Use GCALIGNMENT where appropriate.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <setjmp.h>
28
29 #include <signal.h>
30
31 #ifdef HAVE_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 #include "lisp.h"
36 #include "process.h"
37 #include "intervals.h"
38 #include "puresize.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "syssignal.h"
46 #include "termhooks.h" /* For struct terminal. */
47 #include <setjmp.h>
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef WINDOWSNT
73 #include "w32.h"
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 extern size_t _bytes_used;
90 extern size_t __malloc_extra_blocks;
91 extern void *_malloc_internal (size_t);
92 extern void _free_internal (void *);
93
94 #endif /* not DOUG_LEA_MALLOC */
95
96 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
97 #ifdef HAVE_PTHREAD
98
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
103
104 Also, gconf and gsettings may create several threads.
105
106 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
107 functions below are called from malloc, there is a chance that one
108 of these threads preempts the Emacs main thread and the hook variables
109 end up in an inconsistent state. So we have a mutex to prevent that (note
110 that the backend handles concurrent access to malloc within its own threads
111 but Emacs code running in the main thread is not included in that control).
112
113 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
114 happens in one of the backend threads we will have two threads that tries
115 to run Emacs code at once, and the code is not prepared for that.
116 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
117
118 static pthread_mutex_t alloc_mutex;
119
120 #define BLOCK_INPUT_ALLOC \
121 do \
122 { \
123 if (pthread_equal (pthread_self (), main_thread)) \
124 BLOCK_INPUT; \
125 pthread_mutex_lock (&alloc_mutex); \
126 } \
127 while (0)
128 #define UNBLOCK_INPUT_ALLOC \
129 do \
130 { \
131 pthread_mutex_unlock (&alloc_mutex); \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 UNBLOCK_INPUT; \
134 } \
135 while (0)
136
137 #else /* ! defined HAVE_PTHREAD */
138
139 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
140 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
141
142 #endif /* ! defined HAVE_PTHREAD */
143 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
144
145 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
146 to a struct Lisp_String. */
147
148 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
149 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
150 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151
152 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
153 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
154 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
155
156 /* Default value of gc_cons_threshold (see below). */
157
158 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
159
160 /* Global variables. */
161 struct emacs_globals globals;
162
163 /* Number of bytes of consing done since the last gc. */
164
165 EMACS_INT consing_since_gc;
166
167 /* Similar minimum, computed from Vgc_cons_percentage. */
168
169 EMACS_INT gc_relative_threshold;
170
171 /* Minimum number of bytes of consing since GC before next GC,
172 when memory is full. */
173
174 EMACS_INT memory_full_cons_threshold;
175
176 /* Nonzero during GC. */
177
178 int gc_in_progress;
179
180 /* Nonzero means abort if try to GC.
181 This is for code which is written on the assumption that
182 no GC will happen, so as to verify that assumption. */
183
184 int abort_on_gc;
185
186 /* Number of live and free conses etc. */
187
188 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
189 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
190 static EMACS_INT total_free_floats, total_floats;
191
192 /* Points to memory space allocated as "spare", to be freed if we run
193 out of memory. We keep one large block, four cons-blocks, and
194 two string blocks. */
195
196 static char *spare_memory[7];
197
198 /* Amount of spare memory to keep in large reserve block, or to see
199 whether this much is available when malloc fails on a larger request. */
200
201 #define SPARE_MEMORY (1 << 14)
202
203 /* Number of extra blocks malloc should get when it needs more core. */
204
205 static int malloc_hysteresis;
206
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
212
213 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
214 #define PUREBEG (char *) pure
215
216 /* Pointer to the pure area, and its size. */
217
218 static char *purebeg;
219 static ptrdiff_t pure_size;
220
221 /* Number of bytes of pure storage used before pure storage overflowed.
222 If this is non-zero, this implies that an overflow occurred. */
223
224 static ptrdiff_t pure_bytes_used_before_overflow;
225
226 /* Value is non-zero if P points into pure space. */
227
228 #define PURE_POINTER_P(P) \
229 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
230
231 /* Index in pure at which next pure Lisp object will be allocated.. */
232
233 static ptrdiff_t pure_bytes_used_lisp;
234
235 /* Number of bytes allocated for non-Lisp objects in pure storage. */
236
237 static ptrdiff_t pure_bytes_used_non_lisp;
238
239 /* If nonzero, this is a warning delivered by malloc and not yet
240 displayed. */
241
242 const char *pending_malloc_warning;
243
244 /* Maximum amount of C stack to save when a GC happens. */
245
246 #ifndef MAX_SAVE_STACK
247 #define MAX_SAVE_STACK 16000
248 #endif
249
250 /* Buffer in which we save a copy of the C stack at each GC. */
251
252 #if MAX_SAVE_STACK > 0
253 static char *stack_copy;
254 static ptrdiff_t stack_copy_size;
255 #endif
256
257 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
258 static Lisp_Object Qgc_cons_threshold;
259 Lisp_Object Qchar_table_extra_slots;
260
261 /* Hook run after GC has finished. */
262
263 static Lisp_Object Qpost_gc_hook;
264
265 static void mark_terminals (void);
266 static void gc_sweep (void);
267 static Lisp_Object make_pure_vector (ptrdiff_t);
268 static void mark_glyph_matrix (struct glyph_matrix *);
269 static void mark_face_cache (struct face_cache *);
270
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static struct Lisp_String *allocate_string (void);
275 static void compact_small_strings (void);
276 static void free_large_strings (void);
277 static void sweep_strings (void);
278 static void free_misc (Lisp_Object);
279 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
280
281 /* When scanning the C stack for live Lisp objects, Emacs keeps track
282 of what memory allocated via lisp_malloc is intended for what
283 purpose. This enumeration specifies the type of memory. */
284
285 enum mem_type
286 {
287 MEM_TYPE_NON_LISP,
288 MEM_TYPE_BUFFER,
289 MEM_TYPE_CONS,
290 MEM_TYPE_STRING,
291 MEM_TYPE_MISC,
292 MEM_TYPE_SYMBOL,
293 MEM_TYPE_FLOAT,
294 /* We used to keep separate mem_types for subtypes of vectors such as
295 process, hash_table, frame, terminal, and window, but we never made
296 use of the distinction, so it only caused source-code complexity
297 and runtime slowdown. Minor but pointless. */
298 MEM_TYPE_VECTORLIKE,
299 /* Special type to denote vector blocks. */
300 MEM_TYPE_VECTOR_BLOCK
301 };
302
303 static void *lisp_malloc (size_t, enum mem_type);
304
305
306 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
307
308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
309 #include <stdio.h> /* For fprintf. */
310 #endif
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
385 static void lisp_free (void *);
386 static void mark_stack (void);
387 static int live_vector_p (struct mem_node *, void *);
388 static int live_buffer_p (struct mem_node *, void *);
389 static int live_string_p (struct mem_node *, void *);
390 static int live_cons_p (struct mem_node *, void *);
391 static int live_symbol_p (struct mem_node *, void *);
392 static int live_float_p (struct mem_node *, void *);
393 static int live_misc_p (struct mem_node *, void *);
394 static void mark_maybe_object (Lisp_Object);
395 static void mark_memory (void *, void *);
396 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
397 static void mem_init (void);
398 static struct mem_node *mem_insert (void *, void *, enum mem_type);
399 static void mem_insert_fixup (struct mem_node *);
400 #endif
401 static void mem_rotate_left (struct mem_node *);
402 static void mem_rotate_right (struct mem_node *);
403 static void mem_delete (struct mem_node *);
404 static void mem_delete_fixup (struct mem_node *);
405 static inline struct mem_node *mem_find (void *);
406
407
408 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
409 static void check_gcpros (void);
410 #endif
411
412 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
413
414 #ifndef DEADP
415 # define DEADP(x) 0
416 #endif
417
418 /* Recording what needs to be marked for gc. */
419
420 struct gcpro *gcprolist;
421
422 /* Addresses of staticpro'd variables. Initialize it to a nonzero
423 value; otherwise some compilers put it into BSS. */
424
425 #define NSTATICS 0x650
426 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
427
428 /* Index of next unused slot in staticvec. */
429
430 static int staticidx;
431
432 static void *pure_alloc (size_t, int);
433
434
435 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
436 ALIGNMENT must be a power of 2. */
437
438 #define ALIGN(ptr, ALIGNMENT) \
439 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
440 & ~ ((ALIGNMENT) - 1)))
441
442
443 \f
444 /************************************************************************
445 Malloc
446 ************************************************************************/
447
448 /* Function malloc calls this if it finds we are near exhausting storage. */
449
450 void
451 malloc_warning (const char *str)
452 {
453 pending_malloc_warning = str;
454 }
455
456
457 /* Display an already-pending malloc warning. */
458
459 void
460 display_malloc_warning (void)
461 {
462 call3 (intern ("display-warning"),
463 intern ("alloc"),
464 build_string (pending_malloc_warning),
465 intern ("emergency"));
466 pending_malloc_warning = 0;
467 }
468 \f
469 /* Called if we can't allocate relocatable space for a buffer. */
470
471 void
472 buffer_memory_full (ptrdiff_t nbytes)
473 {
474 /* If buffers use the relocating allocator, no need to free
475 spare_memory, because we may have plenty of malloc space left
476 that we could get, and if we don't, the malloc that fails will
477 itself cause spare_memory to be freed. If buffers don't use the
478 relocating allocator, treat this like any other failing
479 malloc. */
480
481 #ifndef REL_ALLOC
482 memory_full (nbytes);
483 #endif
484
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil, Vmemory_signal_data);
488 }
489
490 /* A common multiple of the positive integers A and B. Ideally this
491 would be the least common multiple, but there's no way to do that
492 as a constant expression in C, so do the best that we can easily do. */
493 #define COMMON_MULTIPLE(a, b) \
494 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
495
496 #ifndef XMALLOC_OVERRUN_CHECK
497 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
498 #else
499
500 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
501 around each block.
502
503 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
504 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
505 block size in little-endian order. The trailer consists of
506 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
507
508 The header is used to detect whether this block has been allocated
509 through these functions, as some low-level libc functions may
510 bypass the malloc hooks. */
511
512 #define XMALLOC_OVERRUN_CHECK_SIZE 16
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
514 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
515
516 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
517 hold a size_t value and (2) the header size is a multiple of the
518 alignment that Emacs needs for C types and for USE_LSB_TAG. */
519 #define XMALLOC_BASE_ALIGNMENT \
520 alignof (union { long double d; intmax_t i; void *p; })
521
522 #if USE_LSB_TAG
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
533
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
539
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
545
546 /* Insert and extract the block size in the header. */
547
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
550 {
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
553 {
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
556 }
557 }
558
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
561 {
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 size <<= CHAR_BIT;
568 size += *ptr++;
569 }
570 return size;
571 }
572
573
574 /* The call depth in overrun_check functions. For example, this might happen:
575 xmalloc()
576 overrun_check_malloc()
577 -> malloc -> (via hook)_-> emacs_blocked_malloc
578 -> overrun_check_malloc
579 call malloc (hooks are NULL, so real malloc is called).
580 malloc returns 10000.
581 add overhead, return 10016.
582 <- (back in overrun_check_malloc)
583 add overhead again, return 10032
584 xmalloc returns 10032.
585
586 (time passes).
587
588 xfree(10032)
589 overrun_check_free(10032)
590 decrease overhead
591 free(10016) <- crash, because 10000 is the original pointer. */
592
593 static ptrdiff_t check_depth;
594
595 /* Like malloc, but wraps allocated block with header and trailer. */
596
597 static void *
598 overrun_check_malloc (size_t size)
599 {
600 register unsigned char *val;
601 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
602 if (SIZE_MAX - overhead < size)
603 abort ();
604
605 val = malloc (size + overhead);
606 if (val && check_depth == 1)
607 {
608 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
609 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
610 xmalloc_put_size (val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614 --check_depth;
615 return val;
616 }
617
618
619 /* Like realloc, but checks old block for overrun, and wraps new block
620 with header and trailer. */
621
622 static void *
623 overrun_check_realloc (void *block, size_t size)
624 {
625 register unsigned char *val = (unsigned char *) block;
626 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
627 if (SIZE_MAX - overhead < size)
628 abort ();
629
630 if (val
631 && check_depth == 1
632 && memcmp (xmalloc_overrun_check_header,
633 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
634 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
635 {
636 size_t osize = xmalloc_get_size (val);
637 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
638 XMALLOC_OVERRUN_CHECK_SIZE))
639 abort ();
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
643 }
644
645 val = realloc (val, size + overhead);
646
647 if (val && check_depth == 1)
648 {
649 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
650 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 xmalloc_put_size (val, size);
652 memcpy (val + size, xmalloc_overrun_check_trailer,
653 XMALLOC_OVERRUN_CHECK_SIZE);
654 }
655 --check_depth;
656 return val;
657 }
658
659 /* Like free, but checks block for overrun. */
660
661 static void
662 overrun_check_free (void *block)
663 {
664 unsigned char *val = (unsigned char *) block;
665
666 ++check_depth;
667 if (val
668 && check_depth == 1
669 && memcmp (xmalloc_overrun_check_header,
670 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
671 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
672 {
673 size_t osize = xmalloc_get_size (val);
674 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
675 XMALLOC_OVERRUN_CHECK_SIZE))
676 abort ();
677 #ifdef XMALLOC_CLEAR_FREE_MEMORY
678 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
679 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
680 #else
681 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
682 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
683 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
684 #endif
685 }
686
687 free (val);
688 --check_depth;
689 }
690
691 #undef malloc
692 #undef realloc
693 #undef free
694 #define malloc overrun_check_malloc
695 #define realloc overrun_check_realloc
696 #define free overrun_check_free
697 #endif
698
699 #ifdef SYNC_INPUT
700 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
701 there's no need to block input around malloc. */
702 #define MALLOC_BLOCK_INPUT ((void)0)
703 #define MALLOC_UNBLOCK_INPUT ((void)0)
704 #else
705 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
706 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
707 #endif
708
709 /* Like malloc but check for no memory and block interrupt input.. */
710
711 void *
712 xmalloc (size_t size)
713 {
714 void *val;
715
716 MALLOC_BLOCK_INPUT;
717 val = malloc (size);
718 MALLOC_UNBLOCK_INPUT;
719
720 if (!val && size)
721 memory_full (size);
722 return val;
723 }
724
725 /* Like the above, but zeroes out the memory just allocated. */
726
727 void *
728 xzalloc (size_t size)
729 {
730 void *val;
731
732 MALLOC_BLOCK_INPUT;
733 val = malloc (size);
734 MALLOC_UNBLOCK_INPUT;
735
736 if (!val && size)
737 memory_full (size);
738 memset (val, 0, size);
739 return val;
740 }
741
742 /* Like realloc but check for no memory and block interrupt input.. */
743
744 void *
745 xrealloc (void *block, size_t size)
746 {
747 void *val;
748
749 MALLOC_BLOCK_INPUT;
750 /* We must call malloc explicitly when BLOCK is 0, since some
751 reallocs don't do this. */
752 if (! block)
753 val = malloc (size);
754 else
755 val = realloc (block, size);
756 MALLOC_UNBLOCK_INPUT;
757
758 if (!val && size)
759 memory_full (size);
760 return val;
761 }
762
763
764 /* Like free but block interrupt input. */
765
766 void
767 xfree (void *block)
768 {
769 if (!block)
770 return;
771 MALLOC_BLOCK_INPUT;
772 free (block);
773 MALLOC_UNBLOCK_INPUT;
774 /* We don't call refill_memory_reserve here
775 because that duplicates doing so in emacs_blocked_free
776 and the criterion should go there. */
777 }
778
779
780 /* Other parts of Emacs pass large int values to allocator functions
781 expecting ptrdiff_t. This is portable in practice, but check it to
782 be safe. */
783 verify (INT_MAX <= PTRDIFF_MAX);
784
785
786 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
787 Signal an error on memory exhaustion, and block interrupt input. */
788
789 void *
790 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
791 {
792 eassert (0 <= nitems && 0 < item_size);
793 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
794 memory_full (SIZE_MAX);
795 return xmalloc (nitems * item_size);
796 }
797
798
799 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
801
802 void *
803 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
804 {
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xrealloc (pa, nitems * item_size);
809 }
810
811
812 /* Grow PA, which points to an array of *NITEMS items, and return the
813 location of the reallocated array, updating *NITEMS to reflect its
814 new size. The new array will contain at least NITEMS_INCR_MIN more
815 items, but will not contain more than NITEMS_MAX items total.
816 ITEM_SIZE is the size of each item, in bytes.
817
818 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
819 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
820 infinity.
821
822 If PA is null, then allocate a new array instead of reallocating
823 the old one. Thus, to grow an array A without saving its old
824 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
825 &NITEMS, ...).
826
827 Block interrupt input as needed. If memory exhaustion occurs, set
828 *NITEMS to zero if PA is null, and signal an error (i.e., do not
829 return). */
830
831 void *
832 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
833 ptrdiff_t nitems_max, ptrdiff_t item_size)
834 {
835 /* The approximate size to use for initial small allocation
836 requests. This is the largest "small" request for the GNU C
837 library malloc. */
838 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
839
840 /* If the array is tiny, grow it to about (but no greater than)
841 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
842 ptrdiff_t n = *nitems;
843 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
844 ptrdiff_t half_again = n >> 1;
845 ptrdiff_t incr_estimate = max (tiny_max, half_again);
846
847 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
848 NITEMS_MAX, and what the C language can represent safely. */
849 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
850 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
851 ? nitems_max : C_language_max);
852 ptrdiff_t nitems_incr_max = n_max - n;
853 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
854
855 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
856 if (! pa)
857 *nitems = 0;
858 if (nitems_incr_max < incr)
859 memory_full (SIZE_MAX);
860 n += incr;
861 pa = xrealloc (pa, n * item_size);
862 *nitems = n;
863 return pa;
864 }
865
866
867 /* Like strdup, but uses xmalloc. */
868
869 char *
870 xstrdup (const char *s)
871 {
872 size_t len = strlen (s) + 1;
873 char *p = xmalloc (len);
874 memcpy (p, s, len);
875 return p;
876 }
877
878
879 /* Unwind for SAFE_ALLOCA */
880
881 Lisp_Object
882 safe_alloca_unwind (Lisp_Object arg)
883 {
884 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
885
886 p->dogc = 0;
887 xfree (p->pointer);
888 p->pointer = 0;
889 free_misc (arg);
890 return Qnil;
891 }
892
893 /* Return a newly allocated memory block of SIZE bytes, remembering
894 to free it when unwinding. */
895 void *
896 record_xmalloc (size_t size)
897 {
898 void *p = xmalloc (size);
899 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
900 return p;
901 }
902
903
904 /* Like malloc but used for allocating Lisp data. NBYTES is the
905 number of bytes to allocate, TYPE describes the intended use of the
906 allocated memory block (for strings, for conses, ...). */
907
908 #if ! USE_LSB_TAG
909 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
910 #endif
911
912 static void *
913 lisp_malloc (size_t nbytes, enum mem_type type)
914 {
915 register void *val;
916
917 MALLOC_BLOCK_INPUT;
918
919 #ifdef GC_MALLOC_CHECK
920 allocated_mem_type = type;
921 #endif
922
923 val = malloc (nbytes);
924
925 #if ! USE_LSB_TAG
926 /* If the memory just allocated cannot be addressed thru a Lisp
927 object's pointer, and it needs to be,
928 that's equivalent to running out of memory. */
929 if (val && type != MEM_TYPE_NON_LISP)
930 {
931 Lisp_Object tem;
932 XSETCONS (tem, (char *) val + nbytes - 1);
933 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
934 {
935 lisp_malloc_loser = val;
936 free (val);
937 val = 0;
938 }
939 }
940 #endif
941
942 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
943 if (val && type != MEM_TYPE_NON_LISP)
944 mem_insert (val, (char *) val + nbytes, type);
945 #endif
946
947 MALLOC_UNBLOCK_INPUT;
948 if (!val && nbytes)
949 memory_full (nbytes);
950 return val;
951 }
952
953 /* Free BLOCK. This must be called to free memory allocated with a
954 call to lisp_malloc. */
955
956 static void
957 lisp_free (void *block)
958 {
959 MALLOC_BLOCK_INPUT;
960 free (block);
961 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
962 mem_delete (mem_find (block));
963 #endif
964 MALLOC_UNBLOCK_INPUT;
965 }
966
967 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
968
969 /* The entry point is lisp_align_malloc which returns blocks of at most
970 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
971
972 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
973 #define USE_POSIX_MEMALIGN 1
974 #endif
975
976 /* BLOCK_ALIGN has to be a power of 2. */
977 #define BLOCK_ALIGN (1 << 10)
978
979 /* Padding to leave at the end of a malloc'd block. This is to give
980 malloc a chance to minimize the amount of memory wasted to alignment.
981 It should be tuned to the particular malloc library used.
982 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
983 posix_memalign on the other hand would ideally prefer a value of 4
984 because otherwise, there's 1020 bytes wasted between each ablocks.
985 In Emacs, testing shows that those 1020 can most of the time be
986 efficiently used by malloc to place other objects, so a value of 0 can
987 still preferable unless you have a lot of aligned blocks and virtually
988 nothing else. */
989 #define BLOCK_PADDING 0
990 #define BLOCK_BYTES \
991 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
992
993 /* Internal data structures and constants. */
994
995 #define ABLOCKS_SIZE 16
996
997 /* An aligned block of memory. */
998 struct ablock
999 {
1000 union
1001 {
1002 char payload[BLOCK_BYTES];
1003 struct ablock *next_free;
1004 } x;
1005 /* `abase' is the aligned base of the ablocks. */
1006 /* It is overloaded to hold the virtual `busy' field that counts
1007 the number of used ablock in the parent ablocks.
1008 The first ablock has the `busy' field, the others have the `abase'
1009 field. To tell the difference, we assume that pointers will have
1010 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1011 is used to tell whether the real base of the parent ablocks is `abase'
1012 (if not, the word before the first ablock holds a pointer to the
1013 real base). */
1014 struct ablocks *abase;
1015 /* The padding of all but the last ablock is unused. The padding of
1016 the last ablock in an ablocks is not allocated. */
1017 #if BLOCK_PADDING
1018 char padding[BLOCK_PADDING];
1019 #endif
1020 };
1021
1022 /* A bunch of consecutive aligned blocks. */
1023 struct ablocks
1024 {
1025 struct ablock blocks[ABLOCKS_SIZE];
1026 };
1027
1028 /* Size of the block requested from malloc or posix_memalign. */
1029 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1030
1031 #define ABLOCK_ABASE(block) \
1032 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1033 ? (struct ablocks *)(block) \
1034 : (block)->abase)
1035
1036 /* Virtual `busy' field. */
1037 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1038
1039 /* Pointer to the (not necessarily aligned) malloc block. */
1040 #ifdef USE_POSIX_MEMALIGN
1041 #define ABLOCKS_BASE(abase) (abase)
1042 #else
1043 #define ABLOCKS_BASE(abase) \
1044 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1045 #endif
1046
1047 /* The list of free ablock. */
1048 static struct ablock *free_ablock;
1049
1050 /* Allocate an aligned block of nbytes.
1051 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1052 smaller or equal to BLOCK_BYTES. */
1053 static void *
1054 lisp_align_malloc (size_t nbytes, enum mem_type type)
1055 {
1056 void *base, *val;
1057 struct ablocks *abase;
1058
1059 eassert (nbytes <= BLOCK_BYTES);
1060
1061 MALLOC_BLOCK_INPUT;
1062
1063 #ifdef GC_MALLOC_CHECK
1064 allocated_mem_type = type;
1065 #endif
1066
1067 if (!free_ablock)
1068 {
1069 int i;
1070 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1071
1072 #ifdef DOUG_LEA_MALLOC
1073 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1074 because mapped region contents are not preserved in
1075 a dumped Emacs. */
1076 mallopt (M_MMAP_MAX, 0);
1077 #endif
1078
1079 #ifdef USE_POSIX_MEMALIGN
1080 {
1081 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1082 if (err)
1083 base = NULL;
1084 abase = base;
1085 }
1086 #else
1087 base = malloc (ABLOCKS_BYTES);
1088 abase = ALIGN (base, BLOCK_ALIGN);
1089 #endif
1090
1091 if (base == 0)
1092 {
1093 MALLOC_UNBLOCK_INPUT;
1094 memory_full (ABLOCKS_BYTES);
1095 }
1096
1097 aligned = (base == abase);
1098 if (!aligned)
1099 ((void**)abase)[-1] = base;
1100
1101 #ifdef DOUG_LEA_MALLOC
1102 /* Back to a reasonable maximum of mmap'ed areas. */
1103 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1104 #endif
1105
1106 #if ! USE_LSB_TAG
1107 /* If the memory just allocated cannot be addressed thru a Lisp
1108 object's pointer, and it needs to be, that's equivalent to
1109 running out of memory. */
1110 if (type != MEM_TYPE_NON_LISP)
1111 {
1112 Lisp_Object tem;
1113 char *end = (char *) base + ABLOCKS_BYTES - 1;
1114 XSETCONS (tem, end);
1115 if ((char *) XCONS (tem) != end)
1116 {
1117 lisp_malloc_loser = base;
1118 free (base);
1119 MALLOC_UNBLOCK_INPUT;
1120 memory_full (SIZE_MAX);
1121 }
1122 }
1123 #endif
1124
1125 /* Initialize the blocks and put them on the free list.
1126 If `base' was not properly aligned, we can't use the last block. */
1127 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1128 {
1129 abase->blocks[i].abase = abase;
1130 abase->blocks[i].x.next_free = free_ablock;
1131 free_ablock = &abase->blocks[i];
1132 }
1133 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1134
1135 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1136 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1137 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1138 eassert (ABLOCKS_BASE (abase) == base);
1139 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1140 }
1141
1142 abase = ABLOCK_ABASE (free_ablock);
1143 ABLOCKS_BUSY (abase) =
1144 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1145 val = free_ablock;
1146 free_ablock = free_ablock->x.next_free;
1147
1148 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1149 if (type != MEM_TYPE_NON_LISP)
1150 mem_insert (val, (char *) val + nbytes, type);
1151 #endif
1152
1153 MALLOC_UNBLOCK_INPUT;
1154
1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1156 return val;
1157 }
1158
1159 static void
1160 lisp_align_free (void *block)
1161 {
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1164
1165 MALLOC_BLOCK_INPUT;
1166 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168 #endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1175
1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1177 { /* All the blocks are free. */
1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1181
1182 while (*tem)
1183 {
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1185 {
1186 i++;
1187 *tem = (*tem)->x.next_free;
1188 }
1189 else
1190 tem = &(*tem)->x.next_free;
1191 }
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1194 #ifdef USE_POSIX_MEMALIGN
1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1196 #endif
1197 free (ABLOCKS_BASE (abase));
1198 }
1199 MALLOC_UNBLOCK_INPUT;
1200 }
1201
1202 \f
1203 #ifndef SYSTEM_MALLOC
1204
1205 /* Arranging to disable input signals while we're in malloc.
1206
1207 This only works with GNU malloc. To help out systems which can't
1208 use GNU malloc, all the calls to malloc, realloc, and free
1209 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1210 pair; unfortunately, we have no idea what C library functions
1211 might call malloc, so we can't really protect them unless you're
1212 using GNU malloc. Fortunately, most of the major operating systems
1213 can use GNU malloc. */
1214
1215 #ifndef SYNC_INPUT
1216 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1217 there's no need to block input around malloc. */
1218
1219 #ifndef DOUG_LEA_MALLOC
1220 extern void * (*__malloc_hook) (size_t, const void *);
1221 extern void * (*__realloc_hook) (void *, size_t, const void *);
1222 extern void (*__free_hook) (void *, const void *);
1223 /* Else declared in malloc.h, perhaps with an extra arg. */
1224 #endif /* DOUG_LEA_MALLOC */
1225 static void * (*old_malloc_hook) (size_t, const void *);
1226 static void * (*old_realloc_hook) (void *, size_t, const void*);
1227 static void (*old_free_hook) (void*, const void*);
1228
1229 #ifdef DOUG_LEA_MALLOC
1230 # define BYTES_USED (mallinfo ().uordblks)
1231 #else
1232 # define BYTES_USED _bytes_used
1233 #endif
1234
1235 #ifdef GC_MALLOC_CHECK
1236 static int dont_register_blocks;
1237 #endif
1238
1239 static size_t bytes_used_when_reconsidered;
1240
1241 /* Value of _bytes_used, when spare_memory was freed. */
1242
1243 static size_t bytes_used_when_full;
1244
1245 /* This function is used as the hook for free to call. */
1246
1247 static void
1248 emacs_blocked_free (void *ptr, const void *ptr2)
1249 {
1250 BLOCK_INPUT_ALLOC;
1251
1252 #ifdef GC_MALLOC_CHECK
1253 if (ptr)
1254 {
1255 struct mem_node *m;
1256
1257 m = mem_find (ptr);
1258 if (m == MEM_NIL || m->start != ptr)
1259 {
1260 fprintf (stderr,
1261 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1262 abort ();
1263 }
1264 else
1265 {
1266 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1267 mem_delete (m);
1268 }
1269 }
1270 #endif /* GC_MALLOC_CHECK */
1271
1272 __free_hook = old_free_hook;
1273 free (ptr);
1274
1275 /* If we released our reserve (due to running out of memory),
1276 and we have a fair amount free once again,
1277 try to set aside another reserve in case we run out once more. */
1278 if (! NILP (Vmemory_full)
1279 /* Verify there is enough space that even with the malloc
1280 hysteresis this call won't run out again.
1281 The code here is correct as long as SPARE_MEMORY
1282 is substantially larger than the block size malloc uses. */
1283 && (bytes_used_when_full
1284 > ((bytes_used_when_reconsidered = BYTES_USED)
1285 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1286 refill_memory_reserve ();
1287
1288 __free_hook = emacs_blocked_free;
1289 UNBLOCK_INPUT_ALLOC;
1290 }
1291
1292
1293 /* This function is the malloc hook that Emacs uses. */
1294
1295 static void *
1296 emacs_blocked_malloc (size_t size, const void *ptr)
1297 {
1298 void *value;
1299
1300 BLOCK_INPUT_ALLOC;
1301 __malloc_hook = old_malloc_hook;
1302 #ifdef DOUG_LEA_MALLOC
1303 /* Segfaults on my system. --lorentey */
1304 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1305 #else
1306 __malloc_extra_blocks = malloc_hysteresis;
1307 #endif
1308
1309 value = malloc (size);
1310
1311 #ifdef GC_MALLOC_CHECK
1312 {
1313 struct mem_node *m = mem_find (value);
1314 if (m != MEM_NIL)
1315 {
1316 fprintf (stderr, "Malloc returned %p which is already in use\n",
1317 value);
1318 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1319 m->start, m->end, (char *) m->end - (char *) m->start,
1320 m->type);
1321 abort ();
1322 }
1323
1324 if (!dont_register_blocks)
1325 {
1326 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1327 allocated_mem_type = MEM_TYPE_NON_LISP;
1328 }
1329 }
1330 #endif /* GC_MALLOC_CHECK */
1331
1332 __malloc_hook = emacs_blocked_malloc;
1333 UNBLOCK_INPUT_ALLOC;
1334
1335 /* fprintf (stderr, "%p malloc\n", value); */
1336 return value;
1337 }
1338
1339
1340 /* This function is the realloc hook that Emacs uses. */
1341
1342 static void *
1343 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1344 {
1345 void *value;
1346
1347 BLOCK_INPUT_ALLOC;
1348 __realloc_hook = old_realloc_hook;
1349
1350 #ifdef GC_MALLOC_CHECK
1351 if (ptr)
1352 {
1353 struct mem_node *m = mem_find (ptr);
1354 if (m == MEM_NIL || m->start != ptr)
1355 {
1356 fprintf (stderr,
1357 "Realloc of %p which wasn't allocated with malloc\n",
1358 ptr);
1359 abort ();
1360 }
1361
1362 mem_delete (m);
1363 }
1364
1365 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1366
1367 /* Prevent malloc from registering blocks. */
1368 dont_register_blocks = 1;
1369 #endif /* GC_MALLOC_CHECK */
1370
1371 value = realloc (ptr, size);
1372
1373 #ifdef GC_MALLOC_CHECK
1374 dont_register_blocks = 0;
1375
1376 {
1377 struct mem_node *m = mem_find (value);
1378 if (m != MEM_NIL)
1379 {
1380 fprintf (stderr, "Realloc returns memory that is already in use\n");
1381 abort ();
1382 }
1383
1384 /* Can't handle zero size regions in the red-black tree. */
1385 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1386 }
1387
1388 /* fprintf (stderr, "%p <- realloc\n", value); */
1389 #endif /* GC_MALLOC_CHECK */
1390
1391 __realloc_hook = emacs_blocked_realloc;
1392 UNBLOCK_INPUT_ALLOC;
1393
1394 return value;
1395 }
1396
1397
1398 #ifdef HAVE_PTHREAD
1399 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1400 normal malloc. Some thread implementations need this as they call
1401 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1402 calls malloc because it is the first call, and we have an endless loop. */
1403
1404 void
1405 reset_malloc_hooks (void)
1406 {
1407 __free_hook = old_free_hook;
1408 __malloc_hook = old_malloc_hook;
1409 __realloc_hook = old_realloc_hook;
1410 }
1411 #endif /* HAVE_PTHREAD */
1412
1413
1414 /* Called from main to set up malloc to use our hooks. */
1415
1416 void
1417 uninterrupt_malloc (void)
1418 {
1419 #ifdef HAVE_PTHREAD
1420 #ifdef DOUG_LEA_MALLOC
1421 pthread_mutexattr_t attr;
1422
1423 /* GLIBC has a faster way to do this, but let's keep it portable.
1424 This is according to the Single UNIX Specification. */
1425 pthread_mutexattr_init (&attr);
1426 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1427 pthread_mutex_init (&alloc_mutex, &attr);
1428 #else /* !DOUG_LEA_MALLOC */
1429 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1430 and the bundled gmalloc.c doesn't require it. */
1431 pthread_mutex_init (&alloc_mutex, NULL);
1432 #endif /* !DOUG_LEA_MALLOC */
1433 #endif /* HAVE_PTHREAD */
1434
1435 if (__free_hook != emacs_blocked_free)
1436 old_free_hook = __free_hook;
1437 __free_hook = emacs_blocked_free;
1438
1439 if (__malloc_hook != emacs_blocked_malloc)
1440 old_malloc_hook = __malloc_hook;
1441 __malloc_hook = emacs_blocked_malloc;
1442
1443 if (__realloc_hook != emacs_blocked_realloc)
1444 old_realloc_hook = __realloc_hook;
1445 __realloc_hook = emacs_blocked_realloc;
1446 }
1447
1448 #endif /* not SYNC_INPUT */
1449 #endif /* not SYSTEM_MALLOC */
1450
1451
1452 \f
1453 /***********************************************************************
1454 Interval Allocation
1455 ***********************************************************************/
1456
1457 /* Number of intervals allocated in an interval_block structure.
1458 The 1020 is 1024 minus malloc overhead. */
1459
1460 #define INTERVAL_BLOCK_SIZE \
1461 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1462
1463 /* Intervals are allocated in chunks in form of an interval_block
1464 structure. */
1465
1466 struct interval_block
1467 {
1468 /* Place `intervals' first, to preserve alignment. */
1469 struct interval intervals[INTERVAL_BLOCK_SIZE];
1470 struct interval_block *next;
1471 };
1472
1473 /* Current interval block. Its `next' pointer points to older
1474 blocks. */
1475
1476 static struct interval_block *interval_block;
1477
1478 /* Index in interval_block above of the next unused interval
1479 structure. */
1480
1481 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1482
1483 /* Number of free and live intervals. */
1484
1485 static EMACS_INT total_free_intervals, total_intervals;
1486
1487 /* List of free intervals. */
1488
1489 static INTERVAL interval_free_list;
1490
1491 /* Return a new interval. */
1492
1493 INTERVAL
1494 make_interval (void)
1495 {
1496 INTERVAL val;
1497
1498 /* eassert (!handling_signal); */
1499
1500 MALLOC_BLOCK_INPUT;
1501
1502 if (interval_free_list)
1503 {
1504 val = interval_free_list;
1505 interval_free_list = INTERVAL_PARENT (interval_free_list);
1506 }
1507 else
1508 {
1509 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1510 {
1511 struct interval_block *newi
1512 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1513
1514 newi->next = interval_block;
1515 interval_block = newi;
1516 interval_block_index = 0;
1517 total_free_intervals += INTERVAL_BLOCK_SIZE;
1518 }
1519 val = &interval_block->intervals[interval_block_index++];
1520 }
1521
1522 MALLOC_UNBLOCK_INPUT;
1523
1524 consing_since_gc += sizeof (struct interval);
1525 intervals_consed++;
1526 total_free_intervals--;
1527 RESET_INTERVAL (val);
1528 val->gcmarkbit = 0;
1529 return val;
1530 }
1531
1532
1533 /* Mark Lisp objects in interval I. */
1534
1535 static void
1536 mark_interval (register INTERVAL i, Lisp_Object dummy)
1537 {
1538 /* Intervals should never be shared. So, if extra internal checking is
1539 enabled, GC aborts if it seems to have visited an interval twice. */
1540 eassert (!i->gcmarkbit);
1541 i->gcmarkbit = 1;
1542 mark_object (i->plist);
1543 }
1544
1545
1546 /* Mark the interval tree rooted in TREE. Don't call this directly;
1547 use the macro MARK_INTERVAL_TREE instead. */
1548
1549 static void
1550 mark_interval_tree (register INTERVAL tree)
1551 {
1552 /* No need to test if this tree has been marked already; this
1553 function is always called through the MARK_INTERVAL_TREE macro,
1554 which takes care of that. */
1555
1556 traverse_intervals_noorder (tree, mark_interval, Qnil);
1557 }
1558
1559
1560 /* Mark the interval tree rooted in I. */
1561
1562 #define MARK_INTERVAL_TREE(i) \
1563 do { \
1564 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1565 mark_interval_tree (i); \
1566 } while (0)
1567
1568
1569 #define UNMARK_BALANCE_INTERVALS(i) \
1570 do { \
1571 if (! NULL_INTERVAL_P (i)) \
1572 (i) = balance_intervals (i); \
1573 } while (0)
1574 \f
1575 /***********************************************************************
1576 String Allocation
1577 ***********************************************************************/
1578
1579 /* Lisp_Strings are allocated in string_block structures. When a new
1580 string_block is allocated, all the Lisp_Strings it contains are
1581 added to a free-list string_free_list. When a new Lisp_String is
1582 needed, it is taken from that list. During the sweep phase of GC,
1583 string_blocks that are entirely free are freed, except two which
1584 we keep.
1585
1586 String data is allocated from sblock structures. Strings larger
1587 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1588 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1589
1590 Sblocks consist internally of sdata structures, one for each
1591 Lisp_String. The sdata structure points to the Lisp_String it
1592 belongs to. The Lisp_String points back to the `u.data' member of
1593 its sdata structure.
1594
1595 When a Lisp_String is freed during GC, it is put back on
1596 string_free_list, and its `data' member and its sdata's `string'
1597 pointer is set to null. The size of the string is recorded in the
1598 `u.nbytes' member of the sdata. So, sdata structures that are no
1599 longer used, can be easily recognized, and it's easy to compact the
1600 sblocks of small strings which we do in compact_small_strings. */
1601
1602 /* Size in bytes of an sblock structure used for small strings. This
1603 is 8192 minus malloc overhead. */
1604
1605 #define SBLOCK_SIZE 8188
1606
1607 /* Strings larger than this are considered large strings. String data
1608 for large strings is allocated from individual sblocks. */
1609
1610 #define LARGE_STRING_BYTES 1024
1611
1612 /* Structure describing string memory sub-allocated from an sblock.
1613 This is where the contents of Lisp strings are stored. */
1614
1615 struct sdata
1616 {
1617 /* Back-pointer to the string this sdata belongs to. If null, this
1618 structure is free, and the NBYTES member of the union below
1619 contains the string's byte size (the same value that STRING_BYTES
1620 would return if STRING were non-null). If non-null, STRING_BYTES
1621 (STRING) is the size of the data, and DATA contains the string's
1622 contents. */
1623 struct Lisp_String *string;
1624
1625 #ifdef GC_CHECK_STRING_BYTES
1626
1627 ptrdiff_t nbytes;
1628 unsigned char data[1];
1629
1630 #define SDATA_NBYTES(S) (S)->nbytes
1631 #define SDATA_DATA(S) (S)->data
1632 #define SDATA_SELECTOR(member) member
1633
1634 #else /* not GC_CHECK_STRING_BYTES */
1635
1636 union
1637 {
1638 /* When STRING is non-null. */
1639 unsigned char data[1];
1640
1641 /* When STRING is null. */
1642 ptrdiff_t nbytes;
1643 } u;
1644
1645 #define SDATA_NBYTES(S) (S)->u.nbytes
1646 #define SDATA_DATA(S) (S)->u.data
1647 #define SDATA_SELECTOR(member) u.member
1648
1649 #endif /* not GC_CHECK_STRING_BYTES */
1650
1651 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1652 };
1653
1654
1655 /* Structure describing a block of memory which is sub-allocated to
1656 obtain string data memory for strings. Blocks for small strings
1657 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1658 as large as needed. */
1659
1660 struct sblock
1661 {
1662 /* Next in list. */
1663 struct sblock *next;
1664
1665 /* Pointer to the next free sdata block. This points past the end
1666 of the sblock if there isn't any space left in this block. */
1667 struct sdata *next_free;
1668
1669 /* Start of data. */
1670 struct sdata first_data;
1671 };
1672
1673 /* Number of Lisp strings in a string_block structure. The 1020 is
1674 1024 minus malloc overhead. */
1675
1676 #define STRING_BLOCK_SIZE \
1677 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1678
1679 /* Structure describing a block from which Lisp_String structures
1680 are allocated. */
1681
1682 struct string_block
1683 {
1684 /* Place `strings' first, to preserve alignment. */
1685 struct Lisp_String strings[STRING_BLOCK_SIZE];
1686 struct string_block *next;
1687 };
1688
1689 /* Head and tail of the list of sblock structures holding Lisp string
1690 data. We always allocate from current_sblock. The NEXT pointers
1691 in the sblock structures go from oldest_sblock to current_sblock. */
1692
1693 static struct sblock *oldest_sblock, *current_sblock;
1694
1695 /* List of sblocks for large strings. */
1696
1697 static struct sblock *large_sblocks;
1698
1699 /* List of string_block structures. */
1700
1701 static struct string_block *string_blocks;
1702
1703 /* Free-list of Lisp_Strings. */
1704
1705 static struct Lisp_String *string_free_list;
1706
1707 /* Number of live and free Lisp_Strings. */
1708
1709 static EMACS_INT total_strings, total_free_strings;
1710
1711 /* Number of bytes used by live strings. */
1712
1713 static EMACS_INT total_string_bytes;
1714
1715 /* Given a pointer to a Lisp_String S which is on the free-list
1716 string_free_list, return a pointer to its successor in the
1717 free-list. */
1718
1719 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1720
1721 /* Return a pointer to the sdata structure belonging to Lisp string S.
1722 S must be live, i.e. S->data must not be null. S->data is actually
1723 a pointer to the `u.data' member of its sdata structure; the
1724 structure starts at a constant offset in front of that. */
1725
1726 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1727
1728
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730
1731 /* We check for overrun in string data blocks by appending a small
1732 "cookie" after each allocated string data block, and check for the
1733 presence of this cookie during GC. */
1734
1735 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1736 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1737 { '\xde', '\xad', '\xbe', '\xef' };
1738
1739 #else
1740 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1741 #endif
1742
1743 /* Value is the size of an sdata structure large enough to hold NBYTES
1744 bytes of string data. The value returned includes a terminating
1745 NUL byte, the size of the sdata structure, and padding. */
1746
1747 #ifdef GC_CHECK_STRING_BYTES
1748
1749 #define SDATA_SIZE(NBYTES) \
1750 ((SDATA_DATA_OFFSET \
1751 + (NBYTES) + 1 \
1752 + sizeof (ptrdiff_t) - 1) \
1753 & ~(sizeof (ptrdiff_t) - 1))
1754
1755 #else /* not GC_CHECK_STRING_BYTES */
1756
1757 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1758 less than the size of that member. The 'max' is not needed when
1759 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1760 alignment code reserves enough space. */
1761
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1765 ? NBYTES \
1766 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1767 + 1 \
1768 + sizeof (ptrdiff_t) - 1) \
1769 & ~(sizeof (ptrdiff_t) - 1))
1770
1771 #endif /* not GC_CHECK_STRING_BYTES */
1772
1773 /* Extra bytes to allocate for each string. */
1774
1775 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1776
1777 /* Exact bound on the number of bytes in a string, not counting the
1778 terminating null. A string cannot contain more bytes than
1779 STRING_BYTES_BOUND, nor can it be so long that the size_t
1780 arithmetic in allocate_string_data would overflow while it is
1781 calculating a value to be passed to malloc. */
1782 static ptrdiff_t const STRING_BYTES_MAX =
1783 min (STRING_BYTES_BOUND,
1784 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1785 - GC_STRING_EXTRA
1786 - offsetof (struct sblock, first_data)
1787 - SDATA_DATA_OFFSET)
1788 & ~(sizeof (EMACS_INT) - 1)));
1789
1790 /* Initialize string allocation. Called from init_alloc_once. */
1791
1792 static void
1793 init_strings (void)
1794 {
1795 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1796 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1797 }
1798
1799
1800 #ifdef GC_CHECK_STRING_BYTES
1801
1802 static int check_string_bytes_count;
1803
1804 /* Like STRING_BYTES, but with debugging check. Can be
1805 called during GC, so pay attention to the mark bit. */
1806
1807 ptrdiff_t
1808 string_bytes (struct Lisp_String *s)
1809 {
1810 ptrdiff_t nbytes =
1811 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1812
1813 if (!PURE_POINTER_P (s)
1814 && s->data
1815 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1816 abort ();
1817 return nbytes;
1818 }
1819
1820 /* Check validity of Lisp strings' string_bytes member in B. */
1821
1822 static void
1823 check_sblock (struct sblock *b)
1824 {
1825 struct sdata *from, *end, *from_end;
1826
1827 end = b->next_free;
1828
1829 for (from = &b->first_data; from < end; from = from_end)
1830 {
1831 /* Compute the next FROM here because copying below may
1832 overwrite data we need to compute it. */
1833 ptrdiff_t nbytes;
1834
1835 /* Check that the string size recorded in the string is the
1836 same as the one recorded in the sdata structure. */
1837 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1838 : SDATA_NBYTES (from));
1839 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1840 }
1841 }
1842
1843
1844 /* Check validity of Lisp strings' string_bytes member. ALL_P
1845 non-zero means check all strings, otherwise check only most
1846 recently allocated strings. Used for hunting a bug. */
1847
1848 static void
1849 check_string_bytes (int all_p)
1850 {
1851 if (all_p)
1852 {
1853 struct sblock *b;
1854
1855 for (b = large_sblocks; b; b = b->next)
1856 {
1857 struct Lisp_String *s = b->first_data.string;
1858 if (s)
1859 string_bytes (s);
1860 }
1861
1862 for (b = oldest_sblock; b; b = b->next)
1863 check_sblock (b);
1864 }
1865 else if (current_sblock)
1866 check_sblock (current_sblock);
1867 }
1868
1869 #else /* not GC_CHECK_STRING_BYTES */
1870
1871 #define check_string_bytes(all) ((void) 0)
1872
1873 #endif /* GC_CHECK_STRING_BYTES */
1874
1875 #ifdef GC_CHECK_STRING_FREE_LIST
1876
1877 /* Walk through the string free list looking for bogus next pointers.
1878 This may catch buffer overrun from a previous string. */
1879
1880 static void
1881 check_string_free_list (void)
1882 {
1883 struct Lisp_String *s;
1884
1885 /* Pop a Lisp_String off the free-list. */
1886 s = string_free_list;
1887 while (s != NULL)
1888 {
1889 if ((uintptr_t) s < 1024)
1890 abort ();
1891 s = NEXT_FREE_LISP_STRING (s);
1892 }
1893 }
1894 #else
1895 #define check_string_free_list()
1896 #endif
1897
1898 /* Return a new Lisp_String. */
1899
1900 static struct Lisp_String *
1901 allocate_string (void)
1902 {
1903 struct Lisp_String *s;
1904
1905 /* eassert (!handling_signal); */
1906
1907 MALLOC_BLOCK_INPUT;
1908
1909 /* If the free-list is empty, allocate a new string_block, and
1910 add all the Lisp_Strings in it to the free-list. */
1911 if (string_free_list == NULL)
1912 {
1913 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1914 int i;
1915
1916 b->next = string_blocks;
1917 string_blocks = b;
1918
1919 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1920 {
1921 s = b->strings + i;
1922 /* Every string on a free list should have NULL data pointer. */
1923 s->data = NULL;
1924 NEXT_FREE_LISP_STRING (s) = string_free_list;
1925 string_free_list = s;
1926 }
1927
1928 total_free_strings += STRING_BLOCK_SIZE;
1929 }
1930
1931 check_string_free_list ();
1932
1933 /* Pop a Lisp_String off the free-list. */
1934 s = string_free_list;
1935 string_free_list = NEXT_FREE_LISP_STRING (s);
1936
1937 MALLOC_UNBLOCK_INPUT;
1938
1939 --total_free_strings;
1940 ++total_strings;
1941 ++strings_consed;
1942 consing_since_gc += sizeof *s;
1943
1944 #ifdef GC_CHECK_STRING_BYTES
1945 if (!noninteractive)
1946 {
1947 if (++check_string_bytes_count == 200)
1948 {
1949 check_string_bytes_count = 0;
1950 check_string_bytes (1);
1951 }
1952 else
1953 check_string_bytes (0);
1954 }
1955 #endif /* GC_CHECK_STRING_BYTES */
1956
1957 return s;
1958 }
1959
1960
1961 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1962 plus a NUL byte at the end. Allocate an sdata structure for S, and
1963 set S->data to its `u.data' member. Store a NUL byte at the end of
1964 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1965 S->data if it was initially non-null. */
1966
1967 void
1968 allocate_string_data (struct Lisp_String *s,
1969 EMACS_INT nchars, EMACS_INT nbytes)
1970 {
1971 struct sdata *data, *old_data;
1972 struct sblock *b;
1973 ptrdiff_t needed, old_nbytes;
1974
1975 if (STRING_BYTES_MAX < nbytes)
1976 string_overflow ();
1977
1978 /* Determine the number of bytes needed to store NBYTES bytes
1979 of string data. */
1980 needed = SDATA_SIZE (nbytes);
1981 if (s->data)
1982 {
1983 old_data = SDATA_OF_STRING (s);
1984 old_nbytes = STRING_BYTES (s);
1985 }
1986 else
1987 old_data = NULL;
1988
1989 MALLOC_BLOCK_INPUT;
1990
1991 if (nbytes > LARGE_STRING_BYTES)
1992 {
1993 size_t size = offsetof (struct sblock, first_data) + needed;
1994
1995 #ifdef DOUG_LEA_MALLOC
1996 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1997 because mapped region contents are not preserved in
1998 a dumped Emacs.
1999
2000 In case you think of allowing it in a dumped Emacs at the
2001 cost of not being able to re-dump, there's another reason:
2002 mmap'ed data typically have an address towards the top of the
2003 address space, which won't fit into an EMACS_INT (at least on
2004 32-bit systems with the current tagging scheme). --fx */
2005 mallopt (M_MMAP_MAX, 0);
2006 #endif
2007
2008 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2009
2010 #ifdef DOUG_LEA_MALLOC
2011 /* Back to a reasonable maximum of mmap'ed areas. */
2012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2013 #endif
2014
2015 b->next_free = &b->first_data;
2016 b->first_data.string = NULL;
2017 b->next = large_sblocks;
2018 large_sblocks = b;
2019 }
2020 else if (current_sblock == NULL
2021 || (((char *) current_sblock + SBLOCK_SIZE
2022 - (char *) current_sblock->next_free)
2023 < (needed + GC_STRING_EXTRA)))
2024 {
2025 /* Not enough room in the current sblock. */
2026 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2027 b->next_free = &b->first_data;
2028 b->first_data.string = NULL;
2029 b->next = NULL;
2030
2031 if (current_sblock)
2032 current_sblock->next = b;
2033 else
2034 oldest_sblock = b;
2035 current_sblock = b;
2036 }
2037 else
2038 b = current_sblock;
2039
2040 data = b->next_free;
2041 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2042
2043 MALLOC_UNBLOCK_INPUT;
2044
2045 data->string = s;
2046 s->data = SDATA_DATA (data);
2047 #ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data) = nbytes;
2049 #endif
2050 s->size = nchars;
2051 s->size_byte = nbytes;
2052 s->data[nbytes] = '\0';
2053 #ifdef GC_CHECK_STRING_OVERRUN
2054 memcpy ((char *) data + needed, string_overrun_cookie,
2055 GC_STRING_OVERRUN_COOKIE_SIZE);
2056 #endif
2057
2058 /* Note that Faset may call to this function when S has already data
2059 assigned. In this case, mark data as free by setting it's string
2060 back-pointer to null, and record the size of the data in it. */
2061 if (old_data)
2062 {
2063 SDATA_NBYTES (old_data) = old_nbytes;
2064 old_data->string = NULL;
2065 }
2066
2067 consing_since_gc += needed;
2068 }
2069
2070
2071 /* Sweep and compact strings. */
2072
2073 static void
2074 sweep_strings (void)
2075 {
2076 struct string_block *b, *next;
2077 struct string_block *live_blocks = NULL;
2078
2079 string_free_list = NULL;
2080 total_strings = total_free_strings = 0;
2081 total_string_bytes = 0;
2082
2083 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2084 for (b = string_blocks; b; b = next)
2085 {
2086 int i, nfree = 0;
2087 struct Lisp_String *free_list_before = string_free_list;
2088
2089 next = b->next;
2090
2091 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2092 {
2093 struct Lisp_String *s = b->strings + i;
2094
2095 if (s->data)
2096 {
2097 /* String was not on free-list before. */
2098 if (STRING_MARKED_P (s))
2099 {
2100 /* String is live; unmark it and its intervals. */
2101 UNMARK_STRING (s);
2102
2103 if (!NULL_INTERVAL_P (s->intervals))
2104 UNMARK_BALANCE_INTERVALS (s->intervals);
2105
2106 ++total_strings;
2107 total_string_bytes += STRING_BYTES (s);
2108 }
2109 else
2110 {
2111 /* String is dead. Put it on the free-list. */
2112 struct sdata *data = SDATA_OF_STRING (s);
2113
2114 /* Save the size of S in its sdata so that we know
2115 how large that is. Reset the sdata's string
2116 back-pointer so that we know it's free. */
2117 #ifdef GC_CHECK_STRING_BYTES
2118 if (string_bytes (s) != SDATA_NBYTES (data))
2119 abort ();
2120 #else
2121 data->u.nbytes = STRING_BYTES (s);
2122 #endif
2123 data->string = NULL;
2124
2125 /* Reset the strings's `data' member so that we
2126 know it's free. */
2127 s->data = NULL;
2128
2129 /* Put the string on the free-list. */
2130 NEXT_FREE_LISP_STRING (s) = string_free_list;
2131 string_free_list = s;
2132 ++nfree;
2133 }
2134 }
2135 else
2136 {
2137 /* S was on the free-list before. Put it there again. */
2138 NEXT_FREE_LISP_STRING (s) = string_free_list;
2139 string_free_list = s;
2140 ++nfree;
2141 }
2142 }
2143
2144 /* Free blocks that contain free Lisp_Strings only, except
2145 the first two of them. */
2146 if (nfree == STRING_BLOCK_SIZE
2147 && total_free_strings > STRING_BLOCK_SIZE)
2148 {
2149 lisp_free (b);
2150 string_free_list = free_list_before;
2151 }
2152 else
2153 {
2154 total_free_strings += nfree;
2155 b->next = live_blocks;
2156 live_blocks = b;
2157 }
2158 }
2159
2160 check_string_free_list ();
2161
2162 string_blocks = live_blocks;
2163 free_large_strings ();
2164 compact_small_strings ();
2165
2166 check_string_free_list ();
2167 }
2168
2169
2170 /* Free dead large strings. */
2171
2172 static void
2173 free_large_strings (void)
2174 {
2175 struct sblock *b, *next;
2176 struct sblock *live_blocks = NULL;
2177
2178 for (b = large_sblocks; b; b = next)
2179 {
2180 next = b->next;
2181
2182 if (b->first_data.string == NULL)
2183 lisp_free (b);
2184 else
2185 {
2186 b->next = live_blocks;
2187 live_blocks = b;
2188 }
2189 }
2190
2191 large_sblocks = live_blocks;
2192 }
2193
2194
2195 /* Compact data of small strings. Free sblocks that don't contain
2196 data of live strings after compaction. */
2197
2198 static void
2199 compact_small_strings (void)
2200 {
2201 struct sblock *b, *tb, *next;
2202 struct sdata *from, *to, *end, *tb_end;
2203 struct sdata *to_end, *from_end;
2204
2205 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2206 to, and TB_END is the end of TB. */
2207 tb = oldest_sblock;
2208 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2209 to = &tb->first_data;
2210
2211 /* Step through the blocks from the oldest to the youngest. We
2212 expect that old blocks will stabilize over time, so that less
2213 copying will happen this way. */
2214 for (b = oldest_sblock; b; b = b->next)
2215 {
2216 end = b->next_free;
2217 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2218
2219 for (from = &b->first_data; from < end; from = from_end)
2220 {
2221 /* Compute the next FROM here because copying below may
2222 overwrite data we need to compute it. */
2223 ptrdiff_t nbytes;
2224 struct Lisp_String *s = from->string;
2225
2226 #ifdef GC_CHECK_STRING_BYTES
2227 /* Check that the string size recorded in the string is the
2228 same as the one recorded in the sdata structure. */
2229 if (s && string_bytes (s) != SDATA_NBYTES (from))
2230 abort ();
2231 #endif /* GC_CHECK_STRING_BYTES */
2232
2233 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2234 eassert (nbytes <= LARGE_STRING_BYTES);
2235
2236 nbytes = SDATA_SIZE (nbytes);
2237 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2238
2239 #ifdef GC_CHECK_STRING_OVERRUN
2240 if (memcmp (string_overrun_cookie,
2241 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2242 GC_STRING_OVERRUN_COOKIE_SIZE))
2243 abort ();
2244 #endif
2245
2246 /* Non-NULL S means it's alive. Copy its data. */
2247 if (s)
2248 {
2249 /* If TB is full, proceed with the next sblock. */
2250 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2251 if (to_end > tb_end)
2252 {
2253 tb->next_free = to;
2254 tb = tb->next;
2255 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2256 to = &tb->first_data;
2257 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2258 }
2259
2260 /* Copy, and update the string's `data' pointer. */
2261 if (from != to)
2262 {
2263 eassert (tb != b || to < from);
2264 memmove (to, from, nbytes + GC_STRING_EXTRA);
2265 to->string->data = SDATA_DATA (to);
2266 }
2267
2268 /* Advance past the sdata we copied to. */
2269 to = to_end;
2270 }
2271 }
2272 }
2273
2274 /* The rest of the sblocks following TB don't contain live data, so
2275 we can free them. */
2276 for (b = tb->next; b; b = next)
2277 {
2278 next = b->next;
2279 lisp_free (b);
2280 }
2281
2282 tb->next_free = to;
2283 tb->next = NULL;
2284 current_sblock = tb;
2285 }
2286
2287 void
2288 string_overflow (void)
2289 {
2290 error ("Maximum string size exceeded");
2291 }
2292
2293 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2294 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2295 LENGTH must be an integer.
2296 INIT must be an integer that represents a character. */)
2297 (Lisp_Object length, Lisp_Object init)
2298 {
2299 register Lisp_Object val;
2300 register unsigned char *p, *end;
2301 int c;
2302 EMACS_INT nbytes;
2303
2304 CHECK_NATNUM (length);
2305 CHECK_CHARACTER (init);
2306
2307 c = XFASTINT (init);
2308 if (ASCII_CHAR_P (c))
2309 {
2310 nbytes = XINT (length);
2311 val = make_uninit_string (nbytes);
2312 p = SDATA (val);
2313 end = p + SCHARS (val);
2314 while (p != end)
2315 *p++ = c;
2316 }
2317 else
2318 {
2319 unsigned char str[MAX_MULTIBYTE_LENGTH];
2320 int len = CHAR_STRING (c, str);
2321 EMACS_INT string_len = XINT (length);
2322
2323 if (string_len > STRING_BYTES_MAX / len)
2324 string_overflow ();
2325 nbytes = len * string_len;
2326 val = make_uninit_multibyte_string (string_len, nbytes);
2327 p = SDATA (val);
2328 end = p + nbytes;
2329 while (p != end)
2330 {
2331 memcpy (p, str, len);
2332 p += len;
2333 }
2334 }
2335
2336 *p = 0;
2337 return val;
2338 }
2339
2340
2341 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2342 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2343 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2344 (Lisp_Object length, Lisp_Object init)
2345 {
2346 register Lisp_Object val;
2347 struct Lisp_Bool_Vector *p;
2348 ptrdiff_t length_in_chars;
2349 EMACS_INT length_in_elts;
2350 int bits_per_value;
2351 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2352 / word_size);
2353
2354 CHECK_NATNUM (length);
2355
2356 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2357
2358 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2359
2360 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2361
2362 /* No Lisp_Object to trace in there. */
2363 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2364
2365 p = XBOOL_VECTOR (val);
2366 p->size = XFASTINT (length);
2367
2368 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2369 / BOOL_VECTOR_BITS_PER_CHAR);
2370 if (length_in_chars)
2371 {
2372 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2373
2374 /* Clear any extraneous bits in the last byte. */
2375 p->data[length_in_chars - 1]
2376 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2377 }
2378
2379 return val;
2380 }
2381
2382
2383 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2384 of characters from the contents. This string may be unibyte or
2385 multibyte, depending on the contents. */
2386
2387 Lisp_Object
2388 make_string (const char *contents, ptrdiff_t nbytes)
2389 {
2390 register Lisp_Object val;
2391 ptrdiff_t nchars, multibyte_nbytes;
2392
2393 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2394 &nchars, &multibyte_nbytes);
2395 if (nbytes == nchars || nbytes != multibyte_nbytes)
2396 /* CONTENTS contains no multibyte sequences or contains an invalid
2397 multibyte sequence. We must make unibyte string. */
2398 val = make_unibyte_string (contents, nbytes);
2399 else
2400 val = make_multibyte_string (contents, nchars, nbytes);
2401 return val;
2402 }
2403
2404
2405 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2406
2407 Lisp_Object
2408 make_unibyte_string (const char *contents, ptrdiff_t length)
2409 {
2410 register Lisp_Object val;
2411 val = make_uninit_string (length);
2412 memcpy (SDATA (val), contents, length);
2413 return val;
2414 }
2415
2416
2417 /* Make a multibyte string from NCHARS characters occupying NBYTES
2418 bytes at CONTENTS. */
2419
2420 Lisp_Object
2421 make_multibyte_string (const char *contents,
2422 ptrdiff_t nchars, ptrdiff_t nbytes)
2423 {
2424 register Lisp_Object val;
2425 val = make_uninit_multibyte_string (nchars, nbytes);
2426 memcpy (SDATA (val), contents, nbytes);
2427 return val;
2428 }
2429
2430
2431 /* Make a string from NCHARS characters occupying NBYTES bytes at
2432 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2433
2434 Lisp_Object
2435 make_string_from_bytes (const char *contents,
2436 ptrdiff_t nchars, ptrdiff_t nbytes)
2437 {
2438 register Lisp_Object val;
2439 val = make_uninit_multibyte_string (nchars, nbytes);
2440 memcpy (SDATA (val), contents, nbytes);
2441 if (SBYTES (val) == SCHARS (val))
2442 STRING_SET_UNIBYTE (val);
2443 return val;
2444 }
2445
2446
2447 /* Make a string from NCHARS characters occupying NBYTES bytes at
2448 CONTENTS. The argument MULTIBYTE controls whether to label the
2449 string as multibyte. If NCHARS is negative, it counts the number of
2450 characters by itself. */
2451
2452 Lisp_Object
2453 make_specified_string (const char *contents,
2454 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2455 {
2456 register Lisp_Object val;
2457
2458 if (nchars < 0)
2459 {
2460 if (multibyte)
2461 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2462 nbytes);
2463 else
2464 nchars = nbytes;
2465 }
2466 val = make_uninit_multibyte_string (nchars, nbytes);
2467 memcpy (SDATA (val), contents, nbytes);
2468 if (!multibyte)
2469 STRING_SET_UNIBYTE (val);
2470 return val;
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (EMACS_INT length)
2479 {
2480 Lisp_Object val;
2481
2482 if (!length)
2483 return empty_unibyte_string;
2484 val = make_uninit_multibyte_string (length, length);
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2487 }
2488
2489
2490 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2491 which occupy NBYTES bytes. */
2492
2493 Lisp_Object
2494 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2495 {
2496 Lisp_Object string;
2497 struct Lisp_String *s;
2498
2499 if (nchars < 0)
2500 abort ();
2501 if (!nbytes)
2502 return empty_multibyte_string;
2503
2504 s = allocate_string ();
2505 s->intervals = NULL_INTERVAL;
2506 allocate_string_data (s, nchars, nbytes);
2507 XSETSTRING (string, s);
2508 string_chars_consed += nbytes;
2509 return string;
2510 }
2511
2512 /* Print arguments to BUF according to a FORMAT, then return
2513 a Lisp_String initialized with the data from BUF. */
2514
2515 Lisp_Object
2516 make_formatted_string (char *buf, const char *format, ...)
2517 {
2518 va_list ap;
2519 int length;
2520
2521 va_start (ap, format);
2522 length = vsprintf (buf, format, ap);
2523 va_end (ap);
2524 return make_string (buf, length);
2525 }
2526
2527 \f
2528 /***********************************************************************
2529 Float Allocation
2530 ***********************************************************************/
2531
2532 /* We store float cells inside of float_blocks, allocating a new
2533 float_block with malloc whenever necessary. Float cells reclaimed
2534 by GC are put on a free list to be reallocated before allocating
2535 any new float cells from the latest float_block. */
2536
2537 #define FLOAT_BLOCK_SIZE \
2538 (((BLOCK_BYTES - sizeof (struct float_block *) \
2539 /* The compiler might add padding at the end. */ \
2540 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2541 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2542
2543 #define GETMARKBIT(block,n) \
2544 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2545 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2546 & 1)
2547
2548 #define SETMARKBIT(block,n) \
2549 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2550 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2551
2552 #define UNSETMARKBIT(block,n) \
2553 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2554 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2555
2556 #define FLOAT_BLOCK(fptr) \
2557 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2558
2559 #define FLOAT_INDEX(fptr) \
2560 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2561
2562 struct float_block
2563 {
2564 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2565 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2566 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2567 struct float_block *next;
2568 };
2569
2570 #define FLOAT_MARKED_P(fptr) \
2571 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572
2573 #define FLOAT_MARK(fptr) \
2574 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2575
2576 #define FLOAT_UNMARK(fptr) \
2577 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2578
2579 /* Current float_block. */
2580
2581 static struct float_block *float_block;
2582
2583 /* Index of first unused Lisp_Float in the current float_block. */
2584
2585 static int float_block_index = FLOAT_BLOCK_SIZE;
2586
2587 /* Free-list of Lisp_Floats. */
2588
2589 static struct Lisp_Float *float_free_list;
2590
2591 /* Return a new float object with value FLOAT_VALUE. */
2592
2593 Lisp_Object
2594 make_float (double float_value)
2595 {
2596 register Lisp_Object val;
2597
2598 /* eassert (!handling_signal); */
2599
2600 MALLOC_BLOCK_INPUT;
2601
2602 if (float_free_list)
2603 {
2604 /* We use the data field for chaining the free list
2605 so that we won't use the same field that has the mark bit. */
2606 XSETFLOAT (val, float_free_list);
2607 float_free_list = float_free_list->u.chain;
2608 }
2609 else
2610 {
2611 if (float_block_index == FLOAT_BLOCK_SIZE)
2612 {
2613 struct float_block *new
2614 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2615 new->next = float_block;
2616 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2617 float_block = new;
2618 float_block_index = 0;
2619 total_free_floats += FLOAT_BLOCK_SIZE;
2620 }
2621 XSETFLOAT (val, &float_block->floats[float_block_index]);
2622 float_block_index++;
2623 }
2624
2625 MALLOC_UNBLOCK_INPUT;
2626
2627 XFLOAT_INIT (val, float_value);
2628 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2629 consing_since_gc += sizeof (struct Lisp_Float);
2630 floats_consed++;
2631 total_free_floats--;
2632 return val;
2633 }
2634
2635
2636 \f
2637 /***********************************************************************
2638 Cons Allocation
2639 ***********************************************************************/
2640
2641 /* We store cons cells inside of cons_blocks, allocating a new
2642 cons_block with malloc whenever necessary. Cons cells reclaimed by
2643 GC are put on a free list to be reallocated before allocating
2644 any new cons cells from the latest cons_block. */
2645
2646 #define CONS_BLOCK_SIZE \
2647 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2648 /* The compiler might add padding at the end. */ \
2649 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2650 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2651
2652 #define CONS_BLOCK(fptr) \
2653 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2654
2655 #define CONS_INDEX(fptr) \
2656 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2657
2658 struct cons_block
2659 {
2660 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2661 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2662 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2663 struct cons_block *next;
2664 };
2665
2666 #define CONS_MARKED_P(fptr) \
2667 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2668
2669 #define CONS_MARK(fptr) \
2670 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2671
2672 #define CONS_UNMARK(fptr) \
2673 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2674
2675 /* Current cons_block. */
2676
2677 static struct cons_block *cons_block;
2678
2679 /* Index of first unused Lisp_Cons in the current block. */
2680
2681 static int cons_block_index = CONS_BLOCK_SIZE;
2682
2683 /* Free-list of Lisp_Cons structures. */
2684
2685 static struct Lisp_Cons *cons_free_list;
2686
2687 /* Explicitly free a cons cell by putting it on the free-list. */
2688
2689 void
2690 free_cons (struct Lisp_Cons *ptr)
2691 {
2692 ptr->u.chain = cons_free_list;
2693 #if GC_MARK_STACK
2694 CVAR (ptr, car) = Vdead;
2695 #endif
2696 cons_free_list = ptr;
2697 consing_since_gc -= sizeof *ptr;
2698 total_free_conses++;
2699 }
2700
2701 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2702 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2703 (Lisp_Object car, Lisp_Object cdr)
2704 {
2705 register Lisp_Object val;
2706
2707 /* eassert (!handling_signal); */
2708
2709 MALLOC_BLOCK_INPUT;
2710
2711 if (cons_free_list)
2712 {
2713 /* We use the cdr for chaining the free list
2714 so that we won't use the same field that has the mark bit. */
2715 XSETCONS (val, cons_free_list);
2716 cons_free_list = cons_free_list->u.chain;
2717 }
2718 else
2719 {
2720 if (cons_block_index == CONS_BLOCK_SIZE)
2721 {
2722 struct cons_block *new
2723 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2724 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2725 new->next = cons_block;
2726 cons_block = new;
2727 cons_block_index = 0;
2728 total_free_conses += CONS_BLOCK_SIZE;
2729 }
2730 XSETCONS (val, &cons_block->conses[cons_block_index]);
2731 cons_block_index++;
2732 }
2733
2734 MALLOC_UNBLOCK_INPUT;
2735
2736 XSETCAR (val, car);
2737 XSETCDR (val, cdr);
2738 eassert (!CONS_MARKED_P (XCONS (val)));
2739 consing_since_gc += sizeof (struct Lisp_Cons);
2740 total_free_conses--;
2741 cons_cells_consed++;
2742 return val;
2743 }
2744
2745 #ifdef GC_CHECK_CONS_LIST
2746 /* Get an error now if there's any junk in the cons free list. */
2747 void
2748 check_cons_list (void)
2749 {
2750 struct Lisp_Cons *tail = cons_free_list;
2751
2752 while (tail)
2753 tail = tail->u.chain;
2754 }
2755 #endif
2756
2757 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2758
2759 Lisp_Object
2760 list1 (Lisp_Object arg1)
2761 {
2762 return Fcons (arg1, Qnil);
2763 }
2764
2765 Lisp_Object
2766 list2 (Lisp_Object arg1, Lisp_Object arg2)
2767 {
2768 return Fcons (arg1, Fcons (arg2, Qnil));
2769 }
2770
2771
2772 Lisp_Object
2773 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2774 {
2775 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2776 }
2777
2778
2779 Lisp_Object
2780 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2781 {
2782 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2783 }
2784
2785
2786 Lisp_Object
2787 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2788 {
2789 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2790 Fcons (arg5, Qnil)))));
2791 }
2792
2793 /* Make a list of COUNT Lisp_Objects, where ARG is the
2794 first one. Allocate conses from pure space if TYPE
2795 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2796
2797 Lisp_Object
2798 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2799 {
2800 va_list ap;
2801 ptrdiff_t i;
2802 Lisp_Object val, *objp;
2803
2804 /* Change to SAFE_ALLOCA if you hit this eassert. */
2805 eassert (count <= MAX_ALLOCA / word_size);
2806
2807 objp = alloca (count * word_size);
2808 objp[0] = arg;
2809 va_start (ap, arg);
2810 for (i = 1; i < count; i++)
2811 objp[i] = va_arg (ap, Lisp_Object);
2812 va_end (ap);
2813
2814 for (val = Qnil, i = count - 1; i >= 0; i--)
2815 {
2816 if (type == CONSTYPE_PURE)
2817 val = pure_cons (objp[i], val);
2818 else if (type == CONSTYPE_HEAP)
2819 val = Fcons (objp[i], val);
2820 else
2821 abort ();
2822 }
2823 return val;
2824 }
2825
2826 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2827 doc: /* Return a newly created list with specified arguments as elements.
2828 Any number of arguments, even zero arguments, are allowed.
2829 usage: (list &rest OBJECTS) */)
2830 (ptrdiff_t nargs, Lisp_Object *args)
2831 {
2832 register Lisp_Object val;
2833 val = Qnil;
2834
2835 while (nargs > 0)
2836 {
2837 nargs--;
2838 val = Fcons (args[nargs], val);
2839 }
2840 return val;
2841 }
2842
2843
2844 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2845 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2846 (register Lisp_Object length, Lisp_Object init)
2847 {
2848 register Lisp_Object val;
2849 register EMACS_INT size;
2850
2851 CHECK_NATNUM (length);
2852 size = XFASTINT (length);
2853
2854 val = Qnil;
2855 while (size > 0)
2856 {
2857 val = Fcons (init, val);
2858 --size;
2859
2860 if (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879 }
2880 }
2881 }
2882 }
2883
2884 QUIT;
2885 }
2886
2887 return val;
2888 }
2889
2890
2891 \f
2892 /***********************************************************************
2893 Vector Allocation
2894 ***********************************************************************/
2895
2896 /* This value is balanced well enough to avoid too much internal overhead
2897 for the most common cases; it's not required to be a power of two, but
2898 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2899
2900 #define VECTOR_BLOCK_SIZE 4096
2901
2902 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2903 enum
2904 {
2905 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2906 };
2907
2908 /* ROUNDUP_SIZE must be a power of 2. */
2909 verify ((roundup_size & (roundup_size - 1)) == 0);
2910
2911 /* Verify assumptions described above. */
2912 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2913 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2914
2915 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2916
2917 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2918
2919 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2920
2921 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2922
2923 /* Size of the minimal vector allocated from block. */
2924
2925 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2926
2927 /* Size of the largest vector allocated from block. */
2928
2929 #define VBLOCK_BYTES_MAX \
2930 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2931
2932 /* We maintain one free list for each possible block-allocated
2933 vector size, and this is the number of free lists we have. */
2934
2935 #define VECTOR_MAX_FREE_LIST_INDEX \
2936 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2937
2938 /* Common shortcut to advance vector pointer over a block data. */
2939
2940 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2941
2942 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2943
2944 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2945
2946 /* Common shortcut to setup vector on a free list. */
2947
2948 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2949 do { \
2950 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2951 eassert ((nbytes) % roundup_size == 0); \
2952 (index) = VINDEX (nbytes); \
2953 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2954 (v)->header.next.vector = vector_free_lists[index]; \
2955 vector_free_lists[index] = (v); \
2956 total_free_vector_slots += (nbytes) / word_size; \
2957 } while (0)
2958
2959 struct vector_block
2960 {
2961 char data[VECTOR_BLOCK_BYTES];
2962 struct vector_block *next;
2963 };
2964
2965 /* Chain of vector blocks. */
2966
2967 static struct vector_block *vector_blocks;
2968
2969 /* Vector free lists, where NTH item points to a chain of free
2970 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2971
2972 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2973
2974 /* Singly-linked list of large vectors. */
2975
2976 static struct Lisp_Vector *large_vectors;
2977
2978 /* The only vector with 0 slots, allocated from pure space. */
2979
2980 Lisp_Object zero_vector;
2981
2982 /* Number of live vectors. */
2983
2984 static EMACS_INT total_vectors;
2985
2986 /* Total size of live and free vectors, in Lisp_Object units. */
2987
2988 static EMACS_INT total_vector_slots, total_free_vector_slots;
2989
2990 /* Get a new vector block. */
2991
2992 static struct vector_block *
2993 allocate_vector_block (void)
2994 {
2995 struct vector_block *block = xmalloc (sizeof *block);
2996
2997 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2998 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2999 MEM_TYPE_VECTOR_BLOCK);
3000 #endif
3001
3002 block->next = vector_blocks;
3003 vector_blocks = block;
3004 return block;
3005 }
3006
3007 /* Called once to initialize vector allocation. */
3008
3009 static void
3010 init_vectors (void)
3011 {
3012 zero_vector = make_pure_vector (0);
3013 }
3014
3015 /* Allocate vector from a vector block. */
3016
3017 static struct Lisp_Vector *
3018 allocate_vector_from_block (size_t nbytes)
3019 {
3020 struct Lisp_Vector *vector, *rest;
3021 struct vector_block *block;
3022 size_t index, restbytes;
3023
3024 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3025 eassert (nbytes % roundup_size == 0);
3026
3027 /* First, try to allocate from a free list
3028 containing vectors of the requested size. */
3029 index = VINDEX (nbytes);
3030 if (vector_free_lists[index])
3031 {
3032 vector = vector_free_lists[index];
3033 vector_free_lists[index] = vector->header.next.vector;
3034 vector->header.next.nbytes = nbytes;
3035 total_free_vector_slots -= nbytes / word_size;
3036 return vector;
3037 }
3038
3039 /* Next, check free lists containing larger vectors. Since
3040 we will split the result, we should have remaining space
3041 large enough to use for one-slot vector at least. */
3042 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3043 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3044 if (vector_free_lists[index])
3045 {
3046 /* This vector is larger than requested. */
3047 vector = vector_free_lists[index];
3048 vector_free_lists[index] = vector->header.next.vector;
3049 vector->header.next.nbytes = nbytes;
3050 total_free_vector_slots -= nbytes / word_size;
3051
3052 /* Excess bytes are used for the smaller vector,
3053 which should be set on an appropriate free list. */
3054 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3055 eassert (restbytes % roundup_size == 0);
3056 rest = ADVANCE (vector, nbytes);
3057 SETUP_ON_FREE_LIST (rest, restbytes, index);
3058 return vector;
3059 }
3060
3061 /* Finally, need a new vector block. */
3062 block = allocate_vector_block ();
3063
3064 /* New vector will be at the beginning of this block. */
3065 vector = (struct Lisp_Vector *) block->data;
3066 vector->header.next.nbytes = nbytes;
3067
3068 /* If the rest of space from this block is large enough
3069 for one-slot vector at least, set up it on a free list. */
3070 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3071 if (restbytes >= VBLOCK_BYTES_MIN)
3072 {
3073 eassert (restbytes % roundup_size == 0);
3074 rest = ADVANCE (vector, nbytes);
3075 SETUP_ON_FREE_LIST (rest, restbytes, index);
3076 }
3077 return vector;
3078 }
3079
3080 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3081
3082 #define VECTOR_IN_BLOCK(vector, block) \
3083 ((char *) (vector) <= (block)->data \
3084 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3085
3086 /* Number of bytes used by vector-block-allocated object. This is the only
3087 place where we actually use the `nbytes' field of the vector-header.
3088 I.e. we could get rid of the `nbytes' field by computing it based on the
3089 vector-type. */
3090
3091 #define PSEUDOVECTOR_NBYTES(vector) \
3092 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3093 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3094 : vector->header.next.nbytes)
3095
3096 /* Reclaim space used by unmarked vectors. */
3097
3098 static void
3099 sweep_vectors (void)
3100 {
3101 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3102 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3103
3104 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3105 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3106
3107 /* Looking through vector blocks. */
3108
3109 for (block = vector_blocks; block; block = *bprev)
3110 {
3111 int free_this_block = 0;
3112
3113 for (vector = (struct Lisp_Vector *) block->data;
3114 VECTOR_IN_BLOCK (vector, block); vector = next)
3115 {
3116 if (VECTOR_MARKED_P (vector))
3117 {
3118 VECTOR_UNMARK (vector);
3119 total_vectors++;
3120 total_vector_slots += vector->header.next.nbytes / word_size;
3121 next = ADVANCE (vector, vector->header.next.nbytes);
3122 }
3123 else
3124 {
3125 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3126 ptrdiff_t total_bytes = nbytes;
3127
3128 next = ADVANCE (vector, nbytes);
3129
3130 /* While NEXT is not marked, try to coalesce with VECTOR,
3131 thus making VECTOR of the largest possible size. */
3132
3133 while (VECTOR_IN_BLOCK (next, block))
3134 {
3135 if (VECTOR_MARKED_P (next))
3136 break;
3137 nbytes = PSEUDOVECTOR_NBYTES (next);
3138 total_bytes += nbytes;
3139 next = ADVANCE (next, nbytes);
3140 }
3141
3142 eassert (total_bytes % roundup_size == 0);
3143
3144 if (vector == (struct Lisp_Vector *) block->data
3145 && !VECTOR_IN_BLOCK (next, block))
3146 /* This block should be freed because all of it's
3147 space was coalesced into the only free vector. */
3148 free_this_block = 1;
3149 else
3150 {
3151 int tmp;
3152 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3153 }
3154 }
3155 }
3156
3157 if (free_this_block)
3158 {
3159 *bprev = block->next;
3160 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3161 mem_delete (mem_find (block->data));
3162 #endif
3163 xfree (block);
3164 }
3165 else
3166 bprev = &block->next;
3167 }
3168
3169 /* Sweep large vectors. */
3170
3171 for (vector = large_vectors; vector; vector = *vprev)
3172 {
3173 if (VECTOR_MARKED_P (vector))
3174 {
3175 VECTOR_UNMARK (vector);
3176 total_vectors++;
3177 if (vector->header.size & PSEUDOVECTOR_FLAG)
3178 {
3179 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3180
3181 /* All non-bool pseudovectors are small enough to be allocated
3182 from vector blocks. This code should be redesigned if some
3183 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3184 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3185
3186 total_vector_slots
3187 += (bool_header_size
3188 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3189 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3190 }
3191 else
3192 total_vector_slots
3193 += header_size / word_size + vector->header.size;
3194 vprev = &vector->header.next.vector;
3195 }
3196 else
3197 {
3198 *vprev = vector->header.next.vector;
3199 lisp_free (vector);
3200 }
3201 }
3202 }
3203
3204 /* Value is a pointer to a newly allocated Lisp_Vector structure
3205 with room for LEN Lisp_Objects. */
3206
3207 static struct Lisp_Vector *
3208 allocate_vectorlike (ptrdiff_t len)
3209 {
3210 struct Lisp_Vector *p;
3211
3212 MALLOC_BLOCK_INPUT;
3213
3214 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3215 /* eassert (!handling_signal); */
3216
3217 if (len == 0)
3218 p = XVECTOR (zero_vector);
3219 else
3220 {
3221 size_t nbytes = header_size + len * word_size;
3222
3223 #ifdef DOUG_LEA_MALLOC
3224 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3225 because mapped region contents are not preserved in
3226 a dumped Emacs. */
3227 mallopt (M_MMAP_MAX, 0);
3228 #endif
3229
3230 if (nbytes <= VBLOCK_BYTES_MAX)
3231 p = allocate_vector_from_block (vroundup (nbytes));
3232 else
3233 {
3234 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3235 p->header.next.vector = large_vectors;
3236 large_vectors = p;
3237 }
3238
3239 #ifdef DOUG_LEA_MALLOC
3240 /* Back to a reasonable maximum of mmap'ed areas. */
3241 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3242 #endif
3243
3244 consing_since_gc += nbytes;
3245 vector_cells_consed += len;
3246 }
3247
3248 MALLOC_UNBLOCK_INPUT;
3249
3250 return p;
3251 }
3252
3253
3254 /* Allocate a vector with LEN slots. */
3255
3256 struct Lisp_Vector *
3257 allocate_vector (EMACS_INT len)
3258 {
3259 struct Lisp_Vector *v;
3260 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3261
3262 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3263 memory_full (SIZE_MAX);
3264 v = allocate_vectorlike (len);
3265 v->header.size = len;
3266 return v;
3267 }
3268
3269
3270 /* Allocate other vector-like structures. */
3271
3272 struct Lisp_Vector *
3273 allocate_pseudovector (int memlen, int lisplen, int tag)
3274 {
3275 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3276 int i;
3277
3278 /* Only the first lisplen slots will be traced normally by the GC. */
3279 for (i = 0; i < lisplen; ++i)
3280 v->contents[i] = Qnil;
3281
3282 XSETPVECTYPESIZE (v, tag, lisplen);
3283 return v;
3284 }
3285
3286 struct buffer *
3287 allocate_buffer (void)
3288 {
3289 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3290
3291 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3292 - header_size) / word_size);
3293 /* Note that the fields of B are not initialized. */
3294 return b;
3295 }
3296
3297 struct Lisp_Hash_Table *
3298 allocate_hash_table (void)
3299 {
3300 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3301 }
3302
3303 struct window *
3304 allocate_window (void)
3305 {
3306 struct window *w;
3307
3308 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3309 /* Users assumes that non-Lisp data is zeroed. */
3310 memset (&w->current_matrix, 0,
3311 sizeof (*w) - offsetof (struct window, current_matrix));
3312 return w;
3313 }
3314
3315 struct terminal *
3316 allocate_terminal (void)
3317 {
3318 struct terminal *t;
3319
3320 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3321 /* Users assumes that non-Lisp data is zeroed. */
3322 memset (&t->next_terminal, 0,
3323 sizeof (*t) - offsetof (struct terminal, next_terminal));
3324 return t;
3325 }
3326
3327 struct frame *
3328 allocate_frame (void)
3329 {
3330 struct frame *f;
3331
3332 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3333 /* Users assumes that non-Lisp data is zeroed. */
3334 memset (&f->face_cache, 0,
3335 sizeof (*f) - offsetof (struct frame, face_cache));
3336 return f;
3337 }
3338
3339 struct Lisp_Process *
3340 allocate_process (void)
3341 {
3342 struct Lisp_Process *p;
3343
3344 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3345 /* Users assumes that non-Lisp data is zeroed. */
3346 memset (&p->pid, 0,
3347 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3348 return p;
3349 }
3350
3351 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3352 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3353 See also the function `vector'. */)
3354 (register Lisp_Object length, Lisp_Object init)
3355 {
3356 Lisp_Object vector;
3357 register ptrdiff_t sizei;
3358 register ptrdiff_t i;
3359 register struct Lisp_Vector *p;
3360
3361 CHECK_NATNUM (length);
3362
3363 p = allocate_vector (XFASTINT (length));
3364 sizei = XFASTINT (length);
3365 for (i = 0; i < sizei; i++)
3366 p->contents[i] = init;
3367
3368 XSETVECTOR (vector, p);
3369 return vector;
3370 }
3371
3372
3373 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3374 doc: /* Return a newly created vector with specified arguments as elements.
3375 Any number of arguments, even zero arguments, are allowed.
3376 usage: (vector &rest OBJECTS) */)
3377 (ptrdiff_t nargs, Lisp_Object *args)
3378 {
3379 register Lisp_Object len, val;
3380 ptrdiff_t i;
3381 register struct Lisp_Vector *p;
3382
3383 XSETFASTINT (len, nargs);
3384 val = Fmake_vector (len, Qnil);
3385 p = XVECTOR (val);
3386 for (i = 0; i < nargs; i++)
3387 p->contents[i] = args[i];
3388 return val;
3389 }
3390
3391 void
3392 make_byte_code (struct Lisp_Vector *v)
3393 {
3394 if (v->header.size > 1 && STRINGP (v->contents[1])
3395 && STRING_MULTIBYTE (v->contents[1]))
3396 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3397 earlier because they produced a raw 8-bit string for byte-code
3398 and now such a byte-code string is loaded as multibyte while
3399 raw 8-bit characters converted to multibyte form. Thus, now we
3400 must convert them back to the original unibyte form. */
3401 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3402 XSETPVECTYPE (v, PVEC_COMPILED);
3403 }
3404
3405 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3406 doc: /* Create a byte-code object with specified arguments as elements.
3407 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3408 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3409 and (optional) INTERACTIVE-SPEC.
3410 The first four arguments are required; at most six have any
3411 significance.
3412 The ARGLIST can be either like the one of `lambda', in which case the arguments
3413 will be dynamically bound before executing the byte code, or it can be an
3414 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3415 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3416 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3417 argument to catch the left-over arguments. If such an integer is used, the
3418 arguments will not be dynamically bound but will be instead pushed on the
3419 stack before executing the byte-code.
3420 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3421 (ptrdiff_t nargs, Lisp_Object *args)
3422 {
3423 register Lisp_Object len, val;
3424 ptrdiff_t i;
3425 register struct Lisp_Vector *p;
3426
3427 /* We used to purecopy everything here, if purify-flga was set. This worked
3428 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3429 dangerous, since make-byte-code is used during execution to build
3430 closures, so any closure built during the preload phase would end up
3431 copied into pure space, including its free variables, which is sometimes
3432 just wasteful and other times plainly wrong (e.g. those free vars may want
3433 to be setcar'd). */
3434
3435 XSETFASTINT (len, nargs);
3436 val = Fmake_vector (len, Qnil);
3437
3438 p = XVECTOR (val);
3439 for (i = 0; i < nargs; i++)
3440 p->contents[i] = args[i];
3441 make_byte_code (p);
3442 XSETCOMPILED (val, p);
3443 return val;
3444 }
3445
3446
3447 \f
3448 /***********************************************************************
3449 Symbol Allocation
3450 ***********************************************************************/
3451
3452 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3453 of the required alignment if LSB tags are used. */
3454
3455 union aligned_Lisp_Symbol
3456 {
3457 struct Lisp_Symbol s;
3458 #if USE_LSB_TAG
3459 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3460 & -GCALIGNMENT];
3461 #endif
3462 };
3463
3464 /* Each symbol_block is just under 1020 bytes long, since malloc
3465 really allocates in units of powers of two and uses 4 bytes for its
3466 own overhead. */
3467
3468 #define SYMBOL_BLOCK_SIZE \
3469 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3470
3471 struct symbol_block
3472 {
3473 /* Place `symbols' first, to preserve alignment. */
3474 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3475 struct symbol_block *next;
3476 };
3477
3478 /* Current symbol block and index of first unused Lisp_Symbol
3479 structure in it. */
3480
3481 static struct symbol_block *symbol_block;
3482 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3483
3484 /* List of free symbols. */
3485
3486 static struct Lisp_Symbol *symbol_free_list;
3487
3488 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3489 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3490 Its value and function definition are void, and its property list is nil. */)
3491 (Lisp_Object name)
3492 {
3493 register Lisp_Object val;
3494 register struct Lisp_Symbol *p;
3495
3496 CHECK_STRING (name);
3497
3498 /* eassert (!handling_signal); */
3499
3500 MALLOC_BLOCK_INPUT;
3501
3502 if (symbol_free_list)
3503 {
3504 XSETSYMBOL (val, symbol_free_list);
3505 symbol_free_list = symbol_free_list->next;
3506 }
3507 else
3508 {
3509 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3510 {
3511 struct symbol_block *new
3512 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3513 new->next = symbol_block;
3514 symbol_block = new;
3515 symbol_block_index = 0;
3516 total_free_symbols += SYMBOL_BLOCK_SIZE;
3517 }
3518 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3519 symbol_block_index++;
3520 }
3521
3522 MALLOC_UNBLOCK_INPUT;
3523
3524 p = XSYMBOL (val);
3525 SVAR (p, xname) = name;
3526 SVAR (p, plist) = Qnil;
3527 p->redirect = SYMBOL_PLAINVAL;
3528 SET_SYMBOL_VAL (p, Qunbound);
3529 SVAR (p, function) = Qunbound;
3530 p->next = NULL;
3531 p->gcmarkbit = 0;
3532 p->interned = SYMBOL_UNINTERNED;
3533 p->constant = 0;
3534 p->declared_special = 0;
3535 consing_since_gc += sizeof (struct Lisp_Symbol);
3536 symbols_consed++;
3537 total_free_symbols--;
3538 return val;
3539 }
3540
3541
3542 \f
3543 /***********************************************************************
3544 Marker (Misc) Allocation
3545 ***********************************************************************/
3546
3547 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3548 the required alignment when LSB tags are used. */
3549
3550 union aligned_Lisp_Misc
3551 {
3552 union Lisp_Misc m;
3553 #if USE_LSB_TAG
3554 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3555 & -GCALIGNMENT];
3556 #endif
3557 };
3558
3559 /* Allocation of markers and other objects that share that structure.
3560 Works like allocation of conses. */
3561
3562 #define MARKER_BLOCK_SIZE \
3563 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3564
3565 struct marker_block
3566 {
3567 /* Place `markers' first, to preserve alignment. */
3568 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3569 struct marker_block *next;
3570 };
3571
3572 static struct marker_block *marker_block;
3573 static int marker_block_index = MARKER_BLOCK_SIZE;
3574
3575 static union Lisp_Misc *marker_free_list;
3576
3577 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3578
3579 static Lisp_Object
3580 allocate_misc (enum Lisp_Misc_Type type)
3581 {
3582 Lisp_Object val;
3583
3584 /* eassert (!handling_signal); */
3585
3586 MALLOC_BLOCK_INPUT;
3587
3588 if (marker_free_list)
3589 {
3590 XSETMISC (val, marker_free_list);
3591 marker_free_list = marker_free_list->u_free.chain;
3592 }
3593 else
3594 {
3595 if (marker_block_index == MARKER_BLOCK_SIZE)
3596 {
3597 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3598 new->next = marker_block;
3599 marker_block = new;
3600 marker_block_index = 0;
3601 total_free_markers += MARKER_BLOCK_SIZE;
3602 }
3603 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3604 marker_block_index++;
3605 }
3606
3607 MALLOC_UNBLOCK_INPUT;
3608
3609 --total_free_markers;
3610 consing_since_gc += sizeof (union Lisp_Misc);
3611 misc_objects_consed++;
3612 XMISCTYPE (val) = type;
3613 XMISCANY (val)->gcmarkbit = 0;
3614 return val;
3615 }
3616
3617 /* Free a Lisp_Misc object */
3618
3619 static void
3620 free_misc (Lisp_Object misc)
3621 {
3622 XMISCTYPE (misc) = Lisp_Misc_Free;
3623 XMISC (misc)->u_free.chain = marker_free_list;
3624 marker_free_list = XMISC (misc);
3625 consing_since_gc -= sizeof (union Lisp_Misc);
3626 total_free_markers++;
3627 }
3628
3629 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3630 INTEGER. This is used to package C values to call record_unwind_protect.
3631 The unwind function can get the C values back using XSAVE_VALUE. */
3632
3633 Lisp_Object
3634 make_save_value (void *pointer, ptrdiff_t integer)
3635 {
3636 register Lisp_Object val;
3637 register struct Lisp_Save_Value *p;
3638
3639 val = allocate_misc (Lisp_Misc_Save_Value);
3640 p = XSAVE_VALUE (val);
3641 p->pointer = pointer;
3642 p->integer = integer;
3643 p->dogc = 0;
3644 return val;
3645 }
3646
3647 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3648
3649 Lisp_Object
3650 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3651 {
3652 register Lisp_Object overlay;
3653
3654 overlay = allocate_misc (Lisp_Misc_Overlay);
3655 OVERLAY_START (overlay) = start;
3656 OVERLAY_END (overlay) = end;
3657 OVERLAY_PLIST (overlay) = plist;
3658 XOVERLAY (overlay)->next = NULL;
3659 return overlay;
3660 }
3661
3662 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3663 doc: /* Return a newly allocated marker which does not point at any place. */)
3664 (void)
3665 {
3666 register Lisp_Object val;
3667 register struct Lisp_Marker *p;
3668
3669 val = allocate_misc (Lisp_Misc_Marker);
3670 p = XMARKER (val);
3671 p->buffer = 0;
3672 p->bytepos = 0;
3673 p->charpos = 0;
3674 p->next = NULL;
3675 p->insertion_type = 0;
3676 return val;
3677 }
3678
3679 /* Return a newly allocated marker which points into BUF
3680 at character position CHARPOS and byte position BYTEPOS. */
3681
3682 Lisp_Object
3683 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3684 {
3685 Lisp_Object obj;
3686 struct Lisp_Marker *m;
3687
3688 /* No dead buffers here. */
3689 eassert (!NILP (BVAR (buf, name)));
3690
3691 /* Every character is at least one byte. */
3692 eassert (charpos <= bytepos);
3693
3694 obj = allocate_misc (Lisp_Misc_Marker);
3695 m = XMARKER (obj);
3696 m->buffer = buf;
3697 m->charpos = charpos;
3698 m->bytepos = bytepos;
3699 m->insertion_type = 0;
3700 m->next = BUF_MARKERS (buf);
3701 BUF_MARKERS (buf) = m;
3702 return obj;
3703 }
3704
3705 /* Put MARKER back on the free list after using it temporarily. */
3706
3707 void
3708 free_marker (Lisp_Object marker)
3709 {
3710 unchain_marker (XMARKER (marker));
3711 free_misc (marker);
3712 }
3713
3714 \f
3715 /* Return a newly created vector or string with specified arguments as
3716 elements. If all the arguments are characters that can fit
3717 in a string of events, make a string; otherwise, make a vector.
3718
3719 Any number of arguments, even zero arguments, are allowed. */
3720
3721 Lisp_Object
3722 make_event_array (register int nargs, Lisp_Object *args)
3723 {
3724 int i;
3725
3726 for (i = 0; i < nargs; i++)
3727 /* The things that fit in a string
3728 are characters that are in 0...127,
3729 after discarding the meta bit and all the bits above it. */
3730 if (!INTEGERP (args[i])
3731 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3732 return Fvector (nargs, args);
3733
3734 /* Since the loop exited, we know that all the things in it are
3735 characters, so we can make a string. */
3736 {
3737 Lisp_Object result;
3738
3739 result = Fmake_string (make_number (nargs), make_number (0));
3740 for (i = 0; i < nargs; i++)
3741 {
3742 SSET (result, i, XINT (args[i]));
3743 /* Move the meta bit to the right place for a string char. */
3744 if (XINT (args[i]) & CHAR_META)
3745 SSET (result, i, SREF (result, i) | 0x80);
3746 }
3747
3748 return result;
3749 }
3750 }
3751
3752
3753 \f
3754 /************************************************************************
3755 Memory Full Handling
3756 ************************************************************************/
3757
3758
3759 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3760 there may have been size_t overflow so that malloc was never
3761 called, or perhaps malloc was invoked successfully but the
3762 resulting pointer had problems fitting into a tagged EMACS_INT. In
3763 either case this counts as memory being full even though malloc did
3764 not fail. */
3765
3766 void
3767 memory_full (size_t nbytes)
3768 {
3769 /* Do not go into hysterics merely because a large request failed. */
3770 int enough_free_memory = 0;
3771 if (SPARE_MEMORY < nbytes)
3772 {
3773 void *p;
3774
3775 MALLOC_BLOCK_INPUT;
3776 p = malloc (SPARE_MEMORY);
3777 if (p)
3778 {
3779 free (p);
3780 enough_free_memory = 1;
3781 }
3782 MALLOC_UNBLOCK_INPUT;
3783 }
3784
3785 if (! enough_free_memory)
3786 {
3787 int i;
3788
3789 Vmemory_full = Qt;
3790
3791 memory_full_cons_threshold = sizeof (struct cons_block);
3792
3793 /* The first time we get here, free the spare memory. */
3794 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3795 if (spare_memory[i])
3796 {
3797 if (i == 0)
3798 free (spare_memory[i]);
3799 else if (i >= 1 && i <= 4)
3800 lisp_align_free (spare_memory[i]);
3801 else
3802 lisp_free (spare_memory[i]);
3803 spare_memory[i] = 0;
3804 }
3805
3806 /* Record the space now used. When it decreases substantially,
3807 we can refill the memory reserve. */
3808 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3809 bytes_used_when_full = BYTES_USED;
3810 #endif
3811 }
3812
3813 /* This used to call error, but if we've run out of memory, we could
3814 get infinite recursion trying to build the string. */
3815 xsignal (Qnil, Vmemory_signal_data);
3816 }
3817
3818 /* If we released our reserve (due to running out of memory),
3819 and we have a fair amount free once again,
3820 try to set aside another reserve in case we run out once more.
3821
3822 This is called when a relocatable block is freed in ralloc.c,
3823 and also directly from this file, in case we're not using ralloc.c. */
3824
3825 void
3826 refill_memory_reserve (void)
3827 {
3828 #ifndef SYSTEM_MALLOC
3829 if (spare_memory[0] == 0)
3830 spare_memory[0] = malloc (SPARE_MEMORY);
3831 if (spare_memory[1] == 0)
3832 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3833 MEM_TYPE_CONS);
3834 if (spare_memory[2] == 0)
3835 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3836 MEM_TYPE_CONS);
3837 if (spare_memory[3] == 0)
3838 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3839 MEM_TYPE_CONS);
3840 if (spare_memory[4] == 0)
3841 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3842 MEM_TYPE_CONS);
3843 if (spare_memory[5] == 0)
3844 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3845 MEM_TYPE_STRING);
3846 if (spare_memory[6] == 0)
3847 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3848 MEM_TYPE_STRING);
3849 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3850 Vmemory_full = Qnil;
3851 #endif
3852 }
3853 \f
3854 /************************************************************************
3855 C Stack Marking
3856 ************************************************************************/
3857
3858 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3859
3860 /* Conservative C stack marking requires a method to identify possibly
3861 live Lisp objects given a pointer value. We do this by keeping
3862 track of blocks of Lisp data that are allocated in a red-black tree
3863 (see also the comment of mem_node which is the type of nodes in
3864 that tree). Function lisp_malloc adds information for an allocated
3865 block to the red-black tree with calls to mem_insert, and function
3866 lisp_free removes it with mem_delete. Functions live_string_p etc
3867 call mem_find to lookup information about a given pointer in the
3868 tree, and use that to determine if the pointer points to a Lisp
3869 object or not. */
3870
3871 /* Initialize this part of alloc.c. */
3872
3873 static void
3874 mem_init (void)
3875 {
3876 mem_z.left = mem_z.right = MEM_NIL;
3877 mem_z.parent = NULL;
3878 mem_z.color = MEM_BLACK;
3879 mem_z.start = mem_z.end = NULL;
3880 mem_root = MEM_NIL;
3881 }
3882
3883
3884 /* Value is a pointer to the mem_node containing START. Value is
3885 MEM_NIL if there is no node in the tree containing START. */
3886
3887 static inline struct mem_node *
3888 mem_find (void *start)
3889 {
3890 struct mem_node *p;
3891
3892 if (start < min_heap_address || start > max_heap_address)
3893 return MEM_NIL;
3894
3895 /* Make the search always successful to speed up the loop below. */
3896 mem_z.start = start;
3897 mem_z.end = (char *) start + 1;
3898
3899 p = mem_root;
3900 while (start < p->start || start >= p->end)
3901 p = start < p->start ? p->left : p->right;
3902 return p;
3903 }
3904
3905
3906 /* Insert a new node into the tree for a block of memory with start
3907 address START, end address END, and type TYPE. Value is a
3908 pointer to the node that was inserted. */
3909
3910 static struct mem_node *
3911 mem_insert (void *start, void *end, enum mem_type type)
3912 {
3913 struct mem_node *c, *parent, *x;
3914
3915 if (min_heap_address == NULL || start < min_heap_address)
3916 min_heap_address = start;
3917 if (max_heap_address == NULL || end > max_heap_address)
3918 max_heap_address = end;
3919
3920 /* See where in the tree a node for START belongs. In this
3921 particular application, it shouldn't happen that a node is already
3922 present. For debugging purposes, let's check that. */
3923 c = mem_root;
3924 parent = NULL;
3925
3926 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3927
3928 while (c != MEM_NIL)
3929 {
3930 if (start >= c->start && start < c->end)
3931 abort ();
3932 parent = c;
3933 c = start < c->start ? c->left : c->right;
3934 }
3935
3936 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3937
3938 while (c != MEM_NIL)
3939 {
3940 parent = c;
3941 c = start < c->start ? c->left : c->right;
3942 }
3943
3944 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3945
3946 /* Create a new node. */
3947 #ifdef GC_MALLOC_CHECK
3948 x = _malloc_internal (sizeof *x);
3949 if (x == NULL)
3950 abort ();
3951 #else
3952 x = xmalloc (sizeof *x);
3953 #endif
3954 x->start = start;
3955 x->end = end;
3956 x->type = type;
3957 x->parent = parent;
3958 x->left = x->right = MEM_NIL;
3959 x->color = MEM_RED;
3960
3961 /* Insert it as child of PARENT or install it as root. */
3962 if (parent)
3963 {
3964 if (start < parent->start)
3965 parent->left = x;
3966 else
3967 parent->right = x;
3968 }
3969 else
3970 mem_root = x;
3971
3972 /* Re-establish red-black tree properties. */
3973 mem_insert_fixup (x);
3974
3975 return x;
3976 }
3977
3978
3979 /* Re-establish the red-black properties of the tree, and thereby
3980 balance the tree, after node X has been inserted; X is always red. */
3981
3982 static void
3983 mem_insert_fixup (struct mem_node *x)
3984 {
3985 while (x != mem_root && x->parent->color == MEM_RED)
3986 {
3987 /* X is red and its parent is red. This is a violation of
3988 red-black tree property #3. */
3989
3990 if (x->parent == x->parent->parent->left)
3991 {
3992 /* We're on the left side of our grandparent, and Y is our
3993 "uncle". */
3994 struct mem_node *y = x->parent->parent->right;
3995
3996 if (y->color == MEM_RED)
3997 {
3998 /* Uncle and parent are red but should be black because
3999 X is red. Change the colors accordingly and proceed
4000 with the grandparent. */
4001 x->parent->color = MEM_BLACK;
4002 y->color = MEM_BLACK;
4003 x->parent->parent->color = MEM_RED;
4004 x = x->parent->parent;
4005 }
4006 else
4007 {
4008 /* Parent and uncle have different colors; parent is
4009 red, uncle is black. */
4010 if (x == x->parent->right)
4011 {
4012 x = x->parent;
4013 mem_rotate_left (x);
4014 }
4015
4016 x->parent->color = MEM_BLACK;
4017 x->parent->parent->color = MEM_RED;
4018 mem_rotate_right (x->parent->parent);
4019 }
4020 }
4021 else
4022 {
4023 /* This is the symmetrical case of above. */
4024 struct mem_node *y = x->parent->parent->left;
4025
4026 if (y->color == MEM_RED)
4027 {
4028 x->parent->color = MEM_BLACK;
4029 y->color = MEM_BLACK;
4030 x->parent->parent->color = MEM_RED;
4031 x = x->parent->parent;
4032 }
4033 else
4034 {
4035 if (x == x->parent->left)
4036 {
4037 x = x->parent;
4038 mem_rotate_right (x);
4039 }
4040
4041 x->parent->color = MEM_BLACK;
4042 x->parent->parent->color = MEM_RED;
4043 mem_rotate_left (x->parent->parent);
4044 }
4045 }
4046 }
4047
4048 /* The root may have been changed to red due to the algorithm. Set
4049 it to black so that property #5 is satisfied. */
4050 mem_root->color = MEM_BLACK;
4051 }
4052
4053
4054 /* (x) (y)
4055 / \ / \
4056 a (y) ===> (x) c
4057 / \ / \
4058 b c a b */
4059
4060 static void
4061 mem_rotate_left (struct mem_node *x)
4062 {
4063 struct mem_node *y;
4064
4065 /* Turn y's left sub-tree into x's right sub-tree. */
4066 y = x->right;
4067 x->right = y->left;
4068 if (y->left != MEM_NIL)
4069 y->left->parent = x;
4070
4071 /* Y's parent was x's parent. */
4072 if (y != MEM_NIL)
4073 y->parent = x->parent;
4074
4075 /* Get the parent to point to y instead of x. */
4076 if (x->parent)
4077 {
4078 if (x == x->parent->left)
4079 x->parent->left = y;
4080 else
4081 x->parent->right = y;
4082 }
4083 else
4084 mem_root = y;
4085
4086 /* Put x on y's left. */
4087 y->left = x;
4088 if (x != MEM_NIL)
4089 x->parent = y;
4090 }
4091
4092
4093 /* (x) (Y)
4094 / \ / \
4095 (y) c ===> a (x)
4096 / \ / \
4097 a b b c */
4098
4099 static void
4100 mem_rotate_right (struct mem_node *x)
4101 {
4102 struct mem_node *y = x->left;
4103
4104 x->left = y->right;
4105 if (y->right != MEM_NIL)
4106 y->right->parent = x;
4107
4108 if (y != MEM_NIL)
4109 y->parent = x->parent;
4110 if (x->parent)
4111 {
4112 if (x == x->parent->right)
4113 x->parent->right = y;
4114 else
4115 x->parent->left = y;
4116 }
4117 else
4118 mem_root = y;
4119
4120 y->right = x;
4121 if (x != MEM_NIL)
4122 x->parent = y;
4123 }
4124
4125
4126 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4127
4128 static void
4129 mem_delete (struct mem_node *z)
4130 {
4131 struct mem_node *x, *y;
4132
4133 if (!z || z == MEM_NIL)
4134 return;
4135
4136 if (z->left == MEM_NIL || z->right == MEM_NIL)
4137 y = z;
4138 else
4139 {
4140 y = z->right;
4141 while (y->left != MEM_NIL)
4142 y = y->left;
4143 }
4144
4145 if (y->left != MEM_NIL)
4146 x = y->left;
4147 else
4148 x = y->right;
4149
4150 x->parent = y->parent;
4151 if (y->parent)
4152 {
4153 if (y == y->parent->left)
4154 y->parent->left = x;
4155 else
4156 y->parent->right = x;
4157 }
4158 else
4159 mem_root = x;
4160
4161 if (y != z)
4162 {
4163 z->start = y->start;
4164 z->end = y->end;
4165 z->type = y->type;
4166 }
4167
4168 if (y->color == MEM_BLACK)
4169 mem_delete_fixup (x);
4170
4171 #ifdef GC_MALLOC_CHECK
4172 _free_internal (y);
4173 #else
4174 xfree (y);
4175 #endif
4176 }
4177
4178
4179 /* Re-establish the red-black properties of the tree, after a
4180 deletion. */
4181
4182 static void
4183 mem_delete_fixup (struct mem_node *x)
4184 {
4185 while (x != mem_root && x->color == MEM_BLACK)
4186 {
4187 if (x == x->parent->left)
4188 {
4189 struct mem_node *w = x->parent->right;
4190
4191 if (w->color == MEM_RED)
4192 {
4193 w->color = MEM_BLACK;
4194 x->parent->color = MEM_RED;
4195 mem_rotate_left (x->parent);
4196 w = x->parent->right;
4197 }
4198
4199 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4200 {
4201 w->color = MEM_RED;
4202 x = x->parent;
4203 }
4204 else
4205 {
4206 if (w->right->color == MEM_BLACK)
4207 {
4208 w->left->color = MEM_BLACK;
4209 w->color = MEM_RED;
4210 mem_rotate_right (w);
4211 w = x->parent->right;
4212 }
4213 w->color = x->parent->color;
4214 x->parent->color = MEM_BLACK;
4215 w->right->color = MEM_BLACK;
4216 mem_rotate_left (x->parent);
4217 x = mem_root;
4218 }
4219 }
4220 else
4221 {
4222 struct mem_node *w = x->parent->left;
4223
4224 if (w->color == MEM_RED)
4225 {
4226 w->color = MEM_BLACK;
4227 x->parent->color = MEM_RED;
4228 mem_rotate_right (x->parent);
4229 w = x->parent->left;
4230 }
4231
4232 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4233 {
4234 w->color = MEM_RED;
4235 x = x->parent;
4236 }
4237 else
4238 {
4239 if (w->left->color == MEM_BLACK)
4240 {
4241 w->right->color = MEM_BLACK;
4242 w->color = MEM_RED;
4243 mem_rotate_left (w);
4244 w = x->parent->left;
4245 }
4246
4247 w->color = x->parent->color;
4248 x->parent->color = MEM_BLACK;
4249 w->left->color = MEM_BLACK;
4250 mem_rotate_right (x->parent);
4251 x = mem_root;
4252 }
4253 }
4254 }
4255
4256 x->color = MEM_BLACK;
4257 }
4258
4259
4260 /* Value is non-zero if P is a pointer to a live Lisp string on
4261 the heap. M is a pointer to the mem_block for P. */
4262
4263 static inline int
4264 live_string_p (struct mem_node *m, void *p)
4265 {
4266 if (m->type == MEM_TYPE_STRING)
4267 {
4268 struct string_block *b = (struct string_block *) m->start;
4269 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4270
4271 /* P must point to the start of a Lisp_String structure, and it
4272 must not be on the free-list. */
4273 return (offset >= 0
4274 && offset % sizeof b->strings[0] == 0
4275 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4276 && ((struct Lisp_String *) p)->data != NULL);
4277 }
4278 else
4279 return 0;
4280 }
4281
4282
4283 /* Value is non-zero if P is a pointer to a live Lisp cons on
4284 the heap. M is a pointer to the mem_block for P. */
4285
4286 static inline int
4287 live_cons_p (struct mem_node *m, void *p)
4288 {
4289 if (m->type == MEM_TYPE_CONS)
4290 {
4291 struct cons_block *b = (struct cons_block *) m->start;
4292 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4293
4294 /* P must point to the start of a Lisp_Cons, not be
4295 one of the unused cells in the current cons block,
4296 and not be on the free-list. */
4297 return (offset >= 0
4298 && offset % sizeof b->conses[0] == 0
4299 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4300 && (b != cons_block
4301 || offset / sizeof b->conses[0] < cons_block_index)
4302 && !EQ (CVAR ((struct Lisp_Cons *) p, car), Vdead));
4303 }
4304 else
4305 return 0;
4306 }
4307
4308
4309 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4310 the heap. M is a pointer to the mem_block for P. */
4311
4312 static inline int
4313 live_symbol_p (struct mem_node *m, void *p)
4314 {
4315 if (m->type == MEM_TYPE_SYMBOL)
4316 {
4317 struct symbol_block *b = (struct symbol_block *) m->start;
4318 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4319
4320 /* P must point to the start of a Lisp_Symbol, not be
4321 one of the unused cells in the current symbol block,
4322 and not be on the free-list. */
4323 return (offset >= 0
4324 && offset % sizeof b->symbols[0] == 0
4325 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4326 && (b != symbol_block
4327 || offset / sizeof b->symbols[0] < symbol_block_index)
4328 && !EQ (SVAR (((struct Lisp_Symbol *)p), function), Vdead));
4329 }
4330 else
4331 return 0;
4332 }
4333
4334
4335 /* Value is non-zero if P is a pointer to a live Lisp float on
4336 the heap. M is a pointer to the mem_block for P. */
4337
4338 static inline int
4339 live_float_p (struct mem_node *m, void *p)
4340 {
4341 if (m->type == MEM_TYPE_FLOAT)
4342 {
4343 struct float_block *b = (struct float_block *) m->start;
4344 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4345
4346 /* P must point to the start of a Lisp_Float and not be
4347 one of the unused cells in the current float block. */
4348 return (offset >= 0
4349 && offset % sizeof b->floats[0] == 0
4350 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4351 && (b != float_block
4352 || offset / sizeof b->floats[0] < float_block_index));
4353 }
4354 else
4355 return 0;
4356 }
4357
4358
4359 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4360 the heap. M is a pointer to the mem_block for P. */
4361
4362 static inline int
4363 live_misc_p (struct mem_node *m, void *p)
4364 {
4365 if (m->type == MEM_TYPE_MISC)
4366 {
4367 struct marker_block *b = (struct marker_block *) m->start;
4368 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4369
4370 /* P must point to the start of a Lisp_Misc, not be
4371 one of the unused cells in the current misc block,
4372 and not be on the free-list. */
4373 return (offset >= 0
4374 && offset % sizeof b->markers[0] == 0
4375 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4376 && (b != marker_block
4377 || offset / sizeof b->markers[0] < marker_block_index)
4378 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4379 }
4380 else
4381 return 0;
4382 }
4383
4384
4385 /* Value is non-zero if P is a pointer to a live vector-like object.
4386 M is a pointer to the mem_block for P. */
4387
4388 static inline int
4389 live_vector_p (struct mem_node *m, void *p)
4390 {
4391 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4392 {
4393 /* This memory node corresponds to a vector block. */
4394 struct vector_block *block = (struct vector_block *) m->start;
4395 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4396
4397 /* P is in the block's allocation range. Scan the block
4398 up to P and see whether P points to the start of some
4399 vector which is not on a free list. FIXME: check whether
4400 some allocation patterns (probably a lot of short vectors)
4401 may cause a substantial overhead of this loop. */
4402 while (VECTOR_IN_BLOCK (vector, block)
4403 && vector <= (struct Lisp_Vector *) p)
4404 {
4405 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4406 vector = ADVANCE (vector, (vector->header.size
4407 & PSEUDOVECTOR_SIZE_MASK));
4408 else if (vector == p)
4409 return 1;
4410 else
4411 vector = ADVANCE (vector, vector->header.next.nbytes);
4412 }
4413 }
4414 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4415 /* This memory node corresponds to a large vector. */
4416 return 1;
4417 return 0;
4418 }
4419
4420
4421 /* Value is non-zero if P is a pointer to a live buffer. M is a
4422 pointer to the mem_block for P. */
4423
4424 static inline int
4425 live_buffer_p (struct mem_node *m, void *p)
4426 {
4427 /* P must point to the start of the block, and the buffer
4428 must not have been killed. */
4429 return (m->type == MEM_TYPE_BUFFER
4430 && p == m->start
4431 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4432 }
4433
4434 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4435
4436 #if GC_MARK_STACK
4437
4438 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4439
4440 /* Array of objects that are kept alive because the C stack contains
4441 a pattern that looks like a reference to them . */
4442
4443 #define MAX_ZOMBIES 10
4444 static Lisp_Object zombies[MAX_ZOMBIES];
4445
4446 /* Number of zombie objects. */
4447
4448 static EMACS_INT nzombies;
4449
4450 /* Number of garbage collections. */
4451
4452 static EMACS_INT ngcs;
4453
4454 /* Average percentage of zombies per collection. */
4455
4456 static double avg_zombies;
4457
4458 /* Max. number of live and zombie objects. */
4459
4460 static EMACS_INT max_live, max_zombies;
4461
4462 /* Average number of live objects per GC. */
4463
4464 static double avg_live;
4465
4466 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4467 doc: /* Show information about live and zombie objects. */)
4468 (void)
4469 {
4470 Lisp_Object args[8], zombie_list = Qnil;
4471 EMACS_INT i;
4472 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4473 zombie_list = Fcons (zombies[i], zombie_list);
4474 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4475 args[1] = make_number (ngcs);
4476 args[2] = make_float (avg_live);
4477 args[3] = make_float (avg_zombies);
4478 args[4] = make_float (avg_zombies / avg_live / 100);
4479 args[5] = make_number (max_live);
4480 args[6] = make_number (max_zombies);
4481 args[7] = zombie_list;
4482 return Fmessage (8, args);
4483 }
4484
4485 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4486
4487
4488 /* Mark OBJ if we can prove it's a Lisp_Object. */
4489
4490 static inline void
4491 mark_maybe_object (Lisp_Object obj)
4492 {
4493 void *po;
4494 struct mem_node *m;
4495
4496 if (INTEGERP (obj))
4497 return;
4498
4499 po = (void *) XPNTR (obj);
4500 m = mem_find (po);
4501
4502 if (m != MEM_NIL)
4503 {
4504 int mark_p = 0;
4505
4506 switch (XTYPE (obj))
4507 {
4508 case Lisp_String:
4509 mark_p = (live_string_p (m, po)
4510 && !STRING_MARKED_P ((struct Lisp_String *) po));
4511 break;
4512
4513 case Lisp_Cons:
4514 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4515 break;
4516
4517 case Lisp_Symbol:
4518 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4519 break;
4520
4521 case Lisp_Float:
4522 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4523 break;
4524
4525 case Lisp_Vectorlike:
4526 /* Note: can't check BUFFERP before we know it's a
4527 buffer because checking that dereferences the pointer
4528 PO which might point anywhere. */
4529 if (live_vector_p (m, po))
4530 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4531 else if (live_buffer_p (m, po))
4532 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4533 break;
4534
4535 case Lisp_Misc:
4536 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4537 break;
4538
4539 default:
4540 break;
4541 }
4542
4543 if (mark_p)
4544 {
4545 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4546 if (nzombies < MAX_ZOMBIES)
4547 zombies[nzombies] = obj;
4548 ++nzombies;
4549 #endif
4550 mark_object (obj);
4551 }
4552 }
4553 }
4554
4555
4556 /* If P points to Lisp data, mark that as live if it isn't already
4557 marked. */
4558
4559 static inline void
4560 mark_maybe_pointer (void *p)
4561 {
4562 struct mem_node *m;
4563
4564 /* Quickly rule out some values which can't point to Lisp data.
4565 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4566 Otherwise, assume that Lisp data is aligned on even addresses. */
4567 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4568 return;
4569
4570 m = mem_find (p);
4571 if (m != MEM_NIL)
4572 {
4573 Lisp_Object obj = Qnil;
4574
4575 switch (m->type)
4576 {
4577 case MEM_TYPE_NON_LISP:
4578 /* Nothing to do; not a pointer to Lisp memory. */
4579 break;
4580
4581 case MEM_TYPE_BUFFER:
4582 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4583 XSETVECTOR (obj, p);
4584 break;
4585
4586 case MEM_TYPE_CONS:
4587 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4588 XSETCONS (obj, p);
4589 break;
4590
4591 case MEM_TYPE_STRING:
4592 if (live_string_p (m, p)
4593 && !STRING_MARKED_P ((struct Lisp_String *) p))
4594 XSETSTRING (obj, p);
4595 break;
4596
4597 case MEM_TYPE_MISC:
4598 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4599 XSETMISC (obj, p);
4600 break;
4601
4602 case MEM_TYPE_SYMBOL:
4603 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4604 XSETSYMBOL (obj, p);
4605 break;
4606
4607 case MEM_TYPE_FLOAT:
4608 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4609 XSETFLOAT (obj, p);
4610 break;
4611
4612 case MEM_TYPE_VECTORLIKE:
4613 case MEM_TYPE_VECTOR_BLOCK:
4614 if (live_vector_p (m, p))
4615 {
4616 Lisp_Object tem;
4617 XSETVECTOR (tem, p);
4618 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4619 obj = tem;
4620 }
4621 break;
4622
4623 default:
4624 abort ();
4625 }
4626
4627 if (!NILP (obj))
4628 mark_object (obj);
4629 }
4630 }
4631
4632
4633 /* Alignment of pointer values. Use alignof, as it sometimes returns
4634 a smaller alignment than GCC's __alignof__ and mark_memory might
4635 miss objects if __alignof__ were used. */
4636 #define GC_POINTER_ALIGNMENT alignof (void *)
4637
4638 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4639 not suffice, which is the typical case. A host where a Lisp_Object is
4640 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4641 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4642 suffice to widen it to to a Lisp_Object and check it that way. */
4643 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4644 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4645 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4646 nor mark_maybe_object can follow the pointers. This should not occur on
4647 any practical porting target. */
4648 # error "MSB type bits straddle pointer-word boundaries"
4649 # endif
4650 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4651 pointer words that hold pointers ORed with type bits. */
4652 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4653 #else
4654 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4655 words that hold unmodified pointers. */
4656 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4657 #endif
4658
4659 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4660 or END+OFFSET..START. */
4661
4662 static void
4663 mark_memory (void *start, void *end)
4664 #if defined (__clang__) && defined (__has_feature)
4665 #if __has_feature(address_sanitizer)
4666 /* Do not allow -faddress-sanitizer to check this function, since it
4667 crosses the function stack boundary, and thus would yield many
4668 false positives. */
4669 __attribute__((no_address_safety_analysis))
4670 #endif
4671 #endif
4672 {
4673 void **pp;
4674 int i;
4675
4676 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4677 nzombies = 0;
4678 #endif
4679
4680 /* Make START the pointer to the start of the memory region,
4681 if it isn't already. */
4682 if (end < start)
4683 {
4684 void *tem = start;
4685 start = end;
4686 end = tem;
4687 }
4688
4689 /* Mark Lisp data pointed to. This is necessary because, in some
4690 situations, the C compiler optimizes Lisp objects away, so that
4691 only a pointer to them remains. Example:
4692
4693 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4694 ()
4695 {
4696 Lisp_Object obj = build_string ("test");
4697 struct Lisp_String *s = XSTRING (obj);
4698 Fgarbage_collect ();
4699 fprintf (stderr, "test `%s'\n", s->data);
4700 return Qnil;
4701 }
4702
4703 Here, `obj' isn't really used, and the compiler optimizes it
4704 away. The only reference to the life string is through the
4705 pointer `s'. */
4706
4707 for (pp = start; (void *) pp < end; pp++)
4708 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4709 {
4710 void *p = *(void **) ((char *) pp + i);
4711 mark_maybe_pointer (p);
4712 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4713 mark_maybe_object (XIL ((intptr_t) p));
4714 }
4715 }
4716
4717 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4718 the GCC system configuration. In gcc 3.2, the only systems for
4719 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4720 by others?) and ns32k-pc532-min. */
4721
4722 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4723
4724 static int setjmp_tested_p, longjmps_done;
4725
4726 #define SETJMP_WILL_LIKELY_WORK "\
4727 \n\
4728 Emacs garbage collector has been changed to use conservative stack\n\
4729 marking. Emacs has determined that the method it uses to do the\n\
4730 marking will likely work on your system, but this isn't sure.\n\
4731 \n\
4732 If you are a system-programmer, or can get the help of a local wizard\n\
4733 who is, please take a look at the function mark_stack in alloc.c, and\n\
4734 verify that the methods used are appropriate for your system.\n\
4735 \n\
4736 Please mail the result to <emacs-devel@gnu.org>.\n\
4737 "
4738
4739 #define SETJMP_WILL_NOT_WORK "\
4740 \n\
4741 Emacs garbage collector has been changed to use conservative stack\n\
4742 marking. Emacs has determined that the default method it uses to do the\n\
4743 marking will not work on your system. We will need a system-dependent\n\
4744 solution for your system.\n\
4745 \n\
4746 Please take a look at the function mark_stack in alloc.c, and\n\
4747 try to find a way to make it work on your system.\n\
4748 \n\
4749 Note that you may get false negatives, depending on the compiler.\n\
4750 In particular, you need to use -O with GCC for this test.\n\
4751 \n\
4752 Please mail the result to <emacs-devel@gnu.org>.\n\
4753 "
4754
4755
4756 /* Perform a quick check if it looks like setjmp saves registers in a
4757 jmp_buf. Print a message to stderr saying so. When this test
4758 succeeds, this is _not_ a proof that setjmp is sufficient for
4759 conservative stack marking. Only the sources or a disassembly
4760 can prove that. */
4761
4762 static void
4763 test_setjmp (void)
4764 {
4765 char buf[10];
4766 register int x;
4767 jmp_buf jbuf;
4768 int result = 0;
4769
4770 /* Arrange for X to be put in a register. */
4771 sprintf (buf, "1");
4772 x = strlen (buf);
4773 x = 2 * x - 1;
4774
4775 setjmp (jbuf);
4776 if (longjmps_done == 1)
4777 {
4778 /* Came here after the longjmp at the end of the function.
4779
4780 If x == 1, the longjmp has restored the register to its
4781 value before the setjmp, and we can hope that setjmp
4782 saves all such registers in the jmp_buf, although that
4783 isn't sure.
4784
4785 For other values of X, either something really strange is
4786 taking place, or the setjmp just didn't save the register. */
4787
4788 if (x == 1)
4789 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4790 else
4791 {
4792 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4793 exit (1);
4794 }
4795 }
4796
4797 ++longjmps_done;
4798 x = 2;
4799 if (longjmps_done == 1)
4800 longjmp (jbuf, 1);
4801 }
4802
4803 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4804
4805
4806 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4807
4808 /* Abort if anything GCPRO'd doesn't survive the GC. */
4809
4810 static void
4811 check_gcpros (void)
4812 {
4813 struct gcpro *p;
4814 ptrdiff_t i;
4815
4816 for (p = gcprolist; p; p = p->next)
4817 for (i = 0; i < p->nvars; ++i)
4818 if (!survives_gc_p (p->var[i]))
4819 /* FIXME: It's not necessarily a bug. It might just be that the
4820 GCPRO is unnecessary or should release the object sooner. */
4821 abort ();
4822 }
4823
4824 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4825
4826 static void
4827 dump_zombies (void)
4828 {
4829 int i;
4830
4831 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4832 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4833 {
4834 fprintf (stderr, " %d = ", i);
4835 debug_print (zombies[i]);
4836 }
4837 }
4838
4839 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4840
4841
4842 /* Mark live Lisp objects on the C stack.
4843
4844 There are several system-dependent problems to consider when
4845 porting this to new architectures:
4846
4847 Processor Registers
4848
4849 We have to mark Lisp objects in CPU registers that can hold local
4850 variables or are used to pass parameters.
4851
4852 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4853 something that either saves relevant registers on the stack, or
4854 calls mark_maybe_object passing it each register's contents.
4855
4856 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4857 implementation assumes that calling setjmp saves registers we need
4858 to see in a jmp_buf which itself lies on the stack. This doesn't
4859 have to be true! It must be verified for each system, possibly
4860 by taking a look at the source code of setjmp.
4861
4862 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4863 can use it as a machine independent method to store all registers
4864 to the stack. In this case the macros described in the previous
4865 two paragraphs are not used.
4866
4867 Stack Layout
4868
4869 Architectures differ in the way their processor stack is organized.
4870 For example, the stack might look like this
4871
4872 +----------------+
4873 | Lisp_Object | size = 4
4874 +----------------+
4875 | something else | size = 2
4876 +----------------+
4877 | Lisp_Object | size = 4
4878 +----------------+
4879 | ... |
4880
4881 In such a case, not every Lisp_Object will be aligned equally. To
4882 find all Lisp_Object on the stack it won't be sufficient to walk
4883 the stack in steps of 4 bytes. Instead, two passes will be
4884 necessary, one starting at the start of the stack, and a second
4885 pass starting at the start of the stack + 2. Likewise, if the
4886 minimal alignment of Lisp_Objects on the stack is 1, four passes
4887 would be necessary, each one starting with one byte more offset
4888 from the stack start. */
4889
4890 static void
4891 mark_stack (void)
4892 {
4893 void *end;
4894
4895 #ifdef HAVE___BUILTIN_UNWIND_INIT
4896 /* Force callee-saved registers and register windows onto the stack.
4897 This is the preferred method if available, obviating the need for
4898 machine dependent methods. */
4899 __builtin_unwind_init ();
4900 end = &end;
4901 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4902 #ifndef GC_SAVE_REGISTERS_ON_STACK
4903 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4904 union aligned_jmpbuf {
4905 Lisp_Object o;
4906 jmp_buf j;
4907 } j;
4908 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4909 #endif
4910 /* This trick flushes the register windows so that all the state of
4911 the process is contained in the stack. */
4912 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4913 needed on ia64 too. See mach_dep.c, where it also says inline
4914 assembler doesn't work with relevant proprietary compilers. */
4915 #ifdef __sparc__
4916 #if defined (__sparc64__) && defined (__FreeBSD__)
4917 /* FreeBSD does not have a ta 3 handler. */
4918 asm ("flushw");
4919 #else
4920 asm ("ta 3");
4921 #endif
4922 #endif
4923
4924 /* Save registers that we need to see on the stack. We need to see
4925 registers used to hold register variables and registers used to
4926 pass parameters. */
4927 #ifdef GC_SAVE_REGISTERS_ON_STACK
4928 GC_SAVE_REGISTERS_ON_STACK (end);
4929 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4930
4931 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4932 setjmp will definitely work, test it
4933 and print a message with the result
4934 of the test. */
4935 if (!setjmp_tested_p)
4936 {
4937 setjmp_tested_p = 1;
4938 test_setjmp ();
4939 }
4940 #endif /* GC_SETJMP_WORKS */
4941
4942 setjmp (j.j);
4943 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4944 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4945 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4946
4947 /* This assumes that the stack is a contiguous region in memory. If
4948 that's not the case, something has to be done here to iterate
4949 over the stack segments. */
4950 mark_memory (stack_base, end);
4951
4952 /* Allow for marking a secondary stack, like the register stack on the
4953 ia64. */
4954 #ifdef GC_MARK_SECONDARY_STACK
4955 GC_MARK_SECONDARY_STACK ();
4956 #endif
4957
4958 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4959 check_gcpros ();
4960 #endif
4961 }
4962
4963 #endif /* GC_MARK_STACK != 0 */
4964
4965
4966 /* Determine whether it is safe to access memory at address P. */
4967 static int
4968 valid_pointer_p (void *p)
4969 {
4970 #ifdef WINDOWSNT
4971 return w32_valid_pointer_p (p, 16);
4972 #else
4973 int fd[2];
4974
4975 /* Obviously, we cannot just access it (we would SEGV trying), so we
4976 trick the o/s to tell us whether p is a valid pointer.
4977 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4978 not validate p in that case. */
4979
4980 if (pipe (fd) == 0)
4981 {
4982 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4983 emacs_close (fd[1]);
4984 emacs_close (fd[0]);
4985 return valid;
4986 }
4987
4988 return -1;
4989 #endif
4990 }
4991
4992 /* Return 1 if OBJ is a valid lisp object.
4993 Return 0 if OBJ is NOT a valid lisp object.
4994 Return -1 if we cannot validate OBJ.
4995 This function can be quite slow,
4996 so it should only be used in code for manual debugging. */
4997
4998 int
4999 valid_lisp_object_p (Lisp_Object obj)
5000 {
5001 void *p;
5002 #if GC_MARK_STACK
5003 struct mem_node *m;
5004 #endif
5005
5006 if (INTEGERP (obj))
5007 return 1;
5008
5009 p = (void *) XPNTR (obj);
5010 if (PURE_POINTER_P (p))
5011 return 1;
5012
5013 #if !GC_MARK_STACK
5014 return valid_pointer_p (p);
5015 #else
5016
5017 m = mem_find (p);
5018
5019 if (m == MEM_NIL)
5020 {
5021 int valid = valid_pointer_p (p);
5022 if (valid <= 0)
5023 return valid;
5024
5025 if (SUBRP (obj))
5026 return 1;
5027
5028 return 0;
5029 }
5030
5031 switch (m->type)
5032 {
5033 case MEM_TYPE_NON_LISP:
5034 return 0;
5035
5036 case MEM_TYPE_BUFFER:
5037 return live_buffer_p (m, p);
5038
5039 case MEM_TYPE_CONS:
5040 return live_cons_p (m, p);
5041
5042 case MEM_TYPE_STRING:
5043 return live_string_p (m, p);
5044
5045 case MEM_TYPE_MISC:
5046 return live_misc_p (m, p);
5047
5048 case MEM_TYPE_SYMBOL:
5049 return live_symbol_p (m, p);
5050
5051 case MEM_TYPE_FLOAT:
5052 return live_float_p (m, p);
5053
5054 case MEM_TYPE_VECTORLIKE:
5055 case MEM_TYPE_VECTOR_BLOCK:
5056 return live_vector_p (m, p);
5057
5058 default:
5059 break;
5060 }
5061
5062 return 0;
5063 #endif
5064 }
5065
5066
5067
5068 \f
5069 /***********************************************************************
5070 Pure Storage Management
5071 ***********************************************************************/
5072
5073 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5074 pointer to it. TYPE is the Lisp type for which the memory is
5075 allocated. TYPE < 0 means it's not used for a Lisp object. */
5076
5077 static void *
5078 pure_alloc (size_t size, int type)
5079 {
5080 void *result;
5081 #if USE_LSB_TAG
5082 size_t alignment = GCALIGNMENT;
5083 #else
5084 size_t alignment = alignof (EMACS_INT);
5085
5086 /* Give Lisp_Floats an extra alignment. */
5087 if (type == Lisp_Float)
5088 alignment = alignof (struct Lisp_Float);
5089 #endif
5090
5091 again:
5092 if (type >= 0)
5093 {
5094 /* Allocate space for a Lisp object from the beginning of the free
5095 space with taking account of alignment. */
5096 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5097 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5098 }
5099 else
5100 {
5101 /* Allocate space for a non-Lisp object from the end of the free
5102 space. */
5103 pure_bytes_used_non_lisp += size;
5104 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5105 }
5106 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5107
5108 if (pure_bytes_used <= pure_size)
5109 return result;
5110
5111 /* Don't allocate a large amount here,
5112 because it might get mmap'd and then its address
5113 might not be usable. */
5114 purebeg = xmalloc (10000);
5115 pure_size = 10000;
5116 pure_bytes_used_before_overflow += pure_bytes_used - size;
5117 pure_bytes_used = 0;
5118 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5119 goto again;
5120 }
5121
5122
5123 /* Print a warning if PURESIZE is too small. */
5124
5125 void
5126 check_pure_size (void)
5127 {
5128 if (pure_bytes_used_before_overflow)
5129 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5130 " bytes needed)"),
5131 pure_bytes_used + pure_bytes_used_before_overflow);
5132 }
5133
5134
5135 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5136 the non-Lisp data pool of the pure storage, and return its start
5137 address. Return NULL if not found. */
5138
5139 static char *
5140 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5141 {
5142 int i;
5143 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5144 const unsigned char *p;
5145 char *non_lisp_beg;
5146
5147 if (pure_bytes_used_non_lisp <= nbytes)
5148 return NULL;
5149
5150 /* Set up the Boyer-Moore table. */
5151 skip = nbytes + 1;
5152 for (i = 0; i < 256; i++)
5153 bm_skip[i] = skip;
5154
5155 p = (const unsigned char *) data;
5156 while (--skip > 0)
5157 bm_skip[*p++] = skip;
5158
5159 last_char_skip = bm_skip['\0'];
5160
5161 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5162 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5163
5164 /* See the comments in the function `boyer_moore' (search.c) for the
5165 use of `infinity'. */
5166 infinity = pure_bytes_used_non_lisp + 1;
5167 bm_skip['\0'] = infinity;
5168
5169 p = (const unsigned char *) non_lisp_beg + nbytes;
5170 start = 0;
5171 do
5172 {
5173 /* Check the last character (== '\0'). */
5174 do
5175 {
5176 start += bm_skip[*(p + start)];
5177 }
5178 while (start <= start_max);
5179
5180 if (start < infinity)
5181 /* Couldn't find the last character. */
5182 return NULL;
5183
5184 /* No less than `infinity' means we could find the last
5185 character at `p[start - infinity]'. */
5186 start -= infinity;
5187
5188 /* Check the remaining characters. */
5189 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5190 /* Found. */
5191 return non_lisp_beg + start;
5192
5193 start += last_char_skip;
5194 }
5195 while (start <= start_max);
5196
5197 return NULL;
5198 }
5199
5200
5201 /* Return a string allocated in pure space. DATA is a buffer holding
5202 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5203 non-zero means make the result string multibyte.
5204
5205 Must get an error if pure storage is full, since if it cannot hold
5206 a large string it may be able to hold conses that point to that
5207 string; then the string is not protected from gc. */
5208
5209 Lisp_Object
5210 make_pure_string (const char *data,
5211 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5212 {
5213 Lisp_Object string;
5214 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5215 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5216 if (s->data == NULL)
5217 {
5218 s->data = pure_alloc (nbytes + 1, -1);
5219 memcpy (s->data, data, nbytes);
5220 s->data[nbytes] = '\0';
5221 }
5222 s->size = nchars;
5223 s->size_byte = multibyte ? nbytes : -1;
5224 s->intervals = NULL_INTERVAL;
5225 XSETSTRING (string, s);
5226 return string;
5227 }
5228
5229 /* Return a string allocated in pure space. Do not
5230 allocate the string data, just point to DATA. */
5231
5232 Lisp_Object
5233 make_pure_c_string (const char *data, ptrdiff_t nchars)
5234 {
5235 Lisp_Object string;
5236 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5237 s->size = nchars;
5238 s->size_byte = -1;
5239 s->data = (unsigned char *) data;
5240 s->intervals = NULL_INTERVAL;
5241 XSETSTRING (string, s);
5242 return string;
5243 }
5244
5245 /* Return a cons allocated from pure space. Give it pure copies
5246 of CAR as car and CDR as cdr. */
5247
5248 Lisp_Object
5249 pure_cons (Lisp_Object car, Lisp_Object cdr)
5250 {
5251 Lisp_Object new;
5252 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5253 XSETCONS (new, p);
5254 XSETCAR (new, Fpurecopy (car));
5255 XSETCDR (new, Fpurecopy (cdr));
5256 return new;
5257 }
5258
5259
5260 /* Value is a float object with value NUM allocated from pure space. */
5261
5262 static Lisp_Object
5263 make_pure_float (double num)
5264 {
5265 Lisp_Object new;
5266 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5267 XSETFLOAT (new, p);
5268 XFLOAT_INIT (new, num);
5269 return new;
5270 }
5271
5272
5273 /* Return a vector with room for LEN Lisp_Objects allocated from
5274 pure space. */
5275
5276 static Lisp_Object
5277 make_pure_vector (ptrdiff_t len)
5278 {
5279 Lisp_Object new;
5280 size_t size = header_size + len * word_size;
5281 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5282 XSETVECTOR (new, p);
5283 XVECTOR (new)->header.size = len;
5284 return new;
5285 }
5286
5287
5288 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5289 doc: /* Make a copy of object OBJ in pure storage.
5290 Recursively copies contents of vectors and cons cells.
5291 Does not copy symbols. Copies strings without text properties. */)
5292 (register Lisp_Object obj)
5293 {
5294 if (NILP (Vpurify_flag))
5295 return obj;
5296
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return obj;
5299
5300 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5301 {
5302 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5303 if (!NILP (tmp))
5304 return tmp;
5305 }
5306
5307 if (CONSP (obj))
5308 obj = pure_cons (XCAR (obj), XCDR (obj));
5309 else if (FLOATP (obj))
5310 obj = make_pure_float (XFLOAT_DATA (obj));
5311 else if (STRINGP (obj))
5312 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5313 SBYTES (obj),
5314 STRING_MULTIBYTE (obj));
5315 else if (COMPILEDP (obj) || VECTORP (obj))
5316 {
5317 register struct Lisp_Vector *vec;
5318 register ptrdiff_t i;
5319 ptrdiff_t size;
5320
5321 size = ASIZE (obj);
5322 if (size & PSEUDOVECTOR_FLAG)
5323 size &= PSEUDOVECTOR_SIZE_MASK;
5324 vec = XVECTOR (make_pure_vector (size));
5325 for (i = 0; i < size; i++)
5326 vec->contents[i] = Fpurecopy (AREF (obj, i));
5327 if (COMPILEDP (obj))
5328 {
5329 XSETPVECTYPE (vec, PVEC_COMPILED);
5330 XSETCOMPILED (obj, vec);
5331 }
5332 else
5333 XSETVECTOR (obj, vec);
5334 }
5335 else if (MARKERP (obj))
5336 error ("Attempt to copy a marker to pure storage");
5337 else
5338 /* Not purified, don't hash-cons. */
5339 return obj;
5340
5341 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5342 Fputhash (obj, obj, Vpurify_flag);
5343
5344 return obj;
5345 }
5346
5347
5348 \f
5349 /***********************************************************************
5350 Protection from GC
5351 ***********************************************************************/
5352
5353 /* Put an entry in staticvec, pointing at the variable with address
5354 VARADDRESS. */
5355
5356 void
5357 staticpro (Lisp_Object *varaddress)
5358 {
5359 staticvec[staticidx++] = varaddress;
5360 if (staticidx >= NSTATICS)
5361 abort ();
5362 }
5363
5364 \f
5365 /***********************************************************************
5366 Protection from GC
5367 ***********************************************************************/
5368
5369 /* Temporarily prevent garbage collection. */
5370
5371 ptrdiff_t
5372 inhibit_garbage_collection (void)
5373 {
5374 ptrdiff_t count = SPECPDL_INDEX ();
5375
5376 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5377 return count;
5378 }
5379
5380 /* Used to avoid possible overflows when
5381 converting from C to Lisp integers. */
5382
5383 static inline Lisp_Object
5384 bounded_number (EMACS_INT number)
5385 {
5386 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5387 }
5388
5389 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5390 doc: /* Reclaim storage for Lisp objects no longer needed.
5391 Garbage collection happens automatically if you cons more than
5392 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5393 `garbage-collect' normally returns a list with info on amount of space in use,
5394 where each entry has the form (NAME SIZE USED FREE), where:
5395 - NAME is a symbol describing the kind of objects this entry represents,
5396 - SIZE is the number of bytes used by each one,
5397 - USED is the number of those objects that were found live in the heap,
5398 - FREE is the number of those objects that are not live but that Emacs
5399 keeps around for future allocations (maybe because it does not know how
5400 to return them to the OS).
5401 However, if there was overflow in pure space, `garbage-collect'
5402 returns nil, because real GC can't be done.
5403 See Info node `(elisp)Garbage Collection'. */)
5404 (void)
5405 {
5406 register struct specbinding *bind;
5407 register struct buffer *nextb;
5408 char stack_top_variable;
5409 ptrdiff_t i;
5410 int message_p;
5411 Lisp_Object total[11];
5412 ptrdiff_t count = SPECPDL_INDEX ();
5413 EMACS_TIME start;
5414
5415 if (abort_on_gc)
5416 abort ();
5417
5418 /* Can't GC if pure storage overflowed because we can't determine
5419 if something is a pure object or not. */
5420 if (pure_bytes_used_before_overflow)
5421 return Qnil;
5422
5423 check_cons_list ();
5424
5425 /* Don't keep undo information around forever.
5426 Do this early on, so it is no problem if the user quits. */
5427 FOR_EACH_BUFFER (nextb)
5428 compact_buffer (nextb);
5429
5430 start = current_emacs_time ();
5431
5432 /* In case user calls debug_print during GC,
5433 don't let that cause a recursive GC. */
5434 consing_since_gc = 0;
5435
5436 /* Save what's currently displayed in the echo area. */
5437 message_p = push_message ();
5438 record_unwind_protect (pop_message_unwind, Qnil);
5439
5440 /* Save a copy of the contents of the stack, for debugging. */
5441 #if MAX_SAVE_STACK > 0
5442 if (NILP (Vpurify_flag))
5443 {
5444 char *stack;
5445 ptrdiff_t stack_size;
5446 if (&stack_top_variable < stack_bottom)
5447 {
5448 stack = &stack_top_variable;
5449 stack_size = stack_bottom - &stack_top_variable;
5450 }
5451 else
5452 {
5453 stack = stack_bottom;
5454 stack_size = &stack_top_variable - stack_bottom;
5455 }
5456 if (stack_size <= MAX_SAVE_STACK)
5457 {
5458 if (stack_copy_size < stack_size)
5459 {
5460 stack_copy = xrealloc (stack_copy, stack_size);
5461 stack_copy_size = stack_size;
5462 }
5463 memcpy (stack_copy, stack, stack_size);
5464 }
5465 }
5466 #endif /* MAX_SAVE_STACK > 0 */
5467
5468 if (garbage_collection_messages)
5469 message1_nolog ("Garbage collecting...");
5470
5471 BLOCK_INPUT;
5472
5473 shrink_regexp_cache ();
5474
5475 gc_in_progress = 1;
5476
5477 /* Mark all the special slots that serve as the roots of accessibility. */
5478
5479 for (i = 0; i < staticidx; i++)
5480 mark_object (*staticvec[i]);
5481
5482 for (bind = specpdl; bind != specpdl_ptr; bind++)
5483 {
5484 mark_object (bind->symbol);
5485 mark_object (bind->old_value);
5486 }
5487 mark_terminals ();
5488 mark_kboards ();
5489 mark_ttys ();
5490
5491 #ifdef USE_GTK
5492 {
5493 extern void xg_mark_data (void);
5494 xg_mark_data ();
5495 }
5496 #endif
5497
5498 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5499 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5500 mark_stack ();
5501 #else
5502 {
5503 register struct gcpro *tail;
5504 for (tail = gcprolist; tail; tail = tail->next)
5505 for (i = 0; i < tail->nvars; i++)
5506 mark_object (tail->var[i]);
5507 }
5508 mark_byte_stack ();
5509 {
5510 struct catchtag *catch;
5511 struct handler *handler;
5512
5513 for (catch = catchlist; catch; catch = catch->next)
5514 {
5515 mark_object (catch->tag);
5516 mark_object (catch->val);
5517 }
5518 for (handler = handlerlist; handler; handler = handler->next)
5519 {
5520 mark_object (handler->handler);
5521 mark_object (handler->var);
5522 }
5523 }
5524 mark_backtrace ();
5525 #endif
5526
5527 #ifdef HAVE_WINDOW_SYSTEM
5528 mark_fringe_data ();
5529 #endif
5530
5531 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5532 mark_stack ();
5533 #endif
5534
5535 /* Everything is now marked, except for the things that require special
5536 finalization, i.e. the undo_list.
5537 Look thru every buffer's undo list
5538 for elements that update markers that were not marked,
5539 and delete them. */
5540 FOR_EACH_BUFFER (nextb)
5541 {
5542 /* If a buffer's undo list is Qt, that means that undo is
5543 turned off in that buffer. Calling truncate_undo_list on
5544 Qt tends to return NULL, which effectively turns undo back on.
5545 So don't call truncate_undo_list if undo_list is Qt. */
5546 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5547 {
5548 Lisp_Object tail, prev;
5549 tail = nextb->INTERNAL_FIELD (undo_list);
5550 prev = Qnil;
5551 while (CONSP (tail))
5552 {
5553 if (CONSP (XCAR (tail))
5554 && MARKERP (XCAR (XCAR (tail)))
5555 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5556 {
5557 if (NILP (prev))
5558 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5559 else
5560 {
5561 tail = XCDR (tail);
5562 XSETCDR (prev, tail);
5563 }
5564 }
5565 else
5566 {
5567 prev = tail;
5568 tail = XCDR (tail);
5569 }
5570 }
5571 }
5572 /* Now that we have stripped the elements that need not be in the
5573 undo_list any more, we can finally mark the list. */
5574 mark_object (nextb->INTERNAL_FIELD (undo_list));
5575 }
5576
5577 gc_sweep ();
5578
5579 /* Clear the mark bits that we set in certain root slots. */
5580
5581 unmark_byte_stack ();
5582 VECTOR_UNMARK (&buffer_defaults);
5583 VECTOR_UNMARK (&buffer_local_symbols);
5584
5585 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5586 dump_zombies ();
5587 #endif
5588
5589 UNBLOCK_INPUT;
5590
5591 check_cons_list ();
5592
5593 gc_in_progress = 0;
5594
5595 consing_since_gc = 0;
5596 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5597 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5598
5599 gc_relative_threshold = 0;
5600 if (FLOATP (Vgc_cons_percentage))
5601 { /* Set gc_cons_combined_threshold. */
5602 double tot = 0;
5603
5604 tot += total_conses * sizeof (struct Lisp_Cons);
5605 tot += total_symbols * sizeof (struct Lisp_Symbol);
5606 tot += total_markers * sizeof (union Lisp_Misc);
5607 tot += total_string_bytes;
5608 tot += total_vector_slots * word_size;
5609 tot += total_floats * sizeof (struct Lisp_Float);
5610 tot += total_intervals * sizeof (struct interval);
5611 tot += total_strings * sizeof (struct Lisp_String);
5612
5613 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5614 if (0 < tot)
5615 {
5616 if (tot < TYPE_MAXIMUM (EMACS_INT))
5617 gc_relative_threshold = tot;
5618 else
5619 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5620 }
5621 }
5622
5623 if (garbage_collection_messages)
5624 {
5625 if (message_p || minibuf_level > 0)
5626 restore_message ();
5627 else
5628 message1_nolog ("Garbage collecting...done");
5629 }
5630
5631 unbind_to (count, Qnil);
5632
5633 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5634 bounded_number (total_conses),
5635 bounded_number (total_free_conses));
5636
5637 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5638 bounded_number (total_symbols),
5639 bounded_number (total_free_symbols));
5640
5641 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5642 bounded_number (total_markers),
5643 bounded_number (total_free_markers));
5644
5645 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5646 bounded_number (total_strings),
5647 bounded_number (total_free_strings));
5648
5649 total[4] = list3 (Qstring_bytes, make_number (1),
5650 bounded_number (total_string_bytes));
5651
5652 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5653 bounded_number (total_vectors));
5654
5655 total[6] = list4 (Qvector_slots, make_number (word_size),
5656 bounded_number (total_vector_slots),
5657 bounded_number (total_free_vector_slots));
5658
5659 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5660 bounded_number (total_floats),
5661 bounded_number (total_free_floats));
5662
5663 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5664 bounded_number (total_intervals),
5665 bounded_number (total_free_intervals));
5666
5667 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5668 bounded_number (total_buffers));
5669
5670 total[10] = list4 (Qheap, make_number (1024),
5671 #ifdef DOUG_LEA_MALLOC
5672 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5673 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5674 #else
5675 Qnil, Qnil
5676 #endif
5677 );
5678
5679 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5680 {
5681 /* Compute average percentage of zombies. */
5682 double nlive =
5683 (total_conses + total_symbols + total_markers + total_strings
5684 + total_vectors + total_floats + total_intervals + total_buffers);
5685
5686 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5687 max_live = max (nlive, max_live);
5688 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5689 max_zombies = max (nzombies, max_zombies);
5690 ++ngcs;
5691 }
5692 #endif
5693
5694 if (!NILP (Vpost_gc_hook))
5695 {
5696 ptrdiff_t gc_count = inhibit_garbage_collection ();
5697 safe_run_hooks (Qpost_gc_hook);
5698 unbind_to (gc_count, Qnil);
5699 }
5700
5701 /* Accumulate statistics. */
5702 if (FLOATP (Vgc_elapsed))
5703 {
5704 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5705 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5706 + EMACS_TIME_TO_DOUBLE (since_start));
5707 }
5708
5709 gcs_done++;
5710
5711 return Flist (sizeof total / sizeof *total, total);
5712 }
5713
5714
5715 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5716 only interesting objects referenced from glyphs are strings. */
5717
5718 static void
5719 mark_glyph_matrix (struct glyph_matrix *matrix)
5720 {
5721 struct glyph_row *row = matrix->rows;
5722 struct glyph_row *end = row + matrix->nrows;
5723
5724 for (; row < end; ++row)
5725 if (row->enabled_p)
5726 {
5727 int area;
5728 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5729 {
5730 struct glyph *glyph = row->glyphs[area];
5731 struct glyph *end_glyph = glyph + row->used[area];
5732
5733 for (; glyph < end_glyph; ++glyph)
5734 if (STRINGP (glyph->object)
5735 && !STRING_MARKED_P (XSTRING (glyph->object)))
5736 mark_object (glyph->object);
5737 }
5738 }
5739 }
5740
5741
5742 /* Mark Lisp faces in the face cache C. */
5743
5744 static void
5745 mark_face_cache (struct face_cache *c)
5746 {
5747 if (c)
5748 {
5749 int i, j;
5750 for (i = 0; i < c->used; ++i)
5751 {
5752 struct face *face = FACE_FROM_ID (c->f, i);
5753
5754 if (face)
5755 {
5756 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5757 mark_object (face->lface[j]);
5758 }
5759 }
5760 }
5761 }
5762
5763
5764 \f
5765 /* Mark reference to a Lisp_Object.
5766 If the object referred to has not been seen yet, recursively mark
5767 all the references contained in it. */
5768
5769 #define LAST_MARKED_SIZE 500
5770 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5771 static int last_marked_index;
5772
5773 /* For debugging--call abort when we cdr down this many
5774 links of a list, in mark_object. In debugging,
5775 the call to abort will hit a breakpoint.
5776 Normally this is zero and the check never goes off. */
5777 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5778
5779 static void
5780 mark_vectorlike (struct Lisp_Vector *ptr)
5781 {
5782 ptrdiff_t size = ptr->header.size;
5783 ptrdiff_t i;
5784
5785 eassert (!VECTOR_MARKED_P (ptr));
5786 VECTOR_MARK (ptr); /* Else mark it. */
5787 if (size & PSEUDOVECTOR_FLAG)
5788 size &= PSEUDOVECTOR_SIZE_MASK;
5789
5790 /* Note that this size is not the memory-footprint size, but only
5791 the number of Lisp_Object fields that we should trace.
5792 The distinction is used e.g. by Lisp_Process which places extra
5793 non-Lisp_Object fields at the end of the structure... */
5794 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5795 mark_object (ptr->contents[i]);
5796 }
5797
5798 /* Like mark_vectorlike but optimized for char-tables (and
5799 sub-char-tables) assuming that the contents are mostly integers or
5800 symbols. */
5801
5802 static void
5803 mark_char_table (struct Lisp_Vector *ptr)
5804 {
5805 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5806 int i;
5807
5808 eassert (!VECTOR_MARKED_P (ptr));
5809 VECTOR_MARK (ptr);
5810 for (i = 0; i < size; i++)
5811 {
5812 Lisp_Object val = ptr->contents[i];
5813
5814 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5815 continue;
5816 if (SUB_CHAR_TABLE_P (val))
5817 {
5818 if (! VECTOR_MARKED_P (XVECTOR (val)))
5819 mark_char_table (XVECTOR (val));
5820 }
5821 else
5822 mark_object (val);
5823 }
5824 }
5825
5826 /* Mark the chain of overlays starting at PTR. */
5827
5828 static void
5829 mark_overlay (struct Lisp_Overlay *ptr)
5830 {
5831 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5832 {
5833 ptr->gcmarkbit = 1;
5834 mark_object (MVAR (ptr, start));
5835 mark_object (MVAR (ptr, end));
5836 mark_object (MVAR (ptr, plist));
5837 }
5838 }
5839
5840 /* Mark Lisp_Objects and special pointers in BUFFER. */
5841
5842 static void
5843 mark_buffer (struct buffer *buffer)
5844 {
5845 /* This is handled much like other pseudovectors... */
5846 mark_vectorlike ((struct Lisp_Vector *) buffer);
5847
5848 /* ...but there are some buffer-specific things. */
5849
5850 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5851
5852 /* For now, we just don't mark the undo_list. It's done later in
5853 a special way just before the sweep phase, and after stripping
5854 some of its elements that are not needed any more. */
5855
5856 mark_overlay (buffer->overlays_before);
5857 mark_overlay (buffer->overlays_after);
5858
5859 /* If this is an indirect buffer, mark its base buffer. */
5860 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5861 mark_buffer (buffer->base_buffer);
5862 }
5863
5864 /* Determine type of generic Lisp_Object and mark it accordingly. */
5865
5866 void
5867 mark_object (Lisp_Object arg)
5868 {
5869 register Lisp_Object obj = arg;
5870 #ifdef GC_CHECK_MARKED_OBJECTS
5871 void *po;
5872 struct mem_node *m;
5873 #endif
5874 ptrdiff_t cdr_count = 0;
5875
5876 loop:
5877
5878 if (PURE_POINTER_P (XPNTR (obj)))
5879 return;
5880
5881 last_marked[last_marked_index++] = obj;
5882 if (last_marked_index == LAST_MARKED_SIZE)
5883 last_marked_index = 0;
5884
5885 /* Perform some sanity checks on the objects marked here. Abort if
5886 we encounter an object we know is bogus. This increases GC time
5887 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5888 #ifdef GC_CHECK_MARKED_OBJECTS
5889
5890 po = (void *) XPNTR (obj);
5891
5892 /* Check that the object pointed to by PO is known to be a Lisp
5893 structure allocated from the heap. */
5894 #define CHECK_ALLOCATED() \
5895 do { \
5896 m = mem_find (po); \
5897 if (m == MEM_NIL) \
5898 abort (); \
5899 } while (0)
5900
5901 /* Check that the object pointed to by PO is live, using predicate
5902 function LIVEP. */
5903 #define CHECK_LIVE(LIVEP) \
5904 do { \
5905 if (!LIVEP (m, po)) \
5906 abort (); \
5907 } while (0)
5908
5909 /* Check both of the above conditions. */
5910 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5911 do { \
5912 CHECK_ALLOCATED (); \
5913 CHECK_LIVE (LIVEP); \
5914 } while (0) \
5915
5916 #else /* not GC_CHECK_MARKED_OBJECTS */
5917
5918 #define CHECK_LIVE(LIVEP) (void) 0
5919 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5920
5921 #endif /* not GC_CHECK_MARKED_OBJECTS */
5922
5923 switch (XTYPE (obj))
5924 {
5925 case Lisp_String:
5926 {
5927 register struct Lisp_String *ptr = XSTRING (obj);
5928 if (STRING_MARKED_P (ptr))
5929 break;
5930 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5931 MARK_STRING (ptr);
5932 MARK_INTERVAL_TREE (ptr->intervals);
5933 #ifdef GC_CHECK_STRING_BYTES
5934 /* Check that the string size recorded in the string is the
5935 same as the one recorded in the sdata structure. */
5936 string_bytes (ptr);
5937 #endif /* GC_CHECK_STRING_BYTES */
5938 }
5939 break;
5940
5941 case Lisp_Vectorlike:
5942 {
5943 register struct Lisp_Vector *ptr = XVECTOR (obj);
5944 register ptrdiff_t pvectype;
5945
5946 if (VECTOR_MARKED_P (ptr))
5947 break;
5948
5949 #ifdef GC_CHECK_MARKED_OBJECTS
5950 m = mem_find (po);
5951 if (m == MEM_NIL && !SUBRP (obj)
5952 && po != &buffer_defaults
5953 && po != &buffer_local_symbols)
5954 abort ();
5955 #endif /* GC_CHECK_MARKED_OBJECTS */
5956
5957 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5958 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5959 >> PSEUDOVECTOR_SIZE_BITS);
5960 else
5961 pvectype = 0;
5962
5963 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5964 CHECK_LIVE (live_vector_p);
5965
5966 switch (pvectype)
5967 {
5968 case PVEC_BUFFER:
5969 #ifdef GC_CHECK_MARKED_OBJECTS
5970 if (po != &buffer_defaults && po != &buffer_local_symbols)
5971 {
5972 struct buffer *b;
5973 FOR_EACH_BUFFER (b)
5974 if (b == po)
5975 break;
5976 if (b == NULL)
5977 abort ();
5978 }
5979 #endif /* GC_CHECK_MARKED_OBJECTS */
5980 mark_buffer ((struct buffer *) ptr);
5981 break;
5982
5983 case PVEC_COMPILED:
5984 { /* We could treat this just like a vector, but it is better
5985 to save the COMPILED_CONSTANTS element for last and avoid
5986 recursion there. */
5987 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5988 int i;
5989
5990 VECTOR_MARK (ptr);
5991 for (i = 0; i < size; i++)
5992 if (i != COMPILED_CONSTANTS)
5993 mark_object (ptr->contents[i]);
5994 if (size > COMPILED_CONSTANTS)
5995 {
5996 obj = ptr->contents[COMPILED_CONSTANTS];
5997 goto loop;
5998 }
5999 }
6000 break;
6001
6002 case PVEC_FRAME:
6003 {
6004 mark_vectorlike (ptr);
6005 mark_face_cache (((struct frame *) ptr)->face_cache);
6006 }
6007 break;
6008
6009 case PVEC_WINDOW:
6010 {
6011 struct window *w = (struct window *) ptr;
6012
6013 mark_vectorlike (ptr);
6014 /* Mark glyphs for leaf windows. Marking window
6015 matrices is sufficient because frame matrices
6016 use the same glyph memory. */
6017 if (NILP (WGET (w, hchild)) && NILP (WGET (w, vchild))
6018 && w->current_matrix)
6019 {
6020 mark_glyph_matrix (w->current_matrix);
6021 mark_glyph_matrix (w->desired_matrix);
6022 }
6023 }
6024 break;
6025
6026 case PVEC_HASH_TABLE:
6027 {
6028 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6029
6030 mark_vectorlike (ptr);
6031 /* If hash table is not weak, mark all keys and values.
6032 For weak tables, mark only the vector. */
6033 if (NILP (h->weak))
6034 mark_object (h->key_and_value);
6035 else
6036 VECTOR_MARK (XVECTOR (h->key_and_value));
6037 }
6038 break;
6039
6040 case PVEC_CHAR_TABLE:
6041 mark_char_table (ptr);
6042 break;
6043
6044 case PVEC_BOOL_VECTOR:
6045 /* No Lisp_Objects to mark in a bool vector. */
6046 VECTOR_MARK (ptr);
6047 break;
6048
6049 case PVEC_SUBR:
6050 break;
6051
6052 case PVEC_FREE:
6053 abort ();
6054
6055 default:
6056 mark_vectorlike (ptr);
6057 }
6058 }
6059 break;
6060
6061 case Lisp_Symbol:
6062 {
6063 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6064 struct Lisp_Symbol *ptrx;
6065
6066 if (ptr->gcmarkbit)
6067 break;
6068 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6069 ptr->gcmarkbit = 1;
6070 mark_object (SVAR (ptr, function));
6071 mark_object (SVAR (ptr, plist));
6072 switch (ptr->redirect)
6073 {
6074 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6075 case SYMBOL_VARALIAS:
6076 {
6077 Lisp_Object tem;
6078 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6079 mark_object (tem);
6080 break;
6081 }
6082 case SYMBOL_LOCALIZED:
6083 {
6084 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6085 /* If the value is forwarded to a buffer or keyboard field,
6086 these are marked when we see the corresponding object.
6087 And if it's forwarded to a C variable, either it's not
6088 a Lisp_Object var, or it's staticpro'd already. */
6089 mark_object (blv->where);
6090 mark_object (blv->valcell);
6091 mark_object (blv->defcell);
6092 break;
6093 }
6094 case SYMBOL_FORWARDED:
6095 /* If the value is forwarded to a buffer or keyboard field,
6096 these are marked when we see the corresponding object.
6097 And if it's forwarded to a C variable, either it's not
6098 a Lisp_Object var, or it's staticpro'd already. */
6099 break;
6100 default: abort ();
6101 }
6102 if (!PURE_POINTER_P (XSTRING (SVAR (ptr, xname))))
6103 MARK_STRING (XSTRING (SVAR (ptr, xname)));
6104 MARK_INTERVAL_TREE (STRING_INTERVALS (SVAR (ptr, xname)));
6105
6106 ptr = ptr->next;
6107 if (ptr)
6108 {
6109 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6110 XSETSYMBOL (obj, ptrx);
6111 goto loop;
6112 }
6113 }
6114 break;
6115
6116 case Lisp_Misc:
6117 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6118
6119 if (XMISCANY (obj)->gcmarkbit)
6120 break;
6121
6122 switch (XMISCTYPE (obj))
6123 {
6124 case Lisp_Misc_Marker:
6125 /* DO NOT mark thru the marker's chain.
6126 The buffer's markers chain does not preserve markers from gc;
6127 instead, markers are removed from the chain when freed by gc. */
6128 XMISCANY (obj)->gcmarkbit = 1;
6129 break;
6130
6131 case Lisp_Misc_Save_Value:
6132 XMISCANY (obj)->gcmarkbit = 1;
6133 #if GC_MARK_STACK
6134 {
6135 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6136 /* If DOGC is set, POINTER is the address of a memory
6137 area containing INTEGER potential Lisp_Objects. */
6138 if (ptr->dogc)
6139 {
6140 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6141 ptrdiff_t nelt;
6142 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6143 mark_maybe_object (*p);
6144 }
6145 }
6146 #endif
6147 break;
6148
6149 case Lisp_Misc_Overlay:
6150 mark_overlay (XOVERLAY (obj));
6151 break;
6152
6153 default:
6154 abort ();
6155 }
6156 break;
6157
6158 case Lisp_Cons:
6159 {
6160 register struct Lisp_Cons *ptr = XCONS (obj);
6161 if (CONS_MARKED_P (ptr))
6162 break;
6163 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6164 CONS_MARK (ptr);
6165 /* If the cdr is nil, avoid recursion for the car. */
6166 if (EQ (CVAR (ptr, u.cdr), Qnil))
6167 {
6168 obj = CVAR (ptr, car);
6169 cdr_count = 0;
6170 goto loop;
6171 }
6172 mark_object (CVAR (ptr, car));
6173 obj = CVAR (ptr, u.cdr);
6174 cdr_count++;
6175 if (cdr_count == mark_object_loop_halt)
6176 abort ();
6177 goto loop;
6178 }
6179
6180 case Lisp_Float:
6181 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6182 FLOAT_MARK (XFLOAT (obj));
6183 break;
6184
6185 case_Lisp_Int:
6186 break;
6187
6188 default:
6189 abort ();
6190 }
6191
6192 #undef CHECK_LIVE
6193 #undef CHECK_ALLOCATED
6194 #undef CHECK_ALLOCATED_AND_LIVE
6195 }
6196 /* Mark the Lisp pointers in the terminal objects.
6197 Called by Fgarbage_collect. */
6198
6199 static void
6200 mark_terminals (void)
6201 {
6202 struct terminal *t;
6203 for (t = terminal_list; t; t = t->next_terminal)
6204 {
6205 eassert (t->name != NULL);
6206 #ifdef HAVE_WINDOW_SYSTEM
6207 /* If a terminal object is reachable from a stacpro'ed object,
6208 it might have been marked already. Make sure the image cache
6209 gets marked. */
6210 mark_image_cache (t->image_cache);
6211 #endif /* HAVE_WINDOW_SYSTEM */
6212 if (!VECTOR_MARKED_P (t))
6213 mark_vectorlike ((struct Lisp_Vector *)t);
6214 }
6215 }
6216
6217
6218
6219 /* Value is non-zero if OBJ will survive the current GC because it's
6220 either marked or does not need to be marked to survive. */
6221
6222 int
6223 survives_gc_p (Lisp_Object obj)
6224 {
6225 int survives_p;
6226
6227 switch (XTYPE (obj))
6228 {
6229 case_Lisp_Int:
6230 survives_p = 1;
6231 break;
6232
6233 case Lisp_Symbol:
6234 survives_p = XSYMBOL (obj)->gcmarkbit;
6235 break;
6236
6237 case Lisp_Misc:
6238 survives_p = XMISCANY (obj)->gcmarkbit;
6239 break;
6240
6241 case Lisp_String:
6242 survives_p = STRING_MARKED_P (XSTRING (obj));
6243 break;
6244
6245 case Lisp_Vectorlike:
6246 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6247 break;
6248
6249 case Lisp_Cons:
6250 survives_p = CONS_MARKED_P (XCONS (obj));
6251 break;
6252
6253 case Lisp_Float:
6254 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6255 break;
6256
6257 default:
6258 abort ();
6259 }
6260
6261 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6262 }
6263
6264
6265 \f
6266 /* Sweep: find all structures not marked, and free them. */
6267
6268 static void
6269 gc_sweep (void)
6270 {
6271 /* Remove or mark entries in weak hash tables.
6272 This must be done before any object is unmarked. */
6273 sweep_weak_hash_tables ();
6274
6275 sweep_strings ();
6276 check_string_bytes (!noninteractive);
6277
6278 /* Put all unmarked conses on free list */
6279 {
6280 register struct cons_block *cblk;
6281 struct cons_block **cprev = &cons_block;
6282 register int lim = cons_block_index;
6283 EMACS_INT num_free = 0, num_used = 0;
6284
6285 cons_free_list = 0;
6286
6287 for (cblk = cons_block; cblk; cblk = *cprev)
6288 {
6289 register int i = 0;
6290 int this_free = 0;
6291 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6292
6293 /* Scan the mark bits an int at a time. */
6294 for (i = 0; i < ilim; i++)
6295 {
6296 if (cblk->gcmarkbits[i] == -1)
6297 {
6298 /* Fast path - all cons cells for this int are marked. */
6299 cblk->gcmarkbits[i] = 0;
6300 num_used += BITS_PER_INT;
6301 }
6302 else
6303 {
6304 /* Some cons cells for this int are not marked.
6305 Find which ones, and free them. */
6306 int start, pos, stop;
6307
6308 start = i * BITS_PER_INT;
6309 stop = lim - start;
6310 if (stop > BITS_PER_INT)
6311 stop = BITS_PER_INT;
6312 stop += start;
6313
6314 for (pos = start; pos < stop; pos++)
6315 {
6316 if (!CONS_MARKED_P (&cblk->conses[pos]))
6317 {
6318 this_free++;
6319 cblk->conses[pos].u.chain = cons_free_list;
6320 cons_free_list = &cblk->conses[pos];
6321 #if GC_MARK_STACK
6322 CVAR (cons_free_list, car) = Vdead;
6323 #endif
6324 }
6325 else
6326 {
6327 num_used++;
6328 CONS_UNMARK (&cblk->conses[pos]);
6329 }
6330 }
6331 }
6332 }
6333
6334 lim = CONS_BLOCK_SIZE;
6335 /* If this block contains only free conses and we have already
6336 seen more than two blocks worth of free conses then deallocate
6337 this block. */
6338 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6339 {
6340 *cprev = cblk->next;
6341 /* Unhook from the free list. */
6342 cons_free_list = cblk->conses[0].u.chain;
6343 lisp_align_free (cblk);
6344 }
6345 else
6346 {
6347 num_free += this_free;
6348 cprev = &cblk->next;
6349 }
6350 }
6351 total_conses = num_used;
6352 total_free_conses = num_free;
6353 }
6354
6355 /* Put all unmarked floats on free list */
6356 {
6357 register struct float_block *fblk;
6358 struct float_block **fprev = &float_block;
6359 register int lim = float_block_index;
6360 EMACS_INT num_free = 0, num_used = 0;
6361
6362 float_free_list = 0;
6363
6364 for (fblk = float_block; fblk; fblk = *fprev)
6365 {
6366 register int i;
6367 int this_free = 0;
6368 for (i = 0; i < lim; i++)
6369 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6370 {
6371 this_free++;
6372 fblk->floats[i].u.chain = float_free_list;
6373 float_free_list = &fblk->floats[i];
6374 }
6375 else
6376 {
6377 num_used++;
6378 FLOAT_UNMARK (&fblk->floats[i]);
6379 }
6380 lim = FLOAT_BLOCK_SIZE;
6381 /* If this block contains only free floats and we have already
6382 seen more than two blocks worth of free floats then deallocate
6383 this block. */
6384 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6385 {
6386 *fprev = fblk->next;
6387 /* Unhook from the free list. */
6388 float_free_list = fblk->floats[0].u.chain;
6389 lisp_align_free (fblk);
6390 }
6391 else
6392 {
6393 num_free += this_free;
6394 fprev = &fblk->next;
6395 }
6396 }
6397 total_floats = num_used;
6398 total_free_floats = num_free;
6399 }
6400
6401 /* Put all unmarked intervals on free list */
6402 {
6403 register struct interval_block *iblk;
6404 struct interval_block **iprev = &interval_block;
6405 register int lim = interval_block_index;
6406 EMACS_INT num_free = 0, num_used = 0;
6407
6408 interval_free_list = 0;
6409
6410 for (iblk = interval_block; iblk; iblk = *iprev)
6411 {
6412 register int i;
6413 int this_free = 0;
6414
6415 for (i = 0; i < lim; i++)
6416 {
6417 if (!iblk->intervals[i].gcmarkbit)
6418 {
6419 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6420 interval_free_list = &iblk->intervals[i];
6421 this_free++;
6422 }
6423 else
6424 {
6425 num_used++;
6426 iblk->intervals[i].gcmarkbit = 0;
6427 }
6428 }
6429 lim = INTERVAL_BLOCK_SIZE;
6430 /* If this block contains only free intervals and we have already
6431 seen more than two blocks worth of free intervals then
6432 deallocate this block. */
6433 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6434 {
6435 *iprev = iblk->next;
6436 /* Unhook from the free list. */
6437 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6438 lisp_free (iblk);
6439 }
6440 else
6441 {
6442 num_free += this_free;
6443 iprev = &iblk->next;
6444 }
6445 }
6446 total_intervals = num_used;
6447 total_free_intervals = num_free;
6448 }
6449
6450 /* Put all unmarked symbols on free list */
6451 {
6452 register struct symbol_block *sblk;
6453 struct symbol_block **sprev = &symbol_block;
6454 register int lim = symbol_block_index;
6455 EMACS_INT num_free = 0, num_used = 0;
6456
6457 symbol_free_list = NULL;
6458
6459 for (sblk = symbol_block; sblk; sblk = *sprev)
6460 {
6461 int this_free = 0;
6462 union aligned_Lisp_Symbol *sym = sblk->symbols;
6463 union aligned_Lisp_Symbol *end = sym + lim;
6464
6465 for (; sym < end; ++sym)
6466 {
6467 /* Check if the symbol was created during loadup. In such a case
6468 it might be pointed to by pure bytecode which we don't trace,
6469 so we conservatively assume that it is live. */
6470 int pure_p = PURE_POINTER_P (XSTRING (sym->s.INTERNAL_FIELD (xname)));
6471
6472 if (!sym->s.gcmarkbit && !pure_p)
6473 {
6474 if (sym->s.redirect == SYMBOL_LOCALIZED)
6475 xfree (SYMBOL_BLV (&sym->s));
6476 sym->s.next = symbol_free_list;
6477 symbol_free_list = &sym->s;
6478 #if GC_MARK_STACK
6479 SVAR (symbol_free_list, function) = Vdead;
6480 #endif
6481 ++this_free;
6482 }
6483 else
6484 {
6485 ++num_used;
6486 if (!pure_p)
6487 UNMARK_STRING (XSTRING (sym->s.INTERNAL_FIELD (xname)));
6488 sym->s.gcmarkbit = 0;
6489 }
6490 }
6491
6492 lim = SYMBOL_BLOCK_SIZE;
6493 /* If this block contains only free symbols and we have already
6494 seen more than two blocks worth of free symbols then deallocate
6495 this block. */
6496 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6497 {
6498 *sprev = sblk->next;
6499 /* Unhook from the free list. */
6500 symbol_free_list = sblk->symbols[0].s.next;
6501 lisp_free (sblk);
6502 }
6503 else
6504 {
6505 num_free += this_free;
6506 sprev = &sblk->next;
6507 }
6508 }
6509 total_symbols = num_used;
6510 total_free_symbols = num_free;
6511 }
6512
6513 /* Put all unmarked misc's on free list.
6514 For a marker, first unchain it from the buffer it points into. */
6515 {
6516 register struct marker_block *mblk;
6517 struct marker_block **mprev = &marker_block;
6518 register int lim = marker_block_index;
6519 EMACS_INT num_free = 0, num_used = 0;
6520
6521 marker_free_list = 0;
6522
6523 for (mblk = marker_block; mblk; mblk = *mprev)
6524 {
6525 register int i;
6526 int this_free = 0;
6527
6528 for (i = 0; i < lim; i++)
6529 {
6530 if (!mblk->markers[i].m.u_any.gcmarkbit)
6531 {
6532 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6533 unchain_marker (&mblk->markers[i].m.u_marker);
6534 /* Set the type of the freed object to Lisp_Misc_Free.
6535 We could leave the type alone, since nobody checks it,
6536 but this might catch bugs faster. */
6537 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6538 mblk->markers[i].m.u_free.chain = marker_free_list;
6539 marker_free_list = &mblk->markers[i].m;
6540 this_free++;
6541 }
6542 else
6543 {
6544 num_used++;
6545 mblk->markers[i].m.u_any.gcmarkbit = 0;
6546 }
6547 }
6548 lim = MARKER_BLOCK_SIZE;
6549 /* If this block contains only free markers and we have already
6550 seen more than two blocks worth of free markers then deallocate
6551 this block. */
6552 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6553 {
6554 *mprev = mblk->next;
6555 /* Unhook from the free list. */
6556 marker_free_list = mblk->markers[0].m.u_free.chain;
6557 lisp_free (mblk);
6558 }
6559 else
6560 {
6561 num_free += this_free;
6562 mprev = &mblk->next;
6563 }
6564 }
6565
6566 total_markers = num_used;
6567 total_free_markers = num_free;
6568 }
6569
6570 /* Free all unmarked buffers */
6571 {
6572 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6573
6574 total_buffers = 0;
6575 while (buffer)
6576 if (!VECTOR_MARKED_P (buffer))
6577 {
6578 if (prev)
6579 prev->header.next = buffer->header.next;
6580 else
6581 all_buffers = buffer->header.next.buffer;
6582 next = buffer->header.next.buffer;
6583 lisp_free (buffer);
6584 buffer = next;
6585 }
6586 else
6587 {
6588 VECTOR_UNMARK (buffer);
6589 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6590 total_buffers++;
6591 prev = buffer, buffer = buffer->header.next.buffer;
6592 }
6593 }
6594
6595 sweep_vectors ();
6596 check_string_bytes (!noninteractive);
6597 }
6598
6599
6600
6601 \f
6602 /* Debugging aids. */
6603
6604 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6605 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6606 This may be helpful in debugging Emacs's memory usage.
6607 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6608 (void)
6609 {
6610 Lisp_Object end;
6611
6612 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6613
6614 return end;
6615 }
6616
6617 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6618 doc: /* Return a list of counters that measure how much consing there has been.
6619 Each of these counters increments for a certain kind of object.
6620 The counters wrap around from the largest positive integer to zero.
6621 Garbage collection does not decrease them.
6622 The elements of the value are as follows:
6623 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6624 All are in units of 1 = one object consed
6625 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6626 objects consed.
6627 MISCS include overlays, markers, and some internal types.
6628 Frames, windows, buffers, and subprocesses count as vectors
6629 (but the contents of a buffer's text do not count here). */)
6630 (void)
6631 {
6632 return listn (CONSTYPE_HEAP, 8,
6633 bounded_number (cons_cells_consed),
6634 bounded_number (floats_consed),
6635 bounded_number (vector_cells_consed),
6636 bounded_number (symbols_consed),
6637 bounded_number (string_chars_consed),
6638 bounded_number (misc_objects_consed),
6639 bounded_number (intervals_consed),
6640 bounded_number (strings_consed));
6641 }
6642
6643 /* Find at most FIND_MAX symbols which have OBJ as their value or
6644 function. This is used in gdbinit's `xwhichsymbols' command. */
6645
6646 Lisp_Object
6647 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6648 {
6649 struct symbol_block *sblk;
6650 ptrdiff_t gc_count = inhibit_garbage_collection ();
6651 Lisp_Object found = Qnil;
6652
6653 if (! DEADP (obj))
6654 {
6655 for (sblk = symbol_block; sblk; sblk = sblk->next)
6656 {
6657 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6658 int bn;
6659
6660 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6661 {
6662 struct Lisp_Symbol *sym = &aligned_sym->s;
6663 Lisp_Object val;
6664 Lisp_Object tem;
6665
6666 if (sblk == symbol_block && bn >= symbol_block_index)
6667 break;
6668
6669 XSETSYMBOL (tem, sym);
6670 val = find_symbol_value (tem);
6671 if (EQ (val, obj)
6672 || EQ (SVAR (sym, function), obj)
6673 || (!NILP (SVAR (sym, function))
6674 && COMPILEDP (SVAR (sym, function))
6675 && EQ (AREF (SVAR (sym, function), COMPILED_BYTECODE), obj))
6676 || (!NILP (val)
6677 && COMPILEDP (val)
6678 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6679 {
6680 found = Fcons (tem, found);
6681 if (--find_max == 0)
6682 goto out;
6683 }
6684 }
6685 }
6686 }
6687
6688 out:
6689 unbind_to (gc_count, Qnil);
6690 return found;
6691 }
6692
6693 #ifdef ENABLE_CHECKING
6694 int suppress_checking;
6695
6696 void
6697 die (const char *msg, const char *file, int line)
6698 {
6699 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6700 file, line, msg);
6701 abort ();
6702 }
6703 #endif
6704 \f
6705 /* Initialization */
6706
6707 void
6708 init_alloc_once (void)
6709 {
6710 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6711 purebeg = PUREBEG;
6712 pure_size = PURESIZE;
6713
6714 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6715 mem_init ();
6716 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6717 #endif
6718
6719 #ifdef DOUG_LEA_MALLOC
6720 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6721 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6722 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6723 #endif
6724 init_strings ();
6725 init_vectors ();
6726
6727 #ifdef REL_ALLOC
6728 malloc_hysteresis = 32;
6729 #else
6730 malloc_hysteresis = 0;
6731 #endif
6732
6733 refill_memory_reserve ();
6734 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6735 }
6736
6737 void
6738 init_alloc (void)
6739 {
6740 gcprolist = 0;
6741 byte_stack_list = 0;
6742 #if GC_MARK_STACK
6743 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6744 setjmp_tested_p = longjmps_done = 0;
6745 #endif
6746 #endif
6747 Vgc_elapsed = make_float (0.0);
6748 gcs_done = 0;
6749 }
6750
6751 void
6752 syms_of_alloc (void)
6753 {
6754 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6755 doc: /* Number of bytes of consing between garbage collections.
6756 Garbage collection can happen automatically once this many bytes have been
6757 allocated since the last garbage collection. All data types count.
6758
6759 Garbage collection happens automatically only when `eval' is called.
6760
6761 By binding this temporarily to a large number, you can effectively
6762 prevent garbage collection during a part of the program.
6763 See also `gc-cons-percentage'. */);
6764
6765 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6766 doc: /* Portion of the heap used for allocation.
6767 Garbage collection can happen automatically once this portion of the heap
6768 has been allocated since the last garbage collection.
6769 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6770 Vgc_cons_percentage = make_float (0.1);
6771
6772 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6773 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6774
6775 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6776 doc: /* Number of cons cells that have been consed so far. */);
6777
6778 DEFVAR_INT ("floats-consed", floats_consed,
6779 doc: /* Number of floats that have been consed so far. */);
6780
6781 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6782 doc: /* Number of vector cells that have been consed so far. */);
6783
6784 DEFVAR_INT ("symbols-consed", symbols_consed,
6785 doc: /* Number of symbols that have been consed so far. */);
6786
6787 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6788 doc: /* Number of string characters that have been consed so far. */);
6789
6790 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6791 doc: /* Number of miscellaneous objects that have been consed so far.
6792 These include markers and overlays, plus certain objects not visible
6793 to users. */);
6794
6795 DEFVAR_INT ("intervals-consed", intervals_consed,
6796 doc: /* Number of intervals that have been consed so far. */);
6797
6798 DEFVAR_INT ("strings-consed", strings_consed,
6799 doc: /* Number of strings that have been consed so far. */);
6800
6801 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6802 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6803 This means that certain objects should be allocated in shared (pure) space.
6804 It can also be set to a hash-table, in which case this table is used to
6805 do hash-consing of the objects allocated to pure space. */);
6806
6807 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6808 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6809 garbage_collection_messages = 0;
6810
6811 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6812 doc: /* Hook run after garbage collection has finished. */);
6813 Vpost_gc_hook = Qnil;
6814 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6815
6816 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6817 doc: /* Precomputed `signal' argument for memory-full error. */);
6818 /* We build this in advance because if we wait until we need it, we might
6819 not be able to allocate the memory to hold it. */
6820 Vmemory_signal_data
6821 = listn (CONSTYPE_PURE, 2, Qerror,
6822 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6823
6824 DEFVAR_LISP ("memory-full", Vmemory_full,
6825 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6826 Vmemory_full = Qnil;
6827
6828 DEFSYM (Qstring_bytes, "string-bytes");
6829 DEFSYM (Qvector_slots, "vector-slots");
6830 DEFSYM (Qheap, "heap");
6831
6832 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6833 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6834
6835 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6836 doc: /* Accumulated time elapsed in garbage collections.
6837 The time is in seconds as a floating point value. */);
6838 DEFVAR_INT ("gcs-done", gcs_done,
6839 doc: /* Accumulated number of garbage collections done. */);
6840
6841 defsubr (&Scons);
6842 defsubr (&Slist);
6843 defsubr (&Svector);
6844 defsubr (&Smake_byte_code);
6845 defsubr (&Smake_list);
6846 defsubr (&Smake_vector);
6847 defsubr (&Smake_string);
6848 defsubr (&Smake_bool_vector);
6849 defsubr (&Smake_symbol);
6850 defsubr (&Smake_marker);
6851 defsubr (&Spurecopy);
6852 defsubr (&Sgarbage_collect);
6853 defsubr (&Smemory_limit);
6854 defsubr (&Smemory_use_counts);
6855
6856 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6857 defsubr (&Sgc_status);
6858 #endif
6859 }
6860
6861 /* When compiled with GCC, GDB might say "No enum type named
6862 pvec_type" if we don't have at least one symbol with that type, and
6863 then xbacktrace could fail. Similarly for the other enums and
6864 their values. */
6865 union
6866 {
6867 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6868 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6869 enum char_bits char_bits;
6870 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6871 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6872 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6873 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6874 enum Lisp_Bits Lisp_Bits;
6875 enum Lisp_Compiled Lisp_Compiled;
6876 enum maxargs maxargs;
6877 enum MAX_ALLOCA MAX_ALLOCA;
6878 enum More_Lisp_Bits More_Lisp_Bits;
6879 enum pvec_type pvec_type;
6880 #if USE_LSB_TAG
6881 enum lsb_bits lsb_bits;
6882 #endif
6883 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};