837
4838 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4839 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4840
4841 /* See the comments in the function `boyer_moore' (search.c) for the
4842 use of `infinity'. */
4843 infinity = pure_bytes_used_non_lisp + 1;
4844 bm_skip['\0'] = infinity;
4845
4846 p = (unsigned char *) non_lisp_beg + nbytes;
4847 start = 0;
4848 do
4849 {
4850 /* Check the last character (== '\0'). */
4851 do
4852 {
4853 start += bm_skip[*(p + start)];
4854 }
4855 while (start <= start_max);
4856
4857 if (start < infinity)
4858 /* Couldn't find the last character. */
4859 return NULL;
4860
4861 /* No less than `infinity' means we could find the last
4862 character at `p[start - infinity]'. */
4863 start -= infinity;
4864
4865 /* Check the remaining characters. */
4866 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4867 /* Found. */
4868 return non_lisp_beg + start;
4869
4870 start += last_char_skip;
4871 }
4872 while (start <= start_max);
4873
4874 return NULL;
4875 }
4876
4877
4878 /* Return a string allocated in pure space. DATA is a buffer holding
4879 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4880 non-zero means make the result string multibyte.
4881
4882 Must get an error if pure storage is full, since if it cannot hold
4883 a large string it may be able to hold conses that point to that
4884 string; then the string is not protected from gc. */
4885
4886 Lisp_Object
4887 make_pure_string (data, nchars, nbytes, multibyte)
4888 char *data;
4889 int nchars, nbytes;
4890 int multibyte;
4891 {
4892 Lisp_Object string;
4893 struct Lisp_String *s;
4894
4895 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4896 s->data = find_string_data_in_pure (data, nbytes);
4897 if (s->data == NULL)
4898 {
4899 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4900 bcopy (data, s->data, nbytes);
4901 s->data[nbytes] = '\0';
4902 }
4903 s->size = nchars;
4904 s->size_byte = multibyte ? nbytes : -1;
4905 s->intervals = NULL_INTERVAL;
4906 XSETSTRING (string, s);
4907 return string;
4908 }
4909
4910
4911 /* Return a cons allocated from pure space. Give it pure copies
4912 of CAR as car and CDR as cdr. */
4913
4914 Lisp_Object
4915 pure_cons (car, cdr)
4916 Lisp_Object car, cdr;
4917 {
4918 register Lisp_Object new;
4919 struct Lisp_Cons *p;
4920
4921 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4922 XSETCONS (new, p);
4923 XSETCAR (new, Fpurecopy (car));
4924 XSETCDR (new, Fpurecopy (cdr));
4925 return new;
4926 }
4927
4928
4929 /* Value is a float object with value NUM allocated from pure space. */
4930
4931 Lisp_Object
4932 make_pure_float (num)
4933 double num;
4934 {
4935 register Lisp_Object new;
4936 struct Lisp_Float *p;
4937
4938 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4939 XSETFLOAT (new, p);
4940 XFLOAT_DATA (new) = num;
4941 return new;
4942 }
4943
4944
4945 /* Return a vector with room for LEN Lisp_Objects allocated from
4946 pure space. */
4947
4948 Lisp_Object
4949 make_pure_vector (len)
4950 EMACS_INT len;
4951 {
4952 Lisp_Object new;
4953 struct Lisp_Vector *p;
4954 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4955
4956 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4957 XSETVECTOR (new, p);
4958 XVECTOR (new)->size = len;
4959 return new;
4960 }
4961
4962
4963 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4964 doc: /* Make a copy of object OBJ in pure storage.
4965 Recursively copies contents of vectors and cons cells.
4966 Does not copy symbols. Copies strings without text properties. */)
4967 (obj)
4968 register Lisp_Object obj;
4969 {
4970 if (NILP (Vpurify_flag))
4971 return obj;
4972
4973 if (PURE_POINTER_P (XPNTR (obj)))
4974 return obj;
4975
4976 if (CONSP (obj))
4977 return pure_cons (XCAR (obj), XCDR (obj));
4978 else if (FLOATP (obj))
4979 return make_pure_float (XFLOAT_DATA (obj));
4980 else if (STRINGP (obj))
4981 return make_pure_string (SDATA (obj), SCHARS (obj),
4982 SBYTES (obj),
4983 STRING_MULTIBYTE (obj));
4984 else if (COMPILEDP (obj) || VECTORP (obj))
4985 {
4986 register struct Lisp_Vector *vec;
4987 register int i;
4988 EMACS_INT size;
4989
4990 size = XVECTOR (obj)->size;
4991 if (size & PSEUDOVECTOR_FLAG)
4992 size &= PSEUDOVECTOR_SIZE_MASK;
4993 vec = XVECTOR (make_pure_vector (size));
4994 for (i = 0; i < size; i++)
4995 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4996 if (COMPILEDP (obj))
4997 XSETCOMPILED (obj, vec);
4998 else
4999 XSETVECTOR (obj, vec);
5000 return obj;
5001 }
5002 else if (MARKERP (obj))
5003 error ("Attempt to copy a marker to pure storage");
5004
5005 return obj;
5006 }
5007
5008
5009 \f
5010 /***********************************************************************
5011 Protection from GC
5012 ***********************************************************************/
5013
5014 /* Put an entry in staticvec, pointing at the variable with address
5015 VARADDRESS. */
5016
5017 void
5018 staticpro (varaddress)
5019 Lisp_Object *varaddress;
5020 {
5021 staticvec[staticidx++] = varaddress;
5022 if (staticidx >= NSTATICS)
5023 abort ();
5024 }
5025
5026 struct catchtag
5027 {
5028 Lisp_Object tag;
5029 Lisp_Object val;
5030 struct catchtag *next;
5031 };
5032
5033 \f
5034 /***********************************************************************
5035 Protection from GC
5036 ***********************************************************************/
5037
5038 /* Temporarily prevent garbage collection. */
5039
5040 int
5041 inhibit_garbage_collection ()
5042 {
5043 int count = SPECPDL_INDEX ();
5044 int nbits = min (VALBITS, BITS_PER_INT);
5045
5046 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5047 return count;
5048 }
5049
5050
5051 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5052 doc: /* Reclaim storage for Lisp objects no longer needed.
5053 Garbage collection happens automatically if you cons more than
5054 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5055 `garbage-collect' normally returns a list with info on amount of space in use:
5056 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5057 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5058 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5059 (USED-STRINGS . FREE-STRINGS))
5060 However, if there was overflow in pure space, `garbage-collect'
5061 returns nil, because real GC can't be done. */)
5062 ()
5063 {
5064 register struct specbinding *bind;
5065 struct catchtag *catch;
5066 struct handler *handler;
5067 char stack_top_variable;
5068 register int i;
5069 int message_p;
5070 Lisp_Object total[8];
5071 int count = SPECPDL_INDEX ();
5072 EMACS_TIME t1, t2, t3;
5073
5074 if (abort_on_gc)
5075 abort ();
5076
5077 /* Can't GC if pure storage overflowed because we can't determine
5078 if something is a pure object or not. */
5079 if (pure_bytes_used_before_overflow)
5080 return Qnil;
5081
5082 CHECK_CONS_LIST ();
5083
5084 /* Don't keep undo information around forever.
5085 Do this early on, so it is no problem if the user quits. */
5086 {
5087 register struct buffer *nextb = all_buffers;
5088
5089 while (nextb)
5090 {
5091 /* If a buffer's undo list is Qt, that means that undo is
5092 turned off in that buffer. Calling truncate_undo_list on
5093 Qt tends to return NULL, which effectively turns undo back on.
5094 So don't call truncate_undo_list if undo_list is Qt. */
5095 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5096 truncate_undo_list (nextb);
5097
5098 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5099 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5100 {
5101 /* If a buffer's gap size is more than 10% of the buffer
5102 size, or larger than 2000 bytes, then shrink it
5103 accordingly. Keep a minimum size of 20 bytes. */
5104 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5105
5106 if (nextb->text->gap_size > size)
5107 {
5108 struct buffer *save_current = current_buffer;
5109 current_buffer = nextb;
5110 make_gap (-(nextb->text->gap_size - size));
5111 current_buffer = save_current;
5112 }
5113 }
5114
5115 nextb = nextb->next;
5116 }
5117 }
5118
5119 EMACS_GET_TIME (t1);
5120
5121 /* In case user calls debug_print during GC,
5122 don't let that cause a recursive GC. */
5123 consing_since_gc = 0;
5124
5125 /* Save what's currently displayed in the echo area. */
5126 message_p = push_message ();
5127 record_unwind_protect (pop_message_unwind, Qnil);
5128
5129 /* Save a copy of the contents of the stack, for debugging. */
5130 #if MAX_SAVE_STACK > 0
5131 if (NILP (Vpurify_flag))
5132 {
5133 i = &stack_top_variable - stack_bottom;
5134 if (i < 0) i = -i;
5135 if (i < MAX_SAVE_STACK)
5136 {
5137 if (stack_copy == 0)
5138 stack_copy = (char *) xmalloc (stack_copy_size = i);
5139 else if (stack_copy_size < i)
5140 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5141 if (stack_copy)
5142 {
5143 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5144 bcopy (stack_bottom, stack_copy, i);
5145 else
5146 bcopy (&stack_top_variable, stack_copy, i);
5147 }
5148 }
5149 }
5150 #endif /* MAX_SAVE_STACK > 0 */
5151
5152 if (garbage_collection_messages)
5153 message1_nolog ("Garbage collecting...");
5154
5155 BLOCK_INPUT;
5156
5157 shrink_regexp_cache ();
5158
5159 gc_in_progress = 1;
5160
5161 /* clear_marks (); */
5162
5163 /* Mark all the special slots that serve as the roots of accessibility. */
5164
5165 for (i = 0; i < staticidx; i++)
5166 mark_object (*staticvec[i]);
5167
5168 for (bind = specpdl; bind != specpdl_ptr; bind++)
5169 {
5170 mark_object (bind->symbol);
5171 mark_object (bind->old_value);
5172 }
5173 mark_kboards ();
5174
5175 #ifdef USE_GTK
5176 {
5177 extern void xg_mark_data ();
5178 xg_mark_data ();
5179 }
5180 #endif
5181
5182 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5183 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5184 mark_stack ();
5185 #else
5186 {
5187 register struct gcpro *tail;
5188 for (tail = gcprolist; tail; tail = tail->next)
5189 for (i = 0; i < tail->nvars; i++)
5190 mark_object (tail->var[i]);
5191 }
5192 #endif
5193
5194 mark_byte_stack ();
5195 for (catch = catchlist; catch; catch = catch->next)
5196 {
5197 mark_object (catch->tag);
5198 mark_object (catch->val);
5199 }
5200 for (handler = handlerlist; handler; handler = handler->next)
5201 {
5202 mark_object (handler->handler);
5203 mark_object (handler->var);
5204 }
5205 mark_backtrace ();
5206
5207 #ifdef HAVE_WINDOW_SYSTEM
5208 mark_fringe_data ();
5209 #endif
5210
5211 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5212 mark_stack ();
5213 #endif
5214
5215 /* Everything is now marked, except for the things that require special
5216 finalization, i.e. the undo_list.
5217 Look thru every buffer's undo list
5218 for elements that update markers that were not marked,
5219 and delete them. */
5220 {
5221 register struct buffer *nextb = all_buffers;
5222
5223 while (nextb)
5224 {
5225 /* If a buffer's undo list is Qt, that means that undo is
5226 turned off in that buffer. Calling truncate_undo_list on
5227 Qt tends to return NULL, which effectively turns undo back on.
5228 So don't call truncate_undo_list if undo_list is Qt. */
5229 if (! EQ (nextb->undo_list, Qt))
5230 {
5231 Lisp_Object tail, prev;
5232 tail = nextb->undo_list;
5233 prev = Qnil;
5234 while (CONSP (tail))
5235 {
5236 if (GC_CONSP (XCAR (tail))
5237 && GC_MARKERP (XCAR (XCAR (tail)))
5238 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5239 {
5240 if (NILP (prev))
5241 nextb->undo_list = tail = XCDR (tail);
5242 else
5243 {
5244 tail = XCDR (tail);
5245 XSETCDR (prev, tail);
5246 }
5247 }
5248 else
5249 {
5250 prev = tail;
5251 tail = XCDR (tail);
5252 }
5253 }
5254 }
5255 /* Now that we have stripped the elements that need not be in the
5256 undo_list any more, we can finally mark the list. */
5257 mark_object (nextb->undo_list);
5258
5259 nextb = nextb->next;
5260 }
5261 }
5262
5263 gc_sweep ();
5264
5265 /* Clear the mark bits that we set in certain root slots. */
5266
5267 unmark_byte_stack ();
5268 VECTOR_UNMARK (&buffer_defaults);
5269 VECTOR_UNMARK (&buffer_local_symbols);
5270
5271 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5272 dump_zombies ();
5273 #endif
5274
5275 UNBLOCK_INPUT;
5276
5277 CHECK_CONS_LIST ();
5278
5279 /* clear_marks (); */
5280 gc_in_progress = 0;
5281
5282 consing_since_gc = 0;
5283 if (gc_cons_threshold < 10000)
5284 gc_cons_threshold = 10000;
5285
5286 if (FLOATP (Vgc_cons_percentage))
5287 { /* Set gc_cons_combined_threshold. */
5288 EMACS_INT total = 0;
5289
5290 total += total_conses * sizeof (struct Lisp_Cons);
5291 total += total_symbols * sizeof (struct Lisp_Symbol);
5292 total += total_markers * sizeof (union Lisp_Misc);
5293 total += total_string_size;
5294 total += total_vector_size * sizeof (Lisp_Object);
5295 total += total_floats * sizeof (struct Lisp_Float);
5296 total += total_intervals * sizeof (struct interval);
5297 total += total_strings * sizeof (struct Lisp_String);
5298
5299 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5300 }
5301 else
5302 gc_relative_threshold = 0;
5303
5304 if (garbage_collection_messages)
5305 {
5306 if (message_p || minibuf_level > 0)
5307 restore_message ();
5308 else
5309 message1_nolog ("Garbage collecting...done");
5310 }
5311
5312 unbind_to (count, Qnil);
5313
5314 total[0] = Fcons (make_number (total_conses),
5315 make_number (total_free_conses));
5316 total[1] = Fcons (make_number (total_symbols),
5317 make_number (total_free_symbols));
5318 total[2] = Fcons (make_number (total_markers),
5319 make_number (total_free_markers));
5320 total[3] = make_number (total_string_size);
5321 total[4] = make_number (total_vector_size);
5322 total[5] = Fcons (make_number (total_floats),
5323 make_number (total_free_floats));
5324 total[6] = Fcons (make_number (total_intervals),
5325 make_number (total_free_intervals));
5326 total[7] = Fcons (make_number (total_strings),
5327 make_number (total_free_strings));
5328
5329 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5330 {
5331 /* Compute average percentage of zombies. */
5332 double nlive = 0;
5333
5334 for (i = 0; i < 7; ++i)
5335 if (CONSP (total[i]))
5336 nlive += XFASTINT (XCAR (total[i]));
5337
5338 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5339 max_live = max (nlive, max_live);
5340 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5341 max_zombies = max (nzombies, max_zombies);
5342 ++ngcs;
5343 }
5344 #endif
5345
5346 if (!NILP (Vpost_gc_hook))
5347 {
5348 int count = inhibit_garbage_collection ();
5349 safe_run_hooks (Qpost_gc_hook);
5350 unbind_to (count, Qnil);
5351 }
5352
5353 /* Accumulate statistics. */
5354 EMACS_GET_TIME (t2);
5355 EMACS_SUB_TIME (t3, t2, t1);
5356 if (FLOATP (Vgc_elapsed))
5357 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5358 EMACS_SECS (t3) +
5359 EMACS_USECS (t3) * 1.0e-6);
5360 gcs_done++;
5361
5362 return Flist (sizeof total / sizeof *total, total);
5363 }
5364
5365
5366 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5367 only interesting objects referenced from glyphs are strings. */
5368
5369 static void
5370 mark_glyph_matrix (matrix)
5371 struct glyph_matrix *matrix;
5372 {
5373 struct glyph_row *row = matrix->rows;
5374 struct glyph_row *end = row + matrix->nrows;
5375
5376 for (; row < end; ++row)
5377 if (row->enabled_p)
5378 {
5379 int area;
5380 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5381 {
5382 struct glyph *glyph = row->glyphs[area];
5383 struct glyph *end_glyph = glyph + row->used[area];
5384
5385 for (; glyph < end_glyph; ++glyph)
5386 if (GC_STRINGP (glyph->object)
5387 && !STRING_MARKED_P (XSTRING (glyph->object)))
5388 mark_object (glyph->object);
5389 }
5390 }
5391 }
5392
5393
5394 /* Mark Lisp faces in the face cache C. */
5395
5396 static void
5397 mark_face_cache (c)
5398 struct face_cache *c;
5399 {
5400 if (c)
5401 {
5402 int i, j;
5403 for (i = 0; i < c->used; ++i)
5404 {
5405 struct face *face = FACE_FROM_ID (c->f, i);
5406
5407 if (face)
5408 {
5409 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5410 mark_object (face->lface[j]);
5411 }
5412 }
5413 }
5414 }
5415
5416
5417 #ifdef HAVE_WINDOW_SYSTEM
5418
5419 /* Mark Lisp objects in image IMG. */
5420
5421 static void
5422 mark_image (img)
5423 struct image *img;
5424 {
5425 mark_object (img->spec);
5426
5427 if (!NILP (img->data.lisp_val))
5428 mark_object (img->data.lisp_val);
5429 }
5430
5431
5432 /* Mark Lisp objects in image cache of frame F. It's done this way so
5433 that we don't have to include xterm.h here. */
5434
5435 static void
5436 mark_image_cache (f)
5437 struct frame *f;
5438 {
5439 forall_images_in_image_cache (f, mark_image);
5440 }
5441
5442 #endif /* HAVE_X_WINDOWS */
5443
5444
5445 \f
5446 /* Mark reference to a Lisp_Object.
5447 If the object referred to has not been seen yet, recursively mark
5448 all the references contained in it. */
5449
5450 #define LAST_MARKED_SIZE 500
5451 Lisp_Object last_marked[LAST_MARKED_SIZE];
5452 int last_marked_index;
5453
5454 /* For debugging--call abort when we cdr down this many
5455 links of a list, in mark_object. In debugging,
5456 the call to abort will hit a breakpoint.
5457 Normally this is zero and the check never goes off. */
5458 int mark_object_loop_halt;
5459
5460 void
5461 mark_object (arg)
5462 Lisp_Object arg;
5463 {
5464 register Lisp_Object obj = arg;
5465 #ifdef GC_CHECK_MARKED_OBJECTS
5466 void *po;
5467 struct mem_node *m;
5468 #endif
5469 int cdr_count = 0;
5470
5471 loop:
5472
5473 if (PURE_POINTER_P (XPNTR (obj)))
5474 return;
5475
5476 last_marked[last_marked_index++] = obj;
5477 if (last_marked_index == LAST_MARKED_SIZE)
5478 last_marked_index = 0;
5479
5480 /* Perform some sanity checks on the objects marked here. Abort if
5481 we encounter an object we know is bogus. This increases GC time
5482 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5483 #ifdef GC_CHECK_MARKED_OBJECTS
5484
5485 po = (void *) XPNTR (obj);
5486
5487 /* Check that the object pointed to by PO is known to be a Lisp
5488 structure allocated from the heap. */
5489 #define CHECK_ALLOCATED() \
5490 do { \
5491 m = mem_find (po); \
5492 if (m == MEM_NIL) \
5493 abort (); \
5494 } while (0)
5495
5496 /* Check that the object pointed to by PO is live, using predicate
5497 function LIVEP. */
5498 #define CHECK_LIVE(LIVEP) \
5499 do { \
5500 if (!LIVEP (m, po)) \
5501 abort (); \
5502 } while (0)
5503
5504 /* Check both of the above conditions. */
5505 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5506 do { \
5507 CHECK_ALLOCATED (); \
5508 CHECK_LIVE (LIVEP); \
5509 } while (0) \
5510
5511 #else /* not GC_CHECK_MARKED_OBJECTS */
5512
5513 #define CHECK_ALLOCATED() (void) 0
5514 #define CHECK_LIVE(LIVEP) (void) 0
5515 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5516
5517 #endif /* not GC_CHECK_MARKED_OBJECTS */
5518
5519 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5520 {
5521 case Lisp_String:
5522 {
5523 register struct Lisp_String *ptr = XSTRING (obj);
5524 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5525 MARK_INTERVAL_TREE (ptr->intervals);
5526 MARK_STRING (ptr);
5527 #ifdef GC_CHECK_STRING_BYTES
5528 /* Check that the string size recorded in the string is the
5529 same as the one recorded in the sdata structure. */
5530 CHECK_STRING_BYTES (ptr);
5531 #endif /* GC_CHECK_STRING_BYTES */
5532 }
5533 break;
5534
5535 case Lisp_Vectorlike:
5536 #ifdef GC_CHECK_MARKED_OBJECTS
5537 m = mem_find (po);
5538 if (m == MEM_NIL && !GC_SUBRP (obj)
5539 && po != &buffer_defaults
5540 && po != &buffer_local_symbols)
5541 abort ();
5542 #endif /* GC_CHECK_MARKED_OBJECTS */
5543
5544 if (GC_BUFFERP (obj))
5545 {
5546 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5547 {
5548 #ifdef GC_CHECK_MARKED_OBJECTS
5549 if (po != &buffer_defaults && po != &buffer_local_symbols)
5550 {
5551 struct buffer *b;
5552 for (b = all_buffers; b && b != po; b = b->next)
5553 ;
5554 if (b == NULL)
5555 abort ();
5556 }
5557 #endif /* GC_CHECK_MARKED_OBJECTS */
5558 mark_buffer (obj);
5559 }
5560 }
5561 else if (GC_SUBRP (obj))
5562 break;
5563 else if (GC_COMPILEDP (obj))
5564 /* We could treat this just like a vector, but it is better to
5565 save the COMPILED_CONSTANTS element for last and avoid
5566 recursion there. */
5567 {
5568 register struct Lisp_Vector *ptr = XVECTOR (obj);
5569 register EMACS_INT size = ptr->size;
5570 register int i;
5571
5572 if (VECTOR_MARKED_P (ptr))
5573 break; /* Already marked */
5574
5575 CHECK_LIVE (live_vector_p);
5576 VECTOR_MARK (ptr); /* Else mark it */
5577 size &= PSEUDOVECTOR_SIZE_MASK;
5578 for (i = 0; i < size; i++) /* and then mark its elements */
5579 {
5580 if (i != COMPILED_CONSTANTS)
5581 mark_object (ptr->contents[i]);
5582 }
5583 obj = ptr->contents[COMPILED_CONSTANTS];
5584 goto loop;
5585 }
5586 else if (GC_FRAMEP (obj))
5587 {
5588 register struct frame *ptr = XFRAME (obj);
5589
5590 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5591 VECTOR_MARK (ptr); /* Else mark it */
5592
5593 CHECK_LIVE (live_vector_p);
5594 mark_object (ptr->name);
5595 mark_object (ptr->icon_name);
5596 mark_object (ptr->title);
5597 mark_object (ptr->focus_frame);
5598 mark_object (ptr->selected_window);
5599 mark_object (ptr->minibuffer_window);
5600 mark_object (ptr->param_alist);
5601 mark_object (ptr->scroll_bars);
5602 mark_object (ptr->condemned_scroll_bars);
5603 mark_object (ptr->menu_bar_items);
5604 mark_object (ptr->face_alist);
5605 mark_object (ptr->menu_bar_vector);
5606 mark_object (ptr->buffer_predicate);
5607 mark_object (ptr->buffer_list);
5608 mark_object (ptr->menu_bar_window);
5609 mark_object (ptr->tool_bar_window);
5610 mark_face_cache (ptr->face_cache);
5611 #ifdef HAVE_WINDOW_SYSTEM
5612 mark_image_cache (ptr);
5613 mark_object (ptr->tool_bar_items);
5614 mark_object (ptr->desired_tool_bar_string);
5615 mark_object (ptr->current_tool_bar_string);
5616 #endif /* HAVE_WINDOW_SYSTEM */
5617 }
5618 else if (GC_BOOL_VECTOR_P (obj))
5619 {
5620 register struct Lisp_Vector *ptr = XVECTOR (obj);
5621
5622 if (VECTOR_MARKED_P (ptr))
5623 break; /* Already marked */
5624 CHECK_LIVE (live_vector_p);
5625 VECTOR_MARK (ptr); /* Else mark it */
5626 }
5627 else if (GC_WINDOWP (obj))
5628 {
5629 register struct Lisp_Vector *ptr = XVECTOR (obj);
5630 struct window *w = XWINDOW (obj);
5631 register int i;
5632
5633 /* Stop if already marked. */
5634 if (VECTOR_MARKED_P (ptr))
5635 break;
5636
5637 /* Mark it. */
5638 CHECK_LIVE (live_vector_p);
5639 VECTOR_MARK (ptr);
5640
5641 /* There is no Lisp data above The member CURRENT_MATRIX in
5642 struct WINDOW. Stop marking when that slot is reached. */
5643 for (i = 0;
5644 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5645 i++)
5646 mark_object (ptr->contents[i]);
5647
5648 /* Mark glyphs for leaf windows. Marking window matrices is
5649 sufficient because frame matrices use the same glyph
5650 memory. */
5651 if (NILP (w->hchild)
5652 && NILP (w->vchild)
5653 && w->current_matrix)
5654 {
5655 mark_glyph_matrix (w->current_matrix);
5656 mark_glyph_matrix (w->desired_matrix);
5657 }
5658 }
5659 else if (GC_HASH_TABLE_P (obj))
5660 {
5661 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5662
5663 /* Stop if already marked. */
5664 if (VECTOR_MARKED_P (h))
5665 break;
5666
5667 /* Mark it. */
5668 CHECK_LIVE (live_vector_p);
5669 VECTOR_MARK (h);
5670
5671 /* Mark contents. */
5672 /* Do not mark next_free or next_weak.
5673 Being in the next_weak chain
5674 should not keep the hash table alive.
5675 No need to mark `count' since it is an integer. */
5676 mark_object (h->test);
5677 mark_object (h->weak);
5678 mark_object (h->rehash_size);
5679 mark_object (h->rehash_threshold);
5680 mark_object (h->hash);
5681 mark_object (h->next);
5682 mark_object (h->index);
5683 mark_object (h->user_hash_function);
5684 mark_object (h->user_cmp_function);
5685
5686 /* If hash table is not weak, mark all keys and values.
5687 For weak tables, mark only the vector. */
5688 if (GC_NILP (h->weak))
5689 mark_object (h->key_and_value);
5690 else
5691 VECTOR_MARK (XVECTOR (h->key_and_value));
5692 }
5693 else
5694 {
5695 register struct Lisp_Vector *ptr = XVECTOR (obj);
5696 register EMACS_INT size = ptr->size;
5697 register int i;
5698
5699 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5700 CHECK_LIVE (live_vector_p);
5701 VECTOR_MARK (ptr); /* Else mark it */
5702 if (size & PSEUDOVECTOR_FLAG)
5703 size &= PSEUDOVECTOR_SIZE_MASK;
5704
5705 /* Note that this size is not the memory-footprint size, but only
5706 the number of Lisp_Object fields that we should trace.
5707 The distinction is used e.g. by Lisp_Process which places extra
5708 non-Lisp_Object fields at the end of the structure. */
5709 for (i = 0; i < size; i++) /* and then mark its elements */
5710 mark_object (ptr->contents[i]);
5711 }
5712 break;
5713
5714 case Lisp_Symbol:
5715 {
5716 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5717 struct Lisp_Symbol *ptrx;
5718
5719 if (ptr->gcmarkbit) break;
5720 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5721 ptr->gcmarkbit = 1;
5722 mark_object (ptr->value);
5723 mark_object (ptr->function);
5724 mark_object (ptr->plist);
5725
5726 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5727 MARK_STRING (XSTRING (ptr->xname));
5728 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5729
5730 /* Note that we do not mark the obarray of the symbol.
5731 It is safe not to do so because nothing accesses that
5732 slot except to check whether it is nil. */
5733 ptr = ptr->next;
5734 if (ptr)
5735 {
5736 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5737 XSETSYMBOL (obj, ptrx);
5738 goto loop;
5739 }
5740 }
5741 break;
5742
5743 case Lisp_Misc:
5744 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5745 if (XMARKER (obj)->gcmarkbit)
5746 break;
5747 XMARKER (obj)->gcmarkbit = 1;
5748
5749 switch (XMISCTYPE (obj))
5750 {
5751 case Lisp_Misc_Buffer_Local_Value:
5752 case Lisp_Misc_Some_Buffer_Local_Value:
5753 {
5754 register struct Lisp_Buffer_Local_Value *ptr
5755 = XBUFFER_LOCAL_VALUE (obj);
5756 /* If the cdr is nil, avoid recursion for the car. */
5757 if (EQ (ptr->cdr, Qnil))
5758 {
5759 obj = ptr->realvalue;
5760 goto loop;
5761 }
5762 mark_object (ptr->realvalue);
5763 mark_object (ptr->buffer);
5764 mark_object (ptr->frame);
5765 obj = ptr->cdr;
5766 goto loop;
5767 }
5768
5769 case Lisp_Misc_Marker:
5770 /* DO NOT mark thru the marker's chain.
5771 The buffer's markers chain does not preserve markers from gc;
5772 instead, markers are removed from the chain when freed by gc. */
5773 break;
5774
5775 case Lisp_Misc_Intfwd:
5776 case Lisp_Misc_Boolfwd:
5777 case Lisp_Misc_Objfwd:
5778 case Lisp_Misc_Buffer_Objfwd:
5779 case Lisp_Misc_Kboard_Objfwd:
5780 /* Don't bother with Lisp_Buffer_Objfwd,
5781 since all markable slots in current buffer marked anyway. */
5782 /* Don't need to do Lisp_Objfwd, since the places they point
5783 are protected with staticpro. */
5784 break;
5785
5786 case Lisp_Misc_Save_Value:
5787 #if GC_MARK_STACK
5788 {
5789 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5790 /* If DOGC is set, POINTER is the address of a memory
5791 area containing INTEGER potential Lisp_Objects. */
5792 if (ptr->dogc)
5793 {
5794 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5795 int nelt;
5796 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5797 mark_maybe_object (*p);
5798 }
5799 }
5800 #endif
5801 break;
5802
5803 case Lisp_Misc_Overlay:
5804 {
5805 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5806 mark_object (ptr->start);
5807 mark_object (ptr->end);
5808 mark_object (ptr->plist);
5809 if (ptr->next)
5810 {
5811 XSETMISC (obj, ptr->next);
5812 goto loop;
5813 }
5814 }
5815 break;
5816
5817 default:
5818 abort ();
5819 }
5820 break;
5821
5822 case Lisp_Cons:
5823 {
5824 register struct Lisp_Cons *ptr = XCONS (obj);
5825 if (CONS_MARKED_P (ptr)) break;
5826 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5827 CONS_MARK (ptr);
5828 /* If the cdr is nil, avoid recursion for the car. */
5829 if (EQ (ptr->u.cdr, Qnil))
5830 {
5831 obj = ptr->car;
5832 cdr_count = 0;
5833 goto loop;
5834 }
5835 mark_object (ptr->car);
5836 obj = ptr->u.cdr;
5837 cdr_count++;
5838 if (cdr_count == mark_object_loop_halt)
5839 abort ();
5840 goto loop;
5841 }
5842
5843 case Lisp_Float:
5844 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5845 FLOAT_MARK (XFLOAT (obj));
5846 break;
5847
5848 case Lisp_Int:
5849 break;
5850
5851 default:
5852 abort ();
5853 }
5854
5855 #undef CHECK_LIVE
5856 #undef CHECK_ALLOCATED
5857 #undef CHECK_ALLOCATED_AND_LIVE
5858 }
5859
5860 /* Mark the pointers in a buffer structure. */
5861
5862 static void
5863 mark_buffer (buf)
5864 Lisp_Object buf;
5865 {
5866 register struct buffer *buffer = XBUFFER (buf);
5867 register Lisp_Object *ptr, tmp;
5868 Lisp_Object base_buffer;
5869
5870 VECTOR_MARK (buffer);
5871
5872 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5873
5874 /* For now, we just don't mark the undo_list. It's done later in
5875 a special way just before the sweep phase, and after stripping
5876 some of its elements that are not needed any more. */
5877
5878 if (buffer->overlays_before)
5879 {
5880 XSETMISC (tmp, buffer->overlays_before);
5881 mark_object (tmp);
5882 }
5883 if (buffer->overlays_after)
5884 {
5885 XSETMISC (tmp, buffer->overlays_after);
5886 mark_object (tmp);
5887 }
5888
5889 for (ptr = &buffer->name;
5890 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5891 ptr++)
5892 mark_object (*ptr);
5893
5894 /* If this is an indirect buffer, mark its base buffer. */
5895 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5896 {
5897 XSETBUFFER (base_buffer, buffer->base_buffer);
5898 mark_buffer (base_buffer);
5899 }
5900 }
5901
5902
5903 /* Value is non-zero if OBJ will survive the current GC because it's
5904 either marked or does not need to be marked to survive. */
5905
5906 int
5907 survives_gc_p (obj)
5908 Lisp_Object obj;
5909 {
5910 int survives_p;
5911
5912 switch (XGCTYPE (obj))
5913 {
5914 case Lisp_Int:
5915 survives_p = 1;
5916 break;
5917
5918 case Lisp_Symbol:
5919 survives_p = XSYMBOL (obj)->gcmarkbit;
5920 break;
5921
5922 case Lisp_Misc:
5923 survives_p = XMARKER (obj)->gcmarkbit;
5924 break;
5925
5926 case Lisp_String:
5927 survives_p = STRING_MARKED_P (XSTRING (obj));
5928 break;
5929
5930 case Lisp_Vectorlike:
5931 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5932 break;
5933
5934 case Lisp_Cons:
5935 survives_p = CONS_MARKED_P (XCONS (obj));
5936 break;
5937
5938 case Lisp_Float:
5939 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5940 break;
5941
5942 default:
5943 abort ();
5944 }
5945
5946 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5947 }
5948
5949
5950 \f
5951 /* Sweep: find all structures not marked, and free them. */
5952
5953 static void
5954 gc_sweep ()
5955 {
5956 /* Remove or mark entries in weak hash tables.
5957 This must be done before any object is unmarked. */
5958 sweep_weak_hash_tables ();
5959
5960 sweep_strings ();
5961 #ifdef GC_CHECK_STRING_BYTES
5962 if (!noninteractive)
5963 check_string_bytes (1);
5964 #endif
5965
5966 /* Put all unmarked conses on free list */
5967 {
5968 register struct cons_block *cblk;
5969 struct cons_block **cprev = &cons_block;
5970 register int lim = cons_block_index;
5971 register int num_free = 0, num_used = 0;
5972
5973 cons_free_list = 0;
5974
5975 for (cblk = cons_block; cblk; cblk = *cprev)
5976 {
5977 register int i;
5978 int this_free = 0;
5979 for (i = 0; i < lim; i++)
5980 if (!CONS_MARKED_P (&cblk->conses[i]))
5981 {
5982 this_free++;
5983 cblk->conses[i].u.chain = cons_free_list;
5984 cons_free_list = &cblk->conses[i];
5985 #if GC_MARK_STACK
5986 cons_free_list->car = Vdead;
5987 #endif
5988 }
5989 else
5990 {
5991 num_used++;
5992 CONS_UNMARK (&cblk->conses[i]);
5993 }
5994 lim = CONS_BLOCK_SIZE;
5995 /* If this block contains only free conses and we have already
5996 seen more than two blocks worth of free conses then deallocate
5997 this block. */
5998 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5999 {
6000 *cprev = cblk->next;
6001 /* Unhook from the free list. */
6002 cons_free_list = cblk->conses[0].u.chain;
6003 lisp_align_free (cblk);
6004 n_cons_blocks--;
6005 }
6006 else
6007 {
6008 num_free += this_free;
6009 cprev = &cblk->next;
6010 }
6011 }
6012 total_conses = num_used;
6013 total_free_conses = num_free;
6014 }
6015
6016 /* Put all unmarked floats on free list */
6017 {
6018 register struct float_block *fblk;
6019 struct float_block **fprev = &float_block;
6020 register int lim = float_block_index;
6021 register int num_free = 0, num_used = 0;
6022
6023 float_free_list = 0;
6024
6025 for (fblk = float_block; fblk; fblk = *fprev)
6026 {
6027 register int i;
6028 int this_free = 0;
6029 for (i = 0; i < lim; i++)
6030 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6031 {
6032 this_free++;
6033 fblk->floats[i].u.chain = float_free_list;
6034 float_free_list = &fblk->floats[i];
6035 }
6036 else
6037 {
6038 num_used++;
6039 FLOAT_UNMARK (&fblk->floats[i]);
6040 }
6041 lim = FLOAT_BLOCK_SIZE;
6042 /* If this block contains only free floats and we have already
6043 seen more than two blocks worth of free floats then deallocate
6044 this block. */
6045 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6046 {
6047 *fprev = fblk->next;
6048 /* Unhook from the free list. */
6049 float_free_list = fblk->floats[0].u.chain;
6050 lisp_align_free (fblk);
6051 n_float_blocks--;
6052 }
6053 else
6054 {
6055 num_free += this_free;
6056 fprev = &fblk->next;
6057 }
6058 }
6059 total_floats = num_used;
6060 total_free_floats = num_free;
6061 }
6062
6063 /* Put all unmarked intervals on free list */
6064 {
6065 register struct interval_block *iblk;
6066 struct interval_block **iprev = &interval_block;
6067 register int lim = interval_block_index;
6068 register int num_free = 0, num_used = 0;
6069
6070 interval_free_list = 0;
6071
6072 for (iblk = interval_block; iblk; iblk = *iprev)
6073 {
6074 register int i;
6075 int this_free = 0;
6076
6077 for (i = 0; i < lim; i++)
6078 {
6079 if (!iblk->intervals[i].gcmarkbit)
6080 {
6081 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6082 interval_free_list = &iblk->intervals[i];
6083 this_free++;
6084 }
6085 else
6086 {
6087 num_used++;
6088 iblk->intervals[i].gcmarkbit = 0;
6089 }
6090 }
6091 lim = INTERVAL_BLOCK_SIZE;
6092 /* If this block contains only free intervals and we have already
6093 seen more than two blocks worth of free intervals then
6094 deallocate this block. */
6095 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6096 {
6097 *iprev = iblk->next;
6098 /* Unhook from the free list. */
6099 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6100 lisp_free (iblk);
6101 n_interval_blocks--;
6102 }
6103 else
6104 {
6105 num_free += this_free;
6106 iprev = &iblk->next;
6107 }
6108 }
6109 total_intervals = num_used;
6110 total_free_intervals = num_free;
6111 }
6112
6113 /* Put all unmarked symbols on free list */
6114 {
6115 register struct symbol_block *sblk;
6116 struct symbol_block **sprev = &symbol_block;
6117 register int lim = symbol_block_index;
6118 register int num_free = 0, num_used = 0;
6119
6120 symbol_free_list = NULL;
6121
6122 for (sblk = symbol_block; sblk; sblk = *sprev)
6123 {
6124 int this_free = 0;
6125 struct Lisp_Symbol *sym = sblk->symbols;
6126 struct Lisp_Symbol *end = sym + lim;
6127
6128 for (; sym < end; ++sym)
6129 {
6130 /* Check if the symbol was created during loadup. In such a case
6131 it might be pointed to by pure bytecode which we don't trace,
6132 so we conservatively assume that it is live. */
6133 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6134
6135 if (!sym->gcmarkbit && !pure_p)
6136 {
6137 sym->next = symbol_free_list;
6138 symbol_free_list = sym;
6139 #if GC_MARK_STACK
6140 symbol_free_list->function = Vdead;
6141 #endif
6142 ++this_free;
6143 }
6144 else
6145 {
6146 ++num_used;
6147 if (!pure_p)
6148 UNMARK_STRING (XSTRING (sym->xname));
6149 sym->gcmarkbit = 0;
6150 }
6151 }
6152
6153 lim = SYMBOL_BLOCK_SIZE;
6154 /* If this block contains only free symbols and we have already
6155 seen more than two blocks worth of free symbols then deallocate
6156 this block. */
6157 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6158 {
6159 *sprev = sblk->next;
6160 /* Unhook from the free list. */
6161 symbol_free_list = sblk->symbols[0].next;
6162 lisp_free (sblk);
6163 n_symbol_blocks--;
6164 }
6165 else
6166 {
6167 num_free += this_free;
6168 sprev = &sblk->next;
6169 }
6170 }
6171 total_symbols = num_used;
6172 total_free_symbols = num_free;
6173 }
6174
6175 /* Put all unmarked misc's on free list.
6176 For a marker, first unchain it from the buffer it points into. */
6177 {
6178 register struct marker_block *mblk;
6179 struct marker_block **mprev = &marker_block;
6180 register int lim = marker_block_index;
6181 register int num_free = 0, num_used = 0;
6182
6183 marker_free_list = 0;
6184
6185 for (mblk = marker_block; mblk; mblk = *mprev)
6186 {
6187 register int i;
6188 int this_free = 0;
6189
6190 for (i = 0; i < lim; i++)
6191 {
6192 if (!mblk->markers[i].u_marker.gcmarkbit)
6193 {
6194 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6195 unchain_marker (&mblk->markers[i].u_marker);
6196 /* Set the type of the freed object to Lisp_Misc_Free.
6197 We could leave the type alone, since nobody checks it,
6198 but this might catch bugs faster. */
6199 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6200 mblk->markers[i].u_free.chain = marker_free_list;
6201 marker_free_list = &mblk->markers[i];
6202 this_free++;
6203 }
6204 else
6205 {
6206 num_used++;
6207 mblk->markers[i].u_marker.gcmarkbit = 0;
6208 }
6209 }
6210 lim = MARKER_BLOCK_SIZE;
6211 /* If this block contains only free markers and we have already
6212 seen more than two blocks worth of free markers then deallocate
6213 this block. */
6214 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6215 {
6216 *mprev = mblk->next;
6217 /* Unhook from the free list. */
6218 marker_free_list = mblk->markers[0].u_free.chain;
6219 lisp_free (mblk);
6220 n_marker_blocks--;
6221 }
6222 else
6223 {
6224 num_free += this_free;
6225 mprev = &mblk->next;
6226 }
6227 }
6228
6229 total_markers = num_used;
6230 total_free_markers = num_free;
6231 }
6232
6233 /* Free all unmarked buffers */
6234 {
6235 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6236
6237 while (buffer)
6238 if (!VECTOR_MARKED_P (buffer))
6239 {
6240 if (prev)
6241 prev->next = buffer->next;
6242 else
6243 all_buffers = buffer->next;
6244 next = buffer->next;
6245 lisp_free (buffer);
6246 buffer = next;
6247 }
6248 else
6249 {
6250 VECTOR_UNMARK (buffer);
6251 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6252 prev = buffer, buffer = buffer->next;
6253 }
6254 }
6255
6256 /* Free all unmarked vectors */
6257 {
6258 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6259 total_vector_size = 0;
6260
6261 while (vector)
6262 if (!VECTOR_MARKED_P (vector))
6263 {
6264 if (prev)
6265 prev->next = vector->next;
6266 else
6267 all_vectors = vector->next;
6268 next = vector->next;
6269 lisp_free (vector);
6270 n_vectors--;
6271 vector = next;
6272
6273 }
6274 else
6275 {
6276 VECTOR_UNMARK (vector);
6277 if (vector->size & PSEUDOVECTOR_FLAG)
6278 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6279 else
6280 total_vector_size += vector->size;
6281 prev = vector, vector = vector->next;
6282 }
6283 }
6284
6285 #ifdef GC_CHECK_STRING_BYTES
6286 if (!noninteractive)
6287 check_string_bytes (1);
6288 #endif
6289 }
6290
6291
6292
6293 \f
6294 /* Debugging aids. */
6295
6296 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6297 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6298 This may be helpful in debugging Emacs's memory usage.
6299 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6300 ()
6301 {
6302 Lisp_Object end;
6303
6304 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6305
6306 return end;
6307 }
6308
6309 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6310 doc: /* Return a list of counters that measure how much consing there has been.
6311 Each of these counters increments for a certain kind of object.
6312 The counters wrap around from the largest positive integer to zero.
6313 Garbage collection does not decrease them.
6314 The elements of the value are as follows:
6315 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6316 All are in units of 1 = one object consed
6317 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6318 objects consed.
6319 MISCS include overlays, markers, and some internal types.
6320 Frames, windows, buffers, and subprocesses count as vectors
6321 (but the contents of a buffer's text do not count here). */)
6322 ()
6323 {
6324 Lisp_Object consed[8];
6325
6326 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6327 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6328 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6329 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6330 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6331 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6332 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6333 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6334
6335 return Flist (8, consed);
6336 }
6337
6338 int suppress_checking;
6339 void
6340 die (msg, file, line)
6341 const char *msg;
6342 const char *file;
6343 int line;
6344 {
6345 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6346 file, line, msg);
6347 abort ();
6348 }
6349 \f
6350 /* Initialization */
6351
6352 void
6353 init_alloc_once ()
6354 {
6355 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6356 purebeg = PUREBEG;
6357 pure_size = PURESIZE;
6358 pure_bytes_used = 0;
6359 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6360 pure_bytes_used_before_overflow = 0;
6361
6362 /* Initialize the list of free aligned blocks. */
6363 free_ablock = NULL;
6364
6365 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6366 mem_init ();
6367 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6368 #endif
6369
6370 all_vectors = 0;
6371 ignore_warnings = 1;
6372 #ifdef DOUG_LEA_MALLOC
6373 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6374 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6375 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6376 #endif
6377 init_strings ();
6378 init_cons ();
6379 init_symbol ();
6380 init_marker ();
6381 init_float ();
6382 init_intervals ();
6383
6384 #ifdef REL_ALLOC
6385 malloc_hysteresis = 32;
6386 #else
6387 malloc_hysteresis = 0;
6388 #endif
6389
6390 refill_memory_reserve ();
6391
6392 ignore_warnings = 0;
6393 gcprolist = 0;
6394 byte_stack_list = 0;
6395 staticidx = 0;
6396 consing_since_gc = 0;
6397 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6398 gc_relative_threshold = 0;
6399
6400 #ifdef VIRT_ADDR_VARIES
6401 malloc_sbrk_unused = 1<<22; /* A large number */
6402 malloc_sbrk_used = 100000; /* as reasonable as any number */
6403 #endif /* VIRT_ADDR_VARIES */
6404 }
6405
6406 void
6407 init_alloc ()
6408 {
6409 gcprolist = 0;
6410 byte_stack_list = 0;
6411 #if GC_MARK_STACK
6412 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6413 setjmp_tested_p = longjmps_done = 0;
6414 #endif
6415 #endif
6416 Vgc_elapsed = make_float (0.0);
6417 gcs_done = 0;
6418 }
6419
6420 void
6421 syms_of_alloc ()
6422 {
6423 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6424 doc: /* *Number of bytes of consing between garbage collections.
6425 Garbage collection can happen automatically once this many bytes have been
6426 allocated since the last garbage collection. All data types count.
6427
6428 Garbage collection happens automatically only when `eval' is called.
6429
6430 By binding this temporarily to a large number, you can effectively
6431 prevent garbage collection during a part of the program.
6432 See also `gc-cons-percentage'. */);
6433
6434 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6435 doc: /* *Portion of the heap used for allocation.
6436 Garbage collection can happen automatically once this portion of the heap
6437 has been allocated since the last garbage collection.
6438 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6439 Vgc_cons_percentage = make_float (0.1);
6440
6441 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6442 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6443
6444 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6445 doc: /* Number of cons cells that have been consed so far. */);
6446
6447 DEFVAR_INT ("floats-consed", &floats_consed,
6448 doc: /* Number of floats that have been consed so far. */);
6449
6450 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6451 doc: /* Number of vector cells that have been consed so far. */);
6452
6453 DEFVAR_INT ("symbols-consed", &symbols_consed,
6454 doc: /* Number of symbols that have been consed so far. */);
6455
6456 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6457 doc: /* Number of string characters that have been consed so far. */);
6458
6459 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6460 doc: /* Number of miscellaneous objects that have been consed so far. */);
6461
6462 DEFVAR_INT ("intervals-consed", &intervals_consed,
6463 doc: /* Number of intervals that have been consed so far. */);
6464
6465 DEFVAR_INT ("strings-consed", &strings_consed,
6466 doc: /* Number of strings that have been consed so far. */);
6467
6468 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6469 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6470 This means that certain objects should be allocated in shared (pure) space. */);
6471
6472 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6473 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6474 garbage_collection_messages = 0;
6475
6476 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6477 doc: /* Hook run after garbage collection has finished. */);
6478 Vpost_gc_hook = Qnil;
6479 Qpost_gc_hook = intern ("post-gc-hook");
6480 staticpro (&Qpost_gc_hook);
6481
6482 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6483 doc: /* Precomputed `signal' argument for memory-full error. */);
6484 /* We build this in advance because if we wait until we need it, we might
6485 not be able to allocate the memory to hold it. */
6486 Vmemory_signal_data
6487 = list2 (Qerror,
6488 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6489
6490 DEFVAR_LISP ("memory-full", &Vmemory_full,
6491 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6492 Vmemory_full = Qnil;
6493
6494 staticpro (&Qgc_cons_threshold);
6495 Qgc_cons_threshold = intern ("gc-cons-threshold");
6496
6497 staticpro (&Qchar_table_extra_slots);
6498 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6499
6500 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6501 doc: /* Accumulated time elapsed in garbage collections.
6502 The time is in seconds as a floating point value. */);
6503 DEFVAR_INT ("gcs-done", &gcs_done,
6504 doc: /* Accumulated number of garbage collections done. */);
6505
6506 defsubr (&Scons);
6507 defsubr (&Slist);
6508 defsubr (&Svector);
6509 defsubr (&Smake_byte_code);
6510 defsubr (&Smake_list);
6511 defsubr (&Smake_vector);
6512 defsubr (&Smake_char_table);
6513 defsubr (&Smake_string);
6514 defsubr (&Smake_bool_vector);
6515 defsubr (&Smake_symbol);
6516 defsubr (&Smake_marker);
6517 defsubr (&Spurecopy);
6518 defsubr (&Sgarbage_collect);
6519 defsubr (&Smemory_limit);
6520 defsubr (&Smemory_use_counts);
6521
6522 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6523 defsubr (&Sgc_status);
6524 #endif
6525 }
6526
6527 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6528 (do not change this comment) */