Merge from emacs-24; up to 2014-04-16T15:28:26Z!monnier@iro.umontreal.ca
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
681 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
682 If that variable is set, block input while in one of Emacs's memory
683 allocation functions. There should be no need for this debugging
684 option, since signal handlers do not allocate memory, but Emacs
685 formerly allocated memory in signal handlers and this compile-time
686 option remains as a way to help debug the issue should it rear its
687 ugly head again. */
688 #ifdef XMALLOC_BLOCK_INPUT_CHECK
689 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
690 static void
691 malloc_block_input (void)
692 {
693 if (block_input_in_memory_allocators)
694 block_input ();
695 }
696 static void
697 malloc_unblock_input (void)
698 {
699 if (block_input_in_memory_allocators)
700 unblock_input ();
701 }
702 # define MALLOC_BLOCK_INPUT malloc_block_input ()
703 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
704 #else
705 # define MALLOC_BLOCK_INPUT ((void) 0)
706 # define MALLOC_UNBLOCK_INPUT ((void) 0)
707 #endif
708
709 #define MALLOC_PROBE(size) \
710 do { \
711 if (profiler_memory_running) \
712 malloc_probe (size); \
713 } while (0)
714
715
716 /* Like malloc but check for no memory and block interrupt input.. */
717
718 void *
719 xmalloc (size_t size)
720 {
721 void *val;
722
723 MALLOC_BLOCK_INPUT;
724 val = malloc (size);
725 MALLOC_UNBLOCK_INPUT;
726
727 if (!val && size)
728 memory_full (size);
729 MALLOC_PROBE (size);
730 return val;
731 }
732
733 /* Like the above, but zeroes out the memory just allocated. */
734
735 void *
736 xzalloc (size_t size)
737 {
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 MALLOC_PROBE (size);
748 return val;
749 }
750
751 /* Like realloc but check for no memory and block interrupt input.. */
752
753 void *
754 xrealloc (void *block, size_t size)
755 {
756 void *val;
757
758 MALLOC_BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = malloc (size);
763 else
764 val = realloc (block, size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full (size);
769 MALLOC_PROBE (size);
770 return val;
771 }
772
773
774 /* Like free but block interrupt input. */
775
776 void
777 xfree (void *block)
778 {
779 if (!block)
780 return;
781 MALLOC_BLOCK_INPUT;
782 free (block);
783 MALLOC_UNBLOCK_INPUT;
784 /* We don't call refill_memory_reserve here
785 because in practice the call in r_alloc_free seems to suffice. */
786 }
787
788
789 /* Other parts of Emacs pass large int values to allocator functions
790 expecting ptrdiff_t. This is portable in practice, but check it to
791 be safe. */
792 verify (INT_MAX <= PTRDIFF_MAX);
793
794
795 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
796 Signal an error on memory exhaustion, and block interrupt input. */
797
798 void *
799 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 {
801 eassert (0 <= nitems && 0 < item_size);
802 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
803 memory_full (SIZE_MAX);
804 return xmalloc (nitems * item_size);
805 }
806
807
808 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
809 Signal an error on memory exhaustion, and block interrupt input. */
810
811 void *
812 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 {
814 eassert (0 <= nitems && 0 < item_size);
815 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
816 memory_full (SIZE_MAX);
817 return xrealloc (pa, nitems * item_size);
818 }
819
820
821 /* Grow PA, which points to an array of *NITEMS items, and return the
822 location of the reallocated array, updating *NITEMS to reflect its
823 new size. The new array will contain at least NITEMS_INCR_MIN more
824 items, but will not contain more than NITEMS_MAX items total.
825 ITEM_SIZE is the size of each item, in bytes.
826
827 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
828 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
829 infinity.
830
831 If PA is null, then allocate a new array instead of reallocating
832 the old one.
833
834 Block interrupt input as needed. If memory exhaustion occurs, set
835 *NITEMS to zero if PA is null, and signal an error (i.e., do not
836 return).
837
838 Thus, to grow an array A without saving its old contents, do
839 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
840 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
841 and signals an error, and later this code is reexecuted and
842 attempts to free A. */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 ptrdiff_t size;
886 eassert (s);
887 size = strlen (s) + 1;
888 return memcpy (xmalloc (size), s, size);
889 }
890
891 /* Like above, but duplicates Lisp string to C string. */
892
893 char *
894 xlispstrdup (Lisp_Object string)
895 {
896 ptrdiff_t size = SBYTES (string) + 1;
897 return memcpy (xmalloc (size), SSDATA (string), size);
898 }
899
900 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
901 pointed to. If STRING is null, assign it without copying anything.
902 Allocate before freeing, to avoid a dangling pointer if allocation
903 fails. */
904
905 void
906 dupstring (char **ptr, char const *string)
907 {
908 char *old = *ptr;
909 *ptr = string ? xstrdup (string) : 0;
910 xfree (old);
911 }
912
913
914 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
915 argument is a const pointer. */
916
917 void
918 xputenv (char const *string)
919 {
920 if (putenv ((char *) string) != 0)
921 memory_full (0);
922 }
923
924 /* Return a newly allocated memory block of SIZE bytes, remembering
925 to free it when unwinding. */
926 void *
927 record_xmalloc (size_t size)
928 {
929 void *p = xmalloc (size);
930 record_unwind_protect_ptr (xfree, p);
931 return p;
932 }
933
934
935 /* Like malloc but used for allocating Lisp data. NBYTES is the
936 number of bytes to allocate, TYPE describes the intended use of the
937 allocated memory block (for strings, for conses, ...). */
938
939 #if ! USE_LSB_TAG
940 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
941 #endif
942
943 static void *
944 lisp_malloc (size_t nbytes, enum mem_type type)
945 {
946 register void *val;
947
948 MALLOC_BLOCK_INPUT;
949
950 #ifdef GC_MALLOC_CHECK
951 allocated_mem_type = type;
952 #endif
953
954 val = malloc (nbytes);
955
956 #if ! USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be,
959 that's equivalent to running out of memory. */
960 if (val && type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 XSETCONS (tem, (char *) val + nbytes - 1);
964 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 {
966 lisp_malloc_loser = val;
967 free (val);
968 val = 0;
969 }
970 }
971 #endif
972
973 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
974 if (val && type != MEM_TYPE_NON_LISP)
975 mem_insert (val, (char *) val + nbytes, type);
976 #endif
977
978 MALLOC_UNBLOCK_INPUT;
979 if (!val && nbytes)
980 memory_full (nbytes);
981 MALLOC_PROBE (nbytes);
982 return val;
983 }
984
985 /* Free BLOCK. This must be called to free memory allocated with a
986 call to lisp_malloc. */
987
988 static void
989 lisp_free (void *block)
990 {
991 MALLOC_BLOCK_INPUT;
992 free (block);
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 mem_delete (mem_find (block));
995 #endif
996 MALLOC_UNBLOCK_INPUT;
997 }
998
999 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000
1001 /* The entry point is lisp_align_malloc which returns blocks of at most
1002 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003
1004 /* Use aligned_alloc if it or a simple substitute is available.
1005 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1006 clang 3.3 anyway. */
1007
1008 #if ! ADDRESS_SANITIZER
1009 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1010 # define USE_ALIGNED_ALLOC 1
1011 /* Defined in gmalloc.c. */
1012 void *aligned_alloc (size_t, size_t);
1013 # elif defined HAVE_ALIGNED_ALLOC
1014 # define USE_ALIGNED_ALLOC 1
1015 # elif defined HAVE_POSIX_MEMALIGN
1016 # define USE_ALIGNED_ALLOC 1
1017 static void *
1018 aligned_alloc (size_t alignment, size_t size)
1019 {
1020 void *p;
1021 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1022 }
1023 # endif
1024 #endif
1025
1026 /* BLOCK_ALIGN has to be a power of 2. */
1027 #define BLOCK_ALIGN (1 << 10)
1028
1029 /* Padding to leave at the end of a malloc'd block. This is to give
1030 malloc a chance to minimize the amount of memory wasted to alignment.
1031 It should be tuned to the particular malloc library used.
1032 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1033 aligned_alloc on the other hand would ideally prefer a value of 4
1034 because otherwise, there's 1020 bytes wasted between each ablocks.
1035 In Emacs, testing shows that those 1020 can most of the time be
1036 efficiently used by malloc to place other objects, so a value of 0 can
1037 still preferable unless you have a lot of aligned blocks and virtually
1038 nothing else. */
1039 #define BLOCK_PADDING 0
1040 #define BLOCK_BYTES \
1041 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1042
1043 /* Internal data structures and constants. */
1044
1045 #define ABLOCKS_SIZE 16
1046
1047 /* An aligned block of memory. */
1048 struct ablock
1049 {
1050 union
1051 {
1052 char payload[BLOCK_BYTES];
1053 struct ablock *next_free;
1054 } x;
1055 /* `abase' is the aligned base of the ablocks. */
1056 /* It is overloaded to hold the virtual `busy' field that counts
1057 the number of used ablock in the parent ablocks.
1058 The first ablock has the `busy' field, the others have the `abase'
1059 field. To tell the difference, we assume that pointers will have
1060 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1061 is used to tell whether the real base of the parent ablocks is `abase'
1062 (if not, the word before the first ablock holds a pointer to the
1063 real base). */
1064 struct ablocks *abase;
1065 /* The padding of all but the last ablock is unused. The padding of
1066 the last ablock in an ablocks is not allocated. */
1067 #if BLOCK_PADDING
1068 char padding[BLOCK_PADDING];
1069 #endif
1070 };
1071
1072 /* A bunch of consecutive aligned blocks. */
1073 struct ablocks
1074 {
1075 struct ablock blocks[ABLOCKS_SIZE];
1076 };
1077
1078 /* Size of the block requested from malloc or aligned_alloc. */
1079 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1080
1081 #define ABLOCK_ABASE(block) \
1082 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1083 ? (struct ablocks *)(block) \
1084 : (block)->abase)
1085
1086 /* Virtual `busy' field. */
1087 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1088
1089 /* Pointer to the (not necessarily aligned) malloc block. */
1090 #ifdef USE_ALIGNED_ALLOC
1091 #define ABLOCKS_BASE(abase) (abase)
1092 #else
1093 #define ABLOCKS_BASE(abase) \
1094 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1095 #endif
1096
1097 /* The list of free ablock. */
1098 static struct ablock *free_ablock;
1099
1100 /* Allocate an aligned block of nbytes.
1101 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1102 smaller or equal to BLOCK_BYTES. */
1103 static void *
1104 lisp_align_malloc (size_t nbytes, enum mem_type type)
1105 {
1106 void *base, *val;
1107 struct ablocks *abase;
1108
1109 eassert (nbytes <= BLOCK_BYTES);
1110
1111 MALLOC_BLOCK_INPUT;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 allocated_mem_type = type;
1115 #endif
1116
1117 if (!free_ablock)
1118 {
1119 int i;
1120 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1121
1122 #ifdef DOUG_LEA_MALLOC
1123 if (!mmap_lisp_allowed_p ())
1124 mallopt (M_MMAP_MAX, 0);
1125 #endif
1126
1127 #ifdef USE_ALIGNED_ALLOC
1128 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1129 #else
1130 base = malloc (ABLOCKS_BYTES);
1131 abase = ALIGN (base, BLOCK_ALIGN);
1132 #endif
1133
1134 if (base == 0)
1135 {
1136 MALLOC_UNBLOCK_INPUT;
1137 memory_full (ABLOCKS_BYTES);
1138 }
1139
1140 aligned = (base == abase);
1141 if (!aligned)
1142 ((void **) abase)[-1] = base;
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1147 #endif
1148
1149 #if ! USE_LSB_TAG
1150 /* If the memory just allocated cannot be addressed thru a Lisp
1151 object's pointer, and it needs to be, that's equivalent to
1152 running out of memory. */
1153 if (type != MEM_TYPE_NON_LISP)
1154 {
1155 Lisp_Object tem;
1156 char *end = (char *) base + ABLOCKS_BYTES - 1;
1157 XSETCONS (tem, end);
1158 if ((char *) XCONS (tem) != end)
1159 {
1160 lisp_malloc_loser = base;
1161 free (base);
1162 MALLOC_UNBLOCK_INPUT;
1163 memory_full (SIZE_MAX);
1164 }
1165 }
1166 #endif
1167
1168 /* Initialize the blocks and put them on the free list.
1169 If `base' was not properly aligned, we can't use the last block. */
1170 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1171 {
1172 abase->blocks[i].abase = abase;
1173 abase->blocks[i].x.next_free = free_ablock;
1174 free_ablock = &abase->blocks[i];
1175 }
1176 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1177
1178 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1179 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1180 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1181 eassert (ABLOCKS_BASE (abase) == base);
1182 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1183 }
1184
1185 abase = ABLOCK_ABASE (free_ablock);
1186 ABLOCKS_BUSY (abase)
1187 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1188 val = free_ablock;
1189 free_ablock = free_ablock->x.next_free;
1190
1191 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1192 if (type != MEM_TYPE_NON_LISP)
1193 mem_insert (val, (char *) val + nbytes, type);
1194 #endif
1195
1196 MALLOC_UNBLOCK_INPUT;
1197
1198 MALLOC_PROBE (nbytes);
1199
1200 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1201 return val;
1202 }
1203
1204 static void
1205 lisp_align_free (void *block)
1206 {
1207 struct ablock *ablock = block;
1208 struct ablocks *abase = ABLOCK_ABASE (ablock);
1209
1210 MALLOC_BLOCK_INPUT;
1211 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1212 mem_delete (mem_find (block));
1213 #endif
1214 /* Put on free list. */
1215 ablock->x.next_free = free_ablock;
1216 free_ablock = ablock;
1217 /* Update busy count. */
1218 ABLOCKS_BUSY (abase)
1219 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1220
1221 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1222 { /* All the blocks are free. */
1223 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1224 struct ablock **tem = &free_ablock;
1225 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1226
1227 while (*tem)
1228 {
1229 if (*tem >= (struct ablock *) abase && *tem < atop)
1230 {
1231 i++;
1232 *tem = (*tem)->x.next_free;
1233 }
1234 else
1235 tem = &(*tem)->x.next_free;
1236 }
1237 eassert ((aligned & 1) == aligned);
1238 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1239 #ifdef USE_POSIX_MEMALIGN
1240 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1241 #endif
1242 free (ABLOCKS_BASE (abase));
1243 }
1244 MALLOC_UNBLOCK_INPUT;
1245 }
1246
1247 \f
1248 /***********************************************************************
1249 Interval Allocation
1250 ***********************************************************************/
1251
1252 /* Number of intervals allocated in an interval_block structure.
1253 The 1020 is 1024 minus malloc overhead. */
1254
1255 #define INTERVAL_BLOCK_SIZE \
1256 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1257
1258 /* Intervals are allocated in chunks in the form of an interval_block
1259 structure. */
1260
1261 struct interval_block
1262 {
1263 /* Place `intervals' first, to preserve alignment. */
1264 struct interval intervals[INTERVAL_BLOCK_SIZE];
1265 struct interval_block *next;
1266 };
1267
1268 /* Current interval block. Its `next' pointer points to older
1269 blocks. */
1270
1271 static struct interval_block *interval_block;
1272
1273 /* Index in interval_block above of the next unused interval
1274 structure. */
1275
1276 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1277
1278 /* Number of free and live intervals. */
1279
1280 static EMACS_INT total_free_intervals, total_intervals;
1281
1282 /* List of free intervals. */
1283
1284 static INTERVAL interval_free_list;
1285
1286 /* Return a new interval. */
1287
1288 INTERVAL
1289 make_interval (void)
1290 {
1291 INTERVAL val;
1292
1293 MALLOC_BLOCK_INPUT;
1294
1295 if (interval_free_list)
1296 {
1297 val = interval_free_list;
1298 interval_free_list = INTERVAL_PARENT (interval_free_list);
1299 }
1300 else
1301 {
1302 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1303 {
1304 struct interval_block *newi
1305 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1306
1307 newi->next = interval_block;
1308 interval_block = newi;
1309 interval_block_index = 0;
1310 total_free_intervals += INTERVAL_BLOCK_SIZE;
1311 }
1312 val = &interval_block->intervals[interval_block_index++];
1313 }
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 consing_since_gc += sizeof (struct interval);
1318 intervals_consed++;
1319 total_free_intervals--;
1320 RESET_INTERVAL (val);
1321 val->gcmarkbit = 0;
1322 return val;
1323 }
1324
1325
1326 /* Mark Lisp objects in interval I. */
1327
1328 static void
1329 mark_interval (register INTERVAL i, Lisp_Object dummy)
1330 {
1331 /* Intervals should never be shared. So, if extra internal checking is
1332 enabled, GC aborts if it seems to have visited an interval twice. */
1333 eassert (!i->gcmarkbit);
1334 i->gcmarkbit = 1;
1335 mark_object (i->plist);
1336 }
1337
1338 /* Mark the interval tree rooted in I. */
1339
1340 #define MARK_INTERVAL_TREE(i) \
1341 do { \
1342 if (i && !i->gcmarkbit) \
1343 traverse_intervals_noorder (i, mark_interval, Qnil); \
1344 } while (0)
1345
1346 /***********************************************************************
1347 String Allocation
1348 ***********************************************************************/
1349
1350 /* Lisp_Strings are allocated in string_block structures. When a new
1351 string_block is allocated, all the Lisp_Strings it contains are
1352 added to a free-list string_free_list. When a new Lisp_String is
1353 needed, it is taken from that list. During the sweep phase of GC,
1354 string_blocks that are entirely free are freed, except two which
1355 we keep.
1356
1357 String data is allocated from sblock structures. Strings larger
1358 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1359 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1360
1361 Sblocks consist internally of sdata structures, one for each
1362 Lisp_String. The sdata structure points to the Lisp_String it
1363 belongs to. The Lisp_String points back to the `u.data' member of
1364 its sdata structure.
1365
1366 When a Lisp_String is freed during GC, it is put back on
1367 string_free_list, and its `data' member and its sdata's `string'
1368 pointer is set to null. The size of the string is recorded in the
1369 `n.nbytes' member of the sdata. So, sdata structures that are no
1370 longer used, can be easily recognized, and it's easy to compact the
1371 sblocks of small strings which we do in compact_small_strings. */
1372
1373 /* Size in bytes of an sblock structure used for small strings. This
1374 is 8192 minus malloc overhead. */
1375
1376 #define SBLOCK_SIZE 8188
1377
1378 /* Strings larger than this are considered large strings. String data
1379 for large strings is allocated from individual sblocks. */
1380
1381 #define LARGE_STRING_BYTES 1024
1382
1383 /* The SDATA typedef is a struct or union describing string memory
1384 sub-allocated from an sblock. This is where the contents of Lisp
1385 strings are stored. */
1386
1387 struct sdata
1388 {
1389 /* Back-pointer to the string this sdata belongs to. If null, this
1390 structure is free, and NBYTES (in this structure or in the union below)
1391 contains the string's byte size (the same value that STRING_BYTES
1392 would return if STRING were non-null). If non-null, STRING_BYTES
1393 (STRING) is the size of the data, and DATA contains the string's
1394 contents. */
1395 struct Lisp_String *string;
1396
1397 #ifdef GC_CHECK_STRING_BYTES
1398 ptrdiff_t nbytes;
1399 #endif
1400
1401 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1402 };
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 typedef struct sdata sdata;
1407 #define SDATA_NBYTES(S) (S)->nbytes
1408 #define SDATA_DATA(S) (S)->data
1409
1410 #else
1411
1412 typedef union
1413 {
1414 struct Lisp_String *string;
1415
1416 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1417 which has a flexible array member. However, if implemented by
1418 giving this union a member of type 'struct sdata', the union
1419 could not be the last (flexible) member of 'struct sblock',
1420 because C99 prohibits a flexible array member from having a type
1421 that is itself a flexible array. So, comment this member out here,
1422 but remember that the option's there when using this union. */
1423 #if 0
1424 struct sdata u;
1425 #endif
1426
1427 /* When STRING is null. */
1428 struct
1429 {
1430 struct Lisp_String *string;
1431 ptrdiff_t nbytes;
1432 } n;
1433 } sdata;
1434
1435 #define SDATA_NBYTES(S) (S)->n.nbytes
1436 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1441
1442 /* Structure describing a block of memory which is sub-allocated to
1443 obtain string data memory for strings. Blocks for small strings
1444 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1445 as large as needed. */
1446
1447 struct sblock
1448 {
1449 /* Next in list. */
1450 struct sblock *next;
1451
1452 /* Pointer to the next free sdata block. This points past the end
1453 of the sblock if there isn't any space left in this block. */
1454 sdata *next_free;
1455
1456 /* String data. */
1457 sdata data[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 /* Number of Lisp strings in a string_block structure. The 1020 is
1461 1024 minus malloc overhead. */
1462
1463 #define STRING_BLOCK_SIZE \
1464 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1465
1466 /* Structure describing a block from which Lisp_String structures
1467 are allocated. */
1468
1469 struct string_block
1470 {
1471 /* Place `strings' first, to preserve alignment. */
1472 struct Lisp_String strings[STRING_BLOCK_SIZE];
1473 struct string_block *next;
1474 };
1475
1476 /* Head and tail of the list of sblock structures holding Lisp string
1477 data. We always allocate from current_sblock. The NEXT pointers
1478 in the sblock structures go from oldest_sblock to current_sblock. */
1479
1480 static struct sblock *oldest_sblock, *current_sblock;
1481
1482 /* List of sblocks for large strings. */
1483
1484 static struct sblock *large_sblocks;
1485
1486 /* List of string_block structures. */
1487
1488 static struct string_block *string_blocks;
1489
1490 /* Free-list of Lisp_Strings. */
1491
1492 static struct Lisp_String *string_free_list;
1493
1494 /* Number of live and free Lisp_Strings. */
1495
1496 static EMACS_INT total_strings, total_free_strings;
1497
1498 /* Number of bytes used by live strings. */
1499
1500 static EMACS_INT total_string_bytes;
1501
1502 /* Given a pointer to a Lisp_String S which is on the free-list
1503 string_free_list, return a pointer to its successor in the
1504 free-list. */
1505
1506 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1507
1508 /* Return a pointer to the sdata structure belonging to Lisp string S.
1509 S must be live, i.e. S->data must not be null. S->data is actually
1510 a pointer to the `u.data' member of its sdata structure; the
1511 structure starts at a constant offset in front of that. */
1512
1513 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1514
1515
1516 #ifdef GC_CHECK_STRING_OVERRUN
1517
1518 /* We check for overrun in string data blocks by appending a small
1519 "cookie" after each allocated string data block, and check for the
1520 presence of this cookie during GC. */
1521
1522 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1523 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1524 { '\xde', '\xad', '\xbe', '\xef' };
1525
1526 #else
1527 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1528 #endif
1529
1530 /* Value is the size of an sdata structure large enough to hold NBYTES
1531 bytes of string data. The value returned includes a terminating
1532 NUL byte, the size of the sdata structure, and padding. */
1533
1534 #ifdef GC_CHECK_STRING_BYTES
1535
1536 #define SDATA_SIZE(NBYTES) \
1537 ((SDATA_DATA_OFFSET \
1538 + (NBYTES) + 1 \
1539 + sizeof (ptrdiff_t) - 1) \
1540 & ~(sizeof (ptrdiff_t) - 1))
1541
1542 #else /* not GC_CHECK_STRING_BYTES */
1543
1544 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1545 less than the size of that member. The 'max' is not needed when
1546 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1547 alignment code reserves enough space. */
1548
1549 #define SDATA_SIZE(NBYTES) \
1550 ((SDATA_DATA_OFFSET \
1551 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1552 ? NBYTES \
1553 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1554 + 1 \
1555 + sizeof (ptrdiff_t) - 1) \
1556 & ~(sizeof (ptrdiff_t) - 1))
1557
1558 #endif /* not GC_CHECK_STRING_BYTES */
1559
1560 /* Extra bytes to allocate for each string. */
1561
1562 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1563
1564 /* Exact bound on the number of bytes in a string, not counting the
1565 terminating null. A string cannot contain more bytes than
1566 STRING_BYTES_BOUND, nor can it be so long that the size_t
1567 arithmetic in allocate_string_data would overflow while it is
1568 calculating a value to be passed to malloc. */
1569 static ptrdiff_t const STRING_BYTES_MAX =
1570 min (STRING_BYTES_BOUND,
1571 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1572 - GC_STRING_EXTRA
1573 - offsetof (struct sblock, data)
1574 - SDATA_DATA_OFFSET)
1575 & ~(sizeof (EMACS_INT) - 1)));
1576
1577 /* Initialize string allocation. Called from init_alloc_once. */
1578
1579 static void
1580 init_strings (void)
1581 {
1582 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1583 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 }
1585
1586
1587 #ifdef GC_CHECK_STRING_BYTES
1588
1589 static int check_string_bytes_count;
1590
1591 /* Like STRING_BYTES, but with debugging check. Can be
1592 called during GC, so pay attention to the mark bit. */
1593
1594 ptrdiff_t
1595 string_bytes (struct Lisp_String *s)
1596 {
1597 ptrdiff_t nbytes =
1598 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1599
1600 if (!PURE_POINTER_P (s)
1601 && s->data
1602 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1603 emacs_abort ();
1604 return nbytes;
1605 }
1606
1607 /* Check validity of Lisp strings' string_bytes member in B. */
1608
1609 static void
1610 check_sblock (struct sblock *b)
1611 {
1612 sdata *from, *end, *from_end;
1613
1614 end = b->next_free;
1615
1616 for (from = b->data; from < end; from = from_end)
1617 {
1618 /* Compute the next FROM here because copying below may
1619 overwrite data we need to compute it. */
1620 ptrdiff_t nbytes;
1621
1622 /* Check that the string size recorded in the string is the
1623 same as the one recorded in the sdata structure. */
1624 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1625 : SDATA_NBYTES (from));
1626 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1627 }
1628 }
1629
1630
1631 /* Check validity of Lisp strings' string_bytes member. ALL_P
1632 means check all strings, otherwise check only most
1633 recently allocated strings. Used for hunting a bug. */
1634
1635 static void
1636 check_string_bytes (bool all_p)
1637 {
1638 if (all_p)
1639 {
1640 struct sblock *b;
1641
1642 for (b = large_sblocks; b; b = b->next)
1643 {
1644 struct Lisp_String *s = b->data[0].string;
1645 if (s)
1646 string_bytes (s);
1647 }
1648
1649 for (b = oldest_sblock; b; b = b->next)
1650 check_sblock (b);
1651 }
1652 else if (current_sblock)
1653 check_sblock (current_sblock);
1654 }
1655
1656 #else /* not GC_CHECK_STRING_BYTES */
1657
1658 #define check_string_bytes(all) ((void) 0)
1659
1660 #endif /* GC_CHECK_STRING_BYTES */
1661
1662 #ifdef GC_CHECK_STRING_FREE_LIST
1663
1664 /* Walk through the string free list looking for bogus next pointers.
1665 This may catch buffer overrun from a previous string. */
1666
1667 static void
1668 check_string_free_list (void)
1669 {
1670 struct Lisp_String *s;
1671
1672 /* Pop a Lisp_String off the free-list. */
1673 s = string_free_list;
1674 while (s != NULL)
1675 {
1676 if ((uintptr_t) s < 1024)
1677 emacs_abort ();
1678 s = NEXT_FREE_LISP_STRING (s);
1679 }
1680 }
1681 #else
1682 #define check_string_free_list()
1683 #endif
1684
1685 /* Return a new Lisp_String. */
1686
1687 static struct Lisp_String *
1688 allocate_string (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 MALLOC_BLOCK_INPUT;
1693
1694 /* If the free-list is empty, allocate a new string_block, and
1695 add all the Lisp_Strings in it to the free-list. */
1696 if (string_free_list == NULL)
1697 {
1698 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1699 int i;
1700
1701 b->next = string_blocks;
1702 string_blocks = b;
1703
1704 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1705 {
1706 s = b->strings + i;
1707 /* Every string on a free list should have NULL data pointer. */
1708 s->data = NULL;
1709 NEXT_FREE_LISP_STRING (s) = string_free_list;
1710 string_free_list = s;
1711 }
1712
1713 total_free_strings += STRING_BLOCK_SIZE;
1714 }
1715
1716 check_string_free_list ();
1717
1718 /* Pop a Lisp_String off the free-list. */
1719 s = string_free_list;
1720 string_free_list = NEXT_FREE_LISP_STRING (s);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 --total_free_strings;
1725 ++total_strings;
1726 ++strings_consed;
1727 consing_since_gc += sizeof *s;
1728
1729 #ifdef GC_CHECK_STRING_BYTES
1730 if (!noninteractive)
1731 {
1732 if (++check_string_bytes_count == 200)
1733 {
1734 check_string_bytes_count = 0;
1735 check_string_bytes (1);
1736 }
1737 else
1738 check_string_bytes (0);
1739 }
1740 #endif /* GC_CHECK_STRING_BYTES */
1741
1742 return s;
1743 }
1744
1745
1746 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1747 plus a NUL byte at the end. Allocate an sdata structure for S, and
1748 set S->data to its `u.data' member. Store a NUL byte at the end of
1749 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1750 S->data if it was initially non-null. */
1751
1752 void
1753 allocate_string_data (struct Lisp_String *s,
1754 EMACS_INT nchars, EMACS_INT nbytes)
1755 {
1756 sdata *data, *old_data;
1757 struct sblock *b;
1758 ptrdiff_t needed, old_nbytes;
1759
1760 if (STRING_BYTES_MAX < nbytes)
1761 string_overflow ();
1762
1763 /* Determine the number of bytes needed to store NBYTES bytes
1764 of string data. */
1765 needed = SDATA_SIZE (nbytes);
1766 if (s->data)
1767 {
1768 old_data = SDATA_OF_STRING (s);
1769 old_nbytes = STRING_BYTES (s);
1770 }
1771 else
1772 old_data = NULL;
1773
1774 MALLOC_BLOCK_INPUT;
1775
1776 if (nbytes > LARGE_STRING_BYTES)
1777 {
1778 size_t size = offsetof (struct sblock, data) + needed;
1779
1780 #ifdef DOUG_LEA_MALLOC
1781 if (!mmap_lisp_allowed_p ())
1782 mallopt (M_MMAP_MAX, 0);
1783 #endif
1784
1785 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1786
1787 #ifdef DOUG_LEA_MALLOC
1788 if (!mmap_lisp_allowed_p ())
1789 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1790 #endif
1791
1792 b->next_free = b->data;
1793 b->data[0].string = NULL;
1794 b->next = large_sblocks;
1795 large_sblocks = b;
1796 }
1797 else if (current_sblock == NULL
1798 || (((char *) current_sblock + SBLOCK_SIZE
1799 - (char *) current_sblock->next_free)
1800 < (needed + GC_STRING_EXTRA)))
1801 {
1802 /* Not enough room in the current sblock. */
1803 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1804 b->next_free = b->data;
1805 b->data[0].string = NULL;
1806 b->next = NULL;
1807
1808 if (current_sblock)
1809 current_sblock->next = b;
1810 else
1811 oldest_sblock = b;
1812 current_sblock = b;
1813 }
1814 else
1815 b = current_sblock;
1816
1817 data = b->next_free;
1818 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1819
1820 MALLOC_UNBLOCK_INPUT;
1821
1822 data->string = s;
1823 s->data = SDATA_DATA (data);
1824 #ifdef GC_CHECK_STRING_BYTES
1825 SDATA_NBYTES (data) = nbytes;
1826 #endif
1827 s->size = nchars;
1828 s->size_byte = nbytes;
1829 s->data[nbytes] = '\0';
1830 #ifdef GC_CHECK_STRING_OVERRUN
1831 memcpy ((char *) data + needed, string_overrun_cookie,
1832 GC_STRING_OVERRUN_COOKIE_SIZE);
1833 #endif
1834
1835 /* Note that Faset may call to this function when S has already data
1836 assigned. In this case, mark data as free by setting it's string
1837 back-pointer to null, and record the size of the data in it. */
1838 if (old_data)
1839 {
1840 SDATA_NBYTES (old_data) = old_nbytes;
1841 old_data->string = NULL;
1842 }
1843
1844 consing_since_gc += needed;
1845 }
1846
1847
1848 /* Sweep and compact strings. */
1849
1850 NO_INLINE /* For better stack traces */
1851 static void
1852 sweep_strings (void)
1853 {
1854 struct string_block *b, *next;
1855 struct string_block *live_blocks = NULL;
1856
1857 string_free_list = NULL;
1858 total_strings = total_free_strings = 0;
1859 total_string_bytes = 0;
1860
1861 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1862 for (b = string_blocks; b; b = next)
1863 {
1864 int i, nfree = 0;
1865 struct Lisp_String *free_list_before = string_free_list;
1866
1867 next = b->next;
1868
1869 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1870 {
1871 struct Lisp_String *s = b->strings + i;
1872
1873 if (s->data)
1874 {
1875 /* String was not on free-list before. */
1876 if (STRING_MARKED_P (s))
1877 {
1878 /* String is live; unmark it and its intervals. */
1879 UNMARK_STRING (s);
1880
1881 /* Do not use string_(set|get)_intervals here. */
1882 s->intervals = balance_intervals (s->intervals);
1883
1884 ++total_strings;
1885 total_string_bytes += STRING_BYTES (s);
1886 }
1887 else
1888 {
1889 /* String is dead. Put it on the free-list. */
1890 sdata *data = SDATA_OF_STRING (s);
1891
1892 /* Save the size of S in its sdata so that we know
1893 how large that is. Reset the sdata's string
1894 back-pointer so that we know it's free. */
1895 #ifdef GC_CHECK_STRING_BYTES
1896 if (string_bytes (s) != SDATA_NBYTES (data))
1897 emacs_abort ();
1898 #else
1899 data->n.nbytes = STRING_BYTES (s);
1900 #endif
1901 data->string = NULL;
1902
1903 /* Reset the strings's `data' member so that we
1904 know it's free. */
1905 s->data = NULL;
1906
1907 /* Put the string on the free-list. */
1908 NEXT_FREE_LISP_STRING (s) = string_free_list;
1909 string_free_list = s;
1910 ++nfree;
1911 }
1912 }
1913 else
1914 {
1915 /* S was on the free-list before. Put it there again. */
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 ++nfree;
1919 }
1920 }
1921
1922 /* Free blocks that contain free Lisp_Strings only, except
1923 the first two of them. */
1924 if (nfree == STRING_BLOCK_SIZE
1925 && total_free_strings > STRING_BLOCK_SIZE)
1926 {
1927 lisp_free (b);
1928 string_free_list = free_list_before;
1929 }
1930 else
1931 {
1932 total_free_strings += nfree;
1933 b->next = live_blocks;
1934 live_blocks = b;
1935 }
1936 }
1937
1938 check_string_free_list ();
1939
1940 string_blocks = live_blocks;
1941 free_large_strings ();
1942 compact_small_strings ();
1943
1944 check_string_free_list ();
1945 }
1946
1947
1948 /* Free dead large strings. */
1949
1950 static void
1951 free_large_strings (void)
1952 {
1953 struct sblock *b, *next;
1954 struct sblock *live_blocks = NULL;
1955
1956 for (b = large_sblocks; b; b = next)
1957 {
1958 next = b->next;
1959
1960 if (b->data[0].string == NULL)
1961 lisp_free (b);
1962 else
1963 {
1964 b->next = live_blocks;
1965 live_blocks = b;
1966 }
1967 }
1968
1969 large_sblocks = live_blocks;
1970 }
1971
1972
1973 /* Compact data of small strings. Free sblocks that don't contain
1974 data of live strings after compaction. */
1975
1976 static void
1977 compact_small_strings (void)
1978 {
1979 struct sblock *b, *tb, *next;
1980 sdata *from, *to, *end, *tb_end;
1981 sdata *to_end, *from_end;
1982
1983 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1984 to, and TB_END is the end of TB. */
1985 tb = oldest_sblock;
1986 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1987 to = tb->data;
1988
1989 /* Step through the blocks from the oldest to the youngest. We
1990 expect that old blocks will stabilize over time, so that less
1991 copying will happen this way. */
1992 for (b = oldest_sblock; b; b = b->next)
1993 {
1994 end = b->next_free;
1995 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1996
1997 for (from = b->data; from < end; from = from_end)
1998 {
1999 /* Compute the next FROM here because copying below may
2000 overwrite data we need to compute it. */
2001 ptrdiff_t nbytes;
2002 struct Lisp_String *s = from->string;
2003
2004 #ifdef GC_CHECK_STRING_BYTES
2005 /* Check that the string size recorded in the string is the
2006 same as the one recorded in the sdata structure. */
2007 if (s && string_bytes (s) != SDATA_NBYTES (from))
2008 emacs_abort ();
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2012 eassert (nbytes <= LARGE_STRING_BYTES);
2013
2014 nbytes = SDATA_SIZE (nbytes);
2015 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2016
2017 #ifdef GC_CHECK_STRING_OVERRUN
2018 if (memcmp (string_overrun_cookie,
2019 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2020 GC_STRING_OVERRUN_COOKIE_SIZE))
2021 emacs_abort ();
2022 #endif
2023
2024 /* Non-NULL S means it's alive. Copy its data. */
2025 if (s)
2026 {
2027 /* If TB is full, proceed with the next sblock. */
2028 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2029 if (to_end > tb_end)
2030 {
2031 tb->next_free = to;
2032 tb = tb->next;
2033 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2034 to = tb->data;
2035 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2036 }
2037
2038 /* Copy, and update the string's `data' pointer. */
2039 if (from != to)
2040 {
2041 eassert (tb != b || to < from);
2042 memmove (to, from, nbytes + GC_STRING_EXTRA);
2043 to->string->data = SDATA_DATA (to);
2044 }
2045
2046 /* Advance past the sdata we copied to. */
2047 to = to_end;
2048 }
2049 }
2050 }
2051
2052 /* The rest of the sblocks following TB don't contain live data, so
2053 we can free them. */
2054 for (b = tb->next; b; b = next)
2055 {
2056 next = b->next;
2057 lisp_free (b);
2058 }
2059
2060 tb->next_free = to;
2061 tb->next = NULL;
2062 current_sblock = tb;
2063 }
2064
2065 void
2066 string_overflow (void)
2067 {
2068 error ("Maximum string size exceeded");
2069 }
2070
2071 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2072 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2073 LENGTH must be an integer.
2074 INIT must be an integer that represents a character. */)
2075 (Lisp_Object length, Lisp_Object init)
2076 {
2077 register Lisp_Object val;
2078 int c;
2079 EMACS_INT nbytes;
2080
2081 CHECK_NATNUM (length);
2082 CHECK_CHARACTER (init);
2083
2084 c = XFASTINT (init);
2085 if (ASCII_CHAR_P (c))
2086 {
2087 nbytes = XINT (length);
2088 val = make_uninit_string (nbytes);
2089 memset (SDATA (val), c, nbytes);
2090 SDATA (val)[nbytes] = 0;
2091 }
2092 else
2093 {
2094 unsigned char str[MAX_MULTIBYTE_LENGTH];
2095 ptrdiff_t len = CHAR_STRING (c, str);
2096 EMACS_INT string_len = XINT (length);
2097 unsigned char *p, *beg, *end;
2098
2099 if (string_len > STRING_BYTES_MAX / len)
2100 string_overflow ();
2101 nbytes = len * string_len;
2102 val = make_uninit_multibyte_string (string_len, nbytes);
2103 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2104 {
2105 /* First time we just copy `str' to the data of `val'. */
2106 if (p == beg)
2107 memcpy (p, str, len);
2108 else
2109 {
2110 /* Next time we copy largest possible chunk from
2111 initialized to uninitialized part of `val'. */
2112 len = min (p - beg, end - p);
2113 memcpy (p, beg, len);
2114 }
2115 }
2116 *p = 0;
2117 }
2118
2119 return val;
2120 }
2121
2122 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 Return A. */
2124
2125 Lisp_Object
2126 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2127 {
2128 EMACS_INT nbits = bool_vector_size (a);
2129 if (0 < nbits)
2130 {
2131 unsigned char *data = bool_vector_uchar_data (a);
2132 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2133 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2134 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2135 memset (data, pattern, nbytes - 1);
2136 data[nbytes - 1] = pattern & last_mask;
2137 }
2138 return a;
2139 }
2140
2141 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2142
2143 Lisp_Object
2144 make_uninit_bool_vector (EMACS_INT nbits)
2145 {
2146 Lisp_Object val;
2147 EMACS_INT words = bool_vector_words (nbits);
2148 EMACS_INT word_bytes = words * sizeof (bits_word);
2149 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2150 + word_size - 1)
2151 / word_size);
2152 struct Lisp_Bool_Vector *p
2153 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2154 XSETVECTOR (val, p);
2155 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2156 p->size = nbits;
2157
2158 /* Clear padding at the end. */
2159 if (words)
2160 p->data[words - 1] = 0;
2161
2162 return val;
2163 }
2164
2165 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2166 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2167 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2168 (Lisp_Object length, Lisp_Object init)
2169 {
2170 Lisp_Object val;
2171
2172 CHECK_NATNUM (length);
2173 val = make_uninit_bool_vector (XFASTINT (length));
2174 return bool_vector_fill (val, init);
2175 }
2176
2177
2178 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2179 of characters from the contents. This string may be unibyte or
2180 multibyte, depending on the contents. */
2181
2182 Lisp_Object
2183 make_string (const char *contents, ptrdiff_t nbytes)
2184 {
2185 register Lisp_Object val;
2186 ptrdiff_t nchars, multibyte_nbytes;
2187
2188 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2189 &nchars, &multibyte_nbytes);
2190 if (nbytes == nchars || nbytes != multibyte_nbytes)
2191 /* CONTENTS contains no multibyte sequences or contains an invalid
2192 multibyte sequence. We must make unibyte string. */
2193 val = make_unibyte_string (contents, nbytes);
2194 else
2195 val = make_multibyte_string (contents, nchars, nbytes);
2196 return val;
2197 }
2198
2199
2200 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2201
2202 Lisp_Object
2203 make_unibyte_string (const char *contents, ptrdiff_t length)
2204 {
2205 register Lisp_Object val;
2206 val = make_uninit_string (length);
2207 memcpy (SDATA (val), contents, length);
2208 return val;
2209 }
2210
2211
2212 /* Make a multibyte string from NCHARS characters occupying NBYTES
2213 bytes at CONTENTS. */
2214
2215 Lisp_Object
2216 make_multibyte_string (const char *contents,
2217 ptrdiff_t nchars, ptrdiff_t nbytes)
2218 {
2219 register Lisp_Object val;
2220 val = make_uninit_multibyte_string (nchars, nbytes);
2221 memcpy (SDATA (val), contents, nbytes);
2222 return val;
2223 }
2224
2225
2226 /* Make a string from NCHARS characters occupying NBYTES bytes at
2227 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2228
2229 Lisp_Object
2230 make_string_from_bytes (const char *contents,
2231 ptrdiff_t nchars, ptrdiff_t nbytes)
2232 {
2233 register Lisp_Object val;
2234 val = make_uninit_multibyte_string (nchars, nbytes);
2235 memcpy (SDATA (val), contents, nbytes);
2236 if (SBYTES (val) == SCHARS (val))
2237 STRING_SET_UNIBYTE (val);
2238 return val;
2239 }
2240
2241
2242 /* Make a string from NCHARS characters occupying NBYTES bytes at
2243 CONTENTS. The argument MULTIBYTE controls whether to label the
2244 string as multibyte. If NCHARS is negative, it counts the number of
2245 characters by itself. */
2246
2247 Lisp_Object
2248 make_specified_string (const char *contents,
2249 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2250 {
2251 Lisp_Object val;
2252
2253 if (nchars < 0)
2254 {
2255 if (multibyte)
2256 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2257 nbytes);
2258 else
2259 nchars = nbytes;
2260 }
2261 val = make_uninit_multibyte_string (nchars, nbytes);
2262 memcpy (SDATA (val), contents, nbytes);
2263 if (!multibyte)
2264 STRING_SET_UNIBYTE (val);
2265 return val;
2266 }
2267
2268
2269 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2270 occupying LENGTH bytes. */
2271
2272 Lisp_Object
2273 make_uninit_string (EMACS_INT length)
2274 {
2275 Lisp_Object val;
2276
2277 if (!length)
2278 return empty_unibyte_string;
2279 val = make_uninit_multibyte_string (length, length);
2280 STRING_SET_UNIBYTE (val);
2281 return val;
2282 }
2283
2284
2285 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2286 which occupy NBYTES bytes. */
2287
2288 Lisp_Object
2289 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2290 {
2291 Lisp_Object string;
2292 struct Lisp_String *s;
2293
2294 if (nchars < 0)
2295 emacs_abort ();
2296 if (!nbytes)
2297 return empty_multibyte_string;
2298
2299 s = allocate_string ();
2300 s->intervals = NULL;
2301 allocate_string_data (s, nchars, nbytes);
2302 XSETSTRING (string, s);
2303 string_chars_consed += nbytes;
2304 return string;
2305 }
2306
2307 /* Print arguments to BUF according to a FORMAT, then return
2308 a Lisp_String initialized with the data from BUF. */
2309
2310 Lisp_Object
2311 make_formatted_string (char *buf, const char *format, ...)
2312 {
2313 va_list ap;
2314 int length;
2315
2316 va_start (ap, format);
2317 length = vsprintf (buf, format, ap);
2318 va_end (ap);
2319 return make_string (buf, length);
2320 }
2321
2322 \f
2323 /***********************************************************************
2324 Float Allocation
2325 ***********************************************************************/
2326
2327 /* We store float cells inside of float_blocks, allocating a new
2328 float_block with malloc whenever necessary. Float cells reclaimed
2329 by GC are put on a free list to be reallocated before allocating
2330 any new float cells from the latest float_block. */
2331
2332 #define FLOAT_BLOCK_SIZE \
2333 (((BLOCK_BYTES - sizeof (struct float_block *) \
2334 /* The compiler might add padding at the end. */ \
2335 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2336 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2337
2338 #define GETMARKBIT(block,n) \
2339 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2340 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2341 & 1)
2342
2343 #define SETMARKBIT(block,n) \
2344 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2345 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2346
2347 #define UNSETMARKBIT(block,n) \
2348 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2349 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2350
2351 #define FLOAT_BLOCK(fptr) \
2352 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2353
2354 #define FLOAT_INDEX(fptr) \
2355 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2356
2357 struct float_block
2358 {
2359 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2360 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2361 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2362 struct float_block *next;
2363 };
2364
2365 #define FLOAT_MARKED_P(fptr) \
2366 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2367
2368 #define FLOAT_MARK(fptr) \
2369 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2370
2371 #define FLOAT_UNMARK(fptr) \
2372 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2373
2374 /* Current float_block. */
2375
2376 static struct float_block *float_block;
2377
2378 /* Index of first unused Lisp_Float in the current float_block. */
2379
2380 static int float_block_index = FLOAT_BLOCK_SIZE;
2381
2382 /* Free-list of Lisp_Floats. */
2383
2384 static struct Lisp_Float *float_free_list;
2385
2386 /* Return a new float object with value FLOAT_VALUE. */
2387
2388 Lisp_Object
2389 make_float (double float_value)
2390 {
2391 register Lisp_Object val;
2392
2393 MALLOC_BLOCK_INPUT;
2394
2395 if (float_free_list)
2396 {
2397 /* We use the data field for chaining the free list
2398 so that we won't use the same field that has the mark bit. */
2399 XSETFLOAT (val, float_free_list);
2400 float_free_list = float_free_list->u.chain;
2401 }
2402 else
2403 {
2404 if (float_block_index == FLOAT_BLOCK_SIZE)
2405 {
2406 struct float_block *new
2407 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2408 new->next = float_block;
2409 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2410 float_block = new;
2411 float_block_index = 0;
2412 total_free_floats += FLOAT_BLOCK_SIZE;
2413 }
2414 XSETFLOAT (val, &float_block->floats[float_block_index]);
2415 float_block_index++;
2416 }
2417
2418 MALLOC_UNBLOCK_INPUT;
2419
2420 XFLOAT_INIT (val, float_value);
2421 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2422 consing_since_gc += sizeof (struct Lisp_Float);
2423 floats_consed++;
2424 total_free_floats--;
2425 return val;
2426 }
2427
2428
2429 \f
2430 /***********************************************************************
2431 Cons Allocation
2432 ***********************************************************************/
2433
2434 /* We store cons cells inside of cons_blocks, allocating a new
2435 cons_block with malloc whenever necessary. Cons cells reclaimed by
2436 GC are put on a free list to be reallocated before allocating
2437 any new cons cells from the latest cons_block. */
2438
2439 #define CONS_BLOCK_SIZE \
2440 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2441 /* The compiler might add padding at the end. */ \
2442 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2443 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2444
2445 #define CONS_BLOCK(fptr) \
2446 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2447
2448 #define CONS_INDEX(fptr) \
2449 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2450
2451 struct cons_block
2452 {
2453 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2454 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2455 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2456 struct cons_block *next;
2457 };
2458
2459 #define CONS_MARKED_P(fptr) \
2460 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2461
2462 #define CONS_MARK(fptr) \
2463 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2464
2465 #define CONS_UNMARK(fptr) \
2466 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2467
2468 /* Current cons_block. */
2469
2470 static struct cons_block *cons_block;
2471
2472 /* Index of first unused Lisp_Cons in the current block. */
2473
2474 static int cons_block_index = CONS_BLOCK_SIZE;
2475
2476 /* Free-list of Lisp_Cons structures. */
2477
2478 static struct Lisp_Cons *cons_free_list;
2479
2480 /* Explicitly free a cons cell by putting it on the free-list. */
2481
2482 void
2483 free_cons (struct Lisp_Cons *ptr)
2484 {
2485 ptr->u.chain = cons_free_list;
2486 #if GC_MARK_STACK
2487 ptr->car = Vdead;
2488 #endif
2489 cons_free_list = ptr;
2490 consing_since_gc -= sizeof *ptr;
2491 total_free_conses++;
2492 }
2493
2494 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2495 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2496 (Lisp_Object car, Lisp_Object cdr)
2497 {
2498 register Lisp_Object val;
2499
2500 MALLOC_BLOCK_INPUT;
2501
2502 if (cons_free_list)
2503 {
2504 /* We use the cdr for chaining the free list
2505 so that we won't use the same field that has the mark bit. */
2506 XSETCONS (val, cons_free_list);
2507 cons_free_list = cons_free_list->u.chain;
2508 }
2509 else
2510 {
2511 if (cons_block_index == CONS_BLOCK_SIZE)
2512 {
2513 struct cons_block *new
2514 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 new->next = cons_block;
2517 cons_block = new;
2518 cons_block_index = 0;
2519 total_free_conses += CONS_BLOCK_SIZE;
2520 }
2521 XSETCONS (val, &cons_block->conses[cons_block_index]);
2522 cons_block_index++;
2523 }
2524
2525 MALLOC_UNBLOCK_INPUT;
2526
2527 XSETCAR (val, car);
2528 XSETCDR (val, cdr);
2529 eassert (!CONS_MARKED_P (XCONS (val)));
2530 consing_since_gc += sizeof (struct Lisp_Cons);
2531 total_free_conses--;
2532 cons_cells_consed++;
2533 return val;
2534 }
2535
2536 #ifdef GC_CHECK_CONS_LIST
2537 /* Get an error now if there's any junk in the cons free list. */
2538 void
2539 check_cons_list (void)
2540 {
2541 struct Lisp_Cons *tail = cons_free_list;
2542
2543 while (tail)
2544 tail = tail->u.chain;
2545 }
2546 #endif
2547
2548 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2549
2550 Lisp_Object
2551 list1 (Lisp_Object arg1)
2552 {
2553 return Fcons (arg1, Qnil);
2554 }
2555
2556 Lisp_Object
2557 list2 (Lisp_Object arg1, Lisp_Object arg2)
2558 {
2559 return Fcons (arg1, Fcons (arg2, Qnil));
2560 }
2561
2562
2563 Lisp_Object
2564 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2565 {
2566 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2567 }
2568
2569
2570 Lisp_Object
2571 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2572 {
2573 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2574 }
2575
2576
2577 Lisp_Object
2578 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2579 {
2580 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2581 Fcons (arg5, Qnil)))));
2582 }
2583
2584 /* Make a list of COUNT Lisp_Objects, where ARG is the
2585 first one. Allocate conses from pure space if TYPE
2586 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2587
2588 Lisp_Object
2589 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2590 {
2591 va_list ap;
2592 ptrdiff_t i;
2593 Lisp_Object val, *objp;
2594
2595 /* Change to SAFE_ALLOCA if you hit this eassert. */
2596 eassert (count <= MAX_ALLOCA / word_size);
2597
2598 objp = alloca (count * word_size);
2599 objp[0] = arg;
2600 va_start (ap, arg);
2601 for (i = 1; i < count; i++)
2602 objp[i] = va_arg (ap, Lisp_Object);
2603 va_end (ap);
2604
2605 for (val = Qnil, i = count - 1; i >= 0; i--)
2606 {
2607 if (type == CONSTYPE_PURE)
2608 val = pure_cons (objp[i], val);
2609 else if (type == CONSTYPE_HEAP)
2610 val = Fcons (objp[i], val);
2611 else
2612 emacs_abort ();
2613 }
2614 return val;
2615 }
2616
2617 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2618 doc: /* Return a newly created list with specified arguments as elements.
2619 Any number of arguments, even zero arguments, are allowed.
2620 usage: (list &rest OBJECTS) */)
2621 (ptrdiff_t nargs, Lisp_Object *args)
2622 {
2623 register Lisp_Object val;
2624 val = Qnil;
2625
2626 while (nargs > 0)
2627 {
2628 nargs--;
2629 val = Fcons (args[nargs], val);
2630 }
2631 return val;
2632 }
2633
2634
2635 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2636 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2637 (register Lisp_Object length, Lisp_Object init)
2638 {
2639 register Lisp_Object val;
2640 register EMACS_INT size;
2641
2642 CHECK_NATNUM (length);
2643 size = XFASTINT (length);
2644
2645 val = Qnil;
2646 while (size > 0)
2647 {
2648 val = Fcons (init, val);
2649 --size;
2650
2651 if (size > 0)
2652 {
2653 val = Fcons (init, val);
2654 --size;
2655
2656 if (size > 0)
2657 {
2658 val = Fcons (init, val);
2659 --size;
2660
2661 if (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670 }
2671 }
2672 }
2673 }
2674
2675 QUIT;
2676 }
2677
2678 return val;
2679 }
2680
2681
2682 \f
2683 /***********************************************************************
2684 Vector Allocation
2685 ***********************************************************************/
2686
2687 /* Sometimes a vector's contents are merely a pointer internally used
2688 in vector allocation code. On the rare platforms where a null
2689 pointer cannot be tagged, represent it with a Lisp 0.
2690 Usually you don't want to touch this. */
2691
2692 static struct Lisp_Vector *
2693 next_vector (struct Lisp_Vector *v)
2694 {
2695 return XUNTAG (v->contents[0], 0);
2696 }
2697
2698 static void
2699 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2700 {
2701 v->contents[0] = make_lisp_ptr (p, 0);
2702 }
2703
2704 /* This value is balanced well enough to avoid too much internal overhead
2705 for the most common cases; it's not required to be a power of two, but
2706 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2707
2708 #define VECTOR_BLOCK_SIZE 4096
2709
2710 enum
2711 {
2712 /* Alignment of struct Lisp_Vector objects. */
2713 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2714 USE_LSB_TAG ? GCALIGNMENT : 1),
2715
2716 /* Vector size requests are a multiple of this. */
2717 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2718 };
2719
2720 /* Verify assumptions described above. */
2721 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2722 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2723
2724 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2725 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2726 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2727 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2728
2729 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2730
2731 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2732
2733 /* Size of the minimal vector allocated from block. */
2734
2735 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2736
2737 /* Size of the largest vector allocated from block. */
2738
2739 #define VBLOCK_BYTES_MAX \
2740 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2741
2742 /* We maintain one free list for each possible block-allocated
2743 vector size, and this is the number of free lists we have. */
2744
2745 #define VECTOR_MAX_FREE_LIST_INDEX \
2746 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2747
2748 /* Common shortcut to advance vector pointer over a block data. */
2749
2750 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2751
2752 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2753
2754 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2755
2756 /* Common shortcut to setup vector on a free list. */
2757
2758 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2759 do { \
2760 (tmp) = ((nbytes - header_size) / word_size); \
2761 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2762 eassert ((nbytes) % roundup_size == 0); \
2763 (tmp) = VINDEX (nbytes); \
2764 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2765 set_next_vector (v, vector_free_lists[tmp]); \
2766 vector_free_lists[tmp] = (v); \
2767 total_free_vector_slots += (nbytes) / word_size; \
2768 } while (0)
2769
2770 /* This internal type is used to maintain the list of large vectors
2771 which are allocated at their own, e.g. outside of vector blocks.
2772
2773 struct large_vector itself cannot contain a struct Lisp_Vector, as
2774 the latter contains a flexible array member and C99 does not allow
2775 such structs to be nested. Instead, each struct large_vector
2776 object LV is followed by a struct Lisp_Vector, which is at offset
2777 large_vector_offset from LV, and whose address is therefore
2778 large_vector_vec (&LV). */
2779
2780 struct large_vector
2781 {
2782 struct large_vector *next;
2783 };
2784
2785 enum
2786 {
2787 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2788 };
2789
2790 static struct Lisp_Vector *
2791 large_vector_vec (struct large_vector *p)
2792 {
2793 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2794 }
2795
2796 /* This internal type is used to maintain an underlying storage
2797 for small vectors. */
2798
2799 struct vector_block
2800 {
2801 char data[VECTOR_BLOCK_BYTES];
2802 struct vector_block *next;
2803 };
2804
2805 /* Chain of vector blocks. */
2806
2807 static struct vector_block *vector_blocks;
2808
2809 /* Vector free lists, where NTH item points to a chain of free
2810 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2811
2812 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2813
2814 /* Singly-linked list of large vectors. */
2815
2816 static struct large_vector *large_vectors;
2817
2818 /* The only vector with 0 slots, allocated from pure space. */
2819
2820 Lisp_Object zero_vector;
2821
2822 /* Number of live vectors. */
2823
2824 static EMACS_INT total_vectors;
2825
2826 /* Total size of live and free vectors, in Lisp_Object units. */
2827
2828 static EMACS_INT total_vector_slots, total_free_vector_slots;
2829
2830 /* Get a new vector block. */
2831
2832 static struct vector_block *
2833 allocate_vector_block (void)
2834 {
2835 struct vector_block *block = xmalloc (sizeof *block);
2836
2837 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2838 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2839 MEM_TYPE_VECTOR_BLOCK);
2840 #endif
2841
2842 block->next = vector_blocks;
2843 vector_blocks = block;
2844 return block;
2845 }
2846
2847 /* Called once to initialize vector allocation. */
2848
2849 static void
2850 init_vectors (void)
2851 {
2852 zero_vector = make_pure_vector (0);
2853 }
2854
2855 /* Allocate vector from a vector block. */
2856
2857 static struct Lisp_Vector *
2858 allocate_vector_from_block (size_t nbytes)
2859 {
2860 struct Lisp_Vector *vector;
2861 struct vector_block *block;
2862 size_t index, restbytes;
2863
2864 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2865 eassert (nbytes % roundup_size == 0);
2866
2867 /* First, try to allocate from a free list
2868 containing vectors of the requested size. */
2869 index = VINDEX (nbytes);
2870 if (vector_free_lists[index])
2871 {
2872 vector = vector_free_lists[index];
2873 vector_free_lists[index] = next_vector (vector);
2874 total_free_vector_slots -= nbytes / word_size;
2875 return vector;
2876 }
2877
2878 /* Next, check free lists containing larger vectors. Since
2879 we will split the result, we should have remaining space
2880 large enough to use for one-slot vector at least. */
2881 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2882 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2883 if (vector_free_lists[index])
2884 {
2885 /* This vector is larger than requested. */
2886 vector = vector_free_lists[index];
2887 vector_free_lists[index] = next_vector (vector);
2888 total_free_vector_slots -= nbytes / word_size;
2889
2890 /* Excess bytes are used for the smaller vector,
2891 which should be set on an appropriate free list. */
2892 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2893 eassert (restbytes % roundup_size == 0);
2894 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2895 return vector;
2896 }
2897
2898 /* Finally, need a new vector block. */
2899 block = allocate_vector_block ();
2900
2901 /* New vector will be at the beginning of this block. */
2902 vector = (struct Lisp_Vector *) block->data;
2903
2904 /* If the rest of space from this block is large enough
2905 for one-slot vector at least, set up it on a free list. */
2906 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2907 if (restbytes >= VBLOCK_BYTES_MIN)
2908 {
2909 eassert (restbytes % roundup_size == 0);
2910 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2911 }
2912 return vector;
2913 }
2914
2915 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2916
2917 #define VECTOR_IN_BLOCK(vector, block) \
2918 ((char *) (vector) <= (block)->data \
2919 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2920
2921 /* Return the memory footprint of V in bytes. */
2922
2923 static ptrdiff_t
2924 vector_nbytes (struct Lisp_Vector *v)
2925 {
2926 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2927 ptrdiff_t nwords;
2928
2929 if (size & PSEUDOVECTOR_FLAG)
2930 {
2931 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2932 {
2933 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2934 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2935 * sizeof (bits_word));
2936 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2937 verify (header_size <= bool_header_size);
2938 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2939 }
2940 else
2941 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2942 + ((size & PSEUDOVECTOR_REST_MASK)
2943 >> PSEUDOVECTOR_SIZE_BITS));
2944 }
2945 else
2946 nwords = size;
2947 return vroundup (header_size + word_size * nwords);
2948 }
2949
2950 /* Release extra resources still in use by VECTOR, which may be any
2951 vector-like object. For now, this is used just to free data in
2952 font objects. */
2953
2954 static void
2955 cleanup_vector (struct Lisp_Vector *vector)
2956 {
2957 detect_suspicious_free (vector);
2958 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2959 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2960 == FONT_OBJECT_MAX))
2961 {
2962 /* Attempt to catch subtle bugs like Bug#16140. */
2963 eassert (valid_font_driver (((struct font *) vector)->driver));
2964 ((struct font *) vector)->driver->close ((struct font *) vector);
2965 }
2966 }
2967
2968 /* Reclaim space used by unmarked vectors. */
2969
2970 NO_INLINE /* For better stack traces */
2971 static void
2972 sweep_vectors (void)
2973 {
2974 struct vector_block *block, **bprev = &vector_blocks;
2975 struct large_vector *lv, **lvprev = &large_vectors;
2976 struct Lisp_Vector *vector, *next;
2977
2978 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2979 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2980
2981 /* Looking through vector blocks. */
2982
2983 for (block = vector_blocks; block; block = *bprev)
2984 {
2985 bool free_this_block = 0;
2986 ptrdiff_t nbytes;
2987
2988 for (vector = (struct Lisp_Vector *) block->data;
2989 VECTOR_IN_BLOCK (vector, block); vector = next)
2990 {
2991 if (VECTOR_MARKED_P (vector))
2992 {
2993 VECTOR_UNMARK (vector);
2994 total_vectors++;
2995 nbytes = vector_nbytes (vector);
2996 total_vector_slots += nbytes / word_size;
2997 next = ADVANCE (vector, nbytes);
2998 }
2999 else
3000 {
3001 ptrdiff_t total_bytes;
3002
3003 cleanup_vector (vector);
3004 nbytes = vector_nbytes (vector);
3005 total_bytes = nbytes;
3006 next = ADVANCE (vector, nbytes);
3007
3008 /* While NEXT is not marked, try to coalesce with VECTOR,
3009 thus making VECTOR of the largest possible size. */
3010
3011 while (VECTOR_IN_BLOCK (next, block))
3012 {
3013 if (VECTOR_MARKED_P (next))
3014 break;
3015 cleanup_vector (next);
3016 nbytes = vector_nbytes (next);
3017 total_bytes += nbytes;
3018 next = ADVANCE (next, nbytes);
3019 }
3020
3021 eassert (total_bytes % roundup_size == 0);
3022
3023 if (vector == (struct Lisp_Vector *) block->data
3024 && !VECTOR_IN_BLOCK (next, block))
3025 /* This block should be freed because all of its
3026 space was coalesced into the only free vector. */
3027 free_this_block = 1;
3028 else
3029 {
3030 size_t tmp;
3031 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3032 }
3033 }
3034 }
3035
3036 if (free_this_block)
3037 {
3038 *bprev = block->next;
3039 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3040 mem_delete (mem_find (block->data));
3041 #endif
3042 xfree (block);
3043 }
3044 else
3045 bprev = &block->next;
3046 }
3047
3048 /* Sweep large vectors. */
3049
3050 for (lv = large_vectors; lv; lv = *lvprev)
3051 {
3052 vector = large_vector_vec (lv);
3053 if (VECTOR_MARKED_P (vector))
3054 {
3055 VECTOR_UNMARK (vector);
3056 total_vectors++;
3057 if (vector->header.size & PSEUDOVECTOR_FLAG)
3058 {
3059 /* All non-bool pseudovectors are small enough to be allocated
3060 from vector blocks. This code should be redesigned if some
3061 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3062 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3063 total_vector_slots += vector_nbytes (vector) / word_size;
3064 }
3065 else
3066 total_vector_slots
3067 += header_size / word_size + vector->header.size;
3068 lvprev = &lv->next;
3069 }
3070 else
3071 {
3072 *lvprev = lv->next;
3073 lisp_free (lv);
3074 }
3075 }
3076 }
3077
3078 /* Value is a pointer to a newly allocated Lisp_Vector structure
3079 with room for LEN Lisp_Objects. */
3080
3081 static struct Lisp_Vector *
3082 allocate_vectorlike (ptrdiff_t len)
3083 {
3084 struct Lisp_Vector *p;
3085
3086 MALLOC_BLOCK_INPUT;
3087
3088 if (len == 0)
3089 p = XVECTOR (zero_vector);
3090 else
3091 {
3092 size_t nbytes = header_size + len * word_size;
3093
3094 #ifdef DOUG_LEA_MALLOC
3095 if (!mmap_lisp_allowed_p ())
3096 mallopt (M_MMAP_MAX, 0);
3097 #endif
3098
3099 if (nbytes <= VBLOCK_BYTES_MAX)
3100 p = allocate_vector_from_block (vroundup (nbytes));
3101 else
3102 {
3103 struct large_vector *lv
3104 = lisp_malloc ((large_vector_offset + header_size
3105 + len * word_size),
3106 MEM_TYPE_VECTORLIKE);
3107 lv->next = large_vectors;
3108 large_vectors = lv;
3109 p = large_vector_vec (lv);
3110 }
3111
3112 #ifdef DOUG_LEA_MALLOC
3113 if (!mmap_lisp_allowed_p ())
3114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3115 #endif
3116
3117 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3118 emacs_abort ();
3119
3120 consing_since_gc += nbytes;
3121 vector_cells_consed += len;
3122 }
3123
3124 MALLOC_UNBLOCK_INPUT;
3125
3126 return p;
3127 }
3128
3129
3130 /* Allocate a vector with LEN slots. */
3131
3132 struct Lisp_Vector *
3133 allocate_vector (EMACS_INT len)
3134 {
3135 struct Lisp_Vector *v;
3136 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3137
3138 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3139 memory_full (SIZE_MAX);
3140 v = allocate_vectorlike (len);
3141 v->header.size = len;
3142 return v;
3143 }
3144
3145
3146 /* Allocate other vector-like structures. */
3147
3148 struct Lisp_Vector *
3149 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3150 {
3151 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3152 int i;
3153
3154 /* Catch bogus values. */
3155 eassert (tag <= PVEC_FONT);
3156 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3157 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3158
3159 /* Only the first lisplen slots will be traced normally by the GC. */
3160 for (i = 0; i < lisplen; ++i)
3161 v->contents[i] = Qnil;
3162
3163 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3164 return v;
3165 }
3166
3167 struct buffer *
3168 allocate_buffer (void)
3169 {
3170 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3171
3172 BUFFER_PVEC_INIT (b);
3173 /* Put B on the chain of all buffers including killed ones. */
3174 b->next = all_buffers;
3175 all_buffers = b;
3176 /* Note that the rest fields of B are not initialized. */
3177 return b;
3178 }
3179
3180 struct Lisp_Hash_Table *
3181 allocate_hash_table (void)
3182 {
3183 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3184 }
3185
3186 struct window *
3187 allocate_window (void)
3188 {
3189 struct window *w;
3190
3191 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3192 /* Users assumes that non-Lisp data is zeroed. */
3193 memset (&w->current_matrix, 0,
3194 sizeof (*w) - offsetof (struct window, current_matrix));
3195 return w;
3196 }
3197
3198 struct terminal *
3199 allocate_terminal (void)
3200 {
3201 struct terminal *t;
3202
3203 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3204 /* Users assumes that non-Lisp data is zeroed. */
3205 memset (&t->next_terminal, 0,
3206 sizeof (*t) - offsetof (struct terminal, next_terminal));
3207 return t;
3208 }
3209
3210 struct frame *
3211 allocate_frame (void)
3212 {
3213 struct frame *f;
3214
3215 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3216 /* Users assumes that non-Lisp data is zeroed. */
3217 memset (&f->face_cache, 0,
3218 sizeof (*f) - offsetof (struct frame, face_cache));
3219 return f;
3220 }
3221
3222 struct Lisp_Process *
3223 allocate_process (void)
3224 {
3225 struct Lisp_Process *p;
3226
3227 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3228 /* Users assumes that non-Lisp data is zeroed. */
3229 memset (&p->pid, 0,
3230 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3231 return p;
3232 }
3233
3234 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3235 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3236 See also the function `vector'. */)
3237 (register Lisp_Object length, Lisp_Object init)
3238 {
3239 Lisp_Object vector;
3240 register ptrdiff_t sizei;
3241 register ptrdiff_t i;
3242 register struct Lisp_Vector *p;
3243
3244 CHECK_NATNUM (length);
3245
3246 p = allocate_vector (XFASTINT (length));
3247 sizei = XFASTINT (length);
3248 for (i = 0; i < sizei; i++)
3249 p->contents[i] = init;
3250
3251 XSETVECTOR (vector, p);
3252 return vector;
3253 }
3254
3255
3256 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3257 doc: /* Return a newly created vector with specified arguments as elements.
3258 Any number of arguments, even zero arguments, are allowed.
3259 usage: (vector &rest OBJECTS) */)
3260 (ptrdiff_t nargs, Lisp_Object *args)
3261 {
3262 ptrdiff_t i;
3263 register Lisp_Object val = make_uninit_vector (nargs);
3264 register struct Lisp_Vector *p = XVECTOR (val);
3265
3266 for (i = 0; i < nargs; i++)
3267 p->contents[i] = args[i];
3268 return val;
3269 }
3270
3271 void
3272 make_byte_code (struct Lisp_Vector *v)
3273 {
3274 /* Don't allow the global zero_vector to become a byte code object. */
3275 eassert (0 < v->header.size);
3276
3277 if (v->header.size > 1 && STRINGP (v->contents[1])
3278 && STRING_MULTIBYTE (v->contents[1]))
3279 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3280 earlier because they produced a raw 8-bit string for byte-code
3281 and now such a byte-code string is loaded as multibyte while
3282 raw 8-bit characters converted to multibyte form. Thus, now we
3283 must convert them back to the original unibyte form. */
3284 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3285 XSETPVECTYPE (v, PVEC_COMPILED);
3286 }
3287
3288 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3289 doc: /* Create a byte-code object with specified arguments as elements.
3290 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3291 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3292 and (optional) INTERACTIVE-SPEC.
3293 The first four arguments are required; at most six have any
3294 significance.
3295 The ARGLIST can be either like the one of `lambda', in which case the arguments
3296 will be dynamically bound before executing the byte code, or it can be an
3297 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3298 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3299 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3300 argument to catch the left-over arguments. If such an integer is used, the
3301 arguments will not be dynamically bound but will be instead pushed on the
3302 stack before executing the byte-code.
3303 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3304 (ptrdiff_t nargs, Lisp_Object *args)
3305 {
3306 ptrdiff_t i;
3307 register Lisp_Object val = make_uninit_vector (nargs);
3308 register struct Lisp_Vector *p = XVECTOR (val);
3309
3310 /* We used to purecopy everything here, if purify-flag was set. This worked
3311 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3312 dangerous, since make-byte-code is used during execution to build
3313 closures, so any closure built during the preload phase would end up
3314 copied into pure space, including its free variables, which is sometimes
3315 just wasteful and other times plainly wrong (e.g. those free vars may want
3316 to be setcar'd). */
3317
3318 for (i = 0; i < nargs; i++)
3319 p->contents[i] = args[i];
3320 make_byte_code (p);
3321 XSETCOMPILED (val, p);
3322 return val;
3323 }
3324
3325
3326 \f
3327 /***********************************************************************
3328 Symbol Allocation
3329 ***********************************************************************/
3330
3331 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3332 of the required alignment if LSB tags are used. */
3333
3334 union aligned_Lisp_Symbol
3335 {
3336 struct Lisp_Symbol s;
3337 #if USE_LSB_TAG
3338 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3339 & -GCALIGNMENT];
3340 #endif
3341 };
3342
3343 /* Each symbol_block is just under 1020 bytes long, since malloc
3344 really allocates in units of powers of two and uses 4 bytes for its
3345 own overhead. */
3346
3347 #define SYMBOL_BLOCK_SIZE \
3348 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3349
3350 struct symbol_block
3351 {
3352 /* Place `symbols' first, to preserve alignment. */
3353 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3354 struct symbol_block *next;
3355 };
3356
3357 /* Current symbol block and index of first unused Lisp_Symbol
3358 structure in it. */
3359
3360 static struct symbol_block *symbol_block;
3361 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3362 /* Pointer to the first symbol_block that contains pinned symbols.
3363 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3364 10K of which are pinned (and all but 250 of them are interned in obarray),
3365 whereas a "typical session" has in the order of 30K symbols.
3366 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3367 than 30K to find the 10K symbols we need to mark. */
3368 static struct symbol_block *symbol_block_pinned;
3369
3370 /* List of free symbols. */
3371
3372 static struct Lisp_Symbol *symbol_free_list;
3373
3374 static void
3375 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3376 {
3377 XSYMBOL (sym)->name = name;
3378 }
3379
3380 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3381 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3382 Its value is void, and its function definition and property list are nil. */)
3383 (Lisp_Object name)
3384 {
3385 register Lisp_Object val;
3386 register struct Lisp_Symbol *p;
3387
3388 CHECK_STRING (name);
3389
3390 MALLOC_BLOCK_INPUT;
3391
3392 if (symbol_free_list)
3393 {
3394 XSETSYMBOL (val, symbol_free_list);
3395 symbol_free_list = symbol_free_list->next;
3396 }
3397 else
3398 {
3399 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3400 {
3401 struct symbol_block *new
3402 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3403 new->next = symbol_block;
3404 symbol_block = new;
3405 symbol_block_index = 0;
3406 total_free_symbols += SYMBOL_BLOCK_SIZE;
3407 }
3408 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3409 symbol_block_index++;
3410 }
3411
3412 MALLOC_UNBLOCK_INPUT;
3413
3414 p = XSYMBOL (val);
3415 set_symbol_name (val, name);
3416 set_symbol_plist (val, Qnil);
3417 p->redirect = SYMBOL_PLAINVAL;
3418 SET_SYMBOL_VAL (p, Qunbound);
3419 set_symbol_function (val, Qnil);
3420 set_symbol_next (val, NULL);
3421 p->gcmarkbit = false;
3422 p->interned = SYMBOL_UNINTERNED;
3423 p->constant = 0;
3424 p->declared_special = false;
3425 p->pinned = false;
3426 consing_since_gc += sizeof (struct Lisp_Symbol);
3427 symbols_consed++;
3428 total_free_symbols--;
3429 return val;
3430 }
3431
3432
3433 \f
3434 /***********************************************************************
3435 Marker (Misc) Allocation
3436 ***********************************************************************/
3437
3438 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3439 the required alignment when LSB tags are used. */
3440
3441 union aligned_Lisp_Misc
3442 {
3443 union Lisp_Misc m;
3444 #if USE_LSB_TAG
3445 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3446 & -GCALIGNMENT];
3447 #endif
3448 };
3449
3450 /* Allocation of markers and other objects that share that structure.
3451 Works like allocation of conses. */
3452
3453 #define MARKER_BLOCK_SIZE \
3454 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3455
3456 struct marker_block
3457 {
3458 /* Place `markers' first, to preserve alignment. */
3459 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3460 struct marker_block *next;
3461 };
3462
3463 static struct marker_block *marker_block;
3464 static int marker_block_index = MARKER_BLOCK_SIZE;
3465
3466 static union Lisp_Misc *marker_free_list;
3467
3468 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3469
3470 static Lisp_Object
3471 allocate_misc (enum Lisp_Misc_Type type)
3472 {
3473 Lisp_Object val;
3474
3475 MALLOC_BLOCK_INPUT;
3476
3477 if (marker_free_list)
3478 {
3479 XSETMISC (val, marker_free_list);
3480 marker_free_list = marker_free_list->u_free.chain;
3481 }
3482 else
3483 {
3484 if (marker_block_index == MARKER_BLOCK_SIZE)
3485 {
3486 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3487 new->next = marker_block;
3488 marker_block = new;
3489 marker_block_index = 0;
3490 total_free_markers += MARKER_BLOCK_SIZE;
3491 }
3492 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3493 marker_block_index++;
3494 }
3495
3496 MALLOC_UNBLOCK_INPUT;
3497
3498 --total_free_markers;
3499 consing_since_gc += sizeof (union Lisp_Misc);
3500 misc_objects_consed++;
3501 XMISCANY (val)->type = type;
3502 XMISCANY (val)->gcmarkbit = 0;
3503 return val;
3504 }
3505
3506 /* Free a Lisp_Misc object. */
3507
3508 void
3509 free_misc (Lisp_Object misc)
3510 {
3511 XMISCANY (misc)->type = Lisp_Misc_Free;
3512 XMISC (misc)->u_free.chain = marker_free_list;
3513 marker_free_list = XMISC (misc);
3514 consing_since_gc -= sizeof (union Lisp_Misc);
3515 total_free_markers++;
3516 }
3517
3518 /* Verify properties of Lisp_Save_Value's representation
3519 that are assumed here and elsewhere. */
3520
3521 verify (SAVE_UNUSED == 0);
3522 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3523 >> SAVE_SLOT_BITS)
3524 == 0);
3525
3526 /* Return Lisp_Save_Value objects for the various combinations
3527 that callers need. */
3528
3529 Lisp_Object
3530 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3531 {
3532 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3533 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3534 p->save_type = SAVE_TYPE_INT_INT_INT;
3535 p->data[0].integer = a;
3536 p->data[1].integer = b;
3537 p->data[2].integer = c;
3538 return val;
3539 }
3540
3541 Lisp_Object
3542 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3543 Lisp_Object d)
3544 {
3545 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3546 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3547 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3548 p->data[0].object = a;
3549 p->data[1].object = b;
3550 p->data[2].object = c;
3551 p->data[3].object = d;
3552 return val;
3553 }
3554
3555 Lisp_Object
3556 make_save_ptr (void *a)
3557 {
3558 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3559 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3560 p->save_type = SAVE_POINTER;
3561 p->data[0].pointer = a;
3562 return val;
3563 }
3564
3565 Lisp_Object
3566 make_save_ptr_int (void *a, ptrdiff_t b)
3567 {
3568 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3569 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3570 p->save_type = SAVE_TYPE_PTR_INT;
3571 p->data[0].pointer = a;
3572 p->data[1].integer = b;
3573 return val;
3574 }
3575
3576 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3577 Lisp_Object
3578 make_save_ptr_ptr (void *a, void *b)
3579 {
3580 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3581 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3582 p->save_type = SAVE_TYPE_PTR_PTR;
3583 p->data[0].pointer = a;
3584 p->data[1].pointer = b;
3585 return val;
3586 }
3587 #endif
3588
3589 Lisp_Object
3590 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3591 {
3592 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3593 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3594 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3595 p->data[0].funcpointer = a;
3596 p->data[1].pointer = b;
3597 p->data[2].object = c;
3598 return val;
3599 }
3600
3601 /* Return a Lisp_Save_Value object that represents an array A
3602 of N Lisp objects. */
3603
3604 Lisp_Object
3605 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3606 {
3607 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3608 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3609 p->save_type = SAVE_TYPE_MEMORY;
3610 p->data[0].pointer = a;
3611 p->data[1].integer = n;
3612 return val;
3613 }
3614
3615 /* Free a Lisp_Save_Value object. Do not use this function
3616 if SAVE contains pointer other than returned by xmalloc. */
3617
3618 void
3619 free_save_value (Lisp_Object save)
3620 {
3621 xfree (XSAVE_POINTER (save, 0));
3622 free_misc (save);
3623 }
3624
3625 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3626
3627 Lisp_Object
3628 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3629 {
3630 register Lisp_Object overlay;
3631
3632 overlay = allocate_misc (Lisp_Misc_Overlay);
3633 OVERLAY_START (overlay) = start;
3634 OVERLAY_END (overlay) = end;
3635 set_overlay_plist (overlay, plist);
3636 XOVERLAY (overlay)->next = NULL;
3637 return overlay;
3638 }
3639
3640 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3641 doc: /* Return a newly allocated marker which does not point at any place. */)
3642 (void)
3643 {
3644 register Lisp_Object val;
3645 register struct Lisp_Marker *p;
3646
3647 val = allocate_misc (Lisp_Misc_Marker);
3648 p = XMARKER (val);
3649 p->buffer = 0;
3650 p->bytepos = 0;
3651 p->charpos = 0;
3652 p->next = NULL;
3653 p->insertion_type = 0;
3654 p->need_adjustment = 0;
3655 return val;
3656 }
3657
3658 /* Return a newly allocated marker which points into BUF
3659 at character position CHARPOS and byte position BYTEPOS. */
3660
3661 Lisp_Object
3662 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3663 {
3664 Lisp_Object obj;
3665 struct Lisp_Marker *m;
3666
3667 /* No dead buffers here. */
3668 eassert (BUFFER_LIVE_P (buf));
3669
3670 /* Every character is at least one byte. */
3671 eassert (charpos <= bytepos);
3672
3673 obj = allocate_misc (Lisp_Misc_Marker);
3674 m = XMARKER (obj);
3675 m->buffer = buf;
3676 m->charpos = charpos;
3677 m->bytepos = bytepos;
3678 m->insertion_type = 0;
3679 m->need_adjustment = 0;
3680 m->next = BUF_MARKERS (buf);
3681 BUF_MARKERS (buf) = m;
3682 return obj;
3683 }
3684
3685 /* Put MARKER back on the free list after using it temporarily. */
3686
3687 void
3688 free_marker (Lisp_Object marker)
3689 {
3690 unchain_marker (XMARKER (marker));
3691 free_misc (marker);
3692 }
3693
3694 \f
3695 /* Return a newly created vector or string with specified arguments as
3696 elements. If all the arguments are characters that can fit
3697 in a string of events, make a string; otherwise, make a vector.
3698
3699 Any number of arguments, even zero arguments, are allowed. */
3700
3701 Lisp_Object
3702 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3703 {
3704 ptrdiff_t i;
3705
3706 for (i = 0; i < nargs; i++)
3707 /* The things that fit in a string
3708 are characters that are in 0...127,
3709 after discarding the meta bit and all the bits above it. */
3710 if (!INTEGERP (args[i])
3711 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3712 return Fvector (nargs, args);
3713
3714 /* Since the loop exited, we know that all the things in it are
3715 characters, so we can make a string. */
3716 {
3717 Lisp_Object result;
3718
3719 result = Fmake_string (make_number (nargs), make_number (0));
3720 for (i = 0; i < nargs; i++)
3721 {
3722 SSET (result, i, XINT (args[i]));
3723 /* Move the meta bit to the right place for a string char. */
3724 if (XINT (args[i]) & CHAR_META)
3725 SSET (result, i, SREF (result, i) | 0x80);
3726 }
3727
3728 return result;
3729 }
3730 }
3731
3732
3733 \f
3734 /************************************************************************
3735 Memory Full Handling
3736 ************************************************************************/
3737
3738
3739 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3740 there may have been size_t overflow so that malloc was never
3741 called, or perhaps malloc was invoked successfully but the
3742 resulting pointer had problems fitting into a tagged EMACS_INT. In
3743 either case this counts as memory being full even though malloc did
3744 not fail. */
3745
3746 void
3747 memory_full (size_t nbytes)
3748 {
3749 /* Do not go into hysterics merely because a large request failed. */
3750 bool enough_free_memory = 0;
3751 if (SPARE_MEMORY < nbytes)
3752 {
3753 void *p;
3754
3755 MALLOC_BLOCK_INPUT;
3756 p = malloc (SPARE_MEMORY);
3757 if (p)
3758 {
3759 free (p);
3760 enough_free_memory = 1;
3761 }
3762 MALLOC_UNBLOCK_INPUT;
3763 }
3764
3765 if (! enough_free_memory)
3766 {
3767 int i;
3768
3769 Vmemory_full = Qt;
3770
3771 memory_full_cons_threshold = sizeof (struct cons_block);
3772
3773 /* The first time we get here, free the spare memory. */
3774 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3775 if (spare_memory[i])
3776 {
3777 if (i == 0)
3778 free (spare_memory[i]);
3779 else if (i >= 1 && i <= 4)
3780 lisp_align_free (spare_memory[i]);
3781 else
3782 lisp_free (spare_memory[i]);
3783 spare_memory[i] = 0;
3784 }
3785 }
3786
3787 /* This used to call error, but if we've run out of memory, we could
3788 get infinite recursion trying to build the string. */
3789 xsignal (Qnil, Vmemory_signal_data);
3790 }
3791
3792 /* If we released our reserve (due to running out of memory),
3793 and we have a fair amount free once again,
3794 try to set aside another reserve in case we run out once more.
3795
3796 This is called when a relocatable block is freed in ralloc.c,
3797 and also directly from this file, in case we're not using ralloc.c. */
3798
3799 void
3800 refill_memory_reserve (void)
3801 {
3802 #ifndef SYSTEM_MALLOC
3803 if (spare_memory[0] == 0)
3804 spare_memory[0] = malloc (SPARE_MEMORY);
3805 if (spare_memory[1] == 0)
3806 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3807 MEM_TYPE_SPARE);
3808 if (spare_memory[2] == 0)
3809 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3810 MEM_TYPE_SPARE);
3811 if (spare_memory[3] == 0)
3812 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_SPARE);
3814 if (spare_memory[4] == 0)
3815 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3816 MEM_TYPE_SPARE);
3817 if (spare_memory[5] == 0)
3818 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3819 MEM_TYPE_SPARE);
3820 if (spare_memory[6] == 0)
3821 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3822 MEM_TYPE_SPARE);
3823 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3824 Vmemory_full = Qnil;
3825 #endif
3826 }
3827 \f
3828 /************************************************************************
3829 C Stack Marking
3830 ************************************************************************/
3831
3832 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3833
3834 /* Conservative C stack marking requires a method to identify possibly
3835 live Lisp objects given a pointer value. We do this by keeping
3836 track of blocks of Lisp data that are allocated in a red-black tree
3837 (see also the comment of mem_node which is the type of nodes in
3838 that tree). Function lisp_malloc adds information for an allocated
3839 block to the red-black tree with calls to mem_insert, and function
3840 lisp_free removes it with mem_delete. Functions live_string_p etc
3841 call mem_find to lookup information about a given pointer in the
3842 tree, and use that to determine if the pointer points to a Lisp
3843 object or not. */
3844
3845 /* Initialize this part of alloc.c. */
3846
3847 static void
3848 mem_init (void)
3849 {
3850 mem_z.left = mem_z.right = MEM_NIL;
3851 mem_z.parent = NULL;
3852 mem_z.color = MEM_BLACK;
3853 mem_z.start = mem_z.end = NULL;
3854 mem_root = MEM_NIL;
3855 }
3856
3857
3858 /* Value is a pointer to the mem_node containing START. Value is
3859 MEM_NIL if there is no node in the tree containing START. */
3860
3861 static struct mem_node *
3862 mem_find (void *start)
3863 {
3864 struct mem_node *p;
3865
3866 if (start < min_heap_address || start > max_heap_address)
3867 return MEM_NIL;
3868
3869 /* Make the search always successful to speed up the loop below. */
3870 mem_z.start = start;
3871 mem_z.end = (char *) start + 1;
3872
3873 p = mem_root;
3874 while (start < p->start || start >= p->end)
3875 p = start < p->start ? p->left : p->right;
3876 return p;
3877 }
3878
3879
3880 /* Insert a new node into the tree for a block of memory with start
3881 address START, end address END, and type TYPE. Value is a
3882 pointer to the node that was inserted. */
3883
3884 static struct mem_node *
3885 mem_insert (void *start, void *end, enum mem_type type)
3886 {
3887 struct mem_node *c, *parent, *x;
3888
3889 if (min_heap_address == NULL || start < min_heap_address)
3890 min_heap_address = start;
3891 if (max_heap_address == NULL || end > max_heap_address)
3892 max_heap_address = end;
3893
3894 /* See where in the tree a node for START belongs. In this
3895 particular application, it shouldn't happen that a node is already
3896 present. For debugging purposes, let's check that. */
3897 c = mem_root;
3898 parent = NULL;
3899
3900 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3901
3902 while (c != MEM_NIL)
3903 {
3904 if (start >= c->start && start < c->end)
3905 emacs_abort ();
3906 parent = c;
3907 c = start < c->start ? c->left : c->right;
3908 }
3909
3910 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3911
3912 while (c != MEM_NIL)
3913 {
3914 parent = c;
3915 c = start < c->start ? c->left : c->right;
3916 }
3917
3918 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3919
3920 /* Create a new node. */
3921 #ifdef GC_MALLOC_CHECK
3922 x = malloc (sizeof *x);
3923 if (x == NULL)
3924 emacs_abort ();
3925 #else
3926 x = xmalloc (sizeof *x);
3927 #endif
3928 x->start = start;
3929 x->end = end;
3930 x->type = type;
3931 x->parent = parent;
3932 x->left = x->right = MEM_NIL;
3933 x->color = MEM_RED;
3934
3935 /* Insert it as child of PARENT or install it as root. */
3936 if (parent)
3937 {
3938 if (start < parent->start)
3939 parent->left = x;
3940 else
3941 parent->right = x;
3942 }
3943 else
3944 mem_root = x;
3945
3946 /* Re-establish red-black tree properties. */
3947 mem_insert_fixup (x);
3948
3949 return x;
3950 }
3951
3952
3953 /* Re-establish the red-black properties of the tree, and thereby
3954 balance the tree, after node X has been inserted; X is always red. */
3955
3956 static void
3957 mem_insert_fixup (struct mem_node *x)
3958 {
3959 while (x != mem_root && x->parent->color == MEM_RED)
3960 {
3961 /* X is red and its parent is red. This is a violation of
3962 red-black tree property #3. */
3963
3964 if (x->parent == x->parent->parent->left)
3965 {
3966 /* We're on the left side of our grandparent, and Y is our
3967 "uncle". */
3968 struct mem_node *y = x->parent->parent->right;
3969
3970 if (y->color == MEM_RED)
3971 {
3972 /* Uncle and parent are red but should be black because
3973 X is red. Change the colors accordingly and proceed
3974 with the grandparent. */
3975 x->parent->color = MEM_BLACK;
3976 y->color = MEM_BLACK;
3977 x->parent->parent->color = MEM_RED;
3978 x = x->parent->parent;
3979 }
3980 else
3981 {
3982 /* Parent and uncle have different colors; parent is
3983 red, uncle is black. */
3984 if (x == x->parent->right)
3985 {
3986 x = x->parent;
3987 mem_rotate_left (x);
3988 }
3989
3990 x->parent->color = MEM_BLACK;
3991 x->parent->parent->color = MEM_RED;
3992 mem_rotate_right (x->parent->parent);
3993 }
3994 }
3995 else
3996 {
3997 /* This is the symmetrical case of above. */
3998 struct mem_node *y = x->parent->parent->left;
3999
4000 if (y->color == MEM_RED)
4001 {
4002 x->parent->color = MEM_BLACK;
4003 y->color = MEM_BLACK;
4004 x->parent->parent->color = MEM_RED;
4005 x = x->parent->parent;
4006 }
4007 else
4008 {
4009 if (x == x->parent->left)
4010 {
4011 x = x->parent;
4012 mem_rotate_right (x);
4013 }
4014
4015 x->parent->color = MEM_BLACK;
4016 x->parent->parent->color = MEM_RED;
4017 mem_rotate_left (x->parent->parent);
4018 }
4019 }
4020 }
4021
4022 /* The root may have been changed to red due to the algorithm. Set
4023 it to black so that property #5 is satisfied. */
4024 mem_root->color = MEM_BLACK;
4025 }
4026
4027
4028 /* (x) (y)
4029 / \ / \
4030 a (y) ===> (x) c
4031 / \ / \
4032 b c a b */
4033
4034 static void
4035 mem_rotate_left (struct mem_node *x)
4036 {
4037 struct mem_node *y;
4038
4039 /* Turn y's left sub-tree into x's right sub-tree. */
4040 y = x->right;
4041 x->right = y->left;
4042 if (y->left != MEM_NIL)
4043 y->left->parent = x;
4044
4045 /* Y's parent was x's parent. */
4046 if (y != MEM_NIL)
4047 y->parent = x->parent;
4048
4049 /* Get the parent to point to y instead of x. */
4050 if (x->parent)
4051 {
4052 if (x == x->parent->left)
4053 x->parent->left = y;
4054 else
4055 x->parent->right = y;
4056 }
4057 else
4058 mem_root = y;
4059
4060 /* Put x on y's left. */
4061 y->left = x;
4062 if (x != MEM_NIL)
4063 x->parent = y;
4064 }
4065
4066
4067 /* (x) (Y)
4068 / \ / \
4069 (y) c ===> a (x)
4070 / \ / \
4071 a b b c */
4072
4073 static void
4074 mem_rotate_right (struct mem_node *x)
4075 {
4076 struct mem_node *y = x->left;
4077
4078 x->left = y->right;
4079 if (y->right != MEM_NIL)
4080 y->right->parent = x;
4081
4082 if (y != MEM_NIL)
4083 y->parent = x->parent;
4084 if (x->parent)
4085 {
4086 if (x == x->parent->right)
4087 x->parent->right = y;
4088 else
4089 x->parent->left = y;
4090 }
4091 else
4092 mem_root = y;
4093
4094 y->right = x;
4095 if (x != MEM_NIL)
4096 x->parent = y;
4097 }
4098
4099
4100 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4101
4102 static void
4103 mem_delete (struct mem_node *z)
4104 {
4105 struct mem_node *x, *y;
4106
4107 if (!z || z == MEM_NIL)
4108 return;
4109
4110 if (z->left == MEM_NIL || z->right == MEM_NIL)
4111 y = z;
4112 else
4113 {
4114 y = z->right;
4115 while (y->left != MEM_NIL)
4116 y = y->left;
4117 }
4118
4119 if (y->left != MEM_NIL)
4120 x = y->left;
4121 else
4122 x = y->right;
4123
4124 x->parent = y->parent;
4125 if (y->parent)
4126 {
4127 if (y == y->parent->left)
4128 y->parent->left = x;
4129 else
4130 y->parent->right = x;
4131 }
4132 else
4133 mem_root = x;
4134
4135 if (y != z)
4136 {
4137 z->start = y->start;
4138 z->end = y->end;
4139 z->type = y->type;
4140 }
4141
4142 if (y->color == MEM_BLACK)
4143 mem_delete_fixup (x);
4144
4145 #ifdef GC_MALLOC_CHECK
4146 free (y);
4147 #else
4148 xfree (y);
4149 #endif
4150 }
4151
4152
4153 /* Re-establish the red-black properties of the tree, after a
4154 deletion. */
4155
4156 static void
4157 mem_delete_fixup (struct mem_node *x)
4158 {
4159 while (x != mem_root && x->color == MEM_BLACK)
4160 {
4161 if (x == x->parent->left)
4162 {
4163 struct mem_node *w = x->parent->right;
4164
4165 if (w->color == MEM_RED)
4166 {
4167 w->color = MEM_BLACK;
4168 x->parent->color = MEM_RED;
4169 mem_rotate_left (x->parent);
4170 w = x->parent->right;
4171 }
4172
4173 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4174 {
4175 w->color = MEM_RED;
4176 x = x->parent;
4177 }
4178 else
4179 {
4180 if (w->right->color == MEM_BLACK)
4181 {
4182 w->left->color = MEM_BLACK;
4183 w->color = MEM_RED;
4184 mem_rotate_right (w);
4185 w = x->parent->right;
4186 }
4187 w->color = x->parent->color;
4188 x->parent->color = MEM_BLACK;
4189 w->right->color = MEM_BLACK;
4190 mem_rotate_left (x->parent);
4191 x = mem_root;
4192 }
4193 }
4194 else
4195 {
4196 struct mem_node *w = x->parent->left;
4197
4198 if (w->color == MEM_RED)
4199 {
4200 w->color = MEM_BLACK;
4201 x->parent->color = MEM_RED;
4202 mem_rotate_right (x->parent);
4203 w = x->parent->left;
4204 }
4205
4206 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4207 {
4208 w->color = MEM_RED;
4209 x = x->parent;
4210 }
4211 else
4212 {
4213 if (w->left->color == MEM_BLACK)
4214 {
4215 w->right->color = MEM_BLACK;
4216 w->color = MEM_RED;
4217 mem_rotate_left (w);
4218 w = x->parent->left;
4219 }
4220
4221 w->color = x->parent->color;
4222 x->parent->color = MEM_BLACK;
4223 w->left->color = MEM_BLACK;
4224 mem_rotate_right (x->parent);
4225 x = mem_root;
4226 }
4227 }
4228 }
4229
4230 x->color = MEM_BLACK;
4231 }
4232
4233
4234 /* Value is non-zero if P is a pointer to a live Lisp string on
4235 the heap. M is a pointer to the mem_block for P. */
4236
4237 static bool
4238 live_string_p (struct mem_node *m, void *p)
4239 {
4240 if (m->type == MEM_TYPE_STRING)
4241 {
4242 struct string_block *b = m->start;
4243 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4244
4245 /* P must point to the start of a Lisp_String structure, and it
4246 must not be on the free-list. */
4247 return (offset >= 0
4248 && offset % sizeof b->strings[0] == 0
4249 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4250 && ((struct Lisp_String *) p)->data != NULL);
4251 }
4252 else
4253 return 0;
4254 }
4255
4256
4257 /* Value is non-zero if P is a pointer to a live Lisp cons on
4258 the heap. M is a pointer to the mem_block for P. */
4259
4260 static bool
4261 live_cons_p (struct mem_node *m, void *p)
4262 {
4263 if (m->type == MEM_TYPE_CONS)
4264 {
4265 struct cons_block *b = m->start;
4266 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4267
4268 /* P must point to the start of a Lisp_Cons, not be
4269 one of the unused cells in the current cons block,
4270 and not be on the free-list. */
4271 return (offset >= 0
4272 && offset % sizeof b->conses[0] == 0
4273 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4274 && (b != cons_block
4275 || offset / sizeof b->conses[0] < cons_block_index)
4276 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4277 }
4278 else
4279 return 0;
4280 }
4281
4282
4283 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4284 the heap. M is a pointer to the mem_block for P. */
4285
4286 static bool
4287 live_symbol_p (struct mem_node *m, void *p)
4288 {
4289 if (m->type == MEM_TYPE_SYMBOL)
4290 {
4291 struct symbol_block *b = m->start;
4292 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4293
4294 /* P must point to the start of a Lisp_Symbol, not be
4295 one of the unused cells in the current symbol block,
4296 and not be on the free-list. */
4297 return (offset >= 0
4298 && offset % sizeof b->symbols[0] == 0
4299 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4300 && (b != symbol_block
4301 || offset / sizeof b->symbols[0] < symbol_block_index)
4302 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4303 }
4304 else
4305 return 0;
4306 }
4307
4308
4309 /* Value is non-zero if P is a pointer to a live Lisp float on
4310 the heap. M is a pointer to the mem_block for P. */
4311
4312 static bool
4313 live_float_p (struct mem_node *m, void *p)
4314 {
4315 if (m->type == MEM_TYPE_FLOAT)
4316 {
4317 struct float_block *b = m->start;
4318 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4319
4320 /* P must point to the start of a Lisp_Float and not be
4321 one of the unused cells in the current float block. */
4322 return (offset >= 0
4323 && offset % sizeof b->floats[0] == 0
4324 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4325 && (b != float_block
4326 || offset / sizeof b->floats[0] < float_block_index));
4327 }
4328 else
4329 return 0;
4330 }
4331
4332
4333 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4334 the heap. M is a pointer to the mem_block for P. */
4335
4336 static bool
4337 live_misc_p (struct mem_node *m, void *p)
4338 {
4339 if (m->type == MEM_TYPE_MISC)
4340 {
4341 struct marker_block *b = m->start;
4342 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4343
4344 /* P must point to the start of a Lisp_Misc, not be
4345 one of the unused cells in the current misc block,
4346 and not be on the free-list. */
4347 return (offset >= 0
4348 && offset % sizeof b->markers[0] == 0
4349 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4350 && (b != marker_block
4351 || offset / sizeof b->markers[0] < marker_block_index)
4352 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4353 }
4354 else
4355 return 0;
4356 }
4357
4358
4359 /* Value is non-zero if P is a pointer to a live vector-like object.
4360 M is a pointer to the mem_block for P. */
4361
4362 static bool
4363 live_vector_p (struct mem_node *m, void *p)
4364 {
4365 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4366 {
4367 /* This memory node corresponds to a vector block. */
4368 struct vector_block *block = m->start;
4369 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4370
4371 /* P is in the block's allocation range. Scan the block
4372 up to P and see whether P points to the start of some
4373 vector which is not on a free list. FIXME: check whether
4374 some allocation patterns (probably a lot of short vectors)
4375 may cause a substantial overhead of this loop. */
4376 while (VECTOR_IN_BLOCK (vector, block)
4377 && vector <= (struct Lisp_Vector *) p)
4378 {
4379 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4380 return 1;
4381 else
4382 vector = ADVANCE (vector, vector_nbytes (vector));
4383 }
4384 }
4385 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4386 /* This memory node corresponds to a large vector. */
4387 return 1;
4388 return 0;
4389 }
4390
4391
4392 /* Value is non-zero if P is a pointer to a live buffer. M is a
4393 pointer to the mem_block for P. */
4394
4395 static bool
4396 live_buffer_p (struct mem_node *m, void *p)
4397 {
4398 /* P must point to the start of the block, and the buffer
4399 must not have been killed. */
4400 return (m->type == MEM_TYPE_BUFFER
4401 && p == m->start
4402 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4403 }
4404
4405 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4406
4407 #if GC_MARK_STACK
4408
4409 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4410
4411 /* Currently not used, but may be called from gdb. */
4412
4413 void dump_zombies (void) EXTERNALLY_VISIBLE;
4414
4415 /* Array of objects that are kept alive because the C stack contains
4416 a pattern that looks like a reference to them. */
4417
4418 #define MAX_ZOMBIES 10
4419 static Lisp_Object zombies[MAX_ZOMBIES];
4420
4421 /* Number of zombie objects. */
4422
4423 static EMACS_INT nzombies;
4424
4425 /* Number of garbage collections. */
4426
4427 static EMACS_INT ngcs;
4428
4429 /* Average percentage of zombies per collection. */
4430
4431 static double avg_zombies;
4432
4433 /* Max. number of live and zombie objects. */
4434
4435 static EMACS_INT max_live, max_zombies;
4436
4437 /* Average number of live objects per GC. */
4438
4439 static double avg_live;
4440
4441 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4442 doc: /* Show information about live and zombie objects. */)
4443 (void)
4444 {
4445 Lisp_Object args[8], zombie_list = Qnil;
4446 EMACS_INT i;
4447 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4448 zombie_list = Fcons (zombies[i], zombie_list);
4449 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4450 args[1] = make_number (ngcs);
4451 args[2] = make_float (avg_live);
4452 args[3] = make_float (avg_zombies);
4453 args[4] = make_float (avg_zombies / avg_live / 100);
4454 args[5] = make_number (max_live);
4455 args[6] = make_number (max_zombies);
4456 args[7] = zombie_list;
4457 return Fmessage (8, args);
4458 }
4459
4460 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4461
4462
4463 /* Mark OBJ if we can prove it's a Lisp_Object. */
4464
4465 static void
4466 mark_maybe_object (Lisp_Object obj)
4467 {
4468 void *po;
4469 struct mem_node *m;
4470
4471 #if USE_VALGRIND
4472 if (valgrind_p)
4473 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4474 #endif
4475
4476 if (INTEGERP (obj))
4477 return;
4478
4479 po = (void *) XPNTR (obj);
4480 m = mem_find (po);
4481
4482 if (m != MEM_NIL)
4483 {
4484 bool mark_p = 0;
4485
4486 switch (XTYPE (obj))
4487 {
4488 case Lisp_String:
4489 mark_p = (live_string_p (m, po)
4490 && !STRING_MARKED_P ((struct Lisp_String *) po));
4491 break;
4492
4493 case Lisp_Cons:
4494 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4495 break;
4496
4497 case Lisp_Symbol:
4498 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4499 break;
4500
4501 case Lisp_Float:
4502 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4503 break;
4504
4505 case Lisp_Vectorlike:
4506 /* Note: can't check BUFFERP before we know it's a
4507 buffer because checking that dereferences the pointer
4508 PO which might point anywhere. */
4509 if (live_vector_p (m, po))
4510 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4511 else if (live_buffer_p (m, po))
4512 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4513 break;
4514
4515 case Lisp_Misc:
4516 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4517 break;
4518
4519 default:
4520 break;
4521 }
4522
4523 if (mark_p)
4524 {
4525 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4526 if (nzombies < MAX_ZOMBIES)
4527 zombies[nzombies] = obj;
4528 ++nzombies;
4529 #endif
4530 mark_object (obj);
4531 }
4532 }
4533 }
4534
4535
4536 /* If P points to Lisp data, mark that as live if it isn't already
4537 marked. */
4538
4539 static void
4540 mark_maybe_pointer (void *p)
4541 {
4542 struct mem_node *m;
4543
4544 #if USE_VALGRIND
4545 if (valgrind_p)
4546 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4547 #endif
4548
4549 /* Quickly rule out some values which can't point to Lisp data.
4550 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4551 Otherwise, assume that Lisp data is aligned on even addresses. */
4552 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4553 return;
4554
4555 m = mem_find (p);
4556 if (m != MEM_NIL)
4557 {
4558 Lisp_Object obj = Qnil;
4559
4560 switch (m->type)
4561 {
4562 case MEM_TYPE_NON_LISP:
4563 case MEM_TYPE_SPARE:
4564 /* Nothing to do; not a pointer to Lisp memory. */
4565 break;
4566
4567 case MEM_TYPE_BUFFER:
4568 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4569 XSETVECTOR (obj, p);
4570 break;
4571
4572 case MEM_TYPE_CONS:
4573 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4574 XSETCONS (obj, p);
4575 break;
4576
4577 case MEM_TYPE_STRING:
4578 if (live_string_p (m, p)
4579 && !STRING_MARKED_P ((struct Lisp_String *) p))
4580 XSETSTRING (obj, p);
4581 break;
4582
4583 case MEM_TYPE_MISC:
4584 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4585 XSETMISC (obj, p);
4586 break;
4587
4588 case MEM_TYPE_SYMBOL:
4589 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4590 XSETSYMBOL (obj, p);
4591 break;
4592
4593 case MEM_TYPE_FLOAT:
4594 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4595 XSETFLOAT (obj, p);
4596 break;
4597
4598 case MEM_TYPE_VECTORLIKE:
4599 case MEM_TYPE_VECTOR_BLOCK:
4600 if (live_vector_p (m, p))
4601 {
4602 Lisp_Object tem;
4603 XSETVECTOR (tem, p);
4604 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4605 obj = tem;
4606 }
4607 break;
4608
4609 default:
4610 emacs_abort ();
4611 }
4612
4613 if (!NILP (obj))
4614 mark_object (obj);
4615 }
4616 }
4617
4618
4619 /* Alignment of pointer values. Use alignof, as it sometimes returns
4620 a smaller alignment than GCC's __alignof__ and mark_memory might
4621 miss objects if __alignof__ were used. */
4622 #define GC_POINTER_ALIGNMENT alignof (void *)
4623
4624 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4625 not suffice, which is the typical case. A host where a Lisp_Object is
4626 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4627 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4628 suffice to widen it to to a Lisp_Object and check it that way. */
4629 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4630 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4631 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4632 nor mark_maybe_object can follow the pointers. This should not occur on
4633 any practical porting target. */
4634 # error "MSB type bits straddle pointer-word boundaries"
4635 # endif
4636 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4637 pointer words that hold pointers ORed with type bits. */
4638 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4639 #else
4640 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4641 words that hold unmodified pointers. */
4642 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4643 #endif
4644
4645 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4646 or END+OFFSET..START. */
4647
4648 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4649 mark_memory (void *start, void *end)
4650 {
4651 void **pp;
4652 int i;
4653
4654 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4655 nzombies = 0;
4656 #endif
4657
4658 /* Make START the pointer to the start of the memory region,
4659 if it isn't already. */
4660 if (end < start)
4661 {
4662 void *tem = start;
4663 start = end;
4664 end = tem;
4665 }
4666
4667 /* Mark Lisp data pointed to. This is necessary because, in some
4668 situations, the C compiler optimizes Lisp objects away, so that
4669 only a pointer to them remains. Example:
4670
4671 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4672 ()
4673 {
4674 Lisp_Object obj = build_string ("test");
4675 struct Lisp_String *s = XSTRING (obj);
4676 Fgarbage_collect ();
4677 fprintf (stderr, "test `%s'\n", s->data);
4678 return Qnil;
4679 }
4680
4681 Here, `obj' isn't really used, and the compiler optimizes it
4682 away. The only reference to the life string is through the
4683 pointer `s'. */
4684
4685 for (pp = start; (void *) pp < end; pp++)
4686 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4687 {
4688 void *p = *(void **) ((char *) pp + i);
4689 mark_maybe_pointer (p);
4690 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4691 mark_maybe_object (XIL ((intptr_t) p));
4692 }
4693 }
4694
4695 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4696
4697 static bool setjmp_tested_p;
4698 static int longjmps_done;
4699
4700 #define SETJMP_WILL_LIKELY_WORK "\
4701 \n\
4702 Emacs garbage collector has been changed to use conservative stack\n\
4703 marking. Emacs has determined that the method it uses to do the\n\
4704 marking will likely work on your system, but this isn't sure.\n\
4705 \n\
4706 If you are a system-programmer, or can get the help of a local wizard\n\
4707 who is, please take a look at the function mark_stack in alloc.c, and\n\
4708 verify that the methods used are appropriate for your system.\n\
4709 \n\
4710 Please mail the result to <emacs-devel@gnu.org>.\n\
4711 "
4712
4713 #define SETJMP_WILL_NOT_WORK "\
4714 \n\
4715 Emacs garbage collector has been changed to use conservative stack\n\
4716 marking. Emacs has determined that the default method it uses to do the\n\
4717 marking will not work on your system. We will need a system-dependent\n\
4718 solution for your system.\n\
4719 \n\
4720 Please take a look at the function mark_stack in alloc.c, and\n\
4721 try to find a way to make it work on your system.\n\
4722 \n\
4723 Note that you may get false negatives, depending on the compiler.\n\
4724 In particular, you need to use -O with GCC for this test.\n\
4725 \n\
4726 Please mail the result to <emacs-devel@gnu.org>.\n\
4727 "
4728
4729
4730 /* Perform a quick check if it looks like setjmp saves registers in a
4731 jmp_buf. Print a message to stderr saying so. When this test
4732 succeeds, this is _not_ a proof that setjmp is sufficient for
4733 conservative stack marking. Only the sources or a disassembly
4734 can prove that. */
4735
4736 static void
4737 test_setjmp (void)
4738 {
4739 char buf[10];
4740 register int x;
4741 sys_jmp_buf jbuf;
4742
4743 /* Arrange for X to be put in a register. */
4744 sprintf (buf, "1");
4745 x = strlen (buf);
4746 x = 2 * x - 1;
4747
4748 sys_setjmp (jbuf);
4749 if (longjmps_done == 1)
4750 {
4751 /* Came here after the longjmp at the end of the function.
4752
4753 If x == 1, the longjmp has restored the register to its
4754 value before the setjmp, and we can hope that setjmp
4755 saves all such registers in the jmp_buf, although that
4756 isn't sure.
4757
4758 For other values of X, either something really strange is
4759 taking place, or the setjmp just didn't save the register. */
4760
4761 if (x == 1)
4762 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4763 else
4764 {
4765 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4766 exit (1);
4767 }
4768 }
4769
4770 ++longjmps_done;
4771 x = 2;
4772 if (longjmps_done == 1)
4773 sys_longjmp (jbuf, 1);
4774 }
4775
4776 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4777
4778
4779 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4780
4781 /* Abort if anything GCPRO'd doesn't survive the GC. */
4782
4783 static void
4784 check_gcpros (void)
4785 {
4786 struct gcpro *p;
4787 ptrdiff_t i;
4788
4789 for (p = gcprolist; p; p = p->next)
4790 for (i = 0; i < p->nvars; ++i)
4791 if (!survives_gc_p (p->var[i]))
4792 /* FIXME: It's not necessarily a bug. It might just be that the
4793 GCPRO is unnecessary or should release the object sooner. */
4794 emacs_abort ();
4795 }
4796
4797 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4798
4799 void
4800 dump_zombies (void)
4801 {
4802 int i;
4803
4804 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4805 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4806 {
4807 fprintf (stderr, " %d = ", i);
4808 debug_print (zombies[i]);
4809 }
4810 }
4811
4812 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4813
4814
4815 /* Mark live Lisp objects on the C stack.
4816
4817 There are several system-dependent problems to consider when
4818 porting this to new architectures:
4819
4820 Processor Registers
4821
4822 We have to mark Lisp objects in CPU registers that can hold local
4823 variables or are used to pass parameters.
4824
4825 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4826 something that either saves relevant registers on the stack, or
4827 calls mark_maybe_object passing it each register's contents.
4828
4829 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4830 implementation assumes that calling setjmp saves registers we need
4831 to see in a jmp_buf which itself lies on the stack. This doesn't
4832 have to be true! It must be verified for each system, possibly
4833 by taking a look at the source code of setjmp.
4834
4835 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4836 can use it as a machine independent method to store all registers
4837 to the stack. In this case the macros described in the previous
4838 two paragraphs are not used.
4839
4840 Stack Layout
4841
4842 Architectures differ in the way their processor stack is organized.
4843 For example, the stack might look like this
4844
4845 +----------------+
4846 | Lisp_Object | size = 4
4847 +----------------+
4848 | something else | size = 2
4849 +----------------+
4850 | Lisp_Object | size = 4
4851 +----------------+
4852 | ... |
4853
4854 In such a case, not every Lisp_Object will be aligned equally. To
4855 find all Lisp_Object on the stack it won't be sufficient to walk
4856 the stack in steps of 4 bytes. Instead, two passes will be
4857 necessary, one starting at the start of the stack, and a second
4858 pass starting at the start of the stack + 2. Likewise, if the
4859 minimal alignment of Lisp_Objects on the stack is 1, four passes
4860 would be necessary, each one starting with one byte more offset
4861 from the stack start. */
4862
4863 static void
4864 mark_stack (void)
4865 {
4866 void *end;
4867
4868 #ifdef HAVE___BUILTIN_UNWIND_INIT
4869 /* Force callee-saved registers and register windows onto the stack.
4870 This is the preferred method if available, obviating the need for
4871 machine dependent methods. */
4872 __builtin_unwind_init ();
4873 end = &end;
4874 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4875 #ifndef GC_SAVE_REGISTERS_ON_STACK
4876 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4877 union aligned_jmpbuf {
4878 Lisp_Object o;
4879 sys_jmp_buf j;
4880 } j;
4881 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4882 #endif
4883 /* This trick flushes the register windows so that all the state of
4884 the process is contained in the stack. */
4885 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4886 needed on ia64 too. See mach_dep.c, where it also says inline
4887 assembler doesn't work with relevant proprietary compilers. */
4888 #ifdef __sparc__
4889 #if defined (__sparc64__) && defined (__FreeBSD__)
4890 /* FreeBSD does not have a ta 3 handler. */
4891 asm ("flushw");
4892 #else
4893 asm ("ta 3");
4894 #endif
4895 #endif
4896
4897 /* Save registers that we need to see on the stack. We need to see
4898 registers used to hold register variables and registers used to
4899 pass parameters. */
4900 #ifdef GC_SAVE_REGISTERS_ON_STACK
4901 GC_SAVE_REGISTERS_ON_STACK (end);
4902 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4903
4904 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4905 setjmp will definitely work, test it
4906 and print a message with the result
4907 of the test. */
4908 if (!setjmp_tested_p)
4909 {
4910 setjmp_tested_p = 1;
4911 test_setjmp ();
4912 }
4913 #endif /* GC_SETJMP_WORKS */
4914
4915 sys_setjmp (j.j);
4916 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4917 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4918 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4919
4920 /* This assumes that the stack is a contiguous region in memory. If
4921 that's not the case, something has to be done here to iterate
4922 over the stack segments. */
4923 mark_memory (stack_base, end);
4924
4925 /* Allow for marking a secondary stack, like the register stack on the
4926 ia64. */
4927 #ifdef GC_MARK_SECONDARY_STACK
4928 GC_MARK_SECONDARY_STACK ();
4929 #endif
4930
4931 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4932 check_gcpros ();
4933 #endif
4934 }
4935
4936 #else /* GC_MARK_STACK == 0 */
4937
4938 #define mark_maybe_object(obj) emacs_abort ()
4939
4940 #endif /* GC_MARK_STACK != 0 */
4941
4942
4943 /* Determine whether it is safe to access memory at address P. */
4944 static int
4945 valid_pointer_p (void *p)
4946 {
4947 #ifdef WINDOWSNT
4948 return w32_valid_pointer_p (p, 16);
4949 #else
4950 int fd[2];
4951
4952 /* Obviously, we cannot just access it (we would SEGV trying), so we
4953 trick the o/s to tell us whether p is a valid pointer.
4954 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4955 not validate p in that case. */
4956
4957 if (emacs_pipe (fd) == 0)
4958 {
4959 bool valid = emacs_write (fd[1], p, 16) == 16;
4960 emacs_close (fd[1]);
4961 emacs_close (fd[0]);
4962 return valid;
4963 }
4964
4965 return -1;
4966 #endif
4967 }
4968
4969 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4970 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4971 cannot validate OBJ. This function can be quite slow, so its primary
4972 use is the manual debugging. The only exception is print_object, where
4973 we use it to check whether the memory referenced by the pointer of
4974 Lisp_Save_Value object contains valid objects. */
4975
4976 int
4977 valid_lisp_object_p (Lisp_Object obj)
4978 {
4979 void *p;
4980 #if GC_MARK_STACK
4981 struct mem_node *m;
4982 #endif
4983
4984 if (INTEGERP (obj))
4985 return 1;
4986
4987 p = (void *) XPNTR (obj);
4988 if (PURE_POINTER_P (p))
4989 return 1;
4990
4991 if (p == &buffer_defaults || p == &buffer_local_symbols)
4992 return 2;
4993
4994 #if !GC_MARK_STACK
4995 return valid_pointer_p (p);
4996 #else
4997
4998 m = mem_find (p);
4999
5000 if (m == MEM_NIL)
5001 {
5002 int valid = valid_pointer_p (p);
5003 if (valid <= 0)
5004 return valid;
5005
5006 if (SUBRP (obj))
5007 return 1;
5008
5009 return 0;
5010 }
5011
5012 switch (m->type)
5013 {
5014 case MEM_TYPE_NON_LISP:
5015 case MEM_TYPE_SPARE:
5016 return 0;
5017
5018 case MEM_TYPE_BUFFER:
5019 return live_buffer_p (m, p) ? 1 : 2;
5020
5021 case MEM_TYPE_CONS:
5022 return live_cons_p (m, p);
5023
5024 case MEM_TYPE_STRING:
5025 return live_string_p (m, p);
5026
5027 case MEM_TYPE_MISC:
5028 return live_misc_p (m, p);
5029
5030 case MEM_TYPE_SYMBOL:
5031 return live_symbol_p (m, p);
5032
5033 case MEM_TYPE_FLOAT:
5034 return live_float_p (m, p);
5035
5036 case MEM_TYPE_VECTORLIKE:
5037 case MEM_TYPE_VECTOR_BLOCK:
5038 return live_vector_p (m, p);
5039
5040 default:
5041 break;
5042 }
5043
5044 return 0;
5045 #endif
5046 }
5047
5048
5049
5050 \f
5051 /***********************************************************************
5052 Pure Storage Management
5053 ***********************************************************************/
5054
5055 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5056 pointer to it. TYPE is the Lisp type for which the memory is
5057 allocated. TYPE < 0 means it's not used for a Lisp object. */
5058
5059 static void *
5060 pure_alloc (size_t size, int type)
5061 {
5062 void *result;
5063 #if USE_LSB_TAG
5064 size_t alignment = GCALIGNMENT;
5065 #else
5066 size_t alignment = alignof (EMACS_INT);
5067
5068 /* Give Lisp_Floats an extra alignment. */
5069 if (type == Lisp_Float)
5070 alignment = alignof (struct Lisp_Float);
5071 #endif
5072
5073 again:
5074 if (type >= 0)
5075 {
5076 /* Allocate space for a Lisp object from the beginning of the free
5077 space with taking account of alignment. */
5078 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5079 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5080 }
5081 else
5082 {
5083 /* Allocate space for a non-Lisp object from the end of the free
5084 space. */
5085 pure_bytes_used_non_lisp += size;
5086 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5087 }
5088 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5089
5090 if (pure_bytes_used <= pure_size)
5091 return result;
5092
5093 /* Don't allocate a large amount here,
5094 because it might get mmap'd and then its address
5095 might not be usable. */
5096 purebeg = xmalloc (10000);
5097 pure_size = 10000;
5098 pure_bytes_used_before_overflow += pure_bytes_used - size;
5099 pure_bytes_used = 0;
5100 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5101 goto again;
5102 }
5103
5104
5105 /* Print a warning if PURESIZE is too small. */
5106
5107 void
5108 check_pure_size (void)
5109 {
5110 if (pure_bytes_used_before_overflow)
5111 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5112 " bytes needed)"),
5113 pure_bytes_used + pure_bytes_used_before_overflow);
5114 }
5115
5116
5117 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5118 the non-Lisp data pool of the pure storage, and return its start
5119 address. Return NULL if not found. */
5120
5121 static char *
5122 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5123 {
5124 int i;
5125 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5126 const unsigned char *p;
5127 char *non_lisp_beg;
5128
5129 if (pure_bytes_used_non_lisp <= nbytes)
5130 return NULL;
5131
5132 /* Set up the Boyer-Moore table. */
5133 skip = nbytes + 1;
5134 for (i = 0; i < 256; i++)
5135 bm_skip[i] = skip;
5136
5137 p = (const unsigned char *) data;
5138 while (--skip > 0)
5139 bm_skip[*p++] = skip;
5140
5141 last_char_skip = bm_skip['\0'];
5142
5143 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5144 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5145
5146 /* See the comments in the function `boyer_moore' (search.c) for the
5147 use of `infinity'. */
5148 infinity = pure_bytes_used_non_lisp + 1;
5149 bm_skip['\0'] = infinity;
5150
5151 p = (const unsigned char *) non_lisp_beg + nbytes;
5152 start = 0;
5153 do
5154 {
5155 /* Check the last character (== '\0'). */
5156 do
5157 {
5158 start += bm_skip[*(p + start)];
5159 }
5160 while (start <= start_max);
5161
5162 if (start < infinity)
5163 /* Couldn't find the last character. */
5164 return NULL;
5165
5166 /* No less than `infinity' means we could find the last
5167 character at `p[start - infinity]'. */
5168 start -= infinity;
5169
5170 /* Check the remaining characters. */
5171 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5172 /* Found. */
5173 return non_lisp_beg + start;
5174
5175 start += last_char_skip;
5176 }
5177 while (start <= start_max);
5178
5179 return NULL;
5180 }
5181
5182
5183 /* Return a string allocated in pure space. DATA is a buffer holding
5184 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5185 means make the result string multibyte.
5186
5187 Must get an error if pure storage is full, since if it cannot hold
5188 a large string it may be able to hold conses that point to that
5189 string; then the string is not protected from gc. */
5190
5191 Lisp_Object
5192 make_pure_string (const char *data,
5193 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5194 {
5195 Lisp_Object string;
5196 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5197 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5198 if (s->data == NULL)
5199 {
5200 s->data = pure_alloc (nbytes + 1, -1);
5201 memcpy (s->data, data, nbytes);
5202 s->data[nbytes] = '\0';
5203 }
5204 s->size = nchars;
5205 s->size_byte = multibyte ? nbytes : -1;
5206 s->intervals = NULL;
5207 XSETSTRING (string, s);
5208 return string;
5209 }
5210
5211 /* Return a string allocated in pure space. Do not
5212 allocate the string data, just point to DATA. */
5213
5214 Lisp_Object
5215 make_pure_c_string (const char *data, ptrdiff_t nchars)
5216 {
5217 Lisp_Object string;
5218 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5219 s->size = nchars;
5220 s->size_byte = -1;
5221 s->data = (unsigned char *) data;
5222 s->intervals = NULL;
5223 XSETSTRING (string, s);
5224 return string;
5225 }
5226
5227 static Lisp_Object purecopy (Lisp_Object obj);
5228
5229 /* Return a cons allocated from pure space. Give it pure copies
5230 of CAR as car and CDR as cdr. */
5231
5232 Lisp_Object
5233 pure_cons (Lisp_Object car, Lisp_Object cdr)
5234 {
5235 Lisp_Object new;
5236 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5237 XSETCONS (new, p);
5238 XSETCAR (new, purecopy (car));
5239 XSETCDR (new, purecopy (cdr));
5240 return new;
5241 }
5242
5243
5244 /* Value is a float object with value NUM allocated from pure space. */
5245
5246 static Lisp_Object
5247 make_pure_float (double num)
5248 {
5249 Lisp_Object new;
5250 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5251 XSETFLOAT (new, p);
5252 XFLOAT_INIT (new, num);
5253 return new;
5254 }
5255
5256
5257 /* Return a vector with room for LEN Lisp_Objects allocated from
5258 pure space. */
5259
5260 static Lisp_Object
5261 make_pure_vector (ptrdiff_t len)
5262 {
5263 Lisp_Object new;
5264 size_t size = header_size + len * word_size;
5265 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5266 XSETVECTOR (new, p);
5267 XVECTOR (new)->header.size = len;
5268 return new;
5269 }
5270
5271
5272 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5273 doc: /* Make a copy of object OBJ in pure storage.
5274 Recursively copies contents of vectors and cons cells.
5275 Does not copy symbols. Copies strings without text properties. */)
5276 (register Lisp_Object obj)
5277 {
5278 if (NILP (Vpurify_flag))
5279 return obj;
5280 else if (MARKERP (obj) || OVERLAYP (obj)
5281 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5282 /* Can't purify those. */
5283 return obj;
5284 else
5285 return purecopy (obj);
5286 }
5287
5288 static Lisp_Object
5289 purecopy (Lisp_Object obj)
5290 {
5291 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5292 return obj; /* Already pure. */
5293
5294 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5295 {
5296 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5297 if (!NILP (tmp))
5298 return tmp;
5299 }
5300
5301 if (CONSP (obj))
5302 obj = pure_cons (XCAR (obj), XCDR (obj));
5303 else if (FLOATP (obj))
5304 obj = make_pure_float (XFLOAT_DATA (obj));
5305 else if (STRINGP (obj))
5306 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5307 SBYTES (obj),
5308 STRING_MULTIBYTE (obj));
5309 else if (COMPILEDP (obj) || VECTORP (obj))
5310 {
5311 register struct Lisp_Vector *vec;
5312 register ptrdiff_t i;
5313 ptrdiff_t size;
5314
5315 size = ASIZE (obj);
5316 if (size & PSEUDOVECTOR_FLAG)
5317 size &= PSEUDOVECTOR_SIZE_MASK;
5318 vec = XVECTOR (make_pure_vector (size));
5319 for (i = 0; i < size; i++)
5320 vec->contents[i] = purecopy (AREF (obj, i));
5321 if (COMPILEDP (obj))
5322 {
5323 XSETPVECTYPE (vec, PVEC_COMPILED);
5324 XSETCOMPILED (obj, vec);
5325 }
5326 else
5327 XSETVECTOR (obj, vec);
5328 }
5329 else if (SYMBOLP (obj))
5330 {
5331 if (!XSYMBOL (obj)->pinned)
5332 { /* We can't purify them, but they appear in many pure objects.
5333 Mark them as `pinned' so we know to mark them at every GC cycle. */
5334 XSYMBOL (obj)->pinned = true;
5335 symbol_block_pinned = symbol_block;
5336 }
5337 return obj;
5338 }
5339 else
5340 {
5341 Lisp_Object args[2];
5342 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5343 args[1] = obj;
5344 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5345 }
5346
5347 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5348 Fputhash (obj, obj, Vpurify_flag);
5349
5350 return obj;
5351 }
5352
5353
5354 \f
5355 /***********************************************************************
5356 Protection from GC
5357 ***********************************************************************/
5358
5359 /* Put an entry in staticvec, pointing at the variable with address
5360 VARADDRESS. */
5361
5362 void
5363 staticpro (Lisp_Object *varaddress)
5364 {
5365 if (staticidx >= NSTATICS)
5366 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5367 staticvec[staticidx++] = varaddress;
5368 }
5369
5370 \f
5371 /***********************************************************************
5372 Protection from GC
5373 ***********************************************************************/
5374
5375 /* Temporarily prevent garbage collection. */
5376
5377 ptrdiff_t
5378 inhibit_garbage_collection (void)
5379 {
5380 ptrdiff_t count = SPECPDL_INDEX ();
5381
5382 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5383 return count;
5384 }
5385
5386 /* Used to avoid possible overflows when
5387 converting from C to Lisp integers. */
5388
5389 static Lisp_Object
5390 bounded_number (EMACS_INT number)
5391 {
5392 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5393 }
5394
5395 /* Calculate total bytes of live objects. */
5396
5397 static size_t
5398 total_bytes_of_live_objects (void)
5399 {
5400 size_t tot = 0;
5401 tot += total_conses * sizeof (struct Lisp_Cons);
5402 tot += total_symbols * sizeof (struct Lisp_Symbol);
5403 tot += total_markers * sizeof (union Lisp_Misc);
5404 tot += total_string_bytes;
5405 tot += total_vector_slots * word_size;
5406 tot += total_floats * sizeof (struct Lisp_Float);
5407 tot += total_intervals * sizeof (struct interval);
5408 tot += total_strings * sizeof (struct Lisp_String);
5409 return tot;
5410 }
5411
5412 #ifdef HAVE_WINDOW_SYSTEM
5413
5414 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5415
5416 #if !defined (HAVE_NTGUI)
5417
5418 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5419 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5420
5421 static Lisp_Object
5422 compact_font_cache_entry (Lisp_Object entry)
5423 {
5424 Lisp_Object tail, *prev = &entry;
5425
5426 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5427 {
5428 bool drop = 0;
5429 Lisp_Object obj = XCAR (tail);
5430
5431 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5432 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5433 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5434 && VECTORP (XCDR (obj)))
5435 {
5436 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5437
5438 /* If font-spec is not marked, most likely all font-entities
5439 are not marked too. But we must be sure that nothing is
5440 marked within OBJ before we really drop it. */
5441 for (i = 0; i < size; i++)
5442 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5443 break;
5444
5445 if (i == size)
5446 drop = 1;
5447 }
5448 if (drop)
5449 *prev = XCDR (tail);
5450 else
5451 prev = xcdr_addr (tail);
5452 }
5453 return entry;
5454 }
5455
5456 #endif /* not HAVE_NTGUI */
5457
5458 /* Compact font caches on all terminals and mark
5459 everything which is still here after compaction. */
5460
5461 static void
5462 compact_font_caches (void)
5463 {
5464 struct terminal *t;
5465
5466 for (t = terminal_list; t; t = t->next_terminal)
5467 {
5468 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5469 #if !defined (HAVE_NTGUI)
5470 if (CONSP (cache))
5471 {
5472 Lisp_Object entry;
5473
5474 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5475 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5476 }
5477 #endif /* not HAVE_NTGUI */
5478 mark_object (cache);
5479 }
5480 }
5481
5482 #else /* not HAVE_WINDOW_SYSTEM */
5483
5484 #define compact_font_caches() (void)(0)
5485
5486 #endif /* HAVE_WINDOW_SYSTEM */
5487
5488 /* Remove (MARKER . DATA) entries with unmarked MARKER
5489 from buffer undo LIST and return changed list. */
5490
5491 static Lisp_Object
5492 compact_undo_list (Lisp_Object list)
5493 {
5494 Lisp_Object tail, *prev = &list;
5495
5496 for (tail = list; CONSP (tail); tail = XCDR (tail))
5497 {
5498 if (CONSP (XCAR (tail))
5499 && MARKERP (XCAR (XCAR (tail)))
5500 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5501 *prev = XCDR (tail);
5502 else
5503 prev = xcdr_addr (tail);
5504 }
5505 return list;
5506 }
5507
5508 static void
5509 mark_pinned_symbols (void)
5510 {
5511 struct symbol_block *sblk;
5512 int lim = (symbol_block_pinned == symbol_block
5513 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5514
5515 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5516 {
5517 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5518 for (; sym < end; ++sym)
5519 if (sym->s.pinned)
5520 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5521
5522 lim = SYMBOL_BLOCK_SIZE;
5523 }
5524 }
5525
5526 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5527 doc: /* Reclaim storage for Lisp objects no longer needed.
5528 Garbage collection happens automatically if you cons more than
5529 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5530 `garbage-collect' normally returns a list with info on amount of space in use,
5531 where each entry has the form (NAME SIZE USED FREE), where:
5532 - NAME is a symbol describing the kind of objects this entry represents,
5533 - SIZE is the number of bytes used by each one,
5534 - USED is the number of those objects that were found live in the heap,
5535 - FREE is the number of those objects that are not live but that Emacs
5536 keeps around for future allocations (maybe because it does not know how
5537 to return them to the OS).
5538 However, if there was overflow in pure space, `garbage-collect'
5539 returns nil, because real GC can't be done.
5540 See Info node `(elisp)Garbage Collection'. */)
5541 (void)
5542 {
5543 struct buffer *nextb;
5544 char stack_top_variable;
5545 ptrdiff_t i;
5546 bool message_p;
5547 ptrdiff_t count = SPECPDL_INDEX ();
5548 struct timespec start;
5549 Lisp_Object retval = Qnil;
5550 size_t tot_before = 0;
5551
5552 if (abort_on_gc)
5553 emacs_abort ();
5554
5555 /* Can't GC if pure storage overflowed because we can't determine
5556 if something is a pure object or not. */
5557 if (pure_bytes_used_before_overflow)
5558 return Qnil;
5559
5560 /* Record this function, so it appears on the profiler's backtraces. */
5561 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5562
5563 check_cons_list ();
5564
5565 /* Don't keep undo information around forever.
5566 Do this early on, so it is no problem if the user quits. */
5567 FOR_EACH_BUFFER (nextb)
5568 compact_buffer (nextb);
5569
5570 if (profiler_memory_running)
5571 tot_before = total_bytes_of_live_objects ();
5572
5573 start = current_timespec ();
5574
5575 /* In case user calls debug_print during GC,
5576 don't let that cause a recursive GC. */
5577 consing_since_gc = 0;
5578
5579 /* Save what's currently displayed in the echo area. */
5580 message_p = push_message ();
5581 record_unwind_protect_void (pop_message_unwind);
5582
5583 /* Save a copy of the contents of the stack, for debugging. */
5584 #if MAX_SAVE_STACK > 0
5585 if (NILP (Vpurify_flag))
5586 {
5587 char *stack;
5588 ptrdiff_t stack_size;
5589 if (&stack_top_variable < stack_bottom)
5590 {
5591 stack = &stack_top_variable;
5592 stack_size = stack_bottom - &stack_top_variable;
5593 }
5594 else
5595 {
5596 stack = stack_bottom;
5597 stack_size = &stack_top_variable - stack_bottom;
5598 }
5599 if (stack_size <= MAX_SAVE_STACK)
5600 {
5601 if (stack_copy_size < stack_size)
5602 {
5603 stack_copy = xrealloc (stack_copy, stack_size);
5604 stack_copy_size = stack_size;
5605 }
5606 no_sanitize_memcpy (stack_copy, stack, stack_size);
5607 }
5608 }
5609 #endif /* MAX_SAVE_STACK > 0 */
5610
5611 if (garbage_collection_messages)
5612 message1_nolog ("Garbage collecting...");
5613
5614 block_input ();
5615
5616 shrink_regexp_cache ();
5617
5618 gc_in_progress = 1;
5619
5620 /* Mark all the special slots that serve as the roots of accessibility. */
5621
5622 mark_buffer (&buffer_defaults);
5623 mark_buffer (&buffer_local_symbols);
5624
5625 for (i = 0; i < staticidx; i++)
5626 mark_object (*staticvec[i]);
5627
5628 mark_pinned_symbols ();
5629 mark_specpdl ();
5630 mark_terminals ();
5631 mark_kboards ();
5632
5633 #ifdef USE_GTK
5634 xg_mark_data ();
5635 #endif
5636
5637 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5638 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5639 mark_stack ();
5640 #else
5641 {
5642 register struct gcpro *tail;
5643 for (tail = gcprolist; tail; tail = tail->next)
5644 for (i = 0; i < tail->nvars; i++)
5645 mark_object (tail->var[i]);
5646 }
5647 mark_byte_stack ();
5648 #endif
5649 {
5650 struct handler *handler;
5651 for (handler = handlerlist; handler; handler = handler->next)
5652 {
5653 mark_object (handler->tag_or_ch);
5654 mark_object (handler->val);
5655 }
5656 }
5657 #ifdef HAVE_WINDOW_SYSTEM
5658 mark_fringe_data ();
5659 #endif
5660
5661 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5662 mark_stack ();
5663 #endif
5664
5665 /* Everything is now marked, except for the data in font caches
5666 and undo lists. They're compacted by removing an items which
5667 aren't reachable otherwise. */
5668
5669 compact_font_caches ();
5670
5671 FOR_EACH_BUFFER (nextb)
5672 {
5673 if (!EQ (BVAR (nextb, undo_list), Qt))
5674 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5675 /* Now that we have stripped the elements that need not be
5676 in the undo_list any more, we can finally mark the list. */
5677 mark_object (BVAR (nextb, undo_list));
5678 }
5679
5680 gc_sweep ();
5681
5682 /* Clear the mark bits that we set in certain root slots. */
5683
5684 unmark_byte_stack ();
5685 VECTOR_UNMARK (&buffer_defaults);
5686 VECTOR_UNMARK (&buffer_local_symbols);
5687
5688 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5689 dump_zombies ();
5690 #endif
5691
5692 check_cons_list ();
5693
5694 gc_in_progress = 0;
5695
5696 unblock_input ();
5697
5698 consing_since_gc = 0;
5699 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5700 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5701
5702 gc_relative_threshold = 0;
5703 if (FLOATP (Vgc_cons_percentage))
5704 { /* Set gc_cons_combined_threshold. */
5705 double tot = total_bytes_of_live_objects ();
5706
5707 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5708 if (0 < tot)
5709 {
5710 if (tot < TYPE_MAXIMUM (EMACS_INT))
5711 gc_relative_threshold = tot;
5712 else
5713 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5714 }
5715 }
5716
5717 if (garbage_collection_messages)
5718 {
5719 if (message_p || minibuf_level > 0)
5720 restore_message ();
5721 else
5722 message1_nolog ("Garbage collecting...done");
5723 }
5724
5725 unbind_to (count, Qnil);
5726 {
5727 Lisp_Object total[11];
5728 int total_size = 10;
5729
5730 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5731 bounded_number (total_conses),
5732 bounded_number (total_free_conses));
5733
5734 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5735 bounded_number (total_symbols),
5736 bounded_number (total_free_symbols));
5737
5738 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5739 bounded_number (total_markers),
5740 bounded_number (total_free_markers));
5741
5742 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5743 bounded_number (total_strings),
5744 bounded_number (total_free_strings));
5745
5746 total[4] = list3 (Qstring_bytes, make_number (1),
5747 bounded_number (total_string_bytes));
5748
5749 total[5] = list3 (Qvectors,
5750 make_number (header_size + sizeof (Lisp_Object)),
5751 bounded_number (total_vectors));
5752
5753 total[6] = list4 (Qvector_slots, make_number (word_size),
5754 bounded_number (total_vector_slots),
5755 bounded_number (total_free_vector_slots));
5756
5757 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5758 bounded_number (total_floats),
5759 bounded_number (total_free_floats));
5760
5761 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5762 bounded_number (total_intervals),
5763 bounded_number (total_free_intervals));
5764
5765 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5766 bounded_number (total_buffers));
5767
5768 #ifdef DOUG_LEA_MALLOC
5769 total_size++;
5770 total[10] = list4 (Qheap, make_number (1024),
5771 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5772 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5773 #endif
5774 retval = Flist (total_size, total);
5775 }
5776
5777 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5778 {
5779 /* Compute average percentage of zombies. */
5780 double nlive
5781 = (total_conses + total_symbols + total_markers + total_strings
5782 + total_vectors + total_floats + total_intervals + total_buffers);
5783
5784 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5785 max_live = max (nlive, max_live);
5786 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5787 max_zombies = max (nzombies, max_zombies);
5788 ++ngcs;
5789 }
5790 #endif
5791
5792 if (!NILP (Vpost_gc_hook))
5793 {
5794 ptrdiff_t gc_count = inhibit_garbage_collection ();
5795 safe_run_hooks (Qpost_gc_hook);
5796 unbind_to (gc_count, Qnil);
5797 }
5798
5799 /* Accumulate statistics. */
5800 if (FLOATP (Vgc_elapsed))
5801 {
5802 struct timespec since_start = timespec_sub (current_timespec (), start);
5803 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5804 + timespectod (since_start));
5805 }
5806
5807 gcs_done++;
5808
5809 /* Collect profiling data. */
5810 if (profiler_memory_running)
5811 {
5812 size_t swept = 0;
5813 size_t tot_after = total_bytes_of_live_objects ();
5814 if (tot_before > tot_after)
5815 swept = tot_before - tot_after;
5816 malloc_probe (swept);
5817 }
5818
5819 return retval;
5820 }
5821
5822
5823 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5824 only interesting objects referenced from glyphs are strings. */
5825
5826 static void
5827 mark_glyph_matrix (struct glyph_matrix *matrix)
5828 {
5829 struct glyph_row *row = matrix->rows;
5830 struct glyph_row *end = row + matrix->nrows;
5831
5832 for (; row < end; ++row)
5833 if (row->enabled_p)
5834 {
5835 int area;
5836 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5837 {
5838 struct glyph *glyph = row->glyphs[area];
5839 struct glyph *end_glyph = glyph + row->used[area];
5840
5841 for (; glyph < end_glyph; ++glyph)
5842 if (STRINGP (glyph->object)
5843 && !STRING_MARKED_P (XSTRING (glyph->object)))
5844 mark_object (glyph->object);
5845 }
5846 }
5847 }
5848
5849 /* Mark reference to a Lisp_Object.
5850 If the object referred to has not been seen yet, recursively mark
5851 all the references contained in it. */
5852
5853 #define LAST_MARKED_SIZE 500
5854 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5855 static int last_marked_index;
5856
5857 /* For debugging--call abort when we cdr down this many
5858 links of a list, in mark_object. In debugging,
5859 the call to abort will hit a breakpoint.
5860 Normally this is zero and the check never goes off. */
5861 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5862
5863 static void
5864 mark_vectorlike (struct Lisp_Vector *ptr)
5865 {
5866 ptrdiff_t size = ptr->header.size;
5867 ptrdiff_t i;
5868
5869 eassert (!VECTOR_MARKED_P (ptr));
5870 VECTOR_MARK (ptr); /* Else mark it. */
5871 if (size & PSEUDOVECTOR_FLAG)
5872 size &= PSEUDOVECTOR_SIZE_MASK;
5873
5874 /* Note that this size is not the memory-footprint size, but only
5875 the number of Lisp_Object fields that we should trace.
5876 The distinction is used e.g. by Lisp_Process which places extra
5877 non-Lisp_Object fields at the end of the structure... */
5878 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5879 mark_object (ptr->contents[i]);
5880 }
5881
5882 /* Like mark_vectorlike but optimized for char-tables (and
5883 sub-char-tables) assuming that the contents are mostly integers or
5884 symbols. */
5885
5886 static void
5887 mark_char_table (struct Lisp_Vector *ptr)
5888 {
5889 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5890 int i;
5891
5892 eassert (!VECTOR_MARKED_P (ptr));
5893 VECTOR_MARK (ptr);
5894 for (i = 0; i < size; i++)
5895 {
5896 Lisp_Object val = ptr->contents[i];
5897
5898 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5899 continue;
5900 if (SUB_CHAR_TABLE_P (val))
5901 {
5902 if (! VECTOR_MARKED_P (XVECTOR (val)))
5903 mark_char_table (XVECTOR (val));
5904 }
5905 else
5906 mark_object (val);
5907 }
5908 }
5909
5910 /* Mark the chain of overlays starting at PTR. */
5911
5912 static void
5913 mark_overlay (struct Lisp_Overlay *ptr)
5914 {
5915 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5916 {
5917 ptr->gcmarkbit = 1;
5918 mark_object (ptr->start);
5919 mark_object (ptr->end);
5920 mark_object (ptr->plist);
5921 }
5922 }
5923
5924 /* Mark Lisp_Objects and special pointers in BUFFER. */
5925
5926 static void
5927 mark_buffer (struct buffer *buffer)
5928 {
5929 /* This is handled much like other pseudovectors... */
5930 mark_vectorlike ((struct Lisp_Vector *) buffer);
5931
5932 /* ...but there are some buffer-specific things. */
5933
5934 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5935
5936 /* For now, we just don't mark the undo_list. It's done later in
5937 a special way just before the sweep phase, and after stripping
5938 some of its elements that are not needed any more. */
5939
5940 mark_overlay (buffer->overlays_before);
5941 mark_overlay (buffer->overlays_after);
5942
5943 /* If this is an indirect buffer, mark its base buffer. */
5944 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5945 mark_buffer (buffer->base_buffer);
5946 }
5947
5948 /* Mark Lisp faces in the face cache C. */
5949
5950 static void
5951 mark_face_cache (struct face_cache *c)
5952 {
5953 if (c)
5954 {
5955 int i, j;
5956 for (i = 0; i < c->used; ++i)
5957 {
5958 struct face *face = FACE_FROM_ID (c->f, i);
5959
5960 if (face)
5961 {
5962 if (face->font && !VECTOR_MARKED_P (face->font))
5963 mark_vectorlike ((struct Lisp_Vector *) face->font);
5964
5965 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5966 mark_object (face->lface[j]);
5967 }
5968 }
5969 }
5970 }
5971
5972 /* Remove killed buffers or items whose car is a killed buffer from
5973 LIST, and mark other items. Return changed LIST, which is marked. */
5974
5975 static Lisp_Object
5976 mark_discard_killed_buffers (Lisp_Object list)
5977 {
5978 Lisp_Object tail, *prev = &list;
5979
5980 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5981 tail = XCDR (tail))
5982 {
5983 Lisp_Object tem = XCAR (tail);
5984 if (CONSP (tem))
5985 tem = XCAR (tem);
5986 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5987 *prev = XCDR (tail);
5988 else
5989 {
5990 CONS_MARK (XCONS (tail));
5991 mark_object (XCAR (tail));
5992 prev = xcdr_addr (tail);
5993 }
5994 }
5995 mark_object (tail);
5996 return list;
5997 }
5998
5999 /* Determine type of generic Lisp_Object and mark it accordingly. */
6000
6001 void
6002 mark_object (Lisp_Object arg)
6003 {
6004 register Lisp_Object obj = arg;
6005 #ifdef GC_CHECK_MARKED_OBJECTS
6006 void *po;
6007 struct mem_node *m;
6008 #endif
6009 ptrdiff_t cdr_count = 0;
6010
6011 loop:
6012
6013 if (PURE_POINTER_P (XPNTR (obj)))
6014 return;
6015
6016 last_marked[last_marked_index++] = obj;
6017 if (last_marked_index == LAST_MARKED_SIZE)
6018 last_marked_index = 0;
6019
6020 /* Perform some sanity checks on the objects marked here. Abort if
6021 we encounter an object we know is bogus. This increases GC time
6022 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6023 #ifdef GC_CHECK_MARKED_OBJECTS
6024
6025 po = (void *) XPNTR (obj);
6026
6027 /* Check that the object pointed to by PO is known to be a Lisp
6028 structure allocated from the heap. */
6029 #define CHECK_ALLOCATED() \
6030 do { \
6031 m = mem_find (po); \
6032 if (m == MEM_NIL) \
6033 emacs_abort (); \
6034 } while (0)
6035
6036 /* Check that the object pointed to by PO is live, using predicate
6037 function LIVEP. */
6038 #define CHECK_LIVE(LIVEP) \
6039 do { \
6040 if (!LIVEP (m, po)) \
6041 emacs_abort (); \
6042 } while (0)
6043
6044 /* Check both of the above conditions. */
6045 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6046 do { \
6047 CHECK_ALLOCATED (); \
6048 CHECK_LIVE (LIVEP); \
6049 } while (0) \
6050
6051 #else /* not GC_CHECK_MARKED_OBJECTS */
6052
6053 #define CHECK_LIVE(LIVEP) (void) 0
6054 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6055
6056 #endif /* not GC_CHECK_MARKED_OBJECTS */
6057
6058 switch (XTYPE (obj))
6059 {
6060 case Lisp_String:
6061 {
6062 register struct Lisp_String *ptr = XSTRING (obj);
6063 if (STRING_MARKED_P (ptr))
6064 break;
6065 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6066 MARK_STRING (ptr);
6067 MARK_INTERVAL_TREE (ptr->intervals);
6068 #ifdef GC_CHECK_STRING_BYTES
6069 /* Check that the string size recorded in the string is the
6070 same as the one recorded in the sdata structure. */
6071 string_bytes (ptr);
6072 #endif /* GC_CHECK_STRING_BYTES */
6073 }
6074 break;
6075
6076 case Lisp_Vectorlike:
6077 {
6078 register struct Lisp_Vector *ptr = XVECTOR (obj);
6079 register ptrdiff_t pvectype;
6080
6081 if (VECTOR_MARKED_P (ptr))
6082 break;
6083
6084 #ifdef GC_CHECK_MARKED_OBJECTS
6085 m = mem_find (po);
6086 if (m == MEM_NIL && !SUBRP (obj))
6087 emacs_abort ();
6088 #endif /* GC_CHECK_MARKED_OBJECTS */
6089
6090 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6091 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6092 >> PSEUDOVECTOR_AREA_BITS);
6093 else
6094 pvectype = PVEC_NORMAL_VECTOR;
6095
6096 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6097 CHECK_LIVE (live_vector_p);
6098
6099 switch (pvectype)
6100 {
6101 case PVEC_BUFFER:
6102 #ifdef GC_CHECK_MARKED_OBJECTS
6103 {
6104 struct buffer *b;
6105 FOR_EACH_BUFFER (b)
6106 if (b == po)
6107 break;
6108 if (b == NULL)
6109 emacs_abort ();
6110 }
6111 #endif /* GC_CHECK_MARKED_OBJECTS */
6112 mark_buffer ((struct buffer *) ptr);
6113 break;
6114
6115 case PVEC_COMPILED:
6116 { /* We could treat this just like a vector, but it is better
6117 to save the COMPILED_CONSTANTS element for last and avoid
6118 recursion there. */
6119 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6120 int i;
6121
6122 VECTOR_MARK (ptr);
6123 for (i = 0; i < size; i++)
6124 if (i != COMPILED_CONSTANTS)
6125 mark_object (ptr->contents[i]);
6126 if (size > COMPILED_CONSTANTS)
6127 {
6128 obj = ptr->contents[COMPILED_CONSTANTS];
6129 goto loop;
6130 }
6131 }
6132 break;
6133
6134 case PVEC_FRAME:
6135 {
6136 struct frame *f = (struct frame *) ptr;
6137
6138 mark_vectorlike (ptr);
6139 mark_face_cache (f->face_cache);
6140 #ifdef HAVE_WINDOW_SYSTEM
6141 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6142 {
6143 struct font *font = FRAME_FONT (f);
6144
6145 if (font && !VECTOR_MARKED_P (font))
6146 mark_vectorlike ((struct Lisp_Vector *) font);
6147 }
6148 #endif
6149 }
6150 break;
6151
6152 case PVEC_WINDOW:
6153 {
6154 struct window *w = (struct window *) ptr;
6155
6156 mark_vectorlike (ptr);
6157
6158 /* Mark glyph matrices, if any. Marking window
6159 matrices is sufficient because frame matrices
6160 use the same glyph memory. */
6161 if (w->current_matrix)
6162 {
6163 mark_glyph_matrix (w->current_matrix);
6164 mark_glyph_matrix (w->desired_matrix);
6165 }
6166
6167 /* Filter out killed buffers from both buffer lists
6168 in attempt to help GC to reclaim killed buffers faster.
6169 We can do it elsewhere for live windows, but this is the
6170 best place to do it for dead windows. */
6171 wset_prev_buffers
6172 (w, mark_discard_killed_buffers (w->prev_buffers));
6173 wset_next_buffers
6174 (w, mark_discard_killed_buffers (w->next_buffers));
6175 }
6176 break;
6177
6178 case PVEC_HASH_TABLE:
6179 {
6180 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6181
6182 mark_vectorlike (ptr);
6183 mark_object (h->test.name);
6184 mark_object (h->test.user_hash_function);
6185 mark_object (h->test.user_cmp_function);
6186 /* If hash table is not weak, mark all keys and values.
6187 For weak tables, mark only the vector. */
6188 if (NILP (h->weak))
6189 mark_object (h->key_and_value);
6190 else
6191 VECTOR_MARK (XVECTOR (h->key_and_value));
6192 }
6193 break;
6194
6195 case PVEC_CHAR_TABLE:
6196 mark_char_table (ptr);
6197 break;
6198
6199 case PVEC_BOOL_VECTOR:
6200 /* No Lisp_Objects to mark in a bool vector. */
6201 VECTOR_MARK (ptr);
6202 break;
6203
6204 case PVEC_SUBR:
6205 break;
6206
6207 case PVEC_FREE:
6208 emacs_abort ();
6209
6210 default:
6211 mark_vectorlike (ptr);
6212 }
6213 }
6214 break;
6215
6216 case Lisp_Symbol:
6217 {
6218 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6219 struct Lisp_Symbol *ptrx;
6220
6221 if (ptr->gcmarkbit)
6222 break;
6223 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6224 ptr->gcmarkbit = 1;
6225 /* Attempt to catch bogus objects. */
6226 eassert (valid_lisp_object_p (ptr->function) >= 1);
6227 mark_object (ptr->function);
6228 mark_object (ptr->plist);
6229 switch (ptr->redirect)
6230 {
6231 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6232 case SYMBOL_VARALIAS:
6233 {
6234 Lisp_Object tem;
6235 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6236 mark_object (tem);
6237 break;
6238 }
6239 case SYMBOL_LOCALIZED:
6240 {
6241 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6242 Lisp_Object where = blv->where;
6243 /* If the value is set up for a killed buffer or deleted
6244 frame, restore it's global binding. If the value is
6245 forwarded to a C variable, either it's not a Lisp_Object
6246 var, or it's staticpro'd already. */
6247 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6248 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6249 swap_in_global_binding (ptr);
6250 mark_object (blv->where);
6251 mark_object (blv->valcell);
6252 mark_object (blv->defcell);
6253 break;
6254 }
6255 case SYMBOL_FORWARDED:
6256 /* If the value is forwarded to a buffer or keyboard field,
6257 these are marked when we see the corresponding object.
6258 And if it's forwarded to a C variable, either it's not
6259 a Lisp_Object var, or it's staticpro'd already. */
6260 break;
6261 default: emacs_abort ();
6262 }
6263 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6264 MARK_STRING (XSTRING (ptr->name));
6265 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6266
6267 ptr = ptr->next;
6268 if (ptr)
6269 {
6270 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6271 XSETSYMBOL (obj, ptrx);
6272 goto loop;
6273 }
6274 }
6275 break;
6276
6277 case Lisp_Misc:
6278 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6279
6280 if (XMISCANY (obj)->gcmarkbit)
6281 break;
6282
6283 switch (XMISCTYPE (obj))
6284 {
6285 case Lisp_Misc_Marker:
6286 /* DO NOT mark thru the marker's chain.
6287 The buffer's markers chain does not preserve markers from gc;
6288 instead, markers are removed from the chain when freed by gc. */
6289 XMISCANY (obj)->gcmarkbit = 1;
6290 break;
6291
6292 case Lisp_Misc_Save_Value:
6293 XMISCANY (obj)->gcmarkbit = 1;
6294 {
6295 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6296 /* If `save_type' is zero, `data[0].pointer' is the address
6297 of a memory area containing `data[1].integer' potential
6298 Lisp_Objects. */
6299 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6300 {
6301 Lisp_Object *p = ptr->data[0].pointer;
6302 ptrdiff_t nelt;
6303 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6304 mark_maybe_object (*p);
6305 }
6306 else
6307 {
6308 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6309 int i;
6310 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6311 if (save_type (ptr, i) == SAVE_OBJECT)
6312 mark_object (ptr->data[i].object);
6313 }
6314 }
6315 break;
6316
6317 case Lisp_Misc_Overlay:
6318 mark_overlay (XOVERLAY (obj));
6319 break;
6320
6321 default:
6322 emacs_abort ();
6323 }
6324 break;
6325
6326 case Lisp_Cons:
6327 {
6328 register struct Lisp_Cons *ptr = XCONS (obj);
6329 if (CONS_MARKED_P (ptr))
6330 break;
6331 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6332 CONS_MARK (ptr);
6333 /* If the cdr is nil, avoid recursion for the car. */
6334 if (EQ (ptr->u.cdr, Qnil))
6335 {
6336 obj = ptr->car;
6337 cdr_count = 0;
6338 goto loop;
6339 }
6340 mark_object (ptr->car);
6341 obj = ptr->u.cdr;
6342 cdr_count++;
6343 if (cdr_count == mark_object_loop_halt)
6344 emacs_abort ();
6345 goto loop;
6346 }
6347
6348 case Lisp_Float:
6349 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6350 FLOAT_MARK (XFLOAT (obj));
6351 break;
6352
6353 case_Lisp_Int:
6354 break;
6355
6356 default:
6357 emacs_abort ();
6358 }
6359
6360 #undef CHECK_LIVE
6361 #undef CHECK_ALLOCATED
6362 #undef CHECK_ALLOCATED_AND_LIVE
6363 }
6364 /* Mark the Lisp pointers in the terminal objects.
6365 Called by Fgarbage_collect. */
6366
6367 static void
6368 mark_terminals (void)
6369 {
6370 struct terminal *t;
6371 for (t = terminal_list; t; t = t->next_terminal)
6372 {
6373 eassert (t->name != NULL);
6374 #ifdef HAVE_WINDOW_SYSTEM
6375 /* If a terminal object is reachable from a stacpro'ed object,
6376 it might have been marked already. Make sure the image cache
6377 gets marked. */
6378 mark_image_cache (t->image_cache);
6379 #endif /* HAVE_WINDOW_SYSTEM */
6380 if (!VECTOR_MARKED_P (t))
6381 mark_vectorlike ((struct Lisp_Vector *)t);
6382 }
6383 }
6384
6385
6386
6387 /* Value is non-zero if OBJ will survive the current GC because it's
6388 either marked or does not need to be marked to survive. */
6389
6390 bool
6391 survives_gc_p (Lisp_Object obj)
6392 {
6393 bool survives_p;
6394
6395 switch (XTYPE (obj))
6396 {
6397 case_Lisp_Int:
6398 survives_p = 1;
6399 break;
6400
6401 case Lisp_Symbol:
6402 survives_p = XSYMBOL (obj)->gcmarkbit;
6403 break;
6404
6405 case Lisp_Misc:
6406 survives_p = XMISCANY (obj)->gcmarkbit;
6407 break;
6408
6409 case Lisp_String:
6410 survives_p = STRING_MARKED_P (XSTRING (obj));
6411 break;
6412
6413 case Lisp_Vectorlike:
6414 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6415 break;
6416
6417 case Lisp_Cons:
6418 survives_p = CONS_MARKED_P (XCONS (obj));
6419 break;
6420
6421 case Lisp_Float:
6422 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6423 break;
6424
6425 default:
6426 emacs_abort ();
6427 }
6428
6429 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6430 }
6431
6432
6433 \f
6434
6435 NO_INLINE /* For better stack traces */
6436 static void
6437 sweep_conses (void)
6438 {
6439 register struct cons_block *cblk;
6440 struct cons_block **cprev = &cons_block;
6441 register int lim = cons_block_index;
6442 EMACS_INT num_free = 0, num_used = 0;
6443
6444 cons_free_list = 0;
6445
6446 for (cblk = cons_block; cblk; cblk = *cprev)
6447 {
6448 register int i = 0;
6449 int this_free = 0;
6450 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6451
6452 /* Scan the mark bits an int at a time. */
6453 for (i = 0; i < ilim; i++)
6454 {
6455 if (cblk->gcmarkbits[i] == -1)
6456 {
6457 /* Fast path - all cons cells for this int are marked. */
6458 cblk->gcmarkbits[i] = 0;
6459 num_used += BITS_PER_INT;
6460 }
6461 else
6462 {
6463 /* Some cons cells for this int are not marked.
6464 Find which ones, and free them. */
6465 int start, pos, stop;
6466
6467 start = i * BITS_PER_INT;
6468 stop = lim - start;
6469 if (stop > BITS_PER_INT)
6470 stop = BITS_PER_INT;
6471 stop += start;
6472
6473 for (pos = start; pos < stop; pos++)
6474 {
6475 if (!CONS_MARKED_P (&cblk->conses[pos]))
6476 {
6477 this_free++;
6478 cblk->conses[pos].u.chain = cons_free_list;
6479 cons_free_list = &cblk->conses[pos];
6480 #if GC_MARK_STACK
6481 cons_free_list->car = Vdead;
6482 #endif
6483 }
6484 else
6485 {
6486 num_used++;
6487 CONS_UNMARK (&cblk->conses[pos]);
6488 }
6489 }
6490 }
6491 }
6492
6493 lim = CONS_BLOCK_SIZE;
6494 /* If this block contains only free conses and we have already
6495 seen more than two blocks worth of free conses then deallocate
6496 this block. */
6497 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6498 {
6499 *cprev = cblk->next;
6500 /* Unhook from the free list. */
6501 cons_free_list = cblk->conses[0].u.chain;
6502 lisp_align_free (cblk);
6503 }
6504 else
6505 {
6506 num_free += this_free;
6507 cprev = &cblk->next;
6508 }
6509 }
6510 total_conses = num_used;
6511 total_free_conses = num_free;
6512 }
6513
6514 NO_INLINE /* For better stack traces */
6515 static void
6516 sweep_floats (void)
6517 {
6518 register struct float_block *fblk;
6519 struct float_block **fprev = &float_block;
6520 register int lim = float_block_index;
6521 EMACS_INT num_free = 0, num_used = 0;
6522
6523 float_free_list = 0;
6524
6525 for (fblk = float_block; fblk; fblk = *fprev)
6526 {
6527 register int i;
6528 int this_free = 0;
6529 for (i = 0; i < lim; i++)
6530 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6531 {
6532 this_free++;
6533 fblk->floats[i].u.chain = float_free_list;
6534 float_free_list = &fblk->floats[i];
6535 }
6536 else
6537 {
6538 num_used++;
6539 FLOAT_UNMARK (&fblk->floats[i]);
6540 }
6541 lim = FLOAT_BLOCK_SIZE;
6542 /* If this block contains only free floats and we have already
6543 seen more than two blocks worth of free floats then deallocate
6544 this block. */
6545 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6546 {
6547 *fprev = fblk->next;
6548 /* Unhook from the free list. */
6549 float_free_list = fblk->floats[0].u.chain;
6550 lisp_align_free (fblk);
6551 }
6552 else
6553 {
6554 num_free += this_free;
6555 fprev = &fblk->next;
6556 }
6557 }
6558 total_floats = num_used;
6559 total_free_floats = num_free;
6560 }
6561
6562 NO_INLINE /* For better stack traces */
6563 static void
6564 sweep_intervals (void)
6565 {
6566 register struct interval_block *iblk;
6567 struct interval_block **iprev = &interval_block;
6568 register int lim = interval_block_index;
6569 EMACS_INT num_free = 0, num_used = 0;
6570
6571 interval_free_list = 0;
6572
6573 for (iblk = interval_block; iblk; iblk = *iprev)
6574 {
6575 register int i;
6576 int this_free = 0;
6577
6578 for (i = 0; i < lim; i++)
6579 {
6580 if (!iblk->intervals[i].gcmarkbit)
6581 {
6582 set_interval_parent (&iblk->intervals[i], interval_free_list);
6583 interval_free_list = &iblk->intervals[i];
6584 this_free++;
6585 }
6586 else
6587 {
6588 num_used++;
6589 iblk->intervals[i].gcmarkbit = 0;
6590 }
6591 }
6592 lim = INTERVAL_BLOCK_SIZE;
6593 /* If this block contains only free intervals and we have already
6594 seen more than two blocks worth of free intervals then
6595 deallocate this block. */
6596 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6597 {
6598 *iprev = iblk->next;
6599 /* Unhook from the free list. */
6600 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6601 lisp_free (iblk);
6602 }
6603 else
6604 {
6605 num_free += this_free;
6606 iprev = &iblk->next;
6607 }
6608 }
6609 total_intervals = num_used;
6610 total_free_intervals = num_free;
6611 }
6612
6613 NO_INLINE /* For better stack traces */
6614 static void
6615 sweep_symbols (void)
6616 {
6617 register struct symbol_block *sblk;
6618 struct symbol_block **sprev = &symbol_block;
6619 register int lim = symbol_block_index;
6620 EMACS_INT num_free = 0, num_used = 0;
6621
6622 symbol_free_list = NULL;
6623
6624 for (sblk = symbol_block; sblk; sblk = *sprev)
6625 {
6626 int this_free = 0;
6627 union aligned_Lisp_Symbol *sym = sblk->symbols;
6628 union aligned_Lisp_Symbol *end = sym + lim;
6629
6630 for (; sym < end; ++sym)
6631 {
6632 if (!sym->s.gcmarkbit)
6633 {
6634 if (sym->s.redirect == SYMBOL_LOCALIZED)
6635 xfree (SYMBOL_BLV (&sym->s));
6636 sym->s.next = symbol_free_list;
6637 symbol_free_list = &sym->s;
6638 #if GC_MARK_STACK
6639 symbol_free_list->function = Vdead;
6640 #endif
6641 ++this_free;
6642 }
6643 else
6644 {
6645 ++num_used;
6646 sym->s.gcmarkbit = 0;
6647 /* Attempt to catch bogus objects. */
6648 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6649 }
6650 }
6651
6652 lim = SYMBOL_BLOCK_SIZE;
6653 /* If this block contains only free symbols and we have already
6654 seen more than two blocks worth of free symbols then deallocate
6655 this block. */
6656 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6657 {
6658 *sprev = sblk->next;
6659 /* Unhook from the free list. */
6660 symbol_free_list = sblk->symbols[0].s.next;
6661 lisp_free (sblk);
6662 }
6663 else
6664 {
6665 num_free += this_free;
6666 sprev = &sblk->next;
6667 }
6668 }
6669 total_symbols = num_used;
6670 total_free_symbols = num_free;
6671 }
6672
6673 NO_INLINE /* For better stack traces */
6674 static void
6675 sweep_misc (void)
6676 {
6677 register struct marker_block *mblk;
6678 struct marker_block **mprev = &marker_block;
6679 register int lim = marker_block_index;
6680 EMACS_INT num_free = 0, num_used = 0;
6681
6682 /* Put all unmarked misc's on free list. For a marker, first
6683 unchain it from the buffer it points into. */
6684
6685 marker_free_list = 0;
6686
6687 for (mblk = marker_block; mblk; mblk = *mprev)
6688 {
6689 register int i;
6690 int this_free = 0;
6691
6692 for (i = 0; i < lim; i++)
6693 {
6694 if (!mblk->markers[i].m.u_any.gcmarkbit)
6695 {
6696 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6697 unchain_marker (&mblk->markers[i].m.u_marker);
6698 /* Set the type of the freed object to Lisp_Misc_Free.
6699 We could leave the type alone, since nobody checks it,
6700 but this might catch bugs faster. */
6701 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6702 mblk->markers[i].m.u_free.chain = marker_free_list;
6703 marker_free_list = &mblk->markers[i].m;
6704 this_free++;
6705 }
6706 else
6707 {
6708 num_used++;
6709 mblk->markers[i].m.u_any.gcmarkbit = 0;
6710 }
6711 }
6712 lim = MARKER_BLOCK_SIZE;
6713 /* If this block contains only free markers and we have already
6714 seen more than two blocks worth of free markers then deallocate
6715 this block. */
6716 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6717 {
6718 *mprev = mblk->next;
6719 /* Unhook from the free list. */
6720 marker_free_list = mblk->markers[0].m.u_free.chain;
6721 lisp_free (mblk);
6722 }
6723 else
6724 {
6725 num_free += this_free;
6726 mprev = &mblk->next;
6727 }
6728 }
6729
6730 total_markers = num_used;
6731 total_free_markers = num_free;
6732 }
6733
6734 NO_INLINE /* For better stack traces */
6735 static void
6736 sweep_buffers (void)
6737 {
6738 register struct buffer *buffer, **bprev = &all_buffers;
6739
6740 total_buffers = 0;
6741 for (buffer = all_buffers; buffer; buffer = *bprev)
6742 if (!VECTOR_MARKED_P (buffer))
6743 {
6744 *bprev = buffer->next;
6745 lisp_free (buffer);
6746 }
6747 else
6748 {
6749 VECTOR_UNMARK (buffer);
6750 /* Do not use buffer_(set|get)_intervals here. */
6751 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6752 total_buffers++;
6753 bprev = &buffer->next;
6754 }
6755 }
6756
6757 /* Sweep: find all structures not marked, and free them. */
6758 static void
6759 gc_sweep (void)
6760 {
6761 /* Remove or mark entries in weak hash tables.
6762 This must be done before any object is unmarked. */
6763 sweep_weak_hash_tables ();
6764
6765 sweep_strings ();
6766 check_string_bytes (!noninteractive);
6767 sweep_conses ();
6768 sweep_floats ();
6769 sweep_intervals ();
6770 sweep_symbols ();
6771 sweep_misc ();
6772 sweep_buffers ();
6773 sweep_vectors ();
6774 check_string_bytes (!noninteractive);
6775 }
6776
6777 \f
6778 /* Debugging aids. */
6779
6780 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6781 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6782 This may be helpful in debugging Emacs's memory usage.
6783 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6784 (void)
6785 {
6786 Lisp_Object end;
6787
6788 #ifdef HAVE_NS
6789 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6790 XSETINT (end, 0);
6791 #else
6792 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6793 #endif
6794
6795 return end;
6796 }
6797
6798 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6799 doc: /* Return a list of counters that measure how much consing there has been.
6800 Each of these counters increments for a certain kind of object.
6801 The counters wrap around from the largest positive integer to zero.
6802 Garbage collection does not decrease them.
6803 The elements of the value are as follows:
6804 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6805 All are in units of 1 = one object consed
6806 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6807 objects consed.
6808 MISCS include overlays, markers, and some internal types.
6809 Frames, windows, buffers, and subprocesses count as vectors
6810 (but the contents of a buffer's text do not count here). */)
6811 (void)
6812 {
6813 return listn (CONSTYPE_HEAP, 8,
6814 bounded_number (cons_cells_consed),
6815 bounded_number (floats_consed),
6816 bounded_number (vector_cells_consed),
6817 bounded_number (symbols_consed),
6818 bounded_number (string_chars_consed),
6819 bounded_number (misc_objects_consed),
6820 bounded_number (intervals_consed),
6821 bounded_number (strings_consed));
6822 }
6823
6824 /* Find at most FIND_MAX symbols which have OBJ as their value or
6825 function. This is used in gdbinit's `xwhichsymbols' command. */
6826
6827 Lisp_Object
6828 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6829 {
6830 struct symbol_block *sblk;
6831 ptrdiff_t gc_count = inhibit_garbage_collection ();
6832 Lisp_Object found = Qnil;
6833
6834 if (! DEADP (obj))
6835 {
6836 for (sblk = symbol_block; sblk; sblk = sblk->next)
6837 {
6838 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6839 int bn;
6840
6841 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6842 {
6843 struct Lisp_Symbol *sym = &aligned_sym->s;
6844 Lisp_Object val;
6845 Lisp_Object tem;
6846
6847 if (sblk == symbol_block && bn >= symbol_block_index)
6848 break;
6849
6850 XSETSYMBOL (tem, sym);
6851 val = find_symbol_value (tem);
6852 if (EQ (val, obj)
6853 || EQ (sym->function, obj)
6854 || (!NILP (sym->function)
6855 && COMPILEDP (sym->function)
6856 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6857 || (!NILP (val)
6858 && COMPILEDP (val)
6859 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6860 {
6861 found = Fcons (tem, found);
6862 if (--find_max == 0)
6863 goto out;
6864 }
6865 }
6866 }
6867 }
6868
6869 out:
6870 unbind_to (gc_count, Qnil);
6871 return found;
6872 }
6873
6874 #ifdef SUSPICIOUS_OBJECT_CHECKING
6875
6876 static void *
6877 find_suspicious_object_in_range (void *begin, void *end)
6878 {
6879 char *begin_a = begin;
6880 char *end_a = end;
6881 int i;
6882
6883 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6884 {
6885 char *suspicious_object = suspicious_objects[i];
6886 if (begin_a <= suspicious_object && suspicious_object < end_a)
6887 return suspicious_object;
6888 }
6889
6890 return NULL;
6891 }
6892
6893 static void
6894 note_suspicious_free (void* ptr)
6895 {
6896 struct suspicious_free_record* rec;
6897
6898 rec = &suspicious_free_history[suspicious_free_history_index++];
6899 if (suspicious_free_history_index ==
6900 ARRAYELTS (suspicious_free_history))
6901 {
6902 suspicious_free_history_index = 0;
6903 }
6904
6905 memset (rec, 0, sizeof (*rec));
6906 rec->suspicious_object = ptr;
6907 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6908 }
6909
6910 static void
6911 detect_suspicious_free (void* ptr)
6912 {
6913 int i;
6914
6915 eassert (ptr != NULL);
6916
6917 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6918 if (suspicious_objects[i] == ptr)
6919 {
6920 note_suspicious_free (ptr);
6921 suspicious_objects[i] = NULL;
6922 }
6923 }
6924
6925 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6926
6927 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
6928 doc: /* Return OBJ, maybe marking it for extra scrutiny.
6929 If Emacs is compiled with suspicous object checking, capture
6930 a stack trace when OBJ is freed in order to help track down
6931 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
6932 (Lisp_Object obj)
6933 {
6934 #ifdef SUSPICIOUS_OBJECT_CHECKING
6935 /* Right now, we care only about vectors. */
6936 if (VECTORLIKEP (obj))
6937 {
6938 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
6939 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
6940 suspicious_object_index = 0;
6941 }
6942 #endif
6943 return obj;
6944 }
6945
6946 #ifdef ENABLE_CHECKING
6947
6948 bool suppress_checking;
6949
6950 void
6951 die (const char *msg, const char *file, int line)
6952 {
6953 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6954 file, line, msg);
6955 terminate_due_to_signal (SIGABRT, INT_MAX);
6956 }
6957 #endif
6958 \f
6959 /* Initialization. */
6960
6961 void
6962 init_alloc_once (void)
6963 {
6964 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6965 purebeg = PUREBEG;
6966 pure_size = PURESIZE;
6967
6968 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6969 mem_init ();
6970 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6971 #endif
6972
6973 #ifdef DOUG_LEA_MALLOC
6974 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6975 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6976 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6977 #endif
6978 init_strings ();
6979 init_vectors ();
6980
6981 refill_memory_reserve ();
6982 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6983 }
6984
6985 void
6986 init_alloc (void)
6987 {
6988 gcprolist = 0;
6989 byte_stack_list = 0;
6990 #if GC_MARK_STACK
6991 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6992 setjmp_tested_p = longjmps_done = 0;
6993 #endif
6994 #endif
6995 Vgc_elapsed = make_float (0.0);
6996 gcs_done = 0;
6997
6998 #if USE_VALGRIND
6999 valgrind_p = RUNNING_ON_VALGRIND != 0;
7000 #endif
7001 }
7002
7003 void
7004 syms_of_alloc (void)
7005 {
7006 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7007 doc: /* Number of bytes of consing between garbage collections.
7008 Garbage collection can happen automatically once this many bytes have been
7009 allocated since the last garbage collection. All data types count.
7010
7011 Garbage collection happens automatically only when `eval' is called.
7012
7013 By binding this temporarily to a large number, you can effectively
7014 prevent garbage collection during a part of the program.
7015 See also `gc-cons-percentage'. */);
7016
7017 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7018 doc: /* Portion of the heap used for allocation.
7019 Garbage collection can happen automatically once this portion of the heap
7020 has been allocated since the last garbage collection.
7021 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7022 Vgc_cons_percentage = make_float (0.1);
7023
7024 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7025 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7026
7027 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7028 doc: /* Number of cons cells that have been consed so far. */);
7029
7030 DEFVAR_INT ("floats-consed", floats_consed,
7031 doc: /* Number of floats that have been consed so far. */);
7032
7033 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7034 doc: /* Number of vector cells that have been consed so far. */);
7035
7036 DEFVAR_INT ("symbols-consed", symbols_consed,
7037 doc: /* Number of symbols that have been consed so far. */);
7038
7039 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7040 doc: /* Number of string characters that have been consed so far. */);
7041
7042 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7043 doc: /* Number of miscellaneous objects that have been consed so far.
7044 These include markers and overlays, plus certain objects not visible
7045 to users. */);
7046
7047 DEFVAR_INT ("intervals-consed", intervals_consed,
7048 doc: /* Number of intervals that have been consed so far. */);
7049
7050 DEFVAR_INT ("strings-consed", strings_consed,
7051 doc: /* Number of strings that have been consed so far. */);
7052
7053 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7054 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7055 This means that certain objects should be allocated in shared (pure) space.
7056 It can also be set to a hash-table, in which case this table is used to
7057 do hash-consing of the objects allocated to pure space. */);
7058
7059 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7060 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7061 garbage_collection_messages = 0;
7062
7063 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7064 doc: /* Hook run after garbage collection has finished. */);
7065 Vpost_gc_hook = Qnil;
7066 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7067
7068 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7069 doc: /* Precomputed `signal' argument for memory-full error. */);
7070 /* We build this in advance because if we wait until we need it, we might
7071 not be able to allocate the memory to hold it. */
7072 Vmemory_signal_data
7073 = listn (CONSTYPE_PURE, 2, Qerror,
7074 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7075
7076 DEFVAR_LISP ("memory-full", Vmemory_full,
7077 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7078 Vmemory_full = Qnil;
7079
7080 DEFSYM (Qconses, "conses");
7081 DEFSYM (Qsymbols, "symbols");
7082 DEFSYM (Qmiscs, "miscs");
7083 DEFSYM (Qstrings, "strings");
7084 DEFSYM (Qvectors, "vectors");
7085 DEFSYM (Qfloats, "floats");
7086 DEFSYM (Qintervals, "intervals");
7087 DEFSYM (Qbuffers, "buffers");
7088 DEFSYM (Qstring_bytes, "string-bytes");
7089 DEFSYM (Qvector_slots, "vector-slots");
7090 DEFSYM (Qheap, "heap");
7091 DEFSYM (Qautomatic_gc, "Automatic GC");
7092
7093 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7094 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7095
7096 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7097 doc: /* Accumulated time elapsed in garbage collections.
7098 The time is in seconds as a floating point value. */);
7099 DEFVAR_INT ("gcs-done", gcs_done,
7100 doc: /* Accumulated number of garbage collections done. */);
7101
7102 defsubr (&Scons);
7103 defsubr (&Slist);
7104 defsubr (&Svector);
7105 defsubr (&Smake_byte_code);
7106 defsubr (&Smake_list);
7107 defsubr (&Smake_vector);
7108 defsubr (&Smake_string);
7109 defsubr (&Smake_bool_vector);
7110 defsubr (&Smake_symbol);
7111 defsubr (&Smake_marker);
7112 defsubr (&Spurecopy);
7113 defsubr (&Sgarbage_collect);
7114 defsubr (&Smemory_limit);
7115 defsubr (&Smemory_use_counts);
7116 defsubr (&Ssuspicious_object);
7117
7118 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7119 defsubr (&Sgc_status);
7120 #endif
7121 }
7122
7123 /* When compiled with GCC, GDB might say "No enum type named
7124 pvec_type" if we don't have at least one symbol with that type, and
7125 then xbacktrace could fail. Similarly for the other enums and
7126 their values. Some non-GCC compilers don't like these constructs. */
7127 #ifdef __GNUC__
7128 union
7129 {
7130 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7131 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7132 enum char_bits char_bits;
7133 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7134 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7135 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
7136 enum Lisp_Bits Lisp_Bits;
7137 enum Lisp_Compiled Lisp_Compiled;
7138 enum maxargs maxargs;
7139 enum MAX_ALLOCA MAX_ALLOCA;
7140 enum More_Lisp_Bits More_Lisp_Bits;
7141 enum pvec_type pvec_type;
7142 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7143 #endif /* __GNUC__ */