Optimize pure C strings initialization.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
292
293 enum mem_type
294 {
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
306 MEM_TYPE_VECTORLIKE,
307 /* Special type to denote vector blocks. */
308 MEM_TYPE_VECTOR_BLOCK
309 };
310
311 static void *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
393 static void lisp_free (void *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *);
404 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 #endif
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static inline struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 #ifndef DEADP
423 # define DEADP(x) 0
424 #endif
425
426 /* Recording what needs to be marked for gc. */
427
428 struct gcpro *gcprolist;
429
430 /* Addresses of staticpro'd variables. Initialize it to a nonzero
431 value; otherwise some compilers put it into BSS. */
432
433 #define NSTATICS 0x650
434 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
435
436 /* Index of next unused slot in staticvec. */
437
438 static int staticidx = 0;
439
440 static void *pure_alloc (size_t, int);
441
442
443 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
444 ALIGNMENT must be a power of 2. */
445
446 #define ALIGN(ptr, ALIGNMENT) \
447 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
448 & ~ ((ALIGNMENT) - 1)))
449
450
451 \f
452 /************************************************************************
453 Malloc
454 ************************************************************************/
455
456 /* Function malloc calls this if it finds we are near exhausting storage. */
457
458 void
459 malloc_warning (const char *str)
460 {
461 pending_malloc_warning = str;
462 }
463
464
465 /* Display an already-pending malloc warning. */
466
467 void
468 display_malloc_warning (void)
469 {
470 call3 (intern ("display-warning"),
471 intern ("alloc"),
472 build_string (pending_malloc_warning),
473 intern ("emergency"));
474 pending_malloc_warning = 0;
475 }
476 \f
477 /* Called if we can't allocate relocatable space for a buffer. */
478
479 void
480 buffer_memory_full (ptrdiff_t nbytes)
481 {
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
488
489 #ifndef REL_ALLOC
490 memory_full (nbytes);
491 #endif
492
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
495 xsignal (Qnil, Vmemory_signal_data);
496 }
497
498 /* A common multiple of the positive integers A and B. Ideally this
499 would be the least common multiple, but there's no way to do that
500 as a constant expression in C, so do the best that we can easily do. */
501 #define COMMON_MULTIPLE(a, b) \
502 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
503
504 #ifndef XMALLOC_OVERRUN_CHECK
505 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
506 #else
507
508 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
509 around each block.
510
511 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
512 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
513 block size in little-endian order. The trailer consists of
514 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
515
516 The header is used to detect whether this block has been allocated
517 through these functions, as some low-level libc functions may
518 bypass the malloc hooks. */
519
520 #define XMALLOC_OVERRUN_CHECK_SIZE 16
521 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
522 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
523
524 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
525 hold a size_t value and (2) the header size is a multiple of the
526 alignment that Emacs needs for C types and for USE_LSB_TAG. */
527 #define XMALLOC_BASE_ALIGNMENT \
528 offsetof ( \
529 struct { \
530 union { long double d; intmax_t i; void *p; } u; \
531 char c; \
532 }, \
533 c)
534
535 #if USE_LSB_TAG
536 # define XMALLOC_HEADER_ALIGNMENT \
537 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
538 #else
539 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
540 #endif
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
546
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
552
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
558
559 /* Insert and extract the block size in the header. */
560
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
563 {
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
569 }
570 }
571
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
574 {
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584 }
585
586
587 /* The call depth in overrun_check functions. For example, this might happen:
588 xmalloc()
589 overrun_check_malloc()
590 -> malloc -> (via hook)_-> emacs_blocked_malloc
591 -> overrun_check_malloc
592 call malloc (hooks are NULL, so real malloc is called).
593 malloc returns 10000.
594 add overhead, return 10016.
595 <- (back in overrun_check_malloc)
596 add overhead again, return 10032
597 xmalloc returns 10032.
598
599 (time passes).
600
601 xfree(10032)
602 overrun_check_free(10032)
603 decrease overhead
604 free(10016) <- crash, because 10000 is the original pointer. */
605
606 static ptrdiff_t check_depth;
607
608 /* Like malloc, but wraps allocated block with header and trailer. */
609
610 static void *
611 overrun_check_malloc (size_t size)
612 {
613 register unsigned char *val;
614 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
615 if (SIZE_MAX - overhead < size)
616 abort ();
617
618 val = malloc (size + overhead);
619 if (val && check_depth == 1)
620 {
621 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
622 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
623 xmalloc_put_size (val, size);
624 memcpy (val + size, xmalloc_overrun_check_trailer,
625 XMALLOC_OVERRUN_CHECK_SIZE);
626 }
627 --check_depth;
628 return val;
629 }
630
631
632 /* Like realloc, but checks old block for overrun, and wraps new block
633 with header and trailer. */
634
635 static void *
636 overrun_check_realloc (void *block, size_t size)
637 {
638 register unsigned char *val = (unsigned char *) block;
639 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
640 if (SIZE_MAX - overhead < size)
641 abort ();
642
643 if (val
644 && check_depth == 1
645 && memcmp (xmalloc_overrun_check_header,
646 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
647 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
648 {
649 size_t osize = xmalloc_get_size (val);
650 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
651 XMALLOC_OVERRUN_CHECK_SIZE))
652 abort ();
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 }
657
658 val = realloc (val, size + overhead);
659
660 if (val && check_depth == 1)
661 {
662 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
663 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 xmalloc_put_size (val, size);
665 memcpy (val + size, xmalloc_overrun_check_trailer,
666 XMALLOC_OVERRUN_CHECK_SIZE);
667 }
668 --check_depth;
669 return val;
670 }
671
672 /* Like free, but checks block for overrun. */
673
674 static void
675 overrun_check_free (void *block)
676 {
677 unsigned char *val = (unsigned char *) block;
678
679 ++check_depth;
680 if (val
681 && check_depth == 1
682 && memcmp (xmalloc_overrun_check_header,
683 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
684 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
685 {
686 size_t osize = xmalloc_get_size (val);
687 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
688 XMALLOC_OVERRUN_CHECK_SIZE))
689 abort ();
690 #ifdef XMALLOC_CLEAR_FREE_MEMORY
691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
692 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
693 #else
694 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
695 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
696 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
697 #endif
698 }
699
700 free (val);
701 --check_depth;
702 }
703
704 #undef malloc
705 #undef realloc
706 #undef free
707 #define malloc overrun_check_malloc
708 #define realloc overrun_check_realloc
709 #define free overrun_check_free
710 #endif
711
712 #ifdef SYNC_INPUT
713 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
714 there's no need to block input around malloc. */
715 #define MALLOC_BLOCK_INPUT ((void)0)
716 #define MALLOC_UNBLOCK_INPUT ((void)0)
717 #else
718 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
719 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
720 #endif
721
722 /* Like malloc but check for no memory and block interrupt input.. */
723
724 void *
725 xmalloc (size_t size)
726 {
727 void *val;
728
729 MALLOC_BLOCK_INPUT;
730 val = malloc (size);
731 MALLOC_UNBLOCK_INPUT;
732
733 if (!val && size)
734 memory_full (size);
735 return val;
736 }
737
738 /* Like the above, but zeroes out the memory just allocated. */
739
740 void *
741 xzalloc (size_t size)
742 {
743 void *val;
744
745 MALLOC_BLOCK_INPUT;
746 val = malloc (size);
747 MALLOC_UNBLOCK_INPUT;
748
749 if (!val && size)
750 memory_full (size);
751 memset (val, 0, size);
752 return val;
753 }
754
755 /* Like realloc but check for no memory and block interrupt input.. */
756
757 void *
758 xrealloc (void *block, size_t size)
759 {
760 void *val;
761
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = malloc (size);
767 else
768 val = realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
770
771 if (!val && size)
772 memory_full (size);
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (void *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
790 }
791
792
793 /* Other parts of Emacs pass large int values to allocator functions
794 expecting ptrdiff_t. This is portable in practice, but check it to
795 be safe. */
796 verify (INT_MAX <= PTRDIFF_MAX);
797
798
799 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
801
802 void *
803 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
804 {
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xmalloc (nitems * item_size);
809 }
810
811
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
814
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 {
818 eassert (0 <= nitems && 0 < item_size);
819 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
820 memory_full (SIZE_MAX);
821 return xrealloc (pa, nitems * item_size);
822 }
823
824
825 /* Grow PA, which points to an array of *NITEMS items, and return the
826 location of the reallocated array, updating *NITEMS to reflect its
827 new size. The new array will contain at least NITEMS_INCR_MIN more
828 items, but will not contain more than NITEMS_MAX items total.
829 ITEM_SIZE is the size of each item, in bytes.
830
831 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
832 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
833 infinity.
834
835 If PA is null, then allocate a new array instead of reallocating
836 the old one. Thus, to grow an array A without saving its old
837 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
838 &NITEMS, ...).
839
840 Block interrupt input as needed. If memory exhaustion occurs, set
841 *NITEMS to zero if PA is null, and signal an error (i.e., do not
842 return). */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 size_t len = strlen (s) + 1;
886 char *p = xmalloc (len);
887 memcpy (p, s, len);
888 return p;
889 }
890
891
892 /* Unwind for SAFE_ALLOCA */
893
894 Lisp_Object
895 safe_alloca_unwind (Lisp_Object arg)
896 {
897 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
898
899 p->dogc = 0;
900 xfree (p->pointer);
901 p->pointer = 0;
902 free_misc (arg);
903 return Qnil;
904 }
905
906
907 /* Like malloc but used for allocating Lisp data. NBYTES is the
908 number of bytes to allocate, TYPE describes the intended use of the
909 allocated memory block (for strings, for conses, ...). */
910
911 #if ! USE_LSB_TAG
912 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
913 #endif
914
915 static void *
916 lisp_malloc (size_t nbytes, enum mem_type type)
917 {
918 register void *val;
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 val = malloc (nbytes);
927
928 #if ! USE_LSB_TAG
929 /* If the memory just allocated cannot be addressed thru a Lisp
930 object's pointer, and it needs to be,
931 that's equivalent to running out of memory. */
932 if (val && type != MEM_TYPE_NON_LISP)
933 {
934 Lisp_Object tem;
935 XSETCONS (tem, (char *) val + nbytes - 1);
936 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
937 {
938 lisp_malloc_loser = val;
939 free (val);
940 val = 0;
941 }
942 }
943 #endif
944
945 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
946 if (val && type != MEM_TYPE_NON_LISP)
947 mem_insert (val, (char *) val + nbytes, type);
948 #endif
949
950 MALLOC_UNBLOCK_INPUT;
951 if (!val && nbytes)
952 memory_full (nbytes);
953 return val;
954 }
955
956 /* Free BLOCK. This must be called to free memory allocated with a
957 call to lisp_malloc. */
958
959 static void
960 lisp_free (void *block)
961 {
962 MALLOC_BLOCK_INPUT;
963 free (block);
964 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
965 mem_delete (mem_find (block));
966 #endif
967 MALLOC_UNBLOCK_INPUT;
968 }
969
970 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
971
972 /* The entry point is lisp_align_malloc which returns blocks of at most
973 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
974
975 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
976 #define USE_POSIX_MEMALIGN 1
977 #endif
978
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
981
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 posix_memalign on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
995
996 /* Internal data structures and constants. */
997
998 #define ABLOCKS_SIZE 16
999
1000 /* An aligned block of memory. */
1001 struct ablock
1002 {
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1023 };
1024
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1027 {
1028 struct ablock blocks[ABLOCKS_SIZE];
1029 };
1030
1031 /* Size of the block requested from malloc or posix_memalign. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1033
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_POSIX_MEMALIGN
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1048 #endif
1049
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1052
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1058 {
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
1064 MALLOC_BLOCK_INPUT;
1065
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1069
1070 if (!free_ablock)
1071 {
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1074
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1081
1082 #ifdef USE_POSIX_MEMALIGN
1083 {
1084 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1085 if (err)
1086 base = NULL;
1087 abase = base;
1088 }
1089 #else
1090 base = malloc (ABLOCKS_BYTES);
1091 abase = ALIGN (base, BLOCK_ALIGN);
1092 #endif
1093
1094 if (base == 0)
1095 {
1096 MALLOC_UNBLOCK_INPUT;
1097 memory_full (ABLOCKS_BYTES);
1098 }
1099
1100 aligned = (base == abase);
1101 if (!aligned)
1102 ((void**)abase)[-1] = base;
1103
1104 #ifdef DOUG_LEA_MALLOC
1105 /* Back to a reasonable maximum of mmap'ed areas. */
1106 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1107 #endif
1108
1109 #if ! USE_LSB_TAG
1110 /* If the memory just allocated cannot be addressed thru a Lisp
1111 object's pointer, and it needs to be, that's equivalent to
1112 running out of memory. */
1113 if (type != MEM_TYPE_NON_LISP)
1114 {
1115 Lisp_Object tem;
1116 char *end = (char *) base + ABLOCKS_BYTES - 1;
1117 XSETCONS (tem, end);
1118 if ((char *) XCONS (tem) != end)
1119 {
1120 lisp_malloc_loser = base;
1121 free (base);
1122 MALLOC_UNBLOCK_INPUT;
1123 memory_full (SIZE_MAX);
1124 }
1125 }
1126 #endif
1127
1128 /* Initialize the blocks and put them on the free list.
1129 If `base' was not properly aligned, we can't use the last block. */
1130 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1131 {
1132 abase->blocks[i].abase = abase;
1133 abase->blocks[i].x.next_free = free_ablock;
1134 free_ablock = &abase->blocks[i];
1135 }
1136 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1137
1138 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1139 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1140 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1141 eassert (ABLOCKS_BASE (abase) == base);
1142 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1143 }
1144
1145 abase = ABLOCK_ABASE (free_ablock);
1146 ABLOCKS_BUSY (abase) =
1147 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1148 val = free_ablock;
1149 free_ablock = free_ablock->x.next_free;
1150
1151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1152 if (type != MEM_TYPE_NON_LISP)
1153 mem_insert (val, (char *) val + nbytes, type);
1154 #endif
1155
1156 MALLOC_UNBLOCK_INPUT;
1157
1158 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1159 return val;
1160 }
1161
1162 static void
1163 lisp_align_free (void *block)
1164 {
1165 struct ablock *ablock = block;
1166 struct ablocks *abase = ABLOCK_ABASE (ablock);
1167
1168 MALLOC_BLOCK_INPUT;
1169 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1170 mem_delete (mem_find (block));
1171 #endif
1172 /* Put on free list. */
1173 ablock->x.next_free = free_ablock;
1174 free_ablock = ablock;
1175 /* Update busy count. */
1176 ABLOCKS_BUSY (abase)
1177 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1178
1179 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1180 { /* All the blocks are free. */
1181 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1182 struct ablock **tem = &free_ablock;
1183 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1184
1185 while (*tem)
1186 {
1187 if (*tem >= (struct ablock *) abase && *tem < atop)
1188 {
1189 i++;
1190 *tem = (*tem)->x.next_free;
1191 }
1192 else
1193 tem = &(*tem)->x.next_free;
1194 }
1195 eassert ((aligned & 1) == aligned);
1196 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1197 #ifdef USE_POSIX_MEMALIGN
1198 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1199 #endif
1200 free (ABLOCKS_BASE (abase));
1201 }
1202 MALLOC_UNBLOCK_INPUT;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 struct interval_block *newi
1527 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528
1529 newi->next = interval_block;
1530 interval_block = newi;
1531 interval_block_index = 0;
1532 }
1533 val = &interval_block->intervals[interval_block_index++];
1534 }
1535
1536 MALLOC_UNBLOCK_INPUT;
1537
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 RESET_INTERVAL (val);
1541 val->gcmarkbit = 0;
1542 return val;
1543 }
1544
1545
1546 /* Mark Lisp objects in interval I. */
1547
1548 static void
1549 mark_interval (register INTERVAL i, Lisp_Object dummy)
1550 {
1551 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1554 }
1555
1556
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1562 {
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1568 }
1569
1570
1571 /* Mark the interval tree rooted in I. */
1572
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1578
1579
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1585 \f
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1589
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1596
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1600
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1605
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1612
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1615
1616 #define SBLOCK_SIZE 8188
1617
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1620
1621 #define LARGE_STRING_BYTES 1024
1622
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626 struct sdata
1627 {
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1640
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1644
1645 #else /* not GC_CHECK_STRING_BYTES */
1646
1647 union
1648 {
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1655
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1663 };
1664
1665
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671 struct sblock
1672 {
1673 /* Next in list. */
1674 struct sblock *next;
1675
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682 };
1683
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693 struct string_block
1694 {
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1698 };
1699
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1703
1704 static struct sblock *oldest_sblock, *current_sblock;
1705
1706 /* List of sblocks for large strings. */
1707
1708 static struct sblock *large_sblocks;
1709
1710 /* List of string_block structures. */
1711
1712 static struct string_block *string_blocks;
1713
1714 /* Free-list of Lisp_Strings. */
1715
1716 static struct Lisp_String *string_free_list;
1717
1718 /* Number of live and free Lisp_Strings. */
1719
1720 static EMACS_INT total_strings, total_free_strings;
1721
1722 /* Number of bytes used by live strings. */
1723
1724 static EMACS_INT total_string_size;
1725
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1736
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1738
1739
1740 #ifdef GC_CHECK_STRING_OVERRUN
1741
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1745
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1749
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1753
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
1758 #ifdef GC_CHECK_STRING_BYTES
1759
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1765
1766 #else /* not GC_CHECK_STRING_BYTES */
1767
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1772
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1781
1782 #endif /* not GC_CHECK_STRING_BYTES */
1783
1784 /* Extra bytes to allocate for each string. */
1785
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
1801 /* Initialize string allocation. Called from init_alloc_once. */
1802
1803 static void
1804 init_strings (void)
1805 {
1806 total_strings = total_free_strings = total_string_size = 0;
1807 oldest_sblock = current_sblock = large_sblocks = NULL;
1808 string_blocks = NULL;
1809 string_free_list = NULL;
1810 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1811 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1812 }
1813
1814
1815 #ifdef GC_CHECK_STRING_BYTES
1816
1817 static int check_string_bytes_count;
1818
1819 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1820
1821
1822 /* Like GC_STRING_BYTES, but with debugging check. */
1823
1824 ptrdiff_t
1825 string_bytes (struct Lisp_String *s)
1826 {
1827 ptrdiff_t nbytes =
1828 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1829
1830 if (!PURE_POINTER_P (s)
1831 && s->data
1832 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1833 abort ();
1834 return nbytes;
1835 }
1836
1837 /* Check validity of Lisp strings' string_bytes member in B. */
1838
1839 static void
1840 check_sblock (struct sblock *b)
1841 {
1842 struct sdata *from, *end, *from_end;
1843
1844 end = b->next_free;
1845
1846 for (from = &b->first_data; from < end; from = from_end)
1847 {
1848 /* Compute the next FROM here because copying below may
1849 overwrite data we need to compute it. */
1850 ptrdiff_t nbytes;
1851
1852 /* Check that the string size recorded in the string is the
1853 same as the one recorded in the sdata structure. */
1854 if (from->string)
1855 CHECK_STRING_BYTES (from->string);
1856
1857 if (from->string)
1858 nbytes = GC_STRING_BYTES (from->string);
1859 else
1860 nbytes = SDATA_NBYTES (from);
1861
1862 nbytes = SDATA_SIZE (nbytes);
1863 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1864 }
1865 }
1866
1867
1868 /* Check validity of Lisp strings' string_bytes member. ALL_P
1869 non-zero means check all strings, otherwise check only most
1870 recently allocated strings. Used for hunting a bug. */
1871
1872 static void
1873 check_string_bytes (int all_p)
1874 {
1875 if (all_p)
1876 {
1877 struct sblock *b;
1878
1879 for (b = large_sblocks; b; b = b->next)
1880 {
1881 struct Lisp_String *s = b->first_data.string;
1882 if (s)
1883 CHECK_STRING_BYTES (s);
1884 }
1885
1886 for (b = oldest_sblock; b; b = b->next)
1887 check_sblock (b);
1888 }
1889 else if (current_sblock)
1890 check_sblock (current_sblock);
1891 }
1892
1893 #endif /* GC_CHECK_STRING_BYTES */
1894
1895 #ifdef GC_CHECK_STRING_FREE_LIST
1896
1897 /* Walk through the string free list looking for bogus next pointers.
1898 This may catch buffer overrun from a previous string. */
1899
1900 static void
1901 check_string_free_list (void)
1902 {
1903 struct Lisp_String *s;
1904
1905 /* Pop a Lisp_String off the free-list. */
1906 s = string_free_list;
1907 while (s != NULL)
1908 {
1909 if ((uintptr_t) s < 1024)
1910 abort ();
1911 s = NEXT_FREE_LISP_STRING (s);
1912 }
1913 }
1914 #else
1915 #define check_string_free_list()
1916 #endif
1917
1918 /* Return a new Lisp_String. */
1919
1920 static struct Lisp_String *
1921 allocate_string (void)
1922 {
1923 struct Lisp_String *s;
1924
1925 /* eassert (!handling_signal); */
1926
1927 MALLOC_BLOCK_INPUT;
1928
1929 /* If the free-list is empty, allocate a new string_block, and
1930 add all the Lisp_Strings in it to the free-list. */
1931 if (string_free_list == NULL)
1932 {
1933 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1934 int i;
1935
1936 b->next = string_blocks;
1937 string_blocks = b;
1938
1939 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1940 {
1941 s = b->strings + i;
1942 /* Every string on a free list should have NULL data pointer. */
1943 s->data = NULL;
1944 NEXT_FREE_LISP_STRING (s) = string_free_list;
1945 string_free_list = s;
1946 }
1947
1948 total_free_strings += STRING_BLOCK_SIZE;
1949 }
1950
1951 check_string_free_list ();
1952
1953 /* Pop a Lisp_String off the free-list. */
1954 s = string_free_list;
1955 string_free_list = NEXT_FREE_LISP_STRING (s);
1956
1957 MALLOC_UNBLOCK_INPUT;
1958
1959 --total_free_strings;
1960 ++total_strings;
1961 ++strings_consed;
1962 consing_since_gc += sizeof *s;
1963
1964 #ifdef GC_CHECK_STRING_BYTES
1965 if (!noninteractive)
1966 {
1967 if (++check_string_bytes_count == 200)
1968 {
1969 check_string_bytes_count = 0;
1970 check_string_bytes (1);
1971 }
1972 else
1973 check_string_bytes (0);
1974 }
1975 #endif /* GC_CHECK_STRING_BYTES */
1976
1977 return s;
1978 }
1979
1980
1981 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1982 plus a NUL byte at the end. Allocate an sdata structure for S, and
1983 set S->data to its `u.data' member. Store a NUL byte at the end of
1984 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1985 S->data if it was initially non-null. */
1986
1987 void
1988 allocate_string_data (struct Lisp_String *s,
1989 EMACS_INT nchars, EMACS_INT nbytes)
1990 {
1991 struct sdata *data;
1992 struct sblock *b;
1993 ptrdiff_t needed;
1994
1995 if (STRING_BYTES_MAX < nbytes)
1996 string_overflow ();
1997
1998 /* Determine the number of bytes needed to store NBYTES bytes
1999 of string data. */
2000 needed = SDATA_SIZE (nbytes);
2001
2002 MALLOC_BLOCK_INPUT;
2003
2004 if (nbytes > LARGE_STRING_BYTES)
2005 {
2006 size_t size = offsetof (struct sblock, first_data) + needed;
2007
2008 #ifdef DOUG_LEA_MALLOC
2009 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2010 because mapped region contents are not preserved in
2011 a dumped Emacs.
2012
2013 In case you think of allowing it in a dumped Emacs at the
2014 cost of not being able to re-dump, there's another reason:
2015 mmap'ed data typically have an address towards the top of the
2016 address space, which won't fit into an EMACS_INT (at least on
2017 32-bit systems with the current tagging scheme). --fx */
2018 mallopt (M_MMAP_MAX, 0);
2019 #endif
2020
2021 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2022
2023 #ifdef DOUG_LEA_MALLOC
2024 /* Back to a reasonable maximum of mmap'ed areas. */
2025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2026 #endif
2027
2028 b->next_free = &b->first_data;
2029 b->first_data.string = NULL;
2030 b->next = large_sblocks;
2031 large_sblocks = b;
2032 }
2033 else if (current_sblock == NULL
2034 || (((char *) current_sblock + SBLOCK_SIZE
2035 - (char *) current_sblock->next_free)
2036 < (needed + GC_STRING_EXTRA)))
2037 {
2038 /* Not enough room in the current sblock. */
2039 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2040 b->next_free = &b->first_data;
2041 b->first_data.string = NULL;
2042 b->next = NULL;
2043
2044 if (current_sblock)
2045 current_sblock->next = b;
2046 else
2047 oldest_sblock = b;
2048 current_sblock = b;
2049 }
2050 else
2051 b = current_sblock;
2052
2053 data = b->next_free;
2054 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2055
2056 MALLOC_UNBLOCK_INPUT;
2057
2058 data->string = s;
2059 s->data = SDATA_DATA (data);
2060 #ifdef GC_CHECK_STRING_BYTES
2061 SDATA_NBYTES (data) = nbytes;
2062 #endif
2063 s->size = nchars;
2064 s->size_byte = nbytes;
2065 s->data[nbytes] = '\0';
2066 #ifdef GC_CHECK_STRING_OVERRUN
2067 memcpy ((char *) data + needed, string_overrun_cookie,
2068 GC_STRING_OVERRUN_COOKIE_SIZE);
2069 #endif
2070 consing_since_gc += needed;
2071 }
2072
2073
2074 /* Sweep and compact strings. */
2075
2076 static void
2077 sweep_strings (void)
2078 {
2079 struct string_block *b, *next;
2080 struct string_block *live_blocks = NULL;
2081
2082 string_free_list = NULL;
2083 total_strings = total_free_strings = 0;
2084 total_string_size = 0;
2085
2086 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2087 for (b = string_blocks; b; b = next)
2088 {
2089 int i, nfree = 0;
2090 struct Lisp_String *free_list_before = string_free_list;
2091
2092 next = b->next;
2093
2094 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2095 {
2096 struct Lisp_String *s = b->strings + i;
2097
2098 if (s->data)
2099 {
2100 /* String was not on free-list before. */
2101 if (STRING_MARKED_P (s))
2102 {
2103 /* String is live; unmark it and its intervals. */
2104 UNMARK_STRING (s);
2105
2106 if (!NULL_INTERVAL_P (s->intervals))
2107 UNMARK_BALANCE_INTERVALS (s->intervals);
2108
2109 ++total_strings;
2110 total_string_size += STRING_BYTES (s);
2111 }
2112 else
2113 {
2114 /* String is dead. Put it on the free-list. */
2115 struct sdata *data = SDATA_OF_STRING (s);
2116
2117 /* Save the size of S in its sdata so that we know
2118 how large that is. Reset the sdata's string
2119 back-pointer so that we know it's free. */
2120 #ifdef GC_CHECK_STRING_BYTES
2121 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2122 abort ();
2123 #else
2124 data->u.nbytes = GC_STRING_BYTES (s);
2125 #endif
2126 data->string = NULL;
2127
2128 /* Reset the strings's `data' member so that we
2129 know it's free. */
2130 s->data = NULL;
2131
2132 /* Put the string on the free-list. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2136 }
2137 }
2138 else
2139 {
2140 /* S was on the free-list before. Put it there again. */
2141 NEXT_FREE_LISP_STRING (s) = string_free_list;
2142 string_free_list = s;
2143 ++nfree;
2144 }
2145 }
2146
2147 /* Free blocks that contain free Lisp_Strings only, except
2148 the first two of them. */
2149 if (nfree == STRING_BLOCK_SIZE
2150 && total_free_strings > STRING_BLOCK_SIZE)
2151 {
2152 lisp_free (b);
2153 string_free_list = free_list_before;
2154 }
2155 else
2156 {
2157 total_free_strings += nfree;
2158 b->next = live_blocks;
2159 live_blocks = b;
2160 }
2161 }
2162
2163 check_string_free_list ();
2164
2165 string_blocks = live_blocks;
2166 free_large_strings ();
2167 compact_small_strings ();
2168
2169 check_string_free_list ();
2170 }
2171
2172
2173 /* Free dead large strings. */
2174
2175 static void
2176 free_large_strings (void)
2177 {
2178 struct sblock *b, *next;
2179 struct sblock *live_blocks = NULL;
2180
2181 for (b = large_sblocks; b; b = next)
2182 {
2183 next = b->next;
2184
2185 if (b->first_data.string == NULL)
2186 lisp_free (b);
2187 else
2188 {
2189 b->next = live_blocks;
2190 live_blocks = b;
2191 }
2192 }
2193
2194 large_sblocks = live_blocks;
2195 }
2196
2197
2198 /* Compact data of small strings. Free sblocks that don't contain
2199 data of live strings after compaction. */
2200
2201 static void
2202 compact_small_strings (void)
2203 {
2204 struct sblock *b, *tb, *next;
2205 struct sdata *from, *to, *end, *tb_end;
2206 struct sdata *to_end, *from_end;
2207
2208 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2209 to, and TB_END is the end of TB. */
2210 tb = oldest_sblock;
2211 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2212 to = &tb->first_data;
2213
2214 /* Step through the blocks from the oldest to the youngest. We
2215 expect that old blocks will stabilize over time, so that less
2216 copying will happen this way. */
2217 for (b = oldest_sblock; b; b = b->next)
2218 {
2219 end = b->next_free;
2220 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2221
2222 for (from = &b->first_data; from < end; from = from_end)
2223 {
2224 /* Compute the next FROM here because copying below may
2225 overwrite data we need to compute it. */
2226 ptrdiff_t nbytes;
2227
2228 #ifdef GC_CHECK_STRING_BYTES
2229 /* Check that the string size recorded in the string is the
2230 same as the one recorded in the sdata structure. */
2231 if (from->string
2232 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2233 abort ();
2234 #endif /* GC_CHECK_STRING_BYTES */
2235
2236 if (from->string)
2237 nbytes = GC_STRING_BYTES (from->string);
2238 else
2239 nbytes = SDATA_NBYTES (from);
2240
2241 if (nbytes > LARGE_STRING_BYTES)
2242 abort ();
2243
2244 nbytes = SDATA_SIZE (nbytes);
2245 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2246
2247 #ifdef GC_CHECK_STRING_OVERRUN
2248 if (memcmp (string_overrun_cookie,
2249 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2250 GC_STRING_OVERRUN_COOKIE_SIZE))
2251 abort ();
2252 #endif
2253
2254 /* FROM->string non-null means it's alive. Copy its data. */
2255 if (from->string)
2256 {
2257 /* If TB is full, proceed with the next sblock. */
2258 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2259 if (to_end > tb_end)
2260 {
2261 tb->next_free = to;
2262 tb = tb->next;
2263 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2264 to = &tb->first_data;
2265 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2266 }
2267
2268 /* Copy, and update the string's `data' pointer. */
2269 if (from != to)
2270 {
2271 eassert (tb != b || to < from);
2272 memmove (to, from, nbytes + GC_STRING_EXTRA);
2273 to->string->data = SDATA_DATA (to);
2274 }
2275
2276 /* Advance past the sdata we copied to. */
2277 to = to_end;
2278 }
2279 }
2280 }
2281
2282 /* The rest of the sblocks following TB don't contain live data, so
2283 we can free them. */
2284 for (b = tb->next; b; b = next)
2285 {
2286 next = b->next;
2287 lisp_free (b);
2288 }
2289
2290 tb->next_free = to;
2291 tb->next = NULL;
2292 current_sblock = tb;
2293 }
2294
2295 void
2296 string_overflow (void)
2297 {
2298 error ("Maximum string size exceeded");
2299 }
2300
2301 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length, Lisp_Object init)
2306 {
2307 register Lisp_Object val;
2308 register unsigned char *p, *end;
2309 int c;
2310 EMACS_INT nbytes;
2311
2312 CHECK_NATNUM (length);
2313 CHECK_CHARACTER (init);
2314
2315 c = XFASTINT (init);
2316 if (ASCII_CHAR_P (c))
2317 {
2318 nbytes = XINT (length);
2319 val = make_uninit_string (nbytes);
2320 p = SDATA (val);
2321 end = p + SCHARS (val);
2322 while (p != end)
2323 *p++ = c;
2324 }
2325 else
2326 {
2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2328 int len = CHAR_STRING (c, str);
2329 EMACS_INT string_len = XINT (length);
2330
2331 if (string_len > STRING_BYTES_MAX / len)
2332 string_overflow ();
2333 nbytes = len * string_len;
2334 val = make_uninit_multibyte_string (string_len, nbytes);
2335 p = SDATA (val);
2336 end = p + nbytes;
2337 while (p != end)
2338 {
2339 memcpy (p, str, len);
2340 p += len;
2341 }
2342 }
2343
2344 *p = 0;
2345 return val;
2346 }
2347
2348
2349 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2350 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2351 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2352 (Lisp_Object length, Lisp_Object init)
2353 {
2354 register Lisp_Object val;
2355 struct Lisp_Bool_Vector *p;
2356 ptrdiff_t length_in_chars;
2357 EMACS_INT length_in_elts;
2358 int bits_per_value;
2359
2360 CHECK_NATNUM (length);
2361
2362 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2363
2364 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2365
2366 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2367 slot `size' of the struct Lisp_Bool_Vector. */
2368 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2369
2370 /* No Lisp_Object to trace in there. */
2371 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2372
2373 p = XBOOL_VECTOR (val);
2374 p->size = XFASTINT (length);
2375
2376 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2377 / BOOL_VECTOR_BITS_PER_CHAR);
2378 if (length_in_chars)
2379 {
2380 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2381
2382 /* Clear any extraneous bits in the last byte. */
2383 p->data[length_in_chars - 1]
2384 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2385 }
2386
2387 return val;
2388 }
2389
2390
2391 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2392 of characters from the contents. This string may be unibyte or
2393 multibyte, depending on the contents. */
2394
2395 Lisp_Object
2396 make_string (const char *contents, ptrdiff_t nbytes)
2397 {
2398 register Lisp_Object val;
2399 ptrdiff_t nchars, multibyte_nbytes;
2400
2401 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2402 &nchars, &multibyte_nbytes);
2403 if (nbytes == nchars || nbytes != multibyte_nbytes)
2404 /* CONTENTS contains no multibyte sequences or contains an invalid
2405 multibyte sequence. We must make unibyte string. */
2406 val = make_unibyte_string (contents, nbytes);
2407 else
2408 val = make_multibyte_string (contents, nchars, nbytes);
2409 return val;
2410 }
2411
2412
2413 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2414
2415 Lisp_Object
2416 make_unibyte_string (const char *contents, ptrdiff_t length)
2417 {
2418 register Lisp_Object val;
2419 val = make_uninit_string (length);
2420 memcpy (SDATA (val), contents, length);
2421 return val;
2422 }
2423
2424
2425 /* Make a multibyte string from NCHARS characters occupying NBYTES
2426 bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_multibyte_string (const char *contents,
2430 ptrdiff_t nchars, ptrdiff_t nbytes)
2431 {
2432 register Lisp_Object val;
2433 val = make_uninit_multibyte_string (nchars, nbytes);
2434 memcpy (SDATA (val), contents, nbytes);
2435 return val;
2436 }
2437
2438
2439 /* Make a string from NCHARS characters occupying NBYTES bytes at
2440 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2441
2442 Lisp_Object
2443 make_string_from_bytes (const char *contents,
2444 ptrdiff_t nchars, ptrdiff_t nbytes)
2445 {
2446 register Lisp_Object val;
2447 val = make_uninit_multibyte_string (nchars, nbytes);
2448 memcpy (SDATA (val), contents, nbytes);
2449 if (SBYTES (val) == SCHARS (val))
2450 STRING_SET_UNIBYTE (val);
2451 return val;
2452 }
2453
2454
2455 /* Make a string from NCHARS characters occupying NBYTES bytes at
2456 CONTENTS. The argument MULTIBYTE controls whether to label the
2457 string as multibyte. If NCHARS is negative, it counts the number of
2458 characters by itself. */
2459
2460 Lisp_Object
2461 make_specified_string (const char *contents,
2462 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2463 {
2464 register Lisp_Object val;
2465
2466 if (nchars < 0)
2467 {
2468 if (multibyte)
2469 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2470 nbytes);
2471 else
2472 nchars = nbytes;
2473 }
2474 val = make_uninit_multibyte_string (nchars, nbytes);
2475 memcpy (SDATA (val), contents, nbytes);
2476 if (!multibyte)
2477 STRING_SET_UNIBYTE (val);
2478 return val;
2479 }
2480
2481
2482 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2483 occupying LENGTH bytes. */
2484
2485 Lisp_Object
2486 make_uninit_string (EMACS_INT length)
2487 {
2488 Lisp_Object val;
2489
2490 if (!length)
2491 return empty_unibyte_string;
2492 val = make_uninit_multibyte_string (length, length);
2493 STRING_SET_UNIBYTE (val);
2494 return val;
2495 }
2496
2497
2498 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2499 which occupy NBYTES bytes. */
2500
2501 Lisp_Object
2502 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2503 {
2504 Lisp_Object string;
2505 struct Lisp_String *s;
2506
2507 if (nchars < 0)
2508 abort ();
2509 if (!nbytes)
2510 return empty_multibyte_string;
2511
2512 s = allocate_string ();
2513 s->intervals = NULL_INTERVAL;
2514 allocate_string_data (s, nchars, nbytes);
2515 XSETSTRING (string, s);
2516 string_chars_consed += nbytes;
2517 return string;
2518 }
2519
2520 /* Print arguments to BUF according to a FORMAT, then return
2521 a Lisp_String initialized with the data from BUF. */
2522
2523 Lisp_Object
2524 make_formatted_string (char *buf, const char *format, ...)
2525 {
2526 va_list ap;
2527 int length;
2528
2529 va_start (ap, format);
2530 length = vsprintf (buf, format, ap);
2531 va_end (ap);
2532 return make_string (buf, length);
2533 }
2534
2535 \f
2536 /***********************************************************************
2537 Float Allocation
2538 ***********************************************************************/
2539
2540 /* We store float cells inside of float_blocks, allocating a new
2541 float_block with malloc whenever necessary. Float cells reclaimed
2542 by GC are put on a free list to be reallocated before allocating
2543 any new float cells from the latest float_block. */
2544
2545 #define FLOAT_BLOCK_SIZE \
2546 (((BLOCK_BYTES - sizeof (struct float_block *) \
2547 /* The compiler might add padding at the end. */ \
2548 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2549 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2550
2551 #define GETMARKBIT(block,n) \
2552 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2553 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2554 & 1)
2555
2556 #define SETMARKBIT(block,n) \
2557 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2558 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2559
2560 #define UNSETMARKBIT(block,n) \
2561 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2562 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2563
2564 #define FLOAT_BLOCK(fptr) \
2565 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2566
2567 #define FLOAT_INDEX(fptr) \
2568 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2569
2570 struct float_block
2571 {
2572 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2573 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2574 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2575 struct float_block *next;
2576 };
2577
2578 #define FLOAT_MARKED_P(fptr) \
2579 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2580
2581 #define FLOAT_MARK(fptr) \
2582 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2583
2584 #define FLOAT_UNMARK(fptr) \
2585 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2586
2587 /* Current float_block. */
2588
2589 static struct float_block *float_block;
2590
2591 /* Index of first unused Lisp_Float in the current float_block. */
2592
2593 static int float_block_index;
2594
2595 /* Free-list of Lisp_Floats. */
2596
2597 static struct Lisp_Float *float_free_list;
2598
2599
2600 /* Initialize float allocation. */
2601
2602 static void
2603 init_float (void)
2604 {
2605 float_block = NULL;
2606 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2607 float_free_list = 0;
2608 }
2609
2610
2611 /* Return a new float object with value FLOAT_VALUE. */
2612
2613 Lisp_Object
2614 make_float (double float_value)
2615 {
2616 register Lisp_Object val;
2617
2618 /* eassert (!handling_signal); */
2619
2620 MALLOC_BLOCK_INPUT;
2621
2622 if (float_free_list)
2623 {
2624 /* We use the data field for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETFLOAT (val, float_free_list);
2627 float_free_list = float_free_list->u.chain;
2628 }
2629 else
2630 {
2631 if (float_block_index == FLOAT_BLOCK_SIZE)
2632 {
2633 struct float_block *new
2634 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2635 new->next = float_block;
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 float_block = new;
2638 float_block_index = 0;
2639 }
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2642 }
2643
2644 MALLOC_UNBLOCK_INPUT;
2645
2646 XFLOAT_INIT (val, float_value);
2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2651 }
2652
2653
2654 \f
2655 /***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2658
2659 /* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
2662 any new cons cells from the latest cons_block. */
2663
2664 #define CONS_BLOCK_SIZE \
2665 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2666 /* The compiler might add padding at the end. */ \
2667 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2668 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2669
2670 #define CONS_BLOCK(fptr) \
2671 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2672
2673 #define CONS_INDEX(fptr) \
2674 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2675
2676 struct cons_block
2677 {
2678 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2679 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2680 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2681 struct cons_block *next;
2682 };
2683
2684 #define CONS_MARKED_P(fptr) \
2685 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_MARK(fptr) \
2688 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 #define CONS_UNMARK(fptr) \
2691 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 /* Current cons_block. */
2694
2695 static struct cons_block *cons_block;
2696
2697 /* Index of first unused Lisp_Cons in the current block. */
2698
2699 static int cons_block_index;
2700
2701 /* Free-list of Lisp_Cons structures. */
2702
2703 static struct Lisp_Cons *cons_free_list;
2704
2705
2706 /* Initialize cons allocation. */
2707
2708 static void
2709 init_cons (void)
2710 {
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 }
2715
2716
2717 /* Explicitly free a cons cell by putting it on the free-list. */
2718
2719 void
2720 free_cons (struct Lisp_Cons *ptr)
2721 {
2722 ptr->u.chain = cons_free_list;
2723 #if GC_MARK_STACK
2724 ptr->car = Vdead;
2725 #endif
2726 cons_free_list = ptr;
2727 }
2728
2729 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2730 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2731 (Lisp_Object car, Lisp_Object cdr)
2732 {
2733 register Lisp_Object val;
2734
2735 /* eassert (!handling_signal); */
2736
2737 MALLOC_BLOCK_INPUT;
2738
2739 if (cons_free_list)
2740 {
2741 /* We use the cdr for chaining the free list
2742 so that we won't use the same field that has the mark bit. */
2743 XSETCONS (val, cons_free_list);
2744 cons_free_list = cons_free_list->u.chain;
2745 }
2746 else
2747 {
2748 if (cons_block_index == CONS_BLOCK_SIZE)
2749 {
2750 struct cons_block *new
2751 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2752 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2753 new->next = cons_block;
2754 cons_block = new;
2755 cons_block_index = 0;
2756 }
2757 XSETCONS (val, &cons_block->conses[cons_block_index]);
2758 cons_block_index++;
2759 }
2760
2761 MALLOC_UNBLOCK_INPUT;
2762
2763 XSETCAR (val, car);
2764 XSETCDR (val, cdr);
2765 eassert (!CONS_MARKED_P (XCONS (val)));
2766 consing_since_gc += sizeof (struct Lisp_Cons);
2767 cons_cells_consed++;
2768 return val;
2769 }
2770
2771 #ifdef GC_CHECK_CONS_LIST
2772 /* Get an error now if there's any junk in the cons free list. */
2773 void
2774 check_cons_list (void)
2775 {
2776 struct Lisp_Cons *tail = cons_free_list;
2777
2778 while (tail)
2779 tail = tail->u.chain;
2780 }
2781 #endif
2782
2783 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2784
2785 Lisp_Object
2786 list1 (Lisp_Object arg1)
2787 {
2788 return Fcons (arg1, Qnil);
2789 }
2790
2791 Lisp_Object
2792 list2 (Lisp_Object arg1, Lisp_Object arg2)
2793 {
2794 return Fcons (arg1, Fcons (arg2, Qnil));
2795 }
2796
2797
2798 Lisp_Object
2799 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2800 {
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2802 }
2803
2804
2805 Lisp_Object
2806 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2807 {
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2809 }
2810
2811
2812 Lisp_Object
2813 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2814 {
2815 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2816 Fcons (arg5, Qnil)))));
2817 }
2818
2819
2820 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2821 doc: /* Return a newly created list with specified arguments as elements.
2822 Any number of arguments, even zero arguments, are allowed.
2823 usage: (list &rest OBJECTS) */)
2824 (ptrdiff_t nargs, Lisp_Object *args)
2825 {
2826 register Lisp_Object val;
2827 val = Qnil;
2828
2829 while (nargs > 0)
2830 {
2831 nargs--;
2832 val = Fcons (args[nargs], val);
2833 }
2834 return val;
2835 }
2836
2837
2838 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2839 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2840 (register Lisp_Object length, Lisp_Object init)
2841 {
2842 register Lisp_Object val;
2843 register EMACS_INT size;
2844
2845 CHECK_NATNUM (length);
2846 size = XFASTINT (length);
2847
2848 val = Qnil;
2849 while (size > 0)
2850 {
2851 val = Fcons (init, val);
2852 --size;
2853
2854 if (size > 0)
2855 {
2856 val = Fcons (init, val);
2857 --size;
2858
2859 if (size > 0)
2860 {
2861 val = Fcons (init, val);
2862 --size;
2863
2864 if (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
2873 }
2874 }
2875 }
2876 }
2877
2878 QUIT;
2879 }
2880
2881 return val;
2882 }
2883
2884
2885 \f
2886 /***********************************************************************
2887 Vector Allocation
2888 ***********************************************************************/
2889
2890 /* This value is balanced well enough to avoid too much internal overhead
2891 for the most common cases; it's not required to be a power of two, but
2892 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2893
2894 #define VECTOR_BLOCK_SIZE 4096
2895
2896 /* Handy constants for vectorlike objects. */
2897 enum
2898 {
2899 header_size = offsetof (struct Lisp_Vector, contents),
2900 word_size = sizeof (Lisp_Object),
2901 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2902 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2903 };
2904
2905 /* ROUNDUP_SIZE must be a power of 2. */
2906 verify ((roundup_size & (roundup_size - 1)) == 0);
2907
2908 /* Verify assumptions described above. */
2909 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2910 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2911
2912 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2913
2914 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2915
2916 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2917
2918 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2919
2920 /* Size of the minimal vector allocated from block. */
2921
2922 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2923
2924 /* Size of the largest vector allocated from block. */
2925
2926 #define VBLOCK_BYTES_MAX \
2927 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2928
2929 /* We maintain one free list for each possible block-allocated
2930 vector size, and this is the number of free lists we have. */
2931
2932 #define VECTOR_MAX_FREE_LIST_INDEX \
2933 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2934
2935 /* Common shortcut to advance vector pointer over a block data. */
2936
2937 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2938
2939 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2940
2941 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2942
2943 /* Common shortcut to setup vector on a free list. */
2944
2945 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2946 do { \
2947 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2948 eassert ((nbytes) % roundup_size == 0); \
2949 (index) = VINDEX (nbytes); \
2950 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2951 (v)->header.next.vector = vector_free_lists[index]; \
2952 vector_free_lists[index] = (v); \
2953 } while (0)
2954
2955 struct vector_block
2956 {
2957 char data[VECTOR_BLOCK_BYTES];
2958 struct vector_block *next;
2959 };
2960
2961 /* Chain of vector blocks. */
2962
2963 static struct vector_block *vector_blocks;
2964
2965 /* Vector free lists, where NTH item points to a chain of free
2966 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2967
2968 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2969
2970 /* Singly-linked list of large vectors. */
2971
2972 static struct Lisp_Vector *large_vectors;
2973
2974 /* The only vector with 0 slots, allocated from pure space. */
2975
2976 static struct Lisp_Vector *zero_vector;
2977
2978 /* Get a new vector block. */
2979
2980 static struct vector_block *
2981 allocate_vector_block (void)
2982 {
2983 struct vector_block *block = xmalloc (sizeof *block);
2984
2985 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2986 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2987 MEM_TYPE_VECTOR_BLOCK);
2988 #endif
2989
2990 block->next = vector_blocks;
2991 vector_blocks = block;
2992 return block;
2993 }
2994
2995 /* Called once to initialize vector allocation. */
2996
2997 static void
2998 init_vectors (void)
2999 {
3000 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3001 zero_vector->header.size = 0;
3002 }
3003
3004 /* Allocate vector from a vector block. */
3005
3006 static struct Lisp_Vector *
3007 allocate_vector_from_block (size_t nbytes)
3008 {
3009 struct Lisp_Vector *vector, *rest;
3010 struct vector_block *block;
3011 size_t index, restbytes;
3012
3013 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3014 eassert (nbytes % roundup_size == 0);
3015
3016 /* First, try to allocate from a free list
3017 containing vectors of the requested size. */
3018 index = VINDEX (nbytes);
3019 if (vector_free_lists[index])
3020 {
3021 vector = vector_free_lists[index];
3022 vector_free_lists[index] = vector->header.next.vector;
3023 vector->header.next.nbytes = nbytes;
3024 return vector;
3025 }
3026
3027 /* Next, check free lists containing larger vectors. Since
3028 we will split the result, we should have remaining space
3029 large enough to use for one-slot vector at least. */
3030 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3031 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3032 if (vector_free_lists[index])
3033 {
3034 /* This vector is larger than requested. */
3035 vector = vector_free_lists[index];
3036 vector_free_lists[index] = vector->header.next.vector;
3037 vector->header.next.nbytes = nbytes;
3038
3039 /* Excess bytes are used for the smaller vector,
3040 which should be set on an appropriate free list. */
3041 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3042 eassert (restbytes % roundup_size == 0);
3043 rest = ADVANCE (vector, nbytes);
3044 SETUP_ON_FREE_LIST (rest, restbytes, index);
3045 return vector;
3046 }
3047
3048 /* Finally, need a new vector block. */
3049 block = allocate_vector_block ();
3050
3051 /* New vector will be at the beginning of this block. */
3052 vector = (struct Lisp_Vector *) block->data;
3053 vector->header.next.nbytes = nbytes;
3054
3055 /* If the rest of space from this block is large enough
3056 for one-slot vector at least, set up it on a free list. */
3057 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3058 if (restbytes >= VBLOCK_BYTES_MIN)
3059 {
3060 eassert (restbytes % roundup_size == 0);
3061 rest = ADVANCE (vector, nbytes);
3062 SETUP_ON_FREE_LIST (rest, restbytes, index);
3063 }
3064 return vector;
3065 }
3066
3067 /* Return how many Lisp_Objects can be stored in V. */
3068
3069 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3070 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3071 (v)->header.size)
3072
3073 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3074
3075 #define VECTOR_IN_BLOCK(vector, block) \
3076 ((char *) (vector) <= (block)->data \
3077 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3078
3079 /* Number of bytes used by vector-block-allocated object. This is the only
3080 place where we actually use the `nbytes' field of the vector-header.
3081 I.e. we could get rid of the `nbytes' field by computing it based on the
3082 vector-type. */
3083
3084 #define PSEUDOVECTOR_NBYTES(vector) \
3085 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3086 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3087 : vector->header.next.nbytes)
3088
3089 /* Reclaim space used by unmarked vectors. */
3090
3091 static void
3092 sweep_vectors (void)
3093 {
3094 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3095 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3096
3097 total_vector_size = 0;
3098 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3099
3100 /* Looking through vector blocks. */
3101
3102 for (block = vector_blocks; block; block = *bprev)
3103 {
3104 int free_this_block = 0;
3105
3106 for (vector = (struct Lisp_Vector *) block->data;
3107 VECTOR_IN_BLOCK (vector, block); vector = next)
3108 {
3109 if (VECTOR_MARKED_P (vector))
3110 {
3111 VECTOR_UNMARK (vector);
3112 total_vector_size += VECTOR_SIZE (vector);
3113 next = ADVANCE (vector, vector->header.next.nbytes);
3114 }
3115 else
3116 {
3117 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3118 ptrdiff_t total_bytes = nbytes;
3119
3120 next = ADVANCE (vector, nbytes);
3121
3122 /* While NEXT is not marked, try to coalesce with VECTOR,
3123 thus making VECTOR of the largest possible size. */
3124
3125 while (VECTOR_IN_BLOCK (next, block))
3126 {
3127 if (VECTOR_MARKED_P (next))
3128 break;
3129 nbytes = PSEUDOVECTOR_NBYTES (next);
3130 total_bytes += nbytes;
3131 next = ADVANCE (next, nbytes);
3132 }
3133
3134 eassert (total_bytes % roundup_size == 0);
3135
3136 if (vector == (struct Lisp_Vector *) block->data
3137 && !VECTOR_IN_BLOCK (next, block))
3138 /* This block should be freed because all of it's
3139 space was coalesced into the only free vector. */
3140 free_this_block = 1;
3141 else
3142 {
3143 int tmp;
3144 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3145 }
3146 }
3147 }
3148
3149 if (free_this_block)
3150 {
3151 *bprev = block->next;
3152 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3153 mem_delete (mem_find (block->data));
3154 #endif
3155 xfree (block);
3156 }
3157 else
3158 bprev = &block->next;
3159 }
3160
3161 /* Sweep large vectors. */
3162
3163 for (vector = large_vectors; vector; vector = *vprev)
3164 {
3165 if (VECTOR_MARKED_P (vector))
3166 {
3167 VECTOR_UNMARK (vector);
3168 total_vector_size += VECTOR_SIZE (vector);
3169 vprev = &vector->header.next.vector;
3170 }
3171 else
3172 {
3173 *vprev = vector->header.next.vector;
3174 lisp_free (vector);
3175 }
3176 }
3177 }
3178
3179 /* Value is a pointer to a newly allocated Lisp_Vector structure
3180 with room for LEN Lisp_Objects. */
3181
3182 static struct Lisp_Vector *
3183 allocate_vectorlike (ptrdiff_t len)
3184 {
3185 struct Lisp_Vector *p;
3186
3187 MALLOC_BLOCK_INPUT;
3188
3189 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3190 /* eassert (!handling_signal); */
3191
3192 if (len == 0)
3193 p = zero_vector;
3194 else
3195 {
3196 size_t nbytes = header_size + len * word_size;
3197
3198 #ifdef DOUG_LEA_MALLOC
3199 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3200 because mapped region contents are not preserved in
3201 a dumped Emacs. */
3202 mallopt (M_MMAP_MAX, 0);
3203 #endif
3204
3205 if (nbytes <= VBLOCK_BYTES_MAX)
3206 p = allocate_vector_from_block (vroundup (nbytes));
3207 else
3208 {
3209 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3210 p->header.next.vector = large_vectors;
3211 large_vectors = p;
3212 }
3213
3214 #ifdef DOUG_LEA_MALLOC
3215 /* Back to a reasonable maximum of mmap'ed areas. */
3216 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3217 #endif
3218
3219 consing_since_gc += nbytes;
3220 vector_cells_consed += len;
3221 }
3222
3223 MALLOC_UNBLOCK_INPUT;
3224
3225 return p;
3226 }
3227
3228
3229 /* Allocate a vector with LEN slots. */
3230
3231 struct Lisp_Vector *
3232 allocate_vector (EMACS_INT len)
3233 {
3234 struct Lisp_Vector *v;
3235 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3236
3237 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3238 memory_full (SIZE_MAX);
3239 v = allocate_vectorlike (len);
3240 v->header.size = len;
3241 return v;
3242 }
3243
3244
3245 /* Allocate other vector-like structures. */
3246
3247 struct Lisp_Vector *
3248 allocate_pseudovector (int memlen, int lisplen, int tag)
3249 {
3250 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3251 int i;
3252
3253 /* Only the first lisplen slots will be traced normally by the GC. */
3254 for (i = 0; i < lisplen; ++i)
3255 v->contents[i] = Qnil;
3256
3257 XSETPVECTYPESIZE (v, tag, lisplen);
3258 return v;
3259 }
3260
3261 struct buffer *
3262 allocate_buffer (void)
3263 {
3264 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3265
3266 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3267 - header_size) / word_size);
3268 /* Note that the fields of B are not initialized. */
3269 return b;
3270 }
3271
3272 struct Lisp_Hash_Table *
3273 allocate_hash_table (void)
3274 {
3275 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3276 }
3277
3278 struct window *
3279 allocate_window (void)
3280 {
3281 struct window *w;
3282
3283 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3284 /* Users assumes that non-Lisp data is zeroed. */
3285 memset (&w->current_matrix, 0,
3286 sizeof (*w) - offsetof (struct window, current_matrix));
3287 return w;
3288 }
3289
3290 struct terminal *
3291 allocate_terminal (void)
3292 {
3293 struct terminal *t;
3294
3295 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3296 /* Users assumes that non-Lisp data is zeroed. */
3297 memset (&t->next_terminal, 0,
3298 sizeof (*t) - offsetof (struct terminal, next_terminal));
3299 return t;
3300 }
3301
3302 struct frame *
3303 allocate_frame (void)
3304 {
3305 struct frame *f;
3306
3307 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3308 /* Users assumes that non-Lisp data is zeroed. */
3309 memset (&f->face_cache, 0,
3310 sizeof (*f) - offsetof (struct frame, face_cache));
3311 return f;
3312 }
3313
3314 struct Lisp_Process *
3315 allocate_process (void)
3316 {
3317 struct Lisp_Process *p;
3318
3319 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3320 /* Users assumes that non-Lisp data is zeroed. */
3321 memset (&p->pid, 0,
3322 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3323 return p;
3324 }
3325
3326 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3327 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3328 See also the function `vector'. */)
3329 (register Lisp_Object length, Lisp_Object init)
3330 {
3331 Lisp_Object vector;
3332 register ptrdiff_t sizei;
3333 register ptrdiff_t i;
3334 register struct Lisp_Vector *p;
3335
3336 CHECK_NATNUM (length);
3337
3338 p = allocate_vector (XFASTINT (length));
3339 sizei = XFASTINT (length);
3340 for (i = 0; i < sizei; i++)
3341 p->contents[i] = init;
3342
3343 XSETVECTOR (vector, p);
3344 return vector;
3345 }
3346
3347
3348 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3349 doc: /* Return a newly created vector with specified arguments as elements.
3350 Any number of arguments, even zero arguments, are allowed.
3351 usage: (vector &rest OBJECTS) */)
3352 (ptrdiff_t nargs, Lisp_Object *args)
3353 {
3354 register Lisp_Object len, val;
3355 ptrdiff_t i;
3356 register struct Lisp_Vector *p;
3357
3358 XSETFASTINT (len, nargs);
3359 val = Fmake_vector (len, Qnil);
3360 p = XVECTOR (val);
3361 for (i = 0; i < nargs; i++)
3362 p->contents[i] = args[i];
3363 return val;
3364 }
3365
3366 void
3367 make_byte_code (struct Lisp_Vector *v)
3368 {
3369 if (v->header.size > 1 && STRINGP (v->contents[1])
3370 && STRING_MULTIBYTE (v->contents[1]))
3371 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3372 earlier because they produced a raw 8-bit string for byte-code
3373 and now such a byte-code string is loaded as multibyte while
3374 raw 8-bit characters converted to multibyte form. Thus, now we
3375 must convert them back to the original unibyte form. */
3376 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3377 XSETPVECTYPE (v, PVEC_COMPILED);
3378 }
3379
3380 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3381 doc: /* Create a byte-code object with specified arguments as elements.
3382 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3383 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3384 and (optional) INTERACTIVE-SPEC.
3385 The first four arguments are required; at most six have any
3386 significance.
3387 The ARGLIST can be either like the one of `lambda', in which case the arguments
3388 will be dynamically bound before executing the byte code, or it can be an
3389 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3390 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3391 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3392 argument to catch the left-over arguments. If such an integer is used, the
3393 arguments will not be dynamically bound but will be instead pushed on the
3394 stack before executing the byte-code.
3395 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3396 (ptrdiff_t nargs, Lisp_Object *args)
3397 {
3398 register Lisp_Object len, val;
3399 ptrdiff_t i;
3400 register struct Lisp_Vector *p;
3401
3402 /* We used to purecopy everything here, if purify-flga was set. This worked
3403 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3404 dangerous, since make-byte-code is used during execution to build
3405 closures, so any closure built during the preload phase would end up
3406 copied into pure space, including its free variables, which is sometimes
3407 just wasteful and other times plainly wrong (e.g. those free vars may want
3408 to be setcar'd). */
3409
3410 XSETFASTINT (len, nargs);
3411 val = Fmake_vector (len, Qnil);
3412
3413 p = XVECTOR (val);
3414 for (i = 0; i < nargs; i++)
3415 p->contents[i] = args[i];
3416 make_byte_code (p);
3417 XSETCOMPILED (val, p);
3418 return val;
3419 }
3420
3421
3422 \f
3423 /***********************************************************************
3424 Symbol Allocation
3425 ***********************************************************************/
3426
3427 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3428 of the required alignment if LSB tags are used. */
3429
3430 union aligned_Lisp_Symbol
3431 {
3432 struct Lisp_Symbol s;
3433 #if USE_LSB_TAG
3434 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3435 & -(1 << GCTYPEBITS)];
3436 #endif
3437 };
3438
3439 /* Each symbol_block is just under 1020 bytes long, since malloc
3440 really allocates in units of powers of two and uses 4 bytes for its
3441 own overhead. */
3442
3443 #define SYMBOL_BLOCK_SIZE \
3444 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3445
3446 struct symbol_block
3447 {
3448 /* Place `symbols' first, to preserve alignment. */
3449 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3450 struct symbol_block *next;
3451 };
3452
3453 /* Current symbol block and index of first unused Lisp_Symbol
3454 structure in it. */
3455
3456 static struct symbol_block *symbol_block;
3457 static int symbol_block_index;
3458
3459 /* List of free symbols. */
3460
3461 static struct Lisp_Symbol *symbol_free_list;
3462
3463
3464 /* Initialize symbol allocation. */
3465
3466 static void
3467 init_symbol (void)
3468 {
3469 symbol_block = NULL;
3470 symbol_block_index = SYMBOL_BLOCK_SIZE;
3471 symbol_free_list = 0;
3472 }
3473
3474
3475 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3476 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3477 Its value and function definition are void, and its property list is nil. */)
3478 (Lisp_Object name)
3479 {
3480 register Lisp_Object val;
3481 register struct Lisp_Symbol *p;
3482
3483 CHECK_STRING (name);
3484
3485 /* eassert (!handling_signal); */
3486
3487 MALLOC_BLOCK_INPUT;
3488
3489 if (symbol_free_list)
3490 {
3491 XSETSYMBOL (val, symbol_free_list);
3492 symbol_free_list = symbol_free_list->next;
3493 }
3494 else
3495 {
3496 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3497 {
3498 struct symbol_block *new
3499 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3500 new->next = symbol_block;
3501 symbol_block = new;
3502 symbol_block_index = 0;
3503 }
3504 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3505 symbol_block_index++;
3506 }
3507
3508 MALLOC_UNBLOCK_INPUT;
3509
3510 p = XSYMBOL (val);
3511 p->xname = name;
3512 p->plist = Qnil;
3513 p->redirect = SYMBOL_PLAINVAL;
3514 SET_SYMBOL_VAL (p, Qunbound);
3515 p->function = Qunbound;
3516 p->next = NULL;
3517 p->gcmarkbit = 0;
3518 p->interned = SYMBOL_UNINTERNED;
3519 p->constant = 0;
3520 p->declared_special = 0;
3521 consing_since_gc += sizeof (struct Lisp_Symbol);
3522 symbols_consed++;
3523 return val;
3524 }
3525
3526
3527 \f
3528 /***********************************************************************
3529 Marker (Misc) Allocation
3530 ***********************************************************************/
3531
3532 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3533 the required alignment when LSB tags are used. */
3534
3535 union aligned_Lisp_Misc
3536 {
3537 union Lisp_Misc m;
3538 #if USE_LSB_TAG
3539 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3540 & -(1 << GCTYPEBITS)];
3541 #endif
3542 };
3543
3544 /* Allocation of markers and other objects that share that structure.
3545 Works like allocation of conses. */
3546
3547 #define MARKER_BLOCK_SIZE \
3548 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3549
3550 struct marker_block
3551 {
3552 /* Place `markers' first, to preserve alignment. */
3553 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3554 struct marker_block *next;
3555 };
3556
3557 static struct marker_block *marker_block;
3558 static int marker_block_index;
3559
3560 static union Lisp_Misc *marker_free_list;
3561
3562 static void
3563 init_marker (void)
3564 {
3565 marker_block = NULL;
3566 marker_block_index = MARKER_BLOCK_SIZE;
3567 marker_free_list = 0;
3568 }
3569
3570 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3571
3572 Lisp_Object
3573 allocate_misc (void)
3574 {
3575 Lisp_Object val;
3576
3577 /* eassert (!handling_signal); */
3578
3579 MALLOC_BLOCK_INPUT;
3580
3581 if (marker_free_list)
3582 {
3583 XSETMISC (val, marker_free_list);
3584 marker_free_list = marker_free_list->u_free.chain;
3585 }
3586 else
3587 {
3588 if (marker_block_index == MARKER_BLOCK_SIZE)
3589 {
3590 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3591 new->next = marker_block;
3592 marker_block = new;
3593 marker_block_index = 0;
3594 total_free_markers += MARKER_BLOCK_SIZE;
3595 }
3596 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3597 marker_block_index++;
3598 }
3599
3600 MALLOC_UNBLOCK_INPUT;
3601
3602 --total_free_markers;
3603 consing_since_gc += sizeof (union Lisp_Misc);
3604 misc_objects_consed++;
3605 XMISCANY (val)->gcmarkbit = 0;
3606 return val;
3607 }
3608
3609 /* Free a Lisp_Misc object */
3610
3611 static void
3612 free_misc (Lisp_Object misc)
3613 {
3614 XMISCTYPE (misc) = Lisp_Misc_Free;
3615 XMISC (misc)->u_free.chain = marker_free_list;
3616 marker_free_list = XMISC (misc);
3617
3618 total_free_markers++;
3619 }
3620
3621 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3622 INTEGER. This is used to package C values to call record_unwind_protect.
3623 The unwind function can get the C values back using XSAVE_VALUE. */
3624
3625 Lisp_Object
3626 make_save_value (void *pointer, ptrdiff_t integer)
3627 {
3628 register Lisp_Object val;
3629 register struct Lisp_Save_Value *p;
3630
3631 val = allocate_misc ();
3632 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3633 p = XSAVE_VALUE (val);
3634 p->pointer = pointer;
3635 p->integer = integer;
3636 p->dogc = 0;
3637 return val;
3638 }
3639
3640 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3641 doc: /* Return a newly allocated marker which does not point at any place. */)
3642 (void)
3643 {
3644 register Lisp_Object val;
3645 register struct Lisp_Marker *p;
3646
3647 val = allocate_misc ();
3648 XMISCTYPE (val) = Lisp_Misc_Marker;
3649 p = XMARKER (val);
3650 p->buffer = 0;
3651 p->bytepos = 0;
3652 p->charpos = 0;
3653 p->next = NULL;
3654 p->insertion_type = 0;
3655 return val;
3656 }
3657
3658 /* Return a newly allocated marker which points into BUF
3659 at character position CHARPOS and byte position BYTEPOS. */
3660
3661 Lisp_Object
3662 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3663 {
3664 Lisp_Object obj;
3665 struct Lisp_Marker *m;
3666
3667 /* No dead buffers here. */
3668 eassert (!NILP (BVAR (buf, name)));
3669
3670 /* Every character is at least one byte. */
3671 eassert (charpos <= bytepos);
3672
3673 obj = allocate_misc ();
3674 XMISCTYPE (obj) = Lisp_Misc_Marker;
3675 m = XMARKER (obj);
3676 m->buffer = buf;
3677 m->charpos = charpos;
3678 m->bytepos = bytepos;
3679 m->insertion_type = 0;
3680 m->next = BUF_MARKERS (buf);
3681 BUF_MARKERS (buf) = m;
3682 return obj;
3683 }
3684
3685 /* Put MARKER back on the free list after using it temporarily. */
3686
3687 void
3688 free_marker (Lisp_Object marker)
3689 {
3690 unchain_marker (XMARKER (marker));
3691 free_misc (marker);
3692 }
3693
3694 \f
3695 /* Return a newly created vector or string with specified arguments as
3696 elements. If all the arguments are characters that can fit
3697 in a string of events, make a string; otherwise, make a vector.
3698
3699 Any number of arguments, even zero arguments, are allowed. */
3700
3701 Lisp_Object
3702 make_event_array (register int nargs, Lisp_Object *args)
3703 {
3704 int i;
3705
3706 for (i = 0; i < nargs; i++)
3707 /* The things that fit in a string
3708 are characters that are in 0...127,
3709 after discarding the meta bit and all the bits above it. */
3710 if (!INTEGERP (args[i])
3711 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3712 return Fvector (nargs, args);
3713
3714 /* Since the loop exited, we know that all the things in it are
3715 characters, so we can make a string. */
3716 {
3717 Lisp_Object result;
3718
3719 result = Fmake_string (make_number (nargs), make_number (0));
3720 for (i = 0; i < nargs; i++)
3721 {
3722 SSET (result, i, XINT (args[i]));
3723 /* Move the meta bit to the right place for a string char. */
3724 if (XINT (args[i]) & CHAR_META)
3725 SSET (result, i, SREF (result, i) | 0x80);
3726 }
3727
3728 return result;
3729 }
3730 }
3731
3732
3733 \f
3734 /************************************************************************
3735 Memory Full Handling
3736 ************************************************************************/
3737
3738
3739 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3740 there may have been size_t overflow so that malloc was never
3741 called, or perhaps malloc was invoked successfully but the
3742 resulting pointer had problems fitting into a tagged EMACS_INT. In
3743 either case this counts as memory being full even though malloc did
3744 not fail. */
3745
3746 void
3747 memory_full (size_t nbytes)
3748 {
3749 /* Do not go into hysterics merely because a large request failed. */
3750 int enough_free_memory = 0;
3751 if (SPARE_MEMORY < nbytes)
3752 {
3753 void *p;
3754
3755 MALLOC_BLOCK_INPUT;
3756 p = malloc (SPARE_MEMORY);
3757 if (p)
3758 {
3759 free (p);
3760 enough_free_memory = 1;
3761 }
3762 MALLOC_UNBLOCK_INPUT;
3763 }
3764
3765 if (! enough_free_memory)
3766 {
3767 int i;
3768
3769 Vmemory_full = Qt;
3770
3771 memory_full_cons_threshold = sizeof (struct cons_block);
3772
3773 /* The first time we get here, free the spare memory. */
3774 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3775 if (spare_memory[i])
3776 {
3777 if (i == 0)
3778 free (spare_memory[i]);
3779 else if (i >= 1 && i <= 4)
3780 lisp_align_free (spare_memory[i]);
3781 else
3782 lisp_free (spare_memory[i]);
3783 spare_memory[i] = 0;
3784 }
3785
3786 /* Record the space now used. When it decreases substantially,
3787 we can refill the memory reserve. */
3788 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3789 bytes_used_when_full = BYTES_USED;
3790 #endif
3791 }
3792
3793 /* This used to call error, but if we've run out of memory, we could
3794 get infinite recursion trying to build the string. */
3795 xsignal (Qnil, Vmemory_signal_data);
3796 }
3797
3798 /* If we released our reserve (due to running out of memory),
3799 and we have a fair amount free once again,
3800 try to set aside another reserve in case we run out once more.
3801
3802 This is called when a relocatable block is freed in ralloc.c,
3803 and also directly from this file, in case we're not using ralloc.c. */
3804
3805 void
3806 refill_memory_reserve (void)
3807 {
3808 #ifndef SYSTEM_MALLOC
3809 if (spare_memory[0] == 0)
3810 spare_memory[0] = malloc (SPARE_MEMORY);
3811 if (spare_memory[1] == 0)
3812 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_CONS);
3814 if (spare_memory[2] == 0)
3815 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3816 MEM_TYPE_CONS);
3817 if (spare_memory[3] == 0)
3818 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3819 MEM_TYPE_CONS);
3820 if (spare_memory[4] == 0)
3821 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3822 MEM_TYPE_CONS);
3823 if (spare_memory[5] == 0)
3824 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3825 MEM_TYPE_STRING);
3826 if (spare_memory[6] == 0)
3827 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3828 MEM_TYPE_STRING);
3829 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3830 Vmemory_full = Qnil;
3831 #endif
3832 }
3833 \f
3834 /************************************************************************
3835 C Stack Marking
3836 ************************************************************************/
3837
3838 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3839
3840 /* Conservative C stack marking requires a method to identify possibly
3841 live Lisp objects given a pointer value. We do this by keeping
3842 track of blocks of Lisp data that are allocated in a red-black tree
3843 (see also the comment of mem_node which is the type of nodes in
3844 that tree). Function lisp_malloc adds information for an allocated
3845 block to the red-black tree with calls to mem_insert, and function
3846 lisp_free removes it with mem_delete. Functions live_string_p etc
3847 call mem_find to lookup information about a given pointer in the
3848 tree, and use that to determine if the pointer points to a Lisp
3849 object or not. */
3850
3851 /* Initialize this part of alloc.c. */
3852
3853 static void
3854 mem_init (void)
3855 {
3856 mem_z.left = mem_z.right = MEM_NIL;
3857 mem_z.parent = NULL;
3858 mem_z.color = MEM_BLACK;
3859 mem_z.start = mem_z.end = NULL;
3860 mem_root = MEM_NIL;
3861 }
3862
3863
3864 /* Value is a pointer to the mem_node containing START. Value is
3865 MEM_NIL if there is no node in the tree containing START. */
3866
3867 static inline struct mem_node *
3868 mem_find (void *start)
3869 {
3870 struct mem_node *p;
3871
3872 if (start < min_heap_address || start > max_heap_address)
3873 return MEM_NIL;
3874
3875 /* Make the search always successful to speed up the loop below. */
3876 mem_z.start = start;
3877 mem_z.end = (char *) start + 1;
3878
3879 p = mem_root;
3880 while (start < p->start || start >= p->end)
3881 p = start < p->start ? p->left : p->right;
3882 return p;
3883 }
3884
3885
3886 /* Insert a new node into the tree for a block of memory with start
3887 address START, end address END, and type TYPE. Value is a
3888 pointer to the node that was inserted. */
3889
3890 static struct mem_node *
3891 mem_insert (void *start, void *end, enum mem_type type)
3892 {
3893 struct mem_node *c, *parent, *x;
3894
3895 if (min_heap_address == NULL || start < min_heap_address)
3896 min_heap_address = start;
3897 if (max_heap_address == NULL || end > max_heap_address)
3898 max_heap_address = end;
3899
3900 /* See where in the tree a node for START belongs. In this
3901 particular application, it shouldn't happen that a node is already
3902 present. For debugging purposes, let's check that. */
3903 c = mem_root;
3904 parent = NULL;
3905
3906 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3907
3908 while (c != MEM_NIL)
3909 {
3910 if (start >= c->start && start < c->end)
3911 abort ();
3912 parent = c;
3913 c = start < c->start ? c->left : c->right;
3914 }
3915
3916 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3917
3918 while (c != MEM_NIL)
3919 {
3920 parent = c;
3921 c = start < c->start ? c->left : c->right;
3922 }
3923
3924 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3925
3926 /* Create a new node. */
3927 #ifdef GC_MALLOC_CHECK
3928 x = _malloc_internal (sizeof *x);
3929 if (x == NULL)
3930 abort ();
3931 #else
3932 x = xmalloc (sizeof *x);
3933 #endif
3934 x->start = start;
3935 x->end = end;
3936 x->type = type;
3937 x->parent = parent;
3938 x->left = x->right = MEM_NIL;
3939 x->color = MEM_RED;
3940
3941 /* Insert it as child of PARENT or install it as root. */
3942 if (parent)
3943 {
3944 if (start < parent->start)
3945 parent->left = x;
3946 else
3947 parent->right = x;
3948 }
3949 else
3950 mem_root = x;
3951
3952 /* Re-establish red-black tree properties. */
3953 mem_insert_fixup (x);
3954
3955 return x;
3956 }
3957
3958
3959 /* Re-establish the red-black properties of the tree, and thereby
3960 balance the tree, after node X has been inserted; X is always red. */
3961
3962 static void
3963 mem_insert_fixup (struct mem_node *x)
3964 {
3965 while (x != mem_root && x->parent->color == MEM_RED)
3966 {
3967 /* X is red and its parent is red. This is a violation of
3968 red-black tree property #3. */
3969
3970 if (x->parent == x->parent->parent->left)
3971 {
3972 /* We're on the left side of our grandparent, and Y is our
3973 "uncle". */
3974 struct mem_node *y = x->parent->parent->right;
3975
3976 if (y->color == MEM_RED)
3977 {
3978 /* Uncle and parent are red but should be black because
3979 X is red. Change the colors accordingly and proceed
3980 with the grandparent. */
3981 x->parent->color = MEM_BLACK;
3982 y->color = MEM_BLACK;
3983 x->parent->parent->color = MEM_RED;
3984 x = x->parent->parent;
3985 }
3986 else
3987 {
3988 /* Parent and uncle have different colors; parent is
3989 red, uncle is black. */
3990 if (x == x->parent->right)
3991 {
3992 x = x->parent;
3993 mem_rotate_left (x);
3994 }
3995
3996 x->parent->color = MEM_BLACK;
3997 x->parent->parent->color = MEM_RED;
3998 mem_rotate_right (x->parent->parent);
3999 }
4000 }
4001 else
4002 {
4003 /* This is the symmetrical case of above. */
4004 struct mem_node *y = x->parent->parent->left;
4005
4006 if (y->color == MEM_RED)
4007 {
4008 x->parent->color = MEM_BLACK;
4009 y->color = MEM_BLACK;
4010 x->parent->parent->color = MEM_RED;
4011 x = x->parent->parent;
4012 }
4013 else
4014 {
4015 if (x == x->parent->left)
4016 {
4017 x = x->parent;
4018 mem_rotate_right (x);
4019 }
4020
4021 x->parent->color = MEM_BLACK;
4022 x->parent->parent->color = MEM_RED;
4023 mem_rotate_left (x->parent->parent);
4024 }
4025 }
4026 }
4027
4028 /* The root may have been changed to red due to the algorithm. Set
4029 it to black so that property #5 is satisfied. */
4030 mem_root->color = MEM_BLACK;
4031 }
4032
4033
4034 /* (x) (y)
4035 / \ / \
4036 a (y) ===> (x) c
4037 / \ / \
4038 b c a b */
4039
4040 static void
4041 mem_rotate_left (struct mem_node *x)
4042 {
4043 struct mem_node *y;
4044
4045 /* Turn y's left sub-tree into x's right sub-tree. */
4046 y = x->right;
4047 x->right = y->left;
4048 if (y->left != MEM_NIL)
4049 y->left->parent = x;
4050
4051 /* Y's parent was x's parent. */
4052 if (y != MEM_NIL)
4053 y->parent = x->parent;
4054
4055 /* Get the parent to point to y instead of x. */
4056 if (x->parent)
4057 {
4058 if (x == x->parent->left)
4059 x->parent->left = y;
4060 else
4061 x->parent->right = y;
4062 }
4063 else
4064 mem_root = y;
4065
4066 /* Put x on y's left. */
4067 y->left = x;
4068 if (x != MEM_NIL)
4069 x->parent = y;
4070 }
4071
4072
4073 /* (x) (Y)
4074 / \ / \
4075 (y) c ===> a (x)
4076 / \ / \
4077 a b b c */
4078
4079 static void
4080 mem_rotate_right (struct mem_node *x)
4081 {
4082 struct mem_node *y = x->left;
4083
4084 x->left = y->right;
4085 if (y->right != MEM_NIL)
4086 y->right->parent = x;
4087
4088 if (y != MEM_NIL)
4089 y->parent = x->parent;
4090 if (x->parent)
4091 {
4092 if (x == x->parent->right)
4093 x->parent->right = y;
4094 else
4095 x->parent->left = y;
4096 }
4097 else
4098 mem_root = y;
4099
4100 y->right = x;
4101 if (x != MEM_NIL)
4102 x->parent = y;
4103 }
4104
4105
4106 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4107
4108 static void
4109 mem_delete (struct mem_node *z)
4110 {
4111 struct mem_node *x, *y;
4112
4113 if (!z || z == MEM_NIL)
4114 return;
4115
4116 if (z->left == MEM_NIL || z->right == MEM_NIL)
4117 y = z;
4118 else
4119 {
4120 y = z->right;
4121 while (y->left != MEM_NIL)
4122 y = y->left;
4123 }
4124
4125 if (y->left != MEM_NIL)
4126 x = y->left;
4127 else
4128 x = y->right;
4129
4130 x->parent = y->parent;
4131 if (y->parent)
4132 {
4133 if (y == y->parent->left)
4134 y->parent->left = x;
4135 else
4136 y->parent->right = x;
4137 }
4138 else
4139 mem_root = x;
4140
4141 if (y != z)
4142 {
4143 z->start = y->start;
4144 z->end = y->end;
4145 z->type = y->type;
4146 }
4147
4148 if (y->color == MEM_BLACK)
4149 mem_delete_fixup (x);
4150
4151 #ifdef GC_MALLOC_CHECK
4152 _free_internal (y);
4153 #else
4154 xfree (y);
4155 #endif
4156 }
4157
4158
4159 /* Re-establish the red-black properties of the tree, after a
4160 deletion. */
4161
4162 static void
4163 mem_delete_fixup (struct mem_node *x)
4164 {
4165 while (x != mem_root && x->color == MEM_BLACK)
4166 {
4167 if (x == x->parent->left)
4168 {
4169 struct mem_node *w = x->parent->right;
4170
4171 if (w->color == MEM_RED)
4172 {
4173 w->color = MEM_BLACK;
4174 x->parent->color = MEM_RED;
4175 mem_rotate_left (x->parent);
4176 w = x->parent->right;
4177 }
4178
4179 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4180 {
4181 w->color = MEM_RED;
4182 x = x->parent;
4183 }
4184 else
4185 {
4186 if (w->right->color == MEM_BLACK)
4187 {
4188 w->left->color = MEM_BLACK;
4189 w->color = MEM_RED;
4190 mem_rotate_right (w);
4191 w = x->parent->right;
4192 }
4193 w->color = x->parent->color;
4194 x->parent->color = MEM_BLACK;
4195 w->right->color = MEM_BLACK;
4196 mem_rotate_left (x->parent);
4197 x = mem_root;
4198 }
4199 }
4200 else
4201 {
4202 struct mem_node *w = x->parent->left;
4203
4204 if (w->color == MEM_RED)
4205 {
4206 w->color = MEM_BLACK;
4207 x->parent->color = MEM_RED;
4208 mem_rotate_right (x->parent);
4209 w = x->parent->left;
4210 }
4211
4212 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4213 {
4214 w->color = MEM_RED;
4215 x = x->parent;
4216 }
4217 else
4218 {
4219 if (w->left->color == MEM_BLACK)
4220 {
4221 w->right->color = MEM_BLACK;
4222 w->color = MEM_RED;
4223 mem_rotate_left (w);
4224 w = x->parent->left;
4225 }
4226
4227 w->color = x->parent->color;
4228 x->parent->color = MEM_BLACK;
4229 w->left->color = MEM_BLACK;
4230 mem_rotate_right (x->parent);
4231 x = mem_root;
4232 }
4233 }
4234 }
4235
4236 x->color = MEM_BLACK;
4237 }
4238
4239
4240 /* Value is non-zero if P is a pointer to a live Lisp string on
4241 the heap. M is a pointer to the mem_block for P. */
4242
4243 static inline int
4244 live_string_p (struct mem_node *m, void *p)
4245 {
4246 if (m->type == MEM_TYPE_STRING)
4247 {
4248 struct string_block *b = (struct string_block *) m->start;
4249 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4250
4251 /* P must point to the start of a Lisp_String structure, and it
4252 must not be on the free-list. */
4253 return (offset >= 0
4254 && offset % sizeof b->strings[0] == 0
4255 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4256 && ((struct Lisp_String *) p)->data != NULL);
4257 }
4258 else
4259 return 0;
4260 }
4261
4262
4263 /* Value is non-zero if P is a pointer to a live Lisp cons on
4264 the heap. M is a pointer to the mem_block for P. */
4265
4266 static inline int
4267 live_cons_p (struct mem_node *m, void *p)
4268 {
4269 if (m->type == MEM_TYPE_CONS)
4270 {
4271 struct cons_block *b = (struct cons_block *) m->start;
4272 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4273
4274 /* P must point to the start of a Lisp_Cons, not be
4275 one of the unused cells in the current cons block,
4276 and not be on the free-list. */
4277 return (offset >= 0
4278 && offset % sizeof b->conses[0] == 0
4279 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4280 && (b != cons_block
4281 || offset / sizeof b->conses[0] < cons_block_index)
4282 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4283 }
4284 else
4285 return 0;
4286 }
4287
4288
4289 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4290 the heap. M is a pointer to the mem_block for P. */
4291
4292 static inline int
4293 live_symbol_p (struct mem_node *m, void *p)
4294 {
4295 if (m->type == MEM_TYPE_SYMBOL)
4296 {
4297 struct symbol_block *b = (struct symbol_block *) m->start;
4298 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4299
4300 /* P must point to the start of a Lisp_Symbol, not be
4301 one of the unused cells in the current symbol block,
4302 and not be on the free-list. */
4303 return (offset >= 0
4304 && offset % sizeof b->symbols[0] == 0
4305 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4306 && (b != symbol_block
4307 || offset / sizeof b->symbols[0] < symbol_block_index)
4308 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4309 }
4310 else
4311 return 0;
4312 }
4313
4314
4315 /* Value is non-zero if P is a pointer to a live Lisp float on
4316 the heap. M is a pointer to the mem_block for P. */
4317
4318 static inline int
4319 live_float_p (struct mem_node *m, void *p)
4320 {
4321 if (m->type == MEM_TYPE_FLOAT)
4322 {
4323 struct float_block *b = (struct float_block *) m->start;
4324 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4325
4326 /* P must point to the start of a Lisp_Float and not be
4327 one of the unused cells in the current float block. */
4328 return (offset >= 0
4329 && offset % sizeof b->floats[0] == 0
4330 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4331 && (b != float_block
4332 || offset / sizeof b->floats[0] < float_block_index));
4333 }
4334 else
4335 return 0;
4336 }
4337
4338
4339 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4340 the heap. M is a pointer to the mem_block for P. */
4341
4342 static inline int
4343 live_misc_p (struct mem_node *m, void *p)
4344 {
4345 if (m->type == MEM_TYPE_MISC)
4346 {
4347 struct marker_block *b = (struct marker_block *) m->start;
4348 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4349
4350 /* P must point to the start of a Lisp_Misc, not be
4351 one of the unused cells in the current misc block,
4352 and not be on the free-list. */
4353 return (offset >= 0
4354 && offset % sizeof b->markers[0] == 0
4355 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4356 && (b != marker_block
4357 || offset / sizeof b->markers[0] < marker_block_index)
4358 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4359 }
4360 else
4361 return 0;
4362 }
4363
4364
4365 /* Value is non-zero if P is a pointer to a live vector-like object.
4366 M is a pointer to the mem_block for P. */
4367
4368 static inline int
4369 live_vector_p (struct mem_node *m, void *p)
4370 {
4371 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4372 {
4373 /* This memory node corresponds to a vector block. */
4374 struct vector_block *block = (struct vector_block *) m->start;
4375 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4376
4377 /* P is in the block's allocation range. Scan the block
4378 up to P and see whether P points to the start of some
4379 vector which is not on a free list. FIXME: check whether
4380 some allocation patterns (probably a lot of short vectors)
4381 may cause a substantial overhead of this loop. */
4382 while (VECTOR_IN_BLOCK (vector, block)
4383 && vector <= (struct Lisp_Vector *) p)
4384 {
4385 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4386 vector = ADVANCE (vector, (vector->header.size
4387 & PSEUDOVECTOR_SIZE_MASK));
4388 else if (vector == p)
4389 return 1;
4390 else
4391 vector = ADVANCE (vector, vector->header.next.nbytes);
4392 }
4393 }
4394 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4395 /* This memory node corresponds to a large vector. */
4396 return 1;
4397 return 0;
4398 }
4399
4400
4401 /* Value is non-zero if P is a pointer to a live buffer. M is a
4402 pointer to the mem_block for P. */
4403
4404 static inline int
4405 live_buffer_p (struct mem_node *m, void *p)
4406 {
4407 /* P must point to the start of the block, and the buffer
4408 must not have been killed. */
4409 return (m->type == MEM_TYPE_BUFFER
4410 && p == m->start
4411 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4412 }
4413
4414 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4415
4416 #if GC_MARK_STACK
4417
4418 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4419
4420 /* Array of objects that are kept alive because the C stack contains
4421 a pattern that looks like a reference to them . */
4422
4423 #define MAX_ZOMBIES 10
4424 static Lisp_Object zombies[MAX_ZOMBIES];
4425
4426 /* Number of zombie objects. */
4427
4428 static EMACS_INT nzombies;
4429
4430 /* Number of garbage collections. */
4431
4432 static EMACS_INT ngcs;
4433
4434 /* Average percentage of zombies per collection. */
4435
4436 static double avg_zombies;
4437
4438 /* Max. number of live and zombie objects. */
4439
4440 static EMACS_INT max_live, max_zombies;
4441
4442 /* Average number of live objects per GC. */
4443
4444 static double avg_live;
4445
4446 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4447 doc: /* Show information about live and zombie objects. */)
4448 (void)
4449 {
4450 Lisp_Object args[8], zombie_list = Qnil;
4451 EMACS_INT i;
4452 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4453 zombie_list = Fcons (zombies[i], zombie_list);
4454 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4455 args[1] = make_number (ngcs);
4456 args[2] = make_float (avg_live);
4457 args[3] = make_float (avg_zombies);
4458 args[4] = make_float (avg_zombies / avg_live / 100);
4459 args[5] = make_number (max_live);
4460 args[6] = make_number (max_zombies);
4461 args[7] = zombie_list;
4462 return Fmessage (8, args);
4463 }
4464
4465 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4466
4467
4468 /* Mark OBJ if we can prove it's a Lisp_Object. */
4469
4470 static inline void
4471 mark_maybe_object (Lisp_Object obj)
4472 {
4473 void *po;
4474 struct mem_node *m;
4475
4476 if (INTEGERP (obj))
4477 return;
4478
4479 po = (void *) XPNTR (obj);
4480 m = mem_find (po);
4481
4482 if (m != MEM_NIL)
4483 {
4484 int mark_p = 0;
4485
4486 switch (XTYPE (obj))
4487 {
4488 case Lisp_String:
4489 mark_p = (live_string_p (m, po)
4490 && !STRING_MARKED_P ((struct Lisp_String *) po));
4491 break;
4492
4493 case Lisp_Cons:
4494 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4495 break;
4496
4497 case Lisp_Symbol:
4498 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4499 break;
4500
4501 case Lisp_Float:
4502 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4503 break;
4504
4505 case Lisp_Vectorlike:
4506 /* Note: can't check BUFFERP before we know it's a
4507 buffer because checking that dereferences the pointer
4508 PO which might point anywhere. */
4509 if (live_vector_p (m, po))
4510 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4511 else if (live_buffer_p (m, po))
4512 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4513 break;
4514
4515 case Lisp_Misc:
4516 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4517 break;
4518
4519 default:
4520 break;
4521 }
4522
4523 if (mark_p)
4524 {
4525 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4526 if (nzombies < MAX_ZOMBIES)
4527 zombies[nzombies] = obj;
4528 ++nzombies;
4529 #endif
4530 mark_object (obj);
4531 }
4532 }
4533 }
4534
4535
4536 /* If P points to Lisp data, mark that as live if it isn't already
4537 marked. */
4538
4539 static inline void
4540 mark_maybe_pointer (void *p)
4541 {
4542 struct mem_node *m;
4543
4544 /* Quickly rule out some values which can't point to Lisp data.
4545 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4546 Otherwise, assume that Lisp data is aligned on even addresses. */
4547 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4548 return;
4549
4550 m = mem_find (p);
4551 if (m != MEM_NIL)
4552 {
4553 Lisp_Object obj = Qnil;
4554
4555 switch (m->type)
4556 {
4557 case MEM_TYPE_NON_LISP:
4558 /* Nothing to do; not a pointer to Lisp memory. */
4559 break;
4560
4561 case MEM_TYPE_BUFFER:
4562 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4563 XSETVECTOR (obj, p);
4564 break;
4565
4566 case MEM_TYPE_CONS:
4567 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4568 XSETCONS (obj, p);
4569 break;
4570
4571 case MEM_TYPE_STRING:
4572 if (live_string_p (m, p)
4573 && !STRING_MARKED_P ((struct Lisp_String *) p))
4574 XSETSTRING (obj, p);
4575 break;
4576
4577 case MEM_TYPE_MISC:
4578 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4579 XSETMISC (obj, p);
4580 break;
4581
4582 case MEM_TYPE_SYMBOL:
4583 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4584 XSETSYMBOL (obj, p);
4585 break;
4586
4587 case MEM_TYPE_FLOAT:
4588 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4589 XSETFLOAT (obj, p);
4590 break;
4591
4592 case MEM_TYPE_VECTORLIKE:
4593 case MEM_TYPE_VECTOR_BLOCK:
4594 if (live_vector_p (m, p))
4595 {
4596 Lisp_Object tem;
4597 XSETVECTOR (tem, p);
4598 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4599 obj = tem;
4600 }
4601 break;
4602
4603 default:
4604 abort ();
4605 }
4606
4607 if (!NILP (obj))
4608 mark_object (obj);
4609 }
4610 }
4611
4612
4613 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4614 a smaller alignment than GCC's __alignof__ and mark_memory might
4615 miss objects if __alignof__ were used. */
4616 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4617
4618 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4619 not suffice, which is the typical case. A host where a Lisp_Object is
4620 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4621 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4622 suffice to widen it to to a Lisp_Object and check it that way. */
4623 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4624 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4625 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4626 nor mark_maybe_object can follow the pointers. This should not occur on
4627 any practical porting target. */
4628 # error "MSB type bits straddle pointer-word boundaries"
4629 # endif
4630 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4631 pointer words that hold pointers ORed with type bits. */
4632 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4633 #else
4634 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4635 words that hold unmodified pointers. */
4636 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4637 #endif
4638
4639 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4640 or END+OFFSET..START. */
4641
4642 static void
4643 mark_memory (void *start, void *end)
4644 #ifdef __clang__
4645 /* Do not allow -faddress-sanitizer to check this function, since it
4646 crosses the function stack boundary, and thus would yield many
4647 false positives. */
4648 __attribute__((no_address_safety_analysis))
4649 #endif
4650 {
4651 void **pp;
4652 int i;
4653
4654 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4655 nzombies = 0;
4656 #endif
4657
4658 /* Make START the pointer to the start of the memory region,
4659 if it isn't already. */
4660 if (end < start)
4661 {
4662 void *tem = start;
4663 start = end;
4664 end = tem;
4665 }
4666
4667 /* Mark Lisp data pointed to. This is necessary because, in some
4668 situations, the C compiler optimizes Lisp objects away, so that
4669 only a pointer to them remains. Example:
4670
4671 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4672 ()
4673 {
4674 Lisp_Object obj = build_string ("test");
4675 struct Lisp_String *s = XSTRING (obj);
4676 Fgarbage_collect ();
4677 fprintf (stderr, "test `%s'\n", s->data);
4678 return Qnil;
4679 }
4680
4681 Here, `obj' isn't really used, and the compiler optimizes it
4682 away. The only reference to the life string is through the
4683 pointer `s'. */
4684
4685 for (pp = start; (void *) pp < end; pp++)
4686 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4687 {
4688 void *p = *(void **) ((char *) pp + i);
4689 mark_maybe_pointer (p);
4690 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4691 mark_maybe_object (XIL ((intptr_t) p));
4692 }
4693 }
4694
4695 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4696 the GCC system configuration. In gcc 3.2, the only systems for
4697 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4698 by others?) and ns32k-pc532-min. */
4699
4700 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4701
4702 static int setjmp_tested_p, longjmps_done;
4703
4704 #define SETJMP_WILL_LIKELY_WORK "\
4705 \n\
4706 Emacs garbage collector has been changed to use conservative stack\n\
4707 marking. Emacs has determined that the method it uses to do the\n\
4708 marking will likely work on your system, but this isn't sure.\n\
4709 \n\
4710 If you are a system-programmer, or can get the help of a local wizard\n\
4711 who is, please take a look at the function mark_stack in alloc.c, and\n\
4712 verify that the methods used are appropriate for your system.\n\
4713 \n\
4714 Please mail the result to <emacs-devel@gnu.org>.\n\
4715 "
4716
4717 #define SETJMP_WILL_NOT_WORK "\
4718 \n\
4719 Emacs garbage collector has been changed to use conservative stack\n\
4720 marking. Emacs has determined that the default method it uses to do the\n\
4721 marking will not work on your system. We will need a system-dependent\n\
4722 solution for your system.\n\
4723 \n\
4724 Please take a look at the function mark_stack in alloc.c, and\n\
4725 try to find a way to make it work on your system.\n\
4726 \n\
4727 Note that you may get false negatives, depending on the compiler.\n\
4728 In particular, you need to use -O with GCC for this test.\n\
4729 \n\
4730 Please mail the result to <emacs-devel@gnu.org>.\n\
4731 "
4732
4733
4734 /* Perform a quick check if it looks like setjmp saves registers in a
4735 jmp_buf. Print a message to stderr saying so. When this test
4736 succeeds, this is _not_ a proof that setjmp is sufficient for
4737 conservative stack marking. Only the sources or a disassembly
4738 can prove that. */
4739
4740 static void
4741 test_setjmp (void)
4742 {
4743 char buf[10];
4744 register int x;
4745 jmp_buf jbuf;
4746 int result = 0;
4747
4748 /* Arrange for X to be put in a register. */
4749 sprintf (buf, "1");
4750 x = strlen (buf);
4751 x = 2 * x - 1;
4752
4753 setjmp (jbuf);
4754 if (longjmps_done == 1)
4755 {
4756 /* Came here after the longjmp at the end of the function.
4757
4758 If x == 1, the longjmp has restored the register to its
4759 value before the setjmp, and we can hope that setjmp
4760 saves all such registers in the jmp_buf, although that
4761 isn't sure.
4762
4763 For other values of X, either something really strange is
4764 taking place, or the setjmp just didn't save the register. */
4765
4766 if (x == 1)
4767 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4768 else
4769 {
4770 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4771 exit (1);
4772 }
4773 }
4774
4775 ++longjmps_done;
4776 x = 2;
4777 if (longjmps_done == 1)
4778 longjmp (jbuf, 1);
4779 }
4780
4781 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4782
4783
4784 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4785
4786 /* Abort if anything GCPRO'd doesn't survive the GC. */
4787
4788 static void
4789 check_gcpros (void)
4790 {
4791 struct gcpro *p;
4792 ptrdiff_t i;
4793
4794 for (p = gcprolist; p; p = p->next)
4795 for (i = 0; i < p->nvars; ++i)
4796 if (!survives_gc_p (p->var[i]))
4797 /* FIXME: It's not necessarily a bug. It might just be that the
4798 GCPRO is unnecessary or should release the object sooner. */
4799 abort ();
4800 }
4801
4802 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4803
4804 static void
4805 dump_zombies (void)
4806 {
4807 int i;
4808
4809 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4810 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4811 {
4812 fprintf (stderr, " %d = ", i);
4813 debug_print (zombies[i]);
4814 }
4815 }
4816
4817 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4818
4819
4820 /* Mark live Lisp objects on the C stack.
4821
4822 There are several system-dependent problems to consider when
4823 porting this to new architectures:
4824
4825 Processor Registers
4826
4827 We have to mark Lisp objects in CPU registers that can hold local
4828 variables or are used to pass parameters.
4829
4830 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4831 something that either saves relevant registers on the stack, or
4832 calls mark_maybe_object passing it each register's contents.
4833
4834 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4835 implementation assumes that calling setjmp saves registers we need
4836 to see in a jmp_buf which itself lies on the stack. This doesn't
4837 have to be true! It must be verified for each system, possibly
4838 by taking a look at the source code of setjmp.
4839
4840 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4841 can use it as a machine independent method to store all registers
4842 to the stack. In this case the macros described in the previous
4843 two paragraphs are not used.
4844
4845 Stack Layout
4846
4847 Architectures differ in the way their processor stack is organized.
4848 For example, the stack might look like this
4849
4850 +----------------+
4851 | Lisp_Object | size = 4
4852 +----------------+
4853 | something else | size = 2
4854 +----------------+
4855 | Lisp_Object | size = 4
4856 +----------------+
4857 | ... |
4858
4859 In such a case, not every Lisp_Object will be aligned equally. To
4860 find all Lisp_Object on the stack it won't be sufficient to walk
4861 the stack in steps of 4 bytes. Instead, two passes will be
4862 necessary, one starting at the start of the stack, and a second
4863 pass starting at the start of the stack + 2. Likewise, if the
4864 minimal alignment of Lisp_Objects on the stack is 1, four passes
4865 would be necessary, each one starting with one byte more offset
4866 from the stack start. */
4867
4868 static void
4869 mark_stack (void)
4870 {
4871 void *end;
4872
4873 #ifdef HAVE___BUILTIN_UNWIND_INIT
4874 /* Force callee-saved registers and register windows onto the stack.
4875 This is the preferred method if available, obviating the need for
4876 machine dependent methods. */
4877 __builtin_unwind_init ();
4878 end = &end;
4879 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4880 #ifndef GC_SAVE_REGISTERS_ON_STACK
4881 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4882 union aligned_jmpbuf {
4883 Lisp_Object o;
4884 jmp_buf j;
4885 } j;
4886 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4887 #endif
4888 /* This trick flushes the register windows so that all the state of
4889 the process is contained in the stack. */
4890 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4891 needed on ia64 too. See mach_dep.c, where it also says inline
4892 assembler doesn't work with relevant proprietary compilers. */
4893 #ifdef __sparc__
4894 #if defined (__sparc64__) && defined (__FreeBSD__)
4895 /* FreeBSD does not have a ta 3 handler. */
4896 asm ("flushw");
4897 #else
4898 asm ("ta 3");
4899 #endif
4900 #endif
4901
4902 /* Save registers that we need to see on the stack. We need to see
4903 registers used to hold register variables and registers used to
4904 pass parameters. */
4905 #ifdef GC_SAVE_REGISTERS_ON_STACK
4906 GC_SAVE_REGISTERS_ON_STACK (end);
4907 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4908
4909 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4910 setjmp will definitely work, test it
4911 and print a message with the result
4912 of the test. */
4913 if (!setjmp_tested_p)
4914 {
4915 setjmp_tested_p = 1;
4916 test_setjmp ();
4917 }
4918 #endif /* GC_SETJMP_WORKS */
4919
4920 setjmp (j.j);
4921 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4922 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4923 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4924
4925 /* This assumes that the stack is a contiguous region in memory. If
4926 that's not the case, something has to be done here to iterate
4927 over the stack segments. */
4928 mark_memory (stack_base, end);
4929
4930 /* Allow for marking a secondary stack, like the register stack on the
4931 ia64. */
4932 #ifdef GC_MARK_SECONDARY_STACK
4933 GC_MARK_SECONDARY_STACK ();
4934 #endif
4935
4936 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4937 check_gcpros ();
4938 #endif
4939 }
4940
4941 #endif /* GC_MARK_STACK != 0 */
4942
4943
4944 /* Determine whether it is safe to access memory at address P. */
4945 static int
4946 valid_pointer_p (void *p)
4947 {
4948 #ifdef WINDOWSNT
4949 return w32_valid_pointer_p (p, 16);
4950 #else
4951 int fd[2];
4952
4953 /* Obviously, we cannot just access it (we would SEGV trying), so we
4954 trick the o/s to tell us whether p is a valid pointer.
4955 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4956 not validate p in that case. */
4957
4958 if (pipe (fd) == 0)
4959 {
4960 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4961 emacs_close (fd[1]);
4962 emacs_close (fd[0]);
4963 return valid;
4964 }
4965
4966 return -1;
4967 #endif
4968 }
4969
4970 /* Return 1 if OBJ is a valid lisp object.
4971 Return 0 if OBJ is NOT a valid lisp object.
4972 Return -1 if we cannot validate OBJ.
4973 This function can be quite slow,
4974 so it should only be used in code for manual debugging. */
4975
4976 int
4977 valid_lisp_object_p (Lisp_Object obj)
4978 {
4979 void *p;
4980 #if GC_MARK_STACK
4981 struct mem_node *m;
4982 #endif
4983
4984 if (INTEGERP (obj))
4985 return 1;
4986
4987 p = (void *) XPNTR (obj);
4988 if (PURE_POINTER_P (p))
4989 return 1;
4990
4991 #if !GC_MARK_STACK
4992 return valid_pointer_p (p);
4993 #else
4994
4995 m = mem_find (p);
4996
4997 if (m == MEM_NIL)
4998 {
4999 int valid = valid_pointer_p (p);
5000 if (valid <= 0)
5001 return valid;
5002
5003 if (SUBRP (obj))
5004 return 1;
5005
5006 return 0;
5007 }
5008
5009 switch (m->type)
5010 {
5011 case MEM_TYPE_NON_LISP:
5012 return 0;
5013
5014 case MEM_TYPE_BUFFER:
5015 return live_buffer_p (m, p);
5016
5017 case MEM_TYPE_CONS:
5018 return live_cons_p (m, p);
5019
5020 case MEM_TYPE_STRING:
5021 return live_string_p (m, p);
5022
5023 case MEM_TYPE_MISC:
5024 return live_misc_p (m, p);
5025
5026 case MEM_TYPE_SYMBOL:
5027 return live_symbol_p (m, p);
5028
5029 case MEM_TYPE_FLOAT:
5030 return live_float_p (m, p);
5031
5032 case MEM_TYPE_VECTORLIKE:
5033 case MEM_TYPE_VECTOR_BLOCK:
5034 return live_vector_p (m, p);
5035
5036 default:
5037 break;
5038 }
5039
5040 return 0;
5041 #endif
5042 }
5043
5044
5045
5046 \f
5047 /***********************************************************************
5048 Pure Storage Management
5049 ***********************************************************************/
5050
5051 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5052 pointer to it. TYPE is the Lisp type for which the memory is
5053 allocated. TYPE < 0 means it's not used for a Lisp object. */
5054
5055 static void *
5056 pure_alloc (size_t size, int type)
5057 {
5058 void *result;
5059 #if USE_LSB_TAG
5060 size_t alignment = (1 << GCTYPEBITS);
5061 #else
5062 size_t alignment = sizeof (EMACS_INT);
5063
5064 /* Give Lisp_Floats an extra alignment. */
5065 if (type == Lisp_Float)
5066 {
5067 #if defined __GNUC__ && __GNUC__ >= 2
5068 alignment = __alignof (struct Lisp_Float);
5069 #else
5070 alignment = sizeof (struct Lisp_Float);
5071 #endif
5072 }
5073 #endif
5074
5075 again:
5076 if (type >= 0)
5077 {
5078 /* Allocate space for a Lisp object from the beginning of the free
5079 space with taking account of alignment. */
5080 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5081 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5082 }
5083 else
5084 {
5085 /* Allocate space for a non-Lisp object from the end of the free
5086 space. */
5087 pure_bytes_used_non_lisp += size;
5088 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5089 }
5090 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5091
5092 if (pure_bytes_used <= pure_size)
5093 return result;
5094
5095 /* Don't allocate a large amount here,
5096 because it might get mmap'd and then its address
5097 might not be usable. */
5098 purebeg = xmalloc (10000);
5099 pure_size = 10000;
5100 pure_bytes_used_before_overflow += pure_bytes_used - size;
5101 pure_bytes_used = 0;
5102 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5103 goto again;
5104 }
5105
5106
5107 /* Print a warning if PURESIZE is too small. */
5108
5109 void
5110 check_pure_size (void)
5111 {
5112 if (pure_bytes_used_before_overflow)
5113 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5114 " bytes needed)"),
5115 pure_bytes_used + pure_bytes_used_before_overflow);
5116 }
5117
5118
5119 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5120 the non-Lisp data pool of the pure storage, and return its start
5121 address. Return NULL if not found. */
5122
5123 static char *
5124 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5125 {
5126 int i;
5127 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5128 const unsigned char *p;
5129 char *non_lisp_beg;
5130
5131 if (pure_bytes_used_non_lisp <= nbytes)
5132 return NULL;
5133
5134 /* Set up the Boyer-Moore table. */
5135 skip = nbytes + 1;
5136 for (i = 0; i < 256; i++)
5137 bm_skip[i] = skip;
5138
5139 p = (const unsigned char *) data;
5140 while (--skip > 0)
5141 bm_skip[*p++] = skip;
5142
5143 last_char_skip = bm_skip['\0'];
5144
5145 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5146 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5147
5148 /* See the comments in the function `boyer_moore' (search.c) for the
5149 use of `infinity'. */
5150 infinity = pure_bytes_used_non_lisp + 1;
5151 bm_skip['\0'] = infinity;
5152
5153 p = (const unsigned char *) non_lisp_beg + nbytes;
5154 start = 0;
5155 do
5156 {
5157 /* Check the last character (== '\0'). */
5158 do
5159 {
5160 start += bm_skip[*(p + start)];
5161 }
5162 while (start <= start_max);
5163
5164 if (start < infinity)
5165 /* Couldn't find the last character. */
5166 return NULL;
5167
5168 /* No less than `infinity' means we could find the last
5169 character at `p[start - infinity]'. */
5170 start -= infinity;
5171
5172 /* Check the remaining characters. */
5173 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5174 /* Found. */
5175 return non_lisp_beg + start;
5176
5177 start += last_char_skip;
5178 }
5179 while (start <= start_max);
5180
5181 return NULL;
5182 }
5183
5184
5185 /* Return a string allocated in pure space. DATA is a buffer holding
5186 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5187 non-zero means make the result string multibyte.
5188
5189 Must get an error if pure storage is full, since if it cannot hold
5190 a large string it may be able to hold conses that point to that
5191 string; then the string is not protected from gc. */
5192
5193 Lisp_Object
5194 make_pure_string (const char *data,
5195 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5196 {
5197 Lisp_Object string;
5198 struct Lisp_String *s;
5199
5200 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5201 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5202 if (s->data == NULL)
5203 {
5204 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5205 memcpy (s->data, data, nbytes);
5206 s->data[nbytes] = '\0';
5207 }
5208 s->size = nchars;
5209 s->size_byte = multibyte ? nbytes : -1;
5210 s->intervals = NULL_INTERVAL;
5211 XSETSTRING (string, s);
5212 return string;
5213 }
5214
5215 /* Return a string allocated in pure space. Do not
5216 allocate the string data, just point to DATA. */
5217
5218 Lisp_Object
5219 make_pure_c_string (const char *data, ptrdiff_t nchars)
5220 {
5221 Lisp_Object string;
5222 struct Lisp_String *s;
5223
5224 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5225 s->size = nchars;
5226 s->size_byte = -1;
5227 s->data = (unsigned char *) data;
5228 s->intervals = NULL_INTERVAL;
5229 XSETSTRING (string, s);
5230 return string;
5231 }
5232
5233 /* Return a cons allocated from pure space. Give it pure copies
5234 of CAR as car and CDR as cdr. */
5235
5236 Lisp_Object
5237 pure_cons (Lisp_Object car, Lisp_Object cdr)
5238 {
5239 register Lisp_Object new;
5240 struct Lisp_Cons *p;
5241
5242 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5243 XSETCONS (new, p);
5244 XSETCAR (new, Fpurecopy (car));
5245 XSETCDR (new, Fpurecopy (cdr));
5246 return new;
5247 }
5248
5249
5250 /* Value is a float object with value NUM allocated from pure space. */
5251
5252 static Lisp_Object
5253 make_pure_float (double num)
5254 {
5255 register Lisp_Object new;
5256 struct Lisp_Float *p;
5257
5258 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5259 XSETFLOAT (new, p);
5260 XFLOAT_INIT (new, num);
5261 return new;
5262 }
5263
5264
5265 /* Return a vector with room for LEN Lisp_Objects allocated from
5266 pure space. */
5267
5268 static Lisp_Object
5269 make_pure_vector (ptrdiff_t len)
5270 {
5271 Lisp_Object new;
5272 struct Lisp_Vector *p;
5273 size_t size = (offsetof (struct Lisp_Vector, contents)
5274 + len * sizeof (Lisp_Object));
5275
5276 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5277 XSETVECTOR (new, p);
5278 XVECTOR (new)->header.size = len;
5279 return new;
5280 }
5281
5282
5283 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5284 doc: /* Make a copy of object OBJ in pure storage.
5285 Recursively copies contents of vectors and cons cells.
5286 Does not copy symbols. Copies strings without text properties. */)
5287 (register Lisp_Object obj)
5288 {
5289 if (NILP (Vpurify_flag))
5290 return obj;
5291
5292 if (PURE_POINTER_P (XPNTR (obj)))
5293 return obj;
5294
5295 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5296 {
5297 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5298 if (!NILP (tmp))
5299 return tmp;
5300 }
5301
5302 if (CONSP (obj))
5303 obj = pure_cons (XCAR (obj), XCDR (obj));
5304 else if (FLOATP (obj))
5305 obj = make_pure_float (XFLOAT_DATA (obj));
5306 else if (STRINGP (obj))
5307 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5308 SBYTES (obj),
5309 STRING_MULTIBYTE (obj));
5310 else if (COMPILEDP (obj) || VECTORP (obj))
5311 {
5312 register struct Lisp_Vector *vec;
5313 register ptrdiff_t i;
5314 ptrdiff_t size;
5315
5316 size = ASIZE (obj);
5317 if (size & PSEUDOVECTOR_FLAG)
5318 size &= PSEUDOVECTOR_SIZE_MASK;
5319 vec = XVECTOR (make_pure_vector (size));
5320 for (i = 0; i < size; i++)
5321 vec->contents[i] = Fpurecopy (AREF (obj, i));
5322 if (COMPILEDP (obj))
5323 {
5324 XSETPVECTYPE (vec, PVEC_COMPILED);
5325 XSETCOMPILED (obj, vec);
5326 }
5327 else
5328 XSETVECTOR (obj, vec);
5329 }
5330 else if (MARKERP (obj))
5331 error ("Attempt to copy a marker to pure storage");
5332 else
5333 /* Not purified, don't hash-cons. */
5334 return obj;
5335
5336 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5337 Fputhash (obj, obj, Vpurify_flag);
5338
5339 return obj;
5340 }
5341
5342
5343 \f
5344 /***********************************************************************
5345 Protection from GC
5346 ***********************************************************************/
5347
5348 /* Put an entry in staticvec, pointing at the variable with address
5349 VARADDRESS. */
5350
5351 void
5352 staticpro (Lisp_Object *varaddress)
5353 {
5354 staticvec[staticidx++] = varaddress;
5355 if (staticidx >= NSTATICS)
5356 abort ();
5357 }
5358
5359 \f
5360 /***********************************************************************
5361 Protection from GC
5362 ***********************************************************************/
5363
5364 /* Temporarily prevent garbage collection. */
5365
5366 ptrdiff_t
5367 inhibit_garbage_collection (void)
5368 {
5369 ptrdiff_t count = SPECPDL_INDEX ();
5370
5371 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5372 return count;
5373 }
5374
5375
5376 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5377 doc: /* Reclaim storage for Lisp objects no longer needed.
5378 Garbage collection happens automatically if you cons more than
5379 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5380 `garbage-collect' normally returns a list with info on amount of space in use:
5381 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5382 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5383 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5384 (USED-STRINGS . FREE-STRINGS))
5385 However, if there was overflow in pure space, `garbage-collect'
5386 returns nil, because real GC can't be done.
5387 See Info node `(elisp)Garbage Collection'. */)
5388 (void)
5389 {
5390 register struct specbinding *bind;
5391 char stack_top_variable;
5392 ptrdiff_t i;
5393 int message_p;
5394 Lisp_Object total[8];
5395 ptrdiff_t count = SPECPDL_INDEX ();
5396 EMACS_TIME t1, t2, t3;
5397
5398 if (abort_on_gc)
5399 abort ();
5400
5401 /* Can't GC if pure storage overflowed because we can't determine
5402 if something is a pure object or not. */
5403 if (pure_bytes_used_before_overflow)
5404 return Qnil;
5405
5406 CHECK_CONS_LIST ();
5407
5408 /* Don't keep undo information around forever.
5409 Do this early on, so it is no problem if the user quits. */
5410 {
5411 register struct buffer *nextb = all_buffers;
5412
5413 while (nextb)
5414 {
5415 /* If a buffer's undo list is Qt, that means that undo is
5416 turned off in that buffer. Calling truncate_undo_list on
5417 Qt tends to return NULL, which effectively turns undo back on.
5418 So don't call truncate_undo_list if undo_list is Qt. */
5419 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5420 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5421 truncate_undo_list (nextb);
5422
5423 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5424 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5425 && ! nextb->text->inhibit_shrinking)
5426 {
5427 /* If a buffer's gap size is more than 10% of the buffer
5428 size, or larger than 2000 bytes, then shrink it
5429 accordingly. Keep a minimum size of 20 bytes. */
5430 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5431
5432 if (nextb->text->gap_size > size)
5433 {
5434 struct buffer *save_current = current_buffer;
5435 current_buffer = nextb;
5436 make_gap (-(nextb->text->gap_size - size));
5437 current_buffer = save_current;
5438 }
5439 }
5440
5441 nextb = nextb->header.next.buffer;
5442 }
5443 }
5444
5445 EMACS_GET_TIME (t1);
5446
5447 /* In case user calls debug_print during GC,
5448 don't let that cause a recursive GC. */
5449 consing_since_gc = 0;
5450
5451 /* Save what's currently displayed in the echo area. */
5452 message_p = push_message ();
5453 record_unwind_protect (pop_message_unwind, Qnil);
5454
5455 /* Save a copy of the contents of the stack, for debugging. */
5456 #if MAX_SAVE_STACK > 0
5457 if (NILP (Vpurify_flag))
5458 {
5459 char *stack;
5460 ptrdiff_t stack_size;
5461 if (&stack_top_variable < stack_bottom)
5462 {
5463 stack = &stack_top_variable;
5464 stack_size = stack_bottom - &stack_top_variable;
5465 }
5466 else
5467 {
5468 stack = stack_bottom;
5469 stack_size = &stack_top_variable - stack_bottom;
5470 }
5471 if (stack_size <= MAX_SAVE_STACK)
5472 {
5473 if (stack_copy_size < stack_size)
5474 {
5475 stack_copy = xrealloc (stack_copy, stack_size);
5476 stack_copy_size = stack_size;
5477 }
5478 memcpy (stack_copy, stack, stack_size);
5479 }
5480 }
5481 #endif /* MAX_SAVE_STACK > 0 */
5482
5483 if (garbage_collection_messages)
5484 message1_nolog ("Garbage collecting...");
5485
5486 BLOCK_INPUT;
5487
5488 shrink_regexp_cache ();
5489
5490 gc_in_progress = 1;
5491
5492 /* clear_marks (); */
5493
5494 /* Mark all the special slots that serve as the roots of accessibility. */
5495
5496 for (i = 0; i < staticidx; i++)
5497 mark_object (*staticvec[i]);
5498
5499 for (bind = specpdl; bind != specpdl_ptr; bind++)
5500 {
5501 mark_object (bind->symbol);
5502 mark_object (bind->old_value);
5503 }
5504 mark_terminals ();
5505 mark_kboards ();
5506 mark_ttys ();
5507
5508 #ifdef USE_GTK
5509 {
5510 extern void xg_mark_data (void);
5511 xg_mark_data ();
5512 }
5513 #endif
5514
5515 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5516 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5517 mark_stack ();
5518 #else
5519 {
5520 register struct gcpro *tail;
5521 for (tail = gcprolist; tail; tail = tail->next)
5522 for (i = 0; i < tail->nvars; i++)
5523 mark_object (tail->var[i]);
5524 }
5525 mark_byte_stack ();
5526 {
5527 struct catchtag *catch;
5528 struct handler *handler;
5529
5530 for (catch = catchlist; catch; catch = catch->next)
5531 {
5532 mark_object (catch->tag);
5533 mark_object (catch->val);
5534 }
5535 for (handler = handlerlist; handler; handler = handler->next)
5536 {
5537 mark_object (handler->handler);
5538 mark_object (handler->var);
5539 }
5540 }
5541 mark_backtrace ();
5542 #endif
5543
5544 #ifdef HAVE_WINDOW_SYSTEM
5545 mark_fringe_data ();
5546 #endif
5547
5548 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5549 mark_stack ();
5550 #endif
5551
5552 /* Everything is now marked, except for the things that require special
5553 finalization, i.e. the undo_list.
5554 Look thru every buffer's undo list
5555 for elements that update markers that were not marked,
5556 and delete them. */
5557 {
5558 register struct buffer *nextb = all_buffers;
5559
5560 while (nextb)
5561 {
5562 /* If a buffer's undo list is Qt, that means that undo is
5563 turned off in that buffer. Calling truncate_undo_list on
5564 Qt tends to return NULL, which effectively turns undo back on.
5565 So don't call truncate_undo_list if undo_list is Qt. */
5566 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5567 {
5568 Lisp_Object tail, prev;
5569 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5570 prev = Qnil;
5571 while (CONSP (tail))
5572 {
5573 if (CONSP (XCAR (tail))
5574 && MARKERP (XCAR (XCAR (tail)))
5575 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5576 {
5577 if (NILP (prev))
5578 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5579 else
5580 {
5581 tail = XCDR (tail);
5582 XSETCDR (prev, tail);
5583 }
5584 }
5585 else
5586 {
5587 prev = tail;
5588 tail = XCDR (tail);
5589 }
5590 }
5591 }
5592 /* Now that we have stripped the elements that need not be in the
5593 undo_list any more, we can finally mark the list. */
5594 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5595
5596 nextb = nextb->header.next.buffer;
5597 }
5598 }
5599
5600 gc_sweep ();
5601
5602 /* Clear the mark bits that we set in certain root slots. */
5603
5604 unmark_byte_stack ();
5605 VECTOR_UNMARK (&buffer_defaults);
5606 VECTOR_UNMARK (&buffer_local_symbols);
5607
5608 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5609 dump_zombies ();
5610 #endif
5611
5612 UNBLOCK_INPUT;
5613
5614 CHECK_CONS_LIST ();
5615
5616 /* clear_marks (); */
5617 gc_in_progress = 0;
5618
5619 consing_since_gc = 0;
5620 if (gc_cons_threshold < 10000)
5621 gc_cons_threshold = 10000;
5622
5623 gc_relative_threshold = 0;
5624 if (FLOATP (Vgc_cons_percentage))
5625 { /* Set gc_cons_combined_threshold. */
5626 double tot = 0;
5627
5628 tot += total_conses * sizeof (struct Lisp_Cons);
5629 tot += total_symbols * sizeof (struct Lisp_Symbol);
5630 tot += total_markers * sizeof (union Lisp_Misc);
5631 tot += total_string_size;
5632 tot += total_vector_size * sizeof (Lisp_Object);
5633 tot += total_floats * sizeof (struct Lisp_Float);
5634 tot += total_intervals * sizeof (struct interval);
5635 tot += total_strings * sizeof (struct Lisp_String);
5636
5637 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5638 if (0 < tot)
5639 {
5640 if (tot < TYPE_MAXIMUM (EMACS_INT))
5641 gc_relative_threshold = tot;
5642 else
5643 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5644 }
5645 }
5646
5647 if (garbage_collection_messages)
5648 {
5649 if (message_p || minibuf_level > 0)
5650 restore_message ();
5651 else
5652 message1_nolog ("Garbage collecting...done");
5653 }
5654
5655 unbind_to (count, Qnil);
5656
5657 total[0] = Fcons (make_number (total_conses),
5658 make_number (total_free_conses));
5659 total[1] = Fcons (make_number (total_symbols),
5660 make_number (total_free_symbols));
5661 total[2] = Fcons (make_number (total_markers),
5662 make_number (total_free_markers));
5663 total[3] = make_number (total_string_size);
5664 total[4] = make_number (total_vector_size);
5665 total[5] = Fcons (make_number (total_floats),
5666 make_number (total_free_floats));
5667 total[6] = Fcons (make_number (total_intervals),
5668 make_number (total_free_intervals));
5669 total[7] = Fcons (make_number (total_strings),
5670 make_number (total_free_strings));
5671
5672 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5673 {
5674 /* Compute average percentage of zombies. */
5675 double nlive = 0;
5676
5677 for (i = 0; i < 7; ++i)
5678 if (CONSP (total[i]))
5679 nlive += XFASTINT (XCAR (total[i]));
5680
5681 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5682 max_live = max (nlive, max_live);
5683 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5684 max_zombies = max (nzombies, max_zombies);
5685 ++ngcs;
5686 }
5687 #endif
5688
5689 if (!NILP (Vpost_gc_hook))
5690 {
5691 ptrdiff_t gc_count = inhibit_garbage_collection ();
5692 safe_run_hooks (Qpost_gc_hook);
5693 unbind_to (gc_count, Qnil);
5694 }
5695
5696 /* Accumulate statistics. */
5697 if (FLOATP (Vgc_elapsed))
5698 {
5699 EMACS_GET_TIME (t2);
5700 EMACS_SUB_TIME (t3, t2, t1);
5701 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5702 + EMACS_TIME_TO_DOUBLE (t3));
5703 }
5704
5705 gcs_done++;
5706
5707 return Flist (sizeof total / sizeof *total, total);
5708 }
5709
5710
5711 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5712 only interesting objects referenced from glyphs are strings. */
5713
5714 static void
5715 mark_glyph_matrix (struct glyph_matrix *matrix)
5716 {
5717 struct glyph_row *row = matrix->rows;
5718 struct glyph_row *end = row + matrix->nrows;
5719
5720 for (; row < end; ++row)
5721 if (row->enabled_p)
5722 {
5723 int area;
5724 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5725 {
5726 struct glyph *glyph = row->glyphs[area];
5727 struct glyph *end_glyph = glyph + row->used[area];
5728
5729 for (; glyph < end_glyph; ++glyph)
5730 if (STRINGP (glyph->object)
5731 && !STRING_MARKED_P (XSTRING (glyph->object)))
5732 mark_object (glyph->object);
5733 }
5734 }
5735 }
5736
5737
5738 /* Mark Lisp faces in the face cache C. */
5739
5740 static void
5741 mark_face_cache (struct face_cache *c)
5742 {
5743 if (c)
5744 {
5745 int i, j;
5746 for (i = 0; i < c->used; ++i)
5747 {
5748 struct face *face = FACE_FROM_ID (c->f, i);
5749
5750 if (face)
5751 {
5752 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5753 mark_object (face->lface[j]);
5754 }
5755 }
5756 }
5757 }
5758
5759
5760 \f
5761 /* Mark reference to a Lisp_Object.
5762 If the object referred to has not been seen yet, recursively mark
5763 all the references contained in it. */
5764
5765 #define LAST_MARKED_SIZE 500
5766 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5767 static int last_marked_index;
5768
5769 /* For debugging--call abort when we cdr down this many
5770 links of a list, in mark_object. In debugging,
5771 the call to abort will hit a breakpoint.
5772 Normally this is zero and the check never goes off. */
5773 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5774
5775 static void
5776 mark_vectorlike (struct Lisp_Vector *ptr)
5777 {
5778 ptrdiff_t size = ptr->header.size;
5779 ptrdiff_t i;
5780
5781 eassert (!VECTOR_MARKED_P (ptr));
5782 VECTOR_MARK (ptr); /* Else mark it. */
5783 if (size & PSEUDOVECTOR_FLAG)
5784 size &= PSEUDOVECTOR_SIZE_MASK;
5785
5786 /* Note that this size is not the memory-footprint size, but only
5787 the number of Lisp_Object fields that we should trace.
5788 The distinction is used e.g. by Lisp_Process which places extra
5789 non-Lisp_Object fields at the end of the structure... */
5790 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5791 mark_object (ptr->contents[i]);
5792 }
5793
5794 /* Like mark_vectorlike but optimized for char-tables (and
5795 sub-char-tables) assuming that the contents are mostly integers or
5796 symbols. */
5797
5798 static void
5799 mark_char_table (struct Lisp_Vector *ptr)
5800 {
5801 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5802 int i;
5803
5804 eassert (!VECTOR_MARKED_P (ptr));
5805 VECTOR_MARK (ptr);
5806 for (i = 0; i < size; i++)
5807 {
5808 Lisp_Object val = ptr->contents[i];
5809
5810 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5811 continue;
5812 if (SUB_CHAR_TABLE_P (val))
5813 {
5814 if (! VECTOR_MARKED_P (XVECTOR (val)))
5815 mark_char_table (XVECTOR (val));
5816 }
5817 else
5818 mark_object (val);
5819 }
5820 }
5821
5822 /* Mark the chain of overlays starting at PTR. */
5823
5824 static void
5825 mark_overlay (struct Lisp_Overlay *ptr)
5826 {
5827 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5828 {
5829 ptr->gcmarkbit = 1;
5830 mark_object (ptr->start);
5831 mark_object (ptr->end);
5832 mark_object (ptr->plist);
5833 }
5834 }
5835
5836 /* Mark Lisp_Objects and special pointers in BUFFER. */
5837
5838 static void
5839 mark_buffer (struct buffer *buffer)
5840 {
5841 /* This is handled much like other pseudovectors... */
5842 mark_vectorlike ((struct Lisp_Vector *) buffer);
5843
5844 /* ...but there are some buffer-specific things. */
5845
5846 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5847
5848 /* For now, we just don't mark the undo_list. It's done later in
5849 a special way just before the sweep phase, and after stripping
5850 some of its elements that are not needed any more. */
5851
5852 mark_overlay (buffer->overlays_before);
5853 mark_overlay (buffer->overlays_after);
5854
5855 /* If this is an indirect buffer, mark its base buffer. */
5856 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5857 mark_buffer (buffer->base_buffer);
5858 }
5859
5860 /* Determine type of generic Lisp_Object and mark it accordingly. */
5861
5862 void
5863 mark_object (Lisp_Object arg)
5864 {
5865 register Lisp_Object obj = arg;
5866 #ifdef GC_CHECK_MARKED_OBJECTS
5867 void *po;
5868 struct mem_node *m;
5869 #endif
5870 ptrdiff_t cdr_count = 0;
5871
5872 loop:
5873
5874 if (PURE_POINTER_P (XPNTR (obj)))
5875 return;
5876
5877 last_marked[last_marked_index++] = obj;
5878 if (last_marked_index == LAST_MARKED_SIZE)
5879 last_marked_index = 0;
5880
5881 /* Perform some sanity checks on the objects marked here. Abort if
5882 we encounter an object we know is bogus. This increases GC time
5883 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5884 #ifdef GC_CHECK_MARKED_OBJECTS
5885
5886 po = (void *) XPNTR (obj);
5887
5888 /* Check that the object pointed to by PO is known to be a Lisp
5889 structure allocated from the heap. */
5890 #define CHECK_ALLOCATED() \
5891 do { \
5892 m = mem_find (po); \
5893 if (m == MEM_NIL) \
5894 abort (); \
5895 } while (0)
5896
5897 /* Check that the object pointed to by PO is live, using predicate
5898 function LIVEP. */
5899 #define CHECK_LIVE(LIVEP) \
5900 do { \
5901 if (!LIVEP (m, po)) \
5902 abort (); \
5903 } while (0)
5904
5905 /* Check both of the above conditions. */
5906 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5907 do { \
5908 CHECK_ALLOCATED (); \
5909 CHECK_LIVE (LIVEP); \
5910 } while (0) \
5911
5912 #else /* not GC_CHECK_MARKED_OBJECTS */
5913
5914 #define CHECK_LIVE(LIVEP) (void) 0
5915 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5916
5917 #endif /* not GC_CHECK_MARKED_OBJECTS */
5918
5919 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5920 {
5921 case Lisp_String:
5922 {
5923 register struct Lisp_String *ptr = XSTRING (obj);
5924 if (STRING_MARKED_P (ptr))
5925 break;
5926 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5927 MARK_STRING (ptr);
5928 MARK_INTERVAL_TREE (ptr->intervals);
5929 #ifdef GC_CHECK_STRING_BYTES
5930 /* Check that the string size recorded in the string is the
5931 same as the one recorded in the sdata structure. */
5932 CHECK_STRING_BYTES (ptr);
5933 #endif /* GC_CHECK_STRING_BYTES */
5934 }
5935 break;
5936
5937 case Lisp_Vectorlike:
5938 {
5939 register struct Lisp_Vector *ptr = XVECTOR (obj);
5940 register ptrdiff_t pvectype;
5941
5942 if (VECTOR_MARKED_P (ptr))
5943 break;
5944
5945 #ifdef GC_CHECK_MARKED_OBJECTS
5946 m = mem_find (po);
5947 if (m == MEM_NIL && !SUBRP (obj)
5948 && po != &buffer_defaults
5949 && po != &buffer_local_symbols)
5950 abort ();
5951 #endif /* GC_CHECK_MARKED_OBJECTS */
5952
5953 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5954 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5955 >> PSEUDOVECTOR_SIZE_BITS);
5956 else
5957 pvectype = 0;
5958
5959 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5960 CHECK_LIVE (live_vector_p);
5961
5962 switch (pvectype)
5963 {
5964 case PVEC_BUFFER:
5965 #ifdef GC_CHECK_MARKED_OBJECTS
5966 if (po != &buffer_defaults && po != &buffer_local_symbols)
5967 {
5968 struct buffer *b = all_buffers;
5969 for (; b && b != po; b = b->header.next.buffer)
5970 ;
5971 if (b == NULL)
5972 abort ();
5973 }
5974 #endif /* GC_CHECK_MARKED_OBJECTS */
5975 mark_buffer ((struct buffer *) ptr);
5976 break;
5977
5978 case PVEC_COMPILED:
5979 { /* We could treat this just like a vector, but it is better
5980 to save the COMPILED_CONSTANTS element for last and avoid
5981 recursion there. */
5982 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5983 int i;
5984
5985 VECTOR_MARK (ptr);
5986 for (i = 0; i < size; i++)
5987 if (i != COMPILED_CONSTANTS)
5988 mark_object (ptr->contents[i]);
5989 if (size > COMPILED_CONSTANTS)
5990 {
5991 obj = ptr->contents[COMPILED_CONSTANTS];
5992 goto loop;
5993 }
5994 }
5995 break;
5996
5997 case PVEC_FRAME:
5998 {
5999 mark_vectorlike (ptr);
6000 mark_face_cache (((struct frame *) ptr)->face_cache);
6001 }
6002 break;
6003
6004 case PVEC_WINDOW:
6005 {
6006 struct window *w = (struct window *) ptr;
6007
6008 mark_vectorlike (ptr);
6009 /* Mark glyphs for leaf windows. Marking window
6010 matrices is sufficient because frame matrices
6011 use the same glyph memory. */
6012 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6013 {
6014 mark_glyph_matrix (w->current_matrix);
6015 mark_glyph_matrix (w->desired_matrix);
6016 }
6017 }
6018 break;
6019
6020 case PVEC_HASH_TABLE:
6021 {
6022 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6023
6024 mark_vectorlike (ptr);
6025 /* If hash table is not weak, mark all keys and values.
6026 For weak tables, mark only the vector. */
6027 if (NILP (h->weak))
6028 mark_object (h->key_and_value);
6029 else
6030 VECTOR_MARK (XVECTOR (h->key_and_value));
6031 }
6032 break;
6033
6034 case PVEC_CHAR_TABLE:
6035 mark_char_table (ptr);
6036 break;
6037
6038 case PVEC_BOOL_VECTOR:
6039 /* No Lisp_Objects to mark in a bool vector. */
6040 VECTOR_MARK (ptr);
6041 break;
6042
6043 case PVEC_SUBR:
6044 break;
6045
6046 case PVEC_FREE:
6047 abort ();
6048
6049 default:
6050 mark_vectorlike (ptr);
6051 }
6052 }
6053 break;
6054
6055 case Lisp_Symbol:
6056 {
6057 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6058 struct Lisp_Symbol *ptrx;
6059
6060 if (ptr->gcmarkbit)
6061 break;
6062 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6063 ptr->gcmarkbit = 1;
6064 mark_object (ptr->function);
6065 mark_object (ptr->plist);
6066 switch (ptr->redirect)
6067 {
6068 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6069 case SYMBOL_VARALIAS:
6070 {
6071 Lisp_Object tem;
6072 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6073 mark_object (tem);
6074 break;
6075 }
6076 case SYMBOL_LOCALIZED:
6077 {
6078 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6079 /* If the value is forwarded to a buffer or keyboard field,
6080 these are marked when we see the corresponding object.
6081 And if it's forwarded to a C variable, either it's not
6082 a Lisp_Object var, or it's staticpro'd already. */
6083 mark_object (blv->where);
6084 mark_object (blv->valcell);
6085 mark_object (blv->defcell);
6086 break;
6087 }
6088 case SYMBOL_FORWARDED:
6089 /* If the value is forwarded to a buffer or keyboard field,
6090 these are marked when we see the corresponding object.
6091 And if it's forwarded to a C variable, either it's not
6092 a Lisp_Object var, or it's staticpro'd already. */
6093 break;
6094 default: abort ();
6095 }
6096 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6097 MARK_STRING (XSTRING (ptr->xname));
6098 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6099
6100 ptr = ptr->next;
6101 if (ptr)
6102 {
6103 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6104 XSETSYMBOL (obj, ptrx);
6105 goto loop;
6106 }
6107 }
6108 break;
6109
6110 case Lisp_Misc:
6111 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6112
6113 if (XMISCANY (obj)->gcmarkbit)
6114 break;
6115
6116 switch (XMISCTYPE (obj))
6117 {
6118 case Lisp_Misc_Marker:
6119 /* DO NOT mark thru the marker's chain.
6120 The buffer's markers chain does not preserve markers from gc;
6121 instead, markers are removed from the chain when freed by gc. */
6122 XMISCANY (obj)->gcmarkbit = 1;
6123 break;
6124
6125 case Lisp_Misc_Save_Value:
6126 XMISCANY (obj)->gcmarkbit = 1;
6127 #if GC_MARK_STACK
6128 {
6129 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6130 /* If DOGC is set, POINTER is the address of a memory
6131 area containing INTEGER potential Lisp_Objects. */
6132 if (ptr->dogc)
6133 {
6134 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6135 ptrdiff_t nelt;
6136 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6137 mark_maybe_object (*p);
6138 }
6139 }
6140 #endif
6141 break;
6142
6143 case Lisp_Misc_Overlay:
6144 mark_overlay (XOVERLAY (obj));
6145 break;
6146
6147 default:
6148 abort ();
6149 }
6150 break;
6151
6152 case Lisp_Cons:
6153 {
6154 register struct Lisp_Cons *ptr = XCONS (obj);
6155 if (CONS_MARKED_P (ptr))
6156 break;
6157 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6158 CONS_MARK (ptr);
6159 /* If the cdr is nil, avoid recursion for the car. */
6160 if (EQ (ptr->u.cdr, Qnil))
6161 {
6162 obj = ptr->car;
6163 cdr_count = 0;
6164 goto loop;
6165 }
6166 mark_object (ptr->car);
6167 obj = ptr->u.cdr;
6168 cdr_count++;
6169 if (cdr_count == mark_object_loop_halt)
6170 abort ();
6171 goto loop;
6172 }
6173
6174 case Lisp_Float:
6175 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6176 FLOAT_MARK (XFLOAT (obj));
6177 break;
6178
6179 case_Lisp_Int:
6180 break;
6181
6182 default:
6183 abort ();
6184 }
6185
6186 #undef CHECK_LIVE
6187 #undef CHECK_ALLOCATED
6188 #undef CHECK_ALLOCATED_AND_LIVE
6189 }
6190 /* Mark the Lisp pointers in the terminal objects.
6191 Called by Fgarbage_collect. */
6192
6193 static void
6194 mark_terminals (void)
6195 {
6196 struct terminal *t;
6197 for (t = terminal_list; t; t = t->next_terminal)
6198 {
6199 eassert (t->name != NULL);
6200 #ifdef HAVE_WINDOW_SYSTEM
6201 /* If a terminal object is reachable from a stacpro'ed object,
6202 it might have been marked already. Make sure the image cache
6203 gets marked. */
6204 mark_image_cache (t->image_cache);
6205 #endif /* HAVE_WINDOW_SYSTEM */
6206 if (!VECTOR_MARKED_P (t))
6207 mark_vectorlike ((struct Lisp_Vector *)t);
6208 }
6209 }
6210
6211
6212
6213 /* Value is non-zero if OBJ will survive the current GC because it's
6214 either marked or does not need to be marked to survive. */
6215
6216 int
6217 survives_gc_p (Lisp_Object obj)
6218 {
6219 int survives_p;
6220
6221 switch (XTYPE (obj))
6222 {
6223 case_Lisp_Int:
6224 survives_p = 1;
6225 break;
6226
6227 case Lisp_Symbol:
6228 survives_p = XSYMBOL (obj)->gcmarkbit;
6229 break;
6230
6231 case Lisp_Misc:
6232 survives_p = XMISCANY (obj)->gcmarkbit;
6233 break;
6234
6235 case Lisp_String:
6236 survives_p = STRING_MARKED_P (XSTRING (obj));
6237 break;
6238
6239 case Lisp_Vectorlike:
6240 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6241 break;
6242
6243 case Lisp_Cons:
6244 survives_p = CONS_MARKED_P (XCONS (obj));
6245 break;
6246
6247 case Lisp_Float:
6248 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6249 break;
6250
6251 default:
6252 abort ();
6253 }
6254
6255 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6256 }
6257
6258
6259 \f
6260 /* Sweep: find all structures not marked, and free them. */
6261
6262 static void
6263 gc_sweep (void)
6264 {
6265 /* Remove or mark entries in weak hash tables.
6266 This must be done before any object is unmarked. */
6267 sweep_weak_hash_tables ();
6268
6269 sweep_strings ();
6270 #ifdef GC_CHECK_STRING_BYTES
6271 if (!noninteractive)
6272 check_string_bytes (1);
6273 #endif
6274
6275 /* Put all unmarked conses on free list */
6276 {
6277 register struct cons_block *cblk;
6278 struct cons_block **cprev = &cons_block;
6279 register int lim = cons_block_index;
6280 EMACS_INT num_free = 0, num_used = 0;
6281
6282 cons_free_list = 0;
6283
6284 for (cblk = cons_block; cblk; cblk = *cprev)
6285 {
6286 register int i = 0;
6287 int this_free = 0;
6288 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6289
6290 /* Scan the mark bits an int at a time. */
6291 for (i = 0; i < ilim; i++)
6292 {
6293 if (cblk->gcmarkbits[i] == -1)
6294 {
6295 /* Fast path - all cons cells for this int are marked. */
6296 cblk->gcmarkbits[i] = 0;
6297 num_used += BITS_PER_INT;
6298 }
6299 else
6300 {
6301 /* Some cons cells for this int are not marked.
6302 Find which ones, and free them. */
6303 int start, pos, stop;
6304
6305 start = i * BITS_PER_INT;
6306 stop = lim - start;
6307 if (stop > BITS_PER_INT)
6308 stop = BITS_PER_INT;
6309 stop += start;
6310
6311 for (pos = start; pos < stop; pos++)
6312 {
6313 if (!CONS_MARKED_P (&cblk->conses[pos]))
6314 {
6315 this_free++;
6316 cblk->conses[pos].u.chain = cons_free_list;
6317 cons_free_list = &cblk->conses[pos];
6318 #if GC_MARK_STACK
6319 cons_free_list->car = Vdead;
6320 #endif
6321 }
6322 else
6323 {
6324 num_used++;
6325 CONS_UNMARK (&cblk->conses[pos]);
6326 }
6327 }
6328 }
6329 }
6330
6331 lim = CONS_BLOCK_SIZE;
6332 /* If this block contains only free conses and we have already
6333 seen more than two blocks worth of free conses then deallocate
6334 this block. */
6335 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6336 {
6337 *cprev = cblk->next;
6338 /* Unhook from the free list. */
6339 cons_free_list = cblk->conses[0].u.chain;
6340 lisp_align_free (cblk);
6341 }
6342 else
6343 {
6344 num_free += this_free;
6345 cprev = &cblk->next;
6346 }
6347 }
6348 total_conses = num_used;
6349 total_free_conses = num_free;
6350 }
6351
6352 /* Put all unmarked floats on free list */
6353 {
6354 register struct float_block *fblk;
6355 struct float_block **fprev = &float_block;
6356 register int lim = float_block_index;
6357 EMACS_INT num_free = 0, num_used = 0;
6358
6359 float_free_list = 0;
6360
6361 for (fblk = float_block; fblk; fblk = *fprev)
6362 {
6363 register int i;
6364 int this_free = 0;
6365 for (i = 0; i < lim; i++)
6366 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6367 {
6368 this_free++;
6369 fblk->floats[i].u.chain = float_free_list;
6370 float_free_list = &fblk->floats[i];
6371 }
6372 else
6373 {
6374 num_used++;
6375 FLOAT_UNMARK (&fblk->floats[i]);
6376 }
6377 lim = FLOAT_BLOCK_SIZE;
6378 /* If this block contains only free floats and we have already
6379 seen more than two blocks worth of free floats then deallocate
6380 this block. */
6381 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6382 {
6383 *fprev = fblk->next;
6384 /* Unhook from the free list. */
6385 float_free_list = fblk->floats[0].u.chain;
6386 lisp_align_free (fblk);
6387 }
6388 else
6389 {
6390 num_free += this_free;
6391 fprev = &fblk->next;
6392 }
6393 }
6394 total_floats = num_used;
6395 total_free_floats = num_free;
6396 }
6397
6398 /* Put all unmarked intervals on free list */
6399 {
6400 register struct interval_block *iblk;
6401 struct interval_block **iprev = &interval_block;
6402 register int lim = interval_block_index;
6403 EMACS_INT num_free = 0, num_used = 0;
6404
6405 interval_free_list = 0;
6406
6407 for (iblk = interval_block; iblk; iblk = *iprev)
6408 {
6409 register int i;
6410 int this_free = 0;
6411
6412 for (i = 0; i < lim; i++)
6413 {
6414 if (!iblk->intervals[i].gcmarkbit)
6415 {
6416 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6417 interval_free_list = &iblk->intervals[i];
6418 this_free++;
6419 }
6420 else
6421 {
6422 num_used++;
6423 iblk->intervals[i].gcmarkbit = 0;
6424 }
6425 }
6426 lim = INTERVAL_BLOCK_SIZE;
6427 /* If this block contains only free intervals and we have already
6428 seen more than two blocks worth of free intervals then
6429 deallocate this block. */
6430 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6431 {
6432 *iprev = iblk->next;
6433 /* Unhook from the free list. */
6434 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6435 lisp_free (iblk);
6436 }
6437 else
6438 {
6439 num_free += this_free;
6440 iprev = &iblk->next;
6441 }
6442 }
6443 total_intervals = num_used;
6444 total_free_intervals = num_free;
6445 }
6446
6447 /* Put all unmarked symbols on free list */
6448 {
6449 register struct symbol_block *sblk;
6450 struct symbol_block **sprev = &symbol_block;
6451 register int lim = symbol_block_index;
6452 EMACS_INT num_free = 0, num_used = 0;
6453
6454 symbol_free_list = NULL;
6455
6456 for (sblk = symbol_block; sblk; sblk = *sprev)
6457 {
6458 int this_free = 0;
6459 union aligned_Lisp_Symbol *sym = sblk->symbols;
6460 union aligned_Lisp_Symbol *end = sym + lim;
6461
6462 for (; sym < end; ++sym)
6463 {
6464 /* Check if the symbol was created during loadup. In such a case
6465 it might be pointed to by pure bytecode which we don't trace,
6466 so we conservatively assume that it is live. */
6467 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6468
6469 if (!sym->s.gcmarkbit && !pure_p)
6470 {
6471 if (sym->s.redirect == SYMBOL_LOCALIZED)
6472 xfree (SYMBOL_BLV (&sym->s));
6473 sym->s.next = symbol_free_list;
6474 symbol_free_list = &sym->s;
6475 #if GC_MARK_STACK
6476 symbol_free_list->function = Vdead;
6477 #endif
6478 ++this_free;
6479 }
6480 else
6481 {
6482 ++num_used;
6483 if (!pure_p)
6484 UNMARK_STRING (XSTRING (sym->s.xname));
6485 sym->s.gcmarkbit = 0;
6486 }
6487 }
6488
6489 lim = SYMBOL_BLOCK_SIZE;
6490 /* If this block contains only free symbols and we have already
6491 seen more than two blocks worth of free symbols then deallocate
6492 this block. */
6493 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6494 {
6495 *sprev = sblk->next;
6496 /* Unhook from the free list. */
6497 symbol_free_list = sblk->symbols[0].s.next;
6498 lisp_free (sblk);
6499 }
6500 else
6501 {
6502 num_free += this_free;
6503 sprev = &sblk->next;
6504 }
6505 }
6506 total_symbols = num_used;
6507 total_free_symbols = num_free;
6508 }
6509
6510 /* Put all unmarked misc's on free list.
6511 For a marker, first unchain it from the buffer it points into. */
6512 {
6513 register struct marker_block *mblk;
6514 struct marker_block **mprev = &marker_block;
6515 register int lim = marker_block_index;
6516 EMACS_INT num_free = 0, num_used = 0;
6517
6518 marker_free_list = 0;
6519
6520 for (mblk = marker_block; mblk; mblk = *mprev)
6521 {
6522 register int i;
6523 int this_free = 0;
6524
6525 for (i = 0; i < lim; i++)
6526 {
6527 if (!mblk->markers[i].m.u_any.gcmarkbit)
6528 {
6529 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6530 unchain_marker (&mblk->markers[i].m.u_marker);
6531 /* Set the type of the freed object to Lisp_Misc_Free.
6532 We could leave the type alone, since nobody checks it,
6533 but this might catch bugs faster. */
6534 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6535 mblk->markers[i].m.u_free.chain = marker_free_list;
6536 marker_free_list = &mblk->markers[i].m;
6537 this_free++;
6538 }
6539 else
6540 {
6541 num_used++;
6542 mblk->markers[i].m.u_any.gcmarkbit = 0;
6543 }
6544 }
6545 lim = MARKER_BLOCK_SIZE;
6546 /* If this block contains only free markers and we have already
6547 seen more than two blocks worth of free markers then deallocate
6548 this block. */
6549 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6550 {
6551 *mprev = mblk->next;
6552 /* Unhook from the free list. */
6553 marker_free_list = mblk->markers[0].m.u_free.chain;
6554 lisp_free (mblk);
6555 }
6556 else
6557 {
6558 num_free += this_free;
6559 mprev = &mblk->next;
6560 }
6561 }
6562
6563 total_markers = num_used;
6564 total_free_markers = num_free;
6565 }
6566
6567 /* Free all unmarked buffers */
6568 {
6569 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6570
6571 while (buffer)
6572 if (!VECTOR_MARKED_P (buffer))
6573 {
6574 if (prev)
6575 prev->header.next = buffer->header.next;
6576 else
6577 all_buffers = buffer->header.next.buffer;
6578 next = buffer->header.next.buffer;
6579 lisp_free (buffer);
6580 buffer = next;
6581 }
6582 else
6583 {
6584 VECTOR_UNMARK (buffer);
6585 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6586 prev = buffer, buffer = buffer->header.next.buffer;
6587 }
6588 }
6589
6590 sweep_vectors ();
6591
6592 #ifdef GC_CHECK_STRING_BYTES
6593 if (!noninteractive)
6594 check_string_bytes (1);
6595 #endif
6596 }
6597
6598
6599
6600 \f
6601 /* Debugging aids. */
6602
6603 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6604 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6605 This may be helpful in debugging Emacs's memory usage.
6606 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6607 (void)
6608 {
6609 Lisp_Object end;
6610
6611 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6612
6613 return end;
6614 }
6615
6616 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6617 doc: /* Return a list of counters that measure how much consing there has been.
6618 Each of these counters increments for a certain kind of object.
6619 The counters wrap around from the largest positive integer to zero.
6620 Garbage collection does not decrease them.
6621 The elements of the value are as follows:
6622 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6623 All are in units of 1 = one object consed
6624 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6625 objects consed.
6626 MISCS include overlays, markers, and some internal types.
6627 Frames, windows, buffers, and subprocesses count as vectors
6628 (but the contents of a buffer's text do not count here). */)
6629 (void)
6630 {
6631 Lisp_Object consed[8];
6632
6633 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6634 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6635 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6636 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6637 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6638 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6639 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6640 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6641
6642 return Flist (8, consed);
6643 }
6644
6645 /* Find at most FIND_MAX symbols which have OBJ as their value or
6646 function. This is used in gdbinit's `xwhichsymbols' command. */
6647
6648 Lisp_Object
6649 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6650 {
6651 struct symbol_block *sblk;
6652 ptrdiff_t gc_count = inhibit_garbage_collection ();
6653 Lisp_Object found = Qnil;
6654
6655 if (! DEADP (obj))
6656 {
6657 for (sblk = symbol_block; sblk; sblk = sblk->next)
6658 {
6659 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6660 int bn;
6661
6662 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6663 {
6664 struct Lisp_Symbol *sym = &aligned_sym->s;
6665 Lisp_Object val;
6666 Lisp_Object tem;
6667
6668 if (sblk == symbol_block && bn >= symbol_block_index)
6669 break;
6670
6671 XSETSYMBOL (tem, sym);
6672 val = find_symbol_value (tem);
6673 if (EQ (val, obj)
6674 || EQ (sym->function, obj)
6675 || (!NILP (sym->function)
6676 && COMPILEDP (sym->function)
6677 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6678 || (!NILP (val)
6679 && COMPILEDP (val)
6680 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6681 {
6682 found = Fcons (tem, found);
6683 if (--find_max == 0)
6684 goto out;
6685 }
6686 }
6687 }
6688 }
6689
6690 out:
6691 unbind_to (gc_count, Qnil);
6692 return found;
6693 }
6694
6695 #ifdef ENABLE_CHECKING
6696 int suppress_checking;
6697
6698 void
6699 die (const char *msg, const char *file, int line)
6700 {
6701 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6702 file, line, msg);
6703 abort ();
6704 }
6705 #endif
6706 \f
6707 /* Initialization */
6708
6709 void
6710 init_alloc_once (void)
6711 {
6712 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6713 purebeg = PUREBEG;
6714 pure_size = PURESIZE;
6715 pure_bytes_used = 0;
6716 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6717 pure_bytes_used_before_overflow = 0;
6718
6719 /* Initialize the list of free aligned blocks. */
6720 free_ablock = NULL;
6721
6722 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6723 mem_init ();
6724 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6725 #endif
6726
6727 ignore_warnings = 1;
6728 #ifdef DOUG_LEA_MALLOC
6729 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6730 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6731 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6732 #endif
6733 init_strings ();
6734 init_cons ();
6735 init_symbol ();
6736 init_marker ();
6737 init_float ();
6738 init_intervals ();
6739 init_vectors ();
6740 init_weak_hash_tables ();
6741
6742 #ifdef REL_ALLOC
6743 malloc_hysteresis = 32;
6744 #else
6745 malloc_hysteresis = 0;
6746 #endif
6747
6748 refill_memory_reserve ();
6749
6750 ignore_warnings = 0;
6751 gcprolist = 0;
6752 byte_stack_list = 0;
6753 staticidx = 0;
6754 consing_since_gc = 0;
6755 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6756 gc_relative_threshold = 0;
6757 }
6758
6759 void
6760 init_alloc (void)
6761 {
6762 gcprolist = 0;
6763 byte_stack_list = 0;
6764 #if GC_MARK_STACK
6765 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6766 setjmp_tested_p = longjmps_done = 0;
6767 #endif
6768 #endif
6769 Vgc_elapsed = make_float (0.0);
6770 gcs_done = 0;
6771 }
6772
6773 void
6774 syms_of_alloc (void)
6775 {
6776 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6777 doc: /* Number of bytes of consing between garbage collections.
6778 Garbage collection can happen automatically once this many bytes have been
6779 allocated since the last garbage collection. All data types count.
6780
6781 Garbage collection happens automatically only when `eval' is called.
6782
6783 By binding this temporarily to a large number, you can effectively
6784 prevent garbage collection during a part of the program.
6785 See also `gc-cons-percentage'. */);
6786
6787 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6788 doc: /* Portion of the heap used for allocation.
6789 Garbage collection can happen automatically once this portion of the heap
6790 has been allocated since the last garbage collection.
6791 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6792 Vgc_cons_percentage = make_float (0.1);
6793
6794 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6795 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6796
6797 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6798 doc: /* Number of cons cells that have been consed so far. */);
6799
6800 DEFVAR_INT ("floats-consed", floats_consed,
6801 doc: /* Number of floats that have been consed so far. */);
6802
6803 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6804 doc: /* Number of vector cells that have been consed so far. */);
6805
6806 DEFVAR_INT ("symbols-consed", symbols_consed,
6807 doc: /* Number of symbols that have been consed so far. */);
6808
6809 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6810 doc: /* Number of string characters that have been consed so far. */);
6811
6812 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6813 doc: /* Number of miscellaneous objects that have been consed so far.
6814 These include markers and overlays, plus certain objects not visible
6815 to users. */);
6816
6817 DEFVAR_INT ("intervals-consed", intervals_consed,
6818 doc: /* Number of intervals that have been consed so far. */);
6819
6820 DEFVAR_INT ("strings-consed", strings_consed,
6821 doc: /* Number of strings that have been consed so far. */);
6822
6823 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6824 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6825 This means that certain objects should be allocated in shared (pure) space.
6826 It can also be set to a hash-table, in which case this table is used to
6827 do hash-consing of the objects allocated to pure space. */);
6828
6829 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6830 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6831 garbage_collection_messages = 0;
6832
6833 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6834 doc: /* Hook run after garbage collection has finished. */);
6835 Vpost_gc_hook = Qnil;
6836 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6837
6838 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6839 doc: /* Precomputed `signal' argument for memory-full error. */);
6840 /* We build this in advance because if we wait until we need it, we might
6841 not be able to allocate the memory to hold it. */
6842 Vmemory_signal_data
6843 = pure_cons (Qerror,
6844 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6845
6846 DEFVAR_LISP ("memory-full", Vmemory_full,
6847 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6848 Vmemory_full = Qnil;
6849
6850 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6851 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6852
6853 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6854 doc: /* Accumulated time elapsed in garbage collections.
6855 The time is in seconds as a floating point value. */);
6856 DEFVAR_INT ("gcs-done", gcs_done,
6857 doc: /* Accumulated number of garbage collections done. */);
6858
6859 defsubr (&Scons);
6860 defsubr (&Slist);
6861 defsubr (&Svector);
6862 defsubr (&Smake_byte_code);
6863 defsubr (&Smake_list);
6864 defsubr (&Smake_vector);
6865 defsubr (&Smake_string);
6866 defsubr (&Smake_bool_vector);
6867 defsubr (&Smake_symbol);
6868 defsubr (&Smake_marker);
6869 defsubr (&Spurecopy);
6870 defsubr (&Sgarbage_collect);
6871 defsubr (&Smemory_limit);
6872 defsubr (&Smemory_use_counts);
6873
6874 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6875 defsubr (&Sgc_status);
6876 #endif
6877 }