Merge from emacs--rel--22
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <sys/types.h>
24 #include <stdio.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h>
32 #endif
33
34 #ifdef HAVE_SYS_UTSNAME_H
35 #include <sys/utsname.h>
36 #endif
37
38 #include "lisp.h"
39
40 /* systime.h includes <sys/time.h> which, on some systems, is required
41 for <sys/resource.h>; thus systime.h must be included before
42 <sys/resource.h> */
43 #include "systime.h"
44
45 #if defined HAVE_SYS_RESOURCE_H
46 #include <sys/resource.h>
47 #endif
48
49 #include <ctype.h>
50
51 #include "intervals.h"
52 #include "buffer.h"
53 #include "character.h"
54 #include "coding.h"
55 #include "frame.h"
56 #include "window.h"
57 #include "blockinput.h"
58
59 #ifdef STDC_HEADERS
60 #include <float.h>
61 #define MAX_10_EXP DBL_MAX_10_EXP
62 #else
63 #define MAX_10_EXP 310
64 #endif
65
66 #ifndef NULL
67 #define NULL 0
68 #endif
69
70 #ifndef USER_FULL_NAME
71 #define USER_FULL_NAME pw->pw_gecos
72 #endif
73
74 #ifndef USE_CRT_DLL
75 extern char **environ;
76 #endif
77
78 #define TM_YEAR_BASE 1900
79
80 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
81 asctime to have well-defined behavior. */
82 #ifndef TM_YEAR_IN_ASCTIME_RANGE
83 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
84 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
85 #endif
86
87 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
88 const struct tm *, int));
89
90 #ifdef WINDOWSNT
91 extern Lisp_Object w32_get_internal_run_time ();
92 #endif
93
94 static int tm_diff P_ ((struct tm *, struct tm *));
95 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
96 static void update_buffer_properties P_ ((int, int));
97 static Lisp_Object region_limit P_ ((int));
98 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
99 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
100 size_t, const struct tm *, int));
101 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
102 void (*) (Lisp_Object, int, int, int,
103 int, int),
104 int, int, Lisp_Object *));
105 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
106 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
107 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
108
109 #ifdef HAVE_INDEX
110 extern char *index P_ ((const char *, int));
111 #endif
112
113 Lisp_Object Vbuffer_access_fontify_functions;
114 Lisp_Object Qbuffer_access_fontify_functions;
115 Lisp_Object Vbuffer_access_fontified_property;
116
117 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
118
119 /* Non-nil means don't stop at field boundary in text motion commands. */
120
121 Lisp_Object Vinhibit_field_text_motion;
122
123 /* Some static data, and a function to initialize it for each run */
124
125 Lisp_Object Vsystem_name;
126 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
127 Lisp_Object Vuser_full_name; /* full name of current user */
128 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
129 Lisp_Object Voperating_system_release; /* Operating System Release */
130
131 /* Symbol for the text property used to mark fields. */
132
133 Lisp_Object Qfield;
134
135 /* A special value for Qfield properties. */
136
137 Lisp_Object Qboundary;
138
139
140 void
141 init_editfns ()
142 {
143 char *user_name;
144 register unsigned char *p;
145 struct passwd *pw; /* password entry for the current user */
146 Lisp_Object tem;
147
148 /* Set up system_name even when dumping. */
149 init_system_name ();
150
151 #ifndef CANNOT_DUMP
152 /* Don't bother with this on initial start when just dumping out */
153 if (!initialized)
154 return;
155 #endif /* not CANNOT_DUMP */
156
157 pw = (struct passwd *) getpwuid (getuid ());
158 #ifdef MSDOS
159 /* We let the real user name default to "root" because that's quite
160 accurate on MSDOG and because it lets Emacs find the init file.
161 (The DVX libraries override the Djgpp libraries here.) */
162 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
163 #else
164 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
165 #endif
166
167 /* Get the effective user name, by consulting environment variables,
168 or the effective uid if those are unset. */
169 user_name = (char *) getenv ("LOGNAME");
170 if (!user_name)
171 #ifdef WINDOWSNT
172 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
173 #else /* WINDOWSNT */
174 user_name = (char *) getenv ("USER");
175 #endif /* WINDOWSNT */
176 if (!user_name)
177 {
178 pw = (struct passwd *) getpwuid (geteuid ());
179 user_name = (char *) (pw ? pw->pw_name : "unknown");
180 }
181 Vuser_login_name = build_string (user_name);
182
183 /* If the user name claimed in the environment vars differs from
184 the real uid, use the claimed name to find the full name. */
185 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
186 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
187 : Vuser_login_name);
188
189 p = (unsigned char *) getenv ("NAME");
190 if (p)
191 Vuser_full_name = build_string (p);
192 else if (NILP (Vuser_full_name))
193 Vuser_full_name = build_string ("unknown");
194
195 #ifdef HAVE_SYS_UTSNAME_H
196 {
197 struct utsname uts;
198 uname (&uts);
199 Voperating_system_release = build_string (uts.release);
200 }
201 #else
202 Voperating_system_release = Qnil;
203 #endif
204 }
205 \f
206 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
207 doc: /* Convert arg CHAR to a string containing that character.
208 usage: (char-to-string CHAR) */)
209 (character)
210 Lisp_Object character;
211 {
212 int len;
213 unsigned char str[MAX_MULTIBYTE_LENGTH];
214
215 CHECK_CHARACTER (character);
216
217 len = CHAR_STRING (XFASTINT (character), str);
218 return make_string_from_bytes (str, 1, len);
219 }
220
221 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
222 doc: /* Convert arg STRING to a character, the first character of that string.
223 A multibyte character is handled correctly. */)
224 (string)
225 register Lisp_Object string;
226 {
227 register Lisp_Object val;
228 CHECK_STRING (string);
229 if (SCHARS (string))
230 {
231 if (STRING_MULTIBYTE (string))
232 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
233 else
234 XSETFASTINT (val, SREF (string, 0));
235 }
236 else
237 XSETFASTINT (val, 0);
238 return val;
239 }
240 \f
241 static Lisp_Object
242 buildmark (charpos, bytepos)
243 int charpos, bytepos;
244 {
245 register Lisp_Object mark;
246 mark = Fmake_marker ();
247 set_marker_both (mark, Qnil, charpos, bytepos);
248 return mark;
249 }
250
251 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
252 doc: /* Return value of point, as an integer.
253 Beginning of buffer is position (point-min). */)
254 ()
255 {
256 Lisp_Object temp;
257 XSETFASTINT (temp, PT);
258 return temp;
259 }
260
261 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
262 doc: /* Return value of point, as a marker object. */)
263 ()
264 {
265 return buildmark (PT, PT_BYTE);
266 }
267
268 int
269 clip_to_bounds (lower, num, upper)
270 int lower, num, upper;
271 {
272 if (num < lower)
273 return lower;
274 else if (num > upper)
275 return upper;
276 else
277 return num;
278 }
279
280 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
281 doc: /* Set point to POSITION, a number or marker.
282 Beginning of buffer is position (point-min), end is (point-max).
283
284 The return value is POSITION. */)
285 (position)
286 register Lisp_Object position;
287 {
288 int pos;
289
290 if (MARKERP (position)
291 && current_buffer == XMARKER (position)->buffer)
292 {
293 pos = marker_position (position);
294 if (pos < BEGV)
295 SET_PT_BOTH (BEGV, BEGV_BYTE);
296 else if (pos > ZV)
297 SET_PT_BOTH (ZV, ZV_BYTE);
298 else
299 SET_PT_BOTH (pos, marker_byte_position (position));
300
301 return position;
302 }
303
304 CHECK_NUMBER_COERCE_MARKER (position);
305
306 pos = clip_to_bounds (BEGV, XINT (position), ZV);
307 SET_PT (pos);
308 return position;
309 }
310
311
312 /* Return the start or end position of the region.
313 BEGINNINGP non-zero means return the start.
314 If there is no region active, signal an error. */
315
316 static Lisp_Object
317 region_limit (beginningp)
318 int beginningp;
319 {
320 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
321 Lisp_Object m;
322
323 if (!NILP (Vtransient_mark_mode)
324 && NILP (Vmark_even_if_inactive)
325 && NILP (current_buffer->mark_active))
326 xsignal0 (Qmark_inactive);
327
328 m = Fmarker_position (current_buffer->mark);
329 if (NILP (m))
330 error ("The mark is not set now, so there is no region");
331
332 if ((PT < XFASTINT (m)) == (beginningp != 0))
333 m = make_number (PT);
334 return m;
335 }
336
337 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
338 doc: /* Return position of beginning of region, as an integer. */)
339 ()
340 {
341 return region_limit (1);
342 }
343
344 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
345 doc: /* Return position of end of region, as an integer. */)
346 ()
347 {
348 return region_limit (0);
349 }
350
351 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
352 doc: /* Return this buffer's mark, as a marker object.
353 Watch out! Moving this marker changes the mark position.
354 If you set the marker not to point anywhere, the buffer will have no mark. */)
355 ()
356 {
357 return current_buffer->mark;
358 }
359
360 \f
361 /* Find all the overlays in the current buffer that touch position POS.
362 Return the number found, and store them in a vector in VEC
363 of length LEN. */
364
365 static int
366 overlays_around (pos, vec, len)
367 int pos;
368 Lisp_Object *vec;
369 int len;
370 {
371 Lisp_Object overlay, start, end;
372 struct Lisp_Overlay *tail;
373 int startpos, endpos;
374 int idx = 0;
375
376 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
377 {
378 XSETMISC (overlay, tail);
379
380 end = OVERLAY_END (overlay);
381 endpos = OVERLAY_POSITION (end);
382 if (endpos < pos)
383 break;
384 start = OVERLAY_START (overlay);
385 startpos = OVERLAY_POSITION (start);
386 if (startpos <= pos)
387 {
388 if (idx < len)
389 vec[idx] = overlay;
390 /* Keep counting overlays even if we can't return them all. */
391 idx++;
392 }
393 }
394
395 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
396 {
397 XSETMISC (overlay, tail);
398
399 start = OVERLAY_START (overlay);
400 startpos = OVERLAY_POSITION (start);
401 if (pos < startpos)
402 break;
403 end = OVERLAY_END (overlay);
404 endpos = OVERLAY_POSITION (end);
405 if (pos <= endpos)
406 {
407 if (idx < len)
408 vec[idx] = overlay;
409 idx++;
410 }
411 }
412
413 return idx;
414 }
415
416 /* Return the value of property PROP, in OBJECT at POSITION.
417 It's the value of PROP that a char inserted at POSITION would get.
418 OBJECT is optional and defaults to the current buffer.
419 If OBJECT is a buffer, then overlay properties are considered as well as
420 text properties.
421 If OBJECT is a window, then that window's buffer is used, but
422 window-specific overlays are considered only if they are associated
423 with OBJECT. */
424 Lisp_Object
425 get_pos_property (position, prop, object)
426 Lisp_Object position, object;
427 register Lisp_Object prop;
428 {
429 CHECK_NUMBER_COERCE_MARKER (position);
430
431 if (NILP (object))
432 XSETBUFFER (object, current_buffer);
433 else if (WINDOWP (object))
434 object = XWINDOW (object)->buffer;
435
436 if (!BUFFERP (object))
437 /* pos-property only makes sense in buffers right now, since strings
438 have no overlays and no notion of insertion for which stickiness
439 could be obeyed. */
440 return Fget_text_property (position, prop, object);
441 else
442 {
443 int posn = XINT (position);
444 int noverlays;
445 Lisp_Object *overlay_vec, tem;
446 struct buffer *obuf = current_buffer;
447
448 set_buffer_temp (XBUFFER (object));
449
450 /* First try with room for 40 overlays. */
451 noverlays = 40;
452 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
453 noverlays = overlays_around (posn, overlay_vec, noverlays);
454
455 /* If there are more than 40,
456 make enough space for all, and try again. */
457 if (noverlays > 40)
458 {
459 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
460 noverlays = overlays_around (posn, overlay_vec, noverlays);
461 }
462 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
463
464 set_buffer_temp (obuf);
465
466 /* Now check the overlays in order of decreasing priority. */
467 while (--noverlays >= 0)
468 {
469 Lisp_Object ol = overlay_vec[noverlays];
470 tem = Foverlay_get (ol, prop);
471 if (!NILP (tem))
472 {
473 /* Check the overlay is indeed active at point. */
474 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
475 if ((OVERLAY_POSITION (start) == posn
476 && XMARKER (start)->insertion_type == 1)
477 || (OVERLAY_POSITION (finish) == posn
478 && XMARKER (finish)->insertion_type == 0))
479 ; /* The overlay will not cover a char inserted at point. */
480 else
481 {
482 return tem;
483 }
484 }
485 }
486
487 { /* Now check the text properties. */
488 int stickiness = text_property_stickiness (prop, position, object);
489 if (stickiness > 0)
490 return Fget_text_property (position, prop, object);
491 else if (stickiness < 0
492 && XINT (position) > BUF_BEGV (XBUFFER (object)))
493 return Fget_text_property (make_number (XINT (position) - 1),
494 prop, object);
495 else
496 return Qnil;
497 }
498 }
499 }
500
501 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
502 the value of point is used instead. If BEG or END is null,
503 means don't store the beginning or end of the field.
504
505 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
506 results; they do not effect boundary behavior.
507
508 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
509 position of a field, then the beginning of the previous field is
510 returned instead of the beginning of POS's field (since the end of a
511 field is actually also the beginning of the next input field, this
512 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
513 true case, if two fields are separated by a field with the special
514 value `boundary', and POS lies within it, then the two separated
515 fields are considered to be adjacent, and POS between them, when
516 finding the beginning and ending of the "merged" field.
517
518 Either BEG or END may be 0, in which case the corresponding value
519 is not stored. */
520
521 static void
522 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
523 Lisp_Object pos;
524 Lisp_Object merge_at_boundary;
525 Lisp_Object beg_limit, end_limit;
526 int *beg, *end;
527 {
528 /* Fields right before and after the point. */
529 Lisp_Object before_field, after_field;
530 /* 1 if POS counts as the start of a field. */
531 int at_field_start = 0;
532 /* 1 if POS counts as the end of a field. */
533 int at_field_end = 0;
534
535 if (NILP (pos))
536 XSETFASTINT (pos, PT);
537 else
538 CHECK_NUMBER_COERCE_MARKER (pos);
539
540 after_field
541 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
542 before_field
543 = (XFASTINT (pos) > BEGV
544 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
545 Qfield, Qnil, NULL)
546 /* Using nil here would be a more obvious choice, but it would
547 fail when the buffer starts with a non-sticky field. */
548 : after_field);
549
550 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
551 and POS is at beginning of a field, which can also be interpreted
552 as the end of the previous field. Note that the case where if
553 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
554 more natural one; then we avoid treating the beginning of a field
555 specially. */
556 if (NILP (merge_at_boundary))
557 {
558 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
559 if (!EQ (field, after_field))
560 at_field_end = 1;
561 if (!EQ (field, before_field))
562 at_field_start = 1;
563 if (NILP (field) && at_field_start && at_field_end)
564 /* If an inserted char would have a nil field while the surrounding
565 text is non-nil, we're probably not looking at a
566 zero-length field, but instead at a non-nil field that's
567 not intended for editing (such as comint's prompts). */
568 at_field_end = at_field_start = 0;
569 }
570
571 /* Note about special `boundary' fields:
572
573 Consider the case where the point (`.') is between the fields `x' and `y':
574
575 xxxx.yyyy
576
577 In this situation, if merge_at_boundary is true, we consider the
578 `x' and `y' fields as forming one big merged field, and so the end
579 of the field is the end of `y'.
580
581 However, if `x' and `y' are separated by a special `boundary' field
582 (a field with a `field' char-property of 'boundary), then we ignore
583 this special field when merging adjacent fields. Here's the same
584 situation, but with a `boundary' field between the `x' and `y' fields:
585
586 xxx.BBBByyyy
587
588 Here, if point is at the end of `x', the beginning of `y', or
589 anywhere in-between (within the `boundary' field), we merge all
590 three fields and consider the beginning as being the beginning of
591 the `x' field, and the end as being the end of the `y' field. */
592
593 if (beg)
594 {
595 if (at_field_start)
596 /* POS is at the edge of a field, and we should consider it as
597 the beginning of the following field. */
598 *beg = XFASTINT (pos);
599 else
600 /* Find the previous field boundary. */
601 {
602 Lisp_Object p = pos;
603 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
604 /* Skip a `boundary' field. */
605 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
606 beg_limit);
607
608 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
609 beg_limit);
610 *beg = NILP (p) ? BEGV : XFASTINT (p);
611 }
612 }
613
614 if (end)
615 {
616 if (at_field_end)
617 /* POS is at the edge of a field, and we should consider it as
618 the end of the previous field. */
619 *end = XFASTINT (pos);
620 else
621 /* Find the next field boundary. */
622 {
623 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
624 /* Skip a `boundary' field. */
625 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
626 end_limit);
627
628 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
629 end_limit);
630 *end = NILP (pos) ? ZV : XFASTINT (pos);
631 }
632 }
633 }
634
635 \f
636 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
637 doc: /* Delete the field surrounding POS.
638 A field is a region of text with the same `field' property.
639 If POS is nil, the value of point is used for POS. */)
640 (pos)
641 Lisp_Object pos;
642 {
643 int beg, end;
644 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
645 if (beg != end)
646 del_range (beg, end);
647 return Qnil;
648 }
649
650 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
651 doc: /* Return the contents of the field surrounding POS as a string.
652 A field is a region of text with the same `field' property.
653 If POS is nil, the value of point is used for POS. */)
654 (pos)
655 Lisp_Object pos;
656 {
657 int beg, end;
658 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
659 return make_buffer_string (beg, end, 1);
660 }
661
662 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
663 doc: /* Return the contents of the field around POS, without text properties.
664 A field is a region of text with the same `field' property.
665 If POS is nil, the value of point is used for POS. */)
666 (pos)
667 Lisp_Object pos;
668 {
669 int beg, end;
670 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
671 return make_buffer_string (beg, end, 0);
672 }
673
674 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
675 doc: /* Return the beginning of the field surrounding POS.
676 A field is a region of text with the same `field' property.
677 If POS is nil, the value of point is used for POS.
678 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
679 field, then the beginning of the *previous* field is returned.
680 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
681 is before LIMIT, then LIMIT will be returned instead. */)
682 (pos, escape_from_edge, limit)
683 Lisp_Object pos, escape_from_edge, limit;
684 {
685 int beg;
686 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
687 return make_number (beg);
688 }
689
690 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
691 doc: /* Return the end of the field surrounding POS.
692 A field is a region of text with the same `field' property.
693 If POS is nil, the value of point is used for POS.
694 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
695 then the end of the *following* field is returned.
696 If LIMIT is non-nil, it is a buffer position; if the end of the field
697 is after LIMIT, then LIMIT will be returned instead. */)
698 (pos, escape_from_edge, limit)
699 Lisp_Object pos, escape_from_edge, limit;
700 {
701 int end;
702 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
703 return make_number (end);
704 }
705
706 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
707 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
708
709 A field is a region of text with the same `field' property.
710 If NEW-POS is nil, then the current point is used instead, and set to the
711 constrained position if that is different.
712
713 If OLD-POS is at the boundary of two fields, then the allowable
714 positions for NEW-POS depends on the value of the optional argument
715 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
716 constrained to the field that has the same `field' char-property
717 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
718 is non-nil, NEW-POS is constrained to the union of the two adjacent
719 fields. Additionally, if two fields are separated by another field with
720 the special value `boundary', then any point within this special field is
721 also considered to be `on the boundary'.
722
723 If the optional argument ONLY-IN-LINE is non-nil and constraining
724 NEW-POS would move it to a different line, NEW-POS is returned
725 unconstrained. This useful for commands that move by line, like
726 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
727 only in the case where they can still move to the right line.
728
729 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
730 a non-nil property of that name, then any field boundaries are ignored.
731
732 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
733 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
734 Lisp_Object new_pos, old_pos;
735 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
736 {
737 /* If non-zero, then the original point, before re-positioning. */
738 int orig_point = 0;
739 int fwd;
740 Lisp_Object prev_old, prev_new;
741
742 if (NILP (new_pos))
743 /* Use the current point, and afterwards, set it. */
744 {
745 orig_point = PT;
746 XSETFASTINT (new_pos, PT);
747 }
748
749 CHECK_NUMBER_COERCE_MARKER (new_pos);
750 CHECK_NUMBER_COERCE_MARKER (old_pos);
751
752 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
753
754 prev_old = make_number (XFASTINT (old_pos) - 1);
755 prev_new = make_number (XFASTINT (new_pos) - 1);
756
757 if (NILP (Vinhibit_field_text_motion)
758 && !EQ (new_pos, old_pos)
759 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
760 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
761 /* To recognize field boundaries, we must also look at the
762 previous positions; we could use `get_pos_property'
763 instead, but in itself that would fail inside non-sticky
764 fields (like comint prompts). */
765 || (XFASTINT (new_pos) > BEGV
766 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
767 || (XFASTINT (old_pos) > BEGV
768 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
769 && (NILP (inhibit_capture_property)
770 /* Field boundaries are again a problem; but now we must
771 decide the case exactly, so we need to call
772 `get_pos_property' as well. */
773 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
774 && (XFASTINT (old_pos) <= BEGV
775 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
776 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
777 /* It is possible that NEW_POS is not within the same field as
778 OLD_POS; try to move NEW_POS so that it is. */
779 {
780 int shortage;
781 Lisp_Object field_bound;
782
783 if (fwd)
784 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
785 else
786 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
787
788 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
789 other side of NEW_POS, which would mean that NEW_POS is
790 already acceptable, and it's not necessary to constrain it
791 to FIELD_BOUND. */
792 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
793 /* NEW_POS should be constrained, but only if either
794 ONLY_IN_LINE is nil (in which case any constraint is OK),
795 or NEW_POS and FIELD_BOUND are on the same line (in which
796 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
797 && (NILP (only_in_line)
798 /* This is the ONLY_IN_LINE case, check that NEW_POS and
799 FIELD_BOUND are on the same line by seeing whether
800 there's an intervening newline or not. */
801 || (scan_buffer ('\n',
802 XFASTINT (new_pos), XFASTINT (field_bound),
803 fwd ? -1 : 1, &shortage, 1),
804 shortage != 0)))
805 /* Constrain NEW_POS to FIELD_BOUND. */
806 new_pos = field_bound;
807
808 if (orig_point && XFASTINT (new_pos) != orig_point)
809 /* The NEW_POS argument was originally nil, so automatically set PT. */
810 SET_PT (XFASTINT (new_pos));
811 }
812
813 return new_pos;
814 }
815
816 \f
817 DEFUN ("line-beginning-position",
818 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
819 doc: /* Return the character position of the first character on the current line.
820 With argument N not nil or 1, move forward N - 1 lines first.
821 If scan reaches end of buffer, return that position.
822
823 This function constrains the returned position to the current field
824 unless that would be on a different line than the original,
825 unconstrained result. If N is nil or 1, and a front-sticky field
826 starts at point, the scan stops as soon as it starts. To ignore field
827 boundaries bind `inhibit-field-text-motion' to t.
828
829 This function does not move point. */)
830 (n)
831 Lisp_Object n;
832 {
833 int orig, orig_byte, end;
834 int count = SPECPDL_INDEX ();
835 specbind (Qinhibit_point_motion_hooks, Qt);
836
837 if (NILP (n))
838 XSETFASTINT (n, 1);
839 else
840 CHECK_NUMBER (n);
841
842 orig = PT;
843 orig_byte = PT_BYTE;
844 Fforward_line (make_number (XINT (n) - 1));
845 end = PT;
846
847 SET_PT_BOTH (orig, orig_byte);
848
849 unbind_to (count, Qnil);
850
851 /* Return END constrained to the current input field. */
852 return Fconstrain_to_field (make_number (end), make_number (orig),
853 XINT (n) != 1 ? Qt : Qnil,
854 Qt, Qnil);
855 }
856
857 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
858 doc: /* Return the character position of the last character on the current line.
859 With argument N not nil or 1, move forward N - 1 lines first.
860 If scan reaches end of buffer, return that position.
861
862 This function constrains the returned position to the current field
863 unless that would be on a different line than the original,
864 unconstrained result. If N is nil or 1, and a rear-sticky field ends
865 at point, the scan stops as soon as it starts. To ignore field
866 boundaries bind `inhibit-field-text-motion' to t.
867
868 This function does not move point. */)
869 (n)
870 Lisp_Object n;
871 {
872 int end_pos;
873 int orig = PT;
874
875 if (NILP (n))
876 XSETFASTINT (n, 1);
877 else
878 CHECK_NUMBER (n);
879
880 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
881
882 /* Return END_POS constrained to the current input field. */
883 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
884 Qnil, Qt, Qnil);
885 }
886
887 \f
888 Lisp_Object
889 save_excursion_save ()
890 {
891 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
892 == current_buffer);
893
894 return Fcons (Fpoint_marker (),
895 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
896 Fcons (visible ? Qt : Qnil,
897 Fcons (current_buffer->mark_active,
898 selected_window))));
899 }
900
901 Lisp_Object
902 save_excursion_restore (info)
903 Lisp_Object info;
904 {
905 Lisp_Object tem, tem1, omark, nmark;
906 struct gcpro gcpro1, gcpro2, gcpro3;
907 int visible_p;
908
909 tem = Fmarker_buffer (XCAR (info));
910 /* If buffer being returned to is now deleted, avoid error */
911 /* Otherwise could get error here while unwinding to top level
912 and crash */
913 /* In that case, Fmarker_buffer returns nil now. */
914 if (NILP (tem))
915 return Qnil;
916
917 omark = nmark = Qnil;
918 GCPRO3 (info, omark, nmark);
919
920 Fset_buffer (tem);
921
922 /* Point marker. */
923 tem = XCAR (info);
924 Fgoto_char (tem);
925 unchain_marker (XMARKER (tem));
926
927 /* Mark marker. */
928 info = XCDR (info);
929 tem = XCAR (info);
930 omark = Fmarker_position (current_buffer->mark);
931 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
932 nmark = Fmarker_position (tem);
933 unchain_marker (XMARKER (tem));
934
935 /* visible */
936 info = XCDR (info);
937 visible_p = !NILP (XCAR (info));
938
939 #if 0 /* We used to make the current buffer visible in the selected window
940 if that was true previously. That avoids some anomalies.
941 But it creates others, and it wasn't documented, and it is simpler
942 and cleaner never to alter the window/buffer connections. */
943 tem1 = Fcar (tem);
944 if (!NILP (tem1)
945 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
946 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
947 #endif /* 0 */
948
949 /* Mark active */
950 info = XCDR (info);
951 tem = XCAR (info);
952 tem1 = current_buffer->mark_active;
953 current_buffer->mark_active = tem;
954
955 if (!NILP (Vrun_hooks))
956 {
957 /* If mark is active now, and either was not active
958 or was at a different place, run the activate hook. */
959 if (! NILP (current_buffer->mark_active))
960 {
961 if (! EQ (omark, nmark))
962 call1 (Vrun_hooks, intern ("activate-mark-hook"));
963 }
964 /* If mark has ceased to be active, run deactivate hook. */
965 else if (! NILP (tem1))
966 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
967 }
968
969 /* If buffer was visible in a window, and a different window was
970 selected, and the old selected window is still showing this
971 buffer, restore point in that window. */
972 tem = XCDR (info);
973 if (visible_p
974 && !EQ (tem, selected_window)
975 && (tem1 = XWINDOW (tem)->buffer,
976 (/* Window is live... */
977 BUFFERP (tem1)
978 /* ...and it shows the current buffer. */
979 && XBUFFER (tem1) == current_buffer)))
980 Fset_window_point (tem, make_number (PT));
981
982 UNGCPRO;
983 return Qnil;
984 }
985
986 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
987 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
988 Executes BODY just like `progn'.
989 The values of point, mark and the current buffer are restored
990 even in case of abnormal exit (throw or error).
991 The state of activation of the mark is also restored.
992
993 This construct does not save `deactivate-mark', and therefore
994 functions that change the buffer will still cause deactivation
995 of the mark at the end of the command. To prevent that, bind
996 `deactivate-mark' with `let'.
997
998 usage: (save-excursion &rest BODY) */)
999 (args)
1000 Lisp_Object args;
1001 {
1002 register Lisp_Object val;
1003 int count = SPECPDL_INDEX ();
1004
1005 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1006
1007 val = Fprogn (args);
1008 return unbind_to (count, val);
1009 }
1010
1011 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1012 doc: /* Save the current buffer; execute BODY; restore the current buffer.
1013 Executes BODY just like `progn'.
1014 usage: (save-current-buffer &rest BODY) */)
1015 (args)
1016 Lisp_Object args;
1017 {
1018 Lisp_Object val;
1019 int count = SPECPDL_INDEX ();
1020
1021 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
1022
1023 val = Fprogn (args);
1024 return unbind_to (count, val);
1025 }
1026 \f
1027 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
1028 doc: /* Return the number of characters in the current buffer.
1029 If BUFFER, return the number of characters in that buffer instead. */)
1030 (buffer)
1031 Lisp_Object buffer;
1032 {
1033 if (NILP (buffer))
1034 return make_number (Z - BEG);
1035 else
1036 {
1037 CHECK_BUFFER (buffer);
1038 return make_number (BUF_Z (XBUFFER (buffer))
1039 - BUF_BEG (XBUFFER (buffer)));
1040 }
1041 }
1042
1043 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1044 doc: /* Return the minimum permissible value of point in the current buffer.
1045 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1046 ()
1047 {
1048 Lisp_Object temp;
1049 XSETFASTINT (temp, BEGV);
1050 return temp;
1051 }
1052
1053 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1054 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1055 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1056 ()
1057 {
1058 return buildmark (BEGV, BEGV_BYTE);
1059 }
1060
1061 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1062 doc: /* Return the maximum permissible value of point in the current buffer.
1063 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1064 is in effect, in which case it is less. */)
1065 ()
1066 {
1067 Lisp_Object temp;
1068 XSETFASTINT (temp, ZV);
1069 return temp;
1070 }
1071
1072 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1073 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1074 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1075 is in effect, in which case it is less. */)
1076 ()
1077 {
1078 return buildmark (ZV, ZV_BYTE);
1079 }
1080
1081 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1082 doc: /* Return the position of the gap, in the current buffer.
1083 See also `gap-size'. */)
1084 ()
1085 {
1086 Lisp_Object temp;
1087 XSETFASTINT (temp, GPT);
1088 return temp;
1089 }
1090
1091 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1092 doc: /* Return the size of the current buffer's gap.
1093 See also `gap-position'. */)
1094 ()
1095 {
1096 Lisp_Object temp;
1097 XSETFASTINT (temp, GAP_SIZE);
1098 return temp;
1099 }
1100
1101 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1102 doc: /* Return the byte position for character position POSITION.
1103 If POSITION is out of range, the value is nil. */)
1104 (position)
1105 Lisp_Object position;
1106 {
1107 CHECK_NUMBER_COERCE_MARKER (position);
1108 if (XINT (position) < BEG || XINT (position) > Z)
1109 return Qnil;
1110 return make_number (CHAR_TO_BYTE (XINT (position)));
1111 }
1112
1113 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1114 doc: /* Return the character position for byte position BYTEPOS.
1115 If BYTEPOS is out of range, the value is nil. */)
1116 (bytepos)
1117 Lisp_Object bytepos;
1118 {
1119 CHECK_NUMBER (bytepos);
1120 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1121 return Qnil;
1122 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1123 }
1124 \f
1125 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1126 doc: /* Return the character following point, as a number.
1127 At the end of the buffer or accessible region, return 0. */)
1128 ()
1129 {
1130 Lisp_Object temp;
1131 if (PT >= ZV)
1132 XSETFASTINT (temp, 0);
1133 else
1134 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1135 return temp;
1136 }
1137
1138 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1139 doc: /* Return the character preceding point, as a number.
1140 At the beginning of the buffer or accessible region, return 0. */)
1141 ()
1142 {
1143 Lisp_Object temp;
1144 if (PT <= BEGV)
1145 XSETFASTINT (temp, 0);
1146 else if (!NILP (current_buffer->enable_multibyte_characters))
1147 {
1148 int pos = PT_BYTE;
1149 DEC_POS (pos);
1150 XSETFASTINT (temp, FETCH_CHAR (pos));
1151 }
1152 else
1153 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1154 return temp;
1155 }
1156
1157 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1158 doc: /* Return t if point is at the beginning of the buffer.
1159 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1160 ()
1161 {
1162 if (PT == BEGV)
1163 return Qt;
1164 return Qnil;
1165 }
1166
1167 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1168 doc: /* Return t if point is at the end of the buffer.
1169 If the buffer is narrowed, this means the end of the narrowed part. */)
1170 ()
1171 {
1172 if (PT == ZV)
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1178 doc: /* Return t if point is at the beginning of a line. */)
1179 ()
1180 {
1181 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1182 return Qt;
1183 return Qnil;
1184 }
1185
1186 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1187 doc: /* Return t if point is at the end of a line.
1188 `End of a line' includes point being at the end of the buffer. */)
1189 ()
1190 {
1191 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1192 return Qt;
1193 return Qnil;
1194 }
1195
1196 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1197 doc: /* Return character in current buffer at position POS.
1198 POS is an integer or a marker and defaults to point.
1199 If POS is out of range, the value is nil. */)
1200 (pos)
1201 Lisp_Object pos;
1202 {
1203 register int pos_byte;
1204
1205 if (NILP (pos))
1206 {
1207 pos_byte = PT_BYTE;
1208 XSETFASTINT (pos, PT);
1209 }
1210
1211 if (MARKERP (pos))
1212 {
1213 pos_byte = marker_byte_position (pos);
1214 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1215 return Qnil;
1216 }
1217 else
1218 {
1219 CHECK_NUMBER_COERCE_MARKER (pos);
1220 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1221 return Qnil;
1222
1223 pos_byte = CHAR_TO_BYTE (XINT (pos));
1224 }
1225
1226 return make_number (FETCH_CHAR (pos_byte));
1227 }
1228
1229 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1230 doc: /* Return character in current buffer preceding position POS.
1231 POS is an integer or a marker and defaults to point.
1232 If POS is out of range, the value is nil. */)
1233 (pos)
1234 Lisp_Object pos;
1235 {
1236 register Lisp_Object val;
1237 register int pos_byte;
1238
1239 if (NILP (pos))
1240 {
1241 pos_byte = PT_BYTE;
1242 XSETFASTINT (pos, PT);
1243 }
1244
1245 if (MARKERP (pos))
1246 {
1247 pos_byte = marker_byte_position (pos);
1248
1249 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1250 return Qnil;
1251 }
1252 else
1253 {
1254 CHECK_NUMBER_COERCE_MARKER (pos);
1255
1256 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1257 return Qnil;
1258
1259 pos_byte = CHAR_TO_BYTE (XINT (pos));
1260 }
1261
1262 if (!NILP (current_buffer->enable_multibyte_characters))
1263 {
1264 DEC_POS (pos_byte);
1265 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1266 }
1267 else
1268 {
1269 pos_byte--;
1270 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1271 }
1272 return val;
1273 }
1274 \f
1275 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1276 doc: /* Return the name under which the user logged in, as a string.
1277 This is based on the effective uid, not the real uid.
1278 Also, if the environment variables LOGNAME or USER are set,
1279 that determines the value of this function.
1280
1281 If optional argument UID is an integer, return the login name of the user
1282 with that uid, or nil if there is no such user. */)
1283 (uid)
1284 Lisp_Object uid;
1285 {
1286 struct passwd *pw;
1287
1288 /* Set up the user name info if we didn't do it before.
1289 (That can happen if Emacs is dumpable
1290 but you decide to run `temacs -l loadup' and not dump. */
1291 if (INTEGERP (Vuser_login_name))
1292 init_editfns ();
1293
1294 if (NILP (uid))
1295 return Vuser_login_name;
1296
1297 CHECK_NUMBER (uid);
1298 BLOCK_INPUT;
1299 pw = (struct passwd *) getpwuid (XINT (uid));
1300 UNBLOCK_INPUT;
1301 return (pw ? build_string (pw->pw_name) : Qnil);
1302 }
1303
1304 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1305 0, 0, 0,
1306 doc: /* Return the name of the user's real uid, as a string.
1307 This ignores the environment variables LOGNAME and USER, so it differs from
1308 `user-login-name' when running under `su'. */)
1309 ()
1310 {
1311 /* Set up the user name info if we didn't do it before.
1312 (That can happen if Emacs is dumpable
1313 but you decide to run `temacs -l loadup' and not dump. */
1314 if (INTEGERP (Vuser_login_name))
1315 init_editfns ();
1316 return Vuser_real_login_name;
1317 }
1318
1319 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1320 doc: /* Return the effective uid of Emacs.
1321 Value is an integer or float, depending on the value. */)
1322 ()
1323 {
1324 /* Assignment to EMACS_INT stops GCC whining about limited range of
1325 data type. */
1326 EMACS_INT euid = geteuid ();
1327 return make_fixnum_or_float (euid);
1328 }
1329
1330 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1331 doc: /* Return the real uid of Emacs.
1332 Value is an integer or float, depending on the value. */)
1333 ()
1334 {
1335 /* Assignment to EMACS_INT stops GCC whining about limited range of
1336 data type. */
1337 EMACS_INT uid = getuid ();
1338 return make_fixnum_or_float (uid);
1339 }
1340
1341 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1342 doc: /* Return the full name of the user logged in, as a string.
1343 If the full name corresponding to Emacs's userid is not known,
1344 return "unknown".
1345
1346 If optional argument UID is an integer or float, return the full name
1347 of the user with that uid, or nil if there is no such user.
1348 If UID is a string, return the full name of the user with that login
1349 name, or nil if there is no such user. */)
1350 (uid)
1351 Lisp_Object uid;
1352 {
1353 struct passwd *pw;
1354 register unsigned char *p, *q;
1355 Lisp_Object full;
1356
1357 if (NILP (uid))
1358 return Vuser_full_name;
1359 else if (NUMBERP (uid))
1360 {
1361 BLOCK_INPUT;
1362 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1363 UNBLOCK_INPUT;
1364 }
1365 else if (STRINGP (uid))
1366 {
1367 BLOCK_INPUT;
1368 pw = (struct passwd *) getpwnam (SDATA (uid));
1369 UNBLOCK_INPUT;
1370 }
1371 else
1372 error ("Invalid UID specification");
1373
1374 if (!pw)
1375 return Qnil;
1376
1377 p = (unsigned char *) USER_FULL_NAME;
1378 /* Chop off everything after the first comma. */
1379 q = (unsigned char *) index (p, ',');
1380 full = make_string (p, q ? q - p : strlen (p));
1381
1382 #ifdef AMPERSAND_FULL_NAME
1383 p = SDATA (full);
1384 q = (unsigned char *) index (p, '&');
1385 /* Substitute the login name for the &, upcasing the first character. */
1386 if (q)
1387 {
1388 register unsigned char *r;
1389 Lisp_Object login;
1390
1391 login = Fuser_login_name (make_number (pw->pw_uid));
1392 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1393 bcopy (p, r, q - p);
1394 r[q - p] = 0;
1395 strcat (r, SDATA (login));
1396 r[q - p] = UPCASE (r[q - p]);
1397 strcat (r, q + 1);
1398 full = build_string (r);
1399 }
1400 #endif /* AMPERSAND_FULL_NAME */
1401
1402 return full;
1403 }
1404
1405 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1406 doc: /* Return the host name of the machine you are running on, as a string. */)
1407 ()
1408 {
1409 return Vsystem_name;
1410 }
1411
1412 /* For the benefit of callers who don't want to include lisp.h */
1413
1414 char *
1415 get_system_name ()
1416 {
1417 if (STRINGP (Vsystem_name))
1418 return (char *) SDATA (Vsystem_name);
1419 else
1420 return "";
1421 }
1422
1423 char *
1424 get_operating_system_release()
1425 {
1426 if (STRINGP (Voperating_system_release))
1427 return (char *) SDATA (Voperating_system_release);
1428 else
1429 return "";
1430 }
1431
1432 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1433 doc: /* Return the process ID of Emacs, as an integer. */)
1434 ()
1435 {
1436 return make_number (getpid ());
1437 }
1438
1439 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1440 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1441 The time is returned as a list of three integers. The first has the
1442 most significant 16 bits of the seconds, while the second has the
1443 least significant 16 bits. The third integer gives the microsecond
1444 count.
1445
1446 The microsecond count is zero on systems that do not provide
1447 resolution finer than a second. */)
1448 ()
1449 {
1450 EMACS_TIME t;
1451
1452 EMACS_GET_TIME (t);
1453 return list3 (make_number ((EMACS_SECS (t) >> 16) & 0xffff),
1454 make_number ((EMACS_SECS (t) >> 0) & 0xffff),
1455 make_number (EMACS_USECS (t)));
1456 }
1457
1458 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1459 0, 0, 0,
1460 doc: /* Return the current run time used by Emacs.
1461 The time is returned as a list of three integers. The first has the
1462 most significant 16 bits of the seconds, while the second has the
1463 least significant 16 bits. The third integer gives the microsecond
1464 count.
1465
1466 On systems that can't determine the run time, `get-internal-run-time'
1467 does the same thing as `current-time'. The microsecond count is zero
1468 on systems that do not provide resolution finer than a second. */)
1469 ()
1470 {
1471 #ifdef HAVE_GETRUSAGE
1472 struct rusage usage;
1473 int secs, usecs;
1474
1475 if (getrusage (RUSAGE_SELF, &usage) < 0)
1476 /* This shouldn't happen. What action is appropriate? */
1477 xsignal0 (Qerror);
1478
1479 /* Sum up user time and system time. */
1480 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1481 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1482 if (usecs >= 1000000)
1483 {
1484 usecs -= 1000000;
1485 secs++;
1486 }
1487
1488 return list3 (make_number ((secs >> 16) & 0xffff),
1489 make_number ((secs >> 0) & 0xffff),
1490 make_number (usecs));
1491 #else /* ! HAVE_GETRUSAGE */
1492 #ifdef WINDOWSNT
1493 return w32_get_internal_run_time ();
1494 #else /* ! WINDOWSNT */
1495 return Fcurrent_time ();
1496 #endif /* WINDOWSNT */
1497 #endif /* HAVE_GETRUSAGE */
1498 }
1499 \f
1500
1501 int
1502 lisp_time_argument (specified_time, result, usec)
1503 Lisp_Object specified_time;
1504 time_t *result;
1505 int *usec;
1506 {
1507 if (NILP (specified_time))
1508 {
1509 if (usec)
1510 {
1511 EMACS_TIME t;
1512
1513 EMACS_GET_TIME (t);
1514 *usec = EMACS_USECS (t);
1515 *result = EMACS_SECS (t);
1516 return 1;
1517 }
1518 else
1519 return time (result) != -1;
1520 }
1521 else
1522 {
1523 Lisp_Object high, low;
1524 high = Fcar (specified_time);
1525 CHECK_NUMBER (high);
1526 low = Fcdr (specified_time);
1527 if (CONSP (low))
1528 {
1529 if (usec)
1530 {
1531 Lisp_Object usec_l = Fcdr (low);
1532 if (CONSP (usec_l))
1533 usec_l = Fcar (usec_l);
1534 if (NILP (usec_l))
1535 *usec = 0;
1536 else
1537 {
1538 CHECK_NUMBER (usec_l);
1539 *usec = XINT (usec_l);
1540 }
1541 }
1542 low = Fcar (low);
1543 }
1544 else if (usec)
1545 *usec = 0;
1546 CHECK_NUMBER (low);
1547 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1548 return *result >> 16 == XINT (high);
1549 }
1550 }
1551
1552 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1553 doc: /* Return the current time, as a float number of seconds since the epoch.
1554 If SPECIFIED-TIME is given, it is the time to convert to float
1555 instead of the current time. The argument should have the form
1556 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1557 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1558 have the form (HIGH . LOW), but this is considered obsolete.
1559
1560 WARNING: Since the result is floating point, it may not be exact.
1561 Do not use this function if precise time stamps are required. */)
1562 (specified_time)
1563 Lisp_Object specified_time;
1564 {
1565 time_t sec;
1566 int usec;
1567
1568 if (! lisp_time_argument (specified_time, &sec, &usec))
1569 error ("Invalid time specification");
1570
1571 return make_float ((sec * 1e6 + usec) / 1e6);
1572 }
1573
1574 /* Write information into buffer S of size MAXSIZE, according to the
1575 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1576 Default to Universal Time if UT is nonzero, local time otherwise.
1577 Return the number of bytes written, not including the terminating
1578 '\0'. If S is NULL, nothing will be written anywhere; so to
1579 determine how many bytes would be written, use NULL for S and
1580 ((size_t) -1) for MAXSIZE.
1581
1582 This function behaves like emacs_strftimeu, except it allows null
1583 bytes in FORMAT. */
1584 static size_t
1585 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1586 char *s;
1587 size_t maxsize;
1588 const char *format;
1589 size_t format_len;
1590 const struct tm *tp;
1591 int ut;
1592 {
1593 size_t total = 0;
1594
1595 /* Loop through all the null-terminated strings in the format
1596 argument. Normally there's just one null-terminated string, but
1597 there can be arbitrarily many, concatenated together, if the
1598 format contains '\0' bytes. emacs_strftimeu stops at the first
1599 '\0' byte so we must invoke it separately for each such string. */
1600 for (;;)
1601 {
1602 size_t len;
1603 size_t result;
1604
1605 if (s)
1606 s[0] = '\1';
1607
1608 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1609
1610 if (s)
1611 {
1612 if (result == 0 && s[0] != '\0')
1613 return 0;
1614 s += result + 1;
1615 }
1616
1617 maxsize -= result + 1;
1618 total += result;
1619 len = strlen (format);
1620 if (len == format_len)
1621 return total;
1622 total++;
1623 format += len + 1;
1624 format_len -= len + 1;
1625 }
1626 }
1627
1628 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1629 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1630 TIME is specified as (HIGH LOW . IGNORED), as returned by
1631 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1632 is also still accepted.
1633 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1634 as Universal Time; nil means describe TIME in the local time zone.
1635 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1636 by text that describes the specified date and time in TIME:
1637
1638 %Y is the year, %y within the century, %C the century.
1639 %G is the year corresponding to the ISO week, %g within the century.
1640 %m is the numeric month.
1641 %b and %h are the locale's abbreviated month name, %B the full name.
1642 %d is the day of the month, zero-padded, %e is blank-padded.
1643 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1644 %a is the locale's abbreviated name of the day of week, %A the full name.
1645 %U is the week number starting on Sunday, %W starting on Monday,
1646 %V according to ISO 8601.
1647 %j is the day of the year.
1648
1649 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1650 only blank-padded, %l is like %I blank-padded.
1651 %p is the locale's equivalent of either AM or PM.
1652 %M is the minute.
1653 %S is the second.
1654 %Z is the time zone name, %z is the numeric form.
1655 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1656
1657 %c is the locale's date and time format.
1658 %x is the locale's "preferred" date format.
1659 %D is like "%m/%d/%y".
1660
1661 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1662 %X is the locale's "preferred" time format.
1663
1664 Finally, %n is a newline, %t is a tab, %% is a literal %.
1665
1666 Certain flags and modifiers are available with some format controls.
1667 The flags are `_', `-', `^' and `#'. For certain characters X,
1668 %_X is like %X, but padded with blanks; %-X is like %X,
1669 but without padding. %^X is like %X, but with all textual
1670 characters up-cased; %#X is like %X, but with letter-case of
1671 all textual characters reversed.
1672 %NX (where N stands for an integer) is like %X,
1673 but takes up at least N (a number) positions.
1674 The modifiers are `E' and `O'. For certain characters X,
1675 %EX is a locale's alternative version of %X;
1676 %OX is like %X, but uses the locale's number symbols.
1677
1678 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1679 (format_string, time, universal)
1680 Lisp_Object format_string, time, universal;
1681 {
1682 time_t value;
1683 int size;
1684 struct tm *tm;
1685 int ut = ! NILP (universal);
1686
1687 CHECK_STRING (format_string);
1688
1689 if (! lisp_time_argument (time, &value, NULL))
1690 error ("Invalid time specification");
1691
1692 format_string = code_convert_string_norecord (format_string,
1693 Vlocale_coding_system, 1);
1694
1695 /* This is probably enough. */
1696 size = SBYTES (format_string) * 6 + 50;
1697
1698 BLOCK_INPUT;
1699 tm = ut ? gmtime (&value) : localtime (&value);
1700 UNBLOCK_INPUT;
1701 if (! tm)
1702 error ("Specified time is not representable");
1703
1704 synchronize_system_time_locale ();
1705
1706 while (1)
1707 {
1708 char *buf = (char *) alloca (size + 1);
1709 int result;
1710
1711 buf[0] = '\1';
1712 BLOCK_INPUT;
1713 result = emacs_memftimeu (buf, size, SDATA (format_string),
1714 SBYTES (format_string),
1715 tm, ut);
1716 UNBLOCK_INPUT;
1717 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1718 return code_convert_string_norecord (make_unibyte_string (buf, result),
1719 Vlocale_coding_system, 0);
1720
1721 /* If buffer was too small, make it bigger and try again. */
1722 BLOCK_INPUT;
1723 result = emacs_memftimeu (NULL, (size_t) -1,
1724 SDATA (format_string),
1725 SBYTES (format_string),
1726 tm, ut);
1727 UNBLOCK_INPUT;
1728 size = result + 1;
1729 }
1730 }
1731
1732 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1733 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1734 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1735 as from `current-time' and `file-attributes', or nil to use the
1736 current time. The obsolete form (HIGH . LOW) is also still accepted.
1737 The list has the following nine members: SEC is an integer between 0
1738 and 60; SEC is 60 for a leap second, which only some operating systems
1739 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1740 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1741 integer between 1 and 12. YEAR is an integer indicating the
1742 four-digit year. DOW is the day of week, an integer between 0 and 6,
1743 where 0 is Sunday. DST is t if daylight saving time is in effect,
1744 otherwise nil. ZONE is an integer indicating the number of seconds
1745 east of Greenwich. (Note that Common Lisp has different meanings for
1746 DOW and ZONE.) */)
1747 (specified_time)
1748 Lisp_Object specified_time;
1749 {
1750 time_t time_spec;
1751 struct tm save_tm;
1752 struct tm *decoded_time;
1753 Lisp_Object list_args[9];
1754
1755 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1756 error ("Invalid time specification");
1757
1758 BLOCK_INPUT;
1759 decoded_time = localtime (&time_spec);
1760 UNBLOCK_INPUT;
1761 if (! decoded_time)
1762 error ("Specified time is not representable");
1763 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1764 XSETFASTINT (list_args[1], decoded_time->tm_min);
1765 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1766 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1767 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1768 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1769 cast below avoids overflow in int arithmetics. */
1770 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1771 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1772 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1773
1774 /* Make a copy, in case gmtime modifies the struct. */
1775 save_tm = *decoded_time;
1776 BLOCK_INPUT;
1777 decoded_time = gmtime (&time_spec);
1778 UNBLOCK_INPUT;
1779 if (decoded_time == 0)
1780 list_args[8] = Qnil;
1781 else
1782 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1783 return Flist (9, list_args);
1784 }
1785
1786 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1787 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1788 This is the reverse operation of `decode-time', which see.
1789 ZONE defaults to the current time zone rule. This can
1790 be a string or t (as from `set-time-zone-rule'), or it can be a list
1791 \(as from `current-time-zone') or an integer (as from `decode-time')
1792 applied without consideration for daylight saving time.
1793
1794 You can pass more than 7 arguments; then the first six arguments
1795 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1796 The intervening arguments are ignored.
1797 This feature lets (apply 'encode-time (decode-time ...)) work.
1798
1799 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1800 for example, a DAY of 0 means the day preceding the given month.
1801 Year numbers less than 100 are treated just like other year numbers.
1802 If you want them to stand for years in this century, you must do that yourself.
1803
1804 Years before 1970 are not guaranteed to work. On some systems,
1805 year values as low as 1901 do work.
1806
1807 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1808 (nargs, args)
1809 int nargs;
1810 register Lisp_Object *args;
1811 {
1812 time_t time;
1813 struct tm tm;
1814 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1815
1816 CHECK_NUMBER (args[0]); /* second */
1817 CHECK_NUMBER (args[1]); /* minute */
1818 CHECK_NUMBER (args[2]); /* hour */
1819 CHECK_NUMBER (args[3]); /* day */
1820 CHECK_NUMBER (args[4]); /* month */
1821 CHECK_NUMBER (args[5]); /* year */
1822
1823 tm.tm_sec = XINT (args[0]);
1824 tm.tm_min = XINT (args[1]);
1825 tm.tm_hour = XINT (args[2]);
1826 tm.tm_mday = XINT (args[3]);
1827 tm.tm_mon = XINT (args[4]) - 1;
1828 tm.tm_year = XINT (args[5]) - TM_YEAR_BASE;
1829 tm.tm_isdst = -1;
1830
1831 if (CONSP (zone))
1832 zone = Fcar (zone);
1833 if (NILP (zone))
1834 {
1835 BLOCK_INPUT;
1836 time = mktime (&tm);
1837 UNBLOCK_INPUT;
1838 }
1839 else
1840 {
1841 char tzbuf[100];
1842 char *tzstring;
1843 char **oldenv = environ, **newenv;
1844
1845 if (EQ (zone, Qt))
1846 tzstring = "UTC0";
1847 else if (STRINGP (zone))
1848 tzstring = (char *) SDATA (zone);
1849 else if (INTEGERP (zone))
1850 {
1851 int abszone = eabs (XINT (zone));
1852 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1853 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1854 tzstring = tzbuf;
1855 }
1856 else
1857 error ("Invalid time zone specification");
1858
1859 /* Set TZ before calling mktime; merely adjusting mktime's returned
1860 value doesn't suffice, since that would mishandle leap seconds. */
1861 set_time_zone_rule (tzstring);
1862
1863 BLOCK_INPUT;
1864 time = mktime (&tm);
1865 UNBLOCK_INPUT;
1866
1867 /* Restore TZ to previous value. */
1868 newenv = environ;
1869 environ = oldenv;
1870 xfree (newenv);
1871 #ifdef LOCALTIME_CACHE
1872 tzset ();
1873 #endif
1874 }
1875
1876 if (time == (time_t) -1)
1877 error ("Specified time is not representable");
1878
1879 return make_time (time);
1880 }
1881
1882 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1883 doc: /* Return the current time, as a human-readable string.
1884 Programs can use this function to decode a time,
1885 since the number of columns in each field is fixed
1886 if the year is in the range 1000-9999.
1887 The format is `Sun Sep 16 01:03:52 1973'.
1888 However, see also the functions `decode-time' and `format-time-string'
1889 which provide a much more powerful and general facility.
1890
1891 If SPECIFIED-TIME is given, it is a time to format instead of the
1892 current time. The argument should have the form (HIGH LOW . IGNORED).
1893 Thus, you can use times obtained from `current-time' and from
1894 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1895 but this is considered obsolete. */)
1896 (specified_time)
1897 Lisp_Object specified_time;
1898 {
1899 time_t value;
1900 struct tm *tm;
1901 register char *tem;
1902
1903 if (! lisp_time_argument (specified_time, &value, NULL))
1904 error ("Invalid time specification");
1905
1906 /* Convert to a string, checking for out-of-range time stamps.
1907 Don't use 'ctime', as that might dump core if VALUE is out of
1908 range. */
1909 BLOCK_INPUT;
1910 tm = localtime (&value);
1911 UNBLOCK_INPUT;
1912 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1913 error ("Specified time is not representable");
1914
1915 /* Remove the trailing newline. */
1916 tem[strlen (tem) - 1] = '\0';
1917
1918 return build_string (tem);
1919 }
1920
1921 /* Yield A - B, measured in seconds.
1922 This function is copied from the GNU C Library. */
1923 static int
1924 tm_diff (a, b)
1925 struct tm *a, *b;
1926 {
1927 /* Compute intervening leap days correctly even if year is negative.
1928 Take care to avoid int overflow in leap day calculations,
1929 but it's OK to assume that A and B are close to each other. */
1930 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1931 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1932 int a100 = a4 / 25 - (a4 % 25 < 0);
1933 int b100 = b4 / 25 - (b4 % 25 < 0);
1934 int a400 = a100 >> 2;
1935 int b400 = b100 >> 2;
1936 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1937 int years = a->tm_year - b->tm_year;
1938 int days = (365 * years + intervening_leap_days
1939 + (a->tm_yday - b->tm_yday));
1940 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1941 + (a->tm_min - b->tm_min))
1942 + (a->tm_sec - b->tm_sec));
1943 }
1944
1945 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1946 doc: /* Return the offset and name for the local time zone.
1947 This returns a list of the form (OFFSET NAME).
1948 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1949 A negative value means west of Greenwich.
1950 NAME is a string giving the name of the time zone.
1951 If SPECIFIED-TIME is given, the time zone offset is determined from it
1952 instead of using the current time. The argument should have the form
1953 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1954 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1955 have the form (HIGH . LOW), but this is considered obsolete.
1956
1957 Some operating systems cannot provide all this information to Emacs;
1958 in this case, `current-time-zone' returns a list containing nil for
1959 the data it can't find. */)
1960 (specified_time)
1961 Lisp_Object specified_time;
1962 {
1963 time_t value;
1964 struct tm *t;
1965 struct tm gmt;
1966
1967 if (!lisp_time_argument (specified_time, &value, NULL))
1968 t = NULL;
1969 else
1970 {
1971 BLOCK_INPUT;
1972 t = gmtime (&value);
1973 if (t)
1974 {
1975 gmt = *t;
1976 t = localtime (&value);
1977 }
1978 UNBLOCK_INPUT;
1979 }
1980
1981 if (t)
1982 {
1983 int offset = tm_diff (t, &gmt);
1984 char *s = 0;
1985 char buf[6];
1986
1987 #ifdef HAVE_TM_ZONE
1988 if (t->tm_zone)
1989 s = (char *)t->tm_zone;
1990 #else /* not HAVE_TM_ZONE */
1991 #ifdef HAVE_TZNAME
1992 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1993 s = tzname[t->tm_isdst];
1994 #endif
1995 #endif /* not HAVE_TM_ZONE */
1996
1997 if (!s)
1998 {
1999 /* No local time zone name is available; use "+-NNNN" instead. */
2000 int am = (offset < 0 ? -offset : offset) / 60;
2001 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
2002 s = buf;
2003 }
2004
2005 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
2006 }
2007 else
2008 return Fmake_list (make_number (2), Qnil);
2009 }
2010
2011 /* This holds the value of `environ' produced by the previous
2012 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2013 has never been called. */
2014 static char **environbuf;
2015
2016 /* This holds the startup value of the TZ environment variable so it
2017 can be restored if the user calls set-time-zone-rule with a nil
2018 argument. */
2019 static char *initial_tz;
2020
2021 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2022 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2023 If TZ is nil, use implementation-defined default time zone information.
2024 If TZ is t, use Universal Time. */)
2025 (tz)
2026 Lisp_Object tz;
2027 {
2028 char *tzstring;
2029
2030 /* When called for the first time, save the original TZ. */
2031 if (!environbuf)
2032 initial_tz = (char *) getenv ("TZ");
2033
2034 if (NILP (tz))
2035 tzstring = initial_tz;
2036 else if (EQ (tz, Qt))
2037 tzstring = "UTC0";
2038 else
2039 {
2040 CHECK_STRING (tz);
2041 tzstring = (char *) SDATA (tz);
2042 }
2043
2044 set_time_zone_rule (tzstring);
2045 free (environbuf);
2046 environbuf = environ;
2047
2048 return Qnil;
2049 }
2050
2051 #ifdef LOCALTIME_CACHE
2052
2053 /* These two values are known to load tz files in buggy implementations,
2054 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2055 Their values shouldn't matter in non-buggy implementations.
2056 We don't use string literals for these strings,
2057 since if a string in the environment is in readonly
2058 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2059 See Sun bugs 1113095 and 1114114, ``Timezone routines
2060 improperly modify environment''. */
2061
2062 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2063 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2064
2065 #endif
2066
2067 /* Set the local time zone rule to TZSTRING.
2068 This allocates memory into `environ', which it is the caller's
2069 responsibility to free. */
2070
2071 void
2072 set_time_zone_rule (tzstring)
2073 char *tzstring;
2074 {
2075 int envptrs;
2076 char **from, **to, **newenv;
2077
2078 /* Make the ENVIRON vector longer with room for TZSTRING. */
2079 for (from = environ; *from; from++)
2080 continue;
2081 envptrs = from - environ + 2;
2082 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2083 + (tzstring ? strlen (tzstring) + 4 : 0));
2084
2085 /* Add TZSTRING to the end of environ, as a value for TZ. */
2086 if (tzstring)
2087 {
2088 char *t = (char *) (to + envptrs);
2089 strcpy (t, "TZ=");
2090 strcat (t, tzstring);
2091 *to++ = t;
2092 }
2093
2094 /* Copy the old environ vector elements into NEWENV,
2095 but don't copy the TZ variable.
2096 So we have only one definition of TZ, which came from TZSTRING. */
2097 for (from = environ; *from; from++)
2098 if (strncmp (*from, "TZ=", 3) != 0)
2099 *to++ = *from;
2100 *to = 0;
2101
2102 environ = newenv;
2103
2104 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2105 the TZ variable is stored. If we do not have a TZSTRING,
2106 TO points to the vector slot which has the terminating null. */
2107
2108 #ifdef LOCALTIME_CACHE
2109 {
2110 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2111 "US/Pacific" that loads a tz file, then changes to a value like
2112 "XXX0" that does not load a tz file, and then changes back to
2113 its original value, the last change is (incorrectly) ignored.
2114 Also, if TZ changes twice in succession to values that do
2115 not load a tz file, tzset can dump core (see Sun bug#1225179).
2116 The following code works around these bugs. */
2117
2118 if (tzstring)
2119 {
2120 /* Temporarily set TZ to a value that loads a tz file
2121 and that differs from tzstring. */
2122 char *tz = *newenv;
2123 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2124 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2125 tzset ();
2126 *newenv = tz;
2127 }
2128 else
2129 {
2130 /* The implied tzstring is unknown, so temporarily set TZ to
2131 two different values that each load a tz file. */
2132 *to = set_time_zone_rule_tz1;
2133 to[1] = 0;
2134 tzset ();
2135 *to = set_time_zone_rule_tz2;
2136 tzset ();
2137 *to = 0;
2138 }
2139
2140 /* Now TZ has the desired value, and tzset can be invoked safely. */
2141 }
2142
2143 tzset ();
2144 #endif
2145 }
2146 \f
2147 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2148 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2149 type of object is Lisp_String). INHERIT is passed to
2150 INSERT_FROM_STRING_FUNC as the last argument. */
2151
2152 static void
2153 general_insert_function (insert_func, insert_from_string_func,
2154 inherit, nargs, args)
2155 void (*insert_func) P_ ((const unsigned char *, int));
2156 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2157 int inherit, nargs;
2158 register Lisp_Object *args;
2159 {
2160 register int argnum;
2161 register Lisp_Object val;
2162
2163 for (argnum = 0; argnum < nargs; argnum++)
2164 {
2165 val = args[argnum];
2166 if (CHARACTERP (val))
2167 {
2168 unsigned char str[MAX_MULTIBYTE_LENGTH];
2169 int len;
2170
2171 if (!NILP (current_buffer->enable_multibyte_characters))
2172 len = CHAR_STRING (XFASTINT (val), str);
2173 else
2174 {
2175 str[0] = (ASCII_CHAR_P (XINT (val))
2176 ? XINT (val)
2177 : multibyte_char_to_unibyte (XINT (val), Qnil));
2178 len = 1;
2179 }
2180 (*insert_func) (str, len);
2181 }
2182 else if (STRINGP (val))
2183 {
2184 (*insert_from_string_func) (val, 0, 0,
2185 SCHARS (val),
2186 SBYTES (val),
2187 inherit);
2188 }
2189 else
2190 wrong_type_argument (Qchar_or_string_p, val);
2191 }
2192 }
2193
2194 void
2195 insert1 (arg)
2196 Lisp_Object arg;
2197 {
2198 Finsert (1, &arg);
2199 }
2200
2201
2202 /* Callers passing one argument to Finsert need not gcpro the
2203 argument "array", since the only element of the array will
2204 not be used after calling insert or insert_from_string, so
2205 we don't care if it gets trashed. */
2206
2207 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2208 doc: /* Insert the arguments, either strings or characters, at point.
2209 Point and before-insertion markers move forward to end up
2210 after the inserted text.
2211 Any other markers at the point of insertion remain before the text.
2212
2213 If the current buffer is multibyte, unibyte strings are converted
2214 to multibyte for insertion (see `string-make-multibyte').
2215 If the current buffer is unibyte, multibyte strings are converted
2216 to unibyte for insertion (see `string-make-unibyte').
2217
2218 When operating on binary data, it may be necessary to preserve the
2219 original bytes of a unibyte string when inserting it into a multibyte
2220 buffer; to accomplish this, apply `string-as-multibyte' to the string
2221 and insert the result.
2222
2223 usage: (insert &rest ARGS) */)
2224 (nargs, args)
2225 int nargs;
2226 register Lisp_Object *args;
2227 {
2228 general_insert_function (insert, insert_from_string, 0, nargs, args);
2229 return Qnil;
2230 }
2231
2232 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2233 0, MANY, 0,
2234 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2235 Point and before-insertion markers move forward to end up
2236 after the inserted text.
2237 Any other markers at the point of insertion remain before the text.
2238
2239 If the current buffer is multibyte, unibyte strings are converted
2240 to multibyte for insertion (see `unibyte-char-to-multibyte').
2241 If the current buffer is unibyte, multibyte strings are converted
2242 to unibyte for insertion.
2243
2244 usage: (insert-and-inherit &rest ARGS) */)
2245 (nargs, args)
2246 int nargs;
2247 register Lisp_Object *args;
2248 {
2249 general_insert_function (insert_and_inherit, insert_from_string, 1,
2250 nargs, args);
2251 return Qnil;
2252 }
2253
2254 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2255 doc: /* Insert strings or characters at point, relocating markers after the text.
2256 Point and markers move forward to end up after the inserted text.
2257
2258 If the current buffer is multibyte, unibyte strings are converted
2259 to multibyte for insertion (see `unibyte-char-to-multibyte').
2260 If the current buffer is unibyte, multibyte strings are converted
2261 to unibyte for insertion.
2262
2263 usage: (insert-before-markers &rest ARGS) */)
2264 (nargs, args)
2265 int nargs;
2266 register Lisp_Object *args;
2267 {
2268 general_insert_function (insert_before_markers,
2269 insert_from_string_before_markers, 0,
2270 nargs, args);
2271 return Qnil;
2272 }
2273
2274 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2275 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2276 doc: /* Insert text at point, relocating markers and inheriting properties.
2277 Point and markers move forward to end up after the inserted text.
2278
2279 If the current buffer is multibyte, unibyte strings are converted
2280 to multibyte for insertion (see `unibyte-char-to-multibyte').
2281 If the current buffer is unibyte, multibyte strings are converted
2282 to unibyte for insertion.
2283
2284 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2285 (nargs, args)
2286 int nargs;
2287 register Lisp_Object *args;
2288 {
2289 general_insert_function (insert_before_markers_and_inherit,
2290 insert_from_string_before_markers, 1,
2291 nargs, args);
2292 return Qnil;
2293 }
2294 \f
2295 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2296 doc: /* Insert COUNT copies of CHARACTER.
2297 Point, and before-insertion markers, are relocated as in the function `insert'.
2298 The optional third arg INHERIT, if non-nil, says to inherit text properties
2299 from adjoining text, if those properties are sticky. */)
2300 (character, count, inherit)
2301 Lisp_Object character, count, inherit;
2302 {
2303 register unsigned char *string;
2304 register int strlen;
2305 register int i, n;
2306 int len;
2307 unsigned char str[MAX_MULTIBYTE_LENGTH];
2308
2309 CHECK_NUMBER (character);
2310 CHECK_NUMBER (count);
2311
2312 if (!NILP (current_buffer->enable_multibyte_characters))
2313 len = CHAR_STRING (XFASTINT (character), str);
2314 else
2315 str[0] = XFASTINT (character), len = 1;
2316 n = XINT (count) * len;
2317 if (n <= 0)
2318 return Qnil;
2319 strlen = min (n, 256 * len);
2320 string = (unsigned char *) alloca (strlen);
2321 for (i = 0; i < strlen; i++)
2322 string[i] = str[i % len];
2323 while (n >= strlen)
2324 {
2325 QUIT;
2326 if (!NILP (inherit))
2327 insert_and_inherit (string, strlen);
2328 else
2329 insert (string, strlen);
2330 n -= strlen;
2331 }
2332 if (n > 0)
2333 {
2334 if (!NILP (inherit))
2335 insert_and_inherit (string, n);
2336 else
2337 insert (string, n);
2338 }
2339 return Qnil;
2340 }
2341
2342 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2343 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2344 Both arguments are required.
2345 BYTE is a number of the range 0..255.
2346
2347 If BYTE is 128..255 and the current buffer is multibyte, the
2348 corresponding eight-bit character is inserted.
2349
2350 Point, and before-insertion markers, are relocated as in the function `insert'.
2351 The optional third arg INHERIT, if non-nil, says to inherit text properties
2352 from adjoining text, if those properties are sticky. */)
2353 (byte, count, inherit)
2354 Lisp_Object byte, count, inherit;
2355 {
2356 CHECK_NUMBER (byte);
2357 if (XINT (byte) < 0 || XINT (byte) > 255)
2358 args_out_of_range_3 (byte, make_number (0), make_number (255));
2359 if (XINT (byte) >= 128
2360 && ! NILP (current_buffer->enable_multibyte_characters))
2361 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2362 return Finsert_char (byte, count, inherit);
2363 }
2364
2365 \f
2366 /* Making strings from buffer contents. */
2367
2368 /* Return a Lisp_String containing the text of the current buffer from
2369 START to END. If text properties are in use and the current buffer
2370 has properties in the range specified, the resulting string will also
2371 have them, if PROPS is nonzero.
2372
2373 We don't want to use plain old make_string here, because it calls
2374 make_uninit_string, which can cause the buffer arena to be
2375 compacted. make_string has no way of knowing that the data has
2376 been moved, and thus copies the wrong data into the string. This
2377 doesn't effect most of the other users of make_string, so it should
2378 be left as is. But we should use this function when conjuring
2379 buffer substrings. */
2380
2381 Lisp_Object
2382 make_buffer_string (start, end, props)
2383 int start, end;
2384 int props;
2385 {
2386 int start_byte = CHAR_TO_BYTE (start);
2387 int end_byte = CHAR_TO_BYTE (end);
2388
2389 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2390 }
2391
2392 /* Return a Lisp_String containing the text of the current buffer from
2393 START / START_BYTE to END / END_BYTE.
2394
2395 If text properties are in use and the current buffer
2396 has properties in the range specified, the resulting string will also
2397 have them, if PROPS is nonzero.
2398
2399 We don't want to use plain old make_string here, because it calls
2400 make_uninit_string, which can cause the buffer arena to be
2401 compacted. make_string has no way of knowing that the data has
2402 been moved, and thus copies the wrong data into the string. This
2403 doesn't effect most of the other users of make_string, so it should
2404 be left as is. But we should use this function when conjuring
2405 buffer substrings. */
2406
2407 Lisp_Object
2408 make_buffer_string_both (start, start_byte, end, end_byte, props)
2409 int start, start_byte, end, end_byte;
2410 int props;
2411 {
2412 Lisp_Object result, tem, tem1;
2413
2414 if (start < GPT && GPT < end)
2415 move_gap (start);
2416
2417 if (! NILP (current_buffer->enable_multibyte_characters))
2418 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2419 else
2420 result = make_uninit_string (end - start);
2421 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2422 end_byte - start_byte);
2423
2424 /* If desired, update and copy the text properties. */
2425 if (props)
2426 {
2427 update_buffer_properties (start, end);
2428
2429 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2430 tem1 = Ftext_properties_at (make_number (start), Qnil);
2431
2432 if (XINT (tem) != end || !NILP (tem1))
2433 copy_intervals_to_string (result, current_buffer, start,
2434 end - start);
2435 }
2436
2437 return result;
2438 }
2439
2440 /* Call Vbuffer_access_fontify_functions for the range START ... END
2441 in the current buffer, if necessary. */
2442
2443 static void
2444 update_buffer_properties (start, end)
2445 int start, end;
2446 {
2447 /* If this buffer has some access functions,
2448 call them, specifying the range of the buffer being accessed. */
2449 if (!NILP (Vbuffer_access_fontify_functions))
2450 {
2451 Lisp_Object args[3];
2452 Lisp_Object tem;
2453
2454 args[0] = Qbuffer_access_fontify_functions;
2455 XSETINT (args[1], start);
2456 XSETINT (args[2], end);
2457
2458 /* But don't call them if we can tell that the work
2459 has already been done. */
2460 if (!NILP (Vbuffer_access_fontified_property))
2461 {
2462 tem = Ftext_property_any (args[1], args[2],
2463 Vbuffer_access_fontified_property,
2464 Qnil, Qnil);
2465 if (! NILP (tem))
2466 Frun_hook_with_args (3, args);
2467 }
2468 else
2469 Frun_hook_with_args (3, args);
2470 }
2471 }
2472
2473 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2474 doc: /* Return the contents of part of the current buffer as a string.
2475 The two arguments START and END are character positions;
2476 they can be in either order.
2477 The string returned is multibyte if the buffer is multibyte.
2478
2479 This function copies the text properties of that part of the buffer
2480 into the result string; if you don't want the text properties,
2481 use `buffer-substring-no-properties' instead. */)
2482 (start, end)
2483 Lisp_Object start, end;
2484 {
2485 register int b, e;
2486
2487 validate_region (&start, &end);
2488 b = XINT (start);
2489 e = XINT (end);
2490
2491 return make_buffer_string (b, e, 1);
2492 }
2493
2494 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2495 Sbuffer_substring_no_properties, 2, 2, 0,
2496 doc: /* Return the characters of part of the buffer, without the text properties.
2497 The two arguments START and END are character positions;
2498 they can be in either order. */)
2499 (start, end)
2500 Lisp_Object start, end;
2501 {
2502 register int b, e;
2503
2504 validate_region (&start, &end);
2505 b = XINT (start);
2506 e = XINT (end);
2507
2508 return make_buffer_string (b, e, 0);
2509 }
2510
2511 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2512 doc: /* Return the contents of the current buffer as a string.
2513 If narrowing is in effect, this function returns only the visible part
2514 of the buffer. */)
2515 ()
2516 {
2517 return make_buffer_string (BEGV, ZV, 1);
2518 }
2519
2520 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2521 1, 3, 0,
2522 doc: /* Insert before point a substring of the contents of BUFFER.
2523 BUFFER may be a buffer or a buffer name.
2524 Arguments START and END are character positions specifying the substring.
2525 They default to the values of (point-min) and (point-max) in BUFFER. */)
2526 (buffer, start, end)
2527 Lisp_Object buffer, start, end;
2528 {
2529 register int b, e, temp;
2530 register struct buffer *bp, *obuf;
2531 Lisp_Object buf;
2532
2533 buf = Fget_buffer (buffer);
2534 if (NILP (buf))
2535 nsberror (buffer);
2536 bp = XBUFFER (buf);
2537 if (NILP (bp->name))
2538 error ("Selecting deleted buffer");
2539
2540 if (NILP (start))
2541 b = BUF_BEGV (bp);
2542 else
2543 {
2544 CHECK_NUMBER_COERCE_MARKER (start);
2545 b = XINT (start);
2546 }
2547 if (NILP (end))
2548 e = BUF_ZV (bp);
2549 else
2550 {
2551 CHECK_NUMBER_COERCE_MARKER (end);
2552 e = XINT (end);
2553 }
2554
2555 if (b > e)
2556 temp = b, b = e, e = temp;
2557
2558 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2559 args_out_of_range (start, end);
2560
2561 obuf = current_buffer;
2562 set_buffer_internal_1 (bp);
2563 update_buffer_properties (b, e);
2564 set_buffer_internal_1 (obuf);
2565
2566 insert_from_buffer (bp, b, e - b, 0);
2567 return Qnil;
2568 }
2569
2570 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2571 6, 6, 0,
2572 doc: /* Compare two substrings of two buffers; return result as number.
2573 the value is -N if first string is less after N-1 chars,
2574 +N if first string is greater after N-1 chars, or 0 if strings match.
2575 Each substring is represented as three arguments: BUFFER, START and END.
2576 That makes six args in all, three for each substring.
2577
2578 The value of `case-fold-search' in the current buffer
2579 determines whether case is significant or ignored. */)
2580 (buffer1, start1, end1, buffer2, start2, end2)
2581 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2582 {
2583 register int begp1, endp1, begp2, endp2, temp;
2584 register struct buffer *bp1, *bp2;
2585 register Lisp_Object trt
2586 = (!NILP (current_buffer->case_fold_search)
2587 ? current_buffer->case_canon_table : Qnil);
2588 int chars = 0;
2589 int i1, i2, i1_byte, i2_byte;
2590
2591 /* Find the first buffer and its substring. */
2592
2593 if (NILP (buffer1))
2594 bp1 = current_buffer;
2595 else
2596 {
2597 Lisp_Object buf1;
2598 buf1 = Fget_buffer (buffer1);
2599 if (NILP (buf1))
2600 nsberror (buffer1);
2601 bp1 = XBUFFER (buf1);
2602 if (NILP (bp1->name))
2603 error ("Selecting deleted buffer");
2604 }
2605
2606 if (NILP (start1))
2607 begp1 = BUF_BEGV (bp1);
2608 else
2609 {
2610 CHECK_NUMBER_COERCE_MARKER (start1);
2611 begp1 = XINT (start1);
2612 }
2613 if (NILP (end1))
2614 endp1 = BUF_ZV (bp1);
2615 else
2616 {
2617 CHECK_NUMBER_COERCE_MARKER (end1);
2618 endp1 = XINT (end1);
2619 }
2620
2621 if (begp1 > endp1)
2622 temp = begp1, begp1 = endp1, endp1 = temp;
2623
2624 if (!(BUF_BEGV (bp1) <= begp1
2625 && begp1 <= endp1
2626 && endp1 <= BUF_ZV (bp1)))
2627 args_out_of_range (start1, end1);
2628
2629 /* Likewise for second substring. */
2630
2631 if (NILP (buffer2))
2632 bp2 = current_buffer;
2633 else
2634 {
2635 Lisp_Object buf2;
2636 buf2 = Fget_buffer (buffer2);
2637 if (NILP (buf2))
2638 nsberror (buffer2);
2639 bp2 = XBUFFER (buf2);
2640 if (NILP (bp2->name))
2641 error ("Selecting deleted buffer");
2642 }
2643
2644 if (NILP (start2))
2645 begp2 = BUF_BEGV (bp2);
2646 else
2647 {
2648 CHECK_NUMBER_COERCE_MARKER (start2);
2649 begp2 = XINT (start2);
2650 }
2651 if (NILP (end2))
2652 endp2 = BUF_ZV (bp2);
2653 else
2654 {
2655 CHECK_NUMBER_COERCE_MARKER (end2);
2656 endp2 = XINT (end2);
2657 }
2658
2659 if (begp2 > endp2)
2660 temp = begp2, begp2 = endp2, endp2 = temp;
2661
2662 if (!(BUF_BEGV (bp2) <= begp2
2663 && begp2 <= endp2
2664 && endp2 <= BUF_ZV (bp2)))
2665 args_out_of_range (start2, end2);
2666
2667 i1 = begp1;
2668 i2 = begp2;
2669 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2670 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2671
2672 while (i1 < endp1 && i2 < endp2)
2673 {
2674 /* When we find a mismatch, we must compare the
2675 characters, not just the bytes. */
2676 int c1, c2;
2677
2678 QUIT;
2679
2680 if (! NILP (bp1->enable_multibyte_characters))
2681 {
2682 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2683 BUF_INC_POS (bp1, i1_byte);
2684 i1++;
2685 }
2686 else
2687 {
2688 c1 = BUF_FETCH_BYTE (bp1, i1);
2689 c1 = unibyte_char_to_multibyte (c1);
2690 i1++;
2691 }
2692
2693 if (! NILP (bp2->enable_multibyte_characters))
2694 {
2695 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2696 BUF_INC_POS (bp2, i2_byte);
2697 i2++;
2698 }
2699 else
2700 {
2701 c2 = BUF_FETCH_BYTE (bp2, i2);
2702 c2 = unibyte_char_to_multibyte (c2);
2703 i2++;
2704 }
2705
2706 if (!NILP (trt))
2707 {
2708 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2709 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2710 }
2711 if (c1 < c2)
2712 return make_number (- 1 - chars);
2713 if (c1 > c2)
2714 return make_number (chars + 1);
2715
2716 chars++;
2717 }
2718
2719 /* The strings match as far as they go.
2720 If one is shorter, that one is less. */
2721 if (chars < endp1 - begp1)
2722 return make_number (chars + 1);
2723 else if (chars < endp2 - begp2)
2724 return make_number (- chars - 1);
2725
2726 /* Same length too => they are equal. */
2727 return make_number (0);
2728 }
2729 \f
2730 static Lisp_Object
2731 subst_char_in_region_unwind (arg)
2732 Lisp_Object arg;
2733 {
2734 return current_buffer->undo_list = arg;
2735 }
2736
2737 static Lisp_Object
2738 subst_char_in_region_unwind_1 (arg)
2739 Lisp_Object arg;
2740 {
2741 return current_buffer->filename = arg;
2742 }
2743
2744 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2745 Ssubst_char_in_region, 4, 5, 0,
2746 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2747 If optional arg NOUNDO is non-nil, don't record this change for undo
2748 and don't mark the buffer as really changed.
2749 Both characters must have the same length of multi-byte form. */)
2750 (start, end, fromchar, tochar, noundo)
2751 Lisp_Object start, end, fromchar, tochar, noundo;
2752 {
2753 register int pos, pos_byte, stop, i, len, end_byte;
2754 /* Keep track of the first change in the buffer:
2755 if 0 we haven't found it yet.
2756 if < 0 we've found it and we've run the before-change-function.
2757 if > 0 we've actually performed it and the value is its position. */
2758 int changed = 0;
2759 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2760 unsigned char *p;
2761 int count = SPECPDL_INDEX ();
2762 #define COMBINING_NO 0
2763 #define COMBINING_BEFORE 1
2764 #define COMBINING_AFTER 2
2765 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2766 int maybe_byte_combining = COMBINING_NO;
2767 int last_changed = 0;
2768 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2769
2770 restart:
2771
2772 validate_region (&start, &end);
2773 CHECK_NUMBER (fromchar);
2774 CHECK_NUMBER (tochar);
2775
2776 if (multibyte_p)
2777 {
2778 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2779 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2780 error ("Characters in `subst-char-in-region' have different byte-lengths");
2781 if (!ASCII_BYTE_P (*tostr))
2782 {
2783 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2784 complete multibyte character, it may be combined with the
2785 after bytes. If it is in the range 0xA0..0xFF, it may be
2786 combined with the before and after bytes. */
2787 if (!CHAR_HEAD_P (*tostr))
2788 maybe_byte_combining = COMBINING_BOTH;
2789 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2790 maybe_byte_combining = COMBINING_AFTER;
2791 }
2792 }
2793 else
2794 {
2795 len = 1;
2796 fromstr[0] = XFASTINT (fromchar);
2797 tostr[0] = XFASTINT (tochar);
2798 }
2799
2800 pos = XINT (start);
2801 pos_byte = CHAR_TO_BYTE (pos);
2802 stop = CHAR_TO_BYTE (XINT (end));
2803 end_byte = stop;
2804
2805 /* If we don't want undo, turn off putting stuff on the list.
2806 That's faster than getting rid of things,
2807 and it prevents even the entry for a first change.
2808 Also inhibit locking the file. */
2809 if (!changed && !NILP (noundo))
2810 {
2811 record_unwind_protect (subst_char_in_region_unwind,
2812 current_buffer->undo_list);
2813 current_buffer->undo_list = Qt;
2814 /* Don't do file-locking. */
2815 record_unwind_protect (subst_char_in_region_unwind_1,
2816 current_buffer->filename);
2817 current_buffer->filename = Qnil;
2818 }
2819
2820 if (pos_byte < GPT_BYTE)
2821 stop = min (stop, GPT_BYTE);
2822 while (1)
2823 {
2824 int pos_byte_next = pos_byte;
2825
2826 if (pos_byte >= stop)
2827 {
2828 if (pos_byte >= end_byte) break;
2829 stop = end_byte;
2830 }
2831 p = BYTE_POS_ADDR (pos_byte);
2832 if (multibyte_p)
2833 INC_POS (pos_byte_next);
2834 else
2835 ++pos_byte_next;
2836 if (pos_byte_next - pos_byte == len
2837 && p[0] == fromstr[0]
2838 && (len == 1
2839 || (p[1] == fromstr[1]
2840 && (len == 2 || (p[2] == fromstr[2]
2841 && (len == 3 || p[3] == fromstr[3]))))))
2842 {
2843 if (changed < 0)
2844 /* We've already seen this and run the before-change-function;
2845 this time we only need to record the actual position. */
2846 changed = pos;
2847 else if (!changed)
2848 {
2849 changed = -1;
2850 modify_region (current_buffer, pos, XINT (end), 0);
2851
2852 if (! NILP (noundo))
2853 {
2854 if (MODIFF - 1 == SAVE_MODIFF)
2855 SAVE_MODIFF++;
2856 if (MODIFF - 1 == current_buffer->auto_save_modified)
2857 current_buffer->auto_save_modified++;
2858 }
2859
2860 /* The before-change-function may have moved the gap
2861 or even modified the buffer so we should start over. */
2862 goto restart;
2863 }
2864
2865 /* Take care of the case where the new character
2866 combines with neighboring bytes. */
2867 if (maybe_byte_combining
2868 && (maybe_byte_combining == COMBINING_AFTER
2869 ? (pos_byte_next < Z_BYTE
2870 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2871 : ((pos_byte_next < Z_BYTE
2872 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2873 || (pos_byte > BEG_BYTE
2874 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2875 {
2876 Lisp_Object tem, string;
2877
2878 struct gcpro gcpro1;
2879
2880 tem = current_buffer->undo_list;
2881 GCPRO1 (tem);
2882
2883 /* Make a multibyte string containing this single character. */
2884 string = make_multibyte_string (tostr, 1, len);
2885 /* replace_range is less efficient, because it moves the gap,
2886 but it handles combining correctly. */
2887 replace_range (pos, pos + 1, string,
2888 0, 0, 1);
2889 pos_byte_next = CHAR_TO_BYTE (pos);
2890 if (pos_byte_next > pos_byte)
2891 /* Before combining happened. We should not increment
2892 POS. So, to cancel the later increment of POS,
2893 decrease it now. */
2894 pos--;
2895 else
2896 INC_POS (pos_byte_next);
2897
2898 if (! NILP (noundo))
2899 current_buffer->undo_list = tem;
2900
2901 UNGCPRO;
2902 }
2903 else
2904 {
2905 if (NILP (noundo))
2906 record_change (pos, 1);
2907 for (i = 0; i < len; i++) *p++ = tostr[i];
2908 }
2909 last_changed = pos + 1;
2910 }
2911 pos_byte = pos_byte_next;
2912 pos++;
2913 }
2914
2915 if (changed > 0)
2916 {
2917 signal_after_change (changed,
2918 last_changed - changed, last_changed - changed);
2919 update_compositions (changed, last_changed, CHECK_ALL);
2920 }
2921
2922 unbind_to (count, Qnil);
2923 return Qnil;
2924 }
2925
2926
2927 static Lisp_Object check_translation P_ ((int, int, int, Lisp_Object));
2928
2929 /* Helper function for Ftranslate_region_internal.
2930
2931 Check if a character sequence at POS (POS_BYTE) matches an element
2932 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2933 element is found, return it. Otherwise return Qnil. */
2934
2935 static Lisp_Object
2936 check_translation (pos, pos_byte, end, val)
2937 int pos, pos_byte, end;
2938 Lisp_Object val;
2939 {
2940 int buf_size = 16, buf_used = 0;
2941 int *buf = alloca (sizeof (int) * buf_size);
2942
2943 for (; CONSP (val); val = XCDR (val))
2944 {
2945 Lisp_Object elt;
2946 int len, i;
2947
2948 elt = XCAR (val);
2949 if (! CONSP (elt))
2950 continue;
2951 elt = XCAR (elt);
2952 if (! VECTORP (elt))
2953 continue;
2954 len = ASIZE (elt);
2955 if (len <= end - pos)
2956 {
2957 for (i = 0; i < len; i++)
2958 {
2959 if (buf_used <= i)
2960 {
2961 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2962 int len;
2963
2964 if (buf_used == buf_size)
2965 {
2966 int *newbuf;
2967
2968 buf_size += 16;
2969 newbuf = alloca (sizeof (int) * buf_size);
2970 memcpy (newbuf, buf, sizeof (int) * buf_used);
2971 buf = newbuf;
2972 }
2973 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, 0, len);
2974 pos_byte += len;
2975 }
2976 if (XINT (AREF (elt, i)) != buf[i])
2977 break;
2978 }
2979 if (i == len)
2980 return XCAR (val);
2981 }
2982 }
2983 return Qnil;
2984 }
2985
2986
2987 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2988 Stranslate_region_internal, 3, 3, 0,
2989 doc: /* Internal use only.
2990 From START to END, translate characters according to TABLE.
2991 TABLE is a string or a char-table; the Nth character in it is the
2992 mapping for the character with code N.
2993 It returns the number of characters changed. */)
2994 (start, end, table)
2995 Lisp_Object start;
2996 Lisp_Object end;
2997 register Lisp_Object table;
2998 {
2999 register unsigned char *tt; /* Trans table. */
3000 register int nc; /* New character. */
3001 int cnt; /* Number of changes made. */
3002 int size; /* Size of translate table. */
3003 int pos, pos_byte, end_pos;
3004 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3005 int string_multibyte;
3006 Lisp_Object val;
3007
3008 validate_region (&start, &end);
3009 if (CHAR_TABLE_P (table))
3010 {
3011 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3012 error ("Not a translation table");
3013 size = MAX_CHAR;
3014 tt = NULL;
3015 }
3016 else
3017 {
3018 CHECK_STRING (table);
3019
3020 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3021 table = string_make_unibyte (table);
3022 string_multibyte = SCHARS (table) < SBYTES (table);
3023 size = SBYTES (table);
3024 tt = SDATA (table);
3025 }
3026
3027 pos = XINT (start);
3028 pos_byte = CHAR_TO_BYTE (pos);
3029 end_pos = XINT (end);
3030 modify_region (current_buffer, pos, end_pos, 0);
3031
3032 cnt = 0;
3033 for (; pos < end_pos; )
3034 {
3035 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3036 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3037 int len, str_len;
3038 int oc;
3039 Lisp_Object val;
3040
3041 if (multibyte)
3042 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
3043 else
3044 oc = *p, len = 1;
3045 if (oc < size)
3046 {
3047 if (tt)
3048 {
3049 /* Reload as signal_after_change in last iteration may GC. */
3050 tt = SDATA (table);
3051 if (string_multibyte)
3052 {
3053 str = tt + string_char_to_byte (table, oc);
3054 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
3055 str_len);
3056 }
3057 else
3058 {
3059 nc = tt[oc];
3060 if (! ASCII_BYTE_P (nc) && multibyte)
3061 {
3062 str_len = BYTE8_STRING (nc, buf);
3063 str = buf;
3064 }
3065 else
3066 {
3067 str_len = 1;
3068 str = tt + oc;
3069 }
3070 }
3071 }
3072 else
3073 {
3074 int c;
3075
3076 nc = oc;
3077 val = CHAR_TABLE_REF (table, oc);
3078 if (CHARACTERP (val)
3079 && (c = XINT (val), CHAR_VALID_P (c, 0)))
3080 {
3081 nc = c;
3082 str_len = CHAR_STRING (nc, buf);
3083 str = buf;
3084 }
3085 else if (VECTORP (val) || (CONSP (val)))
3086 {
3087 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3088 where TO is TO-CHAR or [TO-CHAR ...]. */
3089 nc = -1;
3090 }
3091 }
3092
3093 if (nc != oc && nc >= 0)
3094 {
3095 /* Simple one char to one char translation. */
3096 if (len != str_len)
3097 {
3098 Lisp_Object string;
3099
3100 /* This is less efficient, because it moves the gap,
3101 but it should handle multibyte characters correctly. */
3102 string = make_multibyte_string (str, 1, str_len);
3103 replace_range (pos, pos + 1, string, 1, 0, 1);
3104 len = str_len;
3105 }
3106 else
3107 {
3108 record_change (pos, 1);
3109 while (str_len-- > 0)
3110 *p++ = *str++;
3111 signal_after_change (pos, 1, 1);
3112 update_compositions (pos, pos + 1, CHECK_BORDER);
3113 }
3114 ++cnt;
3115 }
3116 else if (nc < 0)
3117 {
3118 Lisp_Object string;
3119
3120 if (CONSP (val))
3121 {
3122 val = check_translation (pos, pos_byte, end_pos, val);
3123 if (NILP (val))
3124 {
3125 pos_byte += len;
3126 pos++;
3127 continue;
3128 }
3129 /* VAL is ([FROM-CHAR ...] . TO). */
3130 len = ASIZE (XCAR (val));
3131 val = XCDR (val);
3132 }
3133 else
3134 len = 1;
3135
3136 if (VECTORP (val))
3137 {
3138 int i;
3139
3140 string = Fmake_string (make_number (ASIZE (val)),
3141 AREF (val, 0));
3142 for (i = 1; i < ASIZE (val); i++)
3143 Faset (string, make_number (i), AREF (val, i));
3144 }
3145 else
3146 {
3147 string = Fmake_string (make_number (1), val);
3148 }
3149 replace_range (pos, pos + len, string, 1, 0, 1);
3150 pos_byte += SBYTES (string);
3151 pos += SCHARS (string);
3152 cnt += SCHARS (string);
3153 end_pos += SCHARS (string) - len;
3154 continue;
3155 }
3156 }
3157 pos_byte += len;
3158 pos++;
3159 }
3160
3161 return make_number (cnt);
3162 }
3163
3164 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3165 doc: /* Delete the text between point and mark.
3166
3167 When called from a program, expects two arguments,
3168 positions (integers or markers) specifying the stretch to be deleted. */)
3169 (start, end)
3170 Lisp_Object start, end;
3171 {
3172 validate_region (&start, &end);
3173 del_range (XINT (start), XINT (end));
3174 return Qnil;
3175 }
3176
3177 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3178 Sdelete_and_extract_region, 2, 2, 0,
3179 doc: /* Delete the text between START and END and return it. */)
3180 (start, end)
3181 Lisp_Object start, end;
3182 {
3183 validate_region (&start, &end);
3184 if (XINT (start) == XINT (end))
3185 return empty_unibyte_string;
3186 return del_range_1 (XINT (start), XINT (end), 1, 1);
3187 }
3188 \f
3189 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3190 doc: /* Remove restrictions (narrowing) from current buffer.
3191 This allows the buffer's full text to be seen and edited. */)
3192 ()
3193 {
3194 if (BEG != BEGV || Z != ZV)
3195 current_buffer->clip_changed = 1;
3196 BEGV = BEG;
3197 BEGV_BYTE = BEG_BYTE;
3198 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3199 /* Changing the buffer bounds invalidates any recorded current column. */
3200 invalidate_current_column ();
3201 return Qnil;
3202 }
3203
3204 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3205 doc: /* Restrict editing in this buffer to the current region.
3206 The rest of the text becomes temporarily invisible and untouchable
3207 but is not deleted; if you save the buffer in a file, the invisible
3208 text is included in the file. \\[widen] makes all visible again.
3209 See also `save-restriction'.
3210
3211 When calling from a program, pass two arguments; positions (integers
3212 or markers) bounding the text that should remain visible. */)
3213 (start, end)
3214 register Lisp_Object start, end;
3215 {
3216 CHECK_NUMBER_COERCE_MARKER (start);
3217 CHECK_NUMBER_COERCE_MARKER (end);
3218
3219 if (XINT (start) > XINT (end))
3220 {
3221 Lisp_Object tem;
3222 tem = start; start = end; end = tem;
3223 }
3224
3225 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3226 args_out_of_range (start, end);
3227
3228 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3229 current_buffer->clip_changed = 1;
3230
3231 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3232 SET_BUF_ZV (current_buffer, XFASTINT (end));
3233 if (PT < XFASTINT (start))
3234 SET_PT (XFASTINT (start));
3235 if (PT > XFASTINT (end))
3236 SET_PT (XFASTINT (end));
3237 /* Changing the buffer bounds invalidates any recorded current column. */
3238 invalidate_current_column ();
3239 return Qnil;
3240 }
3241
3242 Lisp_Object
3243 save_restriction_save ()
3244 {
3245 if (BEGV == BEG && ZV == Z)
3246 /* The common case that the buffer isn't narrowed.
3247 We return just the buffer object, which save_restriction_restore
3248 recognizes as meaning `no restriction'. */
3249 return Fcurrent_buffer ();
3250 else
3251 /* We have to save a restriction, so return a pair of markers, one
3252 for the beginning and one for the end. */
3253 {
3254 Lisp_Object beg, end;
3255
3256 beg = buildmark (BEGV, BEGV_BYTE);
3257 end = buildmark (ZV, ZV_BYTE);
3258
3259 /* END must move forward if text is inserted at its exact location. */
3260 XMARKER(end)->insertion_type = 1;
3261
3262 return Fcons (beg, end);
3263 }
3264 }
3265
3266 Lisp_Object
3267 save_restriction_restore (data)
3268 Lisp_Object data;
3269 {
3270 if (CONSP (data))
3271 /* A pair of marks bounding a saved restriction. */
3272 {
3273 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3274 struct Lisp_Marker *end = XMARKER (XCDR (data));
3275 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3276
3277 if (buf /* Verify marker still points to a buffer. */
3278 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3279 /* The restriction has changed from the saved one, so restore
3280 the saved restriction. */
3281 {
3282 int pt = BUF_PT (buf);
3283
3284 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3285 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3286
3287 if (pt < beg->charpos || pt > end->charpos)
3288 /* The point is outside the new visible range, move it inside. */
3289 SET_BUF_PT_BOTH (buf,
3290 clip_to_bounds (beg->charpos, pt, end->charpos),
3291 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3292 end->bytepos));
3293
3294 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3295 }
3296 }
3297 else
3298 /* A buffer, which means that there was no old restriction. */
3299 {
3300 struct buffer *buf = XBUFFER (data);
3301
3302 if (buf /* Verify marker still points to a buffer. */
3303 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3304 /* The buffer has been narrowed, get rid of the narrowing. */
3305 {
3306 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3307 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3308
3309 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3310 }
3311 }
3312
3313 return Qnil;
3314 }
3315
3316 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3317 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3318 The buffer's restrictions make parts of the beginning and end invisible.
3319 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3320 This special form, `save-restriction', saves the current buffer's restrictions
3321 when it is entered, and restores them when it is exited.
3322 So any `narrow-to-region' within BODY lasts only until the end of the form.
3323 The old restrictions settings are restored
3324 even in case of abnormal exit (throw or error).
3325
3326 The value returned is the value of the last form in BODY.
3327
3328 Note: if you are using both `save-excursion' and `save-restriction',
3329 use `save-excursion' outermost:
3330 (save-excursion (save-restriction ...))
3331
3332 usage: (save-restriction &rest BODY) */)
3333 (body)
3334 Lisp_Object body;
3335 {
3336 register Lisp_Object val;
3337 int count = SPECPDL_INDEX ();
3338
3339 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3340 val = Fprogn (body);
3341 return unbind_to (count, val);
3342 }
3343 \f
3344 /* Buffer for the most recent text displayed by Fmessage_box. */
3345 static char *message_text;
3346
3347 /* Allocated length of that buffer. */
3348 static int message_length;
3349
3350 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3351 doc: /* Display a message at the bottom of the screen.
3352 The message also goes into the `*Messages*' buffer.
3353 \(In keyboard macros, that's all it does.)
3354 Return the message.
3355
3356 The first argument is a format control string, and the rest are data
3357 to be formatted under control of the string. See `format' for details.
3358
3359 Note: Use (message "%s" VALUE) to print the value of expressions and
3360 variables to avoid accidentally interpreting `%' as format specifiers.
3361
3362 If the first argument is nil or the empty string, the function clears
3363 any existing message; this lets the minibuffer contents show. See
3364 also `current-message'.
3365
3366 usage: (message FORMAT-STRING &rest ARGS) */)
3367 (nargs, args)
3368 int nargs;
3369 Lisp_Object *args;
3370 {
3371 if (NILP (args[0])
3372 || (STRINGP (args[0])
3373 && SBYTES (args[0]) == 0))
3374 {
3375 message (0);
3376 return args[0];
3377 }
3378 else
3379 {
3380 register Lisp_Object val;
3381 val = Fformat (nargs, args);
3382 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3383 return val;
3384 }
3385 }
3386
3387 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3388 doc: /* Display a message, in a dialog box if possible.
3389 If a dialog box is not available, use the echo area.
3390 The first argument is a format control string, and the rest are data
3391 to be formatted under control of the string. See `format' for details.
3392
3393 If the first argument is nil or the empty string, clear any existing
3394 message; let the minibuffer contents show.
3395
3396 usage: (message-box FORMAT-STRING &rest ARGS) */)
3397 (nargs, args)
3398 int nargs;
3399 Lisp_Object *args;
3400 {
3401 if (NILP (args[0]))
3402 {
3403 message (0);
3404 return Qnil;
3405 }
3406 else
3407 {
3408 register Lisp_Object val;
3409 val = Fformat (nargs, args);
3410 #ifdef HAVE_MENUS
3411 /* The MS-DOS frames support popup menus even though they are
3412 not FRAME_WINDOW_P. */
3413 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3414 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3415 {
3416 Lisp_Object pane, menu, obj;
3417 struct gcpro gcpro1;
3418 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3419 GCPRO1 (pane);
3420 menu = Fcons (val, pane);
3421 obj = Fx_popup_dialog (Qt, menu, Qt);
3422 UNGCPRO;
3423 return val;
3424 }
3425 #endif /* HAVE_MENUS */
3426 /* Copy the data so that it won't move when we GC. */
3427 if (! message_text)
3428 {
3429 message_text = (char *)xmalloc (80);
3430 message_length = 80;
3431 }
3432 if (SBYTES (val) > message_length)
3433 {
3434 message_length = SBYTES (val);
3435 message_text = (char *)xrealloc (message_text, message_length);
3436 }
3437 bcopy (SDATA (val), message_text, SBYTES (val));
3438 message2 (message_text, SBYTES (val),
3439 STRING_MULTIBYTE (val));
3440 return val;
3441 }
3442 }
3443 #ifdef HAVE_MENUS
3444 extern Lisp_Object last_nonmenu_event;
3445 #endif
3446
3447 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3448 doc: /* Display a message in a dialog box or in the echo area.
3449 If this command was invoked with the mouse, use a dialog box if
3450 `use-dialog-box' is non-nil.
3451 Otherwise, use the echo area.
3452 The first argument is a format control string, and the rest are data
3453 to be formatted under control of the string. See `format' for details.
3454
3455 If the first argument is nil or the empty string, clear any existing
3456 message; let the minibuffer contents show.
3457
3458 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3459 (nargs, args)
3460 int nargs;
3461 Lisp_Object *args;
3462 {
3463 #ifdef HAVE_MENUS
3464 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3465 && use_dialog_box)
3466 return Fmessage_box (nargs, args);
3467 #endif
3468 return Fmessage (nargs, args);
3469 }
3470
3471 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3472 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3473 ()
3474 {
3475 return current_message ();
3476 }
3477
3478
3479 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3480 doc: /* Return a copy of STRING with text properties added.
3481 First argument is the string to copy.
3482 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3483 properties to add to the result.
3484 usage: (propertize STRING &rest PROPERTIES) */)
3485 (nargs, args)
3486 int nargs;
3487 Lisp_Object *args;
3488 {
3489 Lisp_Object properties, string;
3490 struct gcpro gcpro1, gcpro2;
3491 int i;
3492
3493 /* Number of args must be odd. */
3494 if ((nargs & 1) == 0 || nargs < 1)
3495 error ("Wrong number of arguments");
3496
3497 properties = string = Qnil;
3498 GCPRO2 (properties, string);
3499
3500 /* First argument must be a string. */
3501 CHECK_STRING (args[0]);
3502 string = Fcopy_sequence (args[0]);
3503
3504 for (i = 1; i < nargs; i += 2)
3505 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3506
3507 Fadd_text_properties (make_number (0),
3508 make_number (SCHARS (string)),
3509 properties, string);
3510 RETURN_UNGCPRO (string);
3511 }
3512
3513
3514 /* Number of bytes that STRING will occupy when put into the result.
3515 MULTIBYTE is nonzero if the result should be multibyte. */
3516
3517 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3518 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3519 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3520 : SBYTES (STRING))
3521
3522 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3523 doc: /* Format a string out of a format-string and arguments.
3524 The first argument is a format control string.
3525 The other arguments are substituted into it to make the result, a string.
3526
3527 The format control string may contain %-sequences meaning to substitute
3528 the next available argument:
3529
3530 %s means print a string argument. Actually, prints any object, with `princ'.
3531 %d means print as number in decimal (%o octal, %x hex).
3532 %X is like %x, but uses upper case.
3533 %e means print a number in exponential notation.
3534 %f means print a number in decimal-point notation.
3535 %g means print a number in exponential notation
3536 or decimal-point notation, whichever uses fewer characters.
3537 %c means print a number as a single character.
3538 %S means print any object as an s-expression (using `prin1').
3539
3540 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3541 Use %% to put a single % into the output.
3542
3543 A %-sequence may contain optional flag, width, and precision
3544 specifiers, as follows:
3545
3546 %<flags><width><precision>character
3547
3548 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3549
3550 The + flag character inserts a + before any positive number, while a
3551 space inserts a space before any positive number; these flags only
3552 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3553 The # flag means to use an alternate display form for %o, %x, %X, %e,
3554 %f, and %g sequences. The - and 0 flags affect the width specifier,
3555 as described below.
3556
3557 The width specifier supplies a lower limit for the length of the
3558 printed representation. The padding, if any, normally goes on the
3559 left, but it goes on the right if the - flag is present. The padding
3560 character is normally a space, but it is 0 if the 0 flag is present.
3561 The - flag takes precedence over the 0 flag.
3562
3563 For %e, %f, and %g sequences, the number after the "." in the
3564 precision specifier says how many decimal places to show; if zero, the
3565 decimal point itself is omitted. For %s and %S, the precision
3566 specifier truncates the string to the given width.
3567
3568 usage: (format STRING &rest OBJECTS) */)
3569 (nargs, args)
3570 int nargs;
3571 register Lisp_Object *args;
3572 {
3573 register int n; /* The number of the next arg to substitute */
3574 register int total; /* An estimate of the final length */
3575 char *buf, *p;
3576 register unsigned char *format, *end, *format_start;
3577 int nchars;
3578 /* Nonzero if the output should be a multibyte string,
3579 which is true if any of the inputs is one. */
3580 int multibyte = 0;
3581 /* When we make a multibyte string, we must pay attention to the
3582 byte combining problem, i.e., a byte may be combined with a
3583 multibyte charcter of the previous string. This flag tells if we
3584 must consider such a situation or not. */
3585 int maybe_combine_byte;
3586 unsigned char *this_format;
3587 /* Precision for each spec, or -1, a flag value meaning no precision
3588 was given in that spec. Element 0, corresonding to the format
3589 string itself, will not be used. Element NARGS, corresponding to
3590 no argument, *will* be assigned to in the case that a `%' and `.'
3591 occur after the final format specifier. */
3592 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3593 int longest_format;
3594 Lisp_Object val;
3595 int arg_intervals = 0;
3596 USE_SAFE_ALLOCA;
3597
3598 /* discarded[I] is 1 if byte I of the format
3599 string was not copied into the output.
3600 It is 2 if byte I was not the first byte of its character. */
3601 char *discarded = 0;
3602
3603 /* Each element records, for one argument,
3604 the start and end bytepos in the output string,
3605 and whether the argument is a string with intervals.
3606 info[0] is unused. Unused elements have -1 for start. */
3607 struct info
3608 {
3609 int start, end, intervals;
3610 } *info = 0;
3611
3612 /* It should not be necessary to GCPRO ARGS, because
3613 the caller in the interpreter should take care of that. */
3614
3615 /* Try to determine whether the result should be multibyte.
3616 This is not always right; sometimes the result needs to be multibyte
3617 because of an object that we will pass through prin1,
3618 and in that case, we won't know it here. */
3619 for (n = 0; n < nargs; n++)
3620 {
3621 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3622 multibyte = 1;
3623 /* Piggyback on this loop to initialize precision[N]. */
3624 precision[n] = -1;
3625 }
3626 precision[nargs] = -1;
3627
3628 CHECK_STRING (args[0]);
3629 /* We may have to change "%S" to "%s". */
3630 args[0] = Fcopy_sequence (args[0]);
3631
3632 /* GC should never happen here, so abort if it does. */
3633 abort_on_gc++;
3634
3635 /* If we start out planning a unibyte result,
3636 then discover it has to be multibyte, we jump back to retry.
3637 That can only happen from the first large while loop below. */
3638 retry:
3639
3640 format = SDATA (args[0]);
3641 format_start = format;
3642 end = format + SBYTES (args[0]);
3643 longest_format = 0;
3644
3645 /* Make room in result for all the non-%-codes in the control string. */
3646 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3647
3648 /* Allocate the info and discarded tables. */
3649 {
3650 int nbytes = (nargs+1) * sizeof *info;
3651 int i;
3652 if (!info)
3653 info = (struct info *) alloca (nbytes);
3654 bzero (info, nbytes);
3655 for (i = 0; i <= nargs; i++)
3656 info[i].start = -1;
3657 if (!discarded)
3658 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3659 bzero (discarded, SBYTES (args[0]));
3660 }
3661
3662 /* Add to TOTAL enough space to hold the converted arguments. */
3663
3664 n = 0;
3665 while (format != end)
3666 if (*format++ == '%')
3667 {
3668 int thissize = 0;
3669 int actual_width = 0;
3670 unsigned char *this_format_start = format - 1;
3671 int field_width = 0;
3672
3673 /* General format specifications look like
3674
3675 '%' [flags] [field-width] [precision] format
3676
3677 where
3678
3679 flags ::= [-+ #0]+
3680 field-width ::= [0-9]+
3681 precision ::= '.' [0-9]*
3682
3683 If a field-width is specified, it specifies to which width
3684 the output should be padded with blanks, if the output
3685 string is shorter than field-width.
3686
3687 If precision is specified, it specifies the number of
3688 digits to print after the '.' for floats, or the max.
3689 number of chars to print from a string. */
3690
3691 while (format != end
3692 && (*format == '-' || *format == '0' || *format == '#'
3693 || * format == ' ' || *format == '+'))
3694 ++format;
3695
3696 if (*format >= '0' && *format <= '9')
3697 {
3698 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3699 field_width = 10 * field_width + *format - '0';
3700 }
3701
3702 /* N is not incremented for another few lines below, so refer to
3703 element N+1 (which might be precision[NARGS]). */
3704 if (*format == '.')
3705 {
3706 ++format;
3707 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3708 precision[n+1] = 10 * precision[n+1] + *format - '0';
3709 }
3710
3711 /* Extra +1 for 'l' that we may need to insert into the
3712 format. */
3713 if (format - this_format_start + 2 > longest_format)
3714 longest_format = format - this_format_start + 2;
3715
3716 if (format == end)
3717 error ("Format string ends in middle of format specifier");
3718 if (*format == '%')
3719 format++;
3720 else if (++n >= nargs)
3721 error ("Not enough arguments for format string");
3722 else if (*format == 'S')
3723 {
3724 /* For `S', prin1 the argument and then treat like a string. */
3725 register Lisp_Object tem;
3726 tem = Fprin1_to_string (args[n], Qnil);
3727 if (STRING_MULTIBYTE (tem) && ! multibyte)
3728 {
3729 multibyte = 1;
3730 goto retry;
3731 }
3732 args[n] = tem;
3733 /* If we restart the loop, we should not come here again
3734 because args[n] is now a string and calling
3735 Fprin1_to_string on it produces superflous double
3736 quotes. So, change "%S" to "%s" now. */
3737 *format = 's';
3738 goto string;
3739 }
3740 else if (SYMBOLP (args[n]))
3741 {
3742 args[n] = SYMBOL_NAME (args[n]);
3743 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3744 {
3745 multibyte = 1;
3746 goto retry;
3747 }
3748 goto string;
3749 }
3750 else if (STRINGP (args[n]))
3751 {
3752 string:
3753 if (*format != 's' && *format != 'S')
3754 error ("Format specifier doesn't match argument type");
3755 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3756 to be as large as is calculated here. Easy check for
3757 the case PRECISION = 0. */
3758 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3759 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3760 }
3761 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3762 else if (INTEGERP (args[n]) && *format != 's')
3763 {
3764 /* The following loop assumes the Lisp type indicates
3765 the proper way to pass the argument.
3766 So make sure we have a flonum if the argument should
3767 be a double. */
3768 if (*format == 'e' || *format == 'f' || *format == 'g')
3769 args[n] = Ffloat (args[n]);
3770 else
3771 if (*format != 'd' && *format != 'o' && *format != 'x'
3772 && *format != 'i' && *format != 'X' && *format != 'c')
3773 error ("Invalid format operation %%%c", *format);
3774
3775 thissize = 30 + (precision[n] > 0 ? precision[n] : 0);
3776 if (*format == 'c')
3777 {
3778 if (! ASCII_CHAR_P (XINT (args[n]))
3779 /* Note: No one can remeber why we have to treat
3780 the character 0 as a multibyte character here.
3781 But, until it causes a real problem, let's
3782 don't change it. */
3783 || XINT (args[n]) == 0)
3784 {
3785 if (! multibyte)
3786 {
3787 multibyte = 1;
3788 goto retry;
3789 }
3790 args[n] = Fchar_to_string (args[n]);
3791 thissize = SBYTES (args[n]);
3792 }
3793 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3794 {
3795 args[n]
3796 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3797 thissize = SBYTES (args[n]);
3798 }
3799 }
3800 }
3801 else if (FLOATP (args[n]) && *format != 's')
3802 {
3803 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3804 {
3805 if (*format != 'd' && *format != 'o' && *format != 'x'
3806 && *format != 'i' && *format != 'X' && *format != 'c')
3807 error ("Invalid format operation %%%c", *format);
3808 /* This fails unnecessarily if args[n] is bigger than
3809 most-positive-fixnum but smaller than MAXINT.
3810 These cases are important because we sometimes use floats
3811 to represent such integer values (typically such values
3812 come from UIDs or PIDs). */
3813 /* args[n] = Ftruncate (args[n], Qnil); */
3814 }
3815
3816 /* Note that we're using sprintf to print floats,
3817 so we have to take into account what that function
3818 prints. */
3819 /* Filter out flag value of -1. */
3820 thissize = (MAX_10_EXP + 100
3821 + (precision[n] > 0 ? precision[n] : 0));
3822 }
3823 else
3824 {
3825 /* Anything but a string, convert to a string using princ. */
3826 register Lisp_Object tem;
3827 tem = Fprin1_to_string (args[n], Qt);
3828 if (STRING_MULTIBYTE (tem) && ! multibyte)
3829 {
3830 multibyte = 1;
3831 goto retry;
3832 }
3833 args[n] = tem;
3834 goto string;
3835 }
3836
3837 thissize += max (0, field_width - actual_width);
3838 total += thissize + 4;
3839 }
3840
3841 abort_on_gc--;
3842
3843 /* Now we can no longer jump to retry.
3844 TOTAL and LONGEST_FORMAT are known for certain. */
3845
3846 this_format = (unsigned char *) alloca (longest_format + 1);
3847
3848 /* Allocate the space for the result.
3849 Note that TOTAL is an overestimate. */
3850 SAFE_ALLOCA (buf, char *, total);
3851
3852 p = buf;
3853 nchars = 0;
3854 n = 0;
3855
3856 /* Scan the format and store result in BUF. */
3857 format = SDATA (args[0]);
3858 format_start = format;
3859 end = format + SBYTES (args[0]);
3860 maybe_combine_byte = 0;
3861 while (format != end)
3862 {
3863 if (*format == '%')
3864 {
3865 int minlen;
3866 int negative = 0;
3867 unsigned char *this_format_start = format;
3868
3869 discarded[format - format_start] = 1;
3870 format++;
3871
3872 while (index("-+0# ", *format))
3873 {
3874 if (*format == '-')
3875 {
3876 negative = 1;
3877 }
3878 discarded[format - format_start] = 1;
3879 ++format;
3880 }
3881
3882 minlen = atoi (format);
3883
3884 while ((*format >= '0' && *format <= '9') || *format == '.')
3885 {
3886 discarded[format - format_start] = 1;
3887 format++;
3888 }
3889
3890 if (*format++ == '%')
3891 {
3892 *p++ = '%';
3893 nchars++;
3894 continue;
3895 }
3896
3897 ++n;
3898
3899 discarded[format - format_start - 1] = 1;
3900 info[n].start = nchars;
3901
3902 if (STRINGP (args[n]))
3903 {
3904 /* handle case (precision[n] >= 0) */
3905
3906 int width, padding;
3907 int nbytes, start, end;
3908 int nchars_string;
3909
3910 /* lisp_string_width ignores a precision of 0, but GNU
3911 libc functions print 0 characters when the precision
3912 is 0. Imitate libc behavior here. Changing
3913 lisp_string_width is the right thing, and will be
3914 done, but meanwhile we work with it. */
3915
3916 if (precision[n] == 0)
3917 width = nchars_string = nbytes = 0;
3918 else if (precision[n] > 0)
3919 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3920 else
3921 { /* no precision spec given for this argument */
3922 width = lisp_string_width (args[n], -1, NULL, NULL);
3923 nbytes = SBYTES (args[n]);
3924 nchars_string = SCHARS (args[n]);
3925 }
3926
3927 /* If spec requires it, pad on right with spaces. */
3928 padding = minlen - width;
3929 if (! negative)
3930 while (padding-- > 0)
3931 {
3932 *p++ = ' ';
3933 ++nchars;
3934 }
3935
3936 info[n].start = start = nchars;
3937 nchars += nchars_string;
3938 end = nchars;
3939
3940 if (p > buf
3941 && multibyte
3942 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3943 && STRING_MULTIBYTE (args[n])
3944 && !CHAR_HEAD_P (SREF (args[n], 0)))
3945 maybe_combine_byte = 1;
3946
3947 p += copy_text (SDATA (args[n]), p,
3948 nbytes,
3949 STRING_MULTIBYTE (args[n]), multibyte);
3950
3951 info[n].end = nchars;
3952
3953 if (negative)
3954 while (padding-- > 0)
3955 {
3956 *p++ = ' ';
3957 nchars++;
3958 }
3959
3960 /* If this argument has text properties, record where
3961 in the result string it appears. */
3962 if (STRING_INTERVALS (args[n]))
3963 info[n].intervals = arg_intervals = 1;
3964 }
3965 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3966 {
3967 int this_nchars;
3968
3969 bcopy (this_format_start, this_format,
3970 format - this_format_start);
3971 this_format[format - this_format_start] = 0;
3972
3973 if (format[-1] == 'e' || format[-1] == 'f' || format[-1] == 'g')
3974 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3975 else
3976 {
3977 if (sizeof (EMACS_INT) > sizeof (int)
3978 && format[-1] != 'c')
3979 {
3980 /* Insert 'l' before format spec. */
3981 this_format[format - this_format_start]
3982 = this_format[format - this_format_start - 1];
3983 this_format[format - this_format_start - 1] = 'l';
3984 this_format[format - this_format_start + 1] = 0;
3985 }
3986
3987 if (INTEGERP (args[n]))
3988 {
3989 if (format[-1] == 'c')
3990 sprintf (p, this_format, (int) XINT (args[n]));
3991 else if (format[-1] == 'd')
3992 sprintf (p, this_format, XINT (args[n]));
3993 /* Don't sign-extend for octal or hex printing. */
3994 else
3995 sprintf (p, this_format, XUINT (args[n]));
3996 }
3997 else if (format[-1] == 'c')
3998 sprintf (p, this_format, (int) XFLOAT_DATA (args[n]));
3999 else if (format[-1] == 'd')
4000 /* Maybe we should use "%1.0f" instead so it also works
4001 for values larger than MAXINT. */
4002 sprintf (p, this_format, (EMACS_INT) XFLOAT_DATA (args[n]));
4003 else
4004 /* Don't sign-extend for octal or hex printing. */
4005 sprintf (p, this_format, (EMACS_UINT) XFLOAT_DATA (args[n]));
4006 }
4007
4008 if (p > buf
4009 && multibyte
4010 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4011 && !CHAR_HEAD_P (*((unsigned char *) p)))
4012 maybe_combine_byte = 1;
4013 this_nchars = strlen (p);
4014 if (multibyte)
4015 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
4016 else
4017 p += this_nchars;
4018 nchars += this_nchars;
4019 info[n].end = nchars;
4020 }
4021
4022 }
4023 else if (STRING_MULTIBYTE (args[0]))
4024 {
4025 /* Copy a whole multibyte character. */
4026 if (p > buf
4027 && multibyte
4028 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4029 && !CHAR_HEAD_P (*format))
4030 maybe_combine_byte = 1;
4031 *p++ = *format++;
4032 while (! CHAR_HEAD_P (*format))
4033 {
4034 discarded[format - format_start] = 2;
4035 *p++ = *format++;
4036 }
4037 nchars++;
4038 }
4039 else if (multibyte)
4040 {
4041 /* Convert a single-byte character to multibyte. */
4042 int len = copy_text (format, p, 1, 0, 1);
4043
4044 p += len;
4045 format++;
4046 nchars++;
4047 }
4048 else
4049 *p++ = *format++, nchars++;
4050 }
4051
4052 if (p > buf + total)
4053 abort ();
4054
4055 if (maybe_combine_byte)
4056 nchars = multibyte_chars_in_text (buf, p - buf);
4057 val = make_specified_string (buf, nchars, p - buf, multibyte);
4058
4059 /* If we allocated BUF with malloc, free it too. */
4060 SAFE_FREE ();
4061
4062 /* If the format string has text properties, or any of the string
4063 arguments has text properties, set up text properties of the
4064 result string. */
4065
4066 if (STRING_INTERVALS (args[0]) || arg_intervals)
4067 {
4068 Lisp_Object len, new_len, props;
4069 struct gcpro gcpro1;
4070
4071 /* Add text properties from the format string. */
4072 len = make_number (SCHARS (args[0]));
4073 props = text_property_list (args[0], make_number (0), len, Qnil);
4074 GCPRO1 (props);
4075
4076 if (CONSP (props))
4077 {
4078 int bytepos = 0, position = 0, translated = 0, argn = 1;
4079 Lisp_Object list;
4080
4081 /* Adjust the bounds of each text property
4082 to the proper start and end in the output string. */
4083
4084 /* Put the positions in PROPS in increasing order, so that
4085 we can do (effectively) one scan through the position
4086 space of the format string. */
4087 props = Fnreverse (props);
4088
4089 /* BYTEPOS is the byte position in the format string,
4090 POSITION is the untranslated char position in it,
4091 TRANSLATED is the translated char position in BUF,
4092 and ARGN is the number of the next arg we will come to. */
4093 for (list = props; CONSP (list); list = XCDR (list))
4094 {
4095 Lisp_Object item;
4096 int pos;
4097
4098 item = XCAR (list);
4099
4100 /* First adjust the property start position. */
4101 pos = XINT (XCAR (item));
4102
4103 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4104 up to this position. */
4105 for (; position < pos; bytepos++)
4106 {
4107 if (! discarded[bytepos])
4108 position++, translated++;
4109 else if (discarded[bytepos] == 1)
4110 {
4111 position++;
4112 if (translated == info[argn].start)
4113 {
4114 translated += info[argn].end - info[argn].start;
4115 argn++;
4116 }
4117 }
4118 }
4119
4120 XSETCAR (item, make_number (translated));
4121
4122 /* Likewise adjust the property end position. */
4123 pos = XINT (XCAR (XCDR (item)));
4124
4125 for (; position < pos; bytepos++)
4126 {
4127 if (! discarded[bytepos])
4128 position++, translated++;
4129 else if (discarded[bytepos] == 1)
4130 {
4131 position++;
4132 if (translated == info[argn].start)
4133 {
4134 translated += info[argn].end - info[argn].start;
4135 argn++;
4136 }
4137 }
4138 }
4139
4140 XSETCAR (XCDR (item), make_number (translated));
4141 }
4142
4143 add_text_properties_from_list (val, props, make_number (0));
4144 }
4145
4146 /* Add text properties from arguments. */
4147 if (arg_intervals)
4148 for (n = 1; n < nargs; ++n)
4149 if (info[n].intervals)
4150 {
4151 len = make_number (SCHARS (args[n]));
4152 new_len = make_number (info[n].end - info[n].start);
4153 props = text_property_list (args[n], make_number (0), len, Qnil);
4154 extend_property_ranges (props, len, new_len);
4155 /* If successive arguments have properites, be sure that
4156 the value of `composition' property be the copy. */
4157 if (n > 1 && info[n - 1].end)
4158 make_composition_value_copy (props);
4159 add_text_properties_from_list (val, props,
4160 make_number (info[n].start));
4161 }
4162
4163 UNGCPRO;
4164 }
4165
4166 return val;
4167 }
4168
4169 Lisp_Object
4170 format2 (string1, arg0, arg1)
4171 char *string1;
4172 Lisp_Object arg0, arg1;
4173 {
4174 Lisp_Object args[3];
4175 args[0] = build_string (string1);
4176 args[1] = arg0;
4177 args[2] = arg1;
4178 return Fformat (3, args);
4179 }
4180 \f
4181 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4182 doc: /* Return t if two characters match, optionally ignoring case.
4183 Both arguments must be characters (i.e. integers).
4184 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4185 (c1, c2)
4186 register Lisp_Object c1, c2;
4187 {
4188 int i1, i2;
4189 /* Check they're chars, not just integers, otherwise we could get array
4190 bounds violations in DOWNCASE. */
4191 CHECK_CHARACTER (c1);
4192 CHECK_CHARACTER (c2);
4193
4194 if (XINT (c1) == XINT (c2))
4195 return Qt;
4196 if (NILP (current_buffer->case_fold_search))
4197 return Qnil;
4198
4199 /* Do these in separate statements,
4200 then compare the variables.
4201 because of the way DOWNCASE uses temp variables. */
4202 i1 = XFASTINT (c1);
4203 if (NILP (current_buffer->enable_multibyte_characters)
4204 && ! ASCII_CHAR_P (i1))
4205 {
4206 MAKE_CHAR_MULTIBYTE (i1);
4207 }
4208 i2 = XFASTINT (c2);
4209 if (NILP (current_buffer->enable_multibyte_characters)
4210 && ! ASCII_CHAR_P (i2))
4211 {
4212 MAKE_CHAR_MULTIBYTE (i2);
4213 }
4214 i1 = DOWNCASE (i1);
4215 i2 = DOWNCASE (i2);
4216 return (i1 == i2 ? Qt : Qnil);
4217 }
4218 \f
4219 /* Transpose the markers in two regions of the current buffer, and
4220 adjust the ones between them if necessary (i.e.: if the regions
4221 differ in size).
4222
4223 START1, END1 are the character positions of the first region.
4224 START1_BYTE, END1_BYTE are the byte positions.
4225 START2, END2 are the character positions of the second region.
4226 START2_BYTE, END2_BYTE are the byte positions.
4227
4228 Traverses the entire marker list of the buffer to do so, adding an
4229 appropriate amount to some, subtracting from some, and leaving the
4230 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4231
4232 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4233
4234 static void
4235 transpose_markers (start1, end1, start2, end2,
4236 start1_byte, end1_byte, start2_byte, end2_byte)
4237 register int start1, end1, start2, end2;
4238 register int start1_byte, end1_byte, start2_byte, end2_byte;
4239 {
4240 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4241 register struct Lisp_Marker *marker;
4242
4243 /* Update point as if it were a marker. */
4244 if (PT < start1)
4245 ;
4246 else if (PT < end1)
4247 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4248 PT_BYTE + (end2_byte - end1_byte));
4249 else if (PT < start2)
4250 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4251 (PT_BYTE + (end2_byte - start2_byte)
4252 - (end1_byte - start1_byte)));
4253 else if (PT < end2)
4254 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4255 PT_BYTE - (start2_byte - start1_byte));
4256
4257 /* We used to adjust the endpoints here to account for the gap, but that
4258 isn't good enough. Even if we assume the caller has tried to move the
4259 gap out of our way, it might still be at start1 exactly, for example;
4260 and that places it `inside' the interval, for our purposes. The amount
4261 of adjustment is nontrivial if there's a `denormalized' marker whose
4262 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4263 the dirty work to Fmarker_position, below. */
4264
4265 /* The difference between the region's lengths */
4266 diff = (end2 - start2) - (end1 - start1);
4267 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4268
4269 /* For shifting each marker in a region by the length of the other
4270 region plus the distance between the regions. */
4271 amt1 = (end2 - start2) + (start2 - end1);
4272 amt2 = (end1 - start1) + (start2 - end1);
4273 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4274 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4275
4276 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4277 {
4278 mpos = marker->bytepos;
4279 if (mpos >= start1_byte && mpos < end2_byte)
4280 {
4281 if (mpos < end1_byte)
4282 mpos += amt1_byte;
4283 else if (mpos < start2_byte)
4284 mpos += diff_byte;
4285 else
4286 mpos -= amt2_byte;
4287 marker->bytepos = mpos;
4288 }
4289 mpos = marker->charpos;
4290 if (mpos >= start1 && mpos < end2)
4291 {
4292 if (mpos < end1)
4293 mpos += amt1;
4294 else if (mpos < start2)
4295 mpos += diff;
4296 else
4297 mpos -= amt2;
4298 }
4299 marker->charpos = mpos;
4300 }
4301 }
4302
4303 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4304 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4305 The regions may not be overlapping, because the size of the buffer is
4306 never changed in a transposition.
4307
4308 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4309 any markers that happen to be located in the regions.
4310
4311 Transposing beyond buffer boundaries is an error. */)
4312 (startr1, endr1, startr2, endr2, leave_markers)
4313 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
4314 {
4315 register EMACS_INT start1, end1, start2, end2;
4316 EMACS_INT start1_byte, start2_byte, len1_byte, len2_byte;
4317 EMACS_INT gap, len1, len_mid, len2;
4318 unsigned char *start1_addr, *start2_addr, *temp;
4319
4320 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4321 Lisp_Object buf;
4322
4323 XSETBUFFER (buf, current_buffer);
4324 cur_intv = BUF_INTERVALS (current_buffer);
4325
4326 validate_region (&startr1, &endr1);
4327 validate_region (&startr2, &endr2);
4328
4329 start1 = XFASTINT (startr1);
4330 end1 = XFASTINT (endr1);
4331 start2 = XFASTINT (startr2);
4332 end2 = XFASTINT (endr2);
4333 gap = GPT;
4334
4335 /* Swap the regions if they're reversed. */
4336 if (start2 < end1)
4337 {
4338 register int glumph = start1;
4339 start1 = start2;
4340 start2 = glumph;
4341 glumph = end1;
4342 end1 = end2;
4343 end2 = glumph;
4344 }
4345
4346 len1 = end1 - start1;
4347 len2 = end2 - start2;
4348
4349 if (start2 < end1)
4350 error ("Transposed regions overlap");
4351 else if (start1 == end1 || start2 == end2)
4352 error ("Transposed region has length 0");
4353
4354 /* The possibilities are:
4355 1. Adjacent (contiguous) regions, or separate but equal regions
4356 (no, really equal, in this case!), or
4357 2. Separate regions of unequal size.
4358
4359 The worst case is usually No. 2. It means that (aside from
4360 potential need for getting the gap out of the way), there also
4361 needs to be a shifting of the text between the two regions. So
4362 if they are spread far apart, we are that much slower... sigh. */
4363
4364 /* It must be pointed out that the really studly thing to do would
4365 be not to move the gap at all, but to leave it in place and work
4366 around it if necessary. This would be extremely efficient,
4367 especially considering that people are likely to do
4368 transpositions near where they are working interactively, which
4369 is exactly where the gap would be found. However, such code
4370 would be much harder to write and to read. So, if you are
4371 reading this comment and are feeling squirrely, by all means have
4372 a go! I just didn't feel like doing it, so I will simply move
4373 the gap the minimum distance to get it out of the way, and then
4374 deal with an unbroken array. */
4375
4376 /* Make sure the gap won't interfere, by moving it out of the text
4377 we will operate on. */
4378 if (start1 < gap && gap < end2)
4379 {
4380 if (gap - start1 < end2 - gap)
4381 move_gap (start1);
4382 else
4383 move_gap (end2);
4384 }
4385
4386 start1_byte = CHAR_TO_BYTE (start1);
4387 start2_byte = CHAR_TO_BYTE (start2);
4388 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4389 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4390
4391 #ifdef BYTE_COMBINING_DEBUG
4392 if (end1 == start2)
4393 {
4394 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4395 len2_byte, start1, start1_byte)
4396 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4397 len1_byte, end2, start2_byte + len2_byte)
4398 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4399 len1_byte, end2, start2_byte + len2_byte))
4400 abort ();
4401 }
4402 else
4403 {
4404 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4405 len2_byte, start1, start1_byte)
4406 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4407 len1_byte, start2, start2_byte)
4408 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4409 len2_byte, end1, start1_byte + len1_byte)
4410 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4411 len1_byte, end2, start2_byte + len2_byte))
4412 abort ();
4413 }
4414 #endif
4415
4416 /* Hmmm... how about checking to see if the gap is large
4417 enough to use as the temporary storage? That would avoid an
4418 allocation... interesting. Later, don't fool with it now. */
4419
4420 /* Working without memmove, for portability (sigh), so must be
4421 careful of overlapping subsections of the array... */
4422
4423 if (end1 == start2) /* adjacent regions */
4424 {
4425 modify_region (current_buffer, start1, end2, 0);
4426 record_change (start1, len1 + len2);
4427
4428 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4429 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4430 /* Don't use Fset_text_properties: that can cause GC, which can
4431 clobber objects stored in the tmp_intervals. */
4432 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4433 if (!NULL_INTERVAL_P (tmp_interval3))
4434 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4435
4436 /* First region smaller than second. */
4437 if (len1_byte < len2_byte)
4438 {
4439 USE_SAFE_ALLOCA;
4440
4441 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4442
4443 /* Don't precompute these addresses. We have to compute them
4444 at the last minute, because the relocating allocator might
4445 have moved the buffer around during the xmalloc. */
4446 start1_addr = BYTE_POS_ADDR (start1_byte);
4447 start2_addr = BYTE_POS_ADDR (start2_byte);
4448
4449 bcopy (start2_addr, temp, len2_byte);
4450 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4451 bcopy (temp, start1_addr, len2_byte);
4452 SAFE_FREE ();
4453 }
4454 else
4455 /* First region not smaller than second. */
4456 {
4457 USE_SAFE_ALLOCA;
4458
4459 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4460 start1_addr = BYTE_POS_ADDR (start1_byte);
4461 start2_addr = BYTE_POS_ADDR (start2_byte);
4462 bcopy (start1_addr, temp, len1_byte);
4463 bcopy (start2_addr, start1_addr, len2_byte);
4464 bcopy (temp, start1_addr + len2_byte, len1_byte);
4465 SAFE_FREE ();
4466 }
4467 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4468 len1, current_buffer, 0);
4469 graft_intervals_into_buffer (tmp_interval2, start1,
4470 len2, current_buffer, 0);
4471 update_compositions (start1, start1 + len2, CHECK_BORDER);
4472 update_compositions (start1 + len2, end2, CHECK_TAIL);
4473 }
4474 /* Non-adjacent regions, because end1 != start2, bleagh... */
4475 else
4476 {
4477 len_mid = start2_byte - (start1_byte + len1_byte);
4478
4479 if (len1_byte == len2_byte)
4480 /* Regions are same size, though, how nice. */
4481 {
4482 USE_SAFE_ALLOCA;
4483
4484 modify_region (current_buffer, start1, end1, 0);
4485 modify_region (current_buffer, start2, end2, 0);
4486 record_change (start1, len1);
4487 record_change (start2, len2);
4488 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4489 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4490
4491 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4492 if (!NULL_INTERVAL_P (tmp_interval3))
4493 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4494
4495 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4496 if (!NULL_INTERVAL_P (tmp_interval3))
4497 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4498
4499 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4500 start1_addr = BYTE_POS_ADDR (start1_byte);
4501 start2_addr = BYTE_POS_ADDR (start2_byte);
4502 bcopy (start1_addr, temp, len1_byte);
4503 bcopy (start2_addr, start1_addr, len2_byte);
4504 bcopy (temp, start2_addr, len1_byte);
4505 SAFE_FREE ();
4506
4507 graft_intervals_into_buffer (tmp_interval1, start2,
4508 len1, current_buffer, 0);
4509 graft_intervals_into_buffer (tmp_interval2, start1,
4510 len2, current_buffer, 0);
4511 }
4512
4513 else if (len1_byte < len2_byte) /* Second region larger than first */
4514 /* Non-adjacent & unequal size, area between must also be shifted. */
4515 {
4516 USE_SAFE_ALLOCA;
4517
4518 modify_region (current_buffer, start1, end2, 0);
4519 record_change (start1, (end2 - start1));
4520 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4521 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4522 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4523
4524 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4525 if (!NULL_INTERVAL_P (tmp_interval3))
4526 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4527
4528 /* holds region 2 */
4529 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4530 start1_addr = BYTE_POS_ADDR (start1_byte);
4531 start2_addr = BYTE_POS_ADDR (start2_byte);
4532 bcopy (start2_addr, temp, len2_byte);
4533 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4534 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4535 bcopy (temp, start1_addr, len2_byte);
4536 SAFE_FREE ();
4537
4538 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4539 len1, current_buffer, 0);
4540 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4541 len_mid, current_buffer, 0);
4542 graft_intervals_into_buffer (tmp_interval2, start1,
4543 len2, current_buffer, 0);
4544 }
4545 else
4546 /* Second region smaller than first. */
4547 {
4548 USE_SAFE_ALLOCA;
4549
4550 record_change (start1, (end2 - start1));
4551 modify_region (current_buffer, start1, end2, 0);
4552
4553 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4554 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4555 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4556
4557 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4558 if (!NULL_INTERVAL_P (tmp_interval3))
4559 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4560
4561 /* holds region 1 */
4562 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4563 start1_addr = BYTE_POS_ADDR (start1_byte);
4564 start2_addr = BYTE_POS_ADDR (start2_byte);
4565 bcopy (start1_addr, temp, len1_byte);
4566 bcopy (start2_addr, start1_addr, len2_byte);
4567 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4568 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4569 SAFE_FREE ();
4570
4571 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4572 len1, current_buffer, 0);
4573 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4574 len_mid, current_buffer, 0);
4575 graft_intervals_into_buffer (tmp_interval2, start1,
4576 len2, current_buffer, 0);
4577 }
4578
4579 update_compositions (start1, start1 + len2, CHECK_BORDER);
4580 update_compositions (end2 - len1, end2, CHECK_BORDER);
4581 }
4582
4583 /* When doing multiple transpositions, it might be nice
4584 to optimize this. Perhaps the markers in any one buffer
4585 should be organized in some sorted data tree. */
4586 if (NILP (leave_markers))
4587 {
4588 transpose_markers (start1, end1, start2, end2,
4589 start1_byte, start1_byte + len1_byte,
4590 start2_byte, start2_byte + len2_byte);
4591 fix_start_end_in_overlays (start1, end2);
4592 }
4593
4594 signal_after_change (start1, end2 - start1, end2 - start1);
4595 return Qnil;
4596 }
4597
4598 \f
4599 void
4600 syms_of_editfns ()
4601 {
4602 environbuf = 0;
4603 initial_tz = 0;
4604
4605 Qbuffer_access_fontify_functions
4606 = intern ("buffer-access-fontify-functions");
4607 staticpro (&Qbuffer_access_fontify_functions);
4608
4609 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4610 doc: /* Non-nil means text motion commands don't notice fields. */);
4611 Vinhibit_field_text_motion = Qnil;
4612
4613 DEFVAR_LISP ("buffer-access-fontify-functions",
4614 &Vbuffer_access_fontify_functions,
4615 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4616 Each function is called with two arguments which specify the range
4617 of the buffer being accessed. */);
4618 Vbuffer_access_fontify_functions = Qnil;
4619
4620 {
4621 Lisp_Object obuf;
4622 extern Lisp_Object Vprin1_to_string_buffer;
4623 obuf = Fcurrent_buffer ();
4624 /* Do this here, because init_buffer_once is too early--it won't work. */
4625 Fset_buffer (Vprin1_to_string_buffer);
4626 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4627 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4628 Qnil);
4629 Fset_buffer (obuf);
4630 }
4631
4632 DEFVAR_LISP ("buffer-access-fontified-property",
4633 &Vbuffer_access_fontified_property,
4634 doc: /* Property which (if non-nil) indicates text has been fontified.
4635 `buffer-substring' need not call the `buffer-access-fontify-functions'
4636 functions if all the text being accessed has this property. */);
4637 Vbuffer_access_fontified_property = Qnil;
4638
4639 DEFVAR_LISP ("system-name", &Vsystem_name,
4640 doc: /* The host name of the machine Emacs is running on. */);
4641
4642 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4643 doc: /* The full name of the user logged in. */);
4644
4645 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4646 doc: /* The user's name, taken from environment variables if possible. */);
4647
4648 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4649 doc: /* The user's name, based upon the real uid only. */);
4650
4651 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4652 doc: /* The release of the operating system Emacs is running on. */);
4653
4654 defsubr (&Spropertize);
4655 defsubr (&Schar_equal);
4656 defsubr (&Sgoto_char);
4657 defsubr (&Sstring_to_char);
4658 defsubr (&Schar_to_string);
4659 defsubr (&Sbuffer_substring);
4660 defsubr (&Sbuffer_substring_no_properties);
4661 defsubr (&Sbuffer_string);
4662
4663 defsubr (&Spoint_marker);
4664 defsubr (&Smark_marker);
4665 defsubr (&Spoint);
4666 defsubr (&Sregion_beginning);
4667 defsubr (&Sregion_end);
4668
4669 staticpro (&Qfield);
4670 Qfield = intern ("field");
4671 staticpro (&Qboundary);
4672 Qboundary = intern ("boundary");
4673 defsubr (&Sfield_beginning);
4674 defsubr (&Sfield_end);
4675 defsubr (&Sfield_string);
4676 defsubr (&Sfield_string_no_properties);
4677 defsubr (&Sdelete_field);
4678 defsubr (&Sconstrain_to_field);
4679
4680 defsubr (&Sline_beginning_position);
4681 defsubr (&Sline_end_position);
4682
4683 /* defsubr (&Smark); */
4684 /* defsubr (&Sset_mark); */
4685 defsubr (&Ssave_excursion);
4686 defsubr (&Ssave_current_buffer);
4687
4688 defsubr (&Sbufsize);
4689 defsubr (&Spoint_max);
4690 defsubr (&Spoint_min);
4691 defsubr (&Spoint_min_marker);
4692 defsubr (&Spoint_max_marker);
4693 defsubr (&Sgap_position);
4694 defsubr (&Sgap_size);
4695 defsubr (&Sposition_bytes);
4696 defsubr (&Sbyte_to_position);
4697
4698 defsubr (&Sbobp);
4699 defsubr (&Seobp);
4700 defsubr (&Sbolp);
4701 defsubr (&Seolp);
4702 defsubr (&Sfollowing_char);
4703 defsubr (&Sprevious_char);
4704 defsubr (&Schar_after);
4705 defsubr (&Schar_before);
4706 defsubr (&Sinsert);
4707 defsubr (&Sinsert_before_markers);
4708 defsubr (&Sinsert_and_inherit);
4709 defsubr (&Sinsert_and_inherit_before_markers);
4710 defsubr (&Sinsert_char);
4711 defsubr (&Sinsert_byte);
4712
4713 defsubr (&Suser_login_name);
4714 defsubr (&Suser_real_login_name);
4715 defsubr (&Suser_uid);
4716 defsubr (&Suser_real_uid);
4717 defsubr (&Suser_full_name);
4718 defsubr (&Semacs_pid);
4719 defsubr (&Scurrent_time);
4720 defsubr (&Sget_internal_run_time);
4721 defsubr (&Sformat_time_string);
4722 defsubr (&Sfloat_time);
4723 defsubr (&Sdecode_time);
4724 defsubr (&Sencode_time);
4725 defsubr (&Scurrent_time_string);
4726 defsubr (&Scurrent_time_zone);
4727 defsubr (&Sset_time_zone_rule);
4728 defsubr (&Ssystem_name);
4729 defsubr (&Smessage);
4730 defsubr (&Smessage_box);
4731 defsubr (&Smessage_or_box);
4732 defsubr (&Scurrent_message);
4733 defsubr (&Sformat);
4734
4735 defsubr (&Sinsert_buffer_substring);
4736 defsubr (&Scompare_buffer_substrings);
4737 defsubr (&Ssubst_char_in_region);
4738 defsubr (&Stranslate_region_internal);
4739 defsubr (&Sdelete_region);
4740 defsubr (&Sdelete_and_extract_region);
4741 defsubr (&Swiden);
4742 defsubr (&Snarrow_to_region);
4743 defsubr (&Ssave_restriction);
4744 defsubr (&Stranspose_regions);
4745 }
4746
4747 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4748 (do not change this comment) */