New unwind-protect flavors to better type-check C callbacks.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 ptrdiff_t pos;
237
238 if (MARKERP (position)
239 && current_buffer == XMARKER (position)->buffer)
240 {
241 pos = marker_position (position);
242 if (pos < BEGV)
243 SET_PT_BOTH (BEGV, BEGV_BYTE);
244 else if (pos > ZV)
245 SET_PT_BOTH (ZV, ZV_BYTE);
246 else
247 SET_PT_BOTH (pos, marker_byte_position (position));
248
249 return position;
250 }
251
252 CHECK_NUMBER_COERCE_MARKER (position);
253
254 pos = clip_to_bounds (BEGV, XINT (position), ZV);
255 SET_PT (pos);
256 return position;
257 }
258
259
260 /* Return the start or end position of the region.
261 BEGINNINGP means return the start.
262 If there is no region active, signal an error. */
263
264 static Lisp_Object
265 region_limit (bool beginningp)
266 {
267 Lisp_Object m;
268
269 if (!NILP (Vtransient_mark_mode)
270 && NILP (Vmark_even_if_inactive)
271 && NILP (BVAR (current_buffer, mark_active)))
272 xsignal0 (Qmark_inactive);
273
274 m = Fmarker_position (BVAR (current_buffer, mark));
275 if (NILP (m))
276 error ("The mark is not set now, so there is no region");
277
278 /* Clip to the current narrowing (bug#11770). */
279 return make_number ((PT < XFASTINT (m)) == beginningp
280 ? PT
281 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
282 }
283
284 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
285 doc: /* Return the integer value of point or mark, whichever is smaller. */)
286 (void)
287 {
288 return region_limit (1);
289 }
290
291 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
292 doc: /* Return the integer value of point or mark, whichever is larger. */)
293 (void)
294 {
295 return region_limit (0);
296 }
297
298 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
299 doc: /* Return this buffer's mark, as a marker object.
300 Watch out! Moving this marker changes the mark position.
301 If you set the marker not to point anywhere, the buffer will have no mark. */)
302 (void)
303 {
304 return BVAR (current_buffer, mark);
305 }
306
307 \f
308 /* Find all the overlays in the current buffer that touch position POS.
309 Return the number found, and store them in a vector in VEC
310 of length LEN. */
311
312 static ptrdiff_t
313 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
314 {
315 Lisp_Object overlay, start, end;
316 struct Lisp_Overlay *tail;
317 ptrdiff_t startpos, endpos;
318 ptrdiff_t idx = 0;
319
320 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
321 {
322 XSETMISC (overlay, tail);
323
324 end = OVERLAY_END (overlay);
325 endpos = OVERLAY_POSITION (end);
326 if (endpos < pos)
327 break;
328 start = OVERLAY_START (overlay);
329 startpos = OVERLAY_POSITION (start);
330 if (startpos <= pos)
331 {
332 if (idx < len)
333 vec[idx] = overlay;
334 /* Keep counting overlays even if we can't return them all. */
335 idx++;
336 }
337 }
338
339 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
340 {
341 XSETMISC (overlay, tail);
342
343 start = OVERLAY_START (overlay);
344 startpos = OVERLAY_POSITION (start);
345 if (pos < startpos)
346 break;
347 end = OVERLAY_END (overlay);
348 endpos = OVERLAY_POSITION (end);
349 if (pos <= endpos)
350 {
351 if (idx < len)
352 vec[idx] = overlay;
353 idx++;
354 }
355 }
356
357 return idx;
358 }
359
360 /* Return the value of property PROP, in OBJECT at POSITION.
361 It's the value of PROP that a char inserted at POSITION would get.
362 OBJECT is optional and defaults to the current buffer.
363 If OBJECT is a buffer, then overlay properties are considered as well as
364 text properties.
365 If OBJECT is a window, then that window's buffer is used, but
366 window-specific overlays are considered only if they are associated
367 with OBJECT. */
368 Lisp_Object
369 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
370 {
371 CHECK_NUMBER_COERCE_MARKER (position);
372
373 if (NILP (object))
374 XSETBUFFER (object, current_buffer);
375 else if (WINDOWP (object))
376 object = XWINDOW (object)->contents;
377
378 if (!BUFFERP (object))
379 /* pos-property only makes sense in buffers right now, since strings
380 have no overlays and no notion of insertion for which stickiness
381 could be obeyed. */
382 return Fget_text_property (position, prop, object);
383 else
384 {
385 EMACS_INT posn = XINT (position);
386 ptrdiff_t noverlays;
387 Lisp_Object *overlay_vec, tem;
388 struct buffer *obuf = current_buffer;
389 USE_SAFE_ALLOCA;
390
391 set_buffer_temp (XBUFFER (object));
392
393 /* First try with room for 40 overlays. */
394 noverlays = 40;
395 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
396 noverlays = overlays_around (posn, overlay_vec, noverlays);
397
398 /* If there are more than 40,
399 make enough space for all, and try again. */
400 if (noverlays > 40)
401 {
402 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
403 noverlays = overlays_around (posn, overlay_vec, noverlays);
404 }
405 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
406
407 set_buffer_temp (obuf);
408
409 /* Now check the overlays in order of decreasing priority. */
410 while (--noverlays >= 0)
411 {
412 Lisp_Object ol = overlay_vec[noverlays];
413 tem = Foverlay_get (ol, prop);
414 if (!NILP (tem))
415 {
416 /* Check the overlay is indeed active at point. */
417 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
418 if ((OVERLAY_POSITION (start) == posn
419 && XMARKER (start)->insertion_type == 1)
420 || (OVERLAY_POSITION (finish) == posn
421 && XMARKER (finish)->insertion_type == 0))
422 ; /* The overlay will not cover a char inserted at point. */
423 else
424 {
425 SAFE_FREE ();
426 return tem;
427 }
428 }
429 }
430 SAFE_FREE ();
431
432 { /* Now check the text properties. */
433 int stickiness = text_property_stickiness (prop, position, object);
434 if (stickiness > 0)
435 return Fget_text_property (position, prop, object);
436 else if (stickiness < 0
437 && XINT (position) > BUF_BEGV (XBUFFER (object)))
438 return Fget_text_property (make_number (XINT (position) - 1),
439 prop, object);
440 else
441 return Qnil;
442 }
443 }
444 }
445
446 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
447 the value of point is used instead. If BEG or END is null,
448 means don't store the beginning or end of the field.
449
450 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
451 results; they do not effect boundary behavior.
452
453 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
454 position of a field, then the beginning of the previous field is
455 returned instead of the beginning of POS's field (since the end of a
456 field is actually also the beginning of the next input field, this
457 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
458 non-nil case, if two fields are separated by a field with the special
459 value `boundary', and POS lies within it, then the two separated
460 fields are considered to be adjacent, and POS between them, when
461 finding the beginning and ending of the "merged" field.
462
463 Either BEG or END may be 0, in which case the corresponding value
464 is not stored. */
465
466 static void
467 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
468 Lisp_Object beg_limit,
469 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
470 {
471 /* Fields right before and after the point. */
472 Lisp_Object before_field, after_field;
473 /* True if POS counts as the start of a field. */
474 bool at_field_start = 0;
475 /* True if POS counts as the end of a field. */
476 bool at_field_end = 0;
477
478 if (NILP (pos))
479 XSETFASTINT (pos, PT);
480 else
481 CHECK_NUMBER_COERCE_MARKER (pos);
482
483 after_field
484 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
485 before_field
486 = (XFASTINT (pos) > BEGV
487 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
488 Qfield, Qnil, NULL)
489 /* Using nil here would be a more obvious choice, but it would
490 fail when the buffer starts with a non-sticky field. */
491 : after_field);
492
493 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
494 and POS is at beginning of a field, which can also be interpreted
495 as the end of the previous field. Note that the case where if
496 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
497 more natural one; then we avoid treating the beginning of a field
498 specially. */
499 if (NILP (merge_at_boundary))
500 {
501 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
502 if (!EQ (field, after_field))
503 at_field_end = 1;
504 if (!EQ (field, before_field))
505 at_field_start = 1;
506 if (NILP (field) && at_field_start && at_field_end)
507 /* If an inserted char would have a nil field while the surrounding
508 text is non-nil, we're probably not looking at a
509 zero-length field, but instead at a non-nil field that's
510 not intended for editing (such as comint's prompts). */
511 at_field_end = at_field_start = 0;
512 }
513
514 /* Note about special `boundary' fields:
515
516 Consider the case where the point (`.') is between the fields `x' and `y':
517
518 xxxx.yyyy
519
520 In this situation, if merge_at_boundary is non-nil, consider the
521 `x' and `y' fields as forming one big merged field, and so the end
522 of the field is the end of `y'.
523
524 However, if `x' and `y' are separated by a special `boundary' field
525 (a field with a `field' char-property of 'boundary), then ignore
526 this special field when merging adjacent fields. Here's the same
527 situation, but with a `boundary' field between the `x' and `y' fields:
528
529 xxx.BBBByyyy
530
531 Here, if point is at the end of `x', the beginning of `y', or
532 anywhere in-between (within the `boundary' field), merge all
533 three fields and consider the beginning as being the beginning of
534 the `x' field, and the end as being the end of the `y' field. */
535
536 if (beg)
537 {
538 if (at_field_start)
539 /* POS is at the edge of a field, and we should consider it as
540 the beginning of the following field. */
541 *beg = XFASTINT (pos);
542 else
543 /* Find the previous field boundary. */
544 {
545 Lisp_Object p = pos;
546 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
547 /* Skip a `boundary' field. */
548 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
549 beg_limit);
550
551 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
552 beg_limit);
553 *beg = NILP (p) ? BEGV : XFASTINT (p);
554 }
555 }
556
557 if (end)
558 {
559 if (at_field_end)
560 /* POS is at the edge of a field, and we should consider it as
561 the end of the previous field. */
562 *end = XFASTINT (pos);
563 else
564 /* Find the next field boundary. */
565 {
566 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
567 /* Skip a `boundary' field. */
568 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
569 end_limit);
570
571 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
572 end_limit);
573 *end = NILP (pos) ? ZV : XFASTINT (pos);
574 }
575 }
576 }
577
578 \f
579 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
580 doc: /* Delete the field surrounding POS.
581 A field is a region of text with the same `field' property.
582 If POS is nil, the value of point is used for POS. */)
583 (Lisp_Object pos)
584 {
585 ptrdiff_t beg, end;
586 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
587 if (beg != end)
588 del_range (beg, end);
589 return Qnil;
590 }
591
592 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
593 doc: /* Return the contents of the field surrounding POS as a string.
594 A field is a region of text with the same `field' property.
595 If POS is nil, the value of point is used for POS. */)
596 (Lisp_Object pos)
597 {
598 ptrdiff_t beg, end;
599 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
600 return make_buffer_string (beg, end, 1);
601 }
602
603 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
604 doc: /* Return the contents of the field around POS, without text properties.
605 A field is a region of text with the same `field' property.
606 If POS is nil, the value of point is used for POS. */)
607 (Lisp_Object pos)
608 {
609 ptrdiff_t beg, end;
610 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
611 return make_buffer_string (beg, end, 0);
612 }
613
614 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
615 doc: /* Return the beginning of the field surrounding POS.
616 A field is a region of text with the same `field' property.
617 If POS is nil, the value of point is used for POS.
618 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
619 field, then the beginning of the *previous* field is returned.
620 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
621 is before LIMIT, then LIMIT will be returned instead. */)
622 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
623 {
624 ptrdiff_t beg;
625 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
626 return make_number (beg);
627 }
628
629 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
630 doc: /* Return the end of the field surrounding POS.
631 A field is a region of text with the same `field' property.
632 If POS is nil, the value of point is used for POS.
633 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
634 then the end of the *following* field is returned.
635 If LIMIT is non-nil, it is a buffer position; if the end of the field
636 is after LIMIT, then LIMIT will be returned instead. */)
637 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
638 {
639 ptrdiff_t end;
640 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
641 return make_number (end);
642 }
643
644 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
645 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
646 A field is a region of text with the same `field' property.
647
648 If NEW-POS is nil, then use the current point instead, and move point
649 to the resulting constrained position, in addition to returning that
650 position.
651
652 If OLD-POS is at the boundary of two fields, then the allowable
653 positions for NEW-POS depends on the value of the optional argument
654 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
655 constrained to the field that has the same `field' char-property
656 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
657 is non-nil, NEW-POS is constrained to the union of the two adjacent
658 fields. Additionally, if two fields are separated by another field with
659 the special value `boundary', then any point within this special field is
660 also considered to be `on the boundary'.
661
662 If the optional argument ONLY-IN-LINE is non-nil and constraining
663 NEW-POS would move it to a different line, NEW-POS is returned
664 unconstrained. This useful for commands that move by line, like
665 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
666 only in the case where they can still move to the right line.
667
668 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
669 a non-nil property of that name, then any field boundaries are ignored.
670
671 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
672 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
673 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
674 {
675 /* If non-zero, then the original point, before re-positioning. */
676 ptrdiff_t orig_point = 0;
677 bool fwd;
678 Lisp_Object prev_old, prev_new;
679
680 if (NILP (new_pos))
681 /* Use the current point, and afterwards, set it. */
682 {
683 orig_point = PT;
684 XSETFASTINT (new_pos, PT);
685 }
686
687 CHECK_NUMBER_COERCE_MARKER (new_pos);
688 CHECK_NUMBER_COERCE_MARKER (old_pos);
689
690 fwd = (XINT (new_pos) > XINT (old_pos));
691
692 prev_old = make_number (XINT (old_pos) - 1);
693 prev_new = make_number (XINT (new_pos) - 1);
694
695 if (NILP (Vinhibit_field_text_motion)
696 && !EQ (new_pos, old_pos)
697 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
698 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
699 /* To recognize field boundaries, we must also look at the
700 previous positions; we could use `get_pos_property'
701 instead, but in itself that would fail inside non-sticky
702 fields (like comint prompts). */
703 || (XFASTINT (new_pos) > BEGV
704 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
705 || (XFASTINT (old_pos) > BEGV
706 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
707 && (NILP (inhibit_capture_property)
708 /* Field boundaries are again a problem; but now we must
709 decide the case exactly, so we need to call
710 `get_pos_property' as well. */
711 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
712 && (XFASTINT (old_pos) <= BEGV
713 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
714 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
715 /* It is possible that NEW_POS is not within the same field as
716 OLD_POS; try to move NEW_POS so that it is. */
717 {
718 ptrdiff_t shortage;
719 Lisp_Object field_bound;
720
721 if (fwd)
722 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
723 else
724 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
725
726 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
727 other side of NEW_POS, which would mean that NEW_POS is
728 already acceptable, and it's not necessary to constrain it
729 to FIELD_BOUND. */
730 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
731 /* NEW_POS should be constrained, but only if either
732 ONLY_IN_LINE is nil (in which case any constraint is OK),
733 or NEW_POS and FIELD_BOUND are on the same line (in which
734 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
735 && (NILP (only_in_line)
736 /* This is the ONLY_IN_LINE case, check that NEW_POS and
737 FIELD_BOUND are on the same line by seeing whether
738 there's an intervening newline or not. */
739 || (find_newline (XFASTINT (new_pos), -1,
740 XFASTINT (field_bound), -1,
741 fwd ? -1 : 1, &shortage, NULL, 1),
742 shortage != 0)))
743 /* Constrain NEW_POS to FIELD_BOUND. */
744 new_pos = field_bound;
745
746 if (orig_point && XFASTINT (new_pos) != orig_point)
747 /* The NEW_POS argument was originally nil, so automatically set PT. */
748 SET_PT (XFASTINT (new_pos));
749 }
750
751 return new_pos;
752 }
753
754 \f
755 DEFUN ("line-beginning-position",
756 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
757 doc: /* Return the character position of the first character on the current line.
758 With optional argument N, scan forward N - 1 lines first.
759 If the scan reaches the end of the buffer, return that position.
760
761 This function ignores text display directionality; it returns the
762 position of the first character in logical order, i.e. the smallest
763 character position on the line.
764
765 This function constrains the returned position to the current field
766 unless that position would be on a different line than the original,
767 unconstrained result. If N is nil or 1, and a front-sticky field
768 starts at point, the scan stops as soon as it starts. To ignore field
769 boundaries, bind `inhibit-field-text-motion' to t.
770
771 This function does not move point. */)
772 (Lisp_Object n)
773 {
774 ptrdiff_t orig, orig_byte, end;
775 ptrdiff_t count = SPECPDL_INDEX ();
776 specbind (Qinhibit_point_motion_hooks, Qt);
777
778 if (NILP (n))
779 XSETFASTINT (n, 1);
780 else
781 CHECK_NUMBER (n);
782
783 orig = PT;
784 orig_byte = PT_BYTE;
785 Fforward_line (make_number (XINT (n) - 1));
786 end = PT;
787
788 SET_PT_BOTH (orig, orig_byte);
789
790 unbind_to (count, Qnil);
791
792 /* Return END constrained to the current input field. */
793 return Fconstrain_to_field (make_number (end), make_number (orig),
794 XINT (n) != 1 ? Qt : Qnil,
795 Qt, Qnil);
796 }
797
798 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
799 doc: /* Return the character position of the last character on the current line.
800 With argument N not nil or 1, move forward N - 1 lines first.
801 If scan reaches end of buffer, return that position.
802
803 This function ignores text display directionality; it returns the
804 position of the last character in logical order, i.e. the largest
805 character position on the line.
806
807 This function constrains the returned position to the current field
808 unless that would be on a different line than the original,
809 unconstrained result. If N is nil or 1, and a rear-sticky field ends
810 at point, the scan stops as soon as it starts. To ignore field
811 boundaries bind `inhibit-field-text-motion' to t.
812
813 This function does not move point. */)
814 (Lisp_Object n)
815 {
816 ptrdiff_t clipped_n;
817 ptrdiff_t end_pos;
818 ptrdiff_t orig = PT;
819
820 if (NILP (n))
821 XSETFASTINT (n, 1);
822 else
823 CHECK_NUMBER (n);
824
825 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
826 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
827 NULL);
828
829 /* Return END_POS constrained to the current input field. */
830 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
831 Qnil, Qt, Qnil);
832 }
833
834 /* Save current buffer state for `save-excursion' special form.
835 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
836 offload some work from GC. */
837
838 Lisp_Object
839 save_excursion_save (void)
840 {
841 return make_save_value
842 (SAVE_TYPE_OBJ_OBJ_OBJ_OBJ,
843 Fpoint_marker (),
844 /* Do not copy the mark if it points to nowhere. */
845 (XMARKER (BVAR (current_buffer, mark))->buffer
846 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
847 : Qnil),
848 /* Selected window if current buffer is shown in it, nil otherwise. */
849 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
850 ? selected_window : Qnil),
851 BVAR (current_buffer, mark_active));
852 }
853
854 /* Restore saved buffer before leaving `save-excursion' special form. */
855
856 void
857 save_excursion_restore (Lisp_Object info)
858 {
859 Lisp_Object tem, tem1, omark, nmark;
860 struct gcpro gcpro1, gcpro2, gcpro3;
861
862 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
863 /* If we're unwinding to top level, saved buffer may be deleted. This
864 means that all of its markers are unchained and so tem is nil. */
865 if (NILP (tem))
866 goto out;
867
868 omark = nmark = Qnil;
869 GCPRO3 (info, omark, nmark);
870
871 Fset_buffer (tem);
872
873 /* Point marker. */
874 tem = XSAVE_OBJECT (info, 0);
875 Fgoto_char (tem);
876 unchain_marker (XMARKER (tem));
877
878 /* Mark marker. */
879 tem = XSAVE_OBJECT (info, 1);
880 omark = Fmarker_position (BVAR (current_buffer, mark));
881 if (NILP (tem))
882 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
883 else
884 {
885 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
886 nmark = Fmarker_position (tem);
887 unchain_marker (XMARKER (tem));
888 }
889
890 /* Mark active. */
891 tem = XSAVE_OBJECT (info, 3);
892 tem1 = BVAR (current_buffer, mark_active);
893 bset_mark_active (current_buffer, tem);
894
895 /* If mark is active now, and either was not active
896 or was at a different place, run the activate hook. */
897 if (! NILP (tem))
898 {
899 if (! EQ (omark, nmark))
900 {
901 tem = intern ("activate-mark-hook");
902 Frun_hooks (1, &tem);
903 }
904 }
905 /* If mark has ceased to be active, run deactivate hook. */
906 else if (! NILP (tem1))
907 {
908 tem = intern ("deactivate-mark-hook");
909 Frun_hooks (1, &tem);
910 }
911
912 /* If buffer was visible in a window, and a different window was
913 selected, and the old selected window is still showing this
914 buffer, restore point in that window. */
915 tem = XSAVE_OBJECT (info, 2);
916 if (WINDOWP (tem)
917 && !EQ (tem, selected_window)
918 && (tem1 = XWINDOW (tem)->contents,
919 (/* Window is live... */
920 BUFFERP (tem1)
921 /* ...and it shows the current buffer. */
922 && XBUFFER (tem1) == current_buffer)))
923 Fset_window_point (tem, make_number (PT));
924
925 UNGCPRO;
926
927 out:
928
929 free_misc (info);
930 }
931
932 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
933 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
934 Executes BODY just like `progn'.
935 The values of point, mark and the current buffer are restored
936 even in case of abnormal exit (throw or error).
937 The state of activation of the mark is also restored.
938
939 This construct does not save `deactivate-mark', and therefore
940 functions that change the buffer will still cause deactivation
941 of the mark at the end of the command. To prevent that, bind
942 `deactivate-mark' with `let'.
943
944 If you only want to save the current buffer but not point nor mark,
945 then just use `save-current-buffer', or even `with-current-buffer'.
946
947 usage: (save-excursion &rest BODY) */)
948 (Lisp_Object args)
949 {
950 register Lisp_Object val;
951 ptrdiff_t count = SPECPDL_INDEX ();
952
953 record_unwind_protect (save_excursion_restore, save_excursion_save ());
954
955 val = Fprogn (args);
956 return unbind_to (count, val);
957 }
958
959 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
960 doc: /* Record which buffer is current; execute BODY; make that buffer current.
961 BODY is executed just like `progn'.
962 usage: (save-current-buffer &rest BODY) */)
963 (Lisp_Object args)
964 {
965 ptrdiff_t count = SPECPDL_INDEX ();
966
967 record_unwind_current_buffer ();
968 return unbind_to (count, Fprogn (args));
969 }
970 \f
971 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
972 doc: /* Return the number of characters in the current buffer.
973 If BUFFER, return the number of characters in that buffer instead. */)
974 (Lisp_Object buffer)
975 {
976 if (NILP (buffer))
977 return make_number (Z - BEG);
978 else
979 {
980 CHECK_BUFFER (buffer);
981 return make_number (BUF_Z (XBUFFER (buffer))
982 - BUF_BEG (XBUFFER (buffer)));
983 }
984 }
985
986 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
987 doc: /* Return the minimum permissible value of point in the current buffer.
988 This is 1, unless narrowing (a buffer restriction) is in effect. */)
989 (void)
990 {
991 Lisp_Object temp;
992 XSETFASTINT (temp, BEGV);
993 return temp;
994 }
995
996 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
997 doc: /* Return a marker to the minimum permissible value of point in this buffer.
998 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
999 (void)
1000 {
1001 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1002 }
1003
1004 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1005 doc: /* Return the maximum permissible value of point in the current buffer.
1006 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1007 is in effect, in which case it is less. */)
1008 (void)
1009 {
1010 Lisp_Object temp;
1011 XSETFASTINT (temp, ZV);
1012 return temp;
1013 }
1014
1015 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1016 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1017 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1018 is in effect, in which case it is less. */)
1019 (void)
1020 {
1021 return build_marker (current_buffer, ZV, ZV_BYTE);
1022 }
1023
1024 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1025 doc: /* Return the position of the gap, in the current buffer.
1026 See also `gap-size'. */)
1027 (void)
1028 {
1029 Lisp_Object temp;
1030 XSETFASTINT (temp, GPT);
1031 return temp;
1032 }
1033
1034 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1035 doc: /* Return the size of the current buffer's gap.
1036 See also `gap-position'. */)
1037 (void)
1038 {
1039 Lisp_Object temp;
1040 XSETFASTINT (temp, GAP_SIZE);
1041 return temp;
1042 }
1043
1044 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1045 doc: /* Return the byte position for character position POSITION.
1046 If POSITION is out of range, the value is nil. */)
1047 (Lisp_Object position)
1048 {
1049 CHECK_NUMBER_COERCE_MARKER (position);
1050 if (XINT (position) < BEG || XINT (position) > Z)
1051 return Qnil;
1052 return make_number (CHAR_TO_BYTE (XINT (position)));
1053 }
1054
1055 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1056 doc: /* Return the character position for byte position BYTEPOS.
1057 If BYTEPOS is out of range, the value is nil. */)
1058 (Lisp_Object bytepos)
1059 {
1060 CHECK_NUMBER (bytepos);
1061 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1062 return Qnil;
1063 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1064 }
1065 \f
1066 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1067 doc: /* Return the character following point, as a number.
1068 At the end of the buffer or accessible region, return 0. */)
1069 (void)
1070 {
1071 Lisp_Object temp;
1072 if (PT >= ZV)
1073 XSETFASTINT (temp, 0);
1074 else
1075 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1076 return temp;
1077 }
1078
1079 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1080 doc: /* Return the character preceding point, as a number.
1081 At the beginning of the buffer or accessible region, return 0. */)
1082 (void)
1083 {
1084 Lisp_Object temp;
1085 if (PT <= BEGV)
1086 XSETFASTINT (temp, 0);
1087 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1088 {
1089 ptrdiff_t pos = PT_BYTE;
1090 DEC_POS (pos);
1091 XSETFASTINT (temp, FETCH_CHAR (pos));
1092 }
1093 else
1094 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1095 return temp;
1096 }
1097
1098 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1099 doc: /* Return t if point is at the beginning of the buffer.
1100 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1101 (void)
1102 {
1103 if (PT == BEGV)
1104 return Qt;
1105 return Qnil;
1106 }
1107
1108 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1109 doc: /* Return t if point is at the end of the buffer.
1110 If the buffer is narrowed, this means the end of the narrowed part. */)
1111 (void)
1112 {
1113 if (PT == ZV)
1114 return Qt;
1115 return Qnil;
1116 }
1117
1118 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1119 doc: /* Return t if point is at the beginning of a line. */)
1120 (void)
1121 {
1122 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1123 return Qt;
1124 return Qnil;
1125 }
1126
1127 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1128 doc: /* Return t if point is at the end of a line.
1129 `End of a line' includes point being at the end of the buffer. */)
1130 (void)
1131 {
1132 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1133 return Qt;
1134 return Qnil;
1135 }
1136
1137 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1138 doc: /* Return character in current buffer at position POS.
1139 POS is an integer or a marker and defaults to point.
1140 If POS is out of range, the value is nil. */)
1141 (Lisp_Object pos)
1142 {
1143 register ptrdiff_t pos_byte;
1144
1145 if (NILP (pos))
1146 {
1147 pos_byte = PT_BYTE;
1148 XSETFASTINT (pos, PT);
1149 }
1150
1151 if (MARKERP (pos))
1152 {
1153 pos_byte = marker_byte_position (pos);
1154 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1155 return Qnil;
1156 }
1157 else
1158 {
1159 CHECK_NUMBER_COERCE_MARKER (pos);
1160 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1161 return Qnil;
1162
1163 pos_byte = CHAR_TO_BYTE (XINT (pos));
1164 }
1165
1166 return make_number (FETCH_CHAR (pos_byte));
1167 }
1168
1169 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1170 doc: /* Return character in current buffer preceding position POS.
1171 POS is an integer or a marker and defaults to point.
1172 If POS is out of range, the value is nil. */)
1173 (Lisp_Object pos)
1174 {
1175 register Lisp_Object val;
1176 register ptrdiff_t pos_byte;
1177
1178 if (NILP (pos))
1179 {
1180 pos_byte = PT_BYTE;
1181 XSETFASTINT (pos, PT);
1182 }
1183
1184 if (MARKERP (pos))
1185 {
1186 pos_byte = marker_byte_position (pos);
1187
1188 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1189 return Qnil;
1190 }
1191 else
1192 {
1193 CHECK_NUMBER_COERCE_MARKER (pos);
1194
1195 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1196 return Qnil;
1197
1198 pos_byte = CHAR_TO_BYTE (XINT (pos));
1199 }
1200
1201 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1202 {
1203 DEC_POS (pos_byte);
1204 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1205 }
1206 else
1207 {
1208 pos_byte--;
1209 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1210 }
1211 return val;
1212 }
1213 \f
1214 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1215 doc: /* Return the name under which the user logged in, as a string.
1216 This is based on the effective uid, not the real uid.
1217 Also, if the environment variables LOGNAME or USER are set,
1218 that determines the value of this function.
1219
1220 If optional argument UID is an integer or a float, return the login name
1221 of the user with that uid, or nil if there is no such user. */)
1222 (Lisp_Object uid)
1223 {
1224 struct passwd *pw;
1225 uid_t id;
1226
1227 /* Set up the user name info if we didn't do it before.
1228 (That can happen if Emacs is dumpable
1229 but you decide to run `temacs -l loadup' and not dump. */
1230 if (INTEGERP (Vuser_login_name))
1231 init_editfns ();
1232
1233 if (NILP (uid))
1234 return Vuser_login_name;
1235
1236 CONS_TO_INTEGER (uid, uid_t, id);
1237 block_input ();
1238 pw = getpwuid (id);
1239 unblock_input ();
1240 return (pw ? build_string (pw->pw_name) : Qnil);
1241 }
1242
1243 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1244 0, 0, 0,
1245 doc: /* Return the name of the user's real uid, as a string.
1246 This ignores the environment variables LOGNAME and USER, so it differs from
1247 `user-login-name' when running under `su'. */)
1248 (void)
1249 {
1250 /* Set up the user name info if we didn't do it before.
1251 (That can happen if Emacs is dumpable
1252 but you decide to run `temacs -l loadup' and not dump. */
1253 if (INTEGERP (Vuser_login_name))
1254 init_editfns ();
1255 return Vuser_real_login_name;
1256 }
1257
1258 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1259 doc: /* Return the effective uid of Emacs.
1260 Value is an integer or a float, depending on the value. */)
1261 (void)
1262 {
1263 uid_t euid = geteuid ();
1264 return make_fixnum_or_float (euid);
1265 }
1266
1267 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1268 doc: /* Return the real uid of Emacs.
1269 Value is an integer or a float, depending on the value. */)
1270 (void)
1271 {
1272 uid_t uid = getuid ();
1273 return make_fixnum_or_float (uid);
1274 }
1275
1276 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1277 doc: /* Return the effective gid of Emacs.
1278 Value is an integer or a float, depending on the value. */)
1279 (void)
1280 {
1281 gid_t egid = getegid ();
1282 return make_fixnum_or_float (egid);
1283 }
1284
1285 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1286 doc: /* Return the real gid of Emacs.
1287 Value is an integer or a float, depending on the value. */)
1288 (void)
1289 {
1290 gid_t gid = getgid ();
1291 return make_fixnum_or_float (gid);
1292 }
1293
1294 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1295 doc: /* Return the full name of the user logged in, as a string.
1296 If the full name corresponding to Emacs's userid is not known,
1297 return "unknown".
1298
1299 If optional argument UID is an integer or float, return the full name
1300 of the user with that uid, or nil if there is no such user.
1301 If UID is a string, return the full name of the user with that login
1302 name, or nil if there is no such user. */)
1303 (Lisp_Object uid)
1304 {
1305 struct passwd *pw;
1306 register char *p, *q;
1307 Lisp_Object full;
1308
1309 if (NILP (uid))
1310 return Vuser_full_name;
1311 else if (NUMBERP (uid))
1312 {
1313 uid_t u;
1314 CONS_TO_INTEGER (uid, uid_t, u);
1315 block_input ();
1316 pw = getpwuid (u);
1317 unblock_input ();
1318 }
1319 else if (STRINGP (uid))
1320 {
1321 block_input ();
1322 pw = getpwnam (SSDATA (uid));
1323 unblock_input ();
1324 }
1325 else
1326 error ("Invalid UID specification");
1327
1328 if (!pw)
1329 return Qnil;
1330
1331 p = USER_FULL_NAME;
1332 /* Chop off everything after the first comma. */
1333 q = strchr (p, ',');
1334 full = make_string (p, q ? q - p : strlen (p));
1335
1336 #ifdef AMPERSAND_FULL_NAME
1337 p = SSDATA (full);
1338 q = strchr (p, '&');
1339 /* Substitute the login name for the &, upcasing the first character. */
1340 if (q)
1341 {
1342 register char *r;
1343 Lisp_Object login;
1344
1345 login = Fuser_login_name (make_number (pw->pw_uid));
1346 r = alloca (strlen (p) + SCHARS (login) + 1);
1347 memcpy (r, p, q - p);
1348 r[q - p] = 0;
1349 strcat (r, SSDATA (login));
1350 r[q - p] = upcase ((unsigned char) r[q - p]);
1351 strcat (r, q + 1);
1352 full = build_string (r);
1353 }
1354 #endif /* AMPERSAND_FULL_NAME */
1355
1356 return full;
1357 }
1358
1359 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1360 doc: /* Return the host name of the machine you are running on, as a string. */)
1361 (void)
1362 {
1363 return Vsystem_name;
1364 }
1365
1366 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1367 doc: /* Return the process ID of Emacs, as a number. */)
1368 (void)
1369 {
1370 pid_t pid = getpid ();
1371 return make_fixnum_or_float (pid);
1372 }
1373
1374 \f
1375
1376 #ifndef TIME_T_MIN
1377 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1378 #endif
1379 #ifndef TIME_T_MAX
1380 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1381 #endif
1382
1383 /* Report that a time value is out of range for Emacs. */
1384 void
1385 time_overflow (void)
1386 {
1387 error ("Specified time is not representable");
1388 }
1389
1390 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1391 static EMACS_INT
1392 hi_time (time_t t)
1393 {
1394 time_t hi = t >> 16;
1395
1396 /* Check for overflow, helping the compiler for common cases where
1397 no runtime check is needed, and taking care not to convert
1398 negative numbers to unsigned before comparing them. */
1399 if (! ((! TYPE_SIGNED (time_t)
1400 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1401 || MOST_NEGATIVE_FIXNUM <= hi)
1402 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1403 || hi <= MOST_POSITIVE_FIXNUM)))
1404 time_overflow ();
1405
1406 return hi;
1407 }
1408
1409 /* Return the bottom 16 bits of the time T. */
1410 static int
1411 lo_time (time_t t)
1412 {
1413 return t & ((1 << 16) - 1);
1414 }
1415
1416 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1417 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1418 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1419 HIGH has the most significant bits of the seconds, while LOW has the
1420 least significant 16 bits. USEC and PSEC are the microsecond and
1421 picosecond counts. */)
1422 (void)
1423 {
1424 return make_lisp_time (current_emacs_time ());
1425 }
1426
1427 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1428 0, 0, 0,
1429 doc: /* Return the current run time used by Emacs.
1430 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1431 style as (current-time).
1432
1433 On systems that can't determine the run time, `get-internal-run-time'
1434 does the same thing as `current-time'. */)
1435 (void)
1436 {
1437 #ifdef HAVE_GETRUSAGE
1438 struct rusage usage;
1439 time_t secs;
1440 int usecs;
1441
1442 if (getrusage (RUSAGE_SELF, &usage) < 0)
1443 /* This shouldn't happen. What action is appropriate? */
1444 xsignal0 (Qerror);
1445
1446 /* Sum up user time and system time. */
1447 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1448 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1449 if (usecs >= 1000000)
1450 {
1451 usecs -= 1000000;
1452 secs++;
1453 }
1454 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1455 #else /* ! HAVE_GETRUSAGE */
1456 #ifdef WINDOWSNT
1457 return w32_get_internal_run_time ();
1458 #else /* ! WINDOWSNT */
1459 return Fcurrent_time ();
1460 #endif /* WINDOWSNT */
1461 #endif /* HAVE_GETRUSAGE */
1462 }
1463 \f
1464
1465 /* Make a Lisp list that represents the time T with fraction TAIL. */
1466 static Lisp_Object
1467 make_time_tail (time_t t, Lisp_Object tail)
1468 {
1469 return Fcons (make_number (hi_time (t)),
1470 Fcons (make_number (lo_time (t)), tail));
1471 }
1472
1473 /* Make a Lisp list that represents the system time T. */
1474 static Lisp_Object
1475 make_time (time_t t)
1476 {
1477 return make_time_tail (t, Qnil);
1478 }
1479
1480 /* Make a Lisp list that represents the Emacs time T. T may be an
1481 invalid time, with a slightly negative tv_nsec value such as
1482 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1483 correspondingly negative picosecond count. */
1484 Lisp_Object
1485 make_lisp_time (EMACS_TIME t)
1486 {
1487 int ns = EMACS_NSECS (t);
1488 return make_time_tail (EMACS_SECS (t), list2i (ns / 1000, ns % 1000 * 1000));
1489 }
1490
1491 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1492 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1493 Return true if successful. */
1494 static bool
1495 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1496 Lisp_Object *plow, Lisp_Object *pusec,
1497 Lisp_Object *ppsec)
1498 {
1499 if (CONSP (specified_time))
1500 {
1501 Lisp_Object low = XCDR (specified_time);
1502 Lisp_Object usec = make_number (0);
1503 Lisp_Object psec = make_number (0);
1504 if (CONSP (low))
1505 {
1506 Lisp_Object low_tail = XCDR (low);
1507 low = XCAR (low);
1508 if (CONSP (low_tail))
1509 {
1510 usec = XCAR (low_tail);
1511 low_tail = XCDR (low_tail);
1512 if (CONSP (low_tail))
1513 psec = XCAR (low_tail);
1514 }
1515 else if (!NILP (low_tail))
1516 usec = low_tail;
1517 }
1518
1519 *phigh = XCAR (specified_time);
1520 *plow = low;
1521 *pusec = usec;
1522 *ppsec = psec;
1523 return 1;
1524 }
1525
1526 return 0;
1527 }
1528
1529 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1530 list, generate the corresponding time value.
1531
1532 If RESULT is not null, store into *RESULT the converted time;
1533 this can fail if the converted time does not fit into EMACS_TIME.
1534 If *DRESULT is not null, store into *DRESULT the number of
1535 seconds since the start of the POSIX Epoch.
1536
1537 Return true if successful. */
1538 bool
1539 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1540 Lisp_Object psec,
1541 EMACS_TIME *result, double *dresult)
1542 {
1543 EMACS_INT hi, lo, us, ps;
1544 if (! (INTEGERP (high) && INTEGERP (low)
1545 && INTEGERP (usec) && INTEGERP (psec)))
1546 return 0;
1547 hi = XINT (high);
1548 lo = XINT (low);
1549 us = XINT (usec);
1550 ps = XINT (psec);
1551
1552 /* Normalize out-of-range lower-order components by carrying
1553 each overflow into the next higher-order component. */
1554 us += ps / 1000000 - (ps % 1000000 < 0);
1555 lo += us / 1000000 - (us % 1000000 < 0);
1556 hi += lo >> 16;
1557 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1558 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1559 lo &= (1 << 16) - 1;
1560
1561 if (result)
1562 {
1563 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1564 && hi <= TIME_T_MAX >> 16)
1565 {
1566 /* Return the greatest representable time that is not greater
1567 than the requested time. */
1568 time_t sec = hi;
1569 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1570 }
1571 else
1572 {
1573 /* Overflow in the highest-order component. */
1574 return 0;
1575 }
1576 }
1577
1578 if (dresult)
1579 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1580
1581 return 1;
1582 }
1583
1584 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1585 If SPECIFIED_TIME is nil, use the current time.
1586
1587 Round the time down to the nearest EMACS_TIME value.
1588 Return seconds since the Epoch.
1589 Signal an error if unsuccessful. */
1590 EMACS_TIME
1591 lisp_time_argument (Lisp_Object specified_time)
1592 {
1593 EMACS_TIME t;
1594 if (NILP (specified_time))
1595 t = current_emacs_time ();
1596 else
1597 {
1598 Lisp_Object high, low, usec, psec;
1599 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1600 && decode_time_components (high, low, usec, psec, &t, 0)))
1601 error ("Invalid time specification");
1602 }
1603 return t;
1604 }
1605
1606 /* Like lisp_time_argument, except decode only the seconds part,
1607 do not allow out-of-range time stamps, do not check the subseconds part,
1608 and always round down. */
1609 static time_t
1610 lisp_seconds_argument (Lisp_Object specified_time)
1611 {
1612 if (NILP (specified_time))
1613 return time (NULL);
1614 else
1615 {
1616 Lisp_Object high, low, usec, psec;
1617 EMACS_TIME t;
1618 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1619 && decode_time_components (high, low, make_number (0),
1620 make_number (0), &t, 0)))
1621 error ("Invalid time specification");
1622 return EMACS_SECS (t);
1623 }
1624 }
1625
1626 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1627 doc: /* Return the current time, as a float number of seconds since the epoch.
1628 If SPECIFIED-TIME is given, it is the time to convert to float
1629 instead of the current time. The argument should have the form
1630 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1631 you can use times from `current-time' and from `file-attributes'.
1632 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1633 considered obsolete.
1634
1635 WARNING: Since the result is floating point, it may not be exact.
1636 If precise time stamps are required, use either `current-time',
1637 or (if you need time as a string) `format-time-string'. */)
1638 (Lisp_Object specified_time)
1639 {
1640 double t;
1641 if (NILP (specified_time))
1642 {
1643 EMACS_TIME now = current_emacs_time ();
1644 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1645 }
1646 else
1647 {
1648 Lisp_Object high, low, usec, psec;
1649 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1650 && decode_time_components (high, low, usec, psec, 0, &t)))
1651 error ("Invalid time specification");
1652 }
1653 return make_float (t);
1654 }
1655
1656 /* Write information into buffer S of size MAXSIZE, according to the
1657 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1658 Default to Universal Time if UT, local time otherwise.
1659 Use NS as the number of nanoseconds in the %N directive.
1660 Return the number of bytes written, not including the terminating
1661 '\0'. If S is NULL, nothing will be written anywhere; so to
1662 determine how many bytes would be written, use NULL for S and
1663 ((size_t) -1) for MAXSIZE.
1664
1665 This function behaves like nstrftime, except it allows null
1666 bytes in FORMAT and it does not support nanoseconds. */
1667 static size_t
1668 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1669 size_t format_len, const struct tm *tp, bool ut, int ns)
1670 {
1671 size_t total = 0;
1672
1673 /* Loop through all the null-terminated strings in the format
1674 argument. Normally there's just one null-terminated string, but
1675 there can be arbitrarily many, concatenated together, if the
1676 format contains '\0' bytes. nstrftime stops at the first
1677 '\0' byte so we must invoke it separately for each such string. */
1678 for (;;)
1679 {
1680 size_t len;
1681 size_t result;
1682
1683 if (s)
1684 s[0] = '\1';
1685
1686 result = nstrftime (s, maxsize, format, tp, ut, ns);
1687
1688 if (s)
1689 {
1690 if (result == 0 && s[0] != '\0')
1691 return 0;
1692 s += result + 1;
1693 }
1694
1695 maxsize -= result + 1;
1696 total += result;
1697 len = strlen (format);
1698 if (len == format_len)
1699 return total;
1700 total++;
1701 format += len + 1;
1702 format_len -= len + 1;
1703 }
1704 }
1705
1706 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1707 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1708 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1709 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1710 is also still accepted.
1711 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1712 as Universal Time; nil means describe TIME in the local time zone.
1713 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1714 by text that describes the specified date and time in TIME:
1715
1716 %Y is the year, %y within the century, %C the century.
1717 %G is the year corresponding to the ISO week, %g within the century.
1718 %m is the numeric month.
1719 %b and %h are the locale's abbreviated month name, %B the full name.
1720 %d is the day of the month, zero-padded, %e is blank-padded.
1721 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1722 %a is the locale's abbreviated name of the day of week, %A the full name.
1723 %U is the week number starting on Sunday, %W starting on Monday,
1724 %V according to ISO 8601.
1725 %j is the day of the year.
1726
1727 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1728 only blank-padded, %l is like %I blank-padded.
1729 %p is the locale's equivalent of either AM or PM.
1730 %M is the minute.
1731 %S is the second.
1732 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1733 %Z is the time zone name, %z is the numeric form.
1734 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1735
1736 %c is the locale's date and time format.
1737 %x is the locale's "preferred" date format.
1738 %D is like "%m/%d/%y".
1739
1740 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1741 %X is the locale's "preferred" time format.
1742
1743 Finally, %n is a newline, %t is a tab, %% is a literal %.
1744
1745 Certain flags and modifiers are available with some format controls.
1746 The flags are `_', `-', `^' and `#'. For certain characters X,
1747 %_X is like %X, but padded with blanks; %-X is like %X,
1748 but without padding. %^X is like %X, but with all textual
1749 characters up-cased; %#X is like %X, but with letter-case of
1750 all textual characters reversed.
1751 %NX (where N stands for an integer) is like %X,
1752 but takes up at least N (a number) positions.
1753 The modifiers are `E' and `O'. For certain characters X,
1754 %EX is a locale's alternative version of %X;
1755 %OX is like %X, but uses the locale's number symbols.
1756
1757 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1758
1759 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1760 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1761 {
1762 EMACS_TIME t = lisp_time_argument (timeval);
1763 struct tm tm;
1764
1765 CHECK_STRING (format_string);
1766 format_string = code_convert_string_norecord (format_string,
1767 Vlocale_coding_system, 1);
1768 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1769 t, ! NILP (universal), &tm);
1770 }
1771
1772 static Lisp_Object
1773 format_time_string (char const *format, ptrdiff_t formatlen,
1774 EMACS_TIME t, bool ut, struct tm *tmp)
1775 {
1776 char buffer[4000];
1777 char *buf = buffer;
1778 ptrdiff_t size = sizeof buffer;
1779 size_t len;
1780 Lisp_Object bufstring;
1781 int ns = EMACS_NSECS (t);
1782 struct tm *tm;
1783 USE_SAFE_ALLOCA;
1784
1785 while (1)
1786 {
1787 time_t *taddr = emacs_secs_addr (&t);
1788 block_input ();
1789
1790 synchronize_system_time_locale ();
1791
1792 tm = ut ? gmtime (taddr) : localtime (taddr);
1793 if (! tm)
1794 {
1795 unblock_input ();
1796 time_overflow ();
1797 }
1798 *tmp = *tm;
1799
1800 buf[0] = '\1';
1801 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1802 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1803 break;
1804
1805 /* Buffer was too small, so make it bigger and try again. */
1806 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1807 unblock_input ();
1808 if (STRING_BYTES_BOUND <= len)
1809 string_overflow ();
1810 size = len + 1;
1811 buf = SAFE_ALLOCA (size);
1812 }
1813
1814 unblock_input ();
1815 bufstring = make_unibyte_string (buf, len);
1816 SAFE_FREE ();
1817 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1818 }
1819
1820 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1821 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1822 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1823 as from `current-time' and `file-attributes', or nil to use the
1824 current time. The obsolete form (HIGH . LOW) is also still accepted.
1825 The list has the following nine members: SEC is an integer between 0
1826 and 60; SEC is 60 for a leap second, which only some operating systems
1827 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1828 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1829 integer between 1 and 12. YEAR is an integer indicating the
1830 four-digit year. DOW is the day of week, an integer between 0 and 6,
1831 where 0 is Sunday. DST is t if daylight saving time is in effect,
1832 otherwise nil. ZONE is an integer indicating the number of seconds
1833 east of Greenwich. (Note that Common Lisp has different meanings for
1834 DOW and ZONE.) */)
1835 (Lisp_Object specified_time)
1836 {
1837 time_t time_spec = lisp_seconds_argument (specified_time);
1838 struct tm save_tm;
1839 struct tm *decoded_time;
1840 Lisp_Object list_args[9];
1841
1842 block_input ();
1843 decoded_time = localtime (&time_spec);
1844 if (decoded_time)
1845 save_tm = *decoded_time;
1846 unblock_input ();
1847 if (! (decoded_time
1848 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1849 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1850 time_overflow ();
1851 XSETFASTINT (list_args[0], save_tm.tm_sec);
1852 XSETFASTINT (list_args[1], save_tm.tm_min);
1853 XSETFASTINT (list_args[2], save_tm.tm_hour);
1854 XSETFASTINT (list_args[3], save_tm.tm_mday);
1855 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1856 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1857 cast below avoids overflow in int arithmetics. */
1858 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1859 XSETFASTINT (list_args[6], save_tm.tm_wday);
1860 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1861
1862 block_input ();
1863 decoded_time = gmtime (&time_spec);
1864 if (decoded_time == 0)
1865 list_args[8] = Qnil;
1866 else
1867 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1868 unblock_input ();
1869 return Flist (9, list_args);
1870 }
1871
1872 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1873 the result is representable as an int. Assume OFFSET is small and
1874 nonnegative. */
1875 static int
1876 check_tm_member (Lisp_Object obj, int offset)
1877 {
1878 EMACS_INT n;
1879 CHECK_NUMBER (obj);
1880 n = XINT (obj);
1881 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1882 time_overflow ();
1883 return n - offset;
1884 }
1885
1886 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1887 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1888 This is the reverse operation of `decode-time', which see.
1889 ZONE defaults to the current time zone rule. This can
1890 be a string or t (as from `set-time-zone-rule'), or it can be a list
1891 \(as from `current-time-zone') or an integer (as from `decode-time')
1892 applied without consideration for daylight saving time.
1893
1894 You can pass more than 7 arguments; then the first six arguments
1895 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1896 The intervening arguments are ignored.
1897 This feature lets (apply 'encode-time (decode-time ...)) work.
1898
1899 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1900 for example, a DAY of 0 means the day preceding the given month.
1901 Year numbers less than 100 are treated just like other year numbers.
1902 If you want them to stand for years in this century, you must do that yourself.
1903
1904 Years before 1970 are not guaranteed to work. On some systems,
1905 year values as low as 1901 do work.
1906
1907 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1908 (ptrdiff_t nargs, Lisp_Object *args)
1909 {
1910 time_t value;
1911 struct tm tm;
1912 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1913
1914 tm.tm_sec = check_tm_member (args[0], 0);
1915 tm.tm_min = check_tm_member (args[1], 0);
1916 tm.tm_hour = check_tm_member (args[2], 0);
1917 tm.tm_mday = check_tm_member (args[3], 0);
1918 tm.tm_mon = check_tm_member (args[4], 1);
1919 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1920 tm.tm_isdst = -1;
1921
1922 if (CONSP (zone))
1923 zone = XCAR (zone);
1924 if (NILP (zone))
1925 {
1926 block_input ();
1927 value = mktime (&tm);
1928 unblock_input ();
1929 }
1930 else
1931 {
1932 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1933 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1934 char *old_tzstring;
1935 const char *tzstring;
1936 USE_SAFE_ALLOCA;
1937
1938 if (EQ (zone, Qt))
1939 tzstring = "UTC0";
1940 else if (STRINGP (zone))
1941 tzstring = SSDATA (zone);
1942 else if (INTEGERP (zone))
1943 {
1944 EMACS_INT abszone = eabs (XINT (zone));
1945 EMACS_INT zone_hr = abszone / (60*60);
1946 int zone_min = (abszone/60) % 60;
1947 int zone_sec = abszone % 60;
1948 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1949 zone_hr, zone_min, zone_sec);
1950 tzstring = tzbuf;
1951 }
1952 else
1953 error ("Invalid time zone specification");
1954
1955 old_tzstring = getenv ("TZ");
1956 if (old_tzstring)
1957 {
1958 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1959 old_tzstring = strcpy (buf, old_tzstring);
1960 }
1961
1962 block_input ();
1963
1964 /* Set TZ before calling mktime; merely adjusting mktime's returned
1965 value doesn't suffice, since that would mishandle leap seconds. */
1966 set_time_zone_rule (tzstring);
1967
1968 value = mktime (&tm);
1969
1970 set_time_zone_rule (old_tzstring);
1971 #ifdef LOCALTIME_CACHE
1972 tzset ();
1973 #endif
1974 unblock_input ();
1975 SAFE_FREE ();
1976 }
1977
1978 if (value == (time_t) -1)
1979 time_overflow ();
1980
1981 return make_time (value);
1982 }
1983
1984 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1985 doc: /* Return the current local time, as a human-readable string.
1986 Programs can use this function to decode a time,
1987 since the number of columns in each field is fixed
1988 if the year is in the range 1000-9999.
1989 The format is `Sun Sep 16 01:03:52 1973'.
1990 However, see also the functions `decode-time' and `format-time-string'
1991 which provide a much more powerful and general facility.
1992
1993 If SPECIFIED-TIME is given, it is a time to format instead of the
1994 current time. The argument should have the form (HIGH LOW . IGNORED).
1995 Thus, you can use times obtained from `current-time' and from
1996 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1997 but this is considered obsolete. */)
1998 (Lisp_Object specified_time)
1999 {
2000 time_t value = lisp_seconds_argument (specified_time);
2001 struct tm *tm;
2002 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2003 int len IF_LINT (= 0);
2004
2005 /* Convert to a string in ctime format, except without the trailing
2006 newline, and without the 4-digit year limit. Don't use asctime
2007 or ctime, as they might dump core if the year is outside the
2008 range -999 .. 9999. */
2009 block_input ();
2010 tm = localtime (&value);
2011 if (tm)
2012 {
2013 static char const wday_name[][4] =
2014 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2015 static char const mon_name[][4] =
2016 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2017 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2018 printmax_t year_base = TM_YEAR_BASE;
2019
2020 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2021 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2022 tm->tm_hour, tm->tm_min, tm->tm_sec,
2023 tm->tm_year + year_base);
2024 }
2025 unblock_input ();
2026 if (! tm)
2027 time_overflow ();
2028
2029 return make_unibyte_string (buf, len);
2030 }
2031
2032 /* Yield A - B, measured in seconds.
2033 This function is copied from the GNU C Library. */
2034 static int
2035 tm_diff (struct tm *a, struct tm *b)
2036 {
2037 /* Compute intervening leap days correctly even if year is negative.
2038 Take care to avoid int overflow in leap day calculations,
2039 but it's OK to assume that A and B are close to each other. */
2040 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2041 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2042 int a100 = a4 / 25 - (a4 % 25 < 0);
2043 int b100 = b4 / 25 - (b4 % 25 < 0);
2044 int a400 = a100 >> 2;
2045 int b400 = b100 >> 2;
2046 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2047 int years = a->tm_year - b->tm_year;
2048 int days = (365 * years + intervening_leap_days
2049 + (a->tm_yday - b->tm_yday));
2050 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2051 + (a->tm_min - b->tm_min))
2052 + (a->tm_sec - b->tm_sec));
2053 }
2054
2055 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2056 doc: /* Return the offset and name for the local time zone.
2057 This returns a list of the form (OFFSET NAME).
2058 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2059 A negative value means west of Greenwich.
2060 NAME is a string giving the name of the time zone.
2061 If SPECIFIED-TIME is given, the time zone offset is determined from it
2062 instead of using the current time. The argument should have the form
2063 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2064 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2065 have the form (HIGH . LOW), but this is considered obsolete.
2066
2067 Some operating systems cannot provide all this information to Emacs;
2068 in this case, `current-time-zone' returns a list containing nil for
2069 the data it can't find. */)
2070 (Lisp_Object specified_time)
2071 {
2072 EMACS_TIME value;
2073 int offset;
2074 struct tm *t;
2075 struct tm localtm;
2076 Lisp_Object zone_offset, zone_name;
2077
2078 zone_offset = Qnil;
2079 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2080 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2081 block_input ();
2082 t = gmtime (emacs_secs_addr (&value));
2083 if (t)
2084 offset = tm_diff (&localtm, t);
2085 unblock_input ();
2086
2087 if (t)
2088 {
2089 zone_offset = make_number (offset);
2090 if (SCHARS (zone_name) == 0)
2091 {
2092 /* No local time zone name is available; use "+-NNNN" instead. */
2093 int m = offset / 60;
2094 int am = offset < 0 ? - m : m;
2095 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2096 zone_name = make_formatted_string (buf, "%c%02d%02d",
2097 (offset < 0 ? '-' : '+'),
2098 am / 60, am % 60);
2099 }
2100 }
2101
2102 return list2 (zone_offset, zone_name);
2103 }
2104
2105 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2106 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2107 If TZ is nil, use implementation-defined default time zone information.
2108 If TZ is t, use Universal Time.
2109
2110 Instead of calling this function, you typically want (setenv "TZ" TZ).
2111 That changes both the environment of the Emacs process and the
2112 variable `process-environment', whereas `set-time-zone-rule' affects
2113 only the former. */)
2114 (Lisp_Object tz)
2115 {
2116 const char *tzstring;
2117
2118 if (! (NILP (tz) || EQ (tz, Qt)))
2119 CHECK_STRING (tz);
2120
2121 if (NILP (tz))
2122 tzstring = initial_tz;
2123 else if (EQ (tz, Qt))
2124 tzstring = "UTC0";
2125 else
2126 tzstring = SSDATA (tz);
2127
2128 block_input ();
2129 set_time_zone_rule (tzstring);
2130 unblock_input ();
2131
2132 return Qnil;
2133 }
2134
2135 /* Set the local time zone rule to TZSTRING.
2136
2137 This function is not thread-safe, partly because putenv, unsetenv
2138 and tzset are not, and partly because of the static storage it
2139 updates. Other threads that invoke localtime etc. may be adversely
2140 affected while this function is executing. */
2141
2142 void
2143 set_time_zone_rule (const char *tzstring)
2144 {
2145 /* A buffer holding a string of the form "TZ=value", intended
2146 to be part of the environment. */
2147 static char *tzvalbuf;
2148 static ptrdiff_t tzvalbufsize;
2149
2150 int tzeqlen = sizeof "TZ=" - 1;
2151
2152 #ifdef LOCALTIME_CACHE
2153 /* These two values are known to load tz files in buggy implementations,
2154 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2155 Their values shouldn't matter in non-buggy implementations.
2156 We don't use string literals for these strings,
2157 since if a string in the environment is in readonly
2158 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2159 See Sun bugs 1113095 and 1114114, ``Timezone routines
2160 improperly modify environment''. */
2161
2162 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2163 = { "TZ=GMT+0", "TZ=GMT+1" };
2164
2165 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2166 "US/Pacific" that loads a tz file, then changes to a value like
2167 "XXX0" that does not load a tz file, and then changes back to
2168 its original value, the last change is (incorrectly) ignored.
2169 Also, if TZ changes twice in succession to values that do
2170 not load a tz file, tzset can dump core (see Sun bug#1225179).
2171 The following code works around these bugs. */
2172
2173 if (tzstring)
2174 {
2175 /* Temporarily set TZ to a value that loads a tz file
2176 and that differs from tzstring. */
2177 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2178 xputenv (set_time_zone_rule_tz[eq0]);
2179 }
2180 else
2181 {
2182 /* The implied tzstring is unknown, so temporarily set TZ to
2183 two different values that each load a tz file. */
2184 xputenv (set_time_zone_rule_tz[0]);
2185 tzset ();
2186 xputenv (set_time_zone_rule_tz[1]);
2187 }
2188 tzset ();
2189 tzvalbuf_in_environ = 0;
2190 #endif
2191
2192 if (!tzstring)
2193 {
2194 unsetenv ("TZ");
2195 tzvalbuf_in_environ = 0;
2196 }
2197 else
2198 {
2199 ptrdiff_t tzstringlen = strlen (tzstring);
2200
2201 if (tzvalbufsize <= tzeqlen + tzstringlen)
2202 {
2203 unsetenv ("TZ");
2204 tzvalbuf_in_environ = 0;
2205 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2206 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2207 memcpy (tzvalbuf, "TZ=", tzeqlen);
2208 }
2209
2210 strcpy (tzvalbuf + tzeqlen, tzstring);
2211
2212 if (!tzvalbuf_in_environ)
2213 {
2214 xputenv (tzvalbuf);
2215 tzvalbuf_in_environ = 1;
2216 }
2217 }
2218
2219 #ifdef LOCALTIME_CACHE
2220 tzset ();
2221 #endif
2222 }
2223 \f
2224 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2225 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2226 type of object is Lisp_String). INHERIT is passed to
2227 INSERT_FROM_STRING_FUNC as the last argument. */
2228
2229 static void
2230 general_insert_function (void (*insert_func)
2231 (const char *, ptrdiff_t),
2232 void (*insert_from_string_func)
2233 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2234 ptrdiff_t, ptrdiff_t, bool),
2235 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2236 {
2237 ptrdiff_t argnum;
2238 Lisp_Object val;
2239
2240 for (argnum = 0; argnum < nargs; argnum++)
2241 {
2242 val = args[argnum];
2243 if (CHARACTERP (val))
2244 {
2245 int c = XFASTINT (val);
2246 unsigned char str[MAX_MULTIBYTE_LENGTH];
2247 int len;
2248
2249 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2250 len = CHAR_STRING (c, str);
2251 else
2252 {
2253 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2254 len = 1;
2255 }
2256 (*insert_func) ((char *) str, len);
2257 }
2258 else if (STRINGP (val))
2259 {
2260 (*insert_from_string_func) (val, 0, 0,
2261 SCHARS (val),
2262 SBYTES (val),
2263 inherit);
2264 }
2265 else
2266 wrong_type_argument (Qchar_or_string_p, val);
2267 }
2268 }
2269
2270 void
2271 insert1 (Lisp_Object arg)
2272 {
2273 Finsert (1, &arg);
2274 }
2275
2276
2277 /* Callers passing one argument to Finsert need not gcpro the
2278 argument "array", since the only element of the array will
2279 not be used after calling insert or insert_from_string, so
2280 we don't care if it gets trashed. */
2281
2282 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2283 doc: /* Insert the arguments, either strings or characters, at point.
2284 Point and before-insertion markers move forward to end up
2285 after the inserted text.
2286 Any other markers at the point of insertion remain before the text.
2287
2288 If the current buffer is multibyte, unibyte strings are converted
2289 to multibyte for insertion (see `string-make-multibyte').
2290 If the current buffer is unibyte, multibyte strings are converted
2291 to unibyte for insertion (see `string-make-unibyte').
2292
2293 When operating on binary data, it may be necessary to preserve the
2294 original bytes of a unibyte string when inserting it into a multibyte
2295 buffer; to accomplish this, apply `string-as-multibyte' to the string
2296 and insert the result.
2297
2298 usage: (insert &rest ARGS) */)
2299 (ptrdiff_t nargs, Lisp_Object *args)
2300 {
2301 general_insert_function (insert, insert_from_string, 0, nargs, args);
2302 return Qnil;
2303 }
2304
2305 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2306 0, MANY, 0,
2307 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2308 Point and before-insertion markers move forward to end up
2309 after the inserted text.
2310 Any other markers at the point of insertion remain before the text.
2311
2312 If the current buffer is multibyte, unibyte strings are converted
2313 to multibyte for insertion (see `unibyte-char-to-multibyte').
2314 If the current buffer is unibyte, multibyte strings are converted
2315 to unibyte for insertion.
2316
2317 usage: (insert-and-inherit &rest ARGS) */)
2318 (ptrdiff_t nargs, Lisp_Object *args)
2319 {
2320 general_insert_function (insert_and_inherit, insert_from_string, 1,
2321 nargs, args);
2322 return Qnil;
2323 }
2324
2325 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2326 doc: /* Insert strings or characters at point, relocating markers after the text.
2327 Point and markers move forward to end up after the inserted text.
2328
2329 If the current buffer is multibyte, unibyte strings are converted
2330 to multibyte for insertion (see `unibyte-char-to-multibyte').
2331 If the current buffer is unibyte, multibyte strings are converted
2332 to unibyte for insertion.
2333
2334 usage: (insert-before-markers &rest ARGS) */)
2335 (ptrdiff_t nargs, Lisp_Object *args)
2336 {
2337 general_insert_function (insert_before_markers,
2338 insert_from_string_before_markers, 0,
2339 nargs, args);
2340 return Qnil;
2341 }
2342
2343 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2344 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2345 doc: /* Insert text at point, relocating markers and inheriting properties.
2346 Point and markers move forward to end up after the inserted text.
2347
2348 If the current buffer is multibyte, unibyte strings are converted
2349 to multibyte for insertion (see `unibyte-char-to-multibyte').
2350 If the current buffer is unibyte, multibyte strings are converted
2351 to unibyte for insertion.
2352
2353 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2354 (ptrdiff_t nargs, Lisp_Object *args)
2355 {
2356 general_insert_function (insert_before_markers_and_inherit,
2357 insert_from_string_before_markers, 1,
2358 nargs, args);
2359 return Qnil;
2360 }
2361 \f
2362 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2363 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2364 (prefix-numeric-value current-prefix-arg)\
2365 t))",
2366 doc: /* Insert COUNT copies of CHARACTER.
2367 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2368 of these ways:
2369
2370 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2371 Completion is available; if you type a substring of the name
2372 preceded by an asterisk `*', Emacs shows all names which include
2373 that substring, not necessarily at the beginning of the name.
2374
2375 - As a hexadecimal code point, e.g. 263A. Note that code points in
2376 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2377 the Unicode code space).
2378
2379 - As a code point with a radix specified with #, e.g. #o21430
2380 (octal), #x2318 (hex), or #10r8984 (decimal).
2381
2382 If called interactively, COUNT is given by the prefix argument. If
2383 omitted or nil, it defaults to 1.
2384
2385 Inserting the character(s) relocates point and before-insertion
2386 markers in the same ways as the function `insert'.
2387
2388 The optional third argument INHERIT, if non-nil, says to inherit text
2389 properties from adjoining text, if those properties are sticky. If
2390 called interactively, INHERIT is t. */)
2391 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2392 {
2393 int i, stringlen;
2394 register ptrdiff_t n;
2395 int c, len;
2396 unsigned char str[MAX_MULTIBYTE_LENGTH];
2397 char string[4000];
2398
2399 CHECK_CHARACTER (character);
2400 if (NILP (count))
2401 XSETFASTINT (count, 1);
2402 CHECK_NUMBER (count);
2403 c = XFASTINT (character);
2404
2405 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2406 len = CHAR_STRING (c, str);
2407 else
2408 str[0] = c, len = 1;
2409 if (XINT (count) <= 0)
2410 return Qnil;
2411 if (BUF_BYTES_MAX / len < XINT (count))
2412 buffer_overflow ();
2413 n = XINT (count) * len;
2414 stringlen = min (n, sizeof string - sizeof string % len);
2415 for (i = 0; i < stringlen; i++)
2416 string[i] = str[i % len];
2417 while (n > stringlen)
2418 {
2419 QUIT;
2420 if (!NILP (inherit))
2421 insert_and_inherit (string, stringlen);
2422 else
2423 insert (string, stringlen);
2424 n -= stringlen;
2425 }
2426 if (!NILP (inherit))
2427 insert_and_inherit (string, n);
2428 else
2429 insert (string, n);
2430 return Qnil;
2431 }
2432
2433 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2434 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2435 Both arguments are required.
2436 BYTE is a number of the range 0..255.
2437
2438 If BYTE is 128..255 and the current buffer is multibyte, the
2439 corresponding eight-bit character is inserted.
2440
2441 Point, and before-insertion markers, are relocated as in the function `insert'.
2442 The optional third arg INHERIT, if non-nil, says to inherit text properties
2443 from adjoining text, if those properties are sticky. */)
2444 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2445 {
2446 CHECK_NUMBER (byte);
2447 if (XINT (byte) < 0 || XINT (byte) > 255)
2448 args_out_of_range_3 (byte, make_number (0), make_number (255));
2449 if (XINT (byte) >= 128
2450 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2451 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2452 return Finsert_char (byte, count, inherit);
2453 }
2454
2455 \f
2456 /* Making strings from buffer contents. */
2457
2458 /* Return a Lisp_String containing the text of the current buffer from
2459 START to END. If text properties are in use and the current buffer
2460 has properties in the range specified, the resulting string will also
2461 have them, if PROPS is true.
2462
2463 We don't want to use plain old make_string here, because it calls
2464 make_uninit_string, which can cause the buffer arena to be
2465 compacted. make_string has no way of knowing that the data has
2466 been moved, and thus copies the wrong data into the string. This
2467 doesn't effect most of the other users of make_string, so it should
2468 be left as is. But we should use this function when conjuring
2469 buffer substrings. */
2470
2471 Lisp_Object
2472 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2473 {
2474 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2475 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2476
2477 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2478 }
2479
2480 /* Return a Lisp_String containing the text of the current buffer from
2481 START / START_BYTE to END / END_BYTE.
2482
2483 If text properties are in use and the current buffer
2484 has properties in the range specified, the resulting string will also
2485 have them, if PROPS is true.
2486
2487 We don't want to use plain old make_string here, because it calls
2488 make_uninit_string, which can cause the buffer arena to be
2489 compacted. make_string has no way of knowing that the data has
2490 been moved, and thus copies the wrong data into the string. This
2491 doesn't effect most of the other users of make_string, so it should
2492 be left as is. But we should use this function when conjuring
2493 buffer substrings. */
2494
2495 Lisp_Object
2496 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2497 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2498 {
2499 Lisp_Object result, tem, tem1;
2500
2501 if (start < GPT && GPT < end)
2502 move_gap_both (start, start_byte);
2503
2504 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2505 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2506 else
2507 result = make_uninit_string (end - start);
2508 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2509
2510 /* If desired, update and copy the text properties. */
2511 if (props)
2512 {
2513 update_buffer_properties (start, end);
2514
2515 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2516 tem1 = Ftext_properties_at (make_number (start), Qnil);
2517
2518 if (XINT (tem) != end || !NILP (tem1))
2519 copy_intervals_to_string (result, current_buffer, start,
2520 end - start);
2521 }
2522
2523 return result;
2524 }
2525
2526 /* Call Vbuffer_access_fontify_functions for the range START ... END
2527 in the current buffer, if necessary. */
2528
2529 static void
2530 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2531 {
2532 /* If this buffer has some access functions,
2533 call them, specifying the range of the buffer being accessed. */
2534 if (!NILP (Vbuffer_access_fontify_functions))
2535 {
2536 Lisp_Object args[3];
2537 Lisp_Object tem;
2538
2539 args[0] = Qbuffer_access_fontify_functions;
2540 XSETINT (args[1], start);
2541 XSETINT (args[2], end);
2542
2543 /* But don't call them if we can tell that the work
2544 has already been done. */
2545 if (!NILP (Vbuffer_access_fontified_property))
2546 {
2547 tem = Ftext_property_any (args[1], args[2],
2548 Vbuffer_access_fontified_property,
2549 Qnil, Qnil);
2550 if (! NILP (tem))
2551 Frun_hook_with_args (3, args);
2552 }
2553 else
2554 Frun_hook_with_args (3, args);
2555 }
2556 }
2557
2558 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2559 doc: /* Return the contents of part of the current buffer as a string.
2560 The two arguments START and END are character positions;
2561 they can be in either order.
2562 The string returned is multibyte if the buffer is multibyte.
2563
2564 This function copies the text properties of that part of the buffer
2565 into the result string; if you don't want the text properties,
2566 use `buffer-substring-no-properties' instead. */)
2567 (Lisp_Object start, Lisp_Object end)
2568 {
2569 register ptrdiff_t b, e;
2570
2571 validate_region (&start, &end);
2572 b = XINT (start);
2573 e = XINT (end);
2574
2575 return make_buffer_string (b, e, 1);
2576 }
2577
2578 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2579 Sbuffer_substring_no_properties, 2, 2, 0,
2580 doc: /* Return the characters of part of the buffer, without the text properties.
2581 The two arguments START and END are character positions;
2582 they can be in either order. */)
2583 (Lisp_Object start, Lisp_Object end)
2584 {
2585 register ptrdiff_t b, e;
2586
2587 validate_region (&start, &end);
2588 b = XINT (start);
2589 e = XINT (end);
2590
2591 return make_buffer_string (b, e, 0);
2592 }
2593
2594 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2595 doc: /* Return the contents of the current buffer as a string.
2596 If narrowing is in effect, this function returns only the visible part
2597 of the buffer. */)
2598 (void)
2599 {
2600 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2601 }
2602
2603 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2604 1, 3, 0,
2605 doc: /* Insert before point a substring of the contents of BUFFER.
2606 BUFFER may be a buffer or a buffer name.
2607 Arguments START and END are character positions specifying the substring.
2608 They default to the values of (point-min) and (point-max) in BUFFER. */)
2609 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2610 {
2611 register EMACS_INT b, e, temp;
2612 register struct buffer *bp, *obuf;
2613 Lisp_Object buf;
2614
2615 buf = Fget_buffer (buffer);
2616 if (NILP (buf))
2617 nsberror (buffer);
2618 bp = XBUFFER (buf);
2619 if (!BUFFER_LIVE_P (bp))
2620 error ("Selecting deleted buffer");
2621
2622 if (NILP (start))
2623 b = BUF_BEGV (bp);
2624 else
2625 {
2626 CHECK_NUMBER_COERCE_MARKER (start);
2627 b = XINT (start);
2628 }
2629 if (NILP (end))
2630 e = BUF_ZV (bp);
2631 else
2632 {
2633 CHECK_NUMBER_COERCE_MARKER (end);
2634 e = XINT (end);
2635 }
2636
2637 if (b > e)
2638 temp = b, b = e, e = temp;
2639
2640 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2641 args_out_of_range (start, end);
2642
2643 obuf = current_buffer;
2644 set_buffer_internal_1 (bp);
2645 update_buffer_properties (b, e);
2646 set_buffer_internal_1 (obuf);
2647
2648 insert_from_buffer (bp, b, e - b, 0);
2649 return Qnil;
2650 }
2651
2652 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2653 6, 6, 0,
2654 doc: /* Compare two substrings of two buffers; return result as number.
2655 Return -N if first string is less after N-1 chars, +N if first string is
2656 greater after N-1 chars, or 0 if strings match. Each substring is
2657 represented as three arguments: BUFFER, START and END. That makes six
2658 args in all, three for each substring.
2659
2660 The value of `case-fold-search' in the current buffer
2661 determines whether case is significant or ignored. */)
2662 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2663 {
2664 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2665 register struct buffer *bp1, *bp2;
2666 register Lisp_Object trt
2667 = (!NILP (BVAR (current_buffer, case_fold_search))
2668 ? BVAR (current_buffer, case_canon_table) : Qnil);
2669 ptrdiff_t chars = 0;
2670 ptrdiff_t i1, i2, i1_byte, i2_byte;
2671
2672 /* Find the first buffer and its substring. */
2673
2674 if (NILP (buffer1))
2675 bp1 = current_buffer;
2676 else
2677 {
2678 Lisp_Object buf1;
2679 buf1 = Fget_buffer (buffer1);
2680 if (NILP (buf1))
2681 nsberror (buffer1);
2682 bp1 = XBUFFER (buf1);
2683 if (!BUFFER_LIVE_P (bp1))
2684 error ("Selecting deleted buffer");
2685 }
2686
2687 if (NILP (start1))
2688 begp1 = BUF_BEGV (bp1);
2689 else
2690 {
2691 CHECK_NUMBER_COERCE_MARKER (start1);
2692 begp1 = XINT (start1);
2693 }
2694 if (NILP (end1))
2695 endp1 = BUF_ZV (bp1);
2696 else
2697 {
2698 CHECK_NUMBER_COERCE_MARKER (end1);
2699 endp1 = XINT (end1);
2700 }
2701
2702 if (begp1 > endp1)
2703 temp = begp1, begp1 = endp1, endp1 = temp;
2704
2705 if (!(BUF_BEGV (bp1) <= begp1
2706 && begp1 <= endp1
2707 && endp1 <= BUF_ZV (bp1)))
2708 args_out_of_range (start1, end1);
2709
2710 /* Likewise for second substring. */
2711
2712 if (NILP (buffer2))
2713 bp2 = current_buffer;
2714 else
2715 {
2716 Lisp_Object buf2;
2717 buf2 = Fget_buffer (buffer2);
2718 if (NILP (buf2))
2719 nsberror (buffer2);
2720 bp2 = XBUFFER (buf2);
2721 if (!BUFFER_LIVE_P (bp2))
2722 error ("Selecting deleted buffer");
2723 }
2724
2725 if (NILP (start2))
2726 begp2 = BUF_BEGV (bp2);
2727 else
2728 {
2729 CHECK_NUMBER_COERCE_MARKER (start2);
2730 begp2 = XINT (start2);
2731 }
2732 if (NILP (end2))
2733 endp2 = BUF_ZV (bp2);
2734 else
2735 {
2736 CHECK_NUMBER_COERCE_MARKER (end2);
2737 endp2 = XINT (end2);
2738 }
2739
2740 if (begp2 > endp2)
2741 temp = begp2, begp2 = endp2, endp2 = temp;
2742
2743 if (!(BUF_BEGV (bp2) <= begp2
2744 && begp2 <= endp2
2745 && endp2 <= BUF_ZV (bp2)))
2746 args_out_of_range (start2, end2);
2747
2748 i1 = begp1;
2749 i2 = begp2;
2750 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2751 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2752
2753 while (i1 < endp1 && i2 < endp2)
2754 {
2755 /* When we find a mismatch, we must compare the
2756 characters, not just the bytes. */
2757 int c1, c2;
2758
2759 QUIT;
2760
2761 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2762 {
2763 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2764 BUF_INC_POS (bp1, i1_byte);
2765 i1++;
2766 }
2767 else
2768 {
2769 c1 = BUF_FETCH_BYTE (bp1, i1);
2770 MAKE_CHAR_MULTIBYTE (c1);
2771 i1++;
2772 }
2773
2774 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2775 {
2776 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2777 BUF_INC_POS (bp2, i2_byte);
2778 i2++;
2779 }
2780 else
2781 {
2782 c2 = BUF_FETCH_BYTE (bp2, i2);
2783 MAKE_CHAR_MULTIBYTE (c2);
2784 i2++;
2785 }
2786
2787 if (!NILP (trt))
2788 {
2789 c1 = char_table_translate (trt, c1);
2790 c2 = char_table_translate (trt, c2);
2791 }
2792 if (c1 < c2)
2793 return make_number (- 1 - chars);
2794 if (c1 > c2)
2795 return make_number (chars + 1);
2796
2797 chars++;
2798 }
2799
2800 /* The strings match as far as they go.
2801 If one is shorter, that one is less. */
2802 if (chars < endp1 - begp1)
2803 return make_number (chars + 1);
2804 else if (chars < endp2 - begp2)
2805 return make_number (- chars - 1);
2806
2807 /* Same length too => they are equal. */
2808 return make_number (0);
2809 }
2810 \f
2811 static void
2812 subst_char_in_region_unwind (Lisp_Object arg)
2813 {
2814 bset_undo_list (current_buffer, arg);
2815 }
2816
2817 static void
2818 subst_char_in_region_unwind_1 (Lisp_Object arg)
2819 {
2820 bset_filename (current_buffer, arg);
2821 }
2822
2823 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2824 Ssubst_char_in_region, 4, 5, 0,
2825 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2826 If optional arg NOUNDO is non-nil, don't record this change for undo
2827 and don't mark the buffer as really changed.
2828 Both characters must have the same length of multi-byte form. */)
2829 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2830 {
2831 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2832 /* Keep track of the first change in the buffer:
2833 if 0 we haven't found it yet.
2834 if < 0 we've found it and we've run the before-change-function.
2835 if > 0 we've actually performed it and the value is its position. */
2836 ptrdiff_t changed = 0;
2837 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2838 unsigned char *p;
2839 ptrdiff_t count = SPECPDL_INDEX ();
2840 #define COMBINING_NO 0
2841 #define COMBINING_BEFORE 1
2842 #define COMBINING_AFTER 2
2843 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2844 int maybe_byte_combining = COMBINING_NO;
2845 ptrdiff_t last_changed = 0;
2846 bool multibyte_p
2847 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2848 int fromc, toc;
2849
2850 restart:
2851
2852 validate_region (&start, &end);
2853 CHECK_CHARACTER (fromchar);
2854 CHECK_CHARACTER (tochar);
2855 fromc = XFASTINT (fromchar);
2856 toc = XFASTINT (tochar);
2857
2858 if (multibyte_p)
2859 {
2860 len = CHAR_STRING (fromc, fromstr);
2861 if (CHAR_STRING (toc, tostr) != len)
2862 error ("Characters in `subst-char-in-region' have different byte-lengths");
2863 if (!ASCII_BYTE_P (*tostr))
2864 {
2865 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2866 complete multibyte character, it may be combined with the
2867 after bytes. If it is in the range 0xA0..0xFF, it may be
2868 combined with the before and after bytes. */
2869 if (!CHAR_HEAD_P (*tostr))
2870 maybe_byte_combining = COMBINING_BOTH;
2871 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2872 maybe_byte_combining = COMBINING_AFTER;
2873 }
2874 }
2875 else
2876 {
2877 len = 1;
2878 fromstr[0] = fromc;
2879 tostr[0] = toc;
2880 }
2881
2882 pos = XINT (start);
2883 pos_byte = CHAR_TO_BYTE (pos);
2884 stop = CHAR_TO_BYTE (XINT (end));
2885 end_byte = stop;
2886
2887 /* If we don't want undo, turn off putting stuff on the list.
2888 That's faster than getting rid of things,
2889 and it prevents even the entry for a first change.
2890 Also inhibit locking the file. */
2891 if (!changed && !NILP (noundo))
2892 {
2893 record_unwind_protect (subst_char_in_region_unwind,
2894 BVAR (current_buffer, undo_list));
2895 bset_undo_list (current_buffer, Qt);
2896 /* Don't do file-locking. */
2897 record_unwind_protect (subst_char_in_region_unwind_1,
2898 BVAR (current_buffer, filename));
2899 bset_filename (current_buffer, Qnil);
2900 }
2901
2902 if (pos_byte < GPT_BYTE)
2903 stop = min (stop, GPT_BYTE);
2904 while (1)
2905 {
2906 ptrdiff_t pos_byte_next = pos_byte;
2907
2908 if (pos_byte >= stop)
2909 {
2910 if (pos_byte >= end_byte) break;
2911 stop = end_byte;
2912 }
2913 p = BYTE_POS_ADDR (pos_byte);
2914 if (multibyte_p)
2915 INC_POS (pos_byte_next);
2916 else
2917 ++pos_byte_next;
2918 if (pos_byte_next - pos_byte == len
2919 && p[0] == fromstr[0]
2920 && (len == 1
2921 || (p[1] == fromstr[1]
2922 && (len == 2 || (p[2] == fromstr[2]
2923 && (len == 3 || p[3] == fromstr[3]))))))
2924 {
2925 if (changed < 0)
2926 /* We've already seen this and run the before-change-function;
2927 this time we only need to record the actual position. */
2928 changed = pos;
2929 else if (!changed)
2930 {
2931 changed = -1;
2932 modify_region_1 (pos, XINT (end), false);
2933
2934 if (! NILP (noundo))
2935 {
2936 if (MODIFF - 1 == SAVE_MODIFF)
2937 SAVE_MODIFF++;
2938 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2939 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2940 }
2941
2942 /* The before-change-function may have moved the gap
2943 or even modified the buffer so we should start over. */
2944 goto restart;
2945 }
2946
2947 /* Take care of the case where the new character
2948 combines with neighboring bytes. */
2949 if (maybe_byte_combining
2950 && (maybe_byte_combining == COMBINING_AFTER
2951 ? (pos_byte_next < Z_BYTE
2952 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2953 : ((pos_byte_next < Z_BYTE
2954 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2955 || (pos_byte > BEG_BYTE
2956 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2957 {
2958 Lisp_Object tem, string;
2959
2960 struct gcpro gcpro1;
2961
2962 tem = BVAR (current_buffer, undo_list);
2963 GCPRO1 (tem);
2964
2965 /* Make a multibyte string containing this single character. */
2966 string = make_multibyte_string ((char *) tostr, 1, len);
2967 /* replace_range is less efficient, because it moves the gap,
2968 but it handles combining correctly. */
2969 replace_range (pos, pos + 1, string,
2970 0, 0, 1);
2971 pos_byte_next = CHAR_TO_BYTE (pos);
2972 if (pos_byte_next > pos_byte)
2973 /* Before combining happened. We should not increment
2974 POS. So, to cancel the later increment of POS,
2975 decrease it now. */
2976 pos--;
2977 else
2978 INC_POS (pos_byte_next);
2979
2980 if (! NILP (noundo))
2981 bset_undo_list (current_buffer, tem);
2982
2983 UNGCPRO;
2984 }
2985 else
2986 {
2987 if (NILP (noundo))
2988 record_change (pos, 1);
2989 for (i = 0; i < len; i++) *p++ = tostr[i];
2990 }
2991 last_changed = pos + 1;
2992 }
2993 pos_byte = pos_byte_next;
2994 pos++;
2995 }
2996
2997 if (changed > 0)
2998 {
2999 signal_after_change (changed,
3000 last_changed - changed, last_changed - changed);
3001 update_compositions (changed, last_changed, CHECK_ALL);
3002 }
3003
3004 unbind_to (count, Qnil);
3005 return Qnil;
3006 }
3007
3008
3009 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3010 Lisp_Object);
3011
3012 /* Helper function for Ftranslate_region_internal.
3013
3014 Check if a character sequence at POS (POS_BYTE) matches an element
3015 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3016 element is found, return it. Otherwise return Qnil. */
3017
3018 static Lisp_Object
3019 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3020 Lisp_Object val)
3021 {
3022 int buf_size = 16, buf_used = 0;
3023 int *buf = alloca (sizeof (int) * buf_size);
3024
3025 for (; CONSP (val); val = XCDR (val))
3026 {
3027 Lisp_Object elt;
3028 ptrdiff_t len, i;
3029
3030 elt = XCAR (val);
3031 if (! CONSP (elt))
3032 continue;
3033 elt = XCAR (elt);
3034 if (! VECTORP (elt))
3035 continue;
3036 len = ASIZE (elt);
3037 if (len <= end - pos)
3038 {
3039 for (i = 0; i < len; i++)
3040 {
3041 if (buf_used <= i)
3042 {
3043 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3044 int len1;
3045
3046 if (buf_used == buf_size)
3047 {
3048 int *newbuf;
3049
3050 buf_size += 16;
3051 newbuf = alloca (sizeof (int) * buf_size);
3052 memcpy (newbuf, buf, sizeof (int) * buf_used);
3053 buf = newbuf;
3054 }
3055 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3056 pos_byte += len1;
3057 }
3058 if (XINT (AREF (elt, i)) != buf[i])
3059 break;
3060 }
3061 if (i == len)
3062 return XCAR (val);
3063 }
3064 }
3065 return Qnil;
3066 }
3067
3068
3069 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3070 Stranslate_region_internal, 3, 3, 0,
3071 doc: /* Internal use only.
3072 From START to END, translate characters according to TABLE.
3073 TABLE is a string or a char-table; the Nth character in it is the
3074 mapping for the character with code N.
3075 It returns the number of characters changed. */)
3076 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3077 {
3078 register unsigned char *tt; /* Trans table. */
3079 register int nc; /* New character. */
3080 int cnt; /* Number of changes made. */
3081 ptrdiff_t size; /* Size of translate table. */
3082 ptrdiff_t pos, pos_byte, end_pos;
3083 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3084 bool string_multibyte IF_LINT (= 0);
3085
3086 validate_region (&start, &end);
3087 if (CHAR_TABLE_P (table))
3088 {
3089 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3090 error ("Not a translation table");
3091 size = MAX_CHAR;
3092 tt = NULL;
3093 }
3094 else
3095 {
3096 CHECK_STRING (table);
3097
3098 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3099 table = string_make_unibyte (table);
3100 string_multibyte = SCHARS (table) < SBYTES (table);
3101 size = SBYTES (table);
3102 tt = SDATA (table);
3103 }
3104
3105 pos = XINT (start);
3106 pos_byte = CHAR_TO_BYTE (pos);
3107 end_pos = XINT (end);
3108 modify_region_1 (pos, end_pos, false);
3109
3110 cnt = 0;
3111 for (; pos < end_pos; )
3112 {
3113 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3114 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3115 int len, str_len;
3116 int oc;
3117 Lisp_Object val;
3118
3119 if (multibyte)
3120 oc = STRING_CHAR_AND_LENGTH (p, len);
3121 else
3122 oc = *p, len = 1;
3123 if (oc < size)
3124 {
3125 if (tt)
3126 {
3127 /* Reload as signal_after_change in last iteration may GC. */
3128 tt = SDATA (table);
3129 if (string_multibyte)
3130 {
3131 str = tt + string_char_to_byte (table, oc);
3132 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3133 }
3134 else
3135 {
3136 nc = tt[oc];
3137 if (! ASCII_BYTE_P (nc) && multibyte)
3138 {
3139 str_len = BYTE8_STRING (nc, buf);
3140 str = buf;
3141 }
3142 else
3143 {
3144 str_len = 1;
3145 str = tt + oc;
3146 }
3147 }
3148 }
3149 else
3150 {
3151 nc = oc;
3152 val = CHAR_TABLE_REF (table, oc);
3153 if (CHARACTERP (val))
3154 {
3155 nc = XFASTINT (val);
3156 str_len = CHAR_STRING (nc, buf);
3157 str = buf;
3158 }
3159 else if (VECTORP (val) || (CONSP (val)))
3160 {
3161 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3162 where TO is TO-CHAR or [TO-CHAR ...]. */
3163 nc = -1;
3164 }
3165 }
3166
3167 if (nc != oc && nc >= 0)
3168 {
3169 /* Simple one char to one char translation. */
3170 if (len != str_len)
3171 {
3172 Lisp_Object string;
3173
3174 /* This is less efficient, because it moves the gap,
3175 but it should handle multibyte characters correctly. */
3176 string = make_multibyte_string ((char *) str, 1, str_len);
3177 replace_range (pos, pos + 1, string, 1, 0, 1);
3178 len = str_len;
3179 }
3180 else
3181 {
3182 record_change (pos, 1);
3183 while (str_len-- > 0)
3184 *p++ = *str++;
3185 signal_after_change (pos, 1, 1);
3186 update_compositions (pos, pos + 1, CHECK_BORDER);
3187 }
3188 ++cnt;
3189 }
3190 else if (nc < 0)
3191 {
3192 Lisp_Object string;
3193
3194 if (CONSP (val))
3195 {
3196 val = check_translation (pos, pos_byte, end_pos, val);
3197 if (NILP (val))
3198 {
3199 pos_byte += len;
3200 pos++;
3201 continue;
3202 }
3203 /* VAL is ([FROM-CHAR ...] . TO). */
3204 len = ASIZE (XCAR (val));
3205 val = XCDR (val);
3206 }
3207 else
3208 len = 1;
3209
3210 if (VECTORP (val))
3211 {
3212 string = Fconcat (1, &val);
3213 }
3214 else
3215 {
3216 string = Fmake_string (make_number (1), val);
3217 }
3218 replace_range (pos, pos + len, string, 1, 0, 1);
3219 pos_byte += SBYTES (string);
3220 pos += SCHARS (string);
3221 cnt += SCHARS (string);
3222 end_pos += SCHARS (string) - len;
3223 continue;
3224 }
3225 }
3226 pos_byte += len;
3227 pos++;
3228 }
3229
3230 return make_number (cnt);
3231 }
3232
3233 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3234 doc: /* Delete the text between START and END.
3235 If called interactively, delete the region between point and mark.
3236 This command deletes buffer text without modifying the kill ring. */)
3237 (Lisp_Object start, Lisp_Object end)
3238 {
3239 validate_region (&start, &end);
3240 del_range (XINT (start), XINT (end));
3241 return Qnil;
3242 }
3243
3244 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3245 Sdelete_and_extract_region, 2, 2, 0,
3246 doc: /* Delete the text between START and END and return it. */)
3247 (Lisp_Object start, Lisp_Object end)
3248 {
3249 validate_region (&start, &end);
3250 if (XINT (start) == XINT (end))
3251 return empty_unibyte_string;
3252 return del_range_1 (XINT (start), XINT (end), 1, 1);
3253 }
3254 \f
3255 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3256 doc: /* Remove restrictions (narrowing) from current buffer.
3257 This allows the buffer's full text to be seen and edited. */)
3258 (void)
3259 {
3260 if (BEG != BEGV || Z != ZV)
3261 current_buffer->clip_changed = 1;
3262 BEGV = BEG;
3263 BEGV_BYTE = BEG_BYTE;
3264 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3265 /* Changing the buffer bounds invalidates any recorded current column. */
3266 invalidate_current_column ();
3267 return Qnil;
3268 }
3269
3270 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3271 doc: /* Restrict editing in this buffer to the current region.
3272 The rest of the text becomes temporarily invisible and untouchable
3273 but is not deleted; if you save the buffer in a file, the invisible
3274 text is included in the file. \\[widen] makes all visible again.
3275 See also `save-restriction'.
3276
3277 When calling from a program, pass two arguments; positions (integers
3278 or markers) bounding the text that should remain visible. */)
3279 (register Lisp_Object start, Lisp_Object end)
3280 {
3281 CHECK_NUMBER_COERCE_MARKER (start);
3282 CHECK_NUMBER_COERCE_MARKER (end);
3283
3284 if (XINT (start) > XINT (end))
3285 {
3286 Lisp_Object tem;
3287 tem = start; start = end; end = tem;
3288 }
3289
3290 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3291 args_out_of_range (start, end);
3292
3293 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3294 current_buffer->clip_changed = 1;
3295
3296 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3297 SET_BUF_ZV (current_buffer, XFASTINT (end));
3298 if (PT < XFASTINT (start))
3299 SET_PT (XFASTINT (start));
3300 if (PT > XFASTINT (end))
3301 SET_PT (XFASTINT (end));
3302 /* Changing the buffer bounds invalidates any recorded current column. */
3303 invalidate_current_column ();
3304 return Qnil;
3305 }
3306
3307 Lisp_Object
3308 save_restriction_save (void)
3309 {
3310 if (BEGV == BEG && ZV == Z)
3311 /* The common case that the buffer isn't narrowed.
3312 We return just the buffer object, which save_restriction_restore
3313 recognizes as meaning `no restriction'. */
3314 return Fcurrent_buffer ();
3315 else
3316 /* We have to save a restriction, so return a pair of markers, one
3317 for the beginning and one for the end. */
3318 {
3319 Lisp_Object beg, end;
3320
3321 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3322 end = build_marker (current_buffer, ZV, ZV_BYTE);
3323
3324 /* END must move forward if text is inserted at its exact location. */
3325 XMARKER (end)->insertion_type = 1;
3326
3327 return Fcons (beg, end);
3328 }
3329 }
3330
3331 void
3332 save_restriction_restore (Lisp_Object data)
3333 {
3334 struct buffer *cur = NULL;
3335 struct buffer *buf = (CONSP (data)
3336 ? XMARKER (XCAR (data))->buffer
3337 : XBUFFER (data));
3338
3339 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3340 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3341 is the case if it is or has an indirect buffer), then make
3342 sure it is current before we update BEGV, so
3343 set_buffer_internal takes care of managing those markers. */
3344 cur = current_buffer;
3345 set_buffer_internal (buf);
3346 }
3347
3348 if (CONSP (data))
3349 /* A pair of marks bounding a saved restriction. */
3350 {
3351 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3352 struct Lisp_Marker *end = XMARKER (XCDR (data));
3353 eassert (buf == end->buffer);
3354
3355 if (buf /* Verify marker still points to a buffer. */
3356 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3357 /* The restriction has changed from the saved one, so restore
3358 the saved restriction. */
3359 {
3360 ptrdiff_t pt = BUF_PT (buf);
3361
3362 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3363 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3364
3365 if (pt < beg->charpos || pt > end->charpos)
3366 /* The point is outside the new visible range, move it inside. */
3367 SET_BUF_PT_BOTH (buf,
3368 clip_to_bounds (beg->charpos, pt, end->charpos),
3369 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3370 end->bytepos));
3371
3372 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3373 }
3374 /* These aren't needed anymore, so don't wait for GC. */
3375 free_marker (XCAR (data));
3376 free_marker (XCDR (data));
3377 free_cons (XCONS (data));
3378 }
3379 else
3380 /* A buffer, which means that there was no old restriction. */
3381 {
3382 if (buf /* Verify marker still points to a buffer. */
3383 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3384 /* The buffer has been narrowed, get rid of the narrowing. */
3385 {
3386 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3387 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3388
3389 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3390 }
3391 }
3392
3393 /* Changing the buffer bounds invalidates any recorded current column. */
3394 invalidate_current_column ();
3395
3396 if (cur)
3397 set_buffer_internal (cur);
3398 }
3399
3400 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3401 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3402 The buffer's restrictions make parts of the beginning and end invisible.
3403 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3404 This special form, `save-restriction', saves the current buffer's restrictions
3405 when it is entered, and restores them when it is exited.
3406 So any `narrow-to-region' within BODY lasts only until the end of the form.
3407 The old restrictions settings are restored
3408 even in case of abnormal exit (throw or error).
3409
3410 The value returned is the value of the last form in BODY.
3411
3412 Note: if you are using both `save-excursion' and `save-restriction',
3413 use `save-excursion' outermost:
3414 (save-excursion (save-restriction ...))
3415
3416 usage: (save-restriction &rest BODY) */)
3417 (Lisp_Object body)
3418 {
3419 register Lisp_Object val;
3420 ptrdiff_t count = SPECPDL_INDEX ();
3421
3422 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3423 val = Fprogn (body);
3424 return unbind_to (count, val);
3425 }
3426 \f
3427 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3428 doc: /* Display a message at the bottom of the screen.
3429 The message also goes into the `*Messages*' buffer, if `message-log-max'
3430 is non-nil. (In keyboard macros, that's all it does.)
3431 Return the message.
3432
3433 The first argument is a format control string, and the rest are data
3434 to be formatted under control of the string. See `format' for details.
3435
3436 Note: Use (message "%s" VALUE) to print the value of expressions and
3437 variables to avoid accidentally interpreting `%' as format specifiers.
3438
3439 If the first argument is nil or the empty string, the function clears
3440 any existing message; this lets the minibuffer contents show. See
3441 also `current-message'.
3442
3443 usage: (message FORMAT-STRING &rest ARGS) */)
3444 (ptrdiff_t nargs, Lisp_Object *args)
3445 {
3446 if (NILP (args[0])
3447 || (STRINGP (args[0])
3448 && SBYTES (args[0]) == 0))
3449 {
3450 message1 (0);
3451 return args[0];
3452 }
3453 else
3454 {
3455 register Lisp_Object val;
3456 val = Fformat (nargs, args);
3457 message3 (val);
3458 return val;
3459 }
3460 }
3461
3462 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3463 doc: /* Display a message, in a dialog box if possible.
3464 If a dialog box is not available, use the echo area.
3465 The first argument is a format control string, and the rest are data
3466 to be formatted under control of the string. See `format' for details.
3467
3468 If the first argument is nil or the empty string, clear any existing
3469 message; let the minibuffer contents show.
3470
3471 usage: (message-box FORMAT-STRING &rest ARGS) */)
3472 (ptrdiff_t nargs, Lisp_Object *args)
3473 {
3474 if (NILP (args[0]))
3475 {
3476 message1 (0);
3477 return Qnil;
3478 }
3479 else
3480 {
3481 Lisp_Object val = Fformat (nargs, args);
3482 #ifdef HAVE_MENUS
3483 /* The MS-DOS frames support popup menus even though they are
3484 not FRAME_WINDOW_P. */
3485 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3486 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3487 {
3488 Lisp_Object pane, menu;
3489 struct gcpro gcpro1;
3490 pane = list1 (Fcons (build_string ("OK"), Qt));
3491 GCPRO1 (pane);
3492 menu = Fcons (val, pane);
3493 Fx_popup_dialog (Qt, menu, Qt);
3494 UNGCPRO;
3495 return val;
3496 }
3497 #endif /* HAVE_MENUS */
3498 message3 (val);
3499 return val;
3500 }
3501 }
3502
3503 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3504 doc: /* Display a message in a dialog box or in the echo area.
3505 If this command was invoked with the mouse, use a dialog box if
3506 `use-dialog-box' is non-nil.
3507 Otherwise, use the echo area.
3508 The first argument is a format control string, and the rest are data
3509 to be formatted under control of the string. See `format' for details.
3510
3511 If the first argument is nil or the empty string, clear any existing
3512 message; let the minibuffer contents show.
3513
3514 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3515 (ptrdiff_t nargs, Lisp_Object *args)
3516 {
3517 #ifdef HAVE_MENUS
3518 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3519 && use_dialog_box)
3520 return Fmessage_box (nargs, args);
3521 #endif
3522 return Fmessage (nargs, args);
3523 }
3524
3525 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3526 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3527 (void)
3528 {
3529 return current_message ();
3530 }
3531
3532
3533 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3534 doc: /* Return a copy of STRING with text properties added.
3535 First argument is the string to copy.
3536 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3537 properties to add to the result.
3538 usage: (propertize STRING &rest PROPERTIES) */)
3539 (ptrdiff_t nargs, Lisp_Object *args)
3540 {
3541 Lisp_Object properties, string;
3542 struct gcpro gcpro1, gcpro2;
3543 ptrdiff_t i;
3544
3545 /* Number of args must be odd. */
3546 if ((nargs & 1) == 0)
3547 error ("Wrong number of arguments");
3548
3549 properties = string = Qnil;
3550 GCPRO2 (properties, string);
3551
3552 /* First argument must be a string. */
3553 CHECK_STRING (args[0]);
3554 string = Fcopy_sequence (args[0]);
3555
3556 for (i = 1; i < nargs; i += 2)
3557 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3558
3559 Fadd_text_properties (make_number (0),
3560 make_number (SCHARS (string)),
3561 properties, string);
3562 RETURN_UNGCPRO (string);
3563 }
3564
3565 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3566 doc: /* Format a string out of a format-string and arguments.
3567 The first argument is a format control string.
3568 The other arguments are substituted into it to make the result, a string.
3569
3570 The format control string may contain %-sequences meaning to substitute
3571 the next available argument:
3572
3573 %s means print a string argument. Actually, prints any object, with `princ'.
3574 %d means print as number in decimal (%o octal, %x hex).
3575 %X is like %x, but uses upper case.
3576 %e means print a number in exponential notation.
3577 %f means print a number in decimal-point notation.
3578 %g means print a number in exponential notation
3579 or decimal-point notation, whichever uses fewer characters.
3580 %c means print a number as a single character.
3581 %S means print any object as an s-expression (using `prin1').
3582
3583 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3584 Use %% to put a single % into the output.
3585
3586 A %-sequence may contain optional flag, width, and precision
3587 specifiers, as follows:
3588
3589 %<flags><width><precision>character
3590
3591 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3592
3593 The + flag character inserts a + before any positive number, while a
3594 space inserts a space before any positive number; these flags only
3595 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3596 The - and 0 flags affect the width specifier, as described below.
3597
3598 The # flag means to use an alternate display form for %o, %x, %X, %e,
3599 %f, and %g sequences: for %o, it ensures that the result begins with
3600 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3601 for %e, %f, and %g, it causes a decimal point to be included even if
3602 the precision is zero.
3603
3604 The width specifier supplies a lower limit for the length of the
3605 printed representation. The padding, if any, normally goes on the
3606 left, but it goes on the right if the - flag is present. The padding
3607 character is normally a space, but it is 0 if the 0 flag is present.
3608 The 0 flag is ignored if the - flag is present, or the format sequence
3609 is something other than %d, %e, %f, and %g.
3610
3611 For %e, %f, and %g sequences, the number after the "." in the
3612 precision specifier says how many decimal places to show; if zero, the
3613 decimal point itself is omitted. For %s and %S, the precision
3614 specifier truncates the string to the given width.
3615
3616 usage: (format STRING &rest OBJECTS) */)
3617 (ptrdiff_t nargs, Lisp_Object *args)
3618 {
3619 ptrdiff_t n; /* The number of the next arg to substitute */
3620 char initial_buffer[4000];
3621 char *buf = initial_buffer;
3622 ptrdiff_t bufsize = sizeof initial_buffer;
3623 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3624 char *p;
3625 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3626 char *format, *end, *format_start;
3627 ptrdiff_t formatlen, nchars;
3628 /* True if the format is multibyte. */
3629 bool multibyte_format = 0;
3630 /* True if the output should be a multibyte string,
3631 which is true if any of the inputs is one. */
3632 bool multibyte = 0;
3633 /* When we make a multibyte string, we must pay attention to the
3634 byte combining problem, i.e., a byte may be combined with a
3635 multibyte character of the previous string. This flag tells if we
3636 must consider such a situation or not. */
3637 bool maybe_combine_byte;
3638 Lisp_Object val;
3639 bool arg_intervals = 0;
3640 USE_SAFE_ALLOCA;
3641
3642 /* discarded[I] is 1 if byte I of the format
3643 string was not copied into the output.
3644 It is 2 if byte I was not the first byte of its character. */
3645 char *discarded;
3646
3647 /* Each element records, for one argument,
3648 the start and end bytepos in the output string,
3649 whether the argument has been converted to string (e.g., due to "%S"),
3650 and whether the argument is a string with intervals.
3651 info[0] is unused. Unused elements have -1 for start. */
3652 struct info
3653 {
3654 ptrdiff_t start, end;
3655 unsigned converted_to_string : 1;
3656 unsigned intervals : 1;
3657 } *info = 0;
3658
3659 /* It should not be necessary to GCPRO ARGS, because
3660 the caller in the interpreter should take care of that. */
3661
3662 CHECK_STRING (args[0]);
3663 format_start = SSDATA (args[0]);
3664 formatlen = SBYTES (args[0]);
3665
3666 /* Allocate the info and discarded tables. */
3667 {
3668 ptrdiff_t i;
3669 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3670 memory_full (SIZE_MAX);
3671 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3672 discarded = (char *) &info[nargs + 1];
3673 for (i = 0; i < nargs + 1; i++)
3674 {
3675 info[i].start = -1;
3676 info[i].intervals = info[i].converted_to_string = 0;
3677 }
3678 memset (discarded, 0, formatlen);
3679 }
3680
3681 /* Try to determine whether the result should be multibyte.
3682 This is not always right; sometimes the result needs to be multibyte
3683 because of an object that we will pass through prin1,
3684 and in that case, we won't know it here. */
3685 multibyte_format = STRING_MULTIBYTE (args[0]);
3686 multibyte = multibyte_format;
3687 for (n = 1; !multibyte && n < nargs; n++)
3688 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3689 multibyte = 1;
3690
3691 /* If we start out planning a unibyte result,
3692 then discover it has to be multibyte, we jump back to retry. */
3693 retry:
3694
3695 p = buf;
3696 nchars = 0;
3697 n = 0;
3698
3699 /* Scan the format and store result in BUF. */
3700 format = format_start;
3701 end = format + formatlen;
3702 maybe_combine_byte = 0;
3703
3704 while (format != end)
3705 {
3706 /* The values of N and FORMAT when the loop body is entered. */
3707 ptrdiff_t n0 = n;
3708 char *format0 = format;
3709
3710 /* Bytes needed to represent the output of this conversion. */
3711 ptrdiff_t convbytes;
3712
3713 if (*format == '%')
3714 {
3715 /* General format specifications look like
3716
3717 '%' [flags] [field-width] [precision] format
3718
3719 where
3720
3721 flags ::= [-+0# ]+
3722 field-width ::= [0-9]+
3723 precision ::= '.' [0-9]*
3724
3725 If a field-width is specified, it specifies to which width
3726 the output should be padded with blanks, if the output
3727 string is shorter than field-width.
3728
3729 If precision is specified, it specifies the number of
3730 digits to print after the '.' for floats, or the max.
3731 number of chars to print from a string. */
3732
3733 bool minus_flag = 0;
3734 bool plus_flag = 0;
3735 bool space_flag = 0;
3736 bool sharp_flag = 0;
3737 bool zero_flag = 0;
3738 ptrdiff_t field_width;
3739 bool precision_given;
3740 uintmax_t precision = UINTMAX_MAX;
3741 char *num_end;
3742 char conversion;
3743
3744 while (1)
3745 {
3746 switch (*++format)
3747 {
3748 case '-': minus_flag = 1; continue;
3749 case '+': plus_flag = 1; continue;
3750 case ' ': space_flag = 1; continue;
3751 case '#': sharp_flag = 1; continue;
3752 case '0': zero_flag = 1; continue;
3753 }
3754 break;
3755 }
3756
3757 /* Ignore flags when sprintf ignores them. */
3758 space_flag &= ~ plus_flag;
3759 zero_flag &= ~ minus_flag;
3760
3761 {
3762 uintmax_t w = strtoumax (format, &num_end, 10);
3763 if (max_bufsize <= w)
3764 string_overflow ();
3765 field_width = w;
3766 }
3767 precision_given = *num_end == '.';
3768 if (precision_given)
3769 precision = strtoumax (num_end + 1, &num_end, 10);
3770 format = num_end;
3771
3772 if (format == end)
3773 error ("Format string ends in middle of format specifier");
3774
3775 memset (&discarded[format0 - format_start], 1, format - format0);
3776 conversion = *format;
3777 if (conversion == '%')
3778 goto copy_char;
3779 discarded[format - format_start] = 1;
3780 format++;
3781
3782 ++n;
3783 if (! (n < nargs))
3784 error ("Not enough arguments for format string");
3785
3786 /* For 'S', prin1 the argument, and then treat like 's'.
3787 For 's', princ any argument that is not a string or
3788 symbol. But don't do this conversion twice, which might
3789 happen after retrying. */
3790 if ((conversion == 'S'
3791 || (conversion == 's'
3792 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3793 {
3794 if (! info[n].converted_to_string)
3795 {
3796 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3797 args[n] = Fprin1_to_string (args[n], noescape);
3798 info[n].converted_to_string = 1;
3799 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3800 {
3801 multibyte = 1;
3802 goto retry;
3803 }
3804 }
3805 conversion = 's';
3806 }
3807 else if (conversion == 'c')
3808 {
3809 if (FLOATP (args[n]))
3810 {
3811 double d = XFLOAT_DATA (args[n]);
3812 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3813 }
3814
3815 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3816 {
3817 if (!multibyte)
3818 {
3819 multibyte = 1;
3820 goto retry;
3821 }
3822 args[n] = Fchar_to_string (args[n]);
3823 info[n].converted_to_string = 1;
3824 }
3825
3826 if (info[n].converted_to_string)
3827 conversion = 's';
3828 zero_flag = 0;
3829 }
3830
3831 if (SYMBOLP (args[n]))
3832 {
3833 args[n] = SYMBOL_NAME (args[n]);
3834 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3835 {
3836 multibyte = 1;
3837 goto retry;
3838 }
3839 }
3840
3841 if (conversion == 's')
3842 {
3843 /* handle case (precision[n] >= 0) */
3844
3845 ptrdiff_t width, padding, nbytes;
3846 ptrdiff_t nchars_string;
3847
3848 ptrdiff_t prec = -1;
3849 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3850 prec = precision;
3851
3852 /* lisp_string_width ignores a precision of 0, but GNU
3853 libc functions print 0 characters when the precision
3854 is 0. Imitate libc behavior here. Changing
3855 lisp_string_width is the right thing, and will be
3856 done, but meanwhile we work with it. */
3857
3858 if (prec == 0)
3859 width = nchars_string = nbytes = 0;
3860 else
3861 {
3862 ptrdiff_t nch, nby;
3863 width = lisp_string_width (args[n], prec, &nch, &nby);
3864 if (prec < 0)
3865 {
3866 nchars_string = SCHARS (args[n]);
3867 nbytes = SBYTES (args[n]);
3868 }
3869 else
3870 {
3871 nchars_string = nch;
3872 nbytes = nby;
3873 }
3874 }
3875
3876 convbytes = nbytes;
3877 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3878 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3879
3880 padding = width < field_width ? field_width - width : 0;
3881
3882 if (max_bufsize - padding <= convbytes)
3883 string_overflow ();
3884 convbytes += padding;
3885 if (convbytes <= buf + bufsize - p)
3886 {
3887 if (! minus_flag)
3888 {
3889 memset (p, ' ', padding);
3890 p += padding;
3891 nchars += padding;
3892 }
3893
3894 if (p > buf
3895 && multibyte
3896 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3897 && STRING_MULTIBYTE (args[n])
3898 && !CHAR_HEAD_P (SREF (args[n], 0)))
3899 maybe_combine_byte = 1;
3900
3901 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3902 nbytes,
3903 STRING_MULTIBYTE (args[n]), multibyte);
3904
3905 info[n].start = nchars;
3906 nchars += nchars_string;
3907 info[n].end = nchars;
3908
3909 if (minus_flag)
3910 {
3911 memset (p, ' ', padding);
3912 p += padding;
3913 nchars += padding;
3914 }
3915
3916 /* If this argument has text properties, record where
3917 in the result string it appears. */
3918 if (string_intervals (args[n]))
3919 info[n].intervals = arg_intervals = 1;
3920
3921 continue;
3922 }
3923 }
3924 else if (! (conversion == 'c' || conversion == 'd'
3925 || conversion == 'e' || conversion == 'f'
3926 || conversion == 'g' || conversion == 'i'
3927 || conversion == 'o' || conversion == 'x'
3928 || conversion == 'X'))
3929 error ("Invalid format operation %%%c",
3930 STRING_CHAR ((unsigned char *) format - 1));
3931 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3932 error ("Format specifier doesn't match argument type");
3933 else
3934 {
3935 enum
3936 {
3937 /* Maximum precision for a %f conversion such that the
3938 trailing output digit might be nonzero. Any precision
3939 larger than this will not yield useful information. */
3940 USEFUL_PRECISION_MAX =
3941 ((1 - DBL_MIN_EXP)
3942 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3943 : FLT_RADIX == 16 ? 4
3944 : -1)),
3945
3946 /* Maximum number of bytes generated by any format, if
3947 precision is no more than USEFUL_PRECISION_MAX.
3948 On all practical hosts, %f is the worst case. */
3949 SPRINTF_BUFSIZE =
3950 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3951
3952 /* Length of pM (that is, of pMd without the
3953 trailing "d"). */
3954 pMlen = sizeof pMd - 2
3955 };
3956 verify (USEFUL_PRECISION_MAX > 0);
3957
3958 int prec;
3959 ptrdiff_t padding, sprintf_bytes;
3960 uintmax_t excess_precision, numwidth;
3961 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3962
3963 char sprintf_buf[SPRINTF_BUFSIZE];
3964
3965 /* Copy of conversion specification, modified somewhat.
3966 At most three flags F can be specified at once. */
3967 char convspec[sizeof "%FFF.*d" + pMlen];
3968
3969 /* Avoid undefined behavior in underlying sprintf. */
3970 if (conversion == 'd' || conversion == 'i')
3971 sharp_flag = 0;
3972
3973 /* Create the copy of the conversion specification, with
3974 any width and precision removed, with ".*" inserted,
3975 and with pM inserted for integer formats. */
3976 {
3977 char *f = convspec;
3978 *f++ = '%';
3979 *f = '-'; f += minus_flag;
3980 *f = '+'; f += plus_flag;
3981 *f = ' '; f += space_flag;
3982 *f = '#'; f += sharp_flag;
3983 *f = '0'; f += zero_flag;
3984 *f++ = '.';
3985 *f++ = '*';
3986 if (conversion == 'd' || conversion == 'i'
3987 || conversion == 'o' || conversion == 'x'
3988 || conversion == 'X')
3989 {
3990 memcpy (f, pMd, pMlen);
3991 f += pMlen;
3992 zero_flag &= ~ precision_given;
3993 }
3994 *f++ = conversion;
3995 *f = '\0';
3996 }
3997
3998 prec = -1;
3999 if (precision_given)
4000 prec = min (precision, USEFUL_PRECISION_MAX);
4001
4002 /* Use sprintf to format this number into sprintf_buf. Omit
4003 padding and excess precision, though, because sprintf limits
4004 output length to INT_MAX.
4005
4006 There are four types of conversion: double, unsigned
4007 char (passed as int), wide signed int, and wide
4008 unsigned int. Treat them separately because the
4009 sprintf ABI is sensitive to which type is passed. Be
4010 careful about integer overflow, NaNs, infinities, and
4011 conversions; for example, the min and max macros are
4012 not suitable here. */
4013 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4014 {
4015 double x = (INTEGERP (args[n])
4016 ? XINT (args[n])
4017 : XFLOAT_DATA (args[n]));
4018 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4019 }
4020 else if (conversion == 'c')
4021 {
4022 /* Don't use sprintf here, as it might mishandle prec. */
4023 sprintf_buf[0] = XINT (args[n]);
4024 sprintf_bytes = prec != 0;
4025 }
4026 else if (conversion == 'd')
4027 {
4028 /* For float, maybe we should use "%1.0f"
4029 instead so it also works for values outside
4030 the integer range. */
4031 printmax_t x;
4032 if (INTEGERP (args[n]))
4033 x = XINT (args[n]);
4034 else
4035 {
4036 double d = XFLOAT_DATA (args[n]);
4037 if (d < 0)
4038 {
4039 x = TYPE_MINIMUM (printmax_t);
4040 if (x < d)
4041 x = d;
4042 }
4043 else
4044 {
4045 x = TYPE_MAXIMUM (printmax_t);
4046 if (d < x)
4047 x = d;
4048 }
4049 }
4050 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4051 }
4052 else
4053 {
4054 /* Don't sign-extend for octal or hex printing. */
4055 uprintmax_t x;
4056 if (INTEGERP (args[n]))
4057 x = XUINT (args[n]);
4058 else
4059 {
4060 double d = XFLOAT_DATA (args[n]);
4061 if (d < 0)
4062 x = 0;
4063 else
4064 {
4065 x = TYPE_MAXIMUM (uprintmax_t);
4066 if (d < x)
4067 x = d;
4068 }
4069 }
4070 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4071 }
4072
4073 /* Now the length of the formatted item is known, except it omits
4074 padding and excess precision. Deal with excess precision
4075 first. This happens only when the format specifies
4076 ridiculously large precision. */
4077 excess_precision = precision - prec;
4078 if (excess_precision)
4079 {
4080 if (conversion == 'e' || conversion == 'f'
4081 || conversion == 'g')
4082 {
4083 if ((conversion == 'g' && ! sharp_flag)
4084 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4085 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4086 excess_precision = 0;
4087 else
4088 {
4089 if (conversion == 'g')
4090 {
4091 char *dot = strchr (sprintf_buf, '.');
4092 if (!dot)
4093 excess_precision = 0;
4094 }
4095 }
4096 trailing_zeros = excess_precision;
4097 }
4098 else
4099 leading_zeros = excess_precision;
4100 }
4101
4102 /* Compute the total bytes needed for this item, including
4103 excess precision and padding. */
4104 numwidth = sprintf_bytes + excess_precision;
4105 padding = numwidth < field_width ? field_width - numwidth : 0;
4106 if (max_bufsize - sprintf_bytes <= excess_precision
4107 || max_bufsize - padding <= numwidth)
4108 string_overflow ();
4109 convbytes = numwidth + padding;
4110
4111 if (convbytes <= buf + bufsize - p)
4112 {
4113 /* Copy the formatted item from sprintf_buf into buf,
4114 inserting padding and excess-precision zeros. */
4115
4116 char *src = sprintf_buf;
4117 char src0 = src[0];
4118 int exponent_bytes = 0;
4119 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4120 int significand_bytes;
4121 if (zero_flag
4122 && ((src[signedp] >= '0' && src[signedp] <= '9')
4123 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4124 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4125 {
4126 leading_zeros += padding;
4127 padding = 0;
4128 }
4129
4130 if (excess_precision
4131 && (conversion == 'e' || conversion == 'g'))
4132 {
4133 char *e = strchr (src, 'e');
4134 if (e)
4135 exponent_bytes = src + sprintf_bytes - e;
4136 }
4137
4138 if (! minus_flag)
4139 {
4140 memset (p, ' ', padding);
4141 p += padding;
4142 nchars += padding;
4143 }
4144
4145 *p = src0;
4146 src += signedp;
4147 p += signedp;
4148 memset (p, '0', leading_zeros);
4149 p += leading_zeros;
4150 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4151 memcpy (p, src, significand_bytes);
4152 p += significand_bytes;
4153 src += significand_bytes;
4154 memset (p, '0', trailing_zeros);
4155 p += trailing_zeros;
4156 memcpy (p, src, exponent_bytes);
4157 p += exponent_bytes;
4158
4159 info[n].start = nchars;
4160 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4161 info[n].end = nchars;
4162
4163 if (minus_flag)
4164 {
4165 memset (p, ' ', padding);
4166 p += padding;
4167 nchars += padding;
4168 }
4169
4170 continue;
4171 }
4172 }
4173 }
4174 else
4175 copy_char:
4176 {
4177 /* Copy a single character from format to buf. */
4178
4179 char *src = format;
4180 unsigned char str[MAX_MULTIBYTE_LENGTH];
4181
4182 if (multibyte_format)
4183 {
4184 /* Copy a whole multibyte character. */
4185 if (p > buf
4186 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4187 && !CHAR_HEAD_P (*format))
4188 maybe_combine_byte = 1;
4189
4190 do
4191 format++;
4192 while (! CHAR_HEAD_P (*format));
4193
4194 convbytes = format - src;
4195 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4196 }
4197 else
4198 {
4199 unsigned char uc = *format++;
4200 if (! multibyte || ASCII_BYTE_P (uc))
4201 convbytes = 1;
4202 else
4203 {
4204 int c = BYTE8_TO_CHAR (uc);
4205 convbytes = CHAR_STRING (c, str);
4206 src = (char *) str;
4207 }
4208 }
4209
4210 if (convbytes <= buf + bufsize - p)
4211 {
4212 memcpy (p, src, convbytes);
4213 p += convbytes;
4214 nchars++;
4215 continue;
4216 }
4217 }
4218
4219 /* There wasn't enough room to store this conversion or single
4220 character. CONVBYTES says how much room is needed. Allocate
4221 enough room (and then some) and do it again. */
4222 {
4223 ptrdiff_t used = p - buf;
4224
4225 if (max_bufsize - used < convbytes)
4226 string_overflow ();
4227 bufsize = used + convbytes;
4228 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4229
4230 if (buf == initial_buffer)
4231 {
4232 buf = xmalloc (bufsize);
4233 sa_must_free = 1;
4234 buf_save_value_index = SPECPDL_INDEX ();
4235 record_unwind_protect_ptr (xfree, buf);
4236 memcpy (buf, initial_buffer, used);
4237 }
4238 else
4239 {
4240 buf = xrealloc (buf, bufsize);
4241 set_unwind_protect_ptr (buf_save_value_index, buf);
4242 }
4243
4244 p = buf + used;
4245 }
4246
4247 format = format0;
4248 n = n0;
4249 }
4250
4251 if (bufsize < p - buf)
4252 emacs_abort ();
4253
4254 if (maybe_combine_byte)
4255 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4256 val = make_specified_string (buf, nchars, p - buf, multibyte);
4257
4258 /* If we allocated BUF with malloc, free it too. */
4259 SAFE_FREE ();
4260
4261 /* If the format string has text properties, or any of the string
4262 arguments has text properties, set up text properties of the
4263 result string. */
4264
4265 if (string_intervals (args[0]) || arg_intervals)
4266 {
4267 Lisp_Object len, new_len, props;
4268 struct gcpro gcpro1;
4269
4270 /* Add text properties from the format string. */
4271 len = make_number (SCHARS (args[0]));
4272 props = text_property_list (args[0], make_number (0), len, Qnil);
4273 GCPRO1 (props);
4274
4275 if (CONSP (props))
4276 {
4277 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4278 ptrdiff_t argn = 1;
4279 Lisp_Object list;
4280
4281 /* Adjust the bounds of each text property
4282 to the proper start and end in the output string. */
4283
4284 /* Put the positions in PROPS in increasing order, so that
4285 we can do (effectively) one scan through the position
4286 space of the format string. */
4287 props = Fnreverse (props);
4288
4289 /* BYTEPOS is the byte position in the format string,
4290 POSITION is the untranslated char position in it,
4291 TRANSLATED is the translated char position in BUF,
4292 and ARGN is the number of the next arg we will come to. */
4293 for (list = props; CONSP (list); list = XCDR (list))
4294 {
4295 Lisp_Object item;
4296 ptrdiff_t pos;
4297
4298 item = XCAR (list);
4299
4300 /* First adjust the property start position. */
4301 pos = XINT (XCAR (item));
4302
4303 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4304 up to this position. */
4305 for (; position < pos; bytepos++)
4306 {
4307 if (! discarded[bytepos])
4308 position++, translated++;
4309 else if (discarded[bytepos] == 1)
4310 {
4311 position++;
4312 if (translated == info[argn].start)
4313 {
4314 translated += info[argn].end - info[argn].start;
4315 argn++;
4316 }
4317 }
4318 }
4319
4320 XSETCAR (item, make_number (translated));
4321
4322 /* Likewise adjust the property end position. */
4323 pos = XINT (XCAR (XCDR (item)));
4324
4325 for (; position < pos; bytepos++)
4326 {
4327 if (! discarded[bytepos])
4328 position++, translated++;
4329 else if (discarded[bytepos] == 1)
4330 {
4331 position++;
4332 if (translated == info[argn].start)
4333 {
4334 translated += info[argn].end - info[argn].start;
4335 argn++;
4336 }
4337 }
4338 }
4339
4340 XSETCAR (XCDR (item), make_number (translated));
4341 }
4342
4343 add_text_properties_from_list (val, props, make_number (0));
4344 }
4345
4346 /* Add text properties from arguments. */
4347 if (arg_intervals)
4348 for (n = 1; n < nargs; ++n)
4349 if (info[n].intervals)
4350 {
4351 len = make_number (SCHARS (args[n]));
4352 new_len = make_number (info[n].end - info[n].start);
4353 props = text_property_list (args[n], make_number (0), len, Qnil);
4354 props = extend_property_ranges (props, new_len);
4355 /* If successive arguments have properties, be sure that
4356 the value of `composition' property be the copy. */
4357 if (n > 1 && info[n - 1].end)
4358 make_composition_value_copy (props);
4359 add_text_properties_from_list (val, props,
4360 make_number (info[n].start));
4361 }
4362
4363 UNGCPRO;
4364 }
4365
4366 return val;
4367 }
4368
4369 Lisp_Object
4370 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4371 {
4372 Lisp_Object args[3];
4373 args[0] = build_string (string1);
4374 args[1] = arg0;
4375 args[2] = arg1;
4376 return Fformat (3, args);
4377 }
4378 \f
4379 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4380 doc: /* Return t if two characters match, optionally ignoring case.
4381 Both arguments must be characters (i.e. integers).
4382 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4383 (register Lisp_Object c1, Lisp_Object c2)
4384 {
4385 int i1, i2;
4386 /* Check they're chars, not just integers, otherwise we could get array
4387 bounds violations in downcase. */
4388 CHECK_CHARACTER (c1);
4389 CHECK_CHARACTER (c2);
4390
4391 if (XINT (c1) == XINT (c2))
4392 return Qt;
4393 if (NILP (BVAR (current_buffer, case_fold_search)))
4394 return Qnil;
4395
4396 i1 = XFASTINT (c1);
4397 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4398 && ! ASCII_CHAR_P (i1))
4399 {
4400 MAKE_CHAR_MULTIBYTE (i1);
4401 }
4402 i2 = XFASTINT (c2);
4403 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4404 && ! ASCII_CHAR_P (i2))
4405 {
4406 MAKE_CHAR_MULTIBYTE (i2);
4407 }
4408 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4409 }
4410 \f
4411 /* Transpose the markers in two regions of the current buffer, and
4412 adjust the ones between them if necessary (i.e.: if the regions
4413 differ in size).
4414
4415 START1, END1 are the character positions of the first region.
4416 START1_BYTE, END1_BYTE are the byte positions.
4417 START2, END2 are the character positions of the second region.
4418 START2_BYTE, END2_BYTE are the byte positions.
4419
4420 Traverses the entire marker list of the buffer to do so, adding an
4421 appropriate amount to some, subtracting from some, and leaving the
4422 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4423
4424 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4425
4426 static void
4427 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4428 ptrdiff_t start2, ptrdiff_t end2,
4429 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4430 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4431 {
4432 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4433 register struct Lisp_Marker *marker;
4434
4435 /* Update point as if it were a marker. */
4436 if (PT < start1)
4437 ;
4438 else if (PT < end1)
4439 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4440 PT_BYTE + (end2_byte - end1_byte));
4441 else if (PT < start2)
4442 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4443 (PT_BYTE + (end2_byte - start2_byte)
4444 - (end1_byte - start1_byte)));
4445 else if (PT < end2)
4446 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4447 PT_BYTE - (start2_byte - start1_byte));
4448
4449 /* We used to adjust the endpoints here to account for the gap, but that
4450 isn't good enough. Even if we assume the caller has tried to move the
4451 gap out of our way, it might still be at start1 exactly, for example;
4452 and that places it `inside' the interval, for our purposes. The amount
4453 of adjustment is nontrivial if there's a `denormalized' marker whose
4454 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4455 the dirty work to Fmarker_position, below. */
4456
4457 /* The difference between the region's lengths */
4458 diff = (end2 - start2) - (end1 - start1);
4459 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4460
4461 /* For shifting each marker in a region by the length of the other
4462 region plus the distance between the regions. */
4463 amt1 = (end2 - start2) + (start2 - end1);
4464 amt2 = (end1 - start1) + (start2 - end1);
4465 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4466 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4467
4468 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4469 {
4470 mpos = marker->bytepos;
4471 if (mpos >= start1_byte && mpos < end2_byte)
4472 {
4473 if (mpos < end1_byte)
4474 mpos += amt1_byte;
4475 else if (mpos < start2_byte)
4476 mpos += diff_byte;
4477 else
4478 mpos -= amt2_byte;
4479 marker->bytepos = mpos;
4480 }
4481 mpos = marker->charpos;
4482 if (mpos >= start1 && mpos < end2)
4483 {
4484 if (mpos < end1)
4485 mpos += amt1;
4486 else if (mpos < start2)
4487 mpos += diff;
4488 else
4489 mpos -= amt2;
4490 }
4491 marker->charpos = mpos;
4492 }
4493 }
4494
4495 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4496 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4497 The regions should not be overlapping, because the size of the buffer is
4498 never changed in a transposition.
4499
4500 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4501 any markers that happen to be located in the regions.
4502
4503 Transposing beyond buffer boundaries is an error. */)
4504 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4505 {
4506 register ptrdiff_t start1, end1, start2, end2;
4507 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4508 ptrdiff_t gap, len1, len_mid, len2;
4509 unsigned char *start1_addr, *start2_addr, *temp;
4510
4511 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4512 Lisp_Object buf;
4513
4514 XSETBUFFER (buf, current_buffer);
4515 cur_intv = buffer_intervals (current_buffer);
4516
4517 validate_region (&startr1, &endr1);
4518 validate_region (&startr2, &endr2);
4519
4520 start1 = XFASTINT (startr1);
4521 end1 = XFASTINT (endr1);
4522 start2 = XFASTINT (startr2);
4523 end2 = XFASTINT (endr2);
4524 gap = GPT;
4525
4526 /* Swap the regions if they're reversed. */
4527 if (start2 < end1)
4528 {
4529 register ptrdiff_t glumph = start1;
4530 start1 = start2;
4531 start2 = glumph;
4532 glumph = end1;
4533 end1 = end2;
4534 end2 = glumph;
4535 }
4536
4537 len1 = end1 - start1;
4538 len2 = end2 - start2;
4539
4540 if (start2 < end1)
4541 error ("Transposed regions overlap");
4542 /* Nothing to change for adjacent regions with one being empty */
4543 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4544 return Qnil;
4545
4546 /* The possibilities are:
4547 1. Adjacent (contiguous) regions, or separate but equal regions
4548 (no, really equal, in this case!), or
4549 2. Separate regions of unequal size.
4550
4551 The worst case is usually No. 2. It means that (aside from
4552 potential need for getting the gap out of the way), there also
4553 needs to be a shifting of the text between the two regions. So
4554 if they are spread far apart, we are that much slower... sigh. */
4555
4556 /* It must be pointed out that the really studly thing to do would
4557 be not to move the gap at all, but to leave it in place and work
4558 around it if necessary. This would be extremely efficient,
4559 especially considering that people are likely to do
4560 transpositions near where they are working interactively, which
4561 is exactly where the gap would be found. However, such code
4562 would be much harder to write and to read. So, if you are
4563 reading this comment and are feeling squirrely, by all means have
4564 a go! I just didn't feel like doing it, so I will simply move
4565 the gap the minimum distance to get it out of the way, and then
4566 deal with an unbroken array. */
4567
4568 start1_byte = CHAR_TO_BYTE (start1);
4569 end2_byte = CHAR_TO_BYTE (end2);
4570
4571 /* Make sure the gap won't interfere, by moving it out of the text
4572 we will operate on. */
4573 if (start1 < gap && gap < end2)
4574 {
4575 if (gap - start1 < end2 - gap)
4576 move_gap_both (start1, start1_byte);
4577 else
4578 move_gap_both (end2, end2_byte);
4579 }
4580
4581 start2_byte = CHAR_TO_BYTE (start2);
4582 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4583 len2_byte = end2_byte - start2_byte;
4584
4585 #ifdef BYTE_COMBINING_DEBUG
4586 if (end1 == start2)
4587 {
4588 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4589 len2_byte, start1, start1_byte)
4590 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4591 len1_byte, end2, start2_byte + len2_byte)
4592 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4593 len1_byte, end2, start2_byte + len2_byte))
4594 emacs_abort ();
4595 }
4596 else
4597 {
4598 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4599 len2_byte, start1, start1_byte)
4600 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4601 len1_byte, start2, start2_byte)
4602 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4603 len2_byte, end1, start1_byte + len1_byte)
4604 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4605 len1_byte, end2, start2_byte + len2_byte))
4606 emacs_abort ();
4607 }
4608 #endif
4609
4610 /* Hmmm... how about checking to see if the gap is large
4611 enough to use as the temporary storage? That would avoid an
4612 allocation... interesting. Later, don't fool with it now. */
4613
4614 /* Working without memmove, for portability (sigh), so must be
4615 careful of overlapping subsections of the array... */
4616
4617 if (end1 == start2) /* adjacent regions */
4618 {
4619 modify_region_1 (start1, end2, false);
4620 record_change (start1, len1 + len2);
4621
4622 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4623 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4624 /* Don't use Fset_text_properties: that can cause GC, which can
4625 clobber objects stored in the tmp_intervals. */
4626 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4627 if (tmp_interval3)
4628 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4629
4630 /* First region smaller than second. */
4631 if (len1_byte < len2_byte)
4632 {
4633 USE_SAFE_ALLOCA;
4634
4635 temp = SAFE_ALLOCA (len2_byte);
4636
4637 /* Don't precompute these addresses. We have to compute them
4638 at the last minute, because the relocating allocator might
4639 have moved the buffer around during the xmalloc. */
4640 start1_addr = BYTE_POS_ADDR (start1_byte);
4641 start2_addr = BYTE_POS_ADDR (start2_byte);
4642
4643 memcpy (temp, start2_addr, len2_byte);
4644 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4645 memcpy (start1_addr, temp, len2_byte);
4646 SAFE_FREE ();
4647 }
4648 else
4649 /* First region not smaller than second. */
4650 {
4651 USE_SAFE_ALLOCA;
4652
4653 temp = SAFE_ALLOCA (len1_byte);
4654 start1_addr = BYTE_POS_ADDR (start1_byte);
4655 start2_addr = BYTE_POS_ADDR (start2_byte);
4656 memcpy (temp, start1_addr, len1_byte);
4657 memcpy (start1_addr, start2_addr, len2_byte);
4658 memcpy (start1_addr + len2_byte, temp, len1_byte);
4659 SAFE_FREE ();
4660 }
4661 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4662 len1, current_buffer, 0);
4663 graft_intervals_into_buffer (tmp_interval2, start1,
4664 len2, current_buffer, 0);
4665 update_compositions (start1, start1 + len2, CHECK_BORDER);
4666 update_compositions (start1 + len2, end2, CHECK_TAIL);
4667 }
4668 /* Non-adjacent regions, because end1 != start2, bleagh... */
4669 else
4670 {
4671 len_mid = start2_byte - (start1_byte + len1_byte);
4672
4673 if (len1_byte == len2_byte)
4674 /* Regions are same size, though, how nice. */
4675 {
4676 USE_SAFE_ALLOCA;
4677
4678 modify_region_1 (start1, end1, false);
4679 modify_region_1 (start2, end2, false);
4680 record_change (start1, len1);
4681 record_change (start2, len2);
4682 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4683 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4684
4685 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4686 if (tmp_interval3)
4687 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4688
4689 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4690 if (tmp_interval3)
4691 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4692
4693 temp = SAFE_ALLOCA (len1_byte);
4694 start1_addr = BYTE_POS_ADDR (start1_byte);
4695 start2_addr = BYTE_POS_ADDR (start2_byte);
4696 memcpy (temp, start1_addr, len1_byte);
4697 memcpy (start1_addr, start2_addr, len2_byte);
4698 memcpy (start2_addr, temp, len1_byte);
4699 SAFE_FREE ();
4700
4701 graft_intervals_into_buffer (tmp_interval1, start2,
4702 len1, current_buffer, 0);
4703 graft_intervals_into_buffer (tmp_interval2, start1,
4704 len2, current_buffer, 0);
4705 }
4706
4707 else if (len1_byte < len2_byte) /* Second region larger than first */
4708 /* Non-adjacent & unequal size, area between must also be shifted. */
4709 {
4710 USE_SAFE_ALLOCA;
4711
4712 modify_region_1 (start1, end2, false);
4713 record_change (start1, (end2 - start1));
4714 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4715 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4716 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4717
4718 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4719 if (tmp_interval3)
4720 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4721
4722 /* holds region 2 */
4723 temp = SAFE_ALLOCA (len2_byte);
4724 start1_addr = BYTE_POS_ADDR (start1_byte);
4725 start2_addr = BYTE_POS_ADDR (start2_byte);
4726 memcpy (temp, start2_addr, len2_byte);
4727 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4728 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4729 memcpy (start1_addr, temp, len2_byte);
4730 SAFE_FREE ();
4731
4732 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4733 len1, current_buffer, 0);
4734 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4735 len_mid, current_buffer, 0);
4736 graft_intervals_into_buffer (tmp_interval2, start1,
4737 len2, current_buffer, 0);
4738 }
4739 else
4740 /* Second region smaller than first. */
4741 {
4742 USE_SAFE_ALLOCA;
4743
4744 record_change (start1, (end2 - start1));
4745 modify_region_1 (start1, end2, false);
4746
4747 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4748 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4749 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4750
4751 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4752 if (tmp_interval3)
4753 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4754
4755 /* holds region 1 */
4756 temp = SAFE_ALLOCA (len1_byte);
4757 start1_addr = BYTE_POS_ADDR (start1_byte);
4758 start2_addr = BYTE_POS_ADDR (start2_byte);
4759 memcpy (temp, start1_addr, len1_byte);
4760 memcpy (start1_addr, start2_addr, len2_byte);
4761 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4762 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4763 SAFE_FREE ();
4764
4765 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4766 len1, current_buffer, 0);
4767 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4768 len_mid, current_buffer, 0);
4769 graft_intervals_into_buffer (tmp_interval2, start1,
4770 len2, current_buffer, 0);
4771 }
4772
4773 update_compositions (start1, start1 + len2, CHECK_BORDER);
4774 update_compositions (end2 - len1, end2, CHECK_BORDER);
4775 }
4776
4777 /* When doing multiple transpositions, it might be nice
4778 to optimize this. Perhaps the markers in any one buffer
4779 should be organized in some sorted data tree. */
4780 if (NILP (leave_markers))
4781 {
4782 transpose_markers (start1, end1, start2, end2,
4783 start1_byte, start1_byte + len1_byte,
4784 start2_byte, start2_byte + len2_byte);
4785 fix_start_end_in_overlays (start1, end2);
4786 }
4787
4788 signal_after_change (start1, end2 - start1, end2 - start1);
4789 return Qnil;
4790 }
4791
4792 \f
4793 void
4794 syms_of_editfns (void)
4795 {
4796 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4797
4798 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4799 doc: /* Non-nil means text motion commands don't notice fields. */);
4800 Vinhibit_field_text_motion = Qnil;
4801
4802 DEFVAR_LISP ("buffer-access-fontify-functions",
4803 Vbuffer_access_fontify_functions,
4804 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4805 Each function is called with two arguments which specify the range
4806 of the buffer being accessed. */);
4807 Vbuffer_access_fontify_functions = Qnil;
4808
4809 {
4810 Lisp_Object obuf;
4811 obuf = Fcurrent_buffer ();
4812 /* Do this here, because init_buffer_once is too early--it won't work. */
4813 Fset_buffer (Vprin1_to_string_buffer);
4814 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4815 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4816 Qnil);
4817 Fset_buffer (obuf);
4818 }
4819
4820 DEFVAR_LISP ("buffer-access-fontified-property",
4821 Vbuffer_access_fontified_property,
4822 doc: /* Property which (if non-nil) indicates text has been fontified.
4823 `buffer-substring' need not call the `buffer-access-fontify-functions'
4824 functions if all the text being accessed has this property. */);
4825 Vbuffer_access_fontified_property = Qnil;
4826
4827 DEFVAR_LISP ("system-name", Vsystem_name,
4828 doc: /* The host name of the machine Emacs is running on. */);
4829
4830 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4831 doc: /* The full name of the user logged in. */);
4832
4833 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4834 doc: /* The user's name, taken from environment variables if possible. */);
4835
4836 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4837 doc: /* The user's name, based upon the real uid only. */);
4838
4839 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4840 doc: /* The release of the operating system Emacs is running on. */);
4841
4842 defsubr (&Spropertize);
4843 defsubr (&Schar_equal);
4844 defsubr (&Sgoto_char);
4845 defsubr (&Sstring_to_char);
4846 defsubr (&Schar_to_string);
4847 defsubr (&Sbyte_to_string);
4848 defsubr (&Sbuffer_substring);
4849 defsubr (&Sbuffer_substring_no_properties);
4850 defsubr (&Sbuffer_string);
4851
4852 defsubr (&Spoint_marker);
4853 defsubr (&Smark_marker);
4854 defsubr (&Spoint);
4855 defsubr (&Sregion_beginning);
4856 defsubr (&Sregion_end);
4857
4858 DEFSYM (Qfield, "field");
4859 DEFSYM (Qboundary, "boundary");
4860 defsubr (&Sfield_beginning);
4861 defsubr (&Sfield_end);
4862 defsubr (&Sfield_string);
4863 defsubr (&Sfield_string_no_properties);
4864 defsubr (&Sdelete_field);
4865 defsubr (&Sconstrain_to_field);
4866
4867 defsubr (&Sline_beginning_position);
4868 defsubr (&Sline_end_position);
4869
4870 defsubr (&Ssave_excursion);
4871 defsubr (&Ssave_current_buffer);
4872
4873 defsubr (&Sbuffer_size);
4874 defsubr (&Spoint_max);
4875 defsubr (&Spoint_min);
4876 defsubr (&Spoint_min_marker);
4877 defsubr (&Spoint_max_marker);
4878 defsubr (&Sgap_position);
4879 defsubr (&Sgap_size);
4880 defsubr (&Sposition_bytes);
4881 defsubr (&Sbyte_to_position);
4882
4883 defsubr (&Sbobp);
4884 defsubr (&Seobp);
4885 defsubr (&Sbolp);
4886 defsubr (&Seolp);
4887 defsubr (&Sfollowing_char);
4888 defsubr (&Sprevious_char);
4889 defsubr (&Schar_after);
4890 defsubr (&Schar_before);
4891 defsubr (&Sinsert);
4892 defsubr (&Sinsert_before_markers);
4893 defsubr (&Sinsert_and_inherit);
4894 defsubr (&Sinsert_and_inherit_before_markers);
4895 defsubr (&Sinsert_char);
4896 defsubr (&Sinsert_byte);
4897
4898 defsubr (&Suser_login_name);
4899 defsubr (&Suser_real_login_name);
4900 defsubr (&Suser_uid);
4901 defsubr (&Suser_real_uid);
4902 defsubr (&Sgroup_gid);
4903 defsubr (&Sgroup_real_gid);
4904 defsubr (&Suser_full_name);
4905 defsubr (&Semacs_pid);
4906 defsubr (&Scurrent_time);
4907 defsubr (&Sget_internal_run_time);
4908 defsubr (&Sformat_time_string);
4909 defsubr (&Sfloat_time);
4910 defsubr (&Sdecode_time);
4911 defsubr (&Sencode_time);
4912 defsubr (&Scurrent_time_string);
4913 defsubr (&Scurrent_time_zone);
4914 defsubr (&Sset_time_zone_rule);
4915 defsubr (&Ssystem_name);
4916 defsubr (&Smessage);
4917 defsubr (&Smessage_box);
4918 defsubr (&Smessage_or_box);
4919 defsubr (&Scurrent_message);
4920 defsubr (&Sformat);
4921
4922 defsubr (&Sinsert_buffer_substring);
4923 defsubr (&Scompare_buffer_substrings);
4924 defsubr (&Ssubst_char_in_region);
4925 defsubr (&Stranslate_region_internal);
4926 defsubr (&Sdelete_region);
4927 defsubr (&Sdelete_and_extract_region);
4928 defsubr (&Swiden);
4929 defsubr (&Snarrow_to_region);
4930 defsubr (&Ssave_restriction);
4931 defsubr (&Stranspose_regions);
4932 }