Revert 2 last commits in src/alloc.c.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
207
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
220
221 /* Hook run after GC has finished. */
222
223 static Lisp_Object Qpost_gc_hook;
224
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
229
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
236
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
240
241 enum mem_type
242 {
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
258 };
259
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
264
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
267
268 #ifdef GC_MALLOC_CHECK
269
270 enum mem_type allocated_mem_type;
271
272 #endif /* GC_MALLOC_CHECK */
273
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
278
279 A red-black tree is a balanced binary tree with the following
280 properties:
281
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
288
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
291
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
297
298 struct mem_node
299 {
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
303
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
306
307 /* Start and end of allocated region. */
308 void *start, *end;
309
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
312
313 /* Memory type. */
314 enum mem_type type;
315 };
316
317 /* Base address of stack. Set in main. */
318
319 Lisp_Object *stack_base;
320
321 /* Root of the tree describing allocated Lisp memory. */
322
323 static struct mem_node *mem_root;
324
325 /* Lowest and highest known address in the heap. */
326
327 static void *min_heap_address, *max_heap_address;
328
329 /* Sentinel node of the tree. */
330
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
333
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
341
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
343
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
347
348 /* Recording what needs to be marked for gc. */
349
350 struct gcpro *gcprolist;
351
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
354
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
357
358 /* Index of next unused slot in staticvec. */
359
360 static int staticidx;
361
362 static void *pure_alloc (size_t, int);
363
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
367
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
371
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
373
374 static void *
375 ALIGN (void *ptr, int alignment)
376 {
377 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
378 }
379
380 static void
381 XFLOAT_INIT (Lisp_Object f, double n)
382 {
383 XFLOAT (f)->u.data = n;
384 }
385
386 \f
387 /************************************************************************
388 Malloc
389 ************************************************************************/
390
391 /* Function malloc calls this if it finds we are near exhausting storage. */
392
393 void
394 malloc_warning (const char *str)
395 {
396 pending_malloc_warning = str;
397 }
398
399
400 /* Display an already-pending malloc warning. */
401
402 void
403 display_malloc_warning (void)
404 {
405 call3 (intern ("display-warning"),
406 intern ("alloc"),
407 build_string (pending_malloc_warning),
408 intern ("emergency"));
409 pending_malloc_warning = 0;
410 }
411 \f
412 /* Called if we can't allocate relocatable space for a buffer. */
413
414 void
415 buffer_memory_full (ptrdiff_t nbytes)
416 {
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
422 malloc. */
423
424 #ifndef REL_ALLOC
425 memory_full (nbytes);
426 #else
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 #endif
431 }
432
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
441 #else
442
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
444 around each block.
445
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
454
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
464
465 #if USE_LSB_TAG
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 #else
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #endif
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
476
477 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
482
483 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
488
489 /* Insert and extract the block size in the header. */
490
491 static void
492 xmalloc_put_size (unsigned char *ptr, size_t size)
493 {
494 int i;
495 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
496 {
497 *--ptr = size & ((1 << CHAR_BIT) - 1);
498 size >>= CHAR_BIT;
499 }
500 }
501
502 static size_t
503 xmalloc_get_size (unsigned char *ptr)
504 {
505 size_t size = 0;
506 int i;
507 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
508 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
509 {
510 size <<= CHAR_BIT;
511 size += *ptr++;
512 }
513 return size;
514 }
515
516
517 /* Like malloc, but wraps allocated block with header and trailer. */
518
519 static void *
520 overrun_check_malloc (size_t size)
521 {
522 register unsigned char *val;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
525
526 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
527 if (val)
528 {
529 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
530 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
531 xmalloc_put_size (val, size);
532 memcpy (val + size, xmalloc_overrun_check_trailer,
533 XMALLOC_OVERRUN_CHECK_SIZE);
534 }
535 return val;
536 }
537
538
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
541
542 static void *
543 overrun_check_realloc (void *block, size_t size)
544 {
545 register unsigned char *val = (unsigned char *) block;
546 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
547 emacs_abort ();
548
549 if (val
550 && memcmp (xmalloc_overrun_check_header,
551 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
552 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
553 {
554 size_t osize = xmalloc_get_size (val);
555 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
556 XMALLOC_OVERRUN_CHECK_SIZE))
557 emacs_abort ();
558 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
559 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
560 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
561 }
562
563 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
564
565 if (val)
566 {
567 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
568 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 xmalloc_put_size (val, size);
570 memcpy (val + size, xmalloc_overrun_check_trailer,
571 XMALLOC_OVERRUN_CHECK_SIZE);
572 }
573 return val;
574 }
575
576 /* Like free, but checks block for overrun. */
577
578 static void
579 overrun_check_free (void *block)
580 {
581 unsigned char *val = (unsigned char *) block;
582
583 if (val
584 && memcmp (xmalloc_overrun_check_header,
585 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
586 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
587 {
588 size_t osize = xmalloc_get_size (val);
589 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
590 XMALLOC_OVERRUN_CHECK_SIZE))
591 emacs_abort ();
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
594 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
595 #else
596 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
597 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
599 #endif
600 }
601
602 free (val);
603 }
604
605 #undef malloc
606 #undef realloc
607 #undef free
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
611 #endif
612
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
620 ugly head again. */
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
623 static void
624 malloc_block_input (void)
625 {
626 if (block_input_in_memory_allocators)
627 block_input ();
628 }
629 static void
630 malloc_unblock_input (void)
631 {
632 if (block_input_in_memory_allocators)
633 unblock_input ();
634 }
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 #else
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
640 #endif
641
642 #define MALLOC_PROBE(size) \
643 do { \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
646 } while (0)
647
648
649 /* Like malloc but check for no memory and block interrupt input.. */
650
651 void *
652 xmalloc (size_t size)
653 {
654 void *val;
655
656 MALLOC_BLOCK_INPUT;
657 val = malloc (size);
658 MALLOC_UNBLOCK_INPUT;
659
660 if (!val && size)
661 memory_full (size);
662 MALLOC_PROBE (size);
663 return val;
664 }
665
666 /* Like the above, but zeroes out the memory just allocated. */
667
668 void *
669 xzalloc (size_t size)
670 {
671 void *val;
672
673 MALLOC_BLOCK_INPUT;
674 val = malloc (size);
675 MALLOC_UNBLOCK_INPUT;
676
677 if (!val && size)
678 memory_full (size);
679 memset (val, 0, size);
680 MALLOC_PROBE (size);
681 return val;
682 }
683
684 /* Like realloc but check for no memory and block interrupt input.. */
685
686 void *
687 xrealloc (void *block, size_t size)
688 {
689 void *val;
690
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
699
700 if (!val && size)
701 memory_full (size);
702 MALLOC_PROBE (size);
703 return val;
704 }
705
706
707 /* Like free but block interrupt input. */
708
709 void
710 xfree (void *block)
711 {
712 if (!block)
713 return;
714 MALLOC_BLOCK_INPUT;
715 free (block);
716 MALLOC_UNBLOCK_INPUT;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
719 }
720
721
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
724 be safe. */
725 verify (INT_MAX <= PTRDIFF_MAX);
726
727
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
730
731 void *
732 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
733 {
734 eassert (0 <= nitems && 0 < item_size);
735 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
736 memory_full (SIZE_MAX);
737 return xmalloc (nitems * item_size);
738 }
739
740
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
743
744 void *
745 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
746 {
747 eassert (0 <= nitems && 0 < item_size);
748 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
749 memory_full (SIZE_MAX);
750 return xrealloc (pa, nitems * item_size);
751 }
752
753
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
759
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
762 infinity.
763
764 If PA is null, then allocate a new array instead of reallocating
765 the old one.
766
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
769 return).
770
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
776
777 void *
778 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
779 ptrdiff_t nitems_max, ptrdiff_t item_size)
780 {
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
783 library malloc. */
784 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
785
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n = *nitems;
789 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
790 ptrdiff_t half_again = n >> 1;
791 ptrdiff_t incr_estimate = max (tiny_max, half_again);
792
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
796 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
797 ? nitems_max : C_language_max);
798 ptrdiff_t nitems_incr_max = n_max - n;
799 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
800
801 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
802 if (! pa)
803 *nitems = 0;
804 if (nitems_incr_max < incr)
805 memory_full (SIZE_MAX);
806 n += incr;
807 pa = xrealloc (pa, n * item_size);
808 *nitems = n;
809 return pa;
810 }
811
812
813 /* Like strdup, but uses xmalloc. */
814
815 char *
816 xstrdup (const char *s)
817 {
818 ptrdiff_t size;
819 eassert (s);
820 size = strlen (s) + 1;
821 return memcpy (xmalloc (size), s, size);
822 }
823
824 /* Like above, but duplicates Lisp string to C string. */
825
826 char *
827 xlispstrdup (Lisp_Object string)
828 {
829 ptrdiff_t size = SBYTES (string) + 1;
830 return memcpy (xmalloc (size), SSDATA (string), size);
831 }
832
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
835
836 void
837 xputenv (char const *string)
838 {
839 if (putenv ((char *) string) != 0)
840 memory_full (0);
841 }
842
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
845 void *
846 record_xmalloc (size_t size)
847 {
848 void *p = xmalloc (size);
849 record_unwind_protect_ptr (xfree, p);
850 return p;
851 }
852
853
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
857
858 #if ! USE_LSB_TAG
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
860 #endif
861
862 static void *
863 lisp_malloc (size_t nbytes, enum mem_type type)
864 {
865 register void *val;
866
867 MALLOC_BLOCK_INPUT;
868
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type = type;
871 #endif
872
873 val = malloc (nbytes);
874
875 #if ! USE_LSB_TAG
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val && type != MEM_TYPE_NON_LISP)
880 {
881 Lisp_Object tem;
882 XSETCONS (tem, (char *) val + nbytes - 1);
883 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
884 {
885 lisp_malloc_loser = val;
886 free (val);
887 val = 0;
888 }
889 }
890 #endif
891
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val && type != MEM_TYPE_NON_LISP)
894 mem_insert (val, (char *) val + nbytes, type);
895 #endif
896
897 MALLOC_UNBLOCK_INPUT;
898 if (!val && nbytes)
899 memory_full (nbytes);
900 MALLOC_PROBE (nbytes);
901 return val;
902 }
903
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
906
907 static void
908 lisp_free (void *block)
909 {
910 MALLOC_BLOCK_INPUT;
911 free (block);
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block));
914 #endif
915 MALLOC_UNBLOCK_INPUT;
916 }
917
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
919
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
931 static void *
932 aligned_alloc (size_t alignment, size_t size)
933 {
934 void *p;
935 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
936 }
937 #endif
938
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
941
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
951 nothing else. */
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
955
956 /* Internal data structures and constants. */
957
958 #define ABLOCKS_SIZE 16
959
960 /* An aligned block of memory. */
961 struct ablock
962 {
963 union
964 {
965 char payload[BLOCK_BYTES];
966 struct ablock *next_free;
967 } x;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
976 real base). */
977 struct ablocks *abase;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
980 #if BLOCK_PADDING
981 char padding[BLOCK_PADDING];
982 #endif
983 };
984
985 /* A bunch of consecutive aligned blocks. */
986 struct ablocks
987 {
988 struct ablock blocks[ABLOCKS_SIZE];
989 };
990
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
993
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
997 : (block)->abase)
998
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1001
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1005 #else
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1008 #endif
1009
1010 /* The list of free ablock. */
1011 static struct ablock *free_ablock;
1012
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1016 static void *
1017 lisp_align_malloc (size_t nbytes, enum mem_type type)
1018 {
1019 void *base, *val;
1020 struct ablocks *abase;
1021
1022 eassert (nbytes <= BLOCK_BYTES);
1023
1024 MALLOC_BLOCK_INPUT;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type = type;
1028 #endif
1029
1030 if (!free_ablock)
1031 {
1032 int i;
1033 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1034
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1038 a dumped Emacs. */
1039 mallopt (M_MMAP_MAX, 0);
1040 #endif
1041
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1044 #else
1045 base = malloc (ABLOCKS_BYTES);
1046 abase = ALIGN (base, BLOCK_ALIGN);
1047 #endif
1048
1049 if (base == 0)
1050 {
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (ABLOCKS_BYTES);
1053 }
1054
1055 aligned = (base == abase);
1056 if (!aligned)
1057 ((void **) abase)[-1] = base;
1058
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1062 #endif
1063
1064 #if ! USE_LSB_TAG
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type != MEM_TYPE_NON_LISP)
1069 {
1070 Lisp_Object tem;
1071 char *end = (char *) base + ABLOCKS_BYTES - 1;
1072 XSETCONS (tem, end);
1073 if ((char *) XCONS (tem) != end)
1074 {
1075 lisp_malloc_loser = base;
1076 free (base);
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (SIZE_MAX);
1079 }
1080 }
1081 #endif
1082
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1086 {
1087 abase->blocks[i].abase = abase;
1088 abase->blocks[i].x.next_free = free_ablock;
1089 free_ablock = &abase->blocks[i];
1090 }
1091 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1092
1093 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1094 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1096 eassert (ABLOCKS_BASE (abase) == base);
1097 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1098 }
1099
1100 abase = ABLOCK_ABASE (free_ablock);
1101 ABLOCKS_BUSY (abase) =
1102 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1103 val = free_ablock;
1104 free_ablock = free_ablock->x.next_free;
1105
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type != MEM_TYPE_NON_LISP)
1108 mem_insert (val, (char *) val + nbytes, type);
1109 #endif
1110
1111 MALLOC_UNBLOCK_INPUT;
1112
1113 MALLOC_PROBE (nbytes);
1114
1115 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1116 return val;
1117 }
1118
1119 static void
1120 lisp_align_free (void *block)
1121 {
1122 struct ablock *ablock = block;
1123 struct ablocks *abase = ABLOCK_ABASE (ablock);
1124
1125 MALLOC_BLOCK_INPUT;
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block));
1128 #endif
1129 /* Put on free list. */
1130 ablock->x.next_free = free_ablock;
1131 free_ablock = ablock;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase)
1134 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1135
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1137 { /* All the blocks are free. */
1138 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1139 struct ablock **tem = &free_ablock;
1140 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1141
1142 while (*tem)
1143 {
1144 if (*tem >= (struct ablock *) abase && *tem < atop)
1145 {
1146 i++;
1147 *tem = (*tem)->x.next_free;
1148 }
1149 else
1150 tem = &(*tem)->x.next_free;
1151 }
1152 eassert ((aligned & 1) == aligned);
1153 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1156 #endif
1157 free (ABLOCKS_BASE (abase));
1158 }
1159 MALLOC_UNBLOCK_INPUT;
1160 }
1161
1162 \f
1163 /***********************************************************************
1164 Interval Allocation
1165 ***********************************************************************/
1166
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1169
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1172
1173 /* Intervals are allocated in chunks in the form of an interval_block
1174 structure. */
1175
1176 struct interval_block
1177 {
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals[INTERVAL_BLOCK_SIZE];
1180 struct interval_block *next;
1181 };
1182
1183 /* Current interval block. Its `next' pointer points to older
1184 blocks. */
1185
1186 static struct interval_block *interval_block;
1187
1188 /* Index in interval_block above of the next unused interval
1189 structure. */
1190
1191 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1192
1193 /* Number of free and live intervals. */
1194
1195 static EMACS_INT total_free_intervals, total_intervals;
1196
1197 /* List of free intervals. */
1198
1199 static INTERVAL interval_free_list;
1200
1201 /* Return a new interval. */
1202
1203 INTERVAL
1204 make_interval (void)
1205 {
1206 INTERVAL val;
1207
1208 MALLOC_BLOCK_INPUT;
1209
1210 if (interval_free_list)
1211 {
1212 val = interval_free_list;
1213 interval_free_list = INTERVAL_PARENT (interval_free_list);
1214 }
1215 else
1216 {
1217 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1218 {
1219 struct interval_block *newi
1220 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1221
1222 newi->next = interval_block;
1223 interval_block = newi;
1224 interval_block_index = 0;
1225 total_free_intervals += INTERVAL_BLOCK_SIZE;
1226 }
1227 val = &interval_block->intervals[interval_block_index++];
1228 }
1229
1230 MALLOC_UNBLOCK_INPUT;
1231
1232 consing_since_gc += sizeof (struct interval);
1233 intervals_consed++;
1234 total_free_intervals--;
1235 RESET_INTERVAL (val);
1236 val->gcmarkbit = 0;
1237 return val;
1238 }
1239
1240
1241 /* Mark Lisp objects in interval I. */
1242
1243 static void
1244 mark_interval (register INTERVAL i, Lisp_Object dummy)
1245 {
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i->gcmarkbit);
1249 i->gcmarkbit = 1;
1250 mark_object (i->plist);
1251 }
1252
1253 /* Mark the interval tree rooted in I. */
1254
1255 #define MARK_INTERVAL_TREE(i) \
1256 do { \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1259 } while (0)
1260
1261 /***********************************************************************
1262 String Allocation
1263 ***********************************************************************/
1264
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1270 we keep.
1271
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1275
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1280
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1287
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1290
1291 #define SBLOCK_SIZE 8188
1292
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1295
1296 #define LARGE_STRING_BYTES 1024
1297
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1301
1302 struct sdata
1303 {
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1309 contents. */
1310 struct Lisp_String *string;
1311
1312 #ifdef GC_CHECK_STRING_BYTES
1313 ptrdiff_t nbytes;
1314 #endif
1315
1316 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1317 };
1318
1319 #ifdef GC_CHECK_STRING_BYTES
1320
1321 typedef struct sdata sdata;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1324
1325 #else
1326
1327 typedef union
1328 {
1329 struct Lisp_String *string;
1330
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1338 #if 0
1339 struct sdata u;
1340 #endif
1341
1342 /* When STRING is null. */
1343 struct
1344 {
1345 struct Lisp_String *string;
1346 ptrdiff_t nbytes;
1347 } n;
1348 } sdata;
1349
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1352
1353 #endif /* not GC_CHECK_STRING_BYTES */
1354
1355 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1356
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1361
1362 struct sblock
1363 {
1364 /* Next in list. */
1365 struct sblock *next;
1366
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1369 sdata *next_free;
1370
1371 /* String data. */
1372 sdata data[FLEXIBLE_ARRAY_MEMBER];
1373 };
1374
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1377
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1380
1381 /* Structure describing a block from which Lisp_String structures
1382 are allocated. */
1383
1384 struct string_block
1385 {
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings[STRING_BLOCK_SIZE];
1388 struct string_block *next;
1389 };
1390
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1394
1395 static struct sblock *oldest_sblock, *current_sblock;
1396
1397 /* List of sblocks for large strings. */
1398
1399 static struct sblock *large_sblocks;
1400
1401 /* List of string_block structures. */
1402
1403 static struct string_block *string_blocks;
1404
1405 /* Free-list of Lisp_Strings. */
1406
1407 static struct Lisp_String *string_free_list;
1408
1409 /* Number of live and free Lisp_Strings. */
1410
1411 static EMACS_INT total_strings, total_free_strings;
1412
1413 /* Number of bytes used by live strings. */
1414
1415 static EMACS_INT total_string_bytes;
1416
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1419 free-list. */
1420
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1422
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1427
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1429
1430
1431 #ifdef GC_CHECK_STRING_OVERRUN
1432
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1436
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1440
1441 #else
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1443 #endif
1444
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1448
1449 #ifdef GC_CHECK_STRING_BYTES
1450
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1453 + (NBYTES) + 1 \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1456
1457 #else /* not GC_CHECK_STRING_BYTES */
1458
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1463
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1467 ? NBYTES \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1469 + 1 \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1472
1473 #endif /* not GC_CHECK_STRING_BYTES */
1474
1475 /* Extra bytes to allocate for each string. */
1476
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1478
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX =
1485 min (STRING_BYTES_BOUND,
1486 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1487 - GC_STRING_EXTRA
1488 - offsetof (struct sblock, data)
1489 - SDATA_DATA_OFFSET)
1490 & ~(sizeof (EMACS_INT) - 1)));
1491
1492 /* Initialize string allocation. Called from init_alloc_once. */
1493
1494 static void
1495 init_strings (void)
1496 {
1497 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1499 }
1500
1501
1502 #ifdef GC_CHECK_STRING_BYTES
1503
1504 static int check_string_bytes_count;
1505
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1508
1509 ptrdiff_t
1510 string_bytes (struct Lisp_String *s)
1511 {
1512 ptrdiff_t nbytes =
1513 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1514
1515 if (!PURE_POINTER_P (s)
1516 && s->data
1517 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1518 emacs_abort ();
1519 return nbytes;
1520 }
1521
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1523
1524 static void
1525 check_sblock (struct sblock *b)
1526 {
1527 sdata *from, *end, *from_end;
1528
1529 end = b->next_free;
1530
1531 for (from = b->data; from < end; from = from_end)
1532 {
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1535 ptrdiff_t nbytes;
1536
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1540 : SDATA_NBYTES (from));
1541 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1542 }
1543 }
1544
1545
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1549
1550 static void
1551 check_string_bytes (bool all_p)
1552 {
1553 if (all_p)
1554 {
1555 struct sblock *b;
1556
1557 for (b = large_sblocks; b; b = b->next)
1558 {
1559 struct Lisp_String *s = b->data[0].string;
1560 if (s)
1561 string_bytes (s);
1562 }
1563
1564 for (b = oldest_sblock; b; b = b->next)
1565 check_sblock (b);
1566 }
1567 else if (current_sblock)
1568 check_sblock (current_sblock);
1569 }
1570
1571 #else /* not GC_CHECK_STRING_BYTES */
1572
1573 #define check_string_bytes(all) ((void) 0)
1574
1575 #endif /* GC_CHECK_STRING_BYTES */
1576
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1578
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1581
1582 static void
1583 check_string_free_list (void)
1584 {
1585 struct Lisp_String *s;
1586
1587 /* Pop a Lisp_String off the free-list. */
1588 s = string_free_list;
1589 while (s != NULL)
1590 {
1591 if ((uintptr_t) s < 1024)
1592 emacs_abort ();
1593 s = NEXT_FREE_LISP_STRING (s);
1594 }
1595 }
1596 #else
1597 #define check_string_free_list()
1598 #endif
1599
1600 /* Return a new Lisp_String. */
1601
1602 static struct Lisp_String *
1603 allocate_string (void)
1604 {
1605 struct Lisp_String *s;
1606
1607 MALLOC_BLOCK_INPUT;
1608
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list == NULL)
1612 {
1613 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1614 int i;
1615
1616 b->next = string_blocks;
1617 string_blocks = b;
1618
1619 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1620 {
1621 s = b->strings + i;
1622 /* Every string on a free list should have NULL data pointer. */
1623 s->data = NULL;
1624 NEXT_FREE_LISP_STRING (s) = string_free_list;
1625 string_free_list = s;
1626 }
1627
1628 total_free_strings += STRING_BLOCK_SIZE;
1629 }
1630
1631 check_string_free_list ();
1632
1633 /* Pop a Lisp_String off the free-list. */
1634 s = string_free_list;
1635 string_free_list = NEXT_FREE_LISP_STRING (s);
1636
1637 MALLOC_UNBLOCK_INPUT;
1638
1639 --total_free_strings;
1640 ++total_strings;
1641 ++strings_consed;
1642 consing_since_gc += sizeof *s;
1643
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive)
1646 {
1647 if (++check_string_bytes_count == 200)
1648 {
1649 check_string_bytes_count = 0;
1650 check_string_bytes (1);
1651 }
1652 else
1653 check_string_bytes (0);
1654 }
1655 #endif /* GC_CHECK_STRING_BYTES */
1656
1657 return s;
1658 }
1659
1660
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1666
1667 void
1668 allocate_string_data (struct Lisp_String *s,
1669 EMACS_INT nchars, EMACS_INT nbytes)
1670 {
1671 sdata *data, *old_data;
1672 struct sblock *b;
1673 ptrdiff_t needed, old_nbytes;
1674
1675 if (STRING_BYTES_MAX < nbytes)
1676 string_overflow ();
1677
1678 /* Determine the number of bytes needed to store NBYTES bytes
1679 of string data. */
1680 needed = SDATA_SIZE (nbytes);
1681 if (s->data)
1682 {
1683 old_data = SDATA_OF_STRING (s);
1684 old_nbytes = STRING_BYTES (s);
1685 }
1686 else
1687 old_data = NULL;
1688
1689 MALLOC_BLOCK_INPUT;
1690
1691 if (nbytes > LARGE_STRING_BYTES)
1692 {
1693 size_t size = offsetof (struct sblock, data) + needed;
1694
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1698 a dumped Emacs.
1699
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX, 0);
1706 #endif
1707
1708 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1709
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1713 #endif
1714
1715 b->next_free = b->data;
1716 b->data[0].string = NULL;
1717 b->next = large_sblocks;
1718 large_sblocks = b;
1719 }
1720 else if (current_sblock == NULL
1721 || (((char *) current_sblock + SBLOCK_SIZE
1722 - (char *) current_sblock->next_free)
1723 < (needed + GC_STRING_EXTRA)))
1724 {
1725 /* Not enough room in the current sblock. */
1726 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1727 b->next_free = b->data;
1728 b->data[0].string = NULL;
1729 b->next = NULL;
1730
1731 if (current_sblock)
1732 current_sblock->next = b;
1733 else
1734 oldest_sblock = b;
1735 current_sblock = b;
1736 }
1737 else
1738 b = current_sblock;
1739
1740 data = b->next_free;
1741 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1742
1743 MALLOC_UNBLOCK_INPUT;
1744
1745 data->string = s;
1746 s->data = SDATA_DATA (data);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data) = nbytes;
1749 #endif
1750 s->size = nchars;
1751 s->size_byte = nbytes;
1752 s->data[nbytes] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data + needed, string_overrun_cookie,
1755 GC_STRING_OVERRUN_COOKIE_SIZE);
1756 #endif
1757
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1761 if (old_data)
1762 {
1763 SDATA_NBYTES (old_data) = old_nbytes;
1764 old_data->string = NULL;
1765 }
1766
1767 consing_since_gc += needed;
1768 }
1769
1770
1771 /* Sweep and compact strings. */
1772
1773 static void
1774 sweep_strings (void)
1775 {
1776 struct string_block *b, *next;
1777 struct string_block *live_blocks = NULL;
1778
1779 string_free_list = NULL;
1780 total_strings = total_free_strings = 0;
1781 total_string_bytes = 0;
1782
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b = string_blocks; b; b = next)
1785 {
1786 int i, nfree = 0;
1787 struct Lisp_String *free_list_before = string_free_list;
1788
1789 next = b->next;
1790
1791 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1792 {
1793 struct Lisp_String *s = b->strings + i;
1794
1795 if (s->data)
1796 {
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s))
1799 {
1800 /* String is live; unmark it and its intervals. */
1801 UNMARK_STRING (s);
1802
1803 /* Do not use string_(set|get)_intervals here. */
1804 s->intervals = balance_intervals (s->intervals);
1805
1806 ++total_strings;
1807 total_string_bytes += STRING_BYTES (s);
1808 }
1809 else
1810 {
1811 /* String is dead. Put it on the free-list. */
1812 sdata *data = SDATA_OF_STRING (s);
1813
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s) != SDATA_NBYTES (data))
1819 emacs_abort ();
1820 #else
1821 data->n.nbytes = STRING_BYTES (s);
1822 #endif
1823 data->string = NULL;
1824
1825 /* Reset the strings's `data' member so that we
1826 know it's free. */
1827 s->data = NULL;
1828
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s) = string_free_list;
1831 string_free_list = s;
1832 ++nfree;
1833 }
1834 }
1835 else
1836 {
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s) = string_free_list;
1839 string_free_list = s;
1840 ++nfree;
1841 }
1842 }
1843
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree == STRING_BLOCK_SIZE
1847 && total_free_strings > STRING_BLOCK_SIZE)
1848 {
1849 lisp_free (b);
1850 string_free_list = free_list_before;
1851 }
1852 else
1853 {
1854 total_free_strings += nfree;
1855 b->next = live_blocks;
1856 live_blocks = b;
1857 }
1858 }
1859
1860 check_string_free_list ();
1861
1862 string_blocks = live_blocks;
1863 free_large_strings ();
1864 compact_small_strings ();
1865
1866 check_string_free_list ();
1867 }
1868
1869
1870 /* Free dead large strings. */
1871
1872 static void
1873 free_large_strings (void)
1874 {
1875 struct sblock *b, *next;
1876 struct sblock *live_blocks = NULL;
1877
1878 for (b = large_sblocks; b; b = next)
1879 {
1880 next = b->next;
1881
1882 if (b->data[0].string == NULL)
1883 lisp_free (b);
1884 else
1885 {
1886 b->next = live_blocks;
1887 live_blocks = b;
1888 }
1889 }
1890
1891 large_sblocks = live_blocks;
1892 }
1893
1894
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1897
1898 static void
1899 compact_small_strings (void)
1900 {
1901 struct sblock *b, *tb, *next;
1902 sdata *from, *to, *end, *tb_end;
1903 sdata *to_end, *from_end;
1904
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1907 tb = oldest_sblock;
1908 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1909 to = tb->data;
1910
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b = oldest_sblock; b; b = b->next)
1915 {
1916 end = b->next_free;
1917 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1918
1919 for (from = b->data; from < end; from = from_end)
1920 {
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1923 ptrdiff_t nbytes;
1924 struct Lisp_String *s = from->string;
1925
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s && string_bytes (s) != SDATA_NBYTES (from))
1930 emacs_abort ();
1931 #endif /* GC_CHECK_STRING_BYTES */
1932
1933 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1934 eassert (nbytes <= LARGE_STRING_BYTES);
1935
1936 nbytes = SDATA_SIZE (nbytes);
1937 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1938
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie,
1941 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1942 GC_STRING_OVERRUN_COOKIE_SIZE))
1943 emacs_abort ();
1944 #endif
1945
1946 /* Non-NULL S means it's alive. Copy its data. */
1947 if (s)
1948 {
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1951 if (to_end > tb_end)
1952 {
1953 tb->next_free = to;
1954 tb = tb->next;
1955 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1956 to = tb->data;
1957 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1958 }
1959
1960 /* Copy, and update the string's `data' pointer. */
1961 if (from != to)
1962 {
1963 eassert (tb != b || to < from);
1964 memmove (to, from, nbytes + GC_STRING_EXTRA);
1965 to->string->data = SDATA_DATA (to);
1966 }
1967
1968 /* Advance past the sdata we copied to. */
1969 to = to_end;
1970 }
1971 }
1972 }
1973
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b = tb->next; b; b = next)
1977 {
1978 next = b->next;
1979 lisp_free (b);
1980 }
1981
1982 tb->next_free = to;
1983 tb->next = NULL;
1984 current_sblock = tb;
1985 }
1986
1987 void
1988 string_overflow (void)
1989 {
1990 error ("Maximum string size exceeded");
1991 }
1992
1993 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1994 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length, Lisp_Object init)
1998 {
1999 register Lisp_Object val;
2000 int c;
2001 EMACS_INT nbytes;
2002
2003 CHECK_NATNUM (length);
2004 CHECK_CHARACTER (init);
2005
2006 c = XFASTINT (init);
2007 if (ASCII_CHAR_P (c))
2008 {
2009 nbytes = XINT (length);
2010 val = make_uninit_string (nbytes);
2011 memset (SDATA (val), c, nbytes);
2012 SDATA (val)[nbytes] = 0;
2013 }
2014 else
2015 {
2016 unsigned char str[MAX_MULTIBYTE_LENGTH];
2017 ptrdiff_t len = CHAR_STRING (c, str);
2018 EMACS_INT string_len = XINT (length);
2019 unsigned char *p, *beg, *end;
2020
2021 if (string_len > STRING_BYTES_MAX / len)
2022 string_overflow ();
2023 nbytes = len * string_len;
2024 val = make_uninit_multibyte_string (string_len, nbytes);
2025 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2026 {
2027 /* First time we just copy `str' to the data of `val'. */
2028 if (p == beg)
2029 memcpy (p, str, len);
2030 else
2031 {
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len = min (p - beg, end - p);
2035 memcpy (p, beg, len);
2036 }
2037 }
2038 *p = 0;
2039 }
2040
2041 return val;
2042 }
2043
2044 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2045 Return A. */
2046
2047 Lisp_Object
2048 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2049 {
2050 EMACS_INT nbits = bool_vector_size (a);
2051 if (0 < nbits)
2052 {
2053 unsigned char *data = bool_vector_uchar_data (a);
2054 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2055 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2056 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2057 memset (data, pattern, nbytes - 1);
2058 data[nbytes - 1] = pattern & last_mask;
2059 }
2060 return a;
2061 }
2062
2063 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2064
2065 Lisp_Object
2066 make_uninit_bool_vector (EMACS_INT nbits)
2067 {
2068 Lisp_Object val;
2069 EMACS_INT words = bool_vector_words (nbits);
2070 EMACS_INT word_bytes = words * sizeof (bits_word);
2071 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2072 + word_size - 1)
2073 / word_size);
2074 struct Lisp_Bool_Vector *p
2075 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2076 XSETVECTOR (val, p);
2077 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2078 p->size = nbits;
2079
2080 /* Clear padding at the end. */
2081 if (words)
2082 p->data[words - 1] = 0;
2083
2084 return val;
2085 }
2086
2087 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2088 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2089 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2090 (Lisp_Object length, Lisp_Object init)
2091 {
2092 Lisp_Object val;
2093
2094 CHECK_NATNUM (length);
2095 val = make_uninit_bool_vector (XFASTINT (length));
2096 return bool_vector_fill (val, init);
2097 }
2098
2099
2100 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2101 of characters from the contents. This string may be unibyte or
2102 multibyte, depending on the contents. */
2103
2104 Lisp_Object
2105 make_string (const char *contents, ptrdiff_t nbytes)
2106 {
2107 register Lisp_Object val;
2108 ptrdiff_t nchars, multibyte_nbytes;
2109
2110 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2111 &nchars, &multibyte_nbytes);
2112 if (nbytes == nchars || nbytes != multibyte_nbytes)
2113 /* CONTENTS contains no multibyte sequences or contains an invalid
2114 multibyte sequence. We must make unibyte string. */
2115 val = make_unibyte_string (contents, nbytes);
2116 else
2117 val = make_multibyte_string (contents, nchars, nbytes);
2118 return val;
2119 }
2120
2121
2122 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2123
2124 Lisp_Object
2125 make_unibyte_string (const char *contents, ptrdiff_t length)
2126 {
2127 register Lisp_Object val;
2128 val = make_uninit_string (length);
2129 memcpy (SDATA (val), contents, length);
2130 return val;
2131 }
2132
2133
2134 /* Make a multibyte string from NCHARS characters occupying NBYTES
2135 bytes at CONTENTS. */
2136
2137 Lisp_Object
2138 make_multibyte_string (const char *contents,
2139 ptrdiff_t nchars, ptrdiff_t nbytes)
2140 {
2141 register Lisp_Object val;
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 return val;
2145 }
2146
2147
2148 /* Make a string from NCHARS characters occupying NBYTES bytes at
2149 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2150
2151 Lisp_Object
2152 make_string_from_bytes (const char *contents,
2153 ptrdiff_t nchars, ptrdiff_t nbytes)
2154 {
2155 register Lisp_Object val;
2156 val = make_uninit_multibyte_string (nchars, nbytes);
2157 memcpy (SDATA (val), contents, nbytes);
2158 if (SBYTES (val) == SCHARS (val))
2159 STRING_SET_UNIBYTE (val);
2160 return val;
2161 }
2162
2163
2164 /* Make a string from NCHARS characters occupying NBYTES bytes at
2165 CONTENTS. The argument MULTIBYTE controls whether to label the
2166 string as multibyte. If NCHARS is negative, it counts the number of
2167 characters by itself. */
2168
2169 Lisp_Object
2170 make_specified_string (const char *contents,
2171 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2172 {
2173 Lisp_Object val;
2174
2175 if (nchars < 0)
2176 {
2177 if (multibyte)
2178 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2179 nbytes);
2180 else
2181 nchars = nbytes;
2182 }
2183 val = make_uninit_multibyte_string (nchars, nbytes);
2184 memcpy (SDATA (val), contents, nbytes);
2185 if (!multibyte)
2186 STRING_SET_UNIBYTE (val);
2187 return val;
2188 }
2189
2190
2191 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2192 occupying LENGTH bytes. */
2193
2194 Lisp_Object
2195 make_uninit_string (EMACS_INT length)
2196 {
2197 Lisp_Object val;
2198
2199 if (!length)
2200 return empty_unibyte_string;
2201 val = make_uninit_multibyte_string (length, length);
2202 STRING_SET_UNIBYTE (val);
2203 return val;
2204 }
2205
2206
2207 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2208 which occupy NBYTES bytes. */
2209
2210 Lisp_Object
2211 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2212 {
2213 Lisp_Object string;
2214 struct Lisp_String *s;
2215
2216 if (nchars < 0)
2217 emacs_abort ();
2218 if (!nbytes)
2219 return empty_multibyte_string;
2220
2221 s = allocate_string ();
2222 s->intervals = NULL;
2223 allocate_string_data (s, nchars, nbytes);
2224 XSETSTRING (string, s);
2225 string_chars_consed += nbytes;
2226 return string;
2227 }
2228
2229 /* Print arguments to BUF according to a FORMAT, then return
2230 a Lisp_String initialized with the data from BUF. */
2231
2232 Lisp_Object
2233 make_formatted_string (char *buf, const char *format, ...)
2234 {
2235 va_list ap;
2236 int length;
2237
2238 va_start (ap, format);
2239 length = vsprintf (buf, format, ap);
2240 va_end (ap);
2241 return make_string (buf, length);
2242 }
2243
2244 \f
2245 /***********************************************************************
2246 Float Allocation
2247 ***********************************************************************/
2248
2249 /* We store float cells inside of float_blocks, allocating a new
2250 float_block with malloc whenever necessary. Float cells reclaimed
2251 by GC are put on a free list to be reallocated before allocating
2252 any new float cells from the latest float_block. */
2253
2254 #define FLOAT_BLOCK_SIZE \
2255 (((BLOCK_BYTES - sizeof (struct float_block *) \
2256 /* The compiler might add padding at the end. */ \
2257 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2259
2260 #define GETMARKBIT(block,n) \
2261 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2262 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2263 & 1)
2264
2265 #define SETMARKBIT(block,n) \
2266 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2267 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2268
2269 #define UNSETMARKBIT(block,n) \
2270 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2271 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2272
2273 #define FLOAT_BLOCK(fptr) \
2274 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276 #define FLOAT_INDEX(fptr) \
2277 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2278
2279 struct float_block
2280 {
2281 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2282 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2283 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2284 struct float_block *next;
2285 };
2286
2287 #define FLOAT_MARKED_P(fptr) \
2288 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 #define FLOAT_MARK(fptr) \
2291 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2292
2293 #define FLOAT_UNMARK(fptr) \
2294 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2295
2296 /* Current float_block. */
2297
2298 static struct float_block *float_block;
2299
2300 /* Index of first unused Lisp_Float in the current float_block. */
2301
2302 static int float_block_index = FLOAT_BLOCK_SIZE;
2303
2304 /* Free-list of Lisp_Floats. */
2305
2306 static struct Lisp_Float *float_free_list;
2307
2308 /* Return a new float object with value FLOAT_VALUE. */
2309
2310 Lisp_Object
2311 make_float (double float_value)
2312 {
2313 register Lisp_Object val;
2314
2315 MALLOC_BLOCK_INPUT;
2316
2317 if (float_free_list)
2318 {
2319 /* We use the data field for chaining the free list
2320 so that we won't use the same field that has the mark bit. */
2321 XSETFLOAT (val, float_free_list);
2322 float_free_list = float_free_list->u.chain;
2323 }
2324 else
2325 {
2326 if (float_block_index == FLOAT_BLOCK_SIZE)
2327 {
2328 struct float_block *new
2329 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2330 new->next = float_block;
2331 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2332 float_block = new;
2333 float_block_index = 0;
2334 total_free_floats += FLOAT_BLOCK_SIZE;
2335 }
2336 XSETFLOAT (val, &float_block->floats[float_block_index]);
2337 float_block_index++;
2338 }
2339
2340 MALLOC_UNBLOCK_INPUT;
2341
2342 XFLOAT_INIT (val, float_value);
2343 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2344 consing_since_gc += sizeof (struct Lisp_Float);
2345 floats_consed++;
2346 total_free_floats--;
2347 return val;
2348 }
2349
2350
2351 \f
2352 /***********************************************************************
2353 Cons Allocation
2354 ***********************************************************************/
2355
2356 /* We store cons cells inside of cons_blocks, allocating a new
2357 cons_block with malloc whenever necessary. Cons cells reclaimed by
2358 GC are put on a free list to be reallocated before allocating
2359 any new cons cells from the latest cons_block. */
2360
2361 #define CONS_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2366
2367 #define CONS_BLOCK(fptr) \
2368 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2369
2370 #define CONS_INDEX(fptr) \
2371 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2372
2373 struct cons_block
2374 {
2375 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2376 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2377 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2378 struct cons_block *next;
2379 };
2380
2381 #define CONS_MARKED_P(fptr) \
2382 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 #define CONS_MARK(fptr) \
2385 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2386
2387 #define CONS_UNMARK(fptr) \
2388 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2389
2390 /* Current cons_block. */
2391
2392 static struct cons_block *cons_block;
2393
2394 /* Index of first unused Lisp_Cons in the current block. */
2395
2396 static int cons_block_index = CONS_BLOCK_SIZE;
2397
2398 /* Free-list of Lisp_Cons structures. */
2399
2400 static struct Lisp_Cons *cons_free_list;
2401
2402 /* Explicitly free a cons cell by putting it on the free-list. */
2403
2404 void
2405 free_cons (struct Lisp_Cons *ptr)
2406 {
2407 ptr->u.chain = cons_free_list;
2408 #if GC_MARK_STACK
2409 ptr->car = Vdead;
2410 #endif
2411 cons_free_list = ptr;
2412 consing_since_gc -= sizeof *ptr;
2413 total_free_conses++;
2414 }
2415
2416 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2417 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2418 (Lisp_Object car, Lisp_Object cdr)
2419 {
2420 register Lisp_Object val;
2421
2422 MALLOC_BLOCK_INPUT;
2423
2424 if (cons_free_list)
2425 {
2426 /* We use the cdr for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETCONS (val, cons_free_list);
2429 cons_free_list = cons_free_list->u.chain;
2430 }
2431 else
2432 {
2433 if (cons_block_index == CONS_BLOCK_SIZE)
2434 {
2435 struct cons_block *new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2437 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2438 new->next = cons_block;
2439 cons_block = new;
2440 cons_block_index = 0;
2441 total_free_conses += CONS_BLOCK_SIZE;
2442 }
2443 XSETCONS (val, &cons_block->conses[cons_block_index]);
2444 cons_block_index++;
2445 }
2446
2447 MALLOC_UNBLOCK_INPUT;
2448
2449 XSETCAR (val, car);
2450 XSETCDR (val, cdr);
2451 eassert (!CONS_MARKED_P (XCONS (val)));
2452 consing_since_gc += sizeof (struct Lisp_Cons);
2453 total_free_conses--;
2454 cons_cells_consed++;
2455 return val;
2456 }
2457
2458 #ifdef GC_CHECK_CONS_LIST
2459 /* Get an error now if there's any junk in the cons free list. */
2460 void
2461 check_cons_list (void)
2462 {
2463 struct Lisp_Cons *tail = cons_free_list;
2464
2465 while (tail)
2466 tail = tail->u.chain;
2467 }
2468 #endif
2469
2470 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2471
2472 Lisp_Object
2473 list1 (Lisp_Object arg1)
2474 {
2475 return Fcons (arg1, Qnil);
2476 }
2477
2478 Lisp_Object
2479 list2 (Lisp_Object arg1, Lisp_Object arg2)
2480 {
2481 return Fcons (arg1, Fcons (arg2, Qnil));
2482 }
2483
2484
2485 Lisp_Object
2486 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2487 {
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2489 }
2490
2491
2492 Lisp_Object
2493 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2496 }
2497
2498
2499 Lisp_Object
2500 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2501 {
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2503 Fcons (arg5, Qnil)))));
2504 }
2505
2506 /* Make a list of COUNT Lisp_Objects, where ARG is the
2507 first one. Allocate conses from pure space if TYPE
2508 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2509
2510 Lisp_Object
2511 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2512 {
2513 va_list ap;
2514 ptrdiff_t i;
2515 Lisp_Object val, *objp;
2516
2517 /* Change to SAFE_ALLOCA if you hit this eassert. */
2518 eassert (count <= MAX_ALLOCA / word_size);
2519
2520 objp = alloca (count * word_size);
2521 objp[0] = arg;
2522 va_start (ap, arg);
2523 for (i = 1; i < count; i++)
2524 objp[i] = va_arg (ap, Lisp_Object);
2525 va_end (ap);
2526
2527 for (val = Qnil, i = count - 1; i >= 0; i--)
2528 {
2529 if (type == CONSTYPE_PURE)
2530 val = pure_cons (objp[i], val);
2531 else if (type == CONSTYPE_HEAP)
2532 val = Fcons (objp[i], val);
2533 else
2534 emacs_abort ();
2535 }
2536 return val;
2537 }
2538
2539 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2540 doc: /* Return a newly created list with specified arguments as elements.
2541 Any number of arguments, even zero arguments, are allowed.
2542 usage: (list &rest OBJECTS) */)
2543 (ptrdiff_t nargs, Lisp_Object *args)
2544 {
2545 register Lisp_Object val;
2546 val = Qnil;
2547
2548 while (nargs > 0)
2549 {
2550 nargs--;
2551 val = Fcons (args[nargs], val);
2552 }
2553 return val;
2554 }
2555
2556
2557 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2558 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2559 (register Lisp_Object length, Lisp_Object init)
2560 {
2561 register Lisp_Object val;
2562 register EMACS_INT size;
2563
2564 CHECK_NATNUM (length);
2565 size = XFASTINT (length);
2566
2567 val = Qnil;
2568 while (size > 0)
2569 {
2570 val = Fcons (init, val);
2571 --size;
2572
2573 if (size > 0)
2574 {
2575 val = Fcons (init, val);
2576 --size;
2577
2578 if (size > 0)
2579 {
2580 val = Fcons (init, val);
2581 --size;
2582
2583 if (size > 0)
2584 {
2585 val = Fcons (init, val);
2586 --size;
2587
2588 if (size > 0)
2589 {
2590 val = Fcons (init, val);
2591 --size;
2592 }
2593 }
2594 }
2595 }
2596
2597 QUIT;
2598 }
2599
2600 return val;
2601 }
2602
2603
2604 \f
2605 /***********************************************************************
2606 Vector Allocation
2607 ***********************************************************************/
2608
2609 /* Sometimes a vector's contents are merely a pointer internally used
2610 in vector allocation code. Usually you don't want to touch this. */
2611
2612 static struct Lisp_Vector *
2613 next_vector (struct Lisp_Vector *v)
2614 {
2615 return XUNTAG (v->contents[0], 0);
2616 }
2617
2618 static void
2619 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2620 {
2621 v->contents[0] = make_lisp_ptr (p, 0);
2622 }
2623
2624 /* This value is balanced well enough to avoid too much internal overhead
2625 for the most common cases; it's not required to be a power of two, but
2626 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2627
2628 #define VECTOR_BLOCK_SIZE 4096
2629
2630 enum
2631 {
2632 /* Alignment of struct Lisp_Vector objects. */
2633 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2634 USE_LSB_TAG ? GCALIGNMENT : 1),
2635
2636 /* Vector size requests are a multiple of this. */
2637 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2638 };
2639
2640 /* Verify assumptions described above. */
2641 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2642 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2643
2644 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2645 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2646 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2647 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2648
2649 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2650
2651 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2652
2653 /* Size of the minimal vector allocated from block. */
2654
2655 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2656
2657 /* Size of the largest vector allocated from block. */
2658
2659 #define VBLOCK_BYTES_MAX \
2660 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2661
2662 /* We maintain one free list for each possible block-allocated
2663 vector size, and this is the number of free lists we have. */
2664
2665 #define VECTOR_MAX_FREE_LIST_INDEX \
2666 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2667
2668 /* Common shortcut to advance vector pointer over a block data. */
2669
2670 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2671
2672 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2673
2674 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2675
2676 /* Common shortcut to setup vector on a free list. */
2677
2678 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2679 do { \
2680 (tmp) = ((nbytes - header_size) / word_size); \
2681 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2682 eassert ((nbytes) % roundup_size == 0); \
2683 (tmp) = VINDEX (nbytes); \
2684 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2685 set_next_vector (v, vector_free_lists[tmp]); \
2686 vector_free_lists[tmp] = (v); \
2687 total_free_vector_slots += (nbytes) / word_size; \
2688 } while (0)
2689
2690 /* This internal type is used to maintain the list of large vectors
2691 which are allocated at their own, e.g. outside of vector blocks.
2692
2693 struct large_vector itself cannot contain a struct Lisp_Vector, as
2694 the latter contains a flexible array member and C99 does not allow
2695 such structs to be nested. Instead, each struct large_vector
2696 object LV is followed by a struct Lisp_Vector, which is at offset
2697 large_vector_offset from LV, and whose address is therefore
2698 large_vector_vec (&LV). */
2699
2700 struct large_vector
2701 {
2702 struct large_vector *next;
2703 };
2704
2705 enum
2706 {
2707 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2708 };
2709
2710 static struct Lisp_Vector *
2711 large_vector_vec (struct large_vector *p)
2712 {
2713 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2714 }
2715
2716 /* This internal type is used to maintain an underlying storage
2717 for small vectors. */
2718
2719 struct vector_block
2720 {
2721 char data[VECTOR_BLOCK_BYTES];
2722 struct vector_block *next;
2723 };
2724
2725 /* Chain of vector blocks. */
2726
2727 static struct vector_block *vector_blocks;
2728
2729 /* Vector free lists, where NTH item points to a chain of free
2730 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2731
2732 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2733
2734 /* Singly-linked list of large vectors. */
2735
2736 static struct large_vector *large_vectors;
2737
2738 /* The only vector with 0 slots, allocated from pure space. */
2739
2740 Lisp_Object zero_vector;
2741
2742 /* Number of live vectors. */
2743
2744 static EMACS_INT total_vectors;
2745
2746 /* Total size of live and free vectors, in Lisp_Object units. */
2747
2748 static EMACS_INT total_vector_slots, total_free_vector_slots;
2749
2750 /* Get a new vector block. */
2751
2752 static struct vector_block *
2753 allocate_vector_block (void)
2754 {
2755 struct vector_block *block = xmalloc (sizeof *block);
2756
2757 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2758 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2759 MEM_TYPE_VECTOR_BLOCK);
2760 #endif
2761
2762 block->next = vector_blocks;
2763 vector_blocks = block;
2764 return block;
2765 }
2766
2767 /* Called once to initialize vector allocation. */
2768
2769 static void
2770 init_vectors (void)
2771 {
2772 zero_vector = make_pure_vector (0);
2773 }
2774
2775 /* Allocate vector from a vector block. */
2776
2777 static struct Lisp_Vector *
2778 allocate_vector_from_block (size_t nbytes)
2779 {
2780 struct Lisp_Vector *vector;
2781 struct vector_block *block;
2782 size_t index, restbytes;
2783
2784 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2785 eassert (nbytes % roundup_size == 0);
2786
2787 /* First, try to allocate from a free list
2788 containing vectors of the requested size. */
2789 index = VINDEX (nbytes);
2790 if (vector_free_lists[index])
2791 {
2792 vector = vector_free_lists[index];
2793 vector_free_lists[index] = next_vector (vector);
2794 total_free_vector_slots -= nbytes / word_size;
2795 return vector;
2796 }
2797
2798 /* Next, check free lists containing larger vectors. Since
2799 we will split the result, we should have remaining space
2800 large enough to use for one-slot vector at least. */
2801 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2802 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2803 if (vector_free_lists[index])
2804 {
2805 /* This vector is larger than requested. */
2806 vector = vector_free_lists[index];
2807 vector_free_lists[index] = next_vector (vector);
2808 total_free_vector_slots -= nbytes / word_size;
2809
2810 /* Excess bytes are used for the smaller vector,
2811 which should be set on an appropriate free list. */
2812 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2813 eassert (restbytes % roundup_size == 0);
2814 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2815 return vector;
2816 }
2817
2818 /* Finally, need a new vector block. */
2819 block = allocate_vector_block ();
2820
2821 /* New vector will be at the beginning of this block. */
2822 vector = (struct Lisp_Vector *) block->data;
2823
2824 /* If the rest of space from this block is large enough
2825 for one-slot vector at least, set up it on a free list. */
2826 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2827 if (restbytes >= VBLOCK_BYTES_MIN)
2828 {
2829 eassert (restbytes % roundup_size == 0);
2830 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2831 }
2832 return vector;
2833 }
2834
2835 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2836
2837 #define VECTOR_IN_BLOCK(vector, block) \
2838 ((char *) (vector) <= (block)->data \
2839 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2840
2841 /* Return the memory footprint of V in bytes. */
2842
2843 static ptrdiff_t
2844 vector_nbytes (struct Lisp_Vector *v)
2845 {
2846 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2847 ptrdiff_t nwords;
2848
2849 if (size & PSEUDOVECTOR_FLAG)
2850 {
2851 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2852 {
2853 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2854 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2855 * sizeof (bits_word));
2856 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2857 verify (header_size <= bool_header_size);
2858 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2859 }
2860 else
2861 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2862 + ((size & PSEUDOVECTOR_REST_MASK)
2863 >> PSEUDOVECTOR_SIZE_BITS));
2864 }
2865 else
2866 nwords = size;
2867 return vroundup (header_size + word_size * nwords);
2868 }
2869
2870 /* Release extra resources still in use by VECTOR, which may be any
2871 vector-like object. For now, this is used just to free data in
2872 font objects. */
2873
2874 static void
2875 cleanup_vector (struct Lisp_Vector *vector)
2876 {
2877 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2878 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2879 == FONT_OBJECT_MAX))
2880 ((struct font *) vector)->driver->close ((struct font *) vector);
2881 }
2882
2883 /* Reclaim space used by unmarked vectors. */
2884
2885 static void
2886 sweep_vectors (void)
2887 {
2888 struct vector_block *block, **bprev = &vector_blocks;
2889 struct large_vector *lv, **lvprev = &large_vectors;
2890 struct Lisp_Vector *vector, *next;
2891
2892 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2893 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2894
2895 /* Looking through vector blocks. */
2896
2897 for (block = vector_blocks; block; block = *bprev)
2898 {
2899 bool free_this_block = 0;
2900 ptrdiff_t nbytes;
2901
2902 for (vector = (struct Lisp_Vector *) block->data;
2903 VECTOR_IN_BLOCK (vector, block); vector = next)
2904 {
2905 if (VECTOR_MARKED_P (vector))
2906 {
2907 VECTOR_UNMARK (vector);
2908 total_vectors++;
2909 nbytes = vector_nbytes (vector);
2910 total_vector_slots += nbytes / word_size;
2911 next = ADVANCE (vector, nbytes);
2912 }
2913 else
2914 {
2915 ptrdiff_t total_bytes;
2916
2917 cleanup_vector (vector);
2918 nbytes = vector_nbytes (vector);
2919 total_bytes = nbytes;
2920 next = ADVANCE (vector, nbytes);
2921
2922 /* While NEXT is not marked, try to coalesce with VECTOR,
2923 thus making VECTOR of the largest possible size. */
2924
2925 while (VECTOR_IN_BLOCK (next, block))
2926 {
2927 if (VECTOR_MARKED_P (next))
2928 break;
2929 cleanup_vector (next);
2930 nbytes = vector_nbytes (next);
2931 total_bytes += nbytes;
2932 next = ADVANCE (next, nbytes);
2933 }
2934
2935 eassert (total_bytes % roundup_size == 0);
2936
2937 if (vector == (struct Lisp_Vector *) block->data
2938 && !VECTOR_IN_BLOCK (next, block))
2939 /* This block should be freed because all of it's
2940 space was coalesced into the only free vector. */
2941 free_this_block = 1;
2942 else
2943 {
2944 size_t tmp;
2945 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2946 }
2947 }
2948 }
2949
2950 if (free_this_block)
2951 {
2952 *bprev = block->next;
2953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2954 mem_delete (mem_find (block->data));
2955 #endif
2956 xfree (block);
2957 }
2958 else
2959 bprev = &block->next;
2960 }
2961
2962 /* Sweep large vectors. */
2963
2964 for (lv = large_vectors; lv; lv = *lvprev)
2965 {
2966 vector = large_vector_vec (lv);
2967 if (VECTOR_MARKED_P (vector))
2968 {
2969 VECTOR_UNMARK (vector);
2970 total_vectors++;
2971 if (vector->header.size & PSEUDOVECTOR_FLAG)
2972 {
2973 /* All non-bool pseudovectors are small enough to be allocated
2974 from vector blocks. This code should be redesigned if some
2975 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2976 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2977 total_vector_slots += vector_nbytes (vector) / word_size;
2978 }
2979 else
2980 total_vector_slots
2981 += header_size / word_size + vector->header.size;
2982 lvprev = &lv->next;
2983 }
2984 else
2985 {
2986 *lvprev = lv->next;
2987 lisp_free (lv);
2988 }
2989 }
2990 }
2991
2992 /* Value is a pointer to a newly allocated Lisp_Vector structure
2993 with room for LEN Lisp_Objects. */
2994
2995 static struct Lisp_Vector *
2996 allocate_vectorlike (ptrdiff_t len)
2997 {
2998 struct Lisp_Vector *p;
2999
3000 MALLOC_BLOCK_INPUT;
3001
3002 if (len == 0)
3003 p = XVECTOR (zero_vector);
3004 else
3005 {
3006 size_t nbytes = header_size + len * word_size;
3007
3008 #ifdef DOUG_LEA_MALLOC
3009 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3010 because mapped region contents are not preserved in
3011 a dumped Emacs. */
3012 mallopt (M_MMAP_MAX, 0);
3013 #endif
3014
3015 if (nbytes <= VBLOCK_BYTES_MAX)
3016 p = allocate_vector_from_block (vroundup (nbytes));
3017 else
3018 {
3019 struct large_vector *lv
3020 = lisp_malloc ((large_vector_offset + header_size
3021 + len * word_size),
3022 MEM_TYPE_VECTORLIKE);
3023 lv->next = large_vectors;
3024 large_vectors = lv;
3025 p = large_vector_vec (lv);
3026 }
3027
3028 #ifdef DOUG_LEA_MALLOC
3029 /* Back to a reasonable maximum of mmap'ed areas. */
3030 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3031 #endif
3032
3033 consing_since_gc += nbytes;
3034 vector_cells_consed += len;
3035 }
3036
3037 MALLOC_UNBLOCK_INPUT;
3038
3039 return p;
3040 }
3041
3042
3043 /* Allocate a vector with LEN slots. */
3044
3045 struct Lisp_Vector *
3046 allocate_vector (EMACS_INT len)
3047 {
3048 struct Lisp_Vector *v;
3049 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3050
3051 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3052 memory_full (SIZE_MAX);
3053 v = allocate_vectorlike (len);
3054 v->header.size = len;
3055 return v;
3056 }
3057
3058
3059 /* Allocate other vector-like structures. */
3060
3061 struct Lisp_Vector *
3062 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3063 {
3064 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3065 int i;
3066
3067 /* Catch bogus values. */
3068 eassert (tag <= PVEC_FONT);
3069 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3070 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3071
3072 /* Only the first lisplen slots will be traced normally by the GC. */
3073 for (i = 0; i < lisplen; ++i)
3074 v->contents[i] = Qnil;
3075
3076 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3077 return v;
3078 }
3079
3080 struct buffer *
3081 allocate_buffer (void)
3082 {
3083 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3084
3085 BUFFER_PVEC_INIT (b);
3086 /* Put B on the chain of all buffers including killed ones. */
3087 b->next = all_buffers;
3088 all_buffers = b;
3089 /* Note that the rest fields of B are not initialized. */
3090 return b;
3091 }
3092
3093 struct Lisp_Hash_Table *
3094 allocate_hash_table (void)
3095 {
3096 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3097 }
3098
3099 struct window *
3100 allocate_window (void)
3101 {
3102 struct window *w;
3103
3104 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3105 /* Users assumes that non-Lisp data is zeroed. */
3106 memset (&w->current_matrix, 0,
3107 sizeof (*w) - offsetof (struct window, current_matrix));
3108 return w;
3109 }
3110
3111 struct terminal *
3112 allocate_terminal (void)
3113 {
3114 struct terminal *t;
3115
3116 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3117 /* Users assumes that non-Lisp data is zeroed. */
3118 memset (&t->next_terminal, 0,
3119 sizeof (*t) - offsetof (struct terminal, next_terminal));
3120 return t;
3121 }
3122
3123 struct frame *
3124 allocate_frame (void)
3125 {
3126 struct frame *f;
3127
3128 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3129 /* Users assumes that non-Lisp data is zeroed. */
3130 memset (&f->face_cache, 0,
3131 sizeof (*f) - offsetof (struct frame, face_cache));
3132 return f;
3133 }
3134
3135 struct Lisp_Process *
3136 allocate_process (void)
3137 {
3138 struct Lisp_Process *p;
3139
3140 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3141 /* Users assumes that non-Lisp data is zeroed. */
3142 memset (&p->pid, 0,
3143 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3144 return p;
3145 }
3146
3147 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3148 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3149 See also the function `vector'. */)
3150 (register Lisp_Object length, Lisp_Object init)
3151 {
3152 Lisp_Object vector;
3153 register ptrdiff_t sizei;
3154 register ptrdiff_t i;
3155 register struct Lisp_Vector *p;
3156
3157 CHECK_NATNUM (length);
3158
3159 p = allocate_vector (XFASTINT (length));
3160 sizei = XFASTINT (length);
3161 for (i = 0; i < sizei; i++)
3162 p->contents[i] = init;
3163
3164 XSETVECTOR (vector, p);
3165 return vector;
3166 }
3167
3168
3169 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3170 doc: /* Return a newly created vector with specified arguments as elements.
3171 Any number of arguments, even zero arguments, are allowed.
3172 usage: (vector &rest OBJECTS) */)
3173 (ptrdiff_t nargs, Lisp_Object *args)
3174 {
3175 ptrdiff_t i;
3176 register Lisp_Object val = make_uninit_vector (nargs);
3177 register struct Lisp_Vector *p = XVECTOR (val);
3178
3179 for (i = 0; i < nargs; i++)
3180 p->contents[i] = args[i];
3181 return val;
3182 }
3183
3184 void
3185 make_byte_code (struct Lisp_Vector *v)
3186 {
3187 /* Don't allow the global zero_vector to become a byte code object. */
3188 eassert(0 < v->header.size);
3189 if (v->header.size > 1 && STRINGP (v->contents[1])
3190 && STRING_MULTIBYTE (v->contents[1]))
3191 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3192 earlier because they produced a raw 8-bit string for byte-code
3193 and now such a byte-code string is loaded as multibyte while
3194 raw 8-bit characters converted to multibyte form. Thus, now we
3195 must convert them back to the original unibyte form. */
3196 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3197 XSETPVECTYPE (v, PVEC_COMPILED);
3198 }
3199
3200 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3201 doc: /* Create a byte-code object with specified arguments as elements.
3202 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3203 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3204 and (optional) INTERACTIVE-SPEC.
3205 The first four arguments are required; at most six have any
3206 significance.
3207 The ARGLIST can be either like the one of `lambda', in which case the arguments
3208 will be dynamically bound before executing the byte code, or it can be an
3209 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3210 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3211 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3212 argument to catch the left-over arguments. If such an integer is used, the
3213 arguments will not be dynamically bound but will be instead pushed on the
3214 stack before executing the byte-code.
3215 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3216 (ptrdiff_t nargs, Lisp_Object *args)
3217 {
3218 ptrdiff_t i;
3219 register Lisp_Object val = make_uninit_vector (nargs);
3220 register struct Lisp_Vector *p = XVECTOR (val);
3221
3222 /* We used to purecopy everything here, if purify-flag was set. This worked
3223 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3224 dangerous, since make-byte-code is used during execution to build
3225 closures, so any closure built during the preload phase would end up
3226 copied into pure space, including its free variables, which is sometimes
3227 just wasteful and other times plainly wrong (e.g. those free vars may want
3228 to be setcar'd). */
3229
3230 for (i = 0; i < nargs; i++)
3231 p->contents[i] = args[i];
3232 make_byte_code (p);
3233 XSETCOMPILED (val, p);
3234 return val;
3235 }
3236
3237
3238 \f
3239 /***********************************************************************
3240 Symbol Allocation
3241 ***********************************************************************/
3242
3243 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3244 of the required alignment if LSB tags are used. */
3245
3246 union aligned_Lisp_Symbol
3247 {
3248 struct Lisp_Symbol s;
3249 #if USE_LSB_TAG
3250 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3251 & -GCALIGNMENT];
3252 #endif
3253 };
3254
3255 /* Each symbol_block is just under 1020 bytes long, since malloc
3256 really allocates in units of powers of two and uses 4 bytes for its
3257 own overhead. */
3258
3259 #define SYMBOL_BLOCK_SIZE \
3260 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3261
3262 struct symbol_block
3263 {
3264 /* Place `symbols' first, to preserve alignment. */
3265 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3266 struct symbol_block *next;
3267 };
3268
3269 /* Current symbol block and index of first unused Lisp_Symbol
3270 structure in it. */
3271
3272 static struct symbol_block *symbol_block;
3273 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3274
3275 /* List of free symbols. */
3276
3277 static struct Lisp_Symbol *symbol_free_list;
3278
3279 static void
3280 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3281 {
3282 XSYMBOL (sym)->name = name;
3283 }
3284
3285 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3286 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3287 Its value is void, and its function definition and property list are nil. */)
3288 (Lisp_Object name)
3289 {
3290 register Lisp_Object val;
3291 register struct Lisp_Symbol *p;
3292
3293 CHECK_STRING (name);
3294
3295 MALLOC_BLOCK_INPUT;
3296
3297 if (symbol_free_list)
3298 {
3299 XSETSYMBOL (val, symbol_free_list);
3300 symbol_free_list = symbol_free_list->next;
3301 }
3302 else
3303 {
3304 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3305 {
3306 struct symbol_block *new
3307 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3308 new->next = symbol_block;
3309 symbol_block = new;
3310 symbol_block_index = 0;
3311 total_free_symbols += SYMBOL_BLOCK_SIZE;
3312 }
3313 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3314 symbol_block_index++;
3315 }
3316
3317 MALLOC_UNBLOCK_INPUT;
3318
3319 p = XSYMBOL (val);
3320 set_symbol_name (val, name);
3321 set_symbol_plist (val, Qnil);
3322 p->redirect = SYMBOL_PLAINVAL;
3323 SET_SYMBOL_VAL (p, Qunbound);
3324 set_symbol_function (val, Qnil);
3325 set_symbol_next (val, NULL);
3326 p->gcmarkbit = 0;
3327 p->interned = SYMBOL_UNINTERNED;
3328 p->constant = 0;
3329 p->declared_special = 0;
3330 consing_since_gc += sizeof (struct Lisp_Symbol);
3331 symbols_consed++;
3332 total_free_symbols--;
3333 return val;
3334 }
3335
3336
3337 \f
3338 /***********************************************************************
3339 Marker (Misc) Allocation
3340 ***********************************************************************/
3341
3342 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3343 the required alignment when LSB tags are used. */
3344
3345 union aligned_Lisp_Misc
3346 {
3347 union Lisp_Misc m;
3348 #if USE_LSB_TAG
3349 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3350 & -GCALIGNMENT];
3351 #endif
3352 };
3353
3354 /* Allocation of markers and other objects that share that structure.
3355 Works like allocation of conses. */
3356
3357 #define MARKER_BLOCK_SIZE \
3358 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3359
3360 struct marker_block
3361 {
3362 /* Place `markers' first, to preserve alignment. */
3363 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3364 struct marker_block *next;
3365 };
3366
3367 static struct marker_block *marker_block;
3368 static int marker_block_index = MARKER_BLOCK_SIZE;
3369
3370 static union Lisp_Misc *marker_free_list;
3371
3372 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3373
3374 static Lisp_Object
3375 allocate_misc (enum Lisp_Misc_Type type)
3376 {
3377 Lisp_Object val;
3378
3379 MALLOC_BLOCK_INPUT;
3380
3381 if (marker_free_list)
3382 {
3383 XSETMISC (val, marker_free_list);
3384 marker_free_list = marker_free_list->u_free.chain;
3385 }
3386 else
3387 {
3388 if (marker_block_index == MARKER_BLOCK_SIZE)
3389 {
3390 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3391 new->next = marker_block;
3392 marker_block = new;
3393 marker_block_index = 0;
3394 total_free_markers += MARKER_BLOCK_SIZE;
3395 }
3396 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3397 marker_block_index++;
3398 }
3399
3400 MALLOC_UNBLOCK_INPUT;
3401
3402 --total_free_markers;
3403 consing_since_gc += sizeof (union Lisp_Misc);
3404 misc_objects_consed++;
3405 XMISCANY (val)->type = type;
3406 XMISCANY (val)->gcmarkbit = 0;
3407 return val;
3408 }
3409
3410 /* Free a Lisp_Misc object. */
3411
3412 void
3413 free_misc (Lisp_Object misc)
3414 {
3415 XMISCANY (misc)->type = Lisp_Misc_Free;
3416 XMISC (misc)->u_free.chain = marker_free_list;
3417 marker_free_list = XMISC (misc);
3418 consing_since_gc -= sizeof (union Lisp_Misc);
3419 total_free_markers++;
3420 }
3421
3422 /* Verify properties of Lisp_Save_Value's representation
3423 that are assumed here and elsewhere. */
3424
3425 verify (SAVE_UNUSED == 0);
3426 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3427 >> SAVE_SLOT_BITS)
3428 == 0);
3429
3430 /* Return Lisp_Save_Value objects for the various combinations
3431 that callers need. */
3432
3433 Lisp_Object
3434 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3435 {
3436 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3437 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3438 p->save_type = SAVE_TYPE_INT_INT_INT;
3439 p->data[0].integer = a;
3440 p->data[1].integer = b;
3441 p->data[2].integer = c;
3442 return val;
3443 }
3444
3445 Lisp_Object
3446 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3447 Lisp_Object d)
3448 {
3449 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3450 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3451 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3452 p->data[0].object = a;
3453 p->data[1].object = b;
3454 p->data[2].object = c;
3455 p->data[3].object = d;
3456 return val;
3457 }
3458
3459 Lisp_Object
3460 make_save_ptr (void *a)
3461 {
3462 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3463 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3464 p->save_type = SAVE_POINTER;
3465 p->data[0].pointer = a;
3466 return val;
3467 }
3468
3469 Lisp_Object
3470 make_save_ptr_int (void *a, ptrdiff_t b)
3471 {
3472 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3473 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3474 p->save_type = SAVE_TYPE_PTR_INT;
3475 p->data[0].pointer = a;
3476 p->data[1].integer = b;
3477 return val;
3478 }
3479
3480 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3481 Lisp_Object
3482 make_save_ptr_ptr (void *a, void *b)
3483 {
3484 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3485 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3486 p->save_type = SAVE_TYPE_PTR_PTR;
3487 p->data[0].pointer = a;
3488 p->data[1].pointer = b;
3489 return val;
3490 }
3491 #endif
3492
3493 Lisp_Object
3494 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3495 {
3496 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3497 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3498 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3499 p->data[0].funcpointer = a;
3500 p->data[1].pointer = b;
3501 p->data[2].object = c;
3502 return val;
3503 }
3504
3505 /* Return a Lisp_Save_Value object that represents an array A
3506 of N Lisp objects. */
3507
3508 Lisp_Object
3509 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3510 {
3511 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3512 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3513 p->save_type = SAVE_TYPE_MEMORY;
3514 p->data[0].pointer = a;
3515 p->data[1].integer = n;
3516 return val;
3517 }
3518
3519 /* Free a Lisp_Save_Value object. Do not use this function
3520 if SAVE contains pointer other than returned by xmalloc. */
3521
3522 void
3523 free_save_value (Lisp_Object save)
3524 {
3525 xfree (XSAVE_POINTER (save, 0));
3526 free_misc (save);
3527 }
3528
3529 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3530
3531 Lisp_Object
3532 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3533 {
3534 register Lisp_Object overlay;
3535
3536 overlay = allocate_misc (Lisp_Misc_Overlay);
3537 OVERLAY_START (overlay) = start;
3538 OVERLAY_END (overlay) = end;
3539 set_overlay_plist (overlay, plist);
3540 XOVERLAY (overlay)->next = NULL;
3541 return overlay;
3542 }
3543
3544 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3545 doc: /* Return a newly allocated marker which does not point at any place. */)
3546 (void)
3547 {
3548 register Lisp_Object val;
3549 register struct Lisp_Marker *p;
3550
3551 val = allocate_misc (Lisp_Misc_Marker);
3552 p = XMARKER (val);
3553 p->buffer = 0;
3554 p->bytepos = 0;
3555 p->charpos = 0;
3556 p->next = NULL;
3557 p->insertion_type = 0;
3558 p->need_adjustment = 0;
3559 return val;
3560 }
3561
3562 /* Return a newly allocated marker which points into BUF
3563 at character position CHARPOS and byte position BYTEPOS. */
3564
3565 Lisp_Object
3566 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3567 {
3568 Lisp_Object obj;
3569 struct Lisp_Marker *m;
3570
3571 /* No dead buffers here. */
3572 eassert (BUFFER_LIVE_P (buf));
3573
3574 /* Every character is at least one byte. */
3575 eassert (charpos <= bytepos);
3576
3577 obj = allocate_misc (Lisp_Misc_Marker);
3578 m = XMARKER (obj);
3579 m->buffer = buf;
3580 m->charpos = charpos;
3581 m->bytepos = bytepos;
3582 m->insertion_type = 0;
3583 m->need_adjustment = 0;
3584 m->next = BUF_MARKERS (buf);
3585 BUF_MARKERS (buf) = m;
3586 return obj;
3587 }
3588
3589 /* Put MARKER back on the free list after using it temporarily. */
3590
3591 void
3592 free_marker (Lisp_Object marker)
3593 {
3594 unchain_marker (XMARKER (marker));
3595 free_misc (marker);
3596 }
3597
3598 \f
3599 /* Return a newly created vector or string with specified arguments as
3600 elements. If all the arguments are characters that can fit
3601 in a string of events, make a string; otherwise, make a vector.
3602
3603 Any number of arguments, even zero arguments, are allowed. */
3604
3605 Lisp_Object
3606 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3607 {
3608 ptrdiff_t i;
3609
3610 for (i = 0; i < nargs; i++)
3611 /* The things that fit in a string
3612 are characters that are in 0...127,
3613 after discarding the meta bit and all the bits above it. */
3614 if (!INTEGERP (args[i])
3615 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3616 return Fvector (nargs, args);
3617
3618 /* Since the loop exited, we know that all the things in it are
3619 characters, so we can make a string. */
3620 {
3621 Lisp_Object result;
3622
3623 result = Fmake_string (make_number (nargs), make_number (0));
3624 for (i = 0; i < nargs; i++)
3625 {
3626 SSET (result, i, XINT (args[i]));
3627 /* Move the meta bit to the right place for a string char. */
3628 if (XINT (args[i]) & CHAR_META)
3629 SSET (result, i, SREF (result, i) | 0x80);
3630 }
3631
3632 return result;
3633 }
3634 }
3635
3636
3637 \f
3638 /************************************************************************
3639 Memory Full Handling
3640 ************************************************************************/
3641
3642
3643 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3644 there may have been size_t overflow so that malloc was never
3645 called, or perhaps malloc was invoked successfully but the
3646 resulting pointer had problems fitting into a tagged EMACS_INT. In
3647 either case this counts as memory being full even though malloc did
3648 not fail. */
3649
3650 void
3651 memory_full (size_t nbytes)
3652 {
3653 /* Do not go into hysterics merely because a large request failed. */
3654 bool enough_free_memory = 0;
3655 if (SPARE_MEMORY < nbytes)
3656 {
3657 void *p;
3658
3659 MALLOC_BLOCK_INPUT;
3660 p = malloc (SPARE_MEMORY);
3661 if (p)
3662 {
3663 free (p);
3664 enough_free_memory = 1;
3665 }
3666 MALLOC_UNBLOCK_INPUT;
3667 }
3668
3669 if (! enough_free_memory)
3670 {
3671 int i;
3672
3673 Vmemory_full = Qt;
3674
3675 memory_full_cons_threshold = sizeof (struct cons_block);
3676
3677 /* The first time we get here, free the spare memory. */
3678 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3679 if (spare_memory[i])
3680 {
3681 if (i == 0)
3682 free (spare_memory[i]);
3683 else if (i >= 1 && i <= 4)
3684 lisp_align_free (spare_memory[i]);
3685 else
3686 lisp_free (spare_memory[i]);
3687 spare_memory[i] = 0;
3688 }
3689 }
3690
3691 /* This used to call error, but if we've run out of memory, we could
3692 get infinite recursion trying to build the string. */
3693 xsignal (Qnil, Vmemory_signal_data);
3694 }
3695
3696 /* If we released our reserve (due to running out of memory),
3697 and we have a fair amount free once again,
3698 try to set aside another reserve in case we run out once more.
3699
3700 This is called when a relocatable block is freed in ralloc.c,
3701 and also directly from this file, in case we're not using ralloc.c. */
3702
3703 void
3704 refill_memory_reserve (void)
3705 {
3706 #ifndef SYSTEM_MALLOC
3707 if (spare_memory[0] == 0)
3708 spare_memory[0] = malloc (SPARE_MEMORY);
3709 if (spare_memory[1] == 0)
3710 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3711 MEM_TYPE_SPARE);
3712 if (spare_memory[2] == 0)
3713 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3714 MEM_TYPE_SPARE);
3715 if (spare_memory[3] == 0)
3716 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3717 MEM_TYPE_SPARE);
3718 if (spare_memory[4] == 0)
3719 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3720 MEM_TYPE_SPARE);
3721 if (spare_memory[5] == 0)
3722 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3723 MEM_TYPE_SPARE);
3724 if (spare_memory[6] == 0)
3725 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3726 MEM_TYPE_SPARE);
3727 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3728 Vmemory_full = Qnil;
3729 #endif
3730 }
3731 \f
3732 /************************************************************************
3733 C Stack Marking
3734 ************************************************************************/
3735
3736 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3737
3738 /* Conservative C stack marking requires a method to identify possibly
3739 live Lisp objects given a pointer value. We do this by keeping
3740 track of blocks of Lisp data that are allocated in a red-black tree
3741 (see also the comment of mem_node which is the type of nodes in
3742 that tree). Function lisp_malloc adds information for an allocated
3743 block to the red-black tree with calls to mem_insert, and function
3744 lisp_free removes it with mem_delete. Functions live_string_p etc
3745 call mem_find to lookup information about a given pointer in the
3746 tree, and use that to determine if the pointer points to a Lisp
3747 object or not. */
3748
3749 /* Initialize this part of alloc.c. */
3750
3751 static void
3752 mem_init (void)
3753 {
3754 mem_z.left = mem_z.right = MEM_NIL;
3755 mem_z.parent = NULL;
3756 mem_z.color = MEM_BLACK;
3757 mem_z.start = mem_z.end = NULL;
3758 mem_root = MEM_NIL;
3759 }
3760
3761
3762 /* Value is a pointer to the mem_node containing START. Value is
3763 MEM_NIL if there is no node in the tree containing START. */
3764
3765 static struct mem_node *
3766 mem_find (void *start)
3767 {
3768 struct mem_node *p;
3769
3770 if (start < min_heap_address || start > max_heap_address)
3771 return MEM_NIL;
3772
3773 /* Make the search always successful to speed up the loop below. */
3774 mem_z.start = start;
3775 mem_z.end = (char *) start + 1;
3776
3777 p = mem_root;
3778 while (start < p->start || start >= p->end)
3779 p = start < p->start ? p->left : p->right;
3780 return p;
3781 }
3782
3783
3784 /* Insert a new node into the tree for a block of memory with start
3785 address START, end address END, and type TYPE. Value is a
3786 pointer to the node that was inserted. */
3787
3788 static struct mem_node *
3789 mem_insert (void *start, void *end, enum mem_type type)
3790 {
3791 struct mem_node *c, *parent, *x;
3792
3793 if (min_heap_address == NULL || start < min_heap_address)
3794 min_heap_address = start;
3795 if (max_heap_address == NULL || end > max_heap_address)
3796 max_heap_address = end;
3797
3798 /* See where in the tree a node for START belongs. In this
3799 particular application, it shouldn't happen that a node is already
3800 present. For debugging purposes, let's check that. */
3801 c = mem_root;
3802 parent = NULL;
3803
3804 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3805
3806 while (c != MEM_NIL)
3807 {
3808 if (start >= c->start && start < c->end)
3809 emacs_abort ();
3810 parent = c;
3811 c = start < c->start ? c->left : c->right;
3812 }
3813
3814 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3815
3816 while (c != MEM_NIL)
3817 {
3818 parent = c;
3819 c = start < c->start ? c->left : c->right;
3820 }
3821
3822 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3823
3824 /* Create a new node. */
3825 #ifdef GC_MALLOC_CHECK
3826 x = malloc (sizeof *x);
3827 if (x == NULL)
3828 emacs_abort ();
3829 #else
3830 x = xmalloc (sizeof *x);
3831 #endif
3832 x->start = start;
3833 x->end = end;
3834 x->type = type;
3835 x->parent = parent;
3836 x->left = x->right = MEM_NIL;
3837 x->color = MEM_RED;
3838
3839 /* Insert it as child of PARENT or install it as root. */
3840 if (parent)
3841 {
3842 if (start < parent->start)
3843 parent->left = x;
3844 else
3845 parent->right = x;
3846 }
3847 else
3848 mem_root = x;
3849
3850 /* Re-establish red-black tree properties. */
3851 mem_insert_fixup (x);
3852
3853 return x;
3854 }
3855
3856
3857 /* Re-establish the red-black properties of the tree, and thereby
3858 balance the tree, after node X has been inserted; X is always red. */
3859
3860 static void
3861 mem_insert_fixup (struct mem_node *x)
3862 {
3863 while (x != mem_root && x->parent->color == MEM_RED)
3864 {
3865 /* X is red and its parent is red. This is a violation of
3866 red-black tree property #3. */
3867
3868 if (x->parent == x->parent->parent->left)
3869 {
3870 /* We're on the left side of our grandparent, and Y is our
3871 "uncle". */
3872 struct mem_node *y = x->parent->parent->right;
3873
3874 if (y->color == MEM_RED)
3875 {
3876 /* Uncle and parent are red but should be black because
3877 X is red. Change the colors accordingly and proceed
3878 with the grandparent. */
3879 x->parent->color = MEM_BLACK;
3880 y->color = MEM_BLACK;
3881 x->parent->parent->color = MEM_RED;
3882 x = x->parent->parent;
3883 }
3884 else
3885 {
3886 /* Parent and uncle have different colors; parent is
3887 red, uncle is black. */
3888 if (x == x->parent->right)
3889 {
3890 x = x->parent;
3891 mem_rotate_left (x);
3892 }
3893
3894 x->parent->color = MEM_BLACK;
3895 x->parent->parent->color = MEM_RED;
3896 mem_rotate_right (x->parent->parent);
3897 }
3898 }
3899 else
3900 {
3901 /* This is the symmetrical case of above. */
3902 struct mem_node *y = x->parent->parent->left;
3903
3904 if (y->color == MEM_RED)
3905 {
3906 x->parent->color = MEM_BLACK;
3907 y->color = MEM_BLACK;
3908 x->parent->parent->color = MEM_RED;
3909 x = x->parent->parent;
3910 }
3911 else
3912 {
3913 if (x == x->parent->left)
3914 {
3915 x = x->parent;
3916 mem_rotate_right (x);
3917 }
3918
3919 x->parent->color = MEM_BLACK;
3920 x->parent->parent->color = MEM_RED;
3921 mem_rotate_left (x->parent->parent);
3922 }
3923 }
3924 }
3925
3926 /* The root may have been changed to red due to the algorithm. Set
3927 it to black so that property #5 is satisfied. */
3928 mem_root->color = MEM_BLACK;
3929 }
3930
3931
3932 /* (x) (y)
3933 / \ / \
3934 a (y) ===> (x) c
3935 / \ / \
3936 b c a b */
3937
3938 static void
3939 mem_rotate_left (struct mem_node *x)
3940 {
3941 struct mem_node *y;
3942
3943 /* Turn y's left sub-tree into x's right sub-tree. */
3944 y = x->right;
3945 x->right = y->left;
3946 if (y->left != MEM_NIL)
3947 y->left->parent = x;
3948
3949 /* Y's parent was x's parent. */
3950 if (y != MEM_NIL)
3951 y->parent = x->parent;
3952
3953 /* Get the parent to point to y instead of x. */
3954 if (x->parent)
3955 {
3956 if (x == x->parent->left)
3957 x->parent->left = y;
3958 else
3959 x->parent->right = y;
3960 }
3961 else
3962 mem_root = y;
3963
3964 /* Put x on y's left. */
3965 y->left = x;
3966 if (x != MEM_NIL)
3967 x->parent = y;
3968 }
3969
3970
3971 /* (x) (Y)
3972 / \ / \
3973 (y) c ===> a (x)
3974 / \ / \
3975 a b b c */
3976
3977 static void
3978 mem_rotate_right (struct mem_node *x)
3979 {
3980 struct mem_node *y = x->left;
3981
3982 x->left = y->right;
3983 if (y->right != MEM_NIL)
3984 y->right->parent = x;
3985
3986 if (y != MEM_NIL)
3987 y->parent = x->parent;
3988 if (x->parent)
3989 {
3990 if (x == x->parent->right)
3991 x->parent->right = y;
3992 else
3993 x->parent->left = y;
3994 }
3995 else
3996 mem_root = y;
3997
3998 y->right = x;
3999 if (x != MEM_NIL)
4000 x->parent = y;
4001 }
4002
4003
4004 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4005
4006 static void
4007 mem_delete (struct mem_node *z)
4008 {
4009 struct mem_node *x, *y;
4010
4011 if (!z || z == MEM_NIL)
4012 return;
4013
4014 if (z->left == MEM_NIL || z->right == MEM_NIL)
4015 y = z;
4016 else
4017 {
4018 y = z->right;
4019 while (y->left != MEM_NIL)
4020 y = y->left;
4021 }
4022
4023 if (y->left != MEM_NIL)
4024 x = y->left;
4025 else
4026 x = y->right;
4027
4028 x->parent = y->parent;
4029 if (y->parent)
4030 {
4031 if (y == y->parent->left)
4032 y->parent->left = x;
4033 else
4034 y->parent->right = x;
4035 }
4036 else
4037 mem_root = x;
4038
4039 if (y != z)
4040 {
4041 z->start = y->start;
4042 z->end = y->end;
4043 z->type = y->type;
4044 }
4045
4046 if (y->color == MEM_BLACK)
4047 mem_delete_fixup (x);
4048
4049 #ifdef GC_MALLOC_CHECK
4050 free (y);
4051 #else
4052 xfree (y);
4053 #endif
4054 }
4055
4056
4057 /* Re-establish the red-black properties of the tree, after a
4058 deletion. */
4059
4060 static void
4061 mem_delete_fixup (struct mem_node *x)
4062 {
4063 while (x != mem_root && x->color == MEM_BLACK)
4064 {
4065 if (x == x->parent->left)
4066 {
4067 struct mem_node *w = x->parent->right;
4068
4069 if (w->color == MEM_RED)
4070 {
4071 w->color = MEM_BLACK;
4072 x->parent->color = MEM_RED;
4073 mem_rotate_left (x->parent);
4074 w = x->parent->right;
4075 }
4076
4077 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4078 {
4079 w->color = MEM_RED;
4080 x = x->parent;
4081 }
4082 else
4083 {
4084 if (w->right->color == MEM_BLACK)
4085 {
4086 w->left->color = MEM_BLACK;
4087 w->color = MEM_RED;
4088 mem_rotate_right (w);
4089 w = x->parent->right;
4090 }
4091 w->color = x->parent->color;
4092 x->parent->color = MEM_BLACK;
4093 w->right->color = MEM_BLACK;
4094 mem_rotate_left (x->parent);
4095 x = mem_root;
4096 }
4097 }
4098 else
4099 {
4100 struct mem_node *w = x->parent->left;
4101
4102 if (w->color == MEM_RED)
4103 {
4104 w->color = MEM_BLACK;
4105 x->parent->color = MEM_RED;
4106 mem_rotate_right (x->parent);
4107 w = x->parent->left;
4108 }
4109
4110 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4111 {
4112 w->color = MEM_RED;
4113 x = x->parent;
4114 }
4115 else
4116 {
4117 if (w->left->color == MEM_BLACK)
4118 {
4119 w->right->color = MEM_BLACK;
4120 w->color = MEM_RED;
4121 mem_rotate_left (w);
4122 w = x->parent->left;
4123 }
4124
4125 w->color = x->parent->color;
4126 x->parent->color = MEM_BLACK;
4127 w->left->color = MEM_BLACK;
4128 mem_rotate_right (x->parent);
4129 x = mem_root;
4130 }
4131 }
4132 }
4133
4134 x->color = MEM_BLACK;
4135 }
4136
4137
4138 /* Value is non-zero if P is a pointer to a live Lisp string on
4139 the heap. M is a pointer to the mem_block for P. */
4140
4141 static bool
4142 live_string_p (struct mem_node *m, void *p)
4143 {
4144 if (m->type == MEM_TYPE_STRING)
4145 {
4146 struct string_block *b = m->start;
4147 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4148
4149 /* P must point to the start of a Lisp_String structure, and it
4150 must not be on the free-list. */
4151 return (offset >= 0
4152 && offset % sizeof b->strings[0] == 0
4153 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4154 && ((struct Lisp_String *) p)->data != NULL);
4155 }
4156 else
4157 return 0;
4158 }
4159
4160
4161 /* Value is non-zero if P is a pointer to a live Lisp cons on
4162 the heap. M is a pointer to the mem_block for P. */
4163
4164 static bool
4165 live_cons_p (struct mem_node *m, void *p)
4166 {
4167 if (m->type == MEM_TYPE_CONS)
4168 {
4169 struct cons_block *b = m->start;
4170 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4171
4172 /* P must point to the start of a Lisp_Cons, not be
4173 one of the unused cells in the current cons block,
4174 and not be on the free-list. */
4175 return (offset >= 0
4176 && offset % sizeof b->conses[0] == 0
4177 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4178 && (b != cons_block
4179 || offset / sizeof b->conses[0] < cons_block_index)
4180 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4181 }
4182 else
4183 return 0;
4184 }
4185
4186
4187 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4188 the heap. M is a pointer to the mem_block for P. */
4189
4190 static bool
4191 live_symbol_p (struct mem_node *m, void *p)
4192 {
4193 if (m->type == MEM_TYPE_SYMBOL)
4194 {
4195 struct symbol_block *b = m->start;
4196 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4197
4198 /* P must point to the start of a Lisp_Symbol, not be
4199 one of the unused cells in the current symbol block,
4200 and not be on the free-list. */
4201 return (offset >= 0
4202 && offset % sizeof b->symbols[0] == 0
4203 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4204 && (b != symbol_block
4205 || offset / sizeof b->symbols[0] < symbol_block_index)
4206 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4207 }
4208 else
4209 return 0;
4210 }
4211
4212
4213 /* Value is non-zero if P is a pointer to a live Lisp float on
4214 the heap. M is a pointer to the mem_block for P. */
4215
4216 static bool
4217 live_float_p (struct mem_node *m, void *p)
4218 {
4219 if (m->type == MEM_TYPE_FLOAT)
4220 {
4221 struct float_block *b = m->start;
4222 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4223
4224 /* P must point to the start of a Lisp_Float and not be
4225 one of the unused cells in the current float block. */
4226 return (offset >= 0
4227 && offset % sizeof b->floats[0] == 0
4228 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4229 && (b != float_block
4230 || offset / sizeof b->floats[0] < float_block_index));
4231 }
4232 else
4233 return 0;
4234 }
4235
4236
4237 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4238 the heap. M is a pointer to the mem_block for P. */
4239
4240 static bool
4241 live_misc_p (struct mem_node *m, void *p)
4242 {
4243 if (m->type == MEM_TYPE_MISC)
4244 {
4245 struct marker_block *b = m->start;
4246 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4247
4248 /* P must point to the start of a Lisp_Misc, not be
4249 one of the unused cells in the current misc block,
4250 and not be on the free-list. */
4251 return (offset >= 0
4252 && offset % sizeof b->markers[0] == 0
4253 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4254 && (b != marker_block
4255 || offset / sizeof b->markers[0] < marker_block_index)
4256 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4257 }
4258 else
4259 return 0;
4260 }
4261
4262
4263 /* Value is non-zero if P is a pointer to a live vector-like object.
4264 M is a pointer to the mem_block for P. */
4265
4266 static bool
4267 live_vector_p (struct mem_node *m, void *p)
4268 {
4269 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4270 {
4271 /* This memory node corresponds to a vector block. */
4272 struct vector_block *block = m->start;
4273 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4274
4275 /* P is in the block's allocation range. Scan the block
4276 up to P and see whether P points to the start of some
4277 vector which is not on a free list. FIXME: check whether
4278 some allocation patterns (probably a lot of short vectors)
4279 may cause a substantial overhead of this loop. */
4280 while (VECTOR_IN_BLOCK (vector, block)
4281 && vector <= (struct Lisp_Vector *) p)
4282 {
4283 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4284 return 1;
4285 else
4286 vector = ADVANCE (vector, vector_nbytes (vector));
4287 }
4288 }
4289 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4290 /* This memory node corresponds to a large vector. */
4291 return 1;
4292 return 0;
4293 }
4294
4295
4296 /* Value is non-zero if P is a pointer to a live buffer. M is a
4297 pointer to the mem_block for P. */
4298
4299 static bool
4300 live_buffer_p (struct mem_node *m, void *p)
4301 {
4302 /* P must point to the start of the block, and the buffer
4303 must not have been killed. */
4304 return (m->type == MEM_TYPE_BUFFER
4305 && p == m->start
4306 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4307 }
4308
4309 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4310
4311 #if GC_MARK_STACK
4312
4313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4314
4315 /* Currently not used, but may be called from gdb. */
4316
4317 void dump_zombies (void) EXTERNALLY_VISIBLE;
4318
4319 /* Array of objects that are kept alive because the C stack contains
4320 a pattern that looks like a reference to them. */
4321
4322 #define MAX_ZOMBIES 10
4323 static Lisp_Object zombies[MAX_ZOMBIES];
4324
4325 /* Number of zombie objects. */
4326
4327 static EMACS_INT nzombies;
4328
4329 /* Number of garbage collections. */
4330
4331 static EMACS_INT ngcs;
4332
4333 /* Average percentage of zombies per collection. */
4334
4335 static double avg_zombies;
4336
4337 /* Max. number of live and zombie objects. */
4338
4339 static EMACS_INT max_live, max_zombies;
4340
4341 /* Average number of live objects per GC. */
4342
4343 static double avg_live;
4344
4345 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4346 doc: /* Show information about live and zombie objects. */)
4347 (void)
4348 {
4349 Lisp_Object args[8], zombie_list = Qnil;
4350 EMACS_INT i;
4351 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4352 zombie_list = Fcons (zombies[i], zombie_list);
4353 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4354 args[1] = make_number (ngcs);
4355 args[2] = make_float (avg_live);
4356 args[3] = make_float (avg_zombies);
4357 args[4] = make_float (avg_zombies / avg_live / 100);
4358 args[5] = make_number (max_live);
4359 args[6] = make_number (max_zombies);
4360 args[7] = zombie_list;
4361 return Fmessage (8, args);
4362 }
4363
4364 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4365
4366
4367 /* Mark OBJ if we can prove it's a Lisp_Object. */
4368
4369 static void
4370 mark_maybe_object (Lisp_Object obj)
4371 {
4372 void *po;
4373 struct mem_node *m;
4374
4375 #if USE_VALGRIND
4376 if (valgrind_p)
4377 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4378 #endif
4379
4380 if (INTEGERP (obj))
4381 return;
4382
4383 po = (void *) XPNTR (obj);
4384 m = mem_find (po);
4385
4386 if (m != MEM_NIL)
4387 {
4388 bool mark_p = 0;
4389
4390 switch (XTYPE (obj))
4391 {
4392 case Lisp_String:
4393 mark_p = (live_string_p (m, po)
4394 && !STRING_MARKED_P ((struct Lisp_String *) po));
4395 break;
4396
4397 case Lisp_Cons:
4398 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4399 break;
4400
4401 case Lisp_Symbol:
4402 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4403 break;
4404
4405 case Lisp_Float:
4406 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4407 break;
4408
4409 case Lisp_Vectorlike:
4410 /* Note: can't check BUFFERP before we know it's a
4411 buffer because checking that dereferences the pointer
4412 PO which might point anywhere. */
4413 if (live_vector_p (m, po))
4414 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4415 else if (live_buffer_p (m, po))
4416 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4417 break;
4418
4419 case Lisp_Misc:
4420 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4421 break;
4422
4423 default:
4424 break;
4425 }
4426
4427 if (mark_p)
4428 {
4429 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4430 if (nzombies < MAX_ZOMBIES)
4431 zombies[nzombies] = obj;
4432 ++nzombies;
4433 #endif
4434 mark_object (obj);
4435 }
4436 }
4437 }
4438
4439
4440 /* If P points to Lisp data, mark that as live if it isn't already
4441 marked. */
4442
4443 static void
4444 mark_maybe_pointer (void *p)
4445 {
4446 struct mem_node *m;
4447
4448 #if USE_VALGRIND
4449 if (valgrind_p)
4450 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4451 #endif
4452
4453 /* Quickly rule out some values which can't point to Lisp data.
4454 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4455 Otherwise, assume that Lisp data is aligned on even addresses. */
4456 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4457 return;
4458
4459 m = mem_find (p);
4460 if (m != MEM_NIL)
4461 {
4462 Lisp_Object obj = Qnil;
4463
4464 switch (m->type)
4465 {
4466 case MEM_TYPE_NON_LISP:
4467 case MEM_TYPE_SPARE:
4468 /* Nothing to do; not a pointer to Lisp memory. */
4469 break;
4470
4471 case MEM_TYPE_BUFFER:
4472 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4473 XSETVECTOR (obj, p);
4474 break;
4475
4476 case MEM_TYPE_CONS:
4477 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4478 XSETCONS (obj, p);
4479 break;
4480
4481 case MEM_TYPE_STRING:
4482 if (live_string_p (m, p)
4483 && !STRING_MARKED_P ((struct Lisp_String *) p))
4484 XSETSTRING (obj, p);
4485 break;
4486
4487 case MEM_TYPE_MISC:
4488 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4489 XSETMISC (obj, p);
4490 break;
4491
4492 case MEM_TYPE_SYMBOL:
4493 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4494 XSETSYMBOL (obj, p);
4495 break;
4496
4497 case MEM_TYPE_FLOAT:
4498 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4499 XSETFLOAT (obj, p);
4500 break;
4501
4502 case MEM_TYPE_VECTORLIKE:
4503 case MEM_TYPE_VECTOR_BLOCK:
4504 if (live_vector_p (m, p))
4505 {
4506 Lisp_Object tem;
4507 XSETVECTOR (tem, p);
4508 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4509 obj = tem;
4510 }
4511 break;
4512
4513 default:
4514 emacs_abort ();
4515 }
4516
4517 if (!NILP (obj))
4518 mark_object (obj);
4519 }
4520 }
4521
4522
4523 /* Alignment of pointer values. Use alignof, as it sometimes returns
4524 a smaller alignment than GCC's __alignof__ and mark_memory might
4525 miss objects if __alignof__ were used. */
4526 #define GC_POINTER_ALIGNMENT alignof (void *)
4527
4528 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4529 not suffice, which is the typical case. A host where a Lisp_Object is
4530 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4531 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4532 suffice to widen it to to a Lisp_Object and check it that way. */
4533 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4534 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4535 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4536 nor mark_maybe_object can follow the pointers. This should not occur on
4537 any practical porting target. */
4538 # error "MSB type bits straddle pointer-word boundaries"
4539 # endif
4540 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4541 pointer words that hold pointers ORed with type bits. */
4542 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4543 #else
4544 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4545 words that hold unmodified pointers. */
4546 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4547 #endif
4548
4549 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4550 or END+OFFSET..START. */
4551
4552 static void
4553 mark_memory (void *start, void *end)
4554 #if defined (__clang__) && defined (__has_feature)
4555 #if __has_feature(address_sanitizer)
4556 /* Do not allow -faddress-sanitizer to check this function, since it
4557 crosses the function stack boundary, and thus would yield many
4558 false positives. */
4559 __attribute__((no_address_safety_analysis))
4560 #endif
4561 #endif
4562 {
4563 void **pp;
4564 int i;
4565
4566 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4567 nzombies = 0;
4568 #endif
4569
4570 /* Make START the pointer to the start of the memory region,
4571 if it isn't already. */
4572 if (end < start)
4573 {
4574 void *tem = start;
4575 start = end;
4576 end = tem;
4577 }
4578
4579 /* Mark Lisp data pointed to. This is necessary because, in some
4580 situations, the C compiler optimizes Lisp objects away, so that
4581 only a pointer to them remains. Example:
4582
4583 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4584 ()
4585 {
4586 Lisp_Object obj = build_string ("test");
4587 struct Lisp_String *s = XSTRING (obj);
4588 Fgarbage_collect ();
4589 fprintf (stderr, "test `%s'\n", s->data);
4590 return Qnil;
4591 }
4592
4593 Here, `obj' isn't really used, and the compiler optimizes it
4594 away. The only reference to the life string is through the
4595 pointer `s'. */
4596
4597 for (pp = start; (void *) pp < end; pp++)
4598 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4599 {
4600 void *p = *(void **) ((char *) pp + i);
4601 mark_maybe_pointer (p);
4602 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4603 mark_maybe_object (XIL ((intptr_t) p));
4604 }
4605 }
4606
4607 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4608
4609 static bool setjmp_tested_p;
4610 static int longjmps_done;
4611
4612 #define SETJMP_WILL_LIKELY_WORK "\
4613 \n\
4614 Emacs garbage collector has been changed to use conservative stack\n\
4615 marking. Emacs has determined that the method it uses to do the\n\
4616 marking will likely work on your system, but this isn't sure.\n\
4617 \n\
4618 If you are a system-programmer, or can get the help of a local wizard\n\
4619 who is, please take a look at the function mark_stack in alloc.c, and\n\
4620 verify that the methods used are appropriate for your system.\n\
4621 \n\
4622 Please mail the result to <emacs-devel@gnu.org>.\n\
4623 "
4624
4625 #define SETJMP_WILL_NOT_WORK "\
4626 \n\
4627 Emacs garbage collector has been changed to use conservative stack\n\
4628 marking. Emacs has determined that the default method it uses to do the\n\
4629 marking will not work on your system. We will need a system-dependent\n\
4630 solution for your system.\n\
4631 \n\
4632 Please take a look at the function mark_stack in alloc.c, and\n\
4633 try to find a way to make it work on your system.\n\
4634 \n\
4635 Note that you may get false negatives, depending on the compiler.\n\
4636 In particular, you need to use -O with GCC for this test.\n\
4637 \n\
4638 Please mail the result to <emacs-devel@gnu.org>.\n\
4639 "
4640
4641
4642 /* Perform a quick check if it looks like setjmp saves registers in a
4643 jmp_buf. Print a message to stderr saying so. When this test
4644 succeeds, this is _not_ a proof that setjmp is sufficient for
4645 conservative stack marking. Only the sources or a disassembly
4646 can prove that. */
4647
4648 static void
4649 test_setjmp (void)
4650 {
4651 char buf[10];
4652 register int x;
4653 sys_jmp_buf jbuf;
4654
4655 /* Arrange for X to be put in a register. */
4656 sprintf (buf, "1");
4657 x = strlen (buf);
4658 x = 2 * x - 1;
4659
4660 sys_setjmp (jbuf);
4661 if (longjmps_done == 1)
4662 {
4663 /* Came here after the longjmp at the end of the function.
4664
4665 If x == 1, the longjmp has restored the register to its
4666 value before the setjmp, and we can hope that setjmp
4667 saves all such registers in the jmp_buf, although that
4668 isn't sure.
4669
4670 For other values of X, either something really strange is
4671 taking place, or the setjmp just didn't save the register. */
4672
4673 if (x == 1)
4674 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4675 else
4676 {
4677 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4678 exit (1);
4679 }
4680 }
4681
4682 ++longjmps_done;
4683 x = 2;
4684 if (longjmps_done == 1)
4685 sys_longjmp (jbuf, 1);
4686 }
4687
4688 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4689
4690
4691 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4692
4693 /* Abort if anything GCPRO'd doesn't survive the GC. */
4694
4695 static void
4696 check_gcpros (void)
4697 {
4698 struct gcpro *p;
4699 ptrdiff_t i;
4700
4701 for (p = gcprolist; p; p = p->next)
4702 for (i = 0; i < p->nvars; ++i)
4703 if (!survives_gc_p (p->var[i]))
4704 /* FIXME: It's not necessarily a bug. It might just be that the
4705 GCPRO is unnecessary or should release the object sooner. */
4706 emacs_abort ();
4707 }
4708
4709 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4710
4711 void
4712 dump_zombies (void)
4713 {
4714 int i;
4715
4716 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4717 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4718 {
4719 fprintf (stderr, " %d = ", i);
4720 debug_print (zombies[i]);
4721 }
4722 }
4723
4724 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4725
4726
4727 /* Mark live Lisp objects on the C stack.
4728
4729 There are several system-dependent problems to consider when
4730 porting this to new architectures:
4731
4732 Processor Registers
4733
4734 We have to mark Lisp objects in CPU registers that can hold local
4735 variables or are used to pass parameters.
4736
4737 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4738 something that either saves relevant registers on the stack, or
4739 calls mark_maybe_object passing it each register's contents.
4740
4741 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4742 implementation assumes that calling setjmp saves registers we need
4743 to see in a jmp_buf which itself lies on the stack. This doesn't
4744 have to be true! It must be verified for each system, possibly
4745 by taking a look at the source code of setjmp.
4746
4747 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4748 can use it as a machine independent method to store all registers
4749 to the stack. In this case the macros described in the previous
4750 two paragraphs are not used.
4751
4752 Stack Layout
4753
4754 Architectures differ in the way their processor stack is organized.
4755 For example, the stack might look like this
4756
4757 +----------------+
4758 | Lisp_Object | size = 4
4759 +----------------+
4760 | something else | size = 2
4761 +----------------+
4762 | Lisp_Object | size = 4
4763 +----------------+
4764 | ... |
4765
4766 In such a case, not every Lisp_Object will be aligned equally. To
4767 find all Lisp_Object on the stack it won't be sufficient to walk
4768 the stack in steps of 4 bytes. Instead, two passes will be
4769 necessary, one starting at the start of the stack, and a second
4770 pass starting at the start of the stack + 2. Likewise, if the
4771 minimal alignment of Lisp_Objects on the stack is 1, four passes
4772 would be necessary, each one starting with one byte more offset
4773 from the stack start. */
4774
4775 static void
4776 mark_stack (void)
4777 {
4778 void *end;
4779
4780 #ifdef HAVE___BUILTIN_UNWIND_INIT
4781 /* Force callee-saved registers and register windows onto the stack.
4782 This is the preferred method if available, obviating the need for
4783 machine dependent methods. */
4784 __builtin_unwind_init ();
4785 end = &end;
4786 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4787 #ifndef GC_SAVE_REGISTERS_ON_STACK
4788 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4789 union aligned_jmpbuf {
4790 Lisp_Object o;
4791 sys_jmp_buf j;
4792 } j;
4793 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4794 #endif
4795 /* This trick flushes the register windows so that all the state of
4796 the process is contained in the stack. */
4797 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4798 needed on ia64 too. See mach_dep.c, where it also says inline
4799 assembler doesn't work with relevant proprietary compilers. */
4800 #ifdef __sparc__
4801 #if defined (__sparc64__) && defined (__FreeBSD__)
4802 /* FreeBSD does not have a ta 3 handler. */
4803 asm ("flushw");
4804 #else
4805 asm ("ta 3");
4806 #endif
4807 #endif
4808
4809 /* Save registers that we need to see on the stack. We need to see
4810 registers used to hold register variables and registers used to
4811 pass parameters. */
4812 #ifdef GC_SAVE_REGISTERS_ON_STACK
4813 GC_SAVE_REGISTERS_ON_STACK (end);
4814 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4815
4816 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4817 setjmp will definitely work, test it
4818 and print a message with the result
4819 of the test. */
4820 if (!setjmp_tested_p)
4821 {
4822 setjmp_tested_p = 1;
4823 test_setjmp ();
4824 }
4825 #endif /* GC_SETJMP_WORKS */
4826
4827 sys_setjmp (j.j);
4828 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4829 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4830 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4831
4832 /* This assumes that the stack is a contiguous region in memory. If
4833 that's not the case, something has to be done here to iterate
4834 over the stack segments. */
4835 mark_memory (stack_base, end);
4836
4837 /* Allow for marking a secondary stack, like the register stack on the
4838 ia64. */
4839 #ifdef GC_MARK_SECONDARY_STACK
4840 GC_MARK_SECONDARY_STACK ();
4841 #endif
4842
4843 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4844 check_gcpros ();
4845 #endif
4846 }
4847
4848 #else /* GC_MARK_STACK == 0 */
4849
4850 #define mark_maybe_object(obj) emacs_abort ()
4851
4852 #endif /* GC_MARK_STACK != 0 */
4853
4854
4855 /* Determine whether it is safe to access memory at address P. */
4856 static int
4857 valid_pointer_p (void *p)
4858 {
4859 #ifdef WINDOWSNT
4860 return w32_valid_pointer_p (p, 16);
4861 #else
4862 int fd[2];
4863
4864 /* Obviously, we cannot just access it (we would SEGV trying), so we
4865 trick the o/s to tell us whether p is a valid pointer.
4866 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4867 not validate p in that case. */
4868
4869 if (emacs_pipe (fd) == 0)
4870 {
4871 bool valid = emacs_write (fd[1], p, 16) == 16;
4872 emacs_close (fd[1]);
4873 emacs_close (fd[0]);
4874 return valid;
4875 }
4876
4877 return -1;
4878 #endif
4879 }
4880
4881 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4882 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4883 cannot validate OBJ. This function can be quite slow, so its primary
4884 use is the manual debugging. The only exception is print_object, where
4885 we use it to check whether the memory referenced by the pointer of
4886 Lisp_Save_Value object contains valid objects. */
4887
4888 int
4889 valid_lisp_object_p (Lisp_Object obj)
4890 {
4891 void *p;
4892 #if GC_MARK_STACK
4893 struct mem_node *m;
4894 #endif
4895
4896 if (INTEGERP (obj))
4897 return 1;
4898
4899 p = (void *) XPNTR (obj);
4900 if (PURE_POINTER_P (p))
4901 return 1;
4902
4903 if (p == &buffer_defaults || p == &buffer_local_symbols)
4904 return 2;
4905
4906 #if !GC_MARK_STACK
4907 return valid_pointer_p (p);
4908 #else
4909
4910 m = mem_find (p);
4911
4912 if (m == MEM_NIL)
4913 {
4914 int valid = valid_pointer_p (p);
4915 if (valid <= 0)
4916 return valid;
4917
4918 if (SUBRP (obj))
4919 return 1;
4920
4921 return 0;
4922 }
4923
4924 switch (m->type)
4925 {
4926 case MEM_TYPE_NON_LISP:
4927 case MEM_TYPE_SPARE:
4928 return 0;
4929
4930 case MEM_TYPE_BUFFER:
4931 return live_buffer_p (m, p) ? 1 : 2;
4932
4933 case MEM_TYPE_CONS:
4934 return live_cons_p (m, p);
4935
4936 case MEM_TYPE_STRING:
4937 return live_string_p (m, p);
4938
4939 case MEM_TYPE_MISC:
4940 return live_misc_p (m, p);
4941
4942 case MEM_TYPE_SYMBOL:
4943 return live_symbol_p (m, p);
4944
4945 case MEM_TYPE_FLOAT:
4946 return live_float_p (m, p);
4947
4948 case MEM_TYPE_VECTORLIKE:
4949 case MEM_TYPE_VECTOR_BLOCK:
4950 return live_vector_p (m, p);
4951
4952 default:
4953 break;
4954 }
4955
4956 return 0;
4957 #endif
4958 }
4959
4960
4961
4962 \f
4963 /***********************************************************************
4964 Pure Storage Management
4965 ***********************************************************************/
4966
4967 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4968 pointer to it. TYPE is the Lisp type for which the memory is
4969 allocated. TYPE < 0 means it's not used for a Lisp object. */
4970
4971 static void *
4972 pure_alloc (size_t size, int type)
4973 {
4974 void *result;
4975 #if USE_LSB_TAG
4976 size_t alignment = GCALIGNMENT;
4977 #else
4978 size_t alignment = alignof (EMACS_INT);
4979
4980 /* Give Lisp_Floats an extra alignment. */
4981 if (type == Lisp_Float)
4982 alignment = alignof (struct Lisp_Float);
4983 #endif
4984
4985 again:
4986 if (type >= 0)
4987 {
4988 /* Allocate space for a Lisp object from the beginning of the free
4989 space with taking account of alignment. */
4990 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4991 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4992 }
4993 else
4994 {
4995 /* Allocate space for a non-Lisp object from the end of the free
4996 space. */
4997 pure_bytes_used_non_lisp += size;
4998 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4999 }
5000 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5001
5002 if (pure_bytes_used <= pure_size)
5003 return result;
5004
5005 /* Don't allocate a large amount here,
5006 because it might get mmap'd and then its address
5007 might not be usable. */
5008 purebeg = xmalloc (10000);
5009 pure_size = 10000;
5010 pure_bytes_used_before_overflow += pure_bytes_used - size;
5011 pure_bytes_used = 0;
5012 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5013 goto again;
5014 }
5015
5016
5017 /* Print a warning if PURESIZE is too small. */
5018
5019 void
5020 check_pure_size (void)
5021 {
5022 if (pure_bytes_used_before_overflow)
5023 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5024 " bytes needed)"),
5025 pure_bytes_used + pure_bytes_used_before_overflow);
5026 }
5027
5028
5029 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5030 the non-Lisp data pool of the pure storage, and return its start
5031 address. Return NULL if not found. */
5032
5033 static char *
5034 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5035 {
5036 int i;
5037 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5038 const unsigned char *p;
5039 char *non_lisp_beg;
5040
5041 if (pure_bytes_used_non_lisp <= nbytes)
5042 return NULL;
5043
5044 /* Set up the Boyer-Moore table. */
5045 skip = nbytes + 1;
5046 for (i = 0; i < 256; i++)
5047 bm_skip[i] = skip;
5048
5049 p = (const unsigned char *) data;
5050 while (--skip > 0)
5051 bm_skip[*p++] = skip;
5052
5053 last_char_skip = bm_skip['\0'];
5054
5055 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5056 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5057
5058 /* See the comments in the function `boyer_moore' (search.c) for the
5059 use of `infinity'. */
5060 infinity = pure_bytes_used_non_lisp + 1;
5061 bm_skip['\0'] = infinity;
5062
5063 p = (const unsigned char *) non_lisp_beg + nbytes;
5064 start = 0;
5065 do
5066 {
5067 /* Check the last character (== '\0'). */
5068 do
5069 {
5070 start += bm_skip[*(p + start)];
5071 }
5072 while (start <= start_max);
5073
5074 if (start < infinity)
5075 /* Couldn't find the last character. */
5076 return NULL;
5077
5078 /* No less than `infinity' means we could find the last
5079 character at `p[start - infinity]'. */
5080 start -= infinity;
5081
5082 /* Check the remaining characters. */
5083 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5084 /* Found. */
5085 return non_lisp_beg + start;
5086
5087 start += last_char_skip;
5088 }
5089 while (start <= start_max);
5090
5091 return NULL;
5092 }
5093
5094
5095 /* Return a string allocated in pure space. DATA is a buffer holding
5096 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5097 means make the result string multibyte.
5098
5099 Must get an error if pure storage is full, since if it cannot hold
5100 a large string it may be able to hold conses that point to that
5101 string; then the string is not protected from gc. */
5102
5103 Lisp_Object
5104 make_pure_string (const char *data,
5105 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5106 {
5107 Lisp_Object string;
5108 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5109 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5110 if (s->data == NULL)
5111 {
5112 s->data = pure_alloc (nbytes + 1, -1);
5113 memcpy (s->data, data, nbytes);
5114 s->data[nbytes] = '\0';
5115 }
5116 s->size = nchars;
5117 s->size_byte = multibyte ? nbytes : -1;
5118 s->intervals = NULL;
5119 XSETSTRING (string, s);
5120 return string;
5121 }
5122
5123 /* Return a string allocated in pure space. Do not
5124 allocate the string data, just point to DATA. */
5125
5126 Lisp_Object
5127 make_pure_c_string (const char *data, ptrdiff_t nchars)
5128 {
5129 Lisp_Object string;
5130 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5131 s->size = nchars;
5132 s->size_byte = -1;
5133 s->data = (unsigned char *) data;
5134 s->intervals = NULL;
5135 XSETSTRING (string, s);
5136 return string;
5137 }
5138
5139 /* Return a cons allocated from pure space. Give it pure copies
5140 of CAR as car and CDR as cdr. */
5141
5142 Lisp_Object
5143 pure_cons (Lisp_Object car, Lisp_Object cdr)
5144 {
5145 Lisp_Object new;
5146 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5147 XSETCONS (new, p);
5148 XSETCAR (new, Fpurecopy (car));
5149 XSETCDR (new, Fpurecopy (cdr));
5150 return new;
5151 }
5152
5153
5154 /* Value is a float object with value NUM allocated from pure space. */
5155
5156 static Lisp_Object
5157 make_pure_float (double num)
5158 {
5159 Lisp_Object new;
5160 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5161 XSETFLOAT (new, p);
5162 XFLOAT_INIT (new, num);
5163 return new;
5164 }
5165
5166
5167 /* Return a vector with room for LEN Lisp_Objects allocated from
5168 pure space. */
5169
5170 static Lisp_Object
5171 make_pure_vector (ptrdiff_t len)
5172 {
5173 Lisp_Object new;
5174 size_t size = header_size + len * word_size;
5175 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5176 XSETVECTOR (new, p);
5177 XVECTOR (new)->header.size = len;
5178 return new;
5179 }
5180
5181
5182 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5183 doc: /* Make a copy of object OBJ in pure storage.
5184 Recursively copies contents of vectors and cons cells.
5185 Does not copy symbols. Copies strings without text properties. */)
5186 (register Lisp_Object obj)
5187 {
5188 if (NILP (Vpurify_flag))
5189 return obj;
5190
5191 if (PURE_POINTER_P (XPNTR (obj)))
5192 return obj;
5193
5194 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5195 {
5196 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5197 if (!NILP (tmp))
5198 return tmp;
5199 }
5200
5201 if (CONSP (obj))
5202 obj = pure_cons (XCAR (obj), XCDR (obj));
5203 else if (FLOATP (obj))
5204 obj = make_pure_float (XFLOAT_DATA (obj));
5205 else if (STRINGP (obj))
5206 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5207 SBYTES (obj),
5208 STRING_MULTIBYTE (obj));
5209 else if (COMPILEDP (obj) || VECTORP (obj))
5210 {
5211 register struct Lisp_Vector *vec;
5212 register ptrdiff_t i;
5213 ptrdiff_t size;
5214
5215 size = ASIZE (obj);
5216 if (size & PSEUDOVECTOR_FLAG)
5217 size &= PSEUDOVECTOR_SIZE_MASK;
5218 vec = XVECTOR (make_pure_vector (size));
5219 for (i = 0; i < size; i++)
5220 vec->contents[i] = Fpurecopy (AREF (obj, i));
5221 if (COMPILEDP (obj))
5222 {
5223 XSETPVECTYPE (vec, PVEC_COMPILED);
5224 XSETCOMPILED (obj, vec);
5225 }
5226 else
5227 XSETVECTOR (obj, vec);
5228 }
5229 else if (MARKERP (obj))
5230 error ("Attempt to copy a marker to pure storage");
5231 else
5232 /* Not purified, don't hash-cons. */
5233 return obj;
5234
5235 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5236 Fputhash (obj, obj, Vpurify_flag);
5237
5238 return obj;
5239 }
5240
5241
5242 \f
5243 /***********************************************************************
5244 Protection from GC
5245 ***********************************************************************/
5246
5247 /* Put an entry in staticvec, pointing at the variable with address
5248 VARADDRESS. */
5249
5250 void
5251 staticpro (Lisp_Object *varaddress)
5252 {
5253 if (staticidx >= NSTATICS)
5254 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5255 staticvec[staticidx++] = varaddress;
5256 }
5257
5258 \f
5259 /***********************************************************************
5260 Protection from GC
5261 ***********************************************************************/
5262
5263 /* Temporarily prevent garbage collection. */
5264
5265 ptrdiff_t
5266 inhibit_garbage_collection (void)
5267 {
5268 ptrdiff_t count = SPECPDL_INDEX ();
5269
5270 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5271 return count;
5272 }
5273
5274 /* Used to avoid possible overflows when
5275 converting from C to Lisp integers. */
5276
5277 static Lisp_Object
5278 bounded_number (EMACS_INT number)
5279 {
5280 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5281 }
5282
5283 /* Calculate total bytes of live objects. */
5284
5285 static size_t
5286 total_bytes_of_live_objects (void)
5287 {
5288 size_t tot = 0;
5289 tot += total_conses * sizeof (struct Lisp_Cons);
5290 tot += total_symbols * sizeof (struct Lisp_Symbol);
5291 tot += total_markers * sizeof (union Lisp_Misc);
5292 tot += total_string_bytes;
5293 tot += total_vector_slots * word_size;
5294 tot += total_floats * sizeof (struct Lisp_Float);
5295 tot += total_intervals * sizeof (struct interval);
5296 tot += total_strings * sizeof (struct Lisp_String);
5297 return tot;
5298 }
5299
5300 #ifdef HAVE_WINDOW_SYSTEM
5301
5302 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5303 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5304
5305 static Lisp_Object
5306 compact_font_cache_entry (Lisp_Object entry)
5307 {
5308 Lisp_Object tail, *prev = &entry;
5309
5310 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5311 {
5312 bool drop = 0;
5313 Lisp_Object obj = XCAR (tail);
5314
5315 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5316 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5317 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5318 && VECTORP (XCDR (obj)))
5319 {
5320 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5321
5322 /* If font-spec is not marked, most likely all font-entities
5323 are not marked too. But we must be sure that nothing is
5324 marked within OBJ before we really drop it. */
5325 for (i = 0; i < size; i++)
5326 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5327 break;
5328
5329 if (i == size)
5330 drop = 1;
5331 }
5332 if (drop)
5333 *prev = XCDR (tail);
5334 else
5335 prev = xcdr_addr (tail);
5336 }
5337 return entry;
5338 }
5339
5340 /* Compact font caches on all terminals and mark
5341 everything which is still here after compaction. */
5342
5343 static void
5344 compact_font_caches (void)
5345 {
5346 struct terminal *t;
5347
5348 for (t = terminal_list; t; t = t->next_terminal)
5349 {
5350 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5351
5352 if (CONSP (cache))
5353 {
5354 Lisp_Object entry;
5355
5356 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5357 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5358 }
5359 mark_object (cache);
5360 }
5361 }
5362
5363 #else /* not HAVE_WINDOW_SYSTEM */
5364
5365 #define compact_font_caches() (void)(0)
5366
5367 #endif /* HAVE_WINDOW_SYSTEM */
5368
5369 /* Remove (MARKER . DATA) entries with unmarked MARKER
5370 from buffer undo LIST and return changed list. */
5371
5372 static Lisp_Object
5373 compact_undo_list (Lisp_Object list)
5374 {
5375 Lisp_Object tail, *prev = &list;
5376
5377 for (tail = list; CONSP (tail); tail = XCDR (tail))
5378 {
5379 if (CONSP (XCAR (tail))
5380 && MARKERP (XCAR (XCAR (tail)))
5381 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5382 *prev = XCDR (tail);
5383 else
5384 prev = xcdr_addr (tail);
5385 }
5386 return list;
5387 }
5388
5389 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5390 doc: /* Reclaim storage for Lisp objects no longer needed.
5391 Garbage collection happens automatically if you cons more than
5392 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5393 `garbage-collect' normally returns a list with info on amount of space in use,
5394 where each entry has the form (NAME SIZE USED FREE), where:
5395 - NAME is a symbol describing the kind of objects this entry represents,
5396 - SIZE is the number of bytes used by each one,
5397 - USED is the number of those objects that were found live in the heap,
5398 - FREE is the number of those objects that are not live but that Emacs
5399 keeps around for future allocations (maybe because it does not know how
5400 to return them to the OS).
5401 However, if there was overflow in pure space, `garbage-collect'
5402 returns nil, because real GC can't be done.
5403 See Info node `(elisp)Garbage Collection'. */)
5404 (void)
5405 {
5406 struct buffer *nextb;
5407 char stack_top_variable;
5408 ptrdiff_t i;
5409 bool message_p;
5410 ptrdiff_t count = SPECPDL_INDEX ();
5411 struct timespec start;
5412 Lisp_Object retval = Qnil;
5413 size_t tot_before = 0;
5414
5415 if (abort_on_gc)
5416 emacs_abort ();
5417
5418 /* Can't GC if pure storage overflowed because we can't determine
5419 if something is a pure object or not. */
5420 if (pure_bytes_used_before_overflow)
5421 return Qnil;
5422
5423 /* Record this function, so it appears on the profiler's backtraces. */
5424 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5425
5426 check_cons_list ();
5427
5428 /* Don't keep undo information around forever.
5429 Do this early on, so it is no problem if the user quits. */
5430 FOR_EACH_BUFFER (nextb)
5431 compact_buffer (nextb);
5432
5433 if (profiler_memory_running)
5434 tot_before = total_bytes_of_live_objects ();
5435
5436 start = current_timespec ();
5437
5438 /* In case user calls debug_print during GC,
5439 don't let that cause a recursive GC. */
5440 consing_since_gc = 0;
5441
5442 /* Save what's currently displayed in the echo area. */
5443 message_p = push_message ();
5444 record_unwind_protect_void (pop_message_unwind);
5445
5446 /* Save a copy of the contents of the stack, for debugging. */
5447 #if MAX_SAVE_STACK > 0
5448 if (NILP (Vpurify_flag))
5449 {
5450 char *stack;
5451 ptrdiff_t stack_size;
5452 if (&stack_top_variable < stack_bottom)
5453 {
5454 stack = &stack_top_variable;
5455 stack_size = stack_bottom - &stack_top_variable;
5456 }
5457 else
5458 {
5459 stack = stack_bottom;
5460 stack_size = &stack_top_variable - stack_bottom;
5461 }
5462 if (stack_size <= MAX_SAVE_STACK)
5463 {
5464 if (stack_copy_size < stack_size)
5465 {
5466 stack_copy = xrealloc (stack_copy, stack_size);
5467 stack_copy_size = stack_size;
5468 }
5469 memcpy (stack_copy, stack, stack_size);
5470 }
5471 }
5472 #endif /* MAX_SAVE_STACK > 0 */
5473
5474 if (garbage_collection_messages)
5475 message1_nolog ("Garbage collecting...");
5476
5477 block_input ();
5478
5479 shrink_regexp_cache ();
5480
5481 gc_in_progress = 1;
5482
5483 /* Mark all the special slots that serve as the roots of accessibility. */
5484
5485 mark_buffer (&buffer_defaults);
5486 mark_buffer (&buffer_local_symbols);
5487
5488 for (i = 0; i < staticidx; i++)
5489 mark_object (*staticvec[i]);
5490
5491 mark_specpdl ();
5492 mark_terminals ();
5493 mark_kboards ();
5494
5495 #ifdef USE_GTK
5496 xg_mark_data ();
5497 #endif
5498
5499 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5500 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5501 mark_stack ();
5502 #else
5503 {
5504 register struct gcpro *tail;
5505 for (tail = gcprolist; tail; tail = tail->next)
5506 for (i = 0; i < tail->nvars; i++)
5507 mark_object (tail->var[i]);
5508 }
5509 mark_byte_stack ();
5510 #endif
5511 {
5512 struct handler *handler;
5513 for (handler = handlerlist; handler; handler = handler->next)
5514 {
5515 mark_object (handler->tag_or_ch);
5516 mark_object (handler->val);
5517 }
5518 }
5519 #ifdef HAVE_WINDOW_SYSTEM
5520 mark_fringe_data ();
5521 #endif
5522
5523 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5524 mark_stack ();
5525 #endif
5526
5527 /* Everything is now marked, except for the data in font caches
5528 and undo lists. They're compacted by removing an items which
5529 aren't reachable otherwise. */
5530
5531 compact_font_caches ();
5532
5533 FOR_EACH_BUFFER (nextb)
5534 {
5535 if (!EQ (BVAR (nextb, undo_list), Qt))
5536 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5537 /* Now that we have stripped the elements that need not be
5538 in the undo_list any more, we can finally mark the list. */
5539 mark_object (BVAR (nextb, undo_list));
5540 }
5541
5542 gc_sweep ();
5543
5544 /* Clear the mark bits that we set in certain root slots. */
5545
5546 unmark_byte_stack ();
5547 VECTOR_UNMARK (&buffer_defaults);
5548 VECTOR_UNMARK (&buffer_local_symbols);
5549
5550 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5551 dump_zombies ();
5552 #endif
5553
5554 check_cons_list ();
5555
5556 gc_in_progress = 0;
5557
5558 unblock_input ();
5559
5560 consing_since_gc = 0;
5561 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5562 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5563
5564 gc_relative_threshold = 0;
5565 if (FLOATP (Vgc_cons_percentage))
5566 { /* Set gc_cons_combined_threshold. */
5567 double tot = total_bytes_of_live_objects ();
5568
5569 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5570 if (0 < tot)
5571 {
5572 if (tot < TYPE_MAXIMUM (EMACS_INT))
5573 gc_relative_threshold = tot;
5574 else
5575 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5576 }
5577 }
5578
5579 if (garbage_collection_messages)
5580 {
5581 if (message_p || minibuf_level > 0)
5582 restore_message ();
5583 else
5584 message1_nolog ("Garbage collecting...done");
5585 }
5586
5587 unbind_to (count, Qnil);
5588 {
5589 Lisp_Object total[11];
5590 int total_size = 10;
5591
5592 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5593 bounded_number (total_conses),
5594 bounded_number (total_free_conses));
5595
5596 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5597 bounded_number (total_symbols),
5598 bounded_number (total_free_symbols));
5599
5600 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5601 bounded_number (total_markers),
5602 bounded_number (total_free_markers));
5603
5604 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5605 bounded_number (total_strings),
5606 bounded_number (total_free_strings));
5607
5608 total[4] = list3 (Qstring_bytes, make_number (1),
5609 bounded_number (total_string_bytes));
5610
5611 total[5] = list3 (Qvectors,
5612 make_number (header_size + sizeof (Lisp_Object)),
5613 bounded_number (total_vectors));
5614
5615 total[6] = list4 (Qvector_slots, make_number (word_size),
5616 bounded_number (total_vector_slots),
5617 bounded_number (total_free_vector_slots));
5618
5619 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5620 bounded_number (total_floats),
5621 bounded_number (total_free_floats));
5622
5623 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5624 bounded_number (total_intervals),
5625 bounded_number (total_free_intervals));
5626
5627 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5628 bounded_number (total_buffers));
5629
5630 #ifdef DOUG_LEA_MALLOC
5631 total_size++;
5632 total[10] = list4 (Qheap, make_number (1024),
5633 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5634 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5635 #endif
5636 retval = Flist (total_size, total);
5637 }
5638
5639 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5640 {
5641 /* Compute average percentage of zombies. */
5642 double nlive
5643 = (total_conses + total_symbols + total_markers + total_strings
5644 + total_vectors + total_floats + total_intervals + total_buffers);
5645
5646 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5647 max_live = max (nlive, max_live);
5648 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5649 max_zombies = max (nzombies, max_zombies);
5650 ++ngcs;
5651 }
5652 #endif
5653
5654 if (!NILP (Vpost_gc_hook))
5655 {
5656 ptrdiff_t gc_count = inhibit_garbage_collection ();
5657 safe_run_hooks (Qpost_gc_hook);
5658 unbind_to (gc_count, Qnil);
5659 }
5660
5661 /* Accumulate statistics. */
5662 if (FLOATP (Vgc_elapsed))
5663 {
5664 struct timespec since_start = timespec_sub (current_timespec (), start);
5665 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5666 + timespectod (since_start));
5667 }
5668
5669 gcs_done++;
5670
5671 /* Collect profiling data. */
5672 if (profiler_memory_running)
5673 {
5674 size_t swept = 0;
5675 size_t tot_after = total_bytes_of_live_objects ();
5676 if (tot_before > tot_after)
5677 swept = tot_before - tot_after;
5678 malloc_probe (swept);
5679 }
5680
5681 return retval;
5682 }
5683
5684
5685 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5686 only interesting objects referenced from glyphs are strings. */
5687
5688 static void
5689 mark_glyph_matrix (struct glyph_matrix *matrix)
5690 {
5691 struct glyph_row *row = matrix->rows;
5692 struct glyph_row *end = row + matrix->nrows;
5693
5694 for (; row < end; ++row)
5695 if (row->enabled_p)
5696 {
5697 int area;
5698 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5699 {
5700 struct glyph *glyph = row->glyphs[area];
5701 struct glyph *end_glyph = glyph + row->used[area];
5702
5703 for (; glyph < end_glyph; ++glyph)
5704 if (STRINGP (glyph->object)
5705 && !STRING_MARKED_P (XSTRING (glyph->object)))
5706 mark_object (glyph->object);
5707 }
5708 }
5709 }
5710
5711 /* Mark reference to a Lisp_Object.
5712 If the object referred to has not been seen yet, recursively mark
5713 all the references contained in it. */
5714
5715 #define LAST_MARKED_SIZE 500
5716 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5717 static int last_marked_index;
5718
5719 /* For debugging--call abort when we cdr down this many
5720 links of a list, in mark_object. In debugging,
5721 the call to abort will hit a breakpoint.
5722 Normally this is zero and the check never goes off. */
5723 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5724
5725 static void
5726 mark_vectorlike (struct Lisp_Vector *ptr)
5727 {
5728 ptrdiff_t size = ptr->header.size;
5729 ptrdiff_t i;
5730
5731 eassert (!VECTOR_MARKED_P (ptr));
5732 VECTOR_MARK (ptr); /* Else mark it. */
5733 if (size & PSEUDOVECTOR_FLAG)
5734 size &= PSEUDOVECTOR_SIZE_MASK;
5735
5736 /* Note that this size is not the memory-footprint size, but only
5737 the number of Lisp_Object fields that we should trace.
5738 The distinction is used e.g. by Lisp_Process which places extra
5739 non-Lisp_Object fields at the end of the structure... */
5740 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5741 mark_object (ptr->contents[i]);
5742 }
5743
5744 /* Like mark_vectorlike but optimized for char-tables (and
5745 sub-char-tables) assuming that the contents are mostly integers or
5746 symbols. */
5747
5748 static void
5749 mark_char_table (struct Lisp_Vector *ptr)
5750 {
5751 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5752 int i;
5753
5754 eassert (!VECTOR_MARKED_P (ptr));
5755 VECTOR_MARK (ptr);
5756 for (i = 0; i < size; i++)
5757 {
5758 Lisp_Object val = ptr->contents[i];
5759
5760 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5761 continue;
5762 if (SUB_CHAR_TABLE_P (val))
5763 {
5764 if (! VECTOR_MARKED_P (XVECTOR (val)))
5765 mark_char_table (XVECTOR (val));
5766 }
5767 else
5768 mark_object (val);
5769 }
5770 }
5771
5772 /* Mark the chain of overlays starting at PTR. */
5773
5774 static void
5775 mark_overlay (struct Lisp_Overlay *ptr)
5776 {
5777 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5778 {
5779 ptr->gcmarkbit = 1;
5780 mark_object (ptr->start);
5781 mark_object (ptr->end);
5782 mark_object (ptr->plist);
5783 }
5784 }
5785
5786 /* Mark Lisp_Objects and special pointers in BUFFER. */
5787
5788 static void
5789 mark_buffer (struct buffer *buffer)
5790 {
5791 /* This is handled much like other pseudovectors... */
5792 mark_vectorlike ((struct Lisp_Vector *) buffer);
5793
5794 /* ...but there are some buffer-specific things. */
5795
5796 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5797
5798 /* For now, we just don't mark the undo_list. It's done later in
5799 a special way just before the sweep phase, and after stripping
5800 some of its elements that are not needed any more. */
5801
5802 mark_overlay (buffer->overlays_before);
5803 mark_overlay (buffer->overlays_after);
5804
5805 /* If this is an indirect buffer, mark its base buffer. */
5806 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5807 mark_buffer (buffer->base_buffer);
5808 }
5809
5810 /* Mark Lisp faces in the face cache C. */
5811
5812 static void
5813 mark_face_cache (struct face_cache *c)
5814 {
5815 if (c)
5816 {
5817 int i, j;
5818 for (i = 0; i < c->used; ++i)
5819 {
5820 struct face *face = FACE_FROM_ID (c->f, i);
5821
5822 if (face)
5823 {
5824 if (face->font && !VECTOR_MARKED_P (face->font))
5825 mark_vectorlike ((struct Lisp_Vector *) face->font);
5826
5827 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5828 mark_object (face->lface[j]);
5829 }
5830 }
5831 }
5832 }
5833
5834 /* Remove killed buffers or items whose car is a killed buffer from
5835 LIST, and mark other items. Return changed LIST, which is marked. */
5836
5837 static Lisp_Object
5838 mark_discard_killed_buffers (Lisp_Object list)
5839 {
5840 Lisp_Object tail, *prev = &list;
5841
5842 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5843 tail = XCDR (tail))
5844 {
5845 Lisp_Object tem = XCAR (tail);
5846 if (CONSP (tem))
5847 tem = XCAR (tem);
5848 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5849 *prev = XCDR (tail);
5850 else
5851 {
5852 CONS_MARK (XCONS (tail));
5853 mark_object (XCAR (tail));
5854 prev = xcdr_addr (tail);
5855 }
5856 }
5857 mark_object (tail);
5858 return list;
5859 }
5860
5861 /* Determine type of generic Lisp_Object and mark it accordingly. */
5862
5863 void
5864 mark_object (Lisp_Object arg)
5865 {
5866 register Lisp_Object obj = arg;
5867 #ifdef GC_CHECK_MARKED_OBJECTS
5868 void *po;
5869 struct mem_node *m;
5870 #endif
5871 ptrdiff_t cdr_count = 0;
5872
5873 loop:
5874
5875 if (PURE_POINTER_P (XPNTR (obj)))
5876 return;
5877
5878 last_marked[last_marked_index++] = obj;
5879 if (last_marked_index == LAST_MARKED_SIZE)
5880 last_marked_index = 0;
5881
5882 /* Perform some sanity checks on the objects marked here. Abort if
5883 we encounter an object we know is bogus. This increases GC time
5884 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5885 #ifdef GC_CHECK_MARKED_OBJECTS
5886
5887 po = (void *) XPNTR (obj);
5888
5889 /* Check that the object pointed to by PO is known to be a Lisp
5890 structure allocated from the heap. */
5891 #define CHECK_ALLOCATED() \
5892 do { \
5893 m = mem_find (po); \
5894 if (m == MEM_NIL) \
5895 emacs_abort (); \
5896 } while (0)
5897
5898 /* Check that the object pointed to by PO is live, using predicate
5899 function LIVEP. */
5900 #define CHECK_LIVE(LIVEP) \
5901 do { \
5902 if (!LIVEP (m, po)) \
5903 emacs_abort (); \
5904 } while (0)
5905
5906 /* Check both of the above conditions. */
5907 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5908 do { \
5909 CHECK_ALLOCATED (); \
5910 CHECK_LIVE (LIVEP); \
5911 } while (0) \
5912
5913 #else /* not GC_CHECK_MARKED_OBJECTS */
5914
5915 #define CHECK_LIVE(LIVEP) (void) 0
5916 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5917
5918 #endif /* not GC_CHECK_MARKED_OBJECTS */
5919
5920 switch (XTYPE (obj))
5921 {
5922 case Lisp_String:
5923 {
5924 register struct Lisp_String *ptr = XSTRING (obj);
5925 if (STRING_MARKED_P (ptr))
5926 break;
5927 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5928 MARK_STRING (ptr);
5929 MARK_INTERVAL_TREE (ptr->intervals);
5930 #ifdef GC_CHECK_STRING_BYTES
5931 /* Check that the string size recorded in the string is the
5932 same as the one recorded in the sdata structure. */
5933 string_bytes (ptr);
5934 #endif /* GC_CHECK_STRING_BYTES */
5935 }
5936 break;
5937
5938 case Lisp_Vectorlike:
5939 {
5940 register struct Lisp_Vector *ptr = XVECTOR (obj);
5941 register ptrdiff_t pvectype;
5942
5943 if (VECTOR_MARKED_P (ptr))
5944 break;
5945
5946 #ifdef GC_CHECK_MARKED_OBJECTS
5947 m = mem_find (po);
5948 if (m == MEM_NIL && !SUBRP (obj))
5949 emacs_abort ();
5950 #endif /* GC_CHECK_MARKED_OBJECTS */
5951
5952 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5953 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5954 >> PSEUDOVECTOR_AREA_BITS);
5955 else
5956 pvectype = PVEC_NORMAL_VECTOR;
5957
5958 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5959 CHECK_LIVE (live_vector_p);
5960
5961 switch (pvectype)
5962 {
5963 case PVEC_BUFFER:
5964 #ifdef GC_CHECK_MARKED_OBJECTS
5965 {
5966 struct buffer *b;
5967 FOR_EACH_BUFFER (b)
5968 if (b == po)
5969 break;
5970 if (b == NULL)
5971 emacs_abort ();
5972 }
5973 #endif /* GC_CHECK_MARKED_OBJECTS */
5974 mark_buffer ((struct buffer *) ptr);
5975 break;
5976
5977 case PVEC_COMPILED:
5978 { /* We could treat this just like a vector, but it is better
5979 to save the COMPILED_CONSTANTS element for last and avoid
5980 recursion there. */
5981 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5982 int i;
5983
5984 VECTOR_MARK (ptr);
5985 for (i = 0; i < size; i++)
5986 if (i != COMPILED_CONSTANTS)
5987 mark_object (ptr->contents[i]);
5988 if (size > COMPILED_CONSTANTS)
5989 {
5990 obj = ptr->contents[COMPILED_CONSTANTS];
5991 goto loop;
5992 }
5993 }
5994 break;
5995
5996 case PVEC_FRAME:
5997 {
5998 struct frame *f = (struct frame *) ptr;
5999
6000 mark_vectorlike (ptr);
6001 mark_face_cache (f->face_cache);
6002 #ifdef HAVE_WINDOW_SYSTEM
6003 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6004 {
6005 struct font *font = FRAME_FONT (f);
6006
6007 if (font && !VECTOR_MARKED_P (font))
6008 mark_vectorlike ((struct Lisp_Vector *) font);
6009 }
6010 #endif
6011 }
6012 break;
6013
6014 case PVEC_WINDOW:
6015 {
6016 struct window *w = (struct window *) ptr;
6017
6018 mark_vectorlike (ptr);
6019
6020 /* Mark glyph matrices, if any. Marking window
6021 matrices is sufficient because frame matrices
6022 use the same glyph memory. */
6023 if (w->current_matrix)
6024 {
6025 mark_glyph_matrix (w->current_matrix);
6026 mark_glyph_matrix (w->desired_matrix);
6027 }
6028
6029 /* Filter out killed buffers from both buffer lists
6030 in attempt to help GC to reclaim killed buffers faster.
6031 We can do it elsewhere for live windows, but this is the
6032 best place to do it for dead windows. */
6033 wset_prev_buffers
6034 (w, mark_discard_killed_buffers (w->prev_buffers));
6035 wset_next_buffers
6036 (w, mark_discard_killed_buffers (w->next_buffers));
6037 }
6038 break;
6039
6040 case PVEC_HASH_TABLE:
6041 {
6042 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6043
6044 mark_vectorlike (ptr);
6045 mark_object (h->test.name);
6046 mark_object (h->test.user_hash_function);
6047 mark_object (h->test.user_cmp_function);
6048 /* If hash table is not weak, mark all keys and values.
6049 For weak tables, mark only the vector. */
6050 if (NILP (h->weak))
6051 mark_object (h->key_and_value);
6052 else
6053 VECTOR_MARK (XVECTOR (h->key_and_value));
6054 }
6055 break;
6056
6057 case PVEC_CHAR_TABLE:
6058 mark_char_table (ptr);
6059 break;
6060
6061 case PVEC_BOOL_VECTOR:
6062 /* No Lisp_Objects to mark in a bool vector. */
6063 VECTOR_MARK (ptr);
6064 break;
6065
6066 case PVEC_SUBR:
6067 break;
6068
6069 case PVEC_FREE:
6070 emacs_abort ();
6071
6072 default:
6073 mark_vectorlike (ptr);
6074 }
6075 }
6076 break;
6077
6078 case Lisp_Symbol:
6079 {
6080 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6081 struct Lisp_Symbol *ptrx;
6082
6083 if (ptr->gcmarkbit)
6084 break;
6085 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6086 ptr->gcmarkbit = 1;
6087 mark_object (ptr->function);
6088 mark_object (ptr->plist);
6089 switch (ptr->redirect)
6090 {
6091 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6092 case SYMBOL_VARALIAS:
6093 {
6094 Lisp_Object tem;
6095 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6096 mark_object (tem);
6097 break;
6098 }
6099 case SYMBOL_LOCALIZED:
6100 {
6101 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6102 Lisp_Object where = blv->where;
6103 /* If the value is set up for a killed buffer or deleted
6104 frame, restore it's global binding. If the value is
6105 forwarded to a C variable, either it's not a Lisp_Object
6106 var, or it's staticpro'd already. */
6107 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6108 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6109 swap_in_global_binding (ptr);
6110 mark_object (blv->where);
6111 mark_object (blv->valcell);
6112 mark_object (blv->defcell);
6113 break;
6114 }
6115 case SYMBOL_FORWARDED:
6116 /* If the value is forwarded to a buffer or keyboard field,
6117 these are marked when we see the corresponding object.
6118 And if it's forwarded to a C variable, either it's not
6119 a Lisp_Object var, or it's staticpro'd already. */
6120 break;
6121 default: emacs_abort ();
6122 }
6123 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6124 MARK_STRING (XSTRING (ptr->name));
6125 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6126
6127 ptr = ptr->next;
6128 if (ptr)
6129 {
6130 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6131 XSETSYMBOL (obj, ptrx);
6132 goto loop;
6133 }
6134 }
6135 break;
6136
6137 case Lisp_Misc:
6138 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6139
6140 if (XMISCANY (obj)->gcmarkbit)
6141 break;
6142
6143 switch (XMISCTYPE (obj))
6144 {
6145 case Lisp_Misc_Marker:
6146 /* DO NOT mark thru the marker's chain.
6147 The buffer's markers chain does not preserve markers from gc;
6148 instead, markers are removed from the chain when freed by gc. */
6149 XMISCANY (obj)->gcmarkbit = 1;
6150 break;
6151
6152 case Lisp_Misc_Save_Value:
6153 XMISCANY (obj)->gcmarkbit = 1;
6154 {
6155 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6156 /* If `save_type' is zero, `data[0].pointer' is the address
6157 of a memory area containing `data[1].integer' potential
6158 Lisp_Objects. */
6159 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6160 {
6161 Lisp_Object *p = ptr->data[0].pointer;
6162 ptrdiff_t nelt;
6163 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6164 mark_maybe_object (*p);
6165 }
6166 else
6167 {
6168 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6169 int i;
6170 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6171 if (save_type (ptr, i) == SAVE_OBJECT)
6172 mark_object (ptr->data[i].object);
6173 }
6174 }
6175 break;
6176
6177 case Lisp_Misc_Overlay:
6178 mark_overlay (XOVERLAY (obj));
6179 break;
6180
6181 default:
6182 emacs_abort ();
6183 }
6184 break;
6185
6186 case Lisp_Cons:
6187 {
6188 register struct Lisp_Cons *ptr = XCONS (obj);
6189 if (CONS_MARKED_P (ptr))
6190 break;
6191 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6192 CONS_MARK (ptr);
6193 /* If the cdr is nil, avoid recursion for the car. */
6194 if (EQ (ptr->u.cdr, Qnil))
6195 {
6196 obj = ptr->car;
6197 cdr_count = 0;
6198 goto loop;
6199 }
6200 mark_object (ptr->car);
6201 obj = ptr->u.cdr;
6202 cdr_count++;
6203 if (cdr_count == mark_object_loop_halt)
6204 emacs_abort ();
6205 goto loop;
6206 }
6207
6208 case Lisp_Float:
6209 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6210 FLOAT_MARK (XFLOAT (obj));
6211 break;
6212
6213 case_Lisp_Int:
6214 break;
6215
6216 default:
6217 emacs_abort ();
6218 }
6219
6220 #undef CHECK_LIVE
6221 #undef CHECK_ALLOCATED
6222 #undef CHECK_ALLOCATED_AND_LIVE
6223 }
6224 /* Mark the Lisp pointers in the terminal objects.
6225 Called by Fgarbage_collect. */
6226
6227 static void
6228 mark_terminals (void)
6229 {
6230 struct terminal *t;
6231 for (t = terminal_list; t; t = t->next_terminal)
6232 {
6233 eassert (t->name != NULL);
6234 #ifdef HAVE_WINDOW_SYSTEM
6235 /* If a terminal object is reachable from a stacpro'ed object,
6236 it might have been marked already. Make sure the image cache
6237 gets marked. */
6238 mark_image_cache (t->image_cache);
6239 #endif /* HAVE_WINDOW_SYSTEM */
6240 if (!VECTOR_MARKED_P (t))
6241 mark_vectorlike ((struct Lisp_Vector *)t);
6242 }
6243 }
6244
6245
6246
6247 /* Value is non-zero if OBJ will survive the current GC because it's
6248 either marked or does not need to be marked to survive. */
6249
6250 bool
6251 survives_gc_p (Lisp_Object obj)
6252 {
6253 bool survives_p;
6254
6255 switch (XTYPE (obj))
6256 {
6257 case_Lisp_Int:
6258 survives_p = 1;
6259 break;
6260
6261 case Lisp_Symbol:
6262 survives_p = XSYMBOL (obj)->gcmarkbit;
6263 break;
6264
6265 case Lisp_Misc:
6266 survives_p = XMISCANY (obj)->gcmarkbit;
6267 break;
6268
6269 case Lisp_String:
6270 survives_p = STRING_MARKED_P (XSTRING (obj));
6271 break;
6272
6273 case Lisp_Vectorlike:
6274 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6275 break;
6276
6277 case Lisp_Cons:
6278 survives_p = CONS_MARKED_P (XCONS (obj));
6279 break;
6280
6281 case Lisp_Float:
6282 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6283 break;
6284
6285 default:
6286 emacs_abort ();
6287 }
6288
6289 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6290 }
6291
6292
6293 \f
6294 /* Sweep: find all structures not marked, and free them. */
6295
6296 static void
6297 gc_sweep (void)
6298 {
6299 /* Remove or mark entries in weak hash tables.
6300 This must be done before any object is unmarked. */
6301 sweep_weak_hash_tables ();
6302
6303 sweep_strings ();
6304 check_string_bytes (!noninteractive);
6305
6306 /* Put all unmarked conses on free list. */
6307 {
6308 register struct cons_block *cblk;
6309 struct cons_block **cprev = &cons_block;
6310 register int lim = cons_block_index;
6311 EMACS_INT num_free = 0, num_used = 0;
6312
6313 cons_free_list = 0;
6314
6315 for (cblk = cons_block; cblk; cblk = *cprev)
6316 {
6317 register int i = 0;
6318 int this_free = 0;
6319 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6320
6321 /* Scan the mark bits an int at a time. */
6322 for (i = 0; i < ilim; i++)
6323 {
6324 if (cblk->gcmarkbits[i] == -1)
6325 {
6326 /* Fast path - all cons cells for this int are marked. */
6327 cblk->gcmarkbits[i] = 0;
6328 num_used += BITS_PER_INT;
6329 }
6330 else
6331 {
6332 /* Some cons cells for this int are not marked.
6333 Find which ones, and free them. */
6334 int start, pos, stop;
6335
6336 start = i * BITS_PER_INT;
6337 stop = lim - start;
6338 if (stop > BITS_PER_INT)
6339 stop = BITS_PER_INT;
6340 stop += start;
6341
6342 for (pos = start; pos < stop; pos++)
6343 {
6344 if (!CONS_MARKED_P (&cblk->conses[pos]))
6345 {
6346 this_free++;
6347 cblk->conses[pos].u.chain = cons_free_list;
6348 cons_free_list = &cblk->conses[pos];
6349 #if GC_MARK_STACK
6350 cons_free_list->car = Vdead;
6351 #endif
6352 }
6353 else
6354 {
6355 num_used++;
6356 CONS_UNMARK (&cblk->conses[pos]);
6357 }
6358 }
6359 }
6360 }
6361
6362 lim = CONS_BLOCK_SIZE;
6363 /* If this block contains only free conses and we have already
6364 seen more than two blocks worth of free conses then deallocate
6365 this block. */
6366 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6367 {
6368 *cprev = cblk->next;
6369 /* Unhook from the free list. */
6370 cons_free_list = cblk->conses[0].u.chain;
6371 lisp_align_free (cblk);
6372 }
6373 else
6374 {
6375 num_free += this_free;
6376 cprev = &cblk->next;
6377 }
6378 }
6379 total_conses = num_used;
6380 total_free_conses = num_free;
6381 }
6382
6383 /* Put all unmarked floats on free list. */
6384 {
6385 register struct float_block *fblk;
6386 struct float_block **fprev = &float_block;
6387 register int lim = float_block_index;
6388 EMACS_INT num_free = 0, num_used = 0;
6389
6390 float_free_list = 0;
6391
6392 for (fblk = float_block; fblk; fblk = *fprev)
6393 {
6394 register int i;
6395 int this_free = 0;
6396 for (i = 0; i < lim; i++)
6397 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6398 {
6399 this_free++;
6400 fblk->floats[i].u.chain = float_free_list;
6401 float_free_list = &fblk->floats[i];
6402 }
6403 else
6404 {
6405 num_used++;
6406 FLOAT_UNMARK (&fblk->floats[i]);
6407 }
6408 lim = FLOAT_BLOCK_SIZE;
6409 /* If this block contains only free floats and we have already
6410 seen more than two blocks worth of free floats then deallocate
6411 this block. */
6412 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6413 {
6414 *fprev = fblk->next;
6415 /* Unhook from the free list. */
6416 float_free_list = fblk->floats[0].u.chain;
6417 lisp_align_free (fblk);
6418 }
6419 else
6420 {
6421 num_free += this_free;
6422 fprev = &fblk->next;
6423 }
6424 }
6425 total_floats = num_used;
6426 total_free_floats = num_free;
6427 }
6428
6429 /* Put all unmarked intervals on free list. */
6430 {
6431 register struct interval_block *iblk;
6432 struct interval_block **iprev = &interval_block;
6433 register int lim = interval_block_index;
6434 EMACS_INT num_free = 0, num_used = 0;
6435
6436 interval_free_list = 0;
6437
6438 for (iblk = interval_block; iblk; iblk = *iprev)
6439 {
6440 register int i;
6441 int this_free = 0;
6442
6443 for (i = 0; i < lim; i++)
6444 {
6445 if (!iblk->intervals[i].gcmarkbit)
6446 {
6447 set_interval_parent (&iblk->intervals[i], interval_free_list);
6448 interval_free_list = &iblk->intervals[i];
6449 this_free++;
6450 }
6451 else
6452 {
6453 num_used++;
6454 iblk->intervals[i].gcmarkbit = 0;
6455 }
6456 }
6457 lim = INTERVAL_BLOCK_SIZE;
6458 /* If this block contains only free intervals and we have already
6459 seen more than two blocks worth of free intervals then
6460 deallocate this block. */
6461 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6462 {
6463 *iprev = iblk->next;
6464 /* Unhook from the free list. */
6465 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6466 lisp_free (iblk);
6467 }
6468 else
6469 {
6470 num_free += this_free;
6471 iprev = &iblk->next;
6472 }
6473 }
6474 total_intervals = num_used;
6475 total_free_intervals = num_free;
6476 }
6477
6478 /* Put all unmarked symbols on free list. */
6479 {
6480 register struct symbol_block *sblk;
6481 struct symbol_block **sprev = &symbol_block;
6482 register int lim = symbol_block_index;
6483 EMACS_INT num_free = 0, num_used = 0;
6484
6485 symbol_free_list = NULL;
6486
6487 for (sblk = symbol_block; sblk; sblk = *sprev)
6488 {
6489 int this_free = 0;
6490 union aligned_Lisp_Symbol *sym = sblk->symbols;
6491 union aligned_Lisp_Symbol *end = sym + lim;
6492
6493 for (; sym < end; ++sym)
6494 {
6495 /* Check if the symbol was created during loadup. In such a case
6496 it might be pointed to by pure bytecode which we don't trace,
6497 so we conservatively assume that it is live. */
6498 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6499
6500 if (!sym->s.gcmarkbit && !pure_p)
6501 {
6502 if (sym->s.redirect == SYMBOL_LOCALIZED)
6503 xfree (SYMBOL_BLV (&sym->s));
6504 sym->s.next = symbol_free_list;
6505 symbol_free_list = &sym->s;
6506 #if GC_MARK_STACK
6507 symbol_free_list->function = Vdead;
6508 #endif
6509 ++this_free;
6510 }
6511 else
6512 {
6513 ++num_used;
6514 if (!pure_p)
6515 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6516 sym->s.gcmarkbit = 0;
6517 }
6518 }
6519
6520 lim = SYMBOL_BLOCK_SIZE;
6521 /* If this block contains only free symbols and we have already
6522 seen more than two blocks worth of free symbols then deallocate
6523 this block. */
6524 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6525 {
6526 *sprev = sblk->next;
6527 /* Unhook from the free list. */
6528 symbol_free_list = sblk->symbols[0].s.next;
6529 lisp_free (sblk);
6530 }
6531 else
6532 {
6533 num_free += this_free;
6534 sprev = &sblk->next;
6535 }
6536 }
6537 total_symbols = num_used;
6538 total_free_symbols = num_free;
6539 }
6540
6541 /* Put all unmarked misc's on free list.
6542 For a marker, first unchain it from the buffer it points into. */
6543 {
6544 register struct marker_block *mblk;
6545 struct marker_block **mprev = &marker_block;
6546 register int lim = marker_block_index;
6547 EMACS_INT num_free = 0, num_used = 0;
6548
6549 marker_free_list = 0;
6550
6551 for (mblk = marker_block; mblk; mblk = *mprev)
6552 {
6553 register int i;
6554 int this_free = 0;
6555
6556 for (i = 0; i < lim; i++)
6557 {
6558 if (!mblk->markers[i].m.u_any.gcmarkbit)
6559 {
6560 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6561 unchain_marker (&mblk->markers[i].m.u_marker);
6562 /* Set the type of the freed object to Lisp_Misc_Free.
6563 We could leave the type alone, since nobody checks it,
6564 but this might catch bugs faster. */
6565 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6566 mblk->markers[i].m.u_free.chain = marker_free_list;
6567 marker_free_list = &mblk->markers[i].m;
6568 this_free++;
6569 }
6570 else
6571 {
6572 num_used++;
6573 mblk->markers[i].m.u_any.gcmarkbit = 0;
6574 }
6575 }
6576 lim = MARKER_BLOCK_SIZE;
6577 /* If this block contains only free markers and we have already
6578 seen more than two blocks worth of free markers then deallocate
6579 this block. */
6580 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6581 {
6582 *mprev = mblk->next;
6583 /* Unhook from the free list. */
6584 marker_free_list = mblk->markers[0].m.u_free.chain;
6585 lisp_free (mblk);
6586 }
6587 else
6588 {
6589 num_free += this_free;
6590 mprev = &mblk->next;
6591 }
6592 }
6593
6594 total_markers = num_used;
6595 total_free_markers = num_free;
6596 }
6597
6598 /* Free all unmarked buffers */
6599 {
6600 register struct buffer *buffer, **bprev = &all_buffers;
6601
6602 total_buffers = 0;
6603 for (buffer = all_buffers; buffer; buffer = *bprev)
6604 if (!VECTOR_MARKED_P (buffer))
6605 {
6606 *bprev = buffer->next;
6607 lisp_free (buffer);
6608 }
6609 else
6610 {
6611 VECTOR_UNMARK (buffer);
6612 /* Do not use buffer_(set|get)_intervals here. */
6613 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6614 total_buffers++;
6615 bprev = &buffer->next;
6616 }
6617 }
6618
6619 sweep_vectors ();
6620 check_string_bytes (!noninteractive);
6621 }
6622
6623
6624
6625 \f
6626 /* Debugging aids. */
6627
6628 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6629 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6630 This may be helpful in debugging Emacs's memory usage.
6631 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6632 (void)
6633 {
6634 Lisp_Object end;
6635
6636 #ifdef HAVE_NS
6637 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6638 XSETINT (end, 0);
6639 #else
6640 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6641 #endif
6642
6643 return end;
6644 }
6645
6646 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6647 doc: /* Return a list of counters that measure how much consing there has been.
6648 Each of these counters increments for a certain kind of object.
6649 The counters wrap around from the largest positive integer to zero.
6650 Garbage collection does not decrease them.
6651 The elements of the value are as follows:
6652 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6653 All are in units of 1 = one object consed
6654 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6655 objects consed.
6656 MISCS include overlays, markers, and some internal types.
6657 Frames, windows, buffers, and subprocesses count as vectors
6658 (but the contents of a buffer's text do not count here). */)
6659 (void)
6660 {
6661 return listn (CONSTYPE_HEAP, 8,
6662 bounded_number (cons_cells_consed),
6663 bounded_number (floats_consed),
6664 bounded_number (vector_cells_consed),
6665 bounded_number (symbols_consed),
6666 bounded_number (string_chars_consed),
6667 bounded_number (misc_objects_consed),
6668 bounded_number (intervals_consed),
6669 bounded_number (strings_consed));
6670 }
6671
6672 /* Find at most FIND_MAX symbols which have OBJ as their value or
6673 function. This is used in gdbinit's `xwhichsymbols' command. */
6674
6675 Lisp_Object
6676 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6677 {
6678 struct symbol_block *sblk;
6679 ptrdiff_t gc_count = inhibit_garbage_collection ();
6680 Lisp_Object found = Qnil;
6681
6682 if (! DEADP (obj))
6683 {
6684 for (sblk = symbol_block; sblk; sblk = sblk->next)
6685 {
6686 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6687 int bn;
6688
6689 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6690 {
6691 struct Lisp_Symbol *sym = &aligned_sym->s;
6692 Lisp_Object val;
6693 Lisp_Object tem;
6694
6695 if (sblk == symbol_block && bn >= symbol_block_index)
6696 break;
6697
6698 XSETSYMBOL (tem, sym);
6699 val = find_symbol_value (tem);
6700 if (EQ (val, obj)
6701 || EQ (sym->function, obj)
6702 || (!NILP (sym->function)
6703 && COMPILEDP (sym->function)
6704 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6705 || (!NILP (val)
6706 && COMPILEDP (val)
6707 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6708 {
6709 found = Fcons (tem, found);
6710 if (--find_max == 0)
6711 goto out;
6712 }
6713 }
6714 }
6715 }
6716
6717 out:
6718 unbind_to (gc_count, Qnil);
6719 return found;
6720 }
6721
6722 #ifdef ENABLE_CHECKING
6723
6724 bool suppress_checking;
6725
6726 void
6727 die (const char *msg, const char *file, int line)
6728 {
6729 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6730 file, line, msg);
6731 terminate_due_to_signal (SIGABRT, INT_MAX);
6732 }
6733 #endif
6734 \f
6735 /* Initialization. */
6736
6737 void
6738 init_alloc_once (void)
6739 {
6740 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6741 purebeg = PUREBEG;
6742 pure_size = PURESIZE;
6743
6744 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6745 mem_init ();
6746 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6747 #endif
6748
6749 #ifdef DOUG_LEA_MALLOC
6750 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6751 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6752 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6753 #endif
6754 init_strings ();
6755 init_vectors ();
6756
6757 refill_memory_reserve ();
6758 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6759 }
6760
6761 void
6762 init_alloc (void)
6763 {
6764 gcprolist = 0;
6765 byte_stack_list = 0;
6766 #if GC_MARK_STACK
6767 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6768 setjmp_tested_p = longjmps_done = 0;
6769 #endif
6770 #endif
6771 Vgc_elapsed = make_float (0.0);
6772 gcs_done = 0;
6773
6774 #if USE_VALGRIND
6775 valgrind_p = RUNNING_ON_VALGRIND != 0;
6776 #endif
6777 }
6778
6779 void
6780 syms_of_alloc (void)
6781 {
6782 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6783 doc: /* Number of bytes of consing between garbage collections.
6784 Garbage collection can happen automatically once this many bytes have been
6785 allocated since the last garbage collection. All data types count.
6786
6787 Garbage collection happens automatically only when `eval' is called.
6788
6789 By binding this temporarily to a large number, you can effectively
6790 prevent garbage collection during a part of the program.
6791 See also `gc-cons-percentage'. */);
6792
6793 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6794 doc: /* Portion of the heap used for allocation.
6795 Garbage collection can happen automatically once this portion of the heap
6796 has been allocated since the last garbage collection.
6797 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6798 Vgc_cons_percentage = make_float (0.1);
6799
6800 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6801 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6802
6803 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6804 doc: /* Number of cons cells that have been consed so far. */);
6805
6806 DEFVAR_INT ("floats-consed", floats_consed,
6807 doc: /* Number of floats that have been consed so far. */);
6808
6809 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6810 doc: /* Number of vector cells that have been consed so far. */);
6811
6812 DEFVAR_INT ("symbols-consed", symbols_consed,
6813 doc: /* Number of symbols that have been consed so far. */);
6814
6815 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6816 doc: /* Number of string characters that have been consed so far. */);
6817
6818 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6819 doc: /* Number of miscellaneous objects that have been consed so far.
6820 These include markers and overlays, plus certain objects not visible
6821 to users. */);
6822
6823 DEFVAR_INT ("intervals-consed", intervals_consed,
6824 doc: /* Number of intervals that have been consed so far. */);
6825
6826 DEFVAR_INT ("strings-consed", strings_consed,
6827 doc: /* Number of strings that have been consed so far. */);
6828
6829 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6830 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6831 This means that certain objects should be allocated in shared (pure) space.
6832 It can also be set to a hash-table, in which case this table is used to
6833 do hash-consing of the objects allocated to pure space. */);
6834
6835 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6836 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6837 garbage_collection_messages = 0;
6838
6839 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6840 doc: /* Hook run after garbage collection has finished. */);
6841 Vpost_gc_hook = Qnil;
6842 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6843
6844 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6845 doc: /* Precomputed `signal' argument for memory-full error. */);
6846 /* We build this in advance because if we wait until we need it, we might
6847 not be able to allocate the memory to hold it. */
6848 Vmemory_signal_data
6849 = listn (CONSTYPE_PURE, 2, Qerror,
6850 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6851
6852 DEFVAR_LISP ("memory-full", Vmemory_full,
6853 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6854 Vmemory_full = Qnil;
6855
6856 DEFSYM (Qconses, "conses");
6857 DEFSYM (Qsymbols, "symbols");
6858 DEFSYM (Qmiscs, "miscs");
6859 DEFSYM (Qstrings, "strings");
6860 DEFSYM (Qvectors, "vectors");
6861 DEFSYM (Qfloats, "floats");
6862 DEFSYM (Qintervals, "intervals");
6863 DEFSYM (Qbuffers, "buffers");
6864 DEFSYM (Qstring_bytes, "string-bytes");
6865 DEFSYM (Qvector_slots, "vector-slots");
6866 DEFSYM (Qheap, "heap");
6867 DEFSYM (Qautomatic_gc, "Automatic GC");
6868
6869 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6870 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6871
6872 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6873 doc: /* Accumulated time elapsed in garbage collections.
6874 The time is in seconds as a floating point value. */);
6875 DEFVAR_INT ("gcs-done", gcs_done,
6876 doc: /* Accumulated number of garbage collections done. */);
6877
6878 defsubr (&Scons);
6879 defsubr (&Slist);
6880 defsubr (&Svector);
6881 defsubr (&Smake_byte_code);
6882 defsubr (&Smake_list);
6883 defsubr (&Smake_vector);
6884 defsubr (&Smake_string);
6885 defsubr (&Smake_bool_vector);
6886 defsubr (&Smake_symbol);
6887 defsubr (&Smake_marker);
6888 defsubr (&Spurecopy);
6889 defsubr (&Sgarbage_collect);
6890 defsubr (&Smemory_limit);
6891 defsubr (&Smemory_use_counts);
6892
6893 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6894 defsubr (&Sgc_status);
6895 #endif
6896 }
6897
6898 /* When compiled with GCC, GDB might say "No enum type named
6899 pvec_type" if we don't have at least one symbol with that type, and
6900 then xbacktrace could fail. Similarly for the other enums and
6901 their values. Some non-GCC compilers don't like these constructs. */
6902 #ifdef __GNUC__
6903 union
6904 {
6905 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6906 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6907 enum char_bits char_bits;
6908 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6909 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6910 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6911 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6912 enum Lisp_Bits Lisp_Bits;
6913 enum Lisp_Compiled Lisp_Compiled;
6914 enum maxargs maxargs;
6915 enum MAX_ALLOCA MAX_ALLOCA;
6916 enum More_Lisp_Bits More_Lisp_Bits;
6917 enum pvec_type pvec_type;
6918 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6919 #endif /* __GNUC__ */