(display_mode_element): When computing charpos, depend
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* Keymap mapping ASCII function key sequences onto their preferred forms.
79 Initialized by the terminal-specific lisp files. See DEFVAR for more
80 documentation. */
81 Lisp_Object Vfunction_key_map;
82
83 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
84 Lisp_Object Vkey_translation_map;
85
86 /* A list of all commands given new bindings since a certain time
87 when nil was stored here.
88 This is used to speed up recomputation of menu key equivalents
89 when Emacs starts up. t means don't record anything here. */
90 Lisp_Object Vdefine_key_rebound_commands;
91
92 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
93
94 /* Alist of elements like (DEL . "\d"). */
95 static Lisp_Object exclude_keys;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
105 static Lisp_Object where_is_cache;
106 /* Which keymaps are reverse-stored in the cache. */
107 static Lisp_Object where_is_cache_keymaps;
108
109 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
110 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
111
112 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
113 static void describe_command P_ ((Lisp_Object, Lisp_Object));
114 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
115 static void describe_map P_ ((Lisp_Object, Lisp_Object,
116 void (*) P_ ((Lisp_Object, Lisp_Object)),
117 int, Lisp_Object, Lisp_Object*, int));
118 static void silly_event_symbol_error P_ ((Lisp_Object));
119 \f
120 /* Keymap object support - constructors and predicates. */
121
122 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
123 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
124 CHARTABLE is a char-table that holds the bindings for the ASCII
125 characters. ALIST is an assoc-list which holds bindings for function keys,
126 mouse events, and any other things that appear in the input stream.
127 All entries in it are initially nil, meaning "command undefined".
128
129 The optional arg STRING supplies a menu name for the keymap
130 in case you use it as a menu with `x-popup-menu'. */)
131 (string)
132 Lisp_Object string;
133 {
134 Lisp_Object tail;
135 if (!NILP (string))
136 tail = Fcons (string, Qnil);
137 else
138 tail = Qnil;
139 return Fcons (Qkeymap,
140 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
141 }
142
143 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
144 doc: /* Construct and return a new sparse keymap.
145 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
146 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
147 which binds the function key or mouse event SYMBOL to DEFINITION.
148 Initially the alist is nil.
149
150 The optional arg STRING supplies a menu name for the keymap
151 in case you use it as a menu with `x-popup-menu'. */)
152 (string)
153 Lisp_Object string;
154 {
155 if (!NILP (string))
156 return Fcons (Qkeymap, Fcons (string, Qnil));
157 return Fcons (Qkeymap, Qnil);
158 }
159
160 /* This function is used for installing the standard key bindings
161 at initialization time.
162
163 For example:
164
165 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
166
167 void
168 initial_define_key (keymap, key, defname)
169 Lisp_Object keymap;
170 int key;
171 char *defname;
172 {
173 store_in_keymap (keymap, make_number (key), intern (defname));
174 }
175
176 void
177 initial_define_lispy_key (keymap, keyname, defname)
178 Lisp_Object keymap;
179 char *keyname;
180 char *defname;
181 {
182 store_in_keymap (keymap, intern (keyname), intern (defname));
183 }
184
185 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
186 doc: /* Return t if OBJECT is a keymap.
187
188 A keymap is a list (keymap . ALIST),
189 or a symbol whose function definition is itself a keymap.
190 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
191 a vector of densely packed bindings for small character codes
192 is also allowed as an element. */)
193 (object)
194 Lisp_Object object;
195 {
196 return (KEYMAPP (object) ? Qt : Qnil);
197 }
198
199 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
200 doc: /* Return the prompt-string of a keymap MAP.
201 If non-nil, the prompt is shown in the echo-area
202 when reading a key-sequence to be looked-up in this keymap. */)
203 (map)
204 Lisp_Object map;
205 {
206 while (CONSP (map))
207 {
208 register Lisp_Object tem;
209 tem = Fcar (map);
210 if (STRINGP (tem))
211 return tem;
212 map = Fcdr (map);
213 }
214 return Qnil;
215 }
216
217 /* Check that OBJECT is a keymap (after dereferencing through any
218 symbols). If it is, return it.
219
220 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
221 is an autoload form, do the autoload and try again.
222 If AUTOLOAD is nonzero, callers must assume GC is possible.
223
224 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
225 is zero as well), return Qt.
226
227 ERROR controls how we respond if OBJECT isn't a keymap.
228 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
229
230 Note that most of the time, we don't want to pursue autoloads.
231 Functions like Faccessible_keymaps which scan entire keymap trees
232 shouldn't load every autoloaded keymap. I'm not sure about this,
233 but it seems to me that only read_key_sequence, Flookup_key, and
234 Fdefine_key should cause keymaps to be autoloaded.
235
236 This function can GC when AUTOLOAD is non-zero, because it calls
237 do_autoload which can GC. */
238
239 Lisp_Object
240 get_keymap (object, error, autoload)
241 Lisp_Object object;
242 int error, autoload;
243 {
244 Lisp_Object tem;
245
246 autoload_retry:
247 if (NILP (object))
248 goto end;
249 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
250 return object;
251
252 tem = indirect_function (object);
253 if (CONSP (tem))
254 {
255 if (EQ (XCAR (tem), Qkeymap))
256 return tem;
257
258 /* Should we do an autoload? Autoload forms for keymaps have
259 Qkeymap as their fifth element. */
260 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
261 {
262 Lisp_Object tail;
263
264 tail = Fnth (make_number (4), tem);
265 if (EQ (tail, Qkeymap))
266 {
267 if (autoload)
268 {
269 struct gcpro gcpro1, gcpro2;
270
271 GCPRO2 (tem, object);
272 do_autoload (tem, object);
273 UNGCPRO;
274
275 goto autoload_retry;
276 }
277 else
278 return Qt;
279 }
280 }
281 }
282
283 end:
284 if (error)
285 wrong_type_argument (Qkeymapp, object);
286 return Qnil;
287 }
288 \f
289 /* Return the parent map of the keymap MAP, or nil if it has none.
290 We assume that MAP is a valid keymap. */
291
292 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
293 doc: /* Return the parent keymap of KEYMAP. */)
294 (keymap)
295 Lisp_Object keymap;
296 {
297 Lisp_Object list;
298
299 keymap = get_keymap (keymap, 1, 1);
300
301 /* Skip past the initial element `keymap'. */
302 list = XCDR (keymap);
303 for (; CONSP (list); list = XCDR (list))
304 {
305 /* See if there is another `keymap'. */
306 if (KEYMAPP (list))
307 return list;
308 }
309
310 return get_keymap (list, 0, 1);
311 }
312
313
314 /* Check whether MAP is one of MAPS parents. */
315 int
316 keymap_memberp (map, maps)
317 Lisp_Object map, maps;
318 {
319 if (NILP (map)) return 0;
320 while (KEYMAPP (maps) && !EQ (map, maps))
321 maps = Fkeymap_parent (maps);
322 return (EQ (map, maps));
323 }
324
325 /* Set the parent keymap of MAP to PARENT. */
326
327 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
328 doc: /* Modify KEYMAP to set its parent map to PARENT.
329 PARENT should be nil or another keymap. */)
330 (keymap, parent)
331 Lisp_Object keymap, parent;
332 {
333 Lisp_Object list, prev;
334 struct gcpro gcpro1;
335 int i;
336
337 /* Force a keymap flush for the next call to where-is.
338 Since this can be called from within where-is, we don't set where_is_cache
339 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
340 be changed during where-is, while where_is_cache_keymaps is only used at
341 the very beginning of where-is and can thus be changed here without any
342 adverse effect.
343 This is a very minor correctness (rather than safety) issue. */
344 where_is_cache_keymaps = Qt;
345
346 keymap = get_keymap (keymap, 1, 1);
347 GCPRO1 (keymap);
348
349 if (!NILP (parent))
350 {
351 parent = get_keymap (parent, 1, 1);
352
353 /* Check for cycles. */
354 if (keymap_memberp (keymap, parent))
355 error ("Cyclic keymap inheritance");
356 }
357
358 /* Skip past the initial element `keymap'. */
359 prev = keymap;
360 while (1)
361 {
362 list = XCDR (prev);
363 /* If there is a parent keymap here, replace it.
364 If we came to the end, add the parent in PREV. */
365 if (!CONSP (list) || KEYMAPP (list))
366 {
367 /* If we already have the right parent, return now
368 so that we avoid the loops below. */
369 if (EQ (XCDR (prev), parent))
370 RETURN_UNGCPRO (parent);
371
372 XSETCDR (prev, parent);
373 break;
374 }
375 prev = list;
376 }
377
378 /* Scan through for submaps, and set their parents too. */
379
380 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
381 {
382 /* Stop the scan when we come to the parent. */
383 if (EQ (XCAR (list), Qkeymap))
384 break;
385
386 /* If this element holds a prefix map, deal with it. */
387 if (CONSP (XCAR (list))
388 && CONSP (XCDR (XCAR (list))))
389 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
390 XCDR (XCAR (list)));
391
392 if (VECTORP (XCAR (list)))
393 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
394 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
395 fix_submap_inheritance (keymap, make_number (i),
396 XVECTOR (XCAR (list))->contents[i]);
397
398 if (CHAR_TABLE_P (XCAR (list)))
399 {
400 Lisp_Object indices[3];
401
402 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
403 keymap, 0, indices);
404 }
405 }
406
407 RETURN_UNGCPRO (parent);
408 }
409
410 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
411 if EVENT is also a prefix in MAP's parent,
412 make sure that SUBMAP inherits that definition as its own parent. */
413
414 static void
415 fix_submap_inheritance (map, event, submap)
416 Lisp_Object map, event, submap;
417 {
418 Lisp_Object map_parent, parent_entry;
419
420 /* SUBMAP is a cons that we found as a key binding.
421 Discard the other things found in a menu key binding. */
422
423 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
424
425 /* If it isn't a keymap now, there's no work to do. */
426 if (!CONSP (submap))
427 return;
428
429 map_parent = Fkeymap_parent (map);
430 if (!NILP (map_parent))
431 parent_entry =
432 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
433 else
434 parent_entry = Qnil;
435
436 /* If MAP's parent has something other than a keymap,
437 our own submap shadows it completely. */
438 if (!CONSP (parent_entry))
439 return;
440
441 if (! EQ (parent_entry, submap))
442 {
443 Lisp_Object submap_parent;
444 submap_parent = submap;
445 while (1)
446 {
447 Lisp_Object tem;
448
449 tem = Fkeymap_parent (submap_parent);
450
451 if (KEYMAPP (tem))
452 {
453 if (keymap_memberp (tem, parent_entry))
454 /* Fset_keymap_parent could create a cycle. */
455 return;
456 submap_parent = tem;
457 }
458 else
459 break;
460 }
461 Fset_keymap_parent (submap_parent, parent_entry);
462 }
463 }
464 \f
465 /* Look up IDX in MAP. IDX may be any sort of event.
466 Note that this does only one level of lookup; IDX must be a single
467 event, not a sequence.
468
469 If T_OK is non-zero, bindings for Qt are treated as default
470 bindings; any key left unmentioned by other tables and bindings is
471 given the binding of Qt.
472
473 If T_OK is zero, bindings for Qt are not treated specially.
474
475 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
476
477 Lisp_Object
478 access_keymap (map, idx, t_ok, noinherit, autoload)
479 Lisp_Object map;
480 Lisp_Object idx;
481 int t_ok;
482 int noinherit;
483 int autoload;
484 {
485 Lisp_Object val;
486
487 /* Qunbound in VAL means we have found no binding yet. */
488 val = Qunbound;
489
490 /* If idx is a list (some sort of mouse click, perhaps?),
491 the index we want to use is the car of the list, which
492 ought to be a symbol. */
493 idx = EVENT_HEAD (idx);
494
495 /* If idx is a symbol, it might have modifiers, which need to
496 be put in the canonical order. */
497 if (SYMBOLP (idx))
498 idx = reorder_modifiers (idx);
499 else if (INTEGERP (idx))
500 /* Clobber the high bits that can be present on a machine
501 with more than 24 bits of integer. */
502 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
503
504 /* Handle the special meta -> esc mapping. */
505 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
506 {
507 /* See if there is a meta-map. If there's none, there is
508 no binding for IDX, unless a default binding exists in MAP. */
509 Lisp_Object meta_map =
510 get_keymap (access_keymap (map, meta_prefix_char,
511 t_ok, noinherit, autoload),
512 0, autoload);
513 if (CONSP (meta_map))
514 {
515 map = meta_map;
516 idx = make_number (XUINT (idx) & ~meta_modifier);
517 }
518 else if (t_ok)
519 /* Set IDX to t, so that we only find a default binding. */
520 idx = Qt;
521 else
522 /* We know there is no binding. */
523 return Qnil;
524 }
525
526 {
527 Lisp_Object tail;
528
529 /* t_binding is where we put a default binding that applies,
530 to use in case we do not find a binding specifically
531 for this key sequence. */
532
533 Lisp_Object t_binding;
534 t_binding = Qnil;
535
536 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
537 If it is 1, only generic-char bindings are accepted.
538 Otherwise, neither are. */
539 t_ok = t_ok ? 2 : 0;
540
541 for (tail = XCDR (map);
542 (CONSP (tail)
543 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
544 tail = XCDR (tail))
545 {
546 Lisp_Object binding;
547
548 binding = XCAR (tail);
549 if (SYMBOLP (binding))
550 {
551 /* If NOINHERIT, stop finding prefix definitions
552 after we pass a second occurrence of the `keymap' symbol. */
553 if (noinherit && EQ (binding, Qkeymap))
554 return Qnil;
555 }
556 else if (CONSP (binding))
557 {
558 Lisp_Object key = XCAR (binding);
559
560 if (EQ (key, idx))
561 val = XCDR (binding);
562 else if (t_ok
563 && INTEGERP (idx)
564 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
565 && INTEGERP (key)
566 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
567 && !SINGLE_BYTE_CHAR_P (XINT (idx))
568 && !SINGLE_BYTE_CHAR_P (XINT (key))
569 && CHAR_VALID_P (XINT (key), 1)
570 && !CHAR_VALID_P (XINT (key), 0)
571 && (CHAR_CHARSET (XINT (key))
572 == CHAR_CHARSET (XINT (idx))))
573 {
574 /* KEY is the generic character of the charset of IDX.
575 Use KEY's binding if there isn't a binding for IDX
576 itself. */
577 t_binding = XCDR (binding);
578 t_ok = 0;
579 }
580 else if (t_ok > 1 && EQ (key, Qt))
581 {
582 t_binding = XCDR (binding);
583 t_ok = 1;
584 }
585 }
586 else if (VECTORP (binding))
587 {
588 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
589 val = AREF (binding, XFASTINT (idx));
590 }
591 else if (CHAR_TABLE_P (binding))
592 {
593 /* Character codes with modifiers
594 are not included in a char-table.
595 All character codes without modifiers are included. */
596 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
597 {
598 val = Faref (binding, idx);
599 /* `nil' has a special meaning for char-tables, so
600 we use something else to record an explicitly
601 unbound entry. */
602 if (NILP (val))
603 val = Qunbound;
604 }
605 }
606
607 /* If we found a binding, clean it up and return it. */
608 if (!EQ (val, Qunbound))
609 {
610 if (EQ (val, Qt))
611 /* A Qt binding is just like an explicit nil binding
612 (i.e. it shadows any parent binding but not bindings in
613 keymaps of lower precedence). */
614 val = Qnil;
615 val = get_keyelt (val, autoload);
616 if (KEYMAPP (val))
617 fix_submap_inheritance (map, idx, val);
618 return val;
619 }
620 QUIT;
621 }
622
623 return get_keyelt (t_binding, autoload);
624 }
625 }
626
627 /* Given OBJECT which was found in a slot in a keymap,
628 trace indirect definitions to get the actual definition of that slot.
629 An indirect definition is a list of the form
630 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
631 and INDEX is the object to look up in KEYMAP to yield the definition.
632
633 Also if OBJECT has a menu string as the first element,
634 remove that. Also remove a menu help string as second element.
635
636 If AUTOLOAD is nonzero, load autoloadable keymaps
637 that are referred to with indirection. */
638
639 Lisp_Object
640 get_keyelt (object, autoload)
641 register Lisp_Object object;
642 int autoload;
643 {
644 while (1)
645 {
646 if (!(CONSP (object)))
647 /* This is really the value. */
648 return object;
649
650 /* If the keymap contents looks like (keymap ...) or (lambda ...)
651 then use itself. */
652 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
653 return object;
654
655 /* If the keymap contents looks like (menu-item name . DEFN)
656 or (menu-item name DEFN ...) then use DEFN.
657 This is a new format menu item. */
658 else if (EQ (XCAR (object), Qmenu_item))
659 {
660 if (CONSP (XCDR (object)))
661 {
662 Lisp_Object tem;
663
664 object = XCDR (XCDR (object));
665 tem = object;
666 if (CONSP (object))
667 object = XCAR (object);
668
669 /* If there's a `:filter FILTER', apply FILTER to the
670 menu-item's definition to get the real definition to
671 use. */
672 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
673 if (EQ (XCAR (tem), QCfilter) && autoload)
674 {
675 Lisp_Object filter;
676 filter = XCAR (XCDR (tem));
677 filter = list2 (filter, list2 (Qquote, object));
678 object = menu_item_eval_property (filter);
679 break;
680 }
681 }
682 else
683 /* Invalid keymap */
684 return object;
685 }
686
687 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
688 Keymap alist elements like (CHAR MENUSTRING . DEFN)
689 will be used by HierarKey menus. */
690 else if (STRINGP (XCAR (object)))
691 {
692 object = XCDR (object);
693 /* Also remove a menu help string, if any,
694 following the menu item name. */
695 if (CONSP (object) && STRINGP (XCAR (object)))
696 object = XCDR (object);
697 /* Also remove the sublist that caches key equivalences, if any. */
698 if (CONSP (object) && CONSP (XCAR (object)))
699 {
700 Lisp_Object carcar;
701 carcar = XCAR (XCAR (object));
702 if (NILP (carcar) || VECTORP (carcar))
703 object = XCDR (object);
704 }
705 }
706
707 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
708 else
709 {
710 Lisp_Object map;
711 map = get_keymap (Fcar_safe (object), 0, autoload);
712 return (!CONSP (map) ? object /* Invalid keymap */
713 : access_keymap (map, Fcdr (object), 0, 0, autoload));
714 }
715 }
716 }
717
718 static Lisp_Object
719 store_in_keymap (keymap, idx, def)
720 Lisp_Object keymap;
721 register Lisp_Object idx;
722 register Lisp_Object def;
723 {
724 /* Flush any reverse-map cache. */
725 where_is_cache = Qnil;
726 where_is_cache_keymaps = Qt;
727
728 /* If we are preparing to dump, and DEF is a menu element
729 with a menu item indicator, copy it to ensure it is not pure. */
730 if (CONSP (def) && PURE_P (def)
731 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
732 def = Fcons (XCAR (def), XCDR (def));
733
734 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
735 error ("attempt to define a key in a non-keymap");
736
737 /* If idx is a list (some sort of mouse click, perhaps?),
738 the index we want to use is the car of the list, which
739 ought to be a symbol. */
740 idx = EVENT_HEAD (idx);
741
742 /* If idx is a symbol, it might have modifiers, which need to
743 be put in the canonical order. */
744 if (SYMBOLP (idx))
745 idx = reorder_modifiers (idx);
746 else if (INTEGERP (idx))
747 /* Clobber the high bits that can be present on a machine
748 with more than 24 bits of integer. */
749 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
750
751 /* Scan the keymap for a binding of idx. */
752 {
753 Lisp_Object tail;
754
755 /* The cons after which we should insert new bindings. If the
756 keymap has a table element, we record its position here, so new
757 bindings will go after it; this way, the table will stay
758 towards the front of the alist and character lookups in dense
759 keymaps will remain fast. Otherwise, this just points at the
760 front of the keymap. */
761 Lisp_Object insertion_point;
762
763 insertion_point = keymap;
764 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
765 {
766 Lisp_Object elt;
767
768 elt = XCAR (tail);
769 if (VECTORP (elt))
770 {
771 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
772 {
773 ASET (elt, XFASTINT (idx), def);
774 return def;
775 }
776 insertion_point = tail;
777 }
778 else if (CHAR_TABLE_P (elt))
779 {
780 /* Character codes with modifiers
781 are not included in a char-table.
782 All character codes without modifiers are included. */
783 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
784 {
785 Faset (elt, idx,
786 /* `nil' has a special meaning for char-tables, so
787 we use something else to record an explicitly
788 unbound entry. */
789 NILP (def) ? Qt : def);
790 return def;
791 }
792 insertion_point = tail;
793 }
794 else if (CONSP (elt))
795 {
796 if (EQ (idx, XCAR (elt)))
797 {
798 XSETCDR (elt, def);
799 return def;
800 }
801 }
802 else if (EQ (elt, Qkeymap))
803 /* If we find a 'keymap' symbol in the spine of KEYMAP,
804 then we must have found the start of a second keymap
805 being used as the tail of KEYMAP, and a binding for IDX
806 should be inserted before it. */
807 goto keymap_end;
808
809 QUIT;
810 }
811
812 keymap_end:
813 /* We have scanned the entire keymap, and not found a binding for
814 IDX. Let's add one. */
815 XSETCDR (insertion_point,
816 Fcons (Fcons (idx, def), XCDR (insertion_point)));
817 }
818
819 return def;
820 }
821
822 EXFUN (Fcopy_keymap, 1);
823
824 void
825 copy_keymap_1 (chartable, idx, elt)
826 Lisp_Object chartable, idx, elt;
827 {
828 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
829 Faset (chartable, idx, Fcopy_keymap (elt));
830 }
831
832 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
833 doc: /* Return a copy of the keymap KEYMAP.
834 The copy starts out with the same definitions of KEYMAP,
835 but changing either the copy or KEYMAP does not affect the other.
836 Any key definitions that are subkeymaps are recursively copied.
837 However, a key definition which is a symbol whose definition is a keymap
838 is not copied. */)
839 (keymap)
840 Lisp_Object keymap;
841 {
842 /* FIXME: This doesn't properly copy menu-items in vectors. */
843 /* FIXME: This also copies the parent keymap. */
844
845 register Lisp_Object copy, tail;
846
847 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
848
849 for (tail = copy; CONSP (tail); tail = XCDR (tail))
850 {
851 Lisp_Object elt;
852
853 elt = XCAR (tail);
854 if (CHAR_TABLE_P (elt))
855 {
856 Lisp_Object indices[3];
857
858 elt = Fcopy_sequence (elt);
859 XSETCAR (tail, elt);
860
861 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
862 }
863 else if (VECTORP (elt))
864 {
865 int i;
866
867 elt = Fcopy_sequence (elt);
868 XSETCAR (tail, elt);
869
870 for (i = 0; i < ASIZE (elt); i++)
871 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
872 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
873 }
874 else if (CONSP (elt) && CONSP (XCDR (elt)))
875 {
876 Lisp_Object tem;
877 tem = XCDR (elt);
878
879 /* Is this a new format menu item. */
880 if (EQ (XCAR (tem),Qmenu_item))
881 {
882 /* Copy cell with menu-item marker. */
883 XSETCDR (elt,
884 Fcons (XCAR (tem), XCDR (tem)));
885 elt = XCDR (elt);
886 tem = XCDR (elt);
887 if (CONSP (tem))
888 {
889 /* Copy cell with menu-item name. */
890 XSETCDR (elt,
891 Fcons (XCAR (tem), XCDR (tem)));
892 elt = XCDR (elt);
893 tem = XCDR (elt);
894 };
895 if (CONSP (tem))
896 {
897 /* Copy cell with binding and if the binding is a keymap,
898 copy that. */
899 XSETCDR (elt,
900 Fcons (XCAR (tem), XCDR (tem)));
901 elt = XCDR (elt);
902 tem = XCAR (elt);
903 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
904 XSETCAR (elt, Fcopy_keymap (tem));
905 tem = XCDR (elt);
906 if (CONSP (tem) && CONSP (XCAR (tem)))
907 /* Delete cache for key equivalences. */
908 XSETCDR (elt, XCDR (tem));
909 }
910 }
911 else
912 {
913 /* It may be an old fomat menu item.
914 Skip the optional menu string.
915 */
916 if (STRINGP (XCAR (tem)))
917 {
918 /* Copy the cell, since copy-alist didn't go this deep. */
919 XSETCDR (elt,
920 Fcons (XCAR (tem), XCDR (tem)));
921 elt = XCDR (elt);
922 tem = XCDR (elt);
923 /* Also skip the optional menu help string. */
924 if (CONSP (tem) && STRINGP (XCAR (tem)))
925 {
926 XSETCDR (elt,
927 Fcons (XCAR (tem), XCDR (tem)));
928 elt = XCDR (elt);
929 tem = XCDR (elt);
930 }
931 /* There may also be a list that caches key equivalences.
932 Just delete it for the new keymap. */
933 if (CONSP (tem)
934 && CONSP (XCAR (tem))
935 && (NILP (XCAR (XCAR (tem)))
936 || VECTORP (XCAR (XCAR (tem)))))
937 XSETCDR (elt, XCDR (tem));
938 }
939 if (CONSP (elt)
940 && CONSP (XCDR (elt))
941 && EQ (XCAR (XCDR (elt)), Qkeymap))
942 XSETCDR (elt, Fcopy_keymap (XCDR (elt)));
943 }
944
945 }
946 }
947
948 return copy;
949 }
950 \f
951 /* Simple Keymap mutators and accessors. */
952
953 /* GC is possible in this function if it autoloads a keymap. */
954
955 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
956 doc: /* Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.
957 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters
958 meaning a sequence of keystrokes and events.
959 Non-ASCII characters with codes above 127 (such as ISO Latin-1)
960 can be included if you use a vector.
961 DEF is anything that can be a key's definition:
962 nil (means key is undefined in this keymap),
963 a command (a Lisp function suitable for interactive calling)
964 a string (treated as a keyboard macro),
965 a keymap (to define a prefix key),
966 a symbol. When the key is looked up, the symbol will stand for its
967 function definition, which should at that time be one of the above,
968 or another symbol whose function definition is used, etc.
969 a cons (STRING . DEFN), meaning that DEFN is the definition
970 (DEFN should be a valid definition in its own right),
971 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
972
973 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at
974 the front of KEYMAP. */)
975 (keymap, key, def)
976 Lisp_Object keymap;
977 Lisp_Object key;
978 Lisp_Object def;
979 {
980 register int idx;
981 register Lisp_Object c;
982 register Lisp_Object cmd;
983 int metized = 0;
984 int meta_bit;
985 int length;
986 struct gcpro gcpro1, gcpro2, gcpro3;
987
988 keymap = get_keymap (keymap, 1, 1);
989
990 if (!VECTORP (key) && !STRINGP (key))
991 key = wrong_type_argument (Qarrayp, key);
992
993 length = XFASTINT (Flength (key));
994 if (length == 0)
995 return Qnil;
996
997 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
998 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
999
1000 GCPRO3 (keymap, key, def);
1001
1002 if (VECTORP (key))
1003 meta_bit = meta_modifier;
1004 else
1005 meta_bit = 0x80;
1006
1007 idx = 0;
1008 while (1)
1009 {
1010 c = Faref (key, make_number (idx));
1011
1012 if (CONSP (c) && lucid_event_type_list_p (c))
1013 c = Fevent_convert_list (c);
1014
1015 if (SYMBOLP (c))
1016 silly_event_symbol_error (c);
1017
1018 if (INTEGERP (c)
1019 && (XINT (c) & meta_bit)
1020 && !metized)
1021 {
1022 c = meta_prefix_char;
1023 metized = 1;
1024 }
1025 else
1026 {
1027 if (INTEGERP (c))
1028 XSETINT (c, XINT (c) & ~meta_bit);
1029
1030 metized = 0;
1031 idx++;
1032 }
1033
1034 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1035 error ("Key sequence contains invalid event");
1036
1037 if (idx == length)
1038 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1039
1040 cmd = access_keymap (keymap, c, 0, 1, 1);
1041
1042 /* If this key is undefined, make it a prefix. */
1043 if (NILP (cmd))
1044 cmd = define_as_prefix (keymap, c);
1045
1046 keymap = get_keymap (cmd, 0, 1);
1047 if (!CONSP (keymap))
1048 /* We must use Fkey_description rather than just passing key to
1049 error; key might be a vector, not a string. */
1050 error ("Key sequence %s uses invalid prefix characters",
1051 XSTRING (Fkey_description (key))->data);
1052 }
1053 }
1054
1055 /* Value is number if KEY is too long; nil if valid but has no definition. */
1056 /* GC is possible in this function if it autoloads a keymap. */
1057
1058 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1059 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1060 nil means undefined. See doc of `define-key' for kinds of definitions.
1061
1062 A number as value means KEY is "too long";
1063 that is, characters or symbols in it except for the last one
1064 fail to be a valid sequence of prefix characters in KEYMAP.
1065 The number is how many characters at the front of KEY
1066 it takes to reach a non-prefix command.
1067
1068 Normally, `lookup-key' ignores bindings for t, which act as default
1069 bindings, used when nothing else in the keymap applies; this makes it
1070 usable as a general function for probing keymaps. However, if the
1071 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1072 recognize the default bindings, just as `read-key-sequence' does. */)
1073 (keymap, key, accept_default)
1074 register Lisp_Object keymap;
1075 Lisp_Object key;
1076 Lisp_Object accept_default;
1077 {
1078 register int idx;
1079 register Lisp_Object cmd;
1080 register Lisp_Object c;
1081 int length;
1082 int t_ok = !NILP (accept_default);
1083 struct gcpro gcpro1;
1084
1085 keymap = get_keymap (keymap, 1, 1);
1086
1087 if (!VECTORP (key) && !STRINGP (key))
1088 key = wrong_type_argument (Qarrayp, key);
1089
1090 length = XFASTINT (Flength (key));
1091 if (length == 0)
1092 return keymap;
1093
1094 GCPRO1 (key);
1095
1096 idx = 0;
1097 while (1)
1098 {
1099 c = Faref (key, make_number (idx++));
1100
1101 if (CONSP (c) && lucid_event_type_list_p (c))
1102 c = Fevent_convert_list (c);
1103
1104 /* Turn the 8th bit of string chars into a meta modifier. */
1105 if (XINT (c) & 0x80 && STRINGP (key))
1106 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1107
1108 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1109 error ("Key sequence contains invalid event");
1110
1111 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1112 if (idx == length)
1113 RETURN_UNGCPRO (cmd);
1114
1115 keymap = get_keymap (cmd, 0, 1);
1116 if (!CONSP (keymap))
1117 RETURN_UNGCPRO (make_number (idx));
1118
1119 QUIT;
1120 }
1121 }
1122
1123 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1124 Assume that currently it does not define C at all.
1125 Return the keymap. */
1126
1127 static Lisp_Object
1128 define_as_prefix (keymap, c)
1129 Lisp_Object keymap, c;
1130 {
1131 Lisp_Object cmd;
1132
1133 cmd = Fmake_sparse_keymap (Qnil);
1134 /* If this key is defined as a prefix in an inherited keymap,
1135 make it a prefix in this map, and make its definition
1136 inherit the other prefix definition. */
1137 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1138 store_in_keymap (keymap, c, cmd);
1139
1140 return cmd;
1141 }
1142
1143 /* Append a key to the end of a key sequence. We always make a vector. */
1144
1145 Lisp_Object
1146 append_key (key_sequence, key)
1147 Lisp_Object key_sequence, key;
1148 {
1149 Lisp_Object args[2];
1150
1151 args[0] = key_sequence;
1152
1153 args[1] = Fcons (key, Qnil);
1154 return Fvconcat (2, args);
1155 }
1156
1157 /* Given a event type C which is a symbol,
1158 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1159
1160 static void
1161 silly_event_symbol_error (c)
1162 Lisp_Object c;
1163 {
1164 Lisp_Object parsed, base, name, assoc;
1165 int modifiers;
1166
1167 parsed = parse_modifiers (c);
1168 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1169 base = XCAR (parsed);
1170 name = Fsymbol_name (base);
1171 /* This alist includes elements such as ("RET" . "\\r"). */
1172 assoc = Fassoc (name, exclude_keys);
1173
1174 if (! NILP (assoc))
1175 {
1176 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1177 char *p = new_mods;
1178 Lisp_Object keystring;
1179 if (modifiers & alt_modifier)
1180 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1181 if (modifiers & ctrl_modifier)
1182 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1183 if (modifiers & hyper_modifier)
1184 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1185 if (modifiers & meta_modifier)
1186 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1187 if (modifiers & shift_modifier)
1188 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1189 if (modifiers & super_modifier)
1190 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1191 *p = 0;
1192
1193 c = reorder_modifiers (c);
1194 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1195
1196 error ((modifiers & ~meta_modifier
1197 ? "To bind the key %s, use [?%s], not [%s]"
1198 : "To bind the key %s, use \"%s\", not [%s]"),
1199 XSYMBOL (c)->name->data, XSTRING (keystring)->data,
1200 XSYMBOL (c)->name->data);
1201 }
1202 }
1203 \f
1204 /* Global, local, and minor mode keymap stuff. */
1205
1206 /* We can't put these variables inside current_minor_maps, since under
1207 some systems, static gets macro-defined to be the empty string.
1208 Ickypoo. */
1209 static Lisp_Object *cmm_modes, *cmm_maps;
1210 static int cmm_size;
1211
1212 /* Error handler used in current_minor_maps. */
1213 static Lisp_Object
1214 current_minor_maps_error ()
1215 {
1216 return Qnil;
1217 }
1218
1219 /* Store a pointer to an array of the keymaps of the currently active
1220 minor modes in *buf, and return the number of maps it contains.
1221
1222 This function always returns a pointer to the same buffer, and may
1223 free or reallocate it, so if you want to keep it for a long time or
1224 hand it out to lisp code, copy it. This procedure will be called
1225 for every key sequence read, so the nice lispy approach (return a
1226 new assoclist, list, what have you) for each invocation would
1227 result in a lot of consing over time.
1228
1229 If we used xrealloc/xmalloc and ran out of memory, they would throw
1230 back to the command loop, which would try to read a key sequence,
1231 which would call this function again, resulting in an infinite
1232 loop. Instead, we'll use realloc/malloc and silently truncate the
1233 list, let the key sequence be read, and hope some other piece of
1234 code signals the error. */
1235 int
1236 current_minor_maps (modeptr, mapptr)
1237 Lisp_Object **modeptr, **mapptr;
1238 {
1239 int i = 0;
1240 int list_number = 0;
1241 Lisp_Object alist, assoc, var, val;
1242 Lisp_Object lists[2];
1243
1244 lists[0] = Vminor_mode_overriding_map_alist;
1245 lists[1] = Vminor_mode_map_alist;
1246
1247 for (list_number = 0; list_number < 2; list_number++)
1248 for (alist = lists[list_number];
1249 CONSP (alist);
1250 alist = XCDR (alist))
1251 if ((assoc = XCAR (alist), CONSP (assoc))
1252 && (var = XCAR (assoc), SYMBOLP (var))
1253 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1254 && !NILP (val))
1255 {
1256 Lisp_Object temp;
1257
1258 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1259 and also an entry in Vminor_mode_map_alist,
1260 ignore the latter. */
1261 if (list_number == 1)
1262 {
1263 val = assq_no_quit (var, lists[0]);
1264 if (!NILP (val))
1265 continue;
1266 }
1267
1268 if (i >= cmm_size)
1269 {
1270 Lisp_Object *newmodes, *newmaps;
1271
1272 /* Use malloc/realloc here. See the comment above
1273 this function. */
1274 if (cmm_maps)
1275 {
1276 BLOCK_INPUT;
1277 cmm_size *= 2;
1278 newmodes
1279 = (Lisp_Object *) realloc (cmm_modes,
1280 cmm_size * sizeof *newmodes);
1281 newmaps
1282 = (Lisp_Object *) realloc (cmm_maps,
1283 cmm_size * sizeof *newmaps);
1284 UNBLOCK_INPUT;
1285 }
1286 else
1287 {
1288 BLOCK_INPUT;
1289 cmm_size = 30;
1290 newmodes
1291 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1292 newmaps
1293 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1294 UNBLOCK_INPUT;
1295 }
1296
1297 if (newmodes)
1298 cmm_modes = newmodes;
1299 if (newmaps)
1300 cmm_maps = newmaps;
1301
1302 if (newmodes == NULL || newmaps == NULL)
1303 break;
1304 }
1305
1306 /* Get the keymap definition--or nil if it is not defined. */
1307 temp = internal_condition_case_1 (Findirect_function,
1308 XCDR (assoc),
1309 Qerror, current_minor_maps_error);
1310 if (!NILP (temp))
1311 {
1312 cmm_modes[i] = var;
1313 cmm_maps [i] = temp;
1314 i++;
1315 }
1316 }
1317
1318 if (modeptr) *modeptr = cmm_modes;
1319 if (mapptr) *mapptr = cmm_maps;
1320 return i;
1321 }
1322
1323 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1324 0, 1, 0,
1325 doc: /* Return a list of the currently active keymaps.
1326 OLP if non-nil indicates that we should obey `overriding-local-map' and
1327 `overriding-terminal-local-map'. */)
1328 (olp)
1329 Lisp_Object olp;
1330 {
1331 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1332
1333 if (!NILP (olp))
1334 {
1335 if (!NILP (Voverriding_local_map))
1336 keymaps = Fcons (Voverriding_local_map, keymaps);
1337 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1338 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1339 }
1340 if (NILP (XCDR (keymaps)))
1341 {
1342 Lisp_Object local;
1343 Lisp_Object *maps;
1344 int nmaps, i;
1345
1346 local = get_local_map (PT, current_buffer, Qlocal_map);
1347 if (!NILP (local))
1348 keymaps = Fcons (local, keymaps);
1349
1350 nmaps = current_minor_maps (0, &maps);
1351
1352 for (i = --nmaps; i >= 0; i--)
1353 if (!NILP (maps[i]))
1354 keymaps = Fcons (maps[i], keymaps);
1355
1356 local = get_local_map (PT, current_buffer, Qkeymap);
1357 if (!NILP (local))
1358 keymaps = Fcons (local, keymaps);
1359 }
1360
1361 return keymaps;
1362 }
1363
1364 /* GC is possible in this function if it autoloads a keymap. */
1365
1366 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1367 doc: /* Return the binding for command KEY in current keymaps.
1368 KEY is a string or vector, a sequence of keystrokes.
1369 The binding is probably a symbol with a function definition.
1370
1371 Normally, `key-binding' ignores bindings for t, which act as default
1372 bindings, used when nothing else in the keymap applies; this makes it
1373 usable as a general function for probing keymaps. However, if the
1374 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1375 recognize the default bindings, just as `read-key-sequence' does. */)
1376 (key, accept_default)
1377 Lisp_Object key, accept_default;
1378 {
1379 Lisp_Object *maps, value;
1380 int nmaps, i;
1381 struct gcpro gcpro1;
1382
1383 GCPRO1 (key);
1384
1385 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1386 {
1387 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1388 key, accept_default);
1389 if (! NILP (value) && !INTEGERP (value))
1390 RETURN_UNGCPRO (value);
1391 }
1392 else if (!NILP (Voverriding_local_map))
1393 {
1394 value = Flookup_key (Voverriding_local_map, key, accept_default);
1395 if (! NILP (value) && !INTEGERP (value))
1396 RETURN_UNGCPRO (value);
1397 }
1398 else
1399 {
1400 Lisp_Object local;
1401
1402 local = get_local_map (PT, current_buffer, Qkeymap);
1403 if (! NILP (local))
1404 {
1405 value = Flookup_key (local, key, accept_default);
1406 if (! NILP (value) && !INTEGERP (value))
1407 RETURN_UNGCPRO (value);
1408 }
1409
1410 nmaps = current_minor_maps (0, &maps);
1411 /* Note that all these maps are GCPRO'd
1412 in the places where we found them. */
1413
1414 for (i = 0; i < nmaps; i++)
1415 if (! NILP (maps[i]))
1416 {
1417 value = Flookup_key (maps[i], key, accept_default);
1418 if (! NILP (value) && !INTEGERP (value))
1419 RETURN_UNGCPRO (value);
1420 }
1421
1422 local = get_local_map (PT, current_buffer, Qlocal_map);
1423 if (! NILP (local))
1424 {
1425 value = Flookup_key (local, key, accept_default);
1426 if (! NILP (value) && !INTEGERP (value))
1427 RETURN_UNGCPRO (value);
1428 }
1429 }
1430
1431 value = Flookup_key (current_global_map, key, accept_default);
1432 UNGCPRO;
1433 if (! NILP (value) && !INTEGERP (value))
1434 return value;
1435
1436 return Qnil;
1437 }
1438
1439 /* GC is possible in this function if it autoloads a keymap. */
1440
1441 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1442 doc: /* Return the binding for command KEYS in current local keymap only.
1443 KEYS is a string, a sequence of keystrokes.
1444 The binding is probably a symbol with a function definition.
1445
1446 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1447 bindings; see the description of `lookup-key' for more details about this. */)
1448 (keys, accept_default)
1449 Lisp_Object keys, accept_default;
1450 {
1451 register Lisp_Object map;
1452 map = current_buffer->keymap;
1453 if (NILP (map))
1454 return Qnil;
1455 return Flookup_key (map, keys, accept_default);
1456 }
1457
1458 /* GC is possible in this function if it autoloads a keymap. */
1459
1460 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1461 doc: /* Return the binding for command KEYS in current global keymap only.
1462 KEYS is a string, a sequence of keystrokes.
1463 The binding is probably a symbol with a function definition.
1464 This function's return values are the same as those of lookup-key
1465 \(which see).
1466
1467 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1468 bindings; see the description of `lookup-key' for more details about this. */)
1469 (keys, accept_default)
1470 Lisp_Object keys, accept_default;
1471 {
1472 return Flookup_key (current_global_map, keys, accept_default);
1473 }
1474
1475 /* GC is possible in this function if it autoloads a keymap. */
1476
1477 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1478 doc: /* Find the visible minor mode bindings of KEY.
1479 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1480 the symbol which names the minor mode binding KEY, and BINDING is
1481 KEY's definition in that mode. In particular, if KEY has no
1482 minor-mode bindings, return nil. If the first binding is a
1483 non-prefix, all subsequent bindings will be omitted, since they would
1484 be ignored. Similarly, the list doesn't include non-prefix bindings
1485 that come after prefix bindings.
1486
1487 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1488 bindings; see the description of `lookup-key' for more details about this. */)
1489 (key, accept_default)
1490 Lisp_Object key, accept_default;
1491 {
1492 Lisp_Object *modes, *maps;
1493 int nmaps;
1494 Lisp_Object binding;
1495 int i, j;
1496 struct gcpro gcpro1, gcpro2;
1497
1498 nmaps = current_minor_maps (&modes, &maps);
1499 /* Note that all these maps are GCPRO'd
1500 in the places where we found them. */
1501
1502 binding = Qnil;
1503 GCPRO2 (key, binding);
1504
1505 for (i = j = 0; i < nmaps; i++)
1506 if (!NILP (maps[i])
1507 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1508 && !INTEGERP (binding))
1509 {
1510 if (KEYMAPP (binding))
1511 maps[j++] = Fcons (modes[i], binding);
1512 else if (j == 0)
1513 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1514 }
1515
1516 UNGCPRO;
1517 return Flist (j, maps);
1518 }
1519
1520 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1521 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1522 A new sparse keymap is stored as COMMAND's function definition and its value.
1523 If a second optional argument MAPVAR is given, the map is stored as
1524 its value instead of as COMMAND's value; but COMMAND is still defined
1525 as a function.
1526 The third optional argument NAME, if given, supplies a menu name
1527 string for the map. This is required to use the keymap as a menu. */)
1528 (command, mapvar, name)
1529 Lisp_Object command, mapvar, name;
1530 {
1531 Lisp_Object map;
1532 map = Fmake_sparse_keymap (name);
1533 Ffset (command, map);
1534 if (!NILP (mapvar))
1535 Fset (mapvar, map);
1536 else
1537 Fset (command, map);
1538 return command;
1539 }
1540
1541 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1542 doc: /* Select KEYMAP as the global keymap. */)
1543 (keymap)
1544 Lisp_Object keymap;
1545 {
1546 keymap = get_keymap (keymap, 1, 1);
1547 current_global_map = keymap;
1548
1549 return Qnil;
1550 }
1551
1552 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1553 doc: /* Select KEYMAP as the local keymap.
1554 If KEYMAP is nil, that means no local keymap. */)
1555 (keymap)
1556 Lisp_Object keymap;
1557 {
1558 if (!NILP (keymap))
1559 keymap = get_keymap (keymap, 1, 1);
1560
1561 current_buffer->keymap = keymap;
1562
1563 return Qnil;
1564 }
1565
1566 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1567 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1568 ()
1569 {
1570 return current_buffer->keymap;
1571 }
1572
1573 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1574 doc: /* Return the current global keymap. */)
1575 ()
1576 {
1577 return current_global_map;
1578 }
1579
1580 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1581 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1582 ()
1583 {
1584 Lisp_Object *maps;
1585 int nmaps = current_minor_maps (0, &maps);
1586
1587 return Flist (nmaps, maps);
1588 }
1589 \f
1590 /* Help functions for describing and documenting keymaps. */
1591
1592
1593 static void
1594 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1595 Lisp_Object maps, tail, thisseq, key, cmd;
1596 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1597 {
1598 Lisp_Object tem;
1599
1600 cmd = get_keyelt (cmd, 0);
1601 if (NILP (cmd))
1602 return;
1603
1604 tem = get_keymap (cmd, 0, 0);
1605 if (CONSP (tem))
1606 {
1607 cmd = tem;
1608 /* Ignore keymaps that are already added to maps. */
1609 tem = Frassq (cmd, maps);
1610 if (NILP (tem))
1611 {
1612 /* If the last key in thisseq is meta-prefix-char,
1613 turn it into a meta-ized keystroke. We know
1614 that the event we're about to append is an
1615 ascii keystroke since we're processing a
1616 keymap table. */
1617 if (is_metized)
1618 {
1619 int meta_bit = meta_modifier;
1620 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1621 tem = Fcopy_sequence (thisseq);
1622
1623 Faset (tem, last, make_number (XINT (key) | meta_bit));
1624
1625 /* This new sequence is the same length as
1626 thisseq, so stick it in the list right
1627 after this one. */
1628 XSETCDR (tail,
1629 Fcons (Fcons (tem, cmd), XCDR (tail)));
1630 }
1631 else
1632 {
1633 tem = append_key (thisseq, key);
1634 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1635 }
1636 }
1637 }
1638 }
1639
1640 static void
1641 accessible_keymaps_char_table (args, index, cmd)
1642 Lisp_Object args, index, cmd;
1643 {
1644 accessible_keymaps_1 (index, cmd,
1645 XCAR (XCAR (args)),
1646 XCAR (XCDR (args)),
1647 XCDR (XCDR (args)),
1648 XINT (XCDR (XCAR (args))));
1649 }
1650
1651 /* This function cannot GC. */
1652
1653 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1654 1, 2, 0,
1655 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1656 Returns a list of elements of the form (KEYS . MAP), where the sequence
1657 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1658 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1659 An optional argument PREFIX, if non-nil, should be a key sequence;
1660 then the value includes only maps for prefixes that start with PREFIX. */)
1661 (keymap, prefix)
1662 Lisp_Object keymap, prefix;
1663 {
1664 Lisp_Object maps, good_maps, tail;
1665 int prefixlen = 0;
1666
1667 /* no need for gcpro because we don't autoload any keymaps. */
1668
1669 if (!NILP (prefix))
1670 prefixlen = XINT (Flength (prefix));
1671
1672 if (!NILP (prefix))
1673 {
1674 /* If a prefix was specified, start with the keymap (if any) for
1675 that prefix, so we don't waste time considering other prefixes. */
1676 Lisp_Object tem;
1677 tem = Flookup_key (keymap, prefix, Qt);
1678 /* Flookup_key may give us nil, or a number,
1679 if the prefix is not defined in this particular map.
1680 It might even give us a list that isn't a keymap. */
1681 tem = get_keymap (tem, 0, 0);
1682 if (CONSP (tem))
1683 {
1684 /* Convert PREFIX to a vector now, so that later on
1685 we don't have to deal with the possibility of a string. */
1686 if (STRINGP (prefix))
1687 {
1688 int i, i_byte, c;
1689 Lisp_Object copy;
1690
1691 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1692 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1693 {
1694 int i_before = i;
1695
1696 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1697 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1698 c ^= 0200 | meta_modifier;
1699 ASET (copy, i_before, make_number (c));
1700 }
1701 prefix = copy;
1702 }
1703 maps = Fcons (Fcons (prefix, tem), Qnil);
1704 }
1705 else
1706 return Qnil;
1707 }
1708 else
1709 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1710 get_keymap (keymap, 1, 0)),
1711 Qnil);
1712
1713 /* For each map in the list maps,
1714 look at any other maps it points to,
1715 and stick them at the end if they are not already in the list.
1716
1717 This is a breadth-first traversal, where tail is the queue of
1718 nodes, and maps accumulates a list of all nodes visited. */
1719
1720 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1721 {
1722 register Lisp_Object thisseq, thismap;
1723 Lisp_Object last;
1724 /* Does the current sequence end in the meta-prefix-char? */
1725 int is_metized;
1726
1727 thisseq = Fcar (Fcar (tail));
1728 thismap = Fcdr (Fcar (tail));
1729 last = make_number (XINT (Flength (thisseq)) - 1);
1730 is_metized = (XINT (last) >= 0
1731 /* Don't metize the last char of PREFIX. */
1732 && XINT (last) >= prefixlen
1733 && EQ (Faref (thisseq, last), meta_prefix_char));
1734
1735 for (; CONSP (thismap); thismap = XCDR (thismap))
1736 {
1737 Lisp_Object elt;
1738
1739 elt = XCAR (thismap);
1740
1741 QUIT;
1742
1743 if (CHAR_TABLE_P (elt))
1744 {
1745 Lisp_Object indices[3];
1746
1747 map_char_table (accessible_keymaps_char_table, Qnil,
1748 elt, Fcons (Fcons (maps, make_number (is_metized)),
1749 Fcons (tail, thisseq)),
1750 0, indices);
1751 }
1752 else if (VECTORP (elt))
1753 {
1754 register int i;
1755
1756 /* Vector keymap. Scan all the elements. */
1757 for (i = 0; i < ASIZE (elt); i++)
1758 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1759 maps, tail, thisseq, is_metized);
1760
1761 }
1762 else if (CONSP (elt))
1763 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1764 maps, tail, thisseq,
1765 is_metized && INTEGERP (XCAR (elt)));
1766
1767 }
1768 }
1769
1770 if (NILP (prefix))
1771 return maps;
1772
1773 /* Now find just the maps whose access prefixes start with PREFIX. */
1774
1775 good_maps = Qnil;
1776 for (; CONSP (maps); maps = XCDR (maps))
1777 {
1778 Lisp_Object elt, thisseq;
1779 elt = XCAR (maps);
1780 thisseq = XCAR (elt);
1781 /* The access prefix must be at least as long as PREFIX,
1782 and the first elements must match those of PREFIX. */
1783 if (XINT (Flength (thisseq)) >= prefixlen)
1784 {
1785 int i;
1786 for (i = 0; i < prefixlen; i++)
1787 {
1788 Lisp_Object i1;
1789 XSETFASTINT (i1, i);
1790 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1791 break;
1792 }
1793 if (i == prefixlen)
1794 good_maps = Fcons (elt, good_maps);
1795 }
1796 }
1797
1798 return Fnreverse (good_maps);
1799 }
1800 \f
1801 Lisp_Object Qsingle_key_description, Qkey_description;
1802
1803 /* This function cannot GC. */
1804
1805 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1806 doc: /* Return a pretty description of key-sequence KEYS.
1807 Control characters turn into "C-foo" sequences, meta into "M-foo"
1808 spaces are put between sequence elements, etc. */)
1809 (keys)
1810 Lisp_Object keys;
1811 {
1812 int len = 0;
1813 int i, i_byte;
1814 Lisp_Object sep;
1815 Lisp_Object *args = NULL;
1816
1817 if (STRINGP (keys))
1818 {
1819 Lisp_Object vector;
1820 vector = Fmake_vector (Flength (keys), Qnil);
1821 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1822 {
1823 int c;
1824 int i_before = i;
1825
1826 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1827 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1828 c ^= 0200 | meta_modifier;
1829 XSETFASTINT (AREF (vector, i_before), c);
1830 }
1831 keys = vector;
1832 }
1833
1834 if (VECTORP (keys))
1835 {
1836 /* In effect, this computes
1837 (mapconcat 'single-key-description keys " ")
1838 but we shouldn't use mapconcat because it can do GC. */
1839
1840 len = XVECTOR (keys)->size;
1841 sep = build_string (" ");
1842 /* This has one extra element at the end that we don't pass to Fconcat. */
1843 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1844
1845 for (i = 0; i < len; i++)
1846 {
1847 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1848 args[i * 2 + 1] = sep;
1849 }
1850 }
1851 else if (CONSP (keys))
1852 {
1853 /* In effect, this computes
1854 (mapconcat 'single-key-description keys " ")
1855 but we shouldn't use mapconcat because it can do GC. */
1856
1857 len = XFASTINT (Flength (keys));
1858 sep = build_string (" ");
1859 /* This has one extra element at the end that we don't pass to Fconcat. */
1860 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1861
1862 for (i = 0; i < len; i++)
1863 {
1864 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1865 args[i * 2 + 1] = sep;
1866 keys = XCDR (keys);
1867 }
1868 }
1869 else
1870 keys = wrong_type_argument (Qarrayp, keys);
1871
1872 if (len == 0)
1873 return empty_string;
1874 return Fconcat (len * 2 - 1, args);
1875 }
1876
1877 char *
1878 push_key_description (c, p, force_multibyte)
1879 register unsigned int c;
1880 register char *p;
1881 int force_multibyte;
1882 {
1883 unsigned c2;
1884
1885 /* Clear all the meaningless bits above the meta bit. */
1886 c &= meta_modifier | ~ - meta_modifier;
1887 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1888 | meta_modifier | shift_modifier | super_modifier);
1889
1890 if (c & alt_modifier)
1891 {
1892 *p++ = 'A';
1893 *p++ = '-';
1894 c -= alt_modifier;
1895 }
1896 if ((c & ctrl_modifier) != 0
1897 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1898 {
1899 *p++ = 'C';
1900 *p++ = '-';
1901 c &= ~ctrl_modifier;
1902 }
1903 if (c & hyper_modifier)
1904 {
1905 *p++ = 'H';
1906 *p++ = '-';
1907 c -= hyper_modifier;
1908 }
1909 if (c & meta_modifier)
1910 {
1911 *p++ = 'M';
1912 *p++ = '-';
1913 c -= meta_modifier;
1914 }
1915 if (c & shift_modifier)
1916 {
1917 *p++ = 'S';
1918 *p++ = '-';
1919 c -= shift_modifier;
1920 }
1921 if (c & super_modifier)
1922 {
1923 *p++ = 's';
1924 *p++ = '-';
1925 c -= super_modifier;
1926 }
1927 if (c < 040)
1928 {
1929 if (c == 033)
1930 {
1931 *p++ = 'E';
1932 *p++ = 'S';
1933 *p++ = 'C';
1934 }
1935 else if (c == '\t')
1936 {
1937 *p++ = 'T';
1938 *p++ = 'A';
1939 *p++ = 'B';
1940 }
1941 else if (c == Ctl ('M'))
1942 {
1943 *p++ = 'R';
1944 *p++ = 'E';
1945 *p++ = 'T';
1946 }
1947 else
1948 {
1949 /* `C-' already added above. */
1950 if (c > 0 && c <= Ctl ('Z'))
1951 *p++ = c + 0140;
1952 else
1953 *p++ = c + 0100;
1954 }
1955 }
1956 else if (c == 0177)
1957 {
1958 *p++ = 'D';
1959 *p++ = 'E';
1960 *p++ = 'L';
1961 }
1962 else if (c == ' ')
1963 {
1964 *p++ = 'S';
1965 *p++ = 'P';
1966 *p++ = 'C';
1967 }
1968 else if (c < 128
1969 || (NILP (current_buffer->enable_multibyte_characters)
1970 && SINGLE_BYTE_CHAR_P (c)
1971 && !force_multibyte))
1972 {
1973 *p++ = c;
1974 }
1975 else
1976 {
1977 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
1978
1979 if (force_multibyte && valid_p)
1980 {
1981 if (SINGLE_BYTE_CHAR_P (c))
1982 c = unibyte_char_to_multibyte (c);
1983 p += CHAR_STRING (c, p);
1984 }
1985 else if (NILP (current_buffer->enable_multibyte_characters)
1986 || valid_p)
1987 {
1988 int bit_offset;
1989 *p++ = '\\';
1990 /* The biggest character code uses 19 bits. */
1991 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1992 {
1993 if (c >= (1 << bit_offset))
1994 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1995 }
1996 }
1997 else
1998 p += CHAR_STRING (c, p);
1999 }
2000
2001 return p;
2002 }
2003
2004 /* This function cannot GC. */
2005
2006 DEFUN ("single-key-description", Fsingle_key_description,
2007 Ssingle_key_description, 1, 2, 0,
2008 doc: /* Return a pretty description of command character KEY.
2009 Control characters turn into C-whatever, etc.
2010 Optional argument NO-ANGLES non-nil means don't put angle brackets
2011 around function keys and event symbols. */)
2012 (key, no_angles)
2013 Lisp_Object key, no_angles;
2014 {
2015 if (CONSP (key) && lucid_event_type_list_p (key))
2016 key = Fevent_convert_list (key);
2017
2018 key = EVENT_HEAD (key);
2019
2020 if (INTEGERP (key)) /* Normal character */
2021 {
2022 unsigned int charset, c1, c2;
2023 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2024
2025 if (SINGLE_BYTE_CHAR_P (without_bits))
2026 charset = 0;
2027 else
2028 SPLIT_CHAR (without_bits, charset, c1, c2);
2029
2030 if (charset
2031 && CHARSET_DEFINED_P (charset)
2032 && ((c1 >= 0 && c1 < 32)
2033 || (c2 >= 0 && c2 < 32)))
2034 {
2035 /* Handle a generic character. */
2036 Lisp_Object name;
2037 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2038 CHECK_STRING (name);
2039 return concat2 (build_string ("Character set "), name);
2040 }
2041 else
2042 {
2043 char tem[KEY_DESCRIPTION_SIZE], *end;
2044 int nbytes, nchars;
2045 Lisp_Object string;
2046
2047 end = push_key_description (XUINT (key), tem, 1);
2048 nbytes = end - tem;
2049 nchars = multibyte_chars_in_text (tem, nbytes);
2050 if (nchars == nbytes)
2051 {
2052 *end = '\0';
2053 string = build_string (tem);
2054 }
2055 else
2056 string = make_multibyte_string (tem, nchars, nbytes);
2057 return string;
2058 }
2059 }
2060 else if (SYMBOLP (key)) /* Function key or event-symbol */
2061 {
2062 if (NILP (no_angles))
2063 {
2064 char *buffer
2065 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2066 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2067 return build_string (buffer);
2068 }
2069 else
2070 return Fsymbol_name (key);
2071 }
2072 else if (STRINGP (key)) /* Buffer names in the menubar. */
2073 return Fcopy_sequence (key);
2074 else
2075 error ("KEY must be an integer, cons, symbol, or string");
2076 return Qnil;
2077 }
2078
2079 char *
2080 push_text_char_description (c, p)
2081 register unsigned int c;
2082 register char *p;
2083 {
2084 if (c >= 0200)
2085 {
2086 *p++ = 'M';
2087 *p++ = '-';
2088 c -= 0200;
2089 }
2090 if (c < 040)
2091 {
2092 *p++ = '^';
2093 *p++ = c + 64; /* 'A' - 1 */
2094 }
2095 else if (c == 0177)
2096 {
2097 *p++ = '^';
2098 *p++ = '?';
2099 }
2100 else
2101 *p++ = c;
2102 return p;
2103 }
2104
2105 /* This function cannot GC. */
2106
2107 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2108 doc: /* Return a pretty description of file-character CHARACTER.
2109 Control characters turn into "^char", etc. */)
2110 (character)
2111 Lisp_Object character;
2112 {
2113 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2114 unsigned char str[6];
2115 int c;
2116
2117 CHECK_NUMBER (character);
2118
2119 c = XINT (character);
2120 if (!SINGLE_BYTE_CHAR_P (c))
2121 {
2122 int len = CHAR_STRING (c, str);
2123
2124 return make_multibyte_string (str, 1, len);
2125 }
2126
2127 *push_text_char_description (c & 0377, str) = 0;
2128
2129 return build_string (str);
2130 }
2131
2132 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2133 a meta bit. */
2134 static int
2135 ascii_sequence_p (seq)
2136 Lisp_Object seq;
2137 {
2138 int i;
2139 int len = XINT (Flength (seq));
2140
2141 for (i = 0; i < len; i++)
2142 {
2143 Lisp_Object ii, elt;
2144
2145 XSETFASTINT (ii, i);
2146 elt = Faref (seq, ii);
2147
2148 if (!INTEGERP (elt)
2149 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2150 return 0;
2151 }
2152
2153 return 1;
2154 }
2155
2156 \f
2157 /* where-is - finding a command in a set of keymaps. */
2158
2159 static Lisp_Object where_is_internal_1 ();
2160 static void where_is_internal_2 ();
2161
2162 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2163 Returns the first non-nil binding found in any of those maps. */
2164
2165 static Lisp_Object
2166 shadow_lookup (shadow, key, flag)
2167 Lisp_Object shadow, key, flag;
2168 {
2169 Lisp_Object tail, value;
2170
2171 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2172 {
2173 value = Flookup_key (XCAR (tail), key, flag);
2174 if (!NILP (value) && !NATNUMP (value))
2175 return value;
2176 }
2177 return Qnil;
2178 }
2179
2180 /* This function can GC if Flookup_key autoloads any keymaps. */
2181
2182 static Lisp_Object
2183 where_is_internal (definition, keymaps, firstonly, noindirect)
2184 Lisp_Object definition, keymaps;
2185 Lisp_Object firstonly, noindirect;
2186 {
2187 Lisp_Object maps = Qnil;
2188 Lisp_Object found, sequences;
2189 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2190 /* 1 means ignore all menu bindings entirely. */
2191 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2192
2193 found = keymaps;
2194 while (CONSP (found))
2195 {
2196 maps =
2197 nconc2 (maps,
2198 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2199 found = XCDR (found);
2200 }
2201
2202 GCPRO5 (definition, keymaps, maps, found, sequences);
2203 found = Qnil;
2204 sequences = Qnil;
2205
2206 for (; !NILP (maps); maps = Fcdr (maps))
2207 {
2208 /* Key sequence to reach map, and the map that it reaches */
2209 register Lisp_Object this, map;
2210
2211 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2212 [M-CHAR] sequences, check if last character of the sequence
2213 is the meta-prefix char. */
2214 Lisp_Object last;
2215 int last_is_meta;
2216
2217 this = Fcar (Fcar (maps));
2218 map = Fcdr (Fcar (maps));
2219 last = make_number (XINT (Flength (this)) - 1);
2220 last_is_meta = (XINT (last) >= 0
2221 && EQ (Faref (this, last), meta_prefix_char));
2222
2223 /* if (nomenus && !ascii_sequence_p (this)) */
2224 if (nomenus && XINT (last) >= 0
2225 && !INTEGERP (Faref (this, make_number (0))))
2226 /* If no menu entries should be returned, skip over the
2227 keymaps bound to `menu-bar' and `tool-bar' and other
2228 non-ascii prefixes like `C-down-mouse-2'. */
2229 continue;
2230
2231 QUIT;
2232
2233 while (CONSP (map))
2234 {
2235 /* Because the code we want to run on each binding is rather
2236 large, we don't want to have two separate loop bodies for
2237 sparse keymap bindings and tables; we want to iterate one
2238 loop body over both keymap and vector bindings.
2239
2240 For this reason, if Fcar (map) is a vector, we don't
2241 advance map to the next element until i indicates that we
2242 have finished off the vector. */
2243 Lisp_Object elt, key, binding;
2244 elt = XCAR (map);
2245 map = XCDR (map);
2246
2247 sequences = Qnil;
2248
2249 QUIT;
2250
2251 /* Set key and binding to the current key and binding, and
2252 advance map and i to the next binding. */
2253 if (VECTORP (elt))
2254 {
2255 Lisp_Object sequence;
2256 int i;
2257 /* In a vector, look at each element. */
2258 for (i = 0; i < XVECTOR (elt)->size; i++)
2259 {
2260 binding = AREF (elt, i);
2261 XSETFASTINT (key, i);
2262 sequence = where_is_internal_1 (binding, key, definition,
2263 noindirect, this,
2264 last, nomenus, last_is_meta);
2265 if (!NILP (sequence))
2266 sequences = Fcons (sequence, sequences);
2267 }
2268 }
2269 else if (CHAR_TABLE_P (elt))
2270 {
2271 Lisp_Object indices[3];
2272 Lisp_Object args;
2273
2274 args = Fcons (Fcons (Fcons (definition, noindirect),
2275 Qnil), /* Result accumulator. */
2276 Fcons (Fcons (this, last),
2277 Fcons (make_number (nomenus),
2278 make_number (last_is_meta))));
2279 map_char_table (where_is_internal_2, Qnil, elt, args,
2280 0, indices);
2281 sequences = XCDR (XCAR (args));
2282 }
2283 else if (CONSP (elt))
2284 {
2285 Lisp_Object sequence;
2286
2287 key = XCAR (elt);
2288 binding = XCDR (elt);
2289
2290 sequence = where_is_internal_1 (binding, key, definition,
2291 noindirect, this,
2292 last, nomenus, last_is_meta);
2293 if (!NILP (sequence))
2294 sequences = Fcons (sequence, sequences);
2295 }
2296
2297
2298 for (; !NILP (sequences); sequences = XCDR (sequences))
2299 {
2300 Lisp_Object sequence;
2301
2302 sequence = XCAR (sequences);
2303
2304 /* Verify that this key binding is not shadowed by another
2305 binding for the same key, before we say it exists.
2306
2307 Mechanism: look for local definition of this key and if
2308 it is defined and does not match what we found then
2309 ignore this key.
2310
2311 Either nil or number as value from Flookup_key
2312 means undefined. */
2313 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2314 continue;
2315
2316 /* It is a true unshadowed match. Record it, unless it's already
2317 been seen (as could happen when inheriting keymaps). */
2318 if (NILP (Fmember (sequence, found)))
2319 found = Fcons (sequence, found);
2320
2321 /* If firstonly is Qnon_ascii, then we can return the first
2322 binding we find. If firstonly is not Qnon_ascii but not
2323 nil, then we should return the first ascii-only binding
2324 we find. */
2325 if (EQ (firstonly, Qnon_ascii))
2326 RETURN_UNGCPRO (sequence);
2327 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2328 RETURN_UNGCPRO (sequence);
2329 }
2330 }
2331 }
2332
2333 UNGCPRO;
2334
2335 found = Fnreverse (found);
2336
2337 /* firstonly may have been t, but we may have gone all the way through
2338 the keymaps without finding an all-ASCII key sequence. So just
2339 return the best we could find. */
2340 if (!NILP (firstonly))
2341 return Fcar (found);
2342
2343 return found;
2344 }
2345
2346 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2347 doc: /* Return list of keys that invoke DEFINITION.
2348 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2349 If KEYMAP is nil, search all the currently active keymaps.
2350 If KEYMAP is a list of keymaps, search only those keymaps.
2351
2352 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2353 rather than a list of all possible key sequences.
2354 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2355 no matter what it is.
2356 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2357 and entirely reject menu bindings.
2358
2359 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2360 to other keymaps or slots. This makes it possible to search for an
2361 indirect definition itself. */)
2362 (definition, keymap, firstonly, noindirect)
2363 Lisp_Object definition, keymap;
2364 Lisp_Object firstonly, noindirect;
2365 {
2366 Lisp_Object sequences, keymaps;
2367 /* 1 means ignore all menu bindings entirely. */
2368 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2369 Lisp_Object result;
2370
2371 /* Find the relevant keymaps. */
2372 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2373 keymaps = keymap;
2374 else if (!NILP (keymap))
2375 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2376 else
2377 keymaps = Fcurrent_active_maps (Qnil);
2378
2379 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2380 We don't really need to check `keymap'. */
2381 if (nomenus && NILP (noindirect) && NILP (keymap))
2382 {
2383 Lisp_Object *defns;
2384 int i, j, n;
2385 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2386
2387 /* Check heuristic-consistency of the cache. */
2388 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2389 where_is_cache = Qnil;
2390
2391 if (NILP (where_is_cache))
2392 {
2393 /* We need to create the cache. */
2394 Lisp_Object args[2];
2395 where_is_cache = Fmake_hash_table (0, args);
2396 where_is_cache_keymaps = Qt;
2397
2398 /* Fill in the cache. */
2399 GCPRO4 (definition, keymaps, firstonly, noindirect);
2400 where_is_internal (definition, keymaps, firstonly, noindirect);
2401 UNGCPRO;
2402
2403 where_is_cache_keymaps = keymaps;
2404 }
2405
2406 /* We want to process definitions from the last to the first.
2407 Instead of consing, copy definitions to a vector and step
2408 over that vector. */
2409 sequences = Fgethash (definition, where_is_cache, Qnil);
2410 n = XINT (Flength (sequences));
2411 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2412 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2413 defns[i++] = XCAR (sequences);
2414
2415 /* Verify that the key bindings are not shadowed. Note that
2416 the following can GC. */
2417 GCPRO2 (definition, keymaps);
2418 result = Qnil;
2419 j = -1;
2420 for (i = n - 1; i >= 0; --i)
2421 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2422 {
2423 if (ascii_sequence_p (defns[i]))
2424 break;
2425 else if (j < 0)
2426 j = i;
2427 }
2428
2429 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2430 UNGCPRO;
2431 }
2432 else
2433 {
2434 /* Kill the cache so that where_is_internal_1 doesn't think
2435 we're filling it up. */
2436 where_is_cache = Qnil;
2437 result = where_is_internal (definition, keymaps, firstonly, noindirect);
2438 }
2439
2440 return result;
2441 }
2442
2443 /* This is the function that Fwhere_is_internal calls using map_char_table.
2444 ARGS has the form
2445 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2446 .
2447 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2448 Since map_char_table doesn't really use the return value from this function,
2449 we the result append to RESULT, the slot in ARGS.
2450
2451 This function can GC because it calls where_is_internal_1 which can
2452 GC. */
2453
2454 static void
2455 where_is_internal_2 (args, key, binding)
2456 Lisp_Object args, key, binding;
2457 {
2458 Lisp_Object definition, noindirect, this, last;
2459 Lisp_Object result, sequence;
2460 int nomenus, last_is_meta;
2461 struct gcpro gcpro1, gcpro2, gcpro3;
2462
2463 GCPRO3 (args, key, binding);
2464 result = XCDR (XCAR (args));
2465 definition = XCAR (XCAR (XCAR (args)));
2466 noindirect = XCDR (XCAR (XCAR (args)));
2467 this = XCAR (XCAR (XCDR (args)));
2468 last = XCDR (XCAR (XCDR (args)));
2469 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2470 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2471
2472 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2473 this, last, nomenus, last_is_meta);
2474
2475 if (!NILP (sequence))
2476 XSETCDR (XCAR (args), Fcons (sequence, result));
2477
2478 UNGCPRO;
2479 }
2480
2481
2482 /* This function cannot GC. */
2483
2484 static Lisp_Object
2485 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2486 nomenus, last_is_meta)
2487 Lisp_Object binding, key, definition, noindirect, this, last;
2488 int nomenus, last_is_meta;
2489 {
2490 Lisp_Object sequence;
2491
2492 /* Search through indirections unless that's not wanted. */
2493 if (NILP (noindirect))
2494 binding = get_keyelt (binding, 0);
2495
2496 /* End this iteration if this element does not match
2497 the target. */
2498
2499 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2500 || EQ (binding, definition)
2501 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2502 /* Doesn't match. */
2503 return Qnil;
2504
2505 /* We have found a match. Construct the key sequence where we found it. */
2506 if (INTEGERP (key) && last_is_meta)
2507 {
2508 sequence = Fcopy_sequence (this);
2509 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2510 }
2511 else
2512 sequence = append_key (this, key);
2513
2514 if (!NILP (where_is_cache))
2515 {
2516 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2517 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2518 return Qnil;
2519 }
2520 else
2521 return sequence;
2522 }
2523 \f
2524 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2525
2526 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2527 doc: /* Insert the list of all defined keys and their definitions.
2528 The list is inserted in the current buffer, while the bindings are
2529 looked up in BUFFER.
2530 The optional argument PREFIX, if non-nil, should be a key sequence;
2531 then we display only bindings that start with that prefix.
2532 The optional argument MENUS, if non-nil, says to mention menu bindings.
2533 \(Ordinarily these are omitted from the output.) */)
2534 (buffer, prefix, menus)
2535 Lisp_Object buffer, prefix, menus;
2536 {
2537 Lisp_Object outbuf, shadow;
2538 int nomenu = NILP (menus);
2539 register Lisp_Object start1;
2540 struct gcpro gcpro1;
2541
2542 char *alternate_heading
2543 = "\
2544 Keyboard translations:\n\n\
2545 You type Translation\n\
2546 -------- -----------\n";
2547
2548 shadow = Qnil;
2549 GCPRO1 (shadow);
2550
2551 outbuf = Fcurrent_buffer ();
2552
2553 /* Report on alternates for keys. */
2554 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2555 {
2556 int c;
2557 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2558 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2559
2560 for (c = 0; c < translate_len; c++)
2561 if (translate[c] != c)
2562 {
2563 char buf[KEY_DESCRIPTION_SIZE];
2564 char *bufend;
2565
2566 if (alternate_heading)
2567 {
2568 insert_string (alternate_heading);
2569 alternate_heading = 0;
2570 }
2571
2572 bufend = push_key_description (translate[c], buf, 1);
2573 insert (buf, bufend - buf);
2574 Findent_to (make_number (16), make_number (1));
2575 bufend = push_key_description (c, buf, 1);
2576 insert (buf, bufend - buf);
2577
2578 insert ("\n", 1);
2579 }
2580
2581 insert ("\n", 1);
2582 }
2583
2584 if (!NILP (Vkey_translation_map))
2585 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2586 "Key translations", nomenu, 1, 0);
2587
2588
2589 /* Print the (major mode) local map. */
2590 start1 = Qnil;
2591 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2592 start1 = current_kboard->Voverriding_terminal_local_map;
2593 else if (!NILP (Voverriding_local_map))
2594 start1 = Voverriding_local_map;
2595
2596 if (!NILP (start1))
2597 {
2598 describe_map_tree (start1, 1, shadow, prefix,
2599 "\f\nOverriding Bindings", nomenu, 0, 0);
2600 shadow = Fcons (start1, shadow);
2601 }
2602 else
2603 {
2604 /* Print the minor mode and major mode keymaps. */
2605 int i, nmaps;
2606 Lisp_Object *modes, *maps;
2607
2608 /* Temporarily switch to `buffer', so that we can get that buffer's
2609 minor modes correctly. */
2610 Fset_buffer (buffer);
2611
2612 nmaps = current_minor_maps (&modes, &maps);
2613 Fset_buffer (outbuf);
2614
2615 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2616 XBUFFER (buffer), Qkeymap);
2617 if (!NILP (start1))
2618 {
2619 describe_map_tree (start1, 1, shadow, prefix,
2620 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2621 shadow = Fcons (start1, shadow);
2622 }
2623
2624 /* Print the minor mode maps. */
2625 for (i = 0; i < nmaps; i++)
2626 {
2627 /* The title for a minor mode keymap
2628 is constructed at run time.
2629 We let describe_map_tree do the actual insertion
2630 because it takes care of other features when doing so. */
2631 char *title, *p;
2632
2633 if (!SYMBOLP (modes[i]))
2634 abort();
2635
2636 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2637 *p++ = '\f';
2638 *p++ = '\n';
2639 *p++ = '`';
2640 bcopy (XSYMBOL (modes[i])->name->data, p,
2641 XSYMBOL (modes[i])->name->size);
2642 p += XSYMBOL (modes[i])->name->size;
2643 *p++ = '\'';
2644 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2645 p += sizeof (" Minor Mode Bindings") - 1;
2646 *p = 0;
2647
2648 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2649 shadow = Fcons (maps[i], shadow);
2650 }
2651
2652 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2653 XBUFFER (buffer), Qlocal_map);
2654 if (!NILP (start1))
2655 {
2656 if (EQ (start1, XBUFFER (buffer)->keymap))
2657 describe_map_tree (start1, 1, shadow, prefix,
2658 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2659 else
2660 describe_map_tree (start1, 1, shadow, prefix,
2661 "\f\n`local-map' Property Bindings",
2662 nomenu, 0, 0);
2663
2664 shadow = Fcons (start1, shadow);
2665 }
2666 }
2667
2668 describe_map_tree (current_global_map, 1, shadow, prefix,
2669 "\f\nGlobal Bindings", nomenu, 0, 1);
2670
2671 /* Print the function-key-map translations under this prefix. */
2672 if (!NILP (Vfunction_key_map))
2673 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2674 "\f\nFunction key map translations", nomenu, 1, 0);
2675
2676 UNGCPRO;
2677 return Qnil;
2678 }
2679
2680 /* Insert a description of the key bindings in STARTMAP,
2681 followed by those of all maps reachable through STARTMAP.
2682 If PARTIAL is nonzero, omit certain "uninteresting" commands
2683 (such as `undefined').
2684 If SHADOW is non-nil, it is a list of maps;
2685 don't mention keys which would be shadowed by any of them.
2686 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2687 TITLE, if not 0, is a string to insert at the beginning.
2688 TITLE should not end with a colon or a newline; we supply that.
2689 If NOMENU is not 0, then omit menu-bar commands.
2690
2691 If TRANSL is nonzero, the definitions are actually key translations
2692 so print strings and vectors differently.
2693
2694 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2695 to look through. */
2696
2697 void
2698 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2699 always_title)
2700 Lisp_Object startmap, shadow, prefix;
2701 int partial;
2702 char *title;
2703 int nomenu;
2704 int transl;
2705 int always_title;
2706 {
2707 Lisp_Object maps, orig_maps, seen, sub_shadows;
2708 struct gcpro gcpro1, gcpro2, gcpro3;
2709 int something = 0;
2710 char *key_heading
2711 = "\
2712 key binding\n\
2713 --- -------\n";
2714
2715 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2716 seen = Qnil;
2717 sub_shadows = Qnil;
2718 GCPRO3 (maps, seen, sub_shadows);
2719
2720 if (nomenu)
2721 {
2722 Lisp_Object list;
2723
2724 /* Delete from MAPS each element that is for the menu bar. */
2725 for (list = maps; !NILP (list); list = XCDR (list))
2726 {
2727 Lisp_Object elt, prefix, tem;
2728
2729 elt = Fcar (list);
2730 prefix = Fcar (elt);
2731 if (XVECTOR (prefix)->size >= 1)
2732 {
2733 tem = Faref (prefix, make_number (0));
2734 if (EQ (tem, Qmenu_bar))
2735 maps = Fdelq (elt, maps);
2736 }
2737 }
2738 }
2739
2740 if (!NILP (maps) || always_title)
2741 {
2742 if (title)
2743 {
2744 insert_string (title);
2745 if (!NILP (prefix))
2746 {
2747 insert_string (" Starting With ");
2748 insert1 (Fkey_description (prefix));
2749 }
2750 insert_string (":\n");
2751 }
2752 insert_string (key_heading);
2753 something = 1;
2754 }
2755
2756 for (; !NILP (maps); maps = Fcdr (maps))
2757 {
2758 register Lisp_Object elt, prefix, tail;
2759
2760 elt = Fcar (maps);
2761 prefix = Fcar (elt);
2762
2763 sub_shadows = Qnil;
2764
2765 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2766 {
2767 Lisp_Object shmap;
2768
2769 shmap = XCAR (tail);
2770
2771 /* If the sequence by which we reach this keymap is zero-length,
2772 then the shadow map for this keymap is just SHADOW. */
2773 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2774 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2775 ;
2776 /* If the sequence by which we reach this keymap actually has
2777 some elements, then the sequence's definition in SHADOW is
2778 what we should use. */
2779 else
2780 {
2781 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2782 if (INTEGERP (shmap))
2783 shmap = Qnil;
2784 }
2785
2786 /* If shmap is not nil and not a keymap,
2787 it completely shadows this map, so don't
2788 describe this map at all. */
2789 if (!NILP (shmap) && !KEYMAPP (shmap))
2790 goto skip;
2791
2792 if (!NILP (shmap))
2793 sub_shadows = Fcons (shmap, sub_shadows);
2794 }
2795
2796 /* Maps we have already listed in this loop shadow this map. */
2797 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2798 {
2799 Lisp_Object tem;
2800 tem = Fequal (Fcar (XCAR (tail)), prefix);
2801 if (!NILP (tem))
2802 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2803 }
2804
2805 describe_map (Fcdr (elt), prefix,
2806 transl ? describe_translation : describe_command,
2807 partial, sub_shadows, &seen, nomenu);
2808
2809 skip: ;
2810 }
2811
2812 if (something)
2813 insert_string ("\n");
2814
2815 UNGCPRO;
2816 }
2817
2818 static int previous_description_column;
2819
2820 static void
2821 describe_command (definition, args)
2822 Lisp_Object definition, args;
2823 {
2824 register Lisp_Object tem1;
2825 int column = current_column ();
2826 int description_column;
2827
2828 /* If column 16 is no good, go to col 32;
2829 but don't push beyond that--go to next line instead. */
2830 if (column > 30)
2831 {
2832 insert_char ('\n');
2833 description_column = 32;
2834 }
2835 else if (column > 14 || (column > 10 && previous_description_column == 32))
2836 description_column = 32;
2837 else
2838 description_column = 16;
2839
2840 Findent_to (make_number (description_column), make_number (1));
2841 previous_description_column = description_column;
2842
2843 if (SYMBOLP (definition))
2844 {
2845 XSETSTRING (tem1, XSYMBOL (definition)->name);
2846 insert1 (tem1);
2847 insert_string ("\n");
2848 }
2849 else if (STRINGP (definition) || VECTORP (definition))
2850 insert_string ("Keyboard Macro\n");
2851 else if (KEYMAPP (definition))
2852 insert_string ("Prefix Command\n");
2853 else
2854 insert_string ("??\n");
2855 }
2856
2857 static void
2858 describe_translation (definition, args)
2859 Lisp_Object definition, args;
2860 {
2861 register Lisp_Object tem1;
2862
2863 Findent_to (make_number (16), make_number (1));
2864
2865 if (SYMBOLP (definition))
2866 {
2867 XSETSTRING (tem1, XSYMBOL (definition)->name);
2868 insert1 (tem1);
2869 insert_string ("\n");
2870 }
2871 else if (STRINGP (definition) || VECTORP (definition))
2872 {
2873 insert1 (Fkey_description (definition));
2874 insert_string ("\n");
2875 }
2876 else if (KEYMAPP (definition))
2877 insert_string ("Prefix Command\n");
2878 else
2879 insert_string ("??\n");
2880 }
2881
2882 /* Describe the contents of map MAP, assuming that this map itself is
2883 reached by the sequence of prefix keys KEYS (a string or vector).
2884 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2885
2886 static void
2887 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2888 register Lisp_Object map;
2889 Lisp_Object keys;
2890 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
2891 int partial;
2892 Lisp_Object shadow;
2893 Lisp_Object *seen;
2894 int nomenu;
2895 {
2896 Lisp_Object elt_prefix;
2897 Lisp_Object tail, definition, event;
2898 Lisp_Object tem;
2899 Lisp_Object suppress;
2900 Lisp_Object kludge;
2901 int first = 1;
2902 struct gcpro gcpro1, gcpro2, gcpro3;
2903
2904 suppress = Qnil;
2905
2906 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2907 {
2908 /* Call Fkey_description first, to avoid GC bug for the other string. */
2909 tem = Fkey_description (keys);
2910 elt_prefix = concat2 (tem, build_string (" "));
2911 }
2912 else
2913 elt_prefix = Qnil;
2914
2915 if (partial)
2916 suppress = intern ("suppress-keymap");
2917
2918 /* This vector gets used to present single keys to Flookup_key. Since
2919 that is done once per keymap element, we don't want to cons up a
2920 fresh vector every time. */
2921 kludge = Fmake_vector (make_number (1), Qnil);
2922 definition = Qnil;
2923
2924 GCPRO3 (elt_prefix, definition, kludge);
2925
2926 for (tail = map; CONSP (tail); tail = XCDR (tail))
2927 {
2928 QUIT;
2929
2930 if (VECTORP (XCAR (tail))
2931 || CHAR_TABLE_P (XCAR (tail)))
2932 describe_vector (XCAR (tail),
2933 elt_prefix, Qnil, elt_describer, partial, shadow, map,
2934 (int *)0, 0);
2935 else if (CONSP (XCAR (tail)))
2936 {
2937 event = XCAR (XCAR (tail));
2938
2939 /* Ignore bindings whose "keys" are not really valid events.
2940 (We get these in the frames and buffers menu.) */
2941 if (!(SYMBOLP (event) || INTEGERP (event)))
2942 continue;
2943
2944 if (nomenu && EQ (event, Qmenu_bar))
2945 continue;
2946
2947 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2948
2949 /* Don't show undefined commands or suppressed commands. */
2950 if (NILP (definition)) continue;
2951 if (SYMBOLP (definition) && partial)
2952 {
2953 tem = Fget (definition, suppress);
2954 if (!NILP (tem))
2955 continue;
2956 }
2957
2958 /* Don't show a command that isn't really visible
2959 because a local definition of the same key shadows it. */
2960
2961 ASET (kludge, 0, event);
2962 if (!NILP (shadow))
2963 {
2964 tem = shadow_lookup (shadow, kludge, Qt);
2965 if (!NILP (tem)) continue;
2966 }
2967
2968 tem = Flookup_key (map, kludge, Qt);
2969 if (!EQ (tem, definition)) continue;
2970
2971 if (first)
2972 {
2973 previous_description_column = 0;
2974 insert ("\n", 1);
2975 first = 0;
2976 }
2977
2978 if (!NILP (elt_prefix))
2979 insert1 (elt_prefix);
2980
2981 /* THIS gets the string to describe the character EVENT. */
2982 insert1 (Fsingle_key_description (event, Qnil));
2983
2984 /* Print a description of the definition of this character.
2985 elt_describer will take care of spacing out far enough
2986 for alignment purposes. */
2987 (*elt_describer) (definition, Qnil);
2988 }
2989 else if (EQ (XCAR (tail), Qkeymap))
2990 {
2991 /* The same keymap might be in the structure twice, if we're
2992 using an inherited keymap. So skip anything we've already
2993 encountered. */
2994 tem = Fassq (tail, *seen);
2995 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2996 break;
2997 *seen = Fcons (Fcons (tail, keys), *seen);
2998 }
2999 }
3000
3001 UNGCPRO;
3002 }
3003
3004 static void
3005 describe_vector_princ (elt, fun)
3006 Lisp_Object elt, fun;
3007 {
3008 Findent_to (make_number (16), make_number (1));
3009 call1 (fun, elt);
3010 Fterpri (Qnil);
3011 }
3012
3013 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3014 doc: /* Insert a description of contents of VECTOR.
3015 This is text showing the elements of vector matched against indices. */)
3016 (vector, describer)
3017 Lisp_Object vector, describer;
3018 {
3019 int count = specpdl_ptr - specpdl;
3020 if (NILP (describer))
3021 describer = intern ("princ");
3022 specbind (Qstandard_output, Fcurrent_buffer ());
3023 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3024 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3025 Qnil, Qnil, (int *)0, 0);
3026
3027 return unbind_to (count, Qnil);
3028 }
3029
3030 /* Insert in the current buffer a description of the contents of VECTOR.
3031 We call ELT_DESCRIBER to insert the description of one value found
3032 in VECTOR.
3033
3034 ELT_PREFIX describes what "comes before" the keys or indices defined
3035 by this vector. This is a human-readable string whose size
3036 is not necessarily related to the situation.
3037
3038 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3039 leads to this keymap.
3040
3041 If the vector is a chartable, ELT_PREFIX is the vector
3042 of bytes that lead to the character set or portion of a character
3043 set described by this chartable.
3044
3045 If PARTIAL is nonzero, it means do not mention suppressed commands
3046 (that assumes the vector is in a keymap).
3047
3048 SHADOW is a list of keymaps that shadow this map.
3049 If it is non-nil, then we look up the key in those maps
3050 and we don't mention it now if it is defined by any of them.
3051
3052 ENTIRE_MAP is the keymap in which this vector appears.
3053 If the definition in effect in the whole map does not match
3054 the one in this vector, we ignore this one.
3055
3056 When describing a sub-char-table, INDICES is a list of
3057 indices at higher levels in this char-table,
3058 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3059
3060 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3061
3062 void
3063 describe_vector (vector, elt_prefix, args, elt_describer,
3064 partial, shadow, entire_map,
3065 indices, char_table_depth)
3066 register Lisp_Object vector;
3067 Lisp_Object elt_prefix, args;
3068 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3069 int partial;
3070 Lisp_Object shadow;
3071 Lisp_Object entire_map;
3072 int *indices;
3073 int char_table_depth;
3074 {
3075 Lisp_Object definition;
3076 Lisp_Object tem2;
3077 register int i;
3078 Lisp_Object suppress;
3079 Lisp_Object kludge;
3080 int first = 1;
3081 struct gcpro gcpro1, gcpro2, gcpro3;
3082 /* Range of elements to be handled. */
3083 int from, to;
3084 /* A flag to tell if a leaf in this level of char-table is not a
3085 generic character (i.e. a complete multibyte character). */
3086 int complete_char;
3087 int character;
3088 int starting_i;
3089
3090 suppress = Qnil;
3091
3092 if (indices == 0)
3093 indices = (int *) alloca (3 * sizeof (int));
3094
3095 definition = Qnil;
3096
3097 /* This vector gets used to present single keys to Flookup_key. Since
3098 that is done once per vector element, we don't want to cons up a
3099 fresh vector every time. */
3100 kludge = Fmake_vector (make_number (1), Qnil);
3101 GCPRO3 (elt_prefix, definition, kludge);
3102
3103 if (partial)
3104 suppress = intern ("suppress-keymap");
3105
3106 if (CHAR_TABLE_P (vector))
3107 {
3108 if (char_table_depth == 0)
3109 {
3110 /* VECTOR is a top level char-table. */
3111 complete_char = 1;
3112 from = 0;
3113 to = CHAR_TABLE_ORDINARY_SLOTS;
3114 }
3115 else
3116 {
3117 /* VECTOR is a sub char-table. */
3118 if (char_table_depth >= 3)
3119 /* A char-table is never that deep. */
3120 error ("Too deep char table");
3121
3122 complete_char
3123 = (CHARSET_VALID_P (indices[0])
3124 && ((CHARSET_DIMENSION (indices[0]) == 1
3125 && char_table_depth == 1)
3126 || char_table_depth == 2));
3127
3128 /* Meaningful elements are from 32th to 127th. */
3129 from = 32;
3130 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3131 }
3132 }
3133 else
3134 {
3135 /* This does the right thing for ordinary vectors. */
3136
3137 complete_char = 1;
3138 from = 0;
3139 to = XVECTOR (vector)->size;
3140 }
3141
3142 for (i = from; i < to; i++)
3143 {
3144 QUIT;
3145
3146 if (CHAR_TABLE_P (vector))
3147 {
3148 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3149 complete_char = 0;
3150
3151 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3152 && !CHARSET_DEFINED_P (i - 128))
3153 continue;
3154
3155 definition
3156 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3157 }
3158 else
3159 definition = get_keyelt (AREF (vector, i), 0);
3160
3161 if (NILP (definition)) continue;
3162
3163 /* Don't mention suppressed commands. */
3164 if (SYMBOLP (definition) && partial)
3165 {
3166 Lisp_Object tem;
3167
3168 tem = Fget (definition, suppress);
3169
3170 if (!NILP (tem)) continue;
3171 }
3172
3173 /* Set CHARACTER to the character this entry describes, if any.
3174 Also update *INDICES. */
3175 if (CHAR_TABLE_P (vector))
3176 {
3177 indices[char_table_depth] = i;
3178
3179 if (char_table_depth == 0)
3180 {
3181 character = i;
3182 indices[0] = i - 128;
3183 }
3184 else if (complete_char)
3185 {
3186 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3187 }
3188 else
3189 character = 0;
3190 }
3191 else
3192 character = i;
3193
3194 /* If this binding is shadowed by some other map, ignore it. */
3195 if (!NILP (shadow) && complete_char)
3196 {
3197 Lisp_Object tem;
3198
3199 ASET (kludge, 0, make_number (character));
3200 tem = shadow_lookup (shadow, kludge, Qt);
3201
3202 if (!NILP (tem)) continue;
3203 }
3204
3205 /* Ignore this definition if it is shadowed by an earlier
3206 one in the same keymap. */
3207 if (!NILP (entire_map) && complete_char)
3208 {
3209 Lisp_Object tem;
3210
3211 ASET (kludge, 0, make_number (character));
3212 tem = Flookup_key (entire_map, kludge, Qt);
3213
3214 if (!EQ (tem, definition))
3215 continue;
3216 }
3217
3218 if (first)
3219 {
3220 if (char_table_depth == 0)
3221 insert ("\n", 1);
3222 first = 0;
3223 }
3224
3225 /* For a sub char-table, show the depth by indentation.
3226 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3227 if (char_table_depth > 0)
3228 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3229
3230 /* Output the prefix that applies to every entry in this map. */
3231 if (!NILP (elt_prefix))
3232 insert1 (elt_prefix);
3233
3234 /* Insert or describe the character this slot is for,
3235 or a description of what it is for. */
3236 if (SUB_CHAR_TABLE_P (vector))
3237 {
3238 if (complete_char)
3239 insert_char (character);
3240 else
3241 {
3242 /* We need an octal representation for this block of
3243 characters. */
3244 char work[16];
3245 sprintf (work, "(row %d)", i);
3246 insert (work, strlen (work));
3247 }
3248 }
3249 else if (CHAR_TABLE_P (vector))
3250 {
3251 if (complete_char)
3252 insert1 (Fsingle_key_description (make_number (character), Qnil));
3253 else
3254 {
3255 /* Print the information for this character set. */
3256 insert_string ("<");
3257 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3258 if (STRINGP (tem2))
3259 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3260 STRING_BYTES (XSTRING (tem2)), 0);
3261 else
3262 insert ("?", 1);
3263 insert (">", 1);
3264 }
3265 }
3266 else
3267 {
3268 insert1 (Fsingle_key_description (make_number (character), Qnil));
3269 }
3270
3271 /* If we find a sub char-table within a char-table,
3272 scan it recursively; it defines the details for
3273 a character set or a portion of a character set. */
3274 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3275 {
3276 insert ("\n", 1);
3277 describe_vector (definition, elt_prefix, args, elt_describer,
3278 partial, shadow, entire_map,
3279 indices, char_table_depth + 1);
3280 continue;
3281 }
3282
3283 starting_i = i;
3284
3285 /* Find all consecutive characters or rows that have the same
3286 definition. But, for elements of a top level char table, if
3287 they are for charsets, we had better describe one by one even
3288 if they have the same definition. */
3289 if (CHAR_TABLE_P (vector))
3290 {
3291 int limit = to;
3292
3293 if (char_table_depth == 0)
3294 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3295
3296 while (i + 1 < limit
3297 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3298 !NILP (tem2))
3299 && !NILP (Fequal (tem2, definition)))
3300 i++;
3301 }
3302 else
3303 while (i + 1 < to
3304 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3305 !NILP (tem2))
3306 && !NILP (Fequal (tem2, definition)))
3307 i++;
3308
3309
3310 /* If we have a range of more than one character,
3311 print where the range reaches to. */
3312
3313 if (i != starting_i)
3314 {
3315 insert (" .. ", 4);
3316
3317 if (!NILP (elt_prefix))
3318 insert1 (elt_prefix);
3319
3320 if (CHAR_TABLE_P (vector))
3321 {
3322 if (char_table_depth == 0)
3323 {
3324 insert1 (Fsingle_key_description (make_number (i), Qnil));
3325 }
3326 else if (complete_char)
3327 {
3328 indices[char_table_depth] = i;
3329 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3330 insert_char (character);
3331 }
3332 else
3333 {
3334 /* We need an octal representation for this block of
3335 characters. */
3336 char work[16];
3337 sprintf (work, "(row %d)", i);
3338 insert (work, strlen (work));
3339 }
3340 }
3341 else
3342 {
3343 insert1 (Fsingle_key_description (make_number (i), Qnil));
3344 }
3345 }
3346
3347 /* Print a description of the definition of this character.
3348 elt_describer will take care of spacing out far enough
3349 for alignment purposes. */
3350 (*elt_describer) (definition, args);
3351 }
3352
3353 /* For (sub) char-table, print `defalt' slot at last. */
3354 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3355 {
3356 insert (" ", char_table_depth * 2);
3357 insert_string ("<<default>>");
3358 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3359 }
3360
3361 UNGCPRO;
3362 }
3363 \f
3364 /* Apropos - finding all symbols whose names match a regexp. */
3365 Lisp_Object apropos_predicate;
3366 Lisp_Object apropos_accumulate;
3367
3368 static void
3369 apropos_accum (symbol, string)
3370 Lisp_Object symbol, string;
3371 {
3372 register Lisp_Object tem;
3373
3374 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3375 if (!NILP (tem) && !NILP (apropos_predicate))
3376 tem = call1 (apropos_predicate, symbol);
3377 if (!NILP (tem))
3378 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3379 }
3380
3381 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3382 doc: /* Show all symbols whose names contain match for REGEXP.
3383 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3384 for each symbol and a symbol is mentioned only if that returns non-nil.
3385 Return list of symbols found. */)
3386 (regexp, predicate)
3387 Lisp_Object regexp, predicate;
3388 {
3389 struct gcpro gcpro1, gcpro2;
3390 CHECK_STRING (regexp);
3391 apropos_predicate = predicate;
3392 GCPRO2 (apropos_predicate, apropos_accumulate);
3393 apropos_accumulate = Qnil;
3394 map_obarray (Vobarray, apropos_accum, regexp);
3395 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3396 UNGCPRO;
3397 return apropos_accumulate;
3398 }
3399 \f
3400 void
3401 syms_of_keymap ()
3402 {
3403 Qkeymap = intern ("keymap");
3404 staticpro (&Qkeymap);
3405
3406 /* Now we are ready to set up this property, so we can
3407 create char tables. */
3408 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3409
3410 /* Initialize the keymaps standardly used.
3411 Each one is the value of a Lisp variable, and is also
3412 pointed to by a C variable */
3413
3414 global_map = Fmake_keymap (Qnil);
3415 Fset (intern ("global-map"), global_map);
3416
3417 current_global_map = global_map;
3418 staticpro (&global_map);
3419 staticpro (&current_global_map);
3420
3421 meta_map = Fmake_keymap (Qnil);
3422 Fset (intern ("esc-map"), meta_map);
3423 Ffset (intern ("ESC-prefix"), meta_map);
3424
3425 control_x_map = Fmake_keymap (Qnil);
3426 Fset (intern ("ctl-x-map"), control_x_map);
3427 Ffset (intern ("Control-X-prefix"), control_x_map);
3428
3429 exclude_keys
3430 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3431 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3432 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3433 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3434 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3435 Qnil)))));
3436 staticpro (&exclude_keys);
3437
3438 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3439 doc: /* List of commands given new key bindings recently.
3440 This is used for internal purposes during Emacs startup;
3441 don't alter it yourself. */);
3442 Vdefine_key_rebound_commands = Qt;
3443
3444 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3445 doc: /* Default keymap to use when reading from the minibuffer. */);
3446 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3447
3448 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3449 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3450 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3451 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3452
3453 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3454 doc: /* Local keymap for minibuffer input with completion. */);
3455 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3456 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3457
3458 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3459 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3460 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3461 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3462 Vminibuffer_local_completion_map);
3463
3464 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3465 doc: /* Alist of keymaps to use for minor modes.
3466 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3467 key sequences and look up bindings iff VARIABLE's value is non-nil.
3468 If two active keymaps bind the same key, the keymap appearing earlier
3469 in the list takes precedence. */);
3470 Vminor_mode_map_alist = Qnil;
3471
3472 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3473 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3474 This variable is a alist just like `minor-mode-map-alist', and it is
3475 used the same way (and before `minor-mode-map-alist'); however,
3476 it is provided for major modes to bind locally. */);
3477 Vminor_mode_overriding_map_alist = Qnil;
3478
3479 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3480 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3481 This allows Emacs to recognize function keys sent from ASCII
3482 terminals at any point in a key sequence.
3483
3484 The `read-key-sequence' function replaces any subsequence bound by
3485 `function-key-map' with its binding. More precisely, when the active
3486 keymaps have no binding for the current key sequence but
3487 `function-key-map' binds a suffix of the sequence to a vector or string,
3488 `read-key-sequence' replaces the matching suffix with its binding, and
3489 continues with the new sequence.
3490
3491 The events that come from bindings in `function-key-map' are not
3492 themselves looked up in `function-key-map'.
3493
3494 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3495 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3496 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3497 key, typing `ESC O P x' would return [f1 x]. */);
3498 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3499
3500 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3501 doc: /* Keymap of key translations that can override keymaps.
3502 This keymap works like `function-key-map', but comes after that,
3503 and applies even for keys that have ordinary bindings. */);
3504 Vkey_translation_map = Qnil;
3505
3506 Qsingle_key_description = intern ("single-key-description");
3507 staticpro (&Qsingle_key_description);
3508
3509 Qkey_description = intern ("key-description");
3510 staticpro (&Qkey_description);
3511
3512 Qkeymapp = intern ("keymapp");
3513 staticpro (&Qkeymapp);
3514
3515 Qnon_ascii = intern ("non-ascii");
3516 staticpro (&Qnon_ascii);
3517
3518 Qmenu_item = intern ("menu-item");
3519 staticpro (&Qmenu_item);
3520
3521 where_is_cache_keymaps = Qt;
3522 where_is_cache = Qnil;
3523 staticpro (&where_is_cache);
3524 staticpro (&where_is_cache_keymaps);
3525
3526 defsubr (&Skeymapp);
3527 defsubr (&Skeymap_parent);
3528 defsubr (&Skeymap_prompt);
3529 defsubr (&Sset_keymap_parent);
3530 defsubr (&Smake_keymap);
3531 defsubr (&Smake_sparse_keymap);
3532 defsubr (&Scopy_keymap);
3533 defsubr (&Skey_binding);
3534 defsubr (&Slocal_key_binding);
3535 defsubr (&Sglobal_key_binding);
3536 defsubr (&Sminor_mode_key_binding);
3537 defsubr (&Sdefine_key);
3538 defsubr (&Slookup_key);
3539 defsubr (&Sdefine_prefix_command);
3540 defsubr (&Suse_global_map);
3541 defsubr (&Suse_local_map);
3542 defsubr (&Scurrent_local_map);
3543 defsubr (&Scurrent_global_map);
3544 defsubr (&Scurrent_minor_mode_maps);
3545 defsubr (&Scurrent_active_maps);
3546 defsubr (&Saccessible_keymaps);
3547 defsubr (&Skey_description);
3548 defsubr (&Sdescribe_vector);
3549 defsubr (&Ssingle_key_description);
3550 defsubr (&Stext_char_description);
3551 defsubr (&Swhere_is_internal);
3552 defsubr (&Sdescribe_buffer_bindings);
3553 defsubr (&Sapropos_internal);
3554 }
3555
3556 void
3557 keys_of_keymap ()
3558 {
3559 initial_define_key (global_map, 033, "ESC-prefix");
3560 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3561 }