Cleanup xmalloc.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
292
293 enum mem_type
294 {
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
306 MEM_TYPE_VECTORLIKE,
307 /* Special type to denote vector blocks. */
308 MEM_TYPE_VECTOR_BLOCK
309 };
310
311 static void *lisp_malloc (size_t, enum mem_type);
312
313
314 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
315
316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317 #include <stdio.h> /* For fprintf. */
318 #endif
319
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329
330 #endif /* GC_MALLOC_CHECK */
331
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356 struct mem_node
357 {
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
370
371 /* Memory type. */
372 enum mem_type type;
373 };
374
375 /* Base address of stack. Set in main. */
376
377 Lisp_Object *stack_base;
378
379 /* Root of the tree describing allocated Lisp memory. */
380
381 static struct mem_node *mem_root;
382
383 /* Lowest and highest known address in the heap. */
384
385 static void *min_heap_address, *max_heap_address;
386
387 /* Sentinel node of the tree. */
388
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
391
392 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
393 static void lisp_free (void *);
394 static void mark_stack (void);
395 static int live_vector_p (struct mem_node *, void *);
396 static int live_buffer_p (struct mem_node *, void *);
397 static int live_string_p (struct mem_node *, void *);
398 static int live_cons_p (struct mem_node *, void *);
399 static int live_symbol_p (struct mem_node *, void *);
400 static int live_float_p (struct mem_node *, void *);
401 static int live_misc_p (struct mem_node *, void *);
402 static void mark_maybe_object (Lisp_Object);
403 static void mark_memory (void *, void *);
404 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 #endif
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static inline struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 #ifndef DEADP
423 # define DEADP(x) 0
424 #endif
425
426 /* Recording what needs to be marked for gc. */
427
428 struct gcpro *gcprolist;
429
430 /* Addresses of staticpro'd variables. Initialize it to a nonzero
431 value; otherwise some compilers put it into BSS. */
432
433 #define NSTATICS 0x650
434 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
435
436 /* Index of next unused slot in staticvec. */
437
438 static int staticidx = 0;
439
440 static void *pure_alloc (size_t, int);
441
442
443 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
444 ALIGNMENT must be a power of 2. */
445
446 #define ALIGN(ptr, ALIGNMENT) \
447 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
448 & ~ ((ALIGNMENT) - 1)))
449
450
451 \f
452 /************************************************************************
453 Malloc
454 ************************************************************************/
455
456 /* Function malloc calls this if it finds we are near exhausting storage. */
457
458 void
459 malloc_warning (const char *str)
460 {
461 pending_malloc_warning = str;
462 }
463
464
465 /* Display an already-pending malloc warning. */
466
467 void
468 display_malloc_warning (void)
469 {
470 call3 (intern ("display-warning"),
471 intern ("alloc"),
472 build_string (pending_malloc_warning),
473 intern ("emergency"));
474 pending_malloc_warning = 0;
475 }
476 \f
477 /* Called if we can't allocate relocatable space for a buffer. */
478
479 void
480 buffer_memory_full (ptrdiff_t nbytes)
481 {
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
488
489 #ifndef REL_ALLOC
490 memory_full (nbytes);
491 #endif
492
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
495 xsignal (Qnil, Vmemory_signal_data);
496 }
497
498 /* A common multiple of the positive integers A and B. Ideally this
499 would be the least common multiple, but there's no way to do that
500 as a constant expression in C, so do the best that we can easily do. */
501 #define COMMON_MULTIPLE(a, b) \
502 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
503
504 #ifndef XMALLOC_OVERRUN_CHECK
505 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
506 #else
507
508 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
509 around each block.
510
511 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
512 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
513 block size in little-endian order. The trailer consists of
514 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
515
516 The header is used to detect whether this block has been allocated
517 through these functions, as some low-level libc functions may
518 bypass the malloc hooks. */
519
520 #define XMALLOC_OVERRUN_CHECK_SIZE 16
521 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
522 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
523
524 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
525 hold a size_t value and (2) the header size is a multiple of the
526 alignment that Emacs needs for C types and for USE_LSB_TAG. */
527 #define XMALLOC_BASE_ALIGNMENT \
528 offsetof ( \
529 struct { \
530 union { long double d; intmax_t i; void *p; } u; \
531 char c; \
532 }, \
533 c)
534
535 #if USE_LSB_TAG
536 # define XMALLOC_HEADER_ALIGNMENT \
537 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
538 #else
539 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
540 #endif
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
546
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
552
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
558
559 /* Insert and extract the block size in the header. */
560
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
563 {
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
569 }
570 }
571
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
574 {
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584 }
585
586
587 /* The call depth in overrun_check functions. For example, this might happen:
588 xmalloc()
589 overrun_check_malloc()
590 -> malloc -> (via hook)_-> emacs_blocked_malloc
591 -> overrun_check_malloc
592 call malloc (hooks are NULL, so real malloc is called).
593 malloc returns 10000.
594 add overhead, return 10016.
595 <- (back in overrun_check_malloc)
596 add overhead again, return 10032
597 xmalloc returns 10032.
598
599 (time passes).
600
601 xfree(10032)
602 overrun_check_free(10032)
603 decrease overhead
604 free(10016) <- crash, because 10000 is the original pointer. */
605
606 static ptrdiff_t check_depth;
607
608 /* Like malloc, but wraps allocated block with header and trailer. */
609
610 static void *
611 overrun_check_malloc (size_t size)
612 {
613 register unsigned char *val;
614 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
615 if (SIZE_MAX - overhead < size)
616 abort ();
617
618 val = (unsigned char *) malloc (size + overhead);
619 if (val && check_depth == 1)
620 {
621 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
622 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
623 xmalloc_put_size (val, size);
624 memcpy (val + size, xmalloc_overrun_check_trailer,
625 XMALLOC_OVERRUN_CHECK_SIZE);
626 }
627 --check_depth;
628 return val;
629 }
630
631
632 /* Like realloc, but checks old block for overrun, and wraps new block
633 with header and trailer. */
634
635 static void *
636 overrun_check_realloc (void *block, size_t size)
637 {
638 register unsigned char *val = (unsigned char *) block;
639 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
640 if (SIZE_MAX - overhead < size)
641 abort ();
642
643 if (val
644 && check_depth == 1
645 && memcmp (xmalloc_overrun_check_header,
646 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
647 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
648 {
649 size_t osize = xmalloc_get_size (val);
650 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
651 XMALLOC_OVERRUN_CHECK_SIZE))
652 abort ();
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 }
657
658 val = realloc (val, size + overhead);
659
660 if (val && check_depth == 1)
661 {
662 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
663 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 xmalloc_put_size (val, size);
665 memcpy (val + size, xmalloc_overrun_check_trailer,
666 XMALLOC_OVERRUN_CHECK_SIZE);
667 }
668 --check_depth;
669 return val;
670 }
671
672 /* Like free, but checks block for overrun. */
673
674 static void
675 overrun_check_free (void *block)
676 {
677 unsigned char *val = (unsigned char *) block;
678
679 ++check_depth;
680 if (val
681 && check_depth == 1
682 && memcmp (xmalloc_overrun_check_header,
683 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
684 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
685 {
686 size_t osize = xmalloc_get_size (val);
687 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
688 XMALLOC_OVERRUN_CHECK_SIZE))
689 abort ();
690 #ifdef XMALLOC_CLEAR_FREE_MEMORY
691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
692 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
693 #else
694 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
695 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
696 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
697 #endif
698 }
699
700 free (val);
701 --check_depth;
702 }
703
704 #undef malloc
705 #undef realloc
706 #undef free
707 #define malloc overrun_check_malloc
708 #define realloc overrun_check_realloc
709 #define free overrun_check_free
710 #endif
711
712 #ifdef SYNC_INPUT
713 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
714 there's no need to block input around malloc. */
715 #define MALLOC_BLOCK_INPUT ((void)0)
716 #define MALLOC_UNBLOCK_INPUT ((void)0)
717 #else
718 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
719 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
720 #endif
721
722 /* Like malloc but check for no memory and block interrupt input.. */
723
724 void *
725 xmalloc (size_t size)
726 {
727 void *val;
728
729 MALLOC_BLOCK_INPUT;
730 val = malloc (size);
731 MALLOC_UNBLOCK_INPUT;
732
733 if (!val && size)
734 memory_full (size);
735 return val;
736 }
737
738 /* Like the above, but zeroes out the memory just allocated. */
739
740 void *
741 xzalloc (size_t size)
742 {
743 void *val;
744
745 MALLOC_BLOCK_INPUT;
746 val = malloc (size);
747 MALLOC_UNBLOCK_INPUT;
748
749 if (!val && size)
750 memory_full (size);
751 memset (val, 0, size);
752 return val;
753 }
754
755 /* Like realloc but check for no memory and block interrupt input.. */
756
757 void *
758 xrealloc (void *block, size_t size)
759 {
760 void *val;
761
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = malloc (size);
767 else
768 val = realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
770
771 if (!val && size)
772 memory_full (size);
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (void *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
790 }
791
792
793 /* Other parts of Emacs pass large int values to allocator functions
794 expecting ptrdiff_t. This is portable in practice, but check it to
795 be safe. */
796 verify (INT_MAX <= PTRDIFF_MAX);
797
798
799 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
801
802 void *
803 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
804 {
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xmalloc (nitems * item_size);
809 }
810
811
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
814
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 {
818 eassert (0 <= nitems && 0 < item_size);
819 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
820 memory_full (SIZE_MAX);
821 return xrealloc (pa, nitems * item_size);
822 }
823
824
825 /* Grow PA, which points to an array of *NITEMS items, and return the
826 location of the reallocated array, updating *NITEMS to reflect its
827 new size. The new array will contain at least NITEMS_INCR_MIN more
828 items, but will not contain more than NITEMS_MAX items total.
829 ITEM_SIZE is the size of each item, in bytes.
830
831 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
832 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
833 infinity.
834
835 If PA is null, then allocate a new array instead of reallocating
836 the old one. Thus, to grow an array A without saving its old
837 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
838 &NITEMS, ...).
839
840 Block interrupt input as needed. If memory exhaustion occurs, set
841 *NITEMS to zero if PA is null, and signal an error (i.e., do not
842 return). */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 size_t len = strlen (s) + 1;
886 char *p = xmalloc (len);
887 memcpy (p, s, len);
888 return p;
889 }
890
891
892 /* Unwind for SAFE_ALLOCA */
893
894 Lisp_Object
895 safe_alloca_unwind (Lisp_Object arg)
896 {
897 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
898
899 p->dogc = 0;
900 xfree (p->pointer);
901 p->pointer = 0;
902 free_misc (arg);
903 return Qnil;
904 }
905
906
907 /* Like malloc but used for allocating Lisp data. NBYTES is the
908 number of bytes to allocate, TYPE describes the intended use of the
909 allocated memory block (for strings, for conses, ...). */
910
911 #if ! USE_LSB_TAG
912 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
913 #endif
914
915 static void *
916 lisp_malloc (size_t nbytes, enum mem_type type)
917 {
918 register void *val;
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 val = (void *) malloc (nbytes);
927
928 #if ! USE_LSB_TAG
929 /* If the memory just allocated cannot be addressed thru a Lisp
930 object's pointer, and it needs to be,
931 that's equivalent to running out of memory. */
932 if (val && type != MEM_TYPE_NON_LISP)
933 {
934 Lisp_Object tem;
935 XSETCONS (tem, (char *) val + nbytes - 1);
936 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
937 {
938 lisp_malloc_loser = val;
939 free (val);
940 val = 0;
941 }
942 }
943 #endif
944
945 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
946 if (val && type != MEM_TYPE_NON_LISP)
947 mem_insert (val, (char *) val + nbytes, type);
948 #endif
949
950 MALLOC_UNBLOCK_INPUT;
951 if (!val && nbytes)
952 memory_full (nbytes);
953 return val;
954 }
955
956 /* Free BLOCK. This must be called to free memory allocated with a
957 call to lisp_malloc. */
958
959 static void
960 lisp_free (void *block)
961 {
962 MALLOC_BLOCK_INPUT;
963 free (block);
964 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
965 mem_delete (mem_find (block));
966 #endif
967 MALLOC_UNBLOCK_INPUT;
968 }
969
970 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
971
972 /* The entry point is lisp_align_malloc which returns blocks of at most
973 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
974
975 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
976 #define USE_POSIX_MEMALIGN 1
977 #endif
978
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
981
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 posix_memalign on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
995
996 /* Internal data structures and constants. */
997
998 #define ABLOCKS_SIZE 16
999
1000 /* An aligned block of memory. */
1001 struct ablock
1002 {
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1023 };
1024
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1027 {
1028 struct ablock blocks[ABLOCKS_SIZE];
1029 };
1030
1031 /* Size of the block requested from malloc or posix_memalign. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1033
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_POSIX_MEMALIGN
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1048 #endif
1049
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1052
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1058 {
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
1064 MALLOC_BLOCK_INPUT;
1065
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1069
1070 if (!free_ablock)
1071 {
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1074
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1081
1082 #ifdef USE_POSIX_MEMALIGN
1083 {
1084 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1085 if (err)
1086 base = NULL;
1087 abase = base;
1088 }
1089 #else
1090 base = malloc (ABLOCKS_BYTES);
1091 abase = ALIGN (base, BLOCK_ALIGN);
1092 #endif
1093
1094 if (base == 0)
1095 {
1096 MALLOC_UNBLOCK_INPUT;
1097 memory_full (ABLOCKS_BYTES);
1098 }
1099
1100 aligned = (base == abase);
1101 if (!aligned)
1102 ((void**)abase)[-1] = base;
1103
1104 #ifdef DOUG_LEA_MALLOC
1105 /* Back to a reasonable maximum of mmap'ed areas. */
1106 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1107 #endif
1108
1109 #if ! USE_LSB_TAG
1110 /* If the memory just allocated cannot be addressed thru a Lisp
1111 object's pointer, and it needs to be, that's equivalent to
1112 running out of memory. */
1113 if (type != MEM_TYPE_NON_LISP)
1114 {
1115 Lisp_Object tem;
1116 char *end = (char *) base + ABLOCKS_BYTES - 1;
1117 XSETCONS (tem, end);
1118 if ((char *) XCONS (tem) != end)
1119 {
1120 lisp_malloc_loser = base;
1121 free (base);
1122 MALLOC_UNBLOCK_INPUT;
1123 memory_full (SIZE_MAX);
1124 }
1125 }
1126 #endif
1127
1128 /* Initialize the blocks and put them on the free list.
1129 If `base' was not properly aligned, we can't use the last block. */
1130 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1131 {
1132 abase->blocks[i].abase = abase;
1133 abase->blocks[i].x.next_free = free_ablock;
1134 free_ablock = &abase->blocks[i];
1135 }
1136 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1137
1138 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1139 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1140 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1141 eassert (ABLOCKS_BASE (abase) == base);
1142 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1143 }
1144
1145 abase = ABLOCK_ABASE (free_ablock);
1146 ABLOCKS_BUSY (abase) =
1147 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1148 val = free_ablock;
1149 free_ablock = free_ablock->x.next_free;
1150
1151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1152 if (type != MEM_TYPE_NON_LISP)
1153 mem_insert (val, (char *) val + nbytes, type);
1154 #endif
1155
1156 MALLOC_UNBLOCK_INPUT;
1157
1158 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1159 return val;
1160 }
1161
1162 static void
1163 lisp_align_free (void *block)
1164 {
1165 struct ablock *ablock = block;
1166 struct ablocks *abase = ABLOCK_ABASE (ablock);
1167
1168 MALLOC_BLOCK_INPUT;
1169 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1170 mem_delete (mem_find (block));
1171 #endif
1172 /* Put on free list. */
1173 ablock->x.next_free = free_ablock;
1174 free_ablock = ablock;
1175 /* Update busy count. */
1176 ABLOCKS_BUSY (abase)
1177 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1178
1179 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1180 { /* All the blocks are free. */
1181 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1182 struct ablock **tem = &free_ablock;
1183 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1184
1185 while (*tem)
1186 {
1187 if (*tem >= (struct ablock *) abase && *tem < atop)
1188 {
1189 i++;
1190 *tem = (*tem)->x.next_free;
1191 }
1192 else
1193 tem = &(*tem)->x.next_free;
1194 }
1195 eassert ((aligned & 1) == aligned);
1196 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1197 #ifdef USE_POSIX_MEMALIGN
1198 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1199 #endif
1200 free (ABLOCKS_BASE (abase));
1201 }
1202 MALLOC_UNBLOCK_INPUT;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587 \f
1588 /***********************************************************************
1589 String Allocation
1590 ***********************************************************************/
1591
1592 /* Lisp_Strings are allocated in string_block structures. When a new
1593 string_block is allocated, all the Lisp_Strings it contains are
1594 added to a free-list string_free_list. When a new Lisp_String is
1595 needed, it is taken from that list. During the sweep phase of GC,
1596 string_blocks that are entirely free are freed, except two which
1597 we keep.
1598
1599 String data is allocated from sblock structures. Strings larger
1600 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1601 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1602
1603 Sblocks consist internally of sdata structures, one for each
1604 Lisp_String. The sdata structure points to the Lisp_String it
1605 belongs to. The Lisp_String points back to the `u.data' member of
1606 its sdata structure.
1607
1608 When a Lisp_String is freed during GC, it is put back on
1609 string_free_list, and its `data' member and its sdata's `string'
1610 pointer is set to null. The size of the string is recorded in the
1611 `u.nbytes' member of the sdata. So, sdata structures that are no
1612 longer used, can be easily recognized, and it's easy to compact the
1613 sblocks of small strings which we do in compact_small_strings. */
1614
1615 /* Size in bytes of an sblock structure used for small strings. This
1616 is 8192 minus malloc overhead. */
1617
1618 #define SBLOCK_SIZE 8188
1619
1620 /* Strings larger than this are considered large strings. String data
1621 for large strings is allocated from individual sblocks. */
1622
1623 #define LARGE_STRING_BYTES 1024
1624
1625 /* Structure describing string memory sub-allocated from an sblock.
1626 This is where the contents of Lisp strings are stored. */
1627
1628 struct sdata
1629 {
1630 /* Back-pointer to the string this sdata belongs to. If null, this
1631 structure is free, and the NBYTES member of the union below
1632 contains the string's byte size (the same value that STRING_BYTES
1633 would return if STRING were non-null). If non-null, STRING_BYTES
1634 (STRING) is the size of the data, and DATA contains the string's
1635 contents. */
1636 struct Lisp_String *string;
1637
1638 #ifdef GC_CHECK_STRING_BYTES
1639
1640 ptrdiff_t nbytes;
1641 unsigned char data[1];
1642
1643 #define SDATA_NBYTES(S) (S)->nbytes
1644 #define SDATA_DATA(S) (S)->data
1645 #define SDATA_SELECTOR(member) member
1646
1647 #else /* not GC_CHECK_STRING_BYTES */
1648
1649 union
1650 {
1651 /* When STRING is non-null. */
1652 unsigned char data[1];
1653
1654 /* When STRING is null. */
1655 ptrdiff_t nbytes;
1656 } u;
1657
1658 #define SDATA_NBYTES(S) (S)->u.nbytes
1659 #define SDATA_DATA(S) (S)->u.data
1660 #define SDATA_SELECTOR(member) u.member
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1665 };
1666
1667
1668 /* Structure describing a block of memory which is sub-allocated to
1669 obtain string data memory for strings. Blocks for small strings
1670 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1671 as large as needed. */
1672
1673 struct sblock
1674 {
1675 /* Next in list. */
1676 struct sblock *next;
1677
1678 /* Pointer to the next free sdata block. This points past the end
1679 of the sblock if there isn't any space left in this block. */
1680 struct sdata *next_free;
1681
1682 /* Start of data. */
1683 struct sdata first_data;
1684 };
1685
1686 /* Number of Lisp strings in a string_block structure. The 1020 is
1687 1024 minus malloc overhead. */
1688
1689 #define STRING_BLOCK_SIZE \
1690 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1691
1692 /* Structure describing a block from which Lisp_String structures
1693 are allocated. */
1694
1695 struct string_block
1696 {
1697 /* Place `strings' first, to preserve alignment. */
1698 struct Lisp_String strings[STRING_BLOCK_SIZE];
1699 struct string_block *next;
1700 };
1701
1702 /* Head and tail of the list of sblock structures holding Lisp string
1703 data. We always allocate from current_sblock. The NEXT pointers
1704 in the sblock structures go from oldest_sblock to current_sblock. */
1705
1706 static struct sblock *oldest_sblock, *current_sblock;
1707
1708 /* List of sblocks for large strings. */
1709
1710 static struct sblock *large_sblocks;
1711
1712 /* List of string_block structures. */
1713
1714 static struct string_block *string_blocks;
1715
1716 /* Free-list of Lisp_Strings. */
1717
1718 static struct Lisp_String *string_free_list;
1719
1720 /* Number of live and free Lisp_Strings. */
1721
1722 static EMACS_INT total_strings, total_free_strings;
1723
1724 /* Number of bytes used by live strings. */
1725
1726 static EMACS_INT total_string_size;
1727
1728 /* Given a pointer to a Lisp_String S which is on the free-list
1729 string_free_list, return a pointer to its successor in the
1730 free-list. */
1731
1732 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1733
1734 /* Return a pointer to the sdata structure belonging to Lisp string S.
1735 S must be live, i.e. S->data must not be null. S->data is actually
1736 a pointer to the `u.data' member of its sdata structure; the
1737 structure starts at a constant offset in front of that. */
1738
1739 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740
1741
1742 #ifdef GC_CHECK_STRING_OVERRUN
1743
1744 /* We check for overrun in string data blocks by appending a small
1745 "cookie" after each allocated string data block, and check for the
1746 presence of this cookie during GC. */
1747
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1749 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1750 { '\xde', '\xad', '\xbe', '\xef' };
1751
1752 #else
1753 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1754 #endif
1755
1756 /* Value is the size of an sdata structure large enough to hold NBYTES
1757 bytes of string data. The value returned includes a terminating
1758 NUL byte, the size of the sdata structure, and padding. */
1759
1760 #ifdef GC_CHECK_STRING_BYTES
1761
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (NBYTES) + 1 \
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
1767
1768 #else /* not GC_CHECK_STRING_BYTES */
1769
1770 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1771 less than the size of that member. The 'max' is not needed when
1772 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1773 alignment code reserves enough space. */
1774
1775 #define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
1777 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1778 ? NBYTES \
1779 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1780 + 1 \
1781 + sizeof (ptrdiff_t) - 1) \
1782 & ~(sizeof (ptrdiff_t) - 1))
1783
1784 #endif /* not GC_CHECK_STRING_BYTES */
1785
1786 /* Extra bytes to allocate for each string. */
1787
1788 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1789
1790 /* Exact bound on the number of bytes in a string, not counting the
1791 terminating null. A string cannot contain more bytes than
1792 STRING_BYTES_BOUND, nor can it be so long that the size_t
1793 arithmetic in allocate_string_data would overflow while it is
1794 calculating a value to be passed to malloc. */
1795 #define STRING_BYTES_MAX \
1796 min (STRING_BYTES_BOUND, \
1797 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1798 - GC_STRING_EXTRA \
1799 - offsetof (struct sblock, first_data) \
1800 - SDATA_DATA_OFFSET) \
1801 & ~(sizeof (EMACS_INT) - 1)))
1802
1803 /* Initialize string allocation. Called from init_alloc_once. */
1804
1805 static void
1806 init_strings (void)
1807 {
1808 total_strings = total_free_strings = total_string_size = 0;
1809 oldest_sblock = current_sblock = large_sblocks = NULL;
1810 string_blocks = NULL;
1811 string_free_list = NULL;
1812 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1813 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1814 }
1815
1816
1817 #ifdef GC_CHECK_STRING_BYTES
1818
1819 static int check_string_bytes_count;
1820
1821 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1822
1823
1824 /* Like GC_STRING_BYTES, but with debugging check. */
1825
1826 ptrdiff_t
1827 string_bytes (struct Lisp_String *s)
1828 {
1829 ptrdiff_t nbytes =
1830 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1831
1832 if (!PURE_POINTER_P (s)
1833 && s->data
1834 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1835 abort ();
1836 return nbytes;
1837 }
1838
1839 /* Check validity of Lisp strings' string_bytes member in B. */
1840
1841 static void
1842 check_sblock (struct sblock *b)
1843 {
1844 struct sdata *from, *end, *from_end;
1845
1846 end = b->next_free;
1847
1848 for (from = &b->first_data; from < end; from = from_end)
1849 {
1850 /* Compute the next FROM here because copying below may
1851 overwrite data we need to compute it. */
1852 ptrdiff_t nbytes;
1853
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string)
1857 CHECK_STRING_BYTES (from->string);
1858
1859 if (from->string)
1860 nbytes = GC_STRING_BYTES (from->string);
1861 else
1862 nbytes = SDATA_NBYTES (from);
1863
1864 nbytes = SDATA_SIZE (nbytes);
1865 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1866 }
1867 }
1868
1869
1870 /* Check validity of Lisp strings' string_bytes member. ALL_P
1871 non-zero means check all strings, otherwise check only most
1872 recently allocated strings. Used for hunting a bug. */
1873
1874 static void
1875 check_string_bytes (int all_p)
1876 {
1877 if (all_p)
1878 {
1879 struct sblock *b;
1880
1881 for (b = large_sblocks; b; b = b->next)
1882 {
1883 struct Lisp_String *s = b->first_data.string;
1884 if (s)
1885 CHECK_STRING_BYTES (s);
1886 }
1887
1888 for (b = oldest_sblock; b; b = b->next)
1889 check_sblock (b);
1890 }
1891 else if (current_sblock)
1892 check_sblock (current_sblock);
1893 }
1894
1895 #endif /* GC_CHECK_STRING_BYTES */
1896
1897 #ifdef GC_CHECK_STRING_FREE_LIST
1898
1899 /* Walk through the string free list looking for bogus next pointers.
1900 This may catch buffer overrun from a previous string. */
1901
1902 static void
1903 check_string_free_list (void)
1904 {
1905 struct Lisp_String *s;
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 while (s != NULL)
1910 {
1911 if ((uintptr_t) s < 1024)
1912 abort ();
1913 s = NEXT_FREE_LISP_STRING (s);
1914 }
1915 }
1916 #else
1917 #define check_string_free_list()
1918 #endif
1919
1920 /* Return a new Lisp_String. */
1921
1922 static struct Lisp_String *
1923 allocate_string (void)
1924 {
1925 struct Lisp_String *s;
1926
1927 /* eassert (!handling_signal); */
1928
1929 MALLOC_BLOCK_INPUT;
1930
1931 /* If the free-list is empty, allocate a new string_block, and
1932 add all the Lisp_Strings in it to the free-list. */
1933 if (string_free_list == NULL)
1934 {
1935 struct string_block *b;
1936 int i;
1937
1938 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1939 b->next = string_blocks;
1940 string_blocks = b;
1941
1942 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1943 {
1944 s = b->strings + i;
1945 /* Every string on a free list should have NULL data pointer. */
1946 s->data = NULL;
1947 NEXT_FREE_LISP_STRING (s) = string_free_list;
1948 string_free_list = s;
1949 }
1950
1951 total_free_strings += STRING_BLOCK_SIZE;
1952 }
1953
1954 check_string_free_list ();
1955
1956 /* Pop a Lisp_String off the free-list. */
1957 s = string_free_list;
1958 string_free_list = NEXT_FREE_LISP_STRING (s);
1959
1960 MALLOC_UNBLOCK_INPUT;
1961
1962 --total_free_strings;
1963 ++total_strings;
1964 ++strings_consed;
1965 consing_since_gc += sizeof *s;
1966
1967 #ifdef GC_CHECK_STRING_BYTES
1968 if (!noninteractive)
1969 {
1970 if (++check_string_bytes_count == 200)
1971 {
1972 check_string_bytes_count = 0;
1973 check_string_bytes (1);
1974 }
1975 else
1976 check_string_bytes (0);
1977 }
1978 #endif /* GC_CHECK_STRING_BYTES */
1979
1980 return s;
1981 }
1982
1983
1984 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1985 plus a NUL byte at the end. Allocate an sdata structure for S, and
1986 set S->data to its `u.data' member. Store a NUL byte at the end of
1987 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1988 S->data if it was initially non-null. */
1989
1990 void
1991 allocate_string_data (struct Lisp_String *s,
1992 EMACS_INT nchars, EMACS_INT nbytes)
1993 {
1994 struct sdata *data;
1995 struct sblock *b;
1996 ptrdiff_t needed;
1997
1998 if (STRING_BYTES_MAX < nbytes)
1999 string_overflow ();
2000
2001 /* Determine the number of bytes needed to store NBYTES bytes
2002 of string data. */
2003 needed = SDATA_SIZE (nbytes);
2004
2005 MALLOC_BLOCK_INPUT;
2006
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2010
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2023
2024 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2025
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2030
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2040 {
2041 /* Not enough room in the current sblock. */
2042 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
2055
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
2059 MALLOC_UNBLOCK_INPUT;
2060
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073 consing_since_gc += needed;
2074 }
2075
2076
2077 /* Sweep and compact strings. */
2078
2079 static void
2080 sweep_strings (void)
2081 {
2082 struct string_block *b, *next;
2083 struct string_block *live_blocks = NULL;
2084
2085 string_free_list = NULL;
2086 total_strings = total_free_strings = 0;
2087 total_string_size = 0;
2088
2089 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2090 for (b = string_blocks; b; b = next)
2091 {
2092 int i, nfree = 0;
2093 struct Lisp_String *free_list_before = string_free_list;
2094
2095 next = b->next;
2096
2097 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2098 {
2099 struct Lisp_String *s = b->strings + i;
2100
2101 if (s->data)
2102 {
2103 /* String was not on free-list before. */
2104 if (STRING_MARKED_P (s))
2105 {
2106 /* String is live; unmark it and its intervals. */
2107 UNMARK_STRING (s);
2108
2109 if (!NULL_INTERVAL_P (s->intervals))
2110 UNMARK_BALANCE_INTERVALS (s->intervals);
2111
2112 ++total_strings;
2113 total_string_size += STRING_BYTES (s);
2114 }
2115 else
2116 {
2117 /* String is dead. Put it on the free-list. */
2118 struct sdata *data = SDATA_OF_STRING (s);
2119
2120 /* Save the size of S in its sdata so that we know
2121 how large that is. Reset the sdata's string
2122 back-pointer so that we know it's free. */
2123 #ifdef GC_CHECK_STRING_BYTES
2124 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2125 abort ();
2126 #else
2127 data->u.nbytes = GC_STRING_BYTES (s);
2128 #endif
2129 data->string = NULL;
2130
2131 /* Reset the strings's `data' member so that we
2132 know it's free. */
2133 s->data = NULL;
2134
2135 /* Put the string on the free-list. */
2136 NEXT_FREE_LISP_STRING (s) = string_free_list;
2137 string_free_list = s;
2138 ++nfree;
2139 }
2140 }
2141 else
2142 {
2143 /* S was on the free-list before. Put it there again. */
2144 NEXT_FREE_LISP_STRING (s) = string_free_list;
2145 string_free_list = s;
2146 ++nfree;
2147 }
2148 }
2149
2150 /* Free blocks that contain free Lisp_Strings only, except
2151 the first two of them. */
2152 if (nfree == STRING_BLOCK_SIZE
2153 && total_free_strings > STRING_BLOCK_SIZE)
2154 {
2155 lisp_free (b);
2156 string_free_list = free_list_before;
2157 }
2158 else
2159 {
2160 total_free_strings += nfree;
2161 b->next = live_blocks;
2162 live_blocks = b;
2163 }
2164 }
2165
2166 check_string_free_list ();
2167
2168 string_blocks = live_blocks;
2169 free_large_strings ();
2170 compact_small_strings ();
2171
2172 check_string_free_list ();
2173 }
2174
2175
2176 /* Free dead large strings. */
2177
2178 static void
2179 free_large_strings (void)
2180 {
2181 struct sblock *b, *next;
2182 struct sblock *live_blocks = NULL;
2183
2184 for (b = large_sblocks; b; b = next)
2185 {
2186 next = b->next;
2187
2188 if (b->first_data.string == NULL)
2189 lisp_free (b);
2190 else
2191 {
2192 b->next = live_blocks;
2193 live_blocks = b;
2194 }
2195 }
2196
2197 large_sblocks = live_blocks;
2198 }
2199
2200
2201 /* Compact data of small strings. Free sblocks that don't contain
2202 data of live strings after compaction. */
2203
2204 static void
2205 compact_small_strings (void)
2206 {
2207 struct sblock *b, *tb, *next;
2208 struct sdata *from, *to, *end, *tb_end;
2209 struct sdata *to_end, *from_end;
2210
2211 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2212 to, and TB_END is the end of TB. */
2213 tb = oldest_sblock;
2214 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2215 to = &tb->first_data;
2216
2217 /* Step through the blocks from the oldest to the youngest. We
2218 expect that old blocks will stabilize over time, so that less
2219 copying will happen this way. */
2220 for (b = oldest_sblock; b; b = b->next)
2221 {
2222 end = b->next_free;
2223 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2224
2225 for (from = &b->first_data; from < end; from = from_end)
2226 {
2227 /* Compute the next FROM here because copying below may
2228 overwrite data we need to compute it. */
2229 ptrdiff_t nbytes;
2230
2231 #ifdef GC_CHECK_STRING_BYTES
2232 /* Check that the string size recorded in the string is the
2233 same as the one recorded in the sdata structure. */
2234 if (from->string
2235 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2236 abort ();
2237 #endif /* GC_CHECK_STRING_BYTES */
2238
2239 if (from->string)
2240 nbytes = GC_STRING_BYTES (from->string);
2241 else
2242 nbytes = SDATA_NBYTES (from);
2243
2244 if (nbytes > LARGE_STRING_BYTES)
2245 abort ();
2246
2247 nbytes = SDATA_SIZE (nbytes);
2248 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2249
2250 #ifdef GC_CHECK_STRING_OVERRUN
2251 if (memcmp (string_overrun_cookie,
2252 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2253 GC_STRING_OVERRUN_COOKIE_SIZE))
2254 abort ();
2255 #endif
2256
2257 /* FROM->string non-null means it's alive. Copy its data. */
2258 if (from->string)
2259 {
2260 /* If TB is full, proceed with the next sblock. */
2261 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2262 if (to_end > tb_end)
2263 {
2264 tb->next_free = to;
2265 tb = tb->next;
2266 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2267 to = &tb->first_data;
2268 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2269 }
2270
2271 /* Copy, and update the string's `data' pointer. */
2272 if (from != to)
2273 {
2274 eassert (tb != b || to < from);
2275 memmove (to, from, nbytes + GC_STRING_EXTRA);
2276 to->string->data = SDATA_DATA (to);
2277 }
2278
2279 /* Advance past the sdata we copied to. */
2280 to = to_end;
2281 }
2282 }
2283 }
2284
2285 /* The rest of the sblocks following TB don't contain live data, so
2286 we can free them. */
2287 for (b = tb->next; b; b = next)
2288 {
2289 next = b->next;
2290 lisp_free (b);
2291 }
2292
2293 tb->next_free = to;
2294 tb->next = NULL;
2295 current_sblock = tb;
2296 }
2297
2298 void
2299 string_overflow (void)
2300 {
2301 error ("Maximum string size exceeded");
2302 }
2303
2304 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2305 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2306 LENGTH must be an integer.
2307 INIT must be an integer that represents a character. */)
2308 (Lisp_Object length, Lisp_Object init)
2309 {
2310 register Lisp_Object val;
2311 register unsigned char *p, *end;
2312 int c;
2313 EMACS_INT nbytes;
2314
2315 CHECK_NATNUM (length);
2316 CHECK_CHARACTER (init);
2317
2318 c = XFASTINT (init);
2319 if (ASCII_CHAR_P (c))
2320 {
2321 nbytes = XINT (length);
2322 val = make_uninit_string (nbytes);
2323 p = SDATA (val);
2324 end = p + SCHARS (val);
2325 while (p != end)
2326 *p++ = c;
2327 }
2328 else
2329 {
2330 unsigned char str[MAX_MULTIBYTE_LENGTH];
2331 int len = CHAR_STRING (c, str);
2332 EMACS_INT string_len = XINT (length);
2333
2334 if (string_len > STRING_BYTES_MAX / len)
2335 string_overflow ();
2336 nbytes = len * string_len;
2337 val = make_uninit_multibyte_string (string_len, nbytes);
2338 p = SDATA (val);
2339 end = p + nbytes;
2340 while (p != end)
2341 {
2342 memcpy (p, str, len);
2343 p += len;
2344 }
2345 }
2346
2347 *p = 0;
2348 return val;
2349 }
2350
2351
2352 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2353 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2354 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2355 (Lisp_Object length, Lisp_Object init)
2356 {
2357 register Lisp_Object val;
2358 struct Lisp_Bool_Vector *p;
2359 ptrdiff_t length_in_chars;
2360 EMACS_INT length_in_elts;
2361 int bits_per_value;
2362
2363 CHECK_NATNUM (length);
2364
2365 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2366
2367 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2368
2369 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2370 slot `size' of the struct Lisp_Bool_Vector. */
2371 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2372
2373 /* No Lisp_Object to trace in there. */
2374 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2375
2376 p = XBOOL_VECTOR (val);
2377 p->size = XFASTINT (length);
2378
2379 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2380 / BOOL_VECTOR_BITS_PER_CHAR);
2381 if (length_in_chars)
2382 {
2383 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2384
2385 /* Clear any extraneous bits in the last byte. */
2386 p->data[length_in_chars - 1]
2387 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2388 }
2389
2390 return val;
2391 }
2392
2393
2394 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2395 of characters from the contents. This string may be unibyte or
2396 multibyte, depending on the contents. */
2397
2398 Lisp_Object
2399 make_string (const char *contents, ptrdiff_t nbytes)
2400 {
2401 register Lisp_Object val;
2402 ptrdiff_t nchars, multibyte_nbytes;
2403
2404 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2405 &nchars, &multibyte_nbytes);
2406 if (nbytes == nchars || nbytes != multibyte_nbytes)
2407 /* CONTENTS contains no multibyte sequences or contains an invalid
2408 multibyte sequence. We must make unibyte string. */
2409 val = make_unibyte_string (contents, nbytes);
2410 else
2411 val = make_multibyte_string (contents, nchars, nbytes);
2412 return val;
2413 }
2414
2415
2416 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2417
2418 Lisp_Object
2419 make_unibyte_string (const char *contents, ptrdiff_t length)
2420 {
2421 register Lisp_Object val;
2422 val = make_uninit_string (length);
2423 memcpy (SDATA (val), contents, length);
2424 return val;
2425 }
2426
2427
2428 /* Make a multibyte string from NCHARS characters occupying NBYTES
2429 bytes at CONTENTS. */
2430
2431 Lisp_Object
2432 make_multibyte_string (const char *contents,
2433 ptrdiff_t nchars, ptrdiff_t nbytes)
2434 {
2435 register Lisp_Object val;
2436 val = make_uninit_multibyte_string (nchars, nbytes);
2437 memcpy (SDATA (val), contents, nbytes);
2438 return val;
2439 }
2440
2441
2442 /* Make a string from NCHARS characters occupying NBYTES bytes at
2443 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2444
2445 Lisp_Object
2446 make_string_from_bytes (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes)
2448 {
2449 register Lisp_Object val;
2450 val = make_uninit_multibyte_string (nchars, nbytes);
2451 memcpy (SDATA (val), contents, nbytes);
2452 if (SBYTES (val) == SCHARS (val))
2453 STRING_SET_UNIBYTE (val);
2454 return val;
2455 }
2456
2457
2458 /* Make a string from NCHARS characters occupying NBYTES bytes at
2459 CONTENTS. The argument MULTIBYTE controls whether to label the
2460 string as multibyte. If NCHARS is negative, it counts the number of
2461 characters by itself. */
2462
2463 Lisp_Object
2464 make_specified_string (const char *contents,
2465 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2466 {
2467 register Lisp_Object val;
2468
2469 if (nchars < 0)
2470 {
2471 if (multibyte)
2472 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2473 nbytes);
2474 else
2475 nchars = nbytes;
2476 }
2477 val = make_uninit_multibyte_string (nchars, nbytes);
2478 memcpy (SDATA (val), contents, nbytes);
2479 if (!multibyte)
2480 STRING_SET_UNIBYTE (val);
2481 return val;
2482 }
2483
2484
2485 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2486 occupying LENGTH bytes. */
2487
2488 Lisp_Object
2489 make_uninit_string (EMACS_INT length)
2490 {
2491 Lisp_Object val;
2492
2493 if (!length)
2494 return empty_unibyte_string;
2495 val = make_uninit_multibyte_string (length, length);
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2498 }
2499
2500
2501 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2502 which occupy NBYTES bytes. */
2503
2504 Lisp_Object
2505 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2506 {
2507 Lisp_Object string;
2508 struct Lisp_String *s;
2509
2510 if (nchars < 0)
2511 abort ();
2512 if (!nbytes)
2513 return empty_multibyte_string;
2514
2515 s = allocate_string ();
2516 s->intervals = NULL_INTERVAL;
2517 allocate_string_data (s, nchars, nbytes);
2518 XSETSTRING (string, s);
2519 string_chars_consed += nbytes;
2520 return string;
2521 }
2522
2523
2524 \f
2525 /***********************************************************************
2526 Float Allocation
2527 ***********************************************************************/
2528
2529 /* We store float cells inside of float_blocks, allocating a new
2530 float_block with malloc whenever necessary. Float cells reclaimed
2531 by GC are put on a free list to be reallocated before allocating
2532 any new float cells from the latest float_block. */
2533
2534 #define FLOAT_BLOCK_SIZE \
2535 (((BLOCK_BYTES - sizeof (struct float_block *) \
2536 /* The compiler might add padding at the end. */ \
2537 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2538 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2539
2540 #define GETMARKBIT(block,n) \
2541 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2542 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2543 & 1)
2544
2545 #define SETMARKBIT(block,n) \
2546 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2547 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2548
2549 #define UNSETMARKBIT(block,n) \
2550 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2551 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2552
2553 #define FLOAT_BLOCK(fptr) \
2554 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2555
2556 #define FLOAT_INDEX(fptr) \
2557 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2558
2559 struct float_block
2560 {
2561 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2562 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2563 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2564 struct float_block *next;
2565 };
2566
2567 #define FLOAT_MARKED_P(fptr) \
2568 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2569
2570 #define FLOAT_MARK(fptr) \
2571 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572
2573 #define FLOAT_UNMARK(fptr) \
2574 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2575
2576 /* Current float_block. */
2577
2578 static struct float_block *float_block;
2579
2580 /* Index of first unused Lisp_Float in the current float_block. */
2581
2582 static int float_block_index;
2583
2584 /* Free-list of Lisp_Floats. */
2585
2586 static struct Lisp_Float *float_free_list;
2587
2588
2589 /* Initialize float allocation. */
2590
2591 static void
2592 init_float (void)
2593 {
2594 float_block = NULL;
2595 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2596 float_free_list = 0;
2597 }
2598
2599
2600 /* Return a new float object with value FLOAT_VALUE. */
2601
2602 Lisp_Object
2603 make_float (double float_value)
2604 {
2605 register Lisp_Object val;
2606
2607 /* eassert (!handling_signal); */
2608
2609 MALLOC_BLOCK_INPUT;
2610
2611 if (float_free_list)
2612 {
2613 /* We use the data field for chaining the free list
2614 so that we won't use the same field that has the mark bit. */
2615 XSETFLOAT (val, float_free_list);
2616 float_free_list = float_free_list->u.chain;
2617 }
2618 else
2619 {
2620 if (float_block_index == FLOAT_BLOCK_SIZE)
2621 {
2622 register struct float_block *new;
2623
2624 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2625 MEM_TYPE_FLOAT);
2626 new->next = float_block;
2627 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2628 float_block = new;
2629 float_block_index = 0;
2630 }
2631 XSETFLOAT (val, &float_block->floats[float_block_index]);
2632 float_block_index++;
2633 }
2634
2635 MALLOC_UNBLOCK_INPUT;
2636
2637 XFLOAT_INIT (val, float_value);
2638 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2639 consing_since_gc += sizeof (struct Lisp_Float);
2640 floats_consed++;
2641 return val;
2642 }
2643
2644
2645 \f
2646 /***********************************************************************
2647 Cons Allocation
2648 ***********************************************************************/
2649
2650 /* We store cons cells inside of cons_blocks, allocating a new
2651 cons_block with malloc whenever necessary. Cons cells reclaimed by
2652 GC are put on a free list to be reallocated before allocating
2653 any new cons cells from the latest cons_block. */
2654
2655 #define CONS_BLOCK_SIZE \
2656 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2657 /* The compiler might add padding at the end. */ \
2658 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2659 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2660
2661 #define CONS_BLOCK(fptr) \
2662 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2663
2664 #define CONS_INDEX(fptr) \
2665 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2666
2667 struct cons_block
2668 {
2669 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2670 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2671 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2672 struct cons_block *next;
2673 };
2674
2675 #define CONS_MARKED_P(fptr) \
2676 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2677
2678 #define CONS_MARK(fptr) \
2679 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2680
2681 #define CONS_UNMARK(fptr) \
2682 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 /* Current cons_block. */
2685
2686 static struct cons_block *cons_block;
2687
2688 /* Index of first unused Lisp_Cons in the current block. */
2689
2690 static int cons_block_index;
2691
2692 /* Free-list of Lisp_Cons structures. */
2693
2694 static struct Lisp_Cons *cons_free_list;
2695
2696
2697 /* Initialize cons allocation. */
2698
2699 static void
2700 init_cons (void)
2701 {
2702 cons_block = NULL;
2703 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2704 cons_free_list = 0;
2705 }
2706
2707
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2709
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2712 {
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 }
2719
2720 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2721 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2722 (Lisp_Object car, Lisp_Object cdr)
2723 {
2724 register Lisp_Object val;
2725
2726 /* eassert (!handling_signal); */
2727
2728 MALLOC_BLOCK_INPUT;
2729
2730 if (cons_free_list)
2731 {
2732 /* We use the cdr for chaining the free list
2733 so that we won't use the same field that has the mark bit. */
2734 XSETCONS (val, cons_free_list);
2735 cons_free_list = cons_free_list->u.chain;
2736 }
2737 else
2738 {
2739 if (cons_block_index == CONS_BLOCK_SIZE)
2740 {
2741 register struct cons_block *new;
2742 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2743 MEM_TYPE_CONS);
2744 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2745 new->next = cons_block;
2746 cons_block = new;
2747 cons_block_index = 0;
2748 }
2749 XSETCONS (val, &cons_block->conses[cons_block_index]);
2750 cons_block_index++;
2751 }
2752
2753 MALLOC_UNBLOCK_INPUT;
2754
2755 XSETCAR (val, car);
2756 XSETCDR (val, cdr);
2757 eassert (!CONS_MARKED_P (XCONS (val)));
2758 consing_since_gc += sizeof (struct Lisp_Cons);
2759 cons_cells_consed++;
2760 return val;
2761 }
2762
2763 #ifdef GC_CHECK_CONS_LIST
2764 /* Get an error now if there's any junk in the cons free list. */
2765 void
2766 check_cons_list (void)
2767 {
2768 struct Lisp_Cons *tail = cons_free_list;
2769
2770 while (tail)
2771 tail = tail->u.chain;
2772 }
2773 #endif
2774
2775 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2776
2777 Lisp_Object
2778 list1 (Lisp_Object arg1)
2779 {
2780 return Fcons (arg1, Qnil);
2781 }
2782
2783 Lisp_Object
2784 list2 (Lisp_Object arg1, Lisp_Object arg2)
2785 {
2786 return Fcons (arg1, Fcons (arg2, Qnil));
2787 }
2788
2789
2790 Lisp_Object
2791 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2792 {
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2794 }
2795
2796
2797 Lisp_Object
2798 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2799 {
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2801 }
2802
2803
2804 Lisp_Object
2805 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2806 {
2807 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2808 Fcons (arg5, Qnil)))));
2809 }
2810
2811
2812 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2813 doc: /* Return a newly created list with specified arguments as elements.
2814 Any number of arguments, even zero arguments, are allowed.
2815 usage: (list &rest OBJECTS) */)
2816 (ptrdiff_t nargs, Lisp_Object *args)
2817 {
2818 register Lisp_Object val;
2819 val = Qnil;
2820
2821 while (nargs > 0)
2822 {
2823 nargs--;
2824 val = Fcons (args[nargs], val);
2825 }
2826 return val;
2827 }
2828
2829
2830 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2831 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2832 (register Lisp_Object length, Lisp_Object init)
2833 {
2834 register Lisp_Object val;
2835 register EMACS_INT size;
2836
2837 CHECK_NATNUM (length);
2838 size = XFASTINT (length);
2839
2840 val = Qnil;
2841 while (size > 0)
2842 {
2843 val = Fcons (init, val);
2844 --size;
2845
2846 if (size > 0)
2847 {
2848 val = Fcons (init, val);
2849 --size;
2850
2851 if (size > 0)
2852 {
2853 val = Fcons (init, val);
2854 --size;
2855
2856 if (size > 0)
2857 {
2858 val = Fcons (init, val);
2859 --size;
2860
2861 if (size > 0)
2862 {
2863 val = Fcons (init, val);
2864 --size;
2865 }
2866 }
2867 }
2868 }
2869
2870 QUIT;
2871 }
2872
2873 return val;
2874 }
2875
2876
2877 \f
2878 /***********************************************************************
2879 Vector Allocation
2880 ***********************************************************************/
2881
2882 /* This value is balanced well enough to avoid too much internal overhead
2883 for the most common cases; it's not required to be a power of two, but
2884 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2885
2886 #define VECTOR_BLOCK_SIZE 4096
2887
2888 /* Handy constants for vectorlike objects. */
2889 enum
2890 {
2891 header_size = offsetof (struct Lisp_Vector, contents),
2892 word_size = sizeof (Lisp_Object),
2893 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2894 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2895 };
2896
2897 /* ROUNDUP_SIZE must be a power of 2. */
2898 verify ((roundup_size & (roundup_size - 1)) == 0);
2899
2900 /* Verify assumptions described above. */
2901 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2902 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2903
2904 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2905
2906 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2907
2908 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2909
2910 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2911
2912 /* Size of the minimal vector allocated from block. */
2913
2914 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2915
2916 /* Size of the largest vector allocated from block. */
2917
2918 #define VBLOCK_BYTES_MAX \
2919 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2920
2921 /* We maintain one free list for each possible block-allocated
2922 vector size, and this is the number of free lists we have. */
2923
2924 #define VECTOR_MAX_FREE_LIST_INDEX \
2925 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2926
2927 /* Common shortcut to advance vector pointer over a block data. */
2928
2929 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2930
2931 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2932
2933 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2934
2935 /* Common shortcut to setup vector on a free list. */
2936
2937 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2938 do { \
2939 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2940 eassert ((nbytes) % roundup_size == 0); \
2941 (index) = VINDEX (nbytes); \
2942 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2943 (v)->header.next.vector = vector_free_lists[index]; \
2944 vector_free_lists[index] = (v); \
2945 } while (0)
2946
2947 struct vector_block
2948 {
2949 char data[VECTOR_BLOCK_BYTES];
2950 struct vector_block *next;
2951 };
2952
2953 /* Chain of vector blocks. */
2954
2955 static struct vector_block *vector_blocks;
2956
2957 /* Vector free lists, where NTH item points to a chain of free
2958 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2959
2960 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2961
2962 /* Singly-linked list of large vectors. */
2963
2964 static struct Lisp_Vector *large_vectors;
2965
2966 /* The only vector with 0 slots, allocated from pure space. */
2967
2968 static struct Lisp_Vector *zero_vector;
2969
2970 /* Get a new vector block. */
2971
2972 static struct vector_block *
2973 allocate_vector_block (void)
2974 {
2975 struct vector_block *block = xmalloc (sizeof (struct vector_block));
2976
2977 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2978 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2979 MEM_TYPE_VECTOR_BLOCK);
2980 #endif
2981
2982 block->next = vector_blocks;
2983 vector_blocks = block;
2984 return block;
2985 }
2986
2987 /* Called once to initialize vector allocation. */
2988
2989 static void
2990 init_vectors (void)
2991 {
2992 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
2993 zero_vector->header.size = 0;
2994 }
2995
2996 /* Allocate vector from a vector block. */
2997
2998 static struct Lisp_Vector *
2999 allocate_vector_from_block (size_t nbytes)
3000 {
3001 struct Lisp_Vector *vector, *rest;
3002 struct vector_block *block;
3003 size_t index, restbytes;
3004
3005 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3006 eassert (nbytes % roundup_size == 0);
3007
3008 /* First, try to allocate from a free list
3009 containing vectors of the requested size. */
3010 index = VINDEX (nbytes);
3011 if (vector_free_lists[index])
3012 {
3013 vector = vector_free_lists[index];
3014 vector_free_lists[index] = vector->header.next.vector;
3015 vector->header.next.nbytes = nbytes;
3016 return vector;
3017 }
3018
3019 /* Next, check free lists containing larger vectors. Since
3020 we will split the result, we should have remaining space
3021 large enough to use for one-slot vector at least. */
3022 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3023 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3024 if (vector_free_lists[index])
3025 {
3026 /* This vector is larger than requested. */
3027 vector = vector_free_lists[index];
3028 vector_free_lists[index] = vector->header.next.vector;
3029 vector->header.next.nbytes = nbytes;
3030
3031 /* Excess bytes are used for the smaller vector,
3032 which should be set on an appropriate free list. */
3033 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3034 eassert (restbytes % roundup_size == 0);
3035 rest = ADVANCE (vector, nbytes);
3036 SETUP_ON_FREE_LIST (rest, restbytes, index);
3037 return vector;
3038 }
3039
3040 /* Finally, need a new vector block. */
3041 block = allocate_vector_block ();
3042
3043 /* New vector will be at the beginning of this block. */
3044 vector = (struct Lisp_Vector *) block->data;
3045 vector->header.next.nbytes = nbytes;
3046
3047 /* If the rest of space from this block is large enough
3048 for one-slot vector at least, set up it on a free list. */
3049 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3050 if (restbytes >= VBLOCK_BYTES_MIN)
3051 {
3052 eassert (restbytes % roundup_size == 0);
3053 rest = ADVANCE (vector, nbytes);
3054 SETUP_ON_FREE_LIST (rest, restbytes, index);
3055 }
3056 return vector;
3057 }
3058
3059 /* Return how many Lisp_Objects can be stored in V. */
3060
3061 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3062 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3063 (v)->header.size)
3064
3065 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3066
3067 #define VECTOR_IN_BLOCK(vector, block) \
3068 ((char *) (vector) <= (block)->data \
3069 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3070
3071 /* Number of bytes used by vector-block-allocated object. This is the only
3072 place where we actually use the `nbytes' field of the vector-header.
3073 I.e. we could get rid of the `nbytes' field by computing it based on the
3074 vector-type. */
3075
3076 #define PSEUDOVECTOR_NBYTES(vector) \
3077 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3078 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3079 : vector->header.next.nbytes)
3080
3081 /* Reclaim space used by unmarked vectors. */
3082
3083 static void
3084 sweep_vectors (void)
3085 {
3086 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3087 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3088
3089 total_vector_size = 0;
3090 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3091
3092 /* Looking through vector blocks. */
3093
3094 for (block = vector_blocks; block; block = *bprev)
3095 {
3096 int free_this_block = 0;
3097
3098 for (vector = (struct Lisp_Vector *) block->data;
3099 VECTOR_IN_BLOCK (vector, block); vector = next)
3100 {
3101 if (VECTOR_MARKED_P (vector))
3102 {
3103 VECTOR_UNMARK (vector);
3104 total_vector_size += VECTOR_SIZE (vector);
3105 next = ADVANCE (vector, vector->header.next.nbytes);
3106 }
3107 else
3108 {
3109 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3110 ptrdiff_t total_bytes = nbytes;
3111
3112 next = ADVANCE (vector, nbytes);
3113
3114 /* While NEXT is not marked, try to coalesce with VECTOR,
3115 thus making VECTOR of the largest possible size. */
3116
3117 while (VECTOR_IN_BLOCK (next, block))
3118 {
3119 if (VECTOR_MARKED_P (next))
3120 break;
3121 nbytes = PSEUDOVECTOR_NBYTES (next);
3122 total_bytes += nbytes;
3123 next = ADVANCE (next, nbytes);
3124 }
3125
3126 eassert (total_bytes % roundup_size == 0);
3127
3128 if (vector == (struct Lisp_Vector *) block->data
3129 && !VECTOR_IN_BLOCK (next, block))
3130 /* This block should be freed because all of it's
3131 space was coalesced into the only free vector. */
3132 free_this_block = 1;
3133 else
3134 {
3135 int tmp;
3136 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3137 }
3138 }
3139 }
3140
3141 if (free_this_block)
3142 {
3143 *bprev = block->next;
3144 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3145 mem_delete (mem_find (block->data));
3146 #endif
3147 xfree (block);
3148 }
3149 else
3150 bprev = &block->next;
3151 }
3152
3153 /* Sweep large vectors. */
3154
3155 for (vector = large_vectors; vector; vector = *vprev)
3156 {
3157 if (VECTOR_MARKED_P (vector))
3158 {
3159 VECTOR_UNMARK (vector);
3160 total_vector_size += VECTOR_SIZE (vector);
3161 vprev = &vector->header.next.vector;
3162 }
3163 else
3164 {
3165 *vprev = vector->header.next.vector;
3166 lisp_free (vector);
3167 }
3168 }
3169 }
3170
3171 /* Value is a pointer to a newly allocated Lisp_Vector structure
3172 with room for LEN Lisp_Objects. */
3173
3174 static struct Lisp_Vector *
3175 allocate_vectorlike (ptrdiff_t len)
3176 {
3177 struct Lisp_Vector *p;
3178
3179 MALLOC_BLOCK_INPUT;
3180
3181 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3182 /* eassert (!handling_signal); */
3183
3184 if (len == 0)
3185 p = zero_vector;
3186 else
3187 {
3188 size_t nbytes = header_size + len * word_size;
3189
3190 #ifdef DOUG_LEA_MALLOC
3191 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3192 because mapped region contents are not preserved in
3193 a dumped Emacs. */
3194 mallopt (M_MMAP_MAX, 0);
3195 #endif
3196
3197 if (nbytes <= VBLOCK_BYTES_MAX)
3198 p = allocate_vector_from_block (vroundup (nbytes));
3199 else
3200 {
3201 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3202 p->header.next.vector = large_vectors;
3203 large_vectors = p;
3204 }
3205
3206 #ifdef DOUG_LEA_MALLOC
3207 /* Back to a reasonable maximum of mmap'ed areas. */
3208 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3209 #endif
3210
3211 consing_since_gc += nbytes;
3212 vector_cells_consed += len;
3213 }
3214
3215 MALLOC_UNBLOCK_INPUT;
3216
3217 return p;
3218 }
3219
3220
3221 /* Allocate a vector with LEN slots. */
3222
3223 struct Lisp_Vector *
3224 allocate_vector (EMACS_INT len)
3225 {
3226 struct Lisp_Vector *v;
3227 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3228
3229 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3230 memory_full (SIZE_MAX);
3231 v = allocate_vectorlike (len);
3232 v->header.size = len;
3233 return v;
3234 }
3235
3236
3237 /* Allocate other vector-like structures. */
3238
3239 struct Lisp_Vector *
3240 allocate_pseudovector (int memlen, int lisplen, int tag)
3241 {
3242 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3243 int i;
3244
3245 /* Only the first lisplen slots will be traced normally by the GC. */
3246 for (i = 0; i < lisplen; ++i)
3247 v->contents[i] = Qnil;
3248
3249 XSETPVECTYPESIZE (v, tag, lisplen);
3250 return v;
3251 }
3252
3253 struct buffer *
3254 allocate_buffer (void)
3255 {
3256 struct buffer *b = lisp_malloc (sizeof (struct buffer), MEM_TYPE_BUFFER);
3257
3258 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3259 - header_size) / word_size);
3260 /* Note that the fields of B are not initialized. */
3261 return b;
3262 }
3263
3264 struct Lisp_Hash_Table *
3265 allocate_hash_table (void)
3266 {
3267 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3268 }
3269
3270 struct window *
3271 allocate_window (void)
3272 {
3273 struct window *w;
3274
3275 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3276 /* Users assumes that non-Lisp data is zeroed. */
3277 memset (&w->current_matrix, 0,
3278 sizeof (*w) - offsetof (struct window, current_matrix));
3279 return w;
3280 }
3281
3282 struct terminal *
3283 allocate_terminal (void)
3284 {
3285 struct terminal *t;
3286
3287 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3288 /* Users assumes that non-Lisp data is zeroed. */
3289 memset (&t->next_terminal, 0,
3290 sizeof (*t) - offsetof (struct terminal, next_terminal));
3291 return t;
3292 }
3293
3294 struct frame *
3295 allocate_frame (void)
3296 {
3297 struct frame *f;
3298
3299 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3300 /* Users assumes that non-Lisp data is zeroed. */
3301 memset (&f->face_cache, 0,
3302 sizeof (*f) - offsetof (struct frame, face_cache));
3303 return f;
3304 }
3305
3306 struct Lisp_Process *
3307 allocate_process (void)
3308 {
3309 struct Lisp_Process *p;
3310
3311 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3312 /* Users assumes that non-Lisp data is zeroed. */
3313 memset (&p->pid, 0,
3314 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3315 return p;
3316 }
3317
3318 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3319 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3320 See also the function `vector'. */)
3321 (register Lisp_Object length, Lisp_Object init)
3322 {
3323 Lisp_Object vector;
3324 register ptrdiff_t sizei;
3325 register ptrdiff_t i;
3326 register struct Lisp_Vector *p;
3327
3328 CHECK_NATNUM (length);
3329
3330 p = allocate_vector (XFASTINT (length));
3331 sizei = XFASTINT (length);
3332 for (i = 0; i < sizei; i++)
3333 p->contents[i] = init;
3334
3335 XSETVECTOR (vector, p);
3336 return vector;
3337 }
3338
3339
3340 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3341 doc: /* Return a newly created vector with specified arguments as elements.
3342 Any number of arguments, even zero arguments, are allowed.
3343 usage: (vector &rest OBJECTS) */)
3344 (ptrdiff_t nargs, Lisp_Object *args)
3345 {
3346 register Lisp_Object len, val;
3347 ptrdiff_t i;
3348 register struct Lisp_Vector *p;
3349
3350 XSETFASTINT (len, nargs);
3351 val = Fmake_vector (len, Qnil);
3352 p = XVECTOR (val);
3353 for (i = 0; i < nargs; i++)
3354 p->contents[i] = args[i];
3355 return val;
3356 }
3357
3358 void
3359 make_byte_code (struct Lisp_Vector *v)
3360 {
3361 if (v->header.size > 1 && STRINGP (v->contents[1])
3362 && STRING_MULTIBYTE (v->contents[1]))
3363 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3364 earlier because they produced a raw 8-bit string for byte-code
3365 and now such a byte-code string is loaded as multibyte while
3366 raw 8-bit characters converted to multibyte form. Thus, now we
3367 must convert them back to the original unibyte form. */
3368 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3369 XSETPVECTYPE (v, PVEC_COMPILED);
3370 }
3371
3372 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3373 doc: /* Create a byte-code object with specified arguments as elements.
3374 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3375 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3376 and (optional) INTERACTIVE-SPEC.
3377 The first four arguments are required; at most six have any
3378 significance.
3379 The ARGLIST can be either like the one of `lambda', in which case the arguments
3380 will be dynamically bound before executing the byte code, or it can be an
3381 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3382 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3383 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3384 argument to catch the left-over arguments. If such an integer is used, the
3385 arguments will not be dynamically bound but will be instead pushed on the
3386 stack before executing the byte-code.
3387 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3388 (ptrdiff_t nargs, Lisp_Object *args)
3389 {
3390 register Lisp_Object len, val;
3391 ptrdiff_t i;
3392 register struct Lisp_Vector *p;
3393
3394 /* We used to purecopy everything here, if purify-flga was set. This worked
3395 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3396 dangerous, since make-byte-code is used during execution to build
3397 closures, so any closure built during the preload phase would end up
3398 copied into pure space, including its free variables, which is sometimes
3399 just wasteful and other times plainly wrong (e.g. those free vars may want
3400 to be setcar'd). */
3401
3402 XSETFASTINT (len, nargs);
3403 val = Fmake_vector (len, Qnil);
3404
3405 p = XVECTOR (val);
3406 for (i = 0; i < nargs; i++)
3407 p->contents[i] = args[i];
3408 make_byte_code (p);
3409 XSETCOMPILED (val, p);
3410 return val;
3411 }
3412
3413
3414 \f
3415 /***********************************************************************
3416 Symbol Allocation
3417 ***********************************************************************/
3418
3419 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3420 of the required alignment if LSB tags are used. */
3421
3422 union aligned_Lisp_Symbol
3423 {
3424 struct Lisp_Symbol s;
3425 #if USE_LSB_TAG
3426 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3427 & -(1 << GCTYPEBITS)];
3428 #endif
3429 };
3430
3431 /* Each symbol_block is just under 1020 bytes long, since malloc
3432 really allocates in units of powers of two and uses 4 bytes for its
3433 own overhead. */
3434
3435 #define SYMBOL_BLOCK_SIZE \
3436 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3437
3438 struct symbol_block
3439 {
3440 /* Place `symbols' first, to preserve alignment. */
3441 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3442 struct symbol_block *next;
3443 };
3444
3445 /* Current symbol block and index of first unused Lisp_Symbol
3446 structure in it. */
3447
3448 static struct symbol_block *symbol_block;
3449 static int symbol_block_index;
3450
3451 /* List of free symbols. */
3452
3453 static struct Lisp_Symbol *symbol_free_list;
3454
3455
3456 /* Initialize symbol allocation. */
3457
3458 static void
3459 init_symbol (void)
3460 {
3461 symbol_block = NULL;
3462 symbol_block_index = SYMBOL_BLOCK_SIZE;
3463 symbol_free_list = 0;
3464 }
3465
3466
3467 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3468 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3469 Its value and function definition are void, and its property list is nil. */)
3470 (Lisp_Object name)
3471 {
3472 register Lisp_Object val;
3473 register struct Lisp_Symbol *p;
3474
3475 CHECK_STRING (name);
3476
3477 /* eassert (!handling_signal); */
3478
3479 MALLOC_BLOCK_INPUT;
3480
3481 if (symbol_free_list)
3482 {
3483 XSETSYMBOL (val, symbol_free_list);
3484 symbol_free_list = symbol_free_list->next;
3485 }
3486 else
3487 {
3488 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3489 {
3490 struct symbol_block *new;
3491 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3492 MEM_TYPE_SYMBOL);
3493 new->next = symbol_block;
3494 symbol_block = new;
3495 symbol_block_index = 0;
3496 }
3497 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3498 symbol_block_index++;
3499 }
3500
3501 MALLOC_UNBLOCK_INPUT;
3502
3503 p = XSYMBOL (val);
3504 p->xname = name;
3505 p->plist = Qnil;
3506 p->redirect = SYMBOL_PLAINVAL;
3507 SET_SYMBOL_VAL (p, Qunbound);
3508 p->function = Qunbound;
3509 p->next = NULL;
3510 p->gcmarkbit = 0;
3511 p->interned = SYMBOL_UNINTERNED;
3512 p->constant = 0;
3513 p->declared_special = 0;
3514 consing_since_gc += sizeof (struct Lisp_Symbol);
3515 symbols_consed++;
3516 return val;
3517 }
3518
3519
3520 \f
3521 /***********************************************************************
3522 Marker (Misc) Allocation
3523 ***********************************************************************/
3524
3525 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3526 the required alignment when LSB tags are used. */
3527
3528 union aligned_Lisp_Misc
3529 {
3530 union Lisp_Misc m;
3531 #if USE_LSB_TAG
3532 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3533 & -(1 << GCTYPEBITS)];
3534 #endif
3535 };
3536
3537 /* Allocation of markers and other objects that share that structure.
3538 Works like allocation of conses. */
3539
3540 #define MARKER_BLOCK_SIZE \
3541 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3542
3543 struct marker_block
3544 {
3545 /* Place `markers' first, to preserve alignment. */
3546 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3547 struct marker_block *next;
3548 };
3549
3550 static struct marker_block *marker_block;
3551 static int marker_block_index;
3552
3553 static union Lisp_Misc *marker_free_list;
3554
3555 static void
3556 init_marker (void)
3557 {
3558 marker_block = NULL;
3559 marker_block_index = MARKER_BLOCK_SIZE;
3560 marker_free_list = 0;
3561 }
3562
3563 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3564
3565 Lisp_Object
3566 allocate_misc (void)
3567 {
3568 Lisp_Object val;
3569
3570 /* eassert (!handling_signal); */
3571
3572 MALLOC_BLOCK_INPUT;
3573
3574 if (marker_free_list)
3575 {
3576 XSETMISC (val, marker_free_list);
3577 marker_free_list = marker_free_list->u_free.chain;
3578 }
3579 else
3580 {
3581 if (marker_block_index == MARKER_BLOCK_SIZE)
3582 {
3583 struct marker_block *new;
3584 new = (struct marker_block *) lisp_malloc (sizeof *new,
3585 MEM_TYPE_MISC);
3586 new->next = marker_block;
3587 marker_block = new;
3588 marker_block_index = 0;
3589 total_free_markers += MARKER_BLOCK_SIZE;
3590 }
3591 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3592 marker_block_index++;
3593 }
3594
3595 MALLOC_UNBLOCK_INPUT;
3596
3597 --total_free_markers;
3598 consing_since_gc += sizeof (union Lisp_Misc);
3599 misc_objects_consed++;
3600 XMISCANY (val)->gcmarkbit = 0;
3601 return val;
3602 }
3603
3604 /* Free a Lisp_Misc object */
3605
3606 static void
3607 free_misc (Lisp_Object misc)
3608 {
3609 XMISCTYPE (misc) = Lisp_Misc_Free;
3610 XMISC (misc)->u_free.chain = marker_free_list;
3611 marker_free_list = XMISC (misc);
3612
3613 total_free_markers++;
3614 }
3615
3616 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3617 INTEGER. This is used to package C values to call record_unwind_protect.
3618 The unwind function can get the C values back using XSAVE_VALUE. */
3619
3620 Lisp_Object
3621 make_save_value (void *pointer, ptrdiff_t integer)
3622 {
3623 register Lisp_Object val;
3624 register struct Lisp_Save_Value *p;
3625
3626 val = allocate_misc ();
3627 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3628 p = XSAVE_VALUE (val);
3629 p->pointer = pointer;
3630 p->integer = integer;
3631 p->dogc = 0;
3632 return val;
3633 }
3634
3635 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3636 doc: /* Return a newly allocated marker which does not point at any place. */)
3637 (void)
3638 {
3639 register Lisp_Object val;
3640 register struct Lisp_Marker *p;
3641
3642 val = allocate_misc ();
3643 XMISCTYPE (val) = Lisp_Misc_Marker;
3644 p = XMARKER (val);
3645 p->buffer = 0;
3646 p->bytepos = 0;
3647 p->charpos = 0;
3648 p->next = NULL;
3649 p->insertion_type = 0;
3650 return val;
3651 }
3652
3653 /* Put MARKER back on the free list after using it temporarily. */
3654
3655 void
3656 free_marker (Lisp_Object marker)
3657 {
3658 unchain_marker (XMARKER (marker));
3659 free_misc (marker);
3660 }
3661
3662 \f
3663 /* Return a newly created vector or string with specified arguments as
3664 elements. If all the arguments are characters that can fit
3665 in a string of events, make a string; otherwise, make a vector.
3666
3667 Any number of arguments, even zero arguments, are allowed. */
3668
3669 Lisp_Object
3670 make_event_array (register int nargs, Lisp_Object *args)
3671 {
3672 int i;
3673
3674 for (i = 0; i < nargs; i++)
3675 /* The things that fit in a string
3676 are characters that are in 0...127,
3677 after discarding the meta bit and all the bits above it. */
3678 if (!INTEGERP (args[i])
3679 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3680 return Fvector (nargs, args);
3681
3682 /* Since the loop exited, we know that all the things in it are
3683 characters, so we can make a string. */
3684 {
3685 Lisp_Object result;
3686
3687 result = Fmake_string (make_number (nargs), make_number (0));
3688 for (i = 0; i < nargs; i++)
3689 {
3690 SSET (result, i, XINT (args[i]));
3691 /* Move the meta bit to the right place for a string char. */
3692 if (XINT (args[i]) & CHAR_META)
3693 SSET (result, i, SREF (result, i) | 0x80);
3694 }
3695
3696 return result;
3697 }
3698 }
3699
3700
3701 \f
3702 /************************************************************************
3703 Memory Full Handling
3704 ************************************************************************/
3705
3706
3707 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3708 there may have been size_t overflow so that malloc was never
3709 called, or perhaps malloc was invoked successfully but the
3710 resulting pointer had problems fitting into a tagged EMACS_INT. In
3711 either case this counts as memory being full even though malloc did
3712 not fail. */
3713
3714 void
3715 memory_full (size_t nbytes)
3716 {
3717 /* Do not go into hysterics merely because a large request failed. */
3718 int enough_free_memory = 0;
3719 if (SPARE_MEMORY < nbytes)
3720 {
3721 void *p;
3722
3723 MALLOC_BLOCK_INPUT;
3724 p = malloc (SPARE_MEMORY);
3725 if (p)
3726 {
3727 free (p);
3728 enough_free_memory = 1;
3729 }
3730 MALLOC_UNBLOCK_INPUT;
3731 }
3732
3733 if (! enough_free_memory)
3734 {
3735 int i;
3736
3737 Vmemory_full = Qt;
3738
3739 memory_full_cons_threshold = sizeof (struct cons_block);
3740
3741 /* The first time we get here, free the spare memory. */
3742 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3743 if (spare_memory[i])
3744 {
3745 if (i == 0)
3746 free (spare_memory[i]);
3747 else if (i >= 1 && i <= 4)
3748 lisp_align_free (spare_memory[i]);
3749 else
3750 lisp_free (spare_memory[i]);
3751 spare_memory[i] = 0;
3752 }
3753
3754 /* Record the space now used. When it decreases substantially,
3755 we can refill the memory reserve. */
3756 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3757 bytes_used_when_full = BYTES_USED;
3758 #endif
3759 }
3760
3761 /* This used to call error, but if we've run out of memory, we could
3762 get infinite recursion trying to build the string. */
3763 xsignal (Qnil, Vmemory_signal_data);
3764 }
3765
3766 /* If we released our reserve (due to running out of memory),
3767 and we have a fair amount free once again,
3768 try to set aside another reserve in case we run out once more.
3769
3770 This is called when a relocatable block is freed in ralloc.c,
3771 and also directly from this file, in case we're not using ralloc.c. */
3772
3773 void
3774 refill_memory_reserve (void)
3775 {
3776 #ifndef SYSTEM_MALLOC
3777 if (spare_memory[0] == 0)
3778 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3779 if (spare_memory[1] == 0)
3780 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3781 MEM_TYPE_CONS);
3782 if (spare_memory[2] == 0)
3783 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3784 MEM_TYPE_CONS);
3785 if (spare_memory[3] == 0)
3786 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3787 MEM_TYPE_CONS);
3788 if (spare_memory[4] == 0)
3789 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3790 MEM_TYPE_CONS);
3791 if (spare_memory[5] == 0)
3792 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3793 MEM_TYPE_STRING);
3794 if (spare_memory[6] == 0)
3795 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3796 MEM_TYPE_STRING);
3797 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3798 Vmemory_full = Qnil;
3799 #endif
3800 }
3801 \f
3802 /************************************************************************
3803 C Stack Marking
3804 ************************************************************************/
3805
3806 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3807
3808 /* Conservative C stack marking requires a method to identify possibly
3809 live Lisp objects given a pointer value. We do this by keeping
3810 track of blocks of Lisp data that are allocated in a red-black tree
3811 (see also the comment of mem_node which is the type of nodes in
3812 that tree). Function lisp_malloc adds information for an allocated
3813 block to the red-black tree with calls to mem_insert, and function
3814 lisp_free removes it with mem_delete. Functions live_string_p etc
3815 call mem_find to lookup information about a given pointer in the
3816 tree, and use that to determine if the pointer points to a Lisp
3817 object or not. */
3818
3819 /* Initialize this part of alloc.c. */
3820
3821 static void
3822 mem_init (void)
3823 {
3824 mem_z.left = mem_z.right = MEM_NIL;
3825 mem_z.parent = NULL;
3826 mem_z.color = MEM_BLACK;
3827 mem_z.start = mem_z.end = NULL;
3828 mem_root = MEM_NIL;
3829 }
3830
3831
3832 /* Value is a pointer to the mem_node containing START. Value is
3833 MEM_NIL if there is no node in the tree containing START. */
3834
3835 static inline struct mem_node *
3836 mem_find (void *start)
3837 {
3838 struct mem_node *p;
3839
3840 if (start < min_heap_address || start > max_heap_address)
3841 return MEM_NIL;
3842
3843 /* Make the search always successful to speed up the loop below. */
3844 mem_z.start = start;
3845 mem_z.end = (char *) start + 1;
3846
3847 p = mem_root;
3848 while (start < p->start || start >= p->end)
3849 p = start < p->start ? p->left : p->right;
3850 return p;
3851 }
3852
3853
3854 /* Insert a new node into the tree for a block of memory with start
3855 address START, end address END, and type TYPE. Value is a
3856 pointer to the node that was inserted. */
3857
3858 static struct mem_node *
3859 mem_insert (void *start, void *end, enum mem_type type)
3860 {
3861 struct mem_node *c, *parent, *x;
3862
3863 if (min_heap_address == NULL || start < min_heap_address)
3864 min_heap_address = start;
3865 if (max_heap_address == NULL || end > max_heap_address)
3866 max_heap_address = end;
3867
3868 /* See where in the tree a node for START belongs. In this
3869 particular application, it shouldn't happen that a node is already
3870 present. For debugging purposes, let's check that. */
3871 c = mem_root;
3872 parent = NULL;
3873
3874 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3875
3876 while (c != MEM_NIL)
3877 {
3878 if (start >= c->start && start < c->end)
3879 abort ();
3880 parent = c;
3881 c = start < c->start ? c->left : c->right;
3882 }
3883
3884 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3885
3886 while (c != MEM_NIL)
3887 {
3888 parent = c;
3889 c = start < c->start ? c->left : c->right;
3890 }
3891
3892 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3893
3894 /* Create a new node. */
3895 #ifdef GC_MALLOC_CHECK
3896 x = (struct mem_node *) _malloc_internal (sizeof *x);
3897 if (x == NULL)
3898 abort ();
3899 #else
3900 x = xmalloc (sizeof *x);
3901 #endif
3902 x->start = start;
3903 x->end = end;
3904 x->type = type;
3905 x->parent = parent;
3906 x->left = x->right = MEM_NIL;
3907 x->color = MEM_RED;
3908
3909 /* Insert it as child of PARENT or install it as root. */
3910 if (parent)
3911 {
3912 if (start < parent->start)
3913 parent->left = x;
3914 else
3915 parent->right = x;
3916 }
3917 else
3918 mem_root = x;
3919
3920 /* Re-establish red-black tree properties. */
3921 mem_insert_fixup (x);
3922
3923 return x;
3924 }
3925
3926
3927 /* Re-establish the red-black properties of the tree, and thereby
3928 balance the tree, after node X has been inserted; X is always red. */
3929
3930 static void
3931 mem_insert_fixup (struct mem_node *x)
3932 {
3933 while (x != mem_root && x->parent->color == MEM_RED)
3934 {
3935 /* X is red and its parent is red. This is a violation of
3936 red-black tree property #3. */
3937
3938 if (x->parent == x->parent->parent->left)
3939 {
3940 /* We're on the left side of our grandparent, and Y is our
3941 "uncle". */
3942 struct mem_node *y = x->parent->parent->right;
3943
3944 if (y->color == MEM_RED)
3945 {
3946 /* Uncle and parent are red but should be black because
3947 X is red. Change the colors accordingly and proceed
3948 with the grandparent. */
3949 x->parent->color = MEM_BLACK;
3950 y->color = MEM_BLACK;
3951 x->parent->parent->color = MEM_RED;
3952 x = x->parent->parent;
3953 }
3954 else
3955 {
3956 /* Parent and uncle have different colors; parent is
3957 red, uncle is black. */
3958 if (x == x->parent->right)
3959 {
3960 x = x->parent;
3961 mem_rotate_left (x);
3962 }
3963
3964 x->parent->color = MEM_BLACK;
3965 x->parent->parent->color = MEM_RED;
3966 mem_rotate_right (x->parent->parent);
3967 }
3968 }
3969 else
3970 {
3971 /* This is the symmetrical case of above. */
3972 struct mem_node *y = x->parent->parent->left;
3973
3974 if (y->color == MEM_RED)
3975 {
3976 x->parent->color = MEM_BLACK;
3977 y->color = MEM_BLACK;
3978 x->parent->parent->color = MEM_RED;
3979 x = x->parent->parent;
3980 }
3981 else
3982 {
3983 if (x == x->parent->left)
3984 {
3985 x = x->parent;
3986 mem_rotate_right (x);
3987 }
3988
3989 x->parent->color = MEM_BLACK;
3990 x->parent->parent->color = MEM_RED;
3991 mem_rotate_left (x->parent->parent);
3992 }
3993 }
3994 }
3995
3996 /* The root may have been changed to red due to the algorithm. Set
3997 it to black so that property #5 is satisfied. */
3998 mem_root->color = MEM_BLACK;
3999 }
4000
4001
4002 /* (x) (y)
4003 / \ / \
4004 a (y) ===> (x) c
4005 / \ / \
4006 b c a b */
4007
4008 static void
4009 mem_rotate_left (struct mem_node *x)
4010 {
4011 struct mem_node *y;
4012
4013 /* Turn y's left sub-tree into x's right sub-tree. */
4014 y = x->right;
4015 x->right = y->left;
4016 if (y->left != MEM_NIL)
4017 y->left->parent = x;
4018
4019 /* Y's parent was x's parent. */
4020 if (y != MEM_NIL)
4021 y->parent = x->parent;
4022
4023 /* Get the parent to point to y instead of x. */
4024 if (x->parent)
4025 {
4026 if (x == x->parent->left)
4027 x->parent->left = y;
4028 else
4029 x->parent->right = y;
4030 }
4031 else
4032 mem_root = y;
4033
4034 /* Put x on y's left. */
4035 y->left = x;
4036 if (x != MEM_NIL)
4037 x->parent = y;
4038 }
4039
4040
4041 /* (x) (Y)
4042 / \ / \
4043 (y) c ===> a (x)
4044 / \ / \
4045 a b b c */
4046
4047 static void
4048 mem_rotate_right (struct mem_node *x)
4049 {
4050 struct mem_node *y = x->left;
4051
4052 x->left = y->right;
4053 if (y->right != MEM_NIL)
4054 y->right->parent = x;
4055
4056 if (y != MEM_NIL)
4057 y->parent = x->parent;
4058 if (x->parent)
4059 {
4060 if (x == x->parent->right)
4061 x->parent->right = y;
4062 else
4063 x->parent->left = y;
4064 }
4065 else
4066 mem_root = y;
4067
4068 y->right = x;
4069 if (x != MEM_NIL)
4070 x->parent = y;
4071 }
4072
4073
4074 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4075
4076 static void
4077 mem_delete (struct mem_node *z)
4078 {
4079 struct mem_node *x, *y;
4080
4081 if (!z || z == MEM_NIL)
4082 return;
4083
4084 if (z->left == MEM_NIL || z->right == MEM_NIL)
4085 y = z;
4086 else
4087 {
4088 y = z->right;
4089 while (y->left != MEM_NIL)
4090 y = y->left;
4091 }
4092
4093 if (y->left != MEM_NIL)
4094 x = y->left;
4095 else
4096 x = y->right;
4097
4098 x->parent = y->parent;
4099 if (y->parent)
4100 {
4101 if (y == y->parent->left)
4102 y->parent->left = x;
4103 else
4104 y->parent->right = x;
4105 }
4106 else
4107 mem_root = x;
4108
4109 if (y != z)
4110 {
4111 z->start = y->start;
4112 z->end = y->end;
4113 z->type = y->type;
4114 }
4115
4116 if (y->color == MEM_BLACK)
4117 mem_delete_fixup (x);
4118
4119 #ifdef GC_MALLOC_CHECK
4120 _free_internal (y);
4121 #else
4122 xfree (y);
4123 #endif
4124 }
4125
4126
4127 /* Re-establish the red-black properties of the tree, after a
4128 deletion. */
4129
4130 static void
4131 mem_delete_fixup (struct mem_node *x)
4132 {
4133 while (x != mem_root && x->color == MEM_BLACK)
4134 {
4135 if (x == x->parent->left)
4136 {
4137 struct mem_node *w = x->parent->right;
4138
4139 if (w->color == MEM_RED)
4140 {
4141 w->color = MEM_BLACK;
4142 x->parent->color = MEM_RED;
4143 mem_rotate_left (x->parent);
4144 w = x->parent->right;
4145 }
4146
4147 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4148 {
4149 w->color = MEM_RED;
4150 x = x->parent;
4151 }
4152 else
4153 {
4154 if (w->right->color == MEM_BLACK)
4155 {
4156 w->left->color = MEM_BLACK;
4157 w->color = MEM_RED;
4158 mem_rotate_right (w);
4159 w = x->parent->right;
4160 }
4161 w->color = x->parent->color;
4162 x->parent->color = MEM_BLACK;
4163 w->right->color = MEM_BLACK;
4164 mem_rotate_left (x->parent);
4165 x = mem_root;
4166 }
4167 }
4168 else
4169 {
4170 struct mem_node *w = x->parent->left;
4171
4172 if (w->color == MEM_RED)
4173 {
4174 w->color = MEM_BLACK;
4175 x->parent->color = MEM_RED;
4176 mem_rotate_right (x->parent);
4177 w = x->parent->left;
4178 }
4179
4180 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4181 {
4182 w->color = MEM_RED;
4183 x = x->parent;
4184 }
4185 else
4186 {
4187 if (w->left->color == MEM_BLACK)
4188 {
4189 w->right->color = MEM_BLACK;
4190 w->color = MEM_RED;
4191 mem_rotate_left (w);
4192 w = x->parent->left;
4193 }
4194
4195 w->color = x->parent->color;
4196 x->parent->color = MEM_BLACK;
4197 w->left->color = MEM_BLACK;
4198 mem_rotate_right (x->parent);
4199 x = mem_root;
4200 }
4201 }
4202 }
4203
4204 x->color = MEM_BLACK;
4205 }
4206
4207
4208 /* Value is non-zero if P is a pointer to a live Lisp string on
4209 the heap. M is a pointer to the mem_block for P. */
4210
4211 static inline int
4212 live_string_p (struct mem_node *m, void *p)
4213 {
4214 if (m->type == MEM_TYPE_STRING)
4215 {
4216 struct string_block *b = (struct string_block *) m->start;
4217 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4218
4219 /* P must point to the start of a Lisp_String structure, and it
4220 must not be on the free-list. */
4221 return (offset >= 0
4222 && offset % sizeof b->strings[0] == 0
4223 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4224 && ((struct Lisp_String *) p)->data != NULL);
4225 }
4226 else
4227 return 0;
4228 }
4229
4230
4231 /* Value is non-zero if P is a pointer to a live Lisp cons on
4232 the heap. M is a pointer to the mem_block for P. */
4233
4234 static inline int
4235 live_cons_p (struct mem_node *m, void *p)
4236 {
4237 if (m->type == MEM_TYPE_CONS)
4238 {
4239 struct cons_block *b = (struct cons_block *) m->start;
4240 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4241
4242 /* P must point to the start of a Lisp_Cons, not be
4243 one of the unused cells in the current cons block,
4244 and not be on the free-list. */
4245 return (offset >= 0
4246 && offset % sizeof b->conses[0] == 0
4247 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4248 && (b != cons_block
4249 || offset / sizeof b->conses[0] < cons_block_index)
4250 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4251 }
4252 else
4253 return 0;
4254 }
4255
4256
4257 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4258 the heap. M is a pointer to the mem_block for P. */
4259
4260 static inline int
4261 live_symbol_p (struct mem_node *m, void *p)
4262 {
4263 if (m->type == MEM_TYPE_SYMBOL)
4264 {
4265 struct symbol_block *b = (struct symbol_block *) m->start;
4266 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4267
4268 /* P must point to the start of a Lisp_Symbol, not be
4269 one of the unused cells in the current symbol block,
4270 and not be on the free-list. */
4271 return (offset >= 0
4272 && offset % sizeof b->symbols[0] == 0
4273 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4274 && (b != symbol_block
4275 || offset / sizeof b->symbols[0] < symbol_block_index)
4276 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4277 }
4278 else
4279 return 0;
4280 }
4281
4282
4283 /* Value is non-zero if P is a pointer to a live Lisp float on
4284 the heap. M is a pointer to the mem_block for P. */
4285
4286 static inline int
4287 live_float_p (struct mem_node *m, void *p)
4288 {
4289 if (m->type == MEM_TYPE_FLOAT)
4290 {
4291 struct float_block *b = (struct float_block *) m->start;
4292 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4293
4294 /* P must point to the start of a Lisp_Float and not be
4295 one of the unused cells in the current float block. */
4296 return (offset >= 0
4297 && offset % sizeof b->floats[0] == 0
4298 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4299 && (b != float_block
4300 || offset / sizeof b->floats[0] < float_block_index));
4301 }
4302 else
4303 return 0;
4304 }
4305
4306
4307 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4308 the heap. M is a pointer to the mem_block for P. */
4309
4310 static inline int
4311 live_misc_p (struct mem_node *m, void *p)
4312 {
4313 if (m->type == MEM_TYPE_MISC)
4314 {
4315 struct marker_block *b = (struct marker_block *) m->start;
4316 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4317
4318 /* P must point to the start of a Lisp_Misc, not be
4319 one of the unused cells in the current misc block,
4320 and not be on the free-list. */
4321 return (offset >= 0
4322 && offset % sizeof b->markers[0] == 0
4323 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4324 && (b != marker_block
4325 || offset / sizeof b->markers[0] < marker_block_index)
4326 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4327 }
4328 else
4329 return 0;
4330 }
4331
4332
4333 /* Value is non-zero if P is a pointer to a live vector-like object.
4334 M is a pointer to the mem_block for P. */
4335
4336 static inline int
4337 live_vector_p (struct mem_node *m, void *p)
4338 {
4339 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4340 {
4341 /* This memory node corresponds to a vector block. */
4342 struct vector_block *block = (struct vector_block *) m->start;
4343 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4344
4345 /* P is in the block's allocation range. Scan the block
4346 up to P and see whether P points to the start of some
4347 vector which is not on a free list. FIXME: check whether
4348 some allocation patterns (probably a lot of short vectors)
4349 may cause a substantial overhead of this loop. */
4350 while (VECTOR_IN_BLOCK (vector, block)
4351 && vector <= (struct Lisp_Vector *) p)
4352 {
4353 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4354 vector = ADVANCE (vector, (vector->header.size
4355 & PSEUDOVECTOR_SIZE_MASK));
4356 else if (vector == p)
4357 return 1;
4358 else
4359 vector = ADVANCE (vector, vector->header.next.nbytes);
4360 }
4361 }
4362 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4363 /* This memory node corresponds to a large vector. */
4364 return 1;
4365 return 0;
4366 }
4367
4368
4369 /* Value is non-zero if P is a pointer to a live buffer. M is a
4370 pointer to the mem_block for P. */
4371
4372 static inline int
4373 live_buffer_p (struct mem_node *m, void *p)
4374 {
4375 /* P must point to the start of the block, and the buffer
4376 must not have been killed. */
4377 return (m->type == MEM_TYPE_BUFFER
4378 && p == m->start
4379 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4380 }
4381
4382 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4383
4384 #if GC_MARK_STACK
4385
4386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4387
4388 /* Array of objects that are kept alive because the C stack contains
4389 a pattern that looks like a reference to them . */
4390
4391 #define MAX_ZOMBIES 10
4392 static Lisp_Object zombies[MAX_ZOMBIES];
4393
4394 /* Number of zombie objects. */
4395
4396 static EMACS_INT nzombies;
4397
4398 /* Number of garbage collections. */
4399
4400 static EMACS_INT ngcs;
4401
4402 /* Average percentage of zombies per collection. */
4403
4404 static double avg_zombies;
4405
4406 /* Max. number of live and zombie objects. */
4407
4408 static EMACS_INT max_live, max_zombies;
4409
4410 /* Average number of live objects per GC. */
4411
4412 static double avg_live;
4413
4414 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4415 doc: /* Show information about live and zombie objects. */)
4416 (void)
4417 {
4418 Lisp_Object args[8], zombie_list = Qnil;
4419 EMACS_INT i;
4420 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4421 zombie_list = Fcons (zombies[i], zombie_list);
4422 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4423 args[1] = make_number (ngcs);
4424 args[2] = make_float (avg_live);
4425 args[3] = make_float (avg_zombies);
4426 args[4] = make_float (avg_zombies / avg_live / 100);
4427 args[5] = make_number (max_live);
4428 args[6] = make_number (max_zombies);
4429 args[7] = zombie_list;
4430 return Fmessage (8, args);
4431 }
4432
4433 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4434
4435
4436 /* Mark OBJ if we can prove it's a Lisp_Object. */
4437
4438 static inline void
4439 mark_maybe_object (Lisp_Object obj)
4440 {
4441 void *po;
4442 struct mem_node *m;
4443
4444 if (INTEGERP (obj))
4445 return;
4446
4447 po = (void *) XPNTR (obj);
4448 m = mem_find (po);
4449
4450 if (m != MEM_NIL)
4451 {
4452 int mark_p = 0;
4453
4454 switch (XTYPE (obj))
4455 {
4456 case Lisp_String:
4457 mark_p = (live_string_p (m, po)
4458 && !STRING_MARKED_P ((struct Lisp_String *) po));
4459 break;
4460
4461 case Lisp_Cons:
4462 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4463 break;
4464
4465 case Lisp_Symbol:
4466 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4467 break;
4468
4469 case Lisp_Float:
4470 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4471 break;
4472
4473 case Lisp_Vectorlike:
4474 /* Note: can't check BUFFERP before we know it's a
4475 buffer because checking that dereferences the pointer
4476 PO which might point anywhere. */
4477 if (live_vector_p (m, po))
4478 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4479 else if (live_buffer_p (m, po))
4480 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4481 break;
4482
4483 case Lisp_Misc:
4484 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4485 break;
4486
4487 default:
4488 break;
4489 }
4490
4491 if (mark_p)
4492 {
4493 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4494 if (nzombies < MAX_ZOMBIES)
4495 zombies[nzombies] = obj;
4496 ++nzombies;
4497 #endif
4498 mark_object (obj);
4499 }
4500 }
4501 }
4502
4503
4504 /* If P points to Lisp data, mark that as live if it isn't already
4505 marked. */
4506
4507 static inline void
4508 mark_maybe_pointer (void *p)
4509 {
4510 struct mem_node *m;
4511
4512 /* Quickly rule out some values which can't point to Lisp data.
4513 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4514 Otherwise, assume that Lisp data is aligned on even addresses. */
4515 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4516 return;
4517
4518 m = mem_find (p);
4519 if (m != MEM_NIL)
4520 {
4521 Lisp_Object obj = Qnil;
4522
4523 switch (m->type)
4524 {
4525 case MEM_TYPE_NON_LISP:
4526 /* Nothing to do; not a pointer to Lisp memory. */
4527 break;
4528
4529 case MEM_TYPE_BUFFER:
4530 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4531 XSETVECTOR (obj, p);
4532 break;
4533
4534 case MEM_TYPE_CONS:
4535 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4536 XSETCONS (obj, p);
4537 break;
4538
4539 case MEM_TYPE_STRING:
4540 if (live_string_p (m, p)
4541 && !STRING_MARKED_P ((struct Lisp_String *) p))
4542 XSETSTRING (obj, p);
4543 break;
4544
4545 case MEM_TYPE_MISC:
4546 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4547 XSETMISC (obj, p);
4548 break;
4549
4550 case MEM_TYPE_SYMBOL:
4551 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4552 XSETSYMBOL (obj, p);
4553 break;
4554
4555 case MEM_TYPE_FLOAT:
4556 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4557 XSETFLOAT (obj, p);
4558 break;
4559
4560 case MEM_TYPE_VECTORLIKE:
4561 case MEM_TYPE_VECTOR_BLOCK:
4562 if (live_vector_p (m, p))
4563 {
4564 Lisp_Object tem;
4565 XSETVECTOR (tem, p);
4566 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4567 obj = tem;
4568 }
4569 break;
4570
4571 default:
4572 abort ();
4573 }
4574
4575 if (!NILP (obj))
4576 mark_object (obj);
4577 }
4578 }
4579
4580
4581 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4582 a smaller alignment than GCC's __alignof__ and mark_memory might
4583 miss objects if __alignof__ were used. */
4584 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4585
4586 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4587 not suffice, which is the typical case. A host where a Lisp_Object is
4588 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4589 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4590 suffice to widen it to to a Lisp_Object and check it that way. */
4591 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4592 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4593 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4594 nor mark_maybe_object can follow the pointers. This should not occur on
4595 any practical porting target. */
4596 # error "MSB type bits straddle pointer-word boundaries"
4597 # endif
4598 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4599 pointer words that hold pointers ORed with type bits. */
4600 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4601 #else
4602 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4603 words that hold unmodified pointers. */
4604 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4605 #endif
4606
4607 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4608 or END+OFFSET..START. */
4609
4610 static void
4611 mark_memory (void *start, void *end)
4612 #ifdef __clang__
4613 /* Do not allow -faddress-sanitizer to check this function, since it
4614 crosses the function stack boundary, and thus would yield many
4615 false positives. */
4616 __attribute__((no_address_safety_analysis))
4617 #endif
4618 {
4619 void **pp;
4620 int i;
4621
4622 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4623 nzombies = 0;
4624 #endif
4625
4626 /* Make START the pointer to the start of the memory region,
4627 if it isn't already. */
4628 if (end < start)
4629 {
4630 void *tem = start;
4631 start = end;
4632 end = tem;
4633 }
4634
4635 /* Mark Lisp data pointed to. This is necessary because, in some
4636 situations, the C compiler optimizes Lisp objects away, so that
4637 only a pointer to them remains. Example:
4638
4639 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4640 ()
4641 {
4642 Lisp_Object obj = build_string ("test");
4643 struct Lisp_String *s = XSTRING (obj);
4644 Fgarbage_collect ();
4645 fprintf (stderr, "test `%s'\n", s->data);
4646 return Qnil;
4647 }
4648
4649 Here, `obj' isn't really used, and the compiler optimizes it
4650 away. The only reference to the life string is through the
4651 pointer `s'. */
4652
4653 for (pp = start; (void *) pp < end; pp++)
4654 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4655 {
4656 void *p = *(void **) ((char *) pp + i);
4657 mark_maybe_pointer (p);
4658 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4659 mark_maybe_object (XIL ((intptr_t) p));
4660 }
4661 }
4662
4663 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4664 the GCC system configuration. In gcc 3.2, the only systems for
4665 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4666 by others?) and ns32k-pc532-min. */
4667
4668 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4669
4670 static int setjmp_tested_p, longjmps_done;
4671
4672 #define SETJMP_WILL_LIKELY_WORK "\
4673 \n\
4674 Emacs garbage collector has been changed to use conservative stack\n\
4675 marking. Emacs has determined that the method it uses to do the\n\
4676 marking will likely work on your system, but this isn't sure.\n\
4677 \n\
4678 If you are a system-programmer, or can get the help of a local wizard\n\
4679 who is, please take a look at the function mark_stack in alloc.c, and\n\
4680 verify that the methods used are appropriate for your system.\n\
4681 \n\
4682 Please mail the result to <emacs-devel@gnu.org>.\n\
4683 "
4684
4685 #define SETJMP_WILL_NOT_WORK "\
4686 \n\
4687 Emacs garbage collector has been changed to use conservative stack\n\
4688 marking. Emacs has determined that the default method it uses to do the\n\
4689 marking will not work on your system. We will need a system-dependent\n\
4690 solution for your system.\n\
4691 \n\
4692 Please take a look at the function mark_stack in alloc.c, and\n\
4693 try to find a way to make it work on your system.\n\
4694 \n\
4695 Note that you may get false negatives, depending on the compiler.\n\
4696 In particular, you need to use -O with GCC for this test.\n\
4697 \n\
4698 Please mail the result to <emacs-devel@gnu.org>.\n\
4699 "
4700
4701
4702 /* Perform a quick check if it looks like setjmp saves registers in a
4703 jmp_buf. Print a message to stderr saying so. When this test
4704 succeeds, this is _not_ a proof that setjmp is sufficient for
4705 conservative stack marking. Only the sources or a disassembly
4706 can prove that. */
4707
4708 static void
4709 test_setjmp (void)
4710 {
4711 char buf[10];
4712 register int x;
4713 jmp_buf jbuf;
4714 int result = 0;
4715
4716 /* Arrange for X to be put in a register. */
4717 sprintf (buf, "1");
4718 x = strlen (buf);
4719 x = 2 * x - 1;
4720
4721 setjmp (jbuf);
4722 if (longjmps_done == 1)
4723 {
4724 /* Came here after the longjmp at the end of the function.
4725
4726 If x == 1, the longjmp has restored the register to its
4727 value before the setjmp, and we can hope that setjmp
4728 saves all such registers in the jmp_buf, although that
4729 isn't sure.
4730
4731 For other values of X, either something really strange is
4732 taking place, or the setjmp just didn't save the register. */
4733
4734 if (x == 1)
4735 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4736 else
4737 {
4738 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4739 exit (1);
4740 }
4741 }
4742
4743 ++longjmps_done;
4744 x = 2;
4745 if (longjmps_done == 1)
4746 longjmp (jbuf, 1);
4747 }
4748
4749 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4750
4751
4752 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4753
4754 /* Abort if anything GCPRO'd doesn't survive the GC. */
4755
4756 static void
4757 check_gcpros (void)
4758 {
4759 struct gcpro *p;
4760 ptrdiff_t i;
4761
4762 for (p = gcprolist; p; p = p->next)
4763 for (i = 0; i < p->nvars; ++i)
4764 if (!survives_gc_p (p->var[i]))
4765 /* FIXME: It's not necessarily a bug. It might just be that the
4766 GCPRO is unnecessary or should release the object sooner. */
4767 abort ();
4768 }
4769
4770 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4771
4772 static void
4773 dump_zombies (void)
4774 {
4775 int i;
4776
4777 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4778 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4779 {
4780 fprintf (stderr, " %d = ", i);
4781 debug_print (zombies[i]);
4782 }
4783 }
4784
4785 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4786
4787
4788 /* Mark live Lisp objects on the C stack.
4789
4790 There are several system-dependent problems to consider when
4791 porting this to new architectures:
4792
4793 Processor Registers
4794
4795 We have to mark Lisp objects in CPU registers that can hold local
4796 variables or are used to pass parameters.
4797
4798 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4799 something that either saves relevant registers on the stack, or
4800 calls mark_maybe_object passing it each register's contents.
4801
4802 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4803 implementation assumes that calling setjmp saves registers we need
4804 to see in a jmp_buf which itself lies on the stack. This doesn't
4805 have to be true! It must be verified for each system, possibly
4806 by taking a look at the source code of setjmp.
4807
4808 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4809 can use it as a machine independent method to store all registers
4810 to the stack. In this case the macros described in the previous
4811 two paragraphs are not used.
4812
4813 Stack Layout
4814
4815 Architectures differ in the way their processor stack is organized.
4816 For example, the stack might look like this
4817
4818 +----------------+
4819 | Lisp_Object | size = 4
4820 +----------------+
4821 | something else | size = 2
4822 +----------------+
4823 | Lisp_Object | size = 4
4824 +----------------+
4825 | ... |
4826
4827 In such a case, not every Lisp_Object will be aligned equally. To
4828 find all Lisp_Object on the stack it won't be sufficient to walk
4829 the stack in steps of 4 bytes. Instead, two passes will be
4830 necessary, one starting at the start of the stack, and a second
4831 pass starting at the start of the stack + 2. Likewise, if the
4832 minimal alignment of Lisp_Objects on the stack is 1, four passes
4833 would be necessary, each one starting with one byte more offset
4834 from the stack start. */
4835
4836 static void
4837 mark_stack (void)
4838 {
4839 void *end;
4840
4841 #ifdef HAVE___BUILTIN_UNWIND_INIT
4842 /* Force callee-saved registers and register windows onto the stack.
4843 This is the preferred method if available, obviating the need for
4844 machine dependent methods. */
4845 __builtin_unwind_init ();
4846 end = &end;
4847 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4848 #ifndef GC_SAVE_REGISTERS_ON_STACK
4849 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4850 union aligned_jmpbuf {
4851 Lisp_Object o;
4852 jmp_buf j;
4853 } j;
4854 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4855 #endif
4856 /* This trick flushes the register windows so that all the state of
4857 the process is contained in the stack. */
4858 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4859 needed on ia64 too. See mach_dep.c, where it also says inline
4860 assembler doesn't work with relevant proprietary compilers. */
4861 #ifdef __sparc__
4862 #if defined (__sparc64__) && defined (__FreeBSD__)
4863 /* FreeBSD does not have a ta 3 handler. */
4864 asm ("flushw");
4865 #else
4866 asm ("ta 3");
4867 #endif
4868 #endif
4869
4870 /* Save registers that we need to see on the stack. We need to see
4871 registers used to hold register variables and registers used to
4872 pass parameters. */
4873 #ifdef GC_SAVE_REGISTERS_ON_STACK
4874 GC_SAVE_REGISTERS_ON_STACK (end);
4875 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4876
4877 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4878 setjmp will definitely work, test it
4879 and print a message with the result
4880 of the test. */
4881 if (!setjmp_tested_p)
4882 {
4883 setjmp_tested_p = 1;
4884 test_setjmp ();
4885 }
4886 #endif /* GC_SETJMP_WORKS */
4887
4888 setjmp (j.j);
4889 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4890 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4891 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4892
4893 /* This assumes that the stack is a contiguous region in memory. If
4894 that's not the case, something has to be done here to iterate
4895 over the stack segments. */
4896 mark_memory (stack_base, end);
4897
4898 /* Allow for marking a secondary stack, like the register stack on the
4899 ia64. */
4900 #ifdef GC_MARK_SECONDARY_STACK
4901 GC_MARK_SECONDARY_STACK ();
4902 #endif
4903
4904 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4905 check_gcpros ();
4906 #endif
4907 }
4908
4909 #endif /* GC_MARK_STACK != 0 */
4910
4911
4912 /* Determine whether it is safe to access memory at address P. */
4913 static int
4914 valid_pointer_p (void *p)
4915 {
4916 #ifdef WINDOWSNT
4917 return w32_valid_pointer_p (p, 16);
4918 #else
4919 int fd[2];
4920
4921 /* Obviously, we cannot just access it (we would SEGV trying), so we
4922 trick the o/s to tell us whether p is a valid pointer.
4923 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4924 not validate p in that case. */
4925
4926 if (pipe (fd) == 0)
4927 {
4928 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4929 emacs_close (fd[1]);
4930 emacs_close (fd[0]);
4931 return valid;
4932 }
4933
4934 return -1;
4935 #endif
4936 }
4937
4938 /* Return 1 if OBJ is a valid lisp object.
4939 Return 0 if OBJ is NOT a valid lisp object.
4940 Return -1 if we cannot validate OBJ.
4941 This function can be quite slow,
4942 so it should only be used in code for manual debugging. */
4943
4944 int
4945 valid_lisp_object_p (Lisp_Object obj)
4946 {
4947 void *p;
4948 #if GC_MARK_STACK
4949 struct mem_node *m;
4950 #endif
4951
4952 if (INTEGERP (obj))
4953 return 1;
4954
4955 p = (void *) XPNTR (obj);
4956 if (PURE_POINTER_P (p))
4957 return 1;
4958
4959 #if !GC_MARK_STACK
4960 return valid_pointer_p (p);
4961 #else
4962
4963 m = mem_find (p);
4964
4965 if (m == MEM_NIL)
4966 {
4967 int valid = valid_pointer_p (p);
4968 if (valid <= 0)
4969 return valid;
4970
4971 if (SUBRP (obj))
4972 return 1;
4973
4974 return 0;
4975 }
4976
4977 switch (m->type)
4978 {
4979 case MEM_TYPE_NON_LISP:
4980 return 0;
4981
4982 case MEM_TYPE_BUFFER:
4983 return live_buffer_p (m, p);
4984
4985 case MEM_TYPE_CONS:
4986 return live_cons_p (m, p);
4987
4988 case MEM_TYPE_STRING:
4989 return live_string_p (m, p);
4990
4991 case MEM_TYPE_MISC:
4992 return live_misc_p (m, p);
4993
4994 case MEM_TYPE_SYMBOL:
4995 return live_symbol_p (m, p);
4996
4997 case MEM_TYPE_FLOAT:
4998 return live_float_p (m, p);
4999
5000 case MEM_TYPE_VECTORLIKE:
5001 case MEM_TYPE_VECTOR_BLOCK:
5002 return live_vector_p (m, p);
5003
5004 default:
5005 break;
5006 }
5007
5008 return 0;
5009 #endif
5010 }
5011
5012
5013
5014 \f
5015 /***********************************************************************
5016 Pure Storage Management
5017 ***********************************************************************/
5018
5019 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5020 pointer to it. TYPE is the Lisp type for which the memory is
5021 allocated. TYPE < 0 means it's not used for a Lisp object. */
5022
5023 static void *
5024 pure_alloc (size_t size, int type)
5025 {
5026 void *result;
5027 #if USE_LSB_TAG
5028 size_t alignment = (1 << GCTYPEBITS);
5029 #else
5030 size_t alignment = sizeof (EMACS_INT);
5031
5032 /* Give Lisp_Floats an extra alignment. */
5033 if (type == Lisp_Float)
5034 {
5035 #if defined __GNUC__ && __GNUC__ >= 2
5036 alignment = __alignof (struct Lisp_Float);
5037 #else
5038 alignment = sizeof (struct Lisp_Float);
5039 #endif
5040 }
5041 #endif
5042
5043 again:
5044 if (type >= 0)
5045 {
5046 /* Allocate space for a Lisp object from the beginning of the free
5047 space with taking account of alignment. */
5048 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5049 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5050 }
5051 else
5052 {
5053 /* Allocate space for a non-Lisp object from the end of the free
5054 space. */
5055 pure_bytes_used_non_lisp += size;
5056 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5057 }
5058 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5059
5060 if (pure_bytes_used <= pure_size)
5061 return result;
5062
5063 /* Don't allocate a large amount here,
5064 because it might get mmap'd and then its address
5065 might not be usable. */
5066 purebeg = xmalloc (10000);
5067 pure_size = 10000;
5068 pure_bytes_used_before_overflow += pure_bytes_used - size;
5069 pure_bytes_used = 0;
5070 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5071 goto again;
5072 }
5073
5074
5075 /* Print a warning if PURESIZE is too small. */
5076
5077 void
5078 check_pure_size (void)
5079 {
5080 if (pure_bytes_used_before_overflow)
5081 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5082 " bytes needed)"),
5083 pure_bytes_used + pure_bytes_used_before_overflow);
5084 }
5085
5086
5087 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5088 the non-Lisp data pool of the pure storage, and return its start
5089 address. Return NULL if not found. */
5090
5091 static char *
5092 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5093 {
5094 int i;
5095 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5096 const unsigned char *p;
5097 char *non_lisp_beg;
5098
5099 if (pure_bytes_used_non_lisp <= nbytes)
5100 return NULL;
5101
5102 /* Set up the Boyer-Moore table. */
5103 skip = nbytes + 1;
5104 for (i = 0; i < 256; i++)
5105 bm_skip[i] = skip;
5106
5107 p = (const unsigned char *) data;
5108 while (--skip > 0)
5109 bm_skip[*p++] = skip;
5110
5111 last_char_skip = bm_skip['\0'];
5112
5113 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5114 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5115
5116 /* See the comments in the function `boyer_moore' (search.c) for the
5117 use of `infinity'. */
5118 infinity = pure_bytes_used_non_lisp + 1;
5119 bm_skip['\0'] = infinity;
5120
5121 p = (const unsigned char *) non_lisp_beg + nbytes;
5122 start = 0;
5123 do
5124 {
5125 /* Check the last character (== '\0'). */
5126 do
5127 {
5128 start += bm_skip[*(p + start)];
5129 }
5130 while (start <= start_max);
5131
5132 if (start < infinity)
5133 /* Couldn't find the last character. */
5134 return NULL;
5135
5136 /* No less than `infinity' means we could find the last
5137 character at `p[start - infinity]'. */
5138 start -= infinity;
5139
5140 /* Check the remaining characters. */
5141 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5142 /* Found. */
5143 return non_lisp_beg + start;
5144
5145 start += last_char_skip;
5146 }
5147 while (start <= start_max);
5148
5149 return NULL;
5150 }
5151
5152
5153 /* Return a string allocated in pure space. DATA is a buffer holding
5154 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5155 non-zero means make the result string multibyte.
5156
5157 Must get an error if pure storage is full, since if it cannot hold
5158 a large string it may be able to hold conses that point to that
5159 string; then the string is not protected from gc. */
5160
5161 Lisp_Object
5162 make_pure_string (const char *data,
5163 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5164 {
5165 Lisp_Object string;
5166 struct Lisp_String *s;
5167
5168 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5169 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5170 if (s->data == NULL)
5171 {
5172 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5173 memcpy (s->data, data, nbytes);
5174 s->data[nbytes] = '\0';
5175 }
5176 s->size = nchars;
5177 s->size_byte = multibyte ? nbytes : -1;
5178 s->intervals = NULL_INTERVAL;
5179 XSETSTRING (string, s);
5180 return string;
5181 }
5182
5183 /* Return a string a string allocated in pure space. Do not allocate
5184 the string data, just point to DATA. */
5185
5186 Lisp_Object
5187 make_pure_c_string (const char *data)
5188 {
5189 Lisp_Object string;
5190 struct Lisp_String *s;
5191 ptrdiff_t nchars = strlen (data);
5192
5193 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5194 s->size = nchars;
5195 s->size_byte = -1;
5196 s->data = (unsigned char *) data;
5197 s->intervals = NULL_INTERVAL;
5198 XSETSTRING (string, s);
5199 return string;
5200 }
5201
5202 /* Return a cons allocated from pure space. Give it pure copies
5203 of CAR as car and CDR as cdr. */
5204
5205 Lisp_Object
5206 pure_cons (Lisp_Object car, Lisp_Object cdr)
5207 {
5208 register Lisp_Object new;
5209 struct Lisp_Cons *p;
5210
5211 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5212 XSETCONS (new, p);
5213 XSETCAR (new, Fpurecopy (car));
5214 XSETCDR (new, Fpurecopy (cdr));
5215 return new;
5216 }
5217
5218
5219 /* Value is a float object with value NUM allocated from pure space. */
5220
5221 static Lisp_Object
5222 make_pure_float (double num)
5223 {
5224 register Lisp_Object new;
5225 struct Lisp_Float *p;
5226
5227 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5228 XSETFLOAT (new, p);
5229 XFLOAT_INIT (new, num);
5230 return new;
5231 }
5232
5233
5234 /* Return a vector with room for LEN Lisp_Objects allocated from
5235 pure space. */
5236
5237 static Lisp_Object
5238 make_pure_vector (ptrdiff_t len)
5239 {
5240 Lisp_Object new;
5241 struct Lisp_Vector *p;
5242 size_t size = (offsetof (struct Lisp_Vector, contents)
5243 + len * sizeof (Lisp_Object));
5244
5245 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5246 XSETVECTOR (new, p);
5247 XVECTOR (new)->header.size = len;
5248 return new;
5249 }
5250
5251
5252 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5253 doc: /* Make a copy of object OBJ in pure storage.
5254 Recursively copies contents of vectors and cons cells.
5255 Does not copy symbols. Copies strings without text properties. */)
5256 (register Lisp_Object obj)
5257 {
5258 if (NILP (Vpurify_flag))
5259 return obj;
5260
5261 if (PURE_POINTER_P (XPNTR (obj)))
5262 return obj;
5263
5264 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5265 {
5266 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5267 if (!NILP (tmp))
5268 return tmp;
5269 }
5270
5271 if (CONSP (obj))
5272 obj = pure_cons (XCAR (obj), XCDR (obj));
5273 else if (FLOATP (obj))
5274 obj = make_pure_float (XFLOAT_DATA (obj));
5275 else if (STRINGP (obj))
5276 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5277 SBYTES (obj),
5278 STRING_MULTIBYTE (obj));
5279 else if (COMPILEDP (obj) || VECTORP (obj))
5280 {
5281 register struct Lisp_Vector *vec;
5282 register ptrdiff_t i;
5283 ptrdiff_t size;
5284
5285 size = ASIZE (obj);
5286 if (size & PSEUDOVECTOR_FLAG)
5287 size &= PSEUDOVECTOR_SIZE_MASK;
5288 vec = XVECTOR (make_pure_vector (size));
5289 for (i = 0; i < size; i++)
5290 vec->contents[i] = Fpurecopy (AREF (obj, i));
5291 if (COMPILEDP (obj))
5292 {
5293 XSETPVECTYPE (vec, PVEC_COMPILED);
5294 XSETCOMPILED (obj, vec);
5295 }
5296 else
5297 XSETVECTOR (obj, vec);
5298 }
5299 else if (MARKERP (obj))
5300 error ("Attempt to copy a marker to pure storage");
5301 else
5302 /* Not purified, don't hash-cons. */
5303 return obj;
5304
5305 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5306 Fputhash (obj, obj, Vpurify_flag);
5307
5308 return obj;
5309 }
5310
5311
5312 \f
5313 /***********************************************************************
5314 Protection from GC
5315 ***********************************************************************/
5316
5317 /* Put an entry in staticvec, pointing at the variable with address
5318 VARADDRESS. */
5319
5320 void
5321 staticpro (Lisp_Object *varaddress)
5322 {
5323 staticvec[staticidx++] = varaddress;
5324 if (staticidx >= NSTATICS)
5325 abort ();
5326 }
5327
5328 \f
5329 /***********************************************************************
5330 Protection from GC
5331 ***********************************************************************/
5332
5333 /* Temporarily prevent garbage collection. */
5334
5335 ptrdiff_t
5336 inhibit_garbage_collection (void)
5337 {
5338 ptrdiff_t count = SPECPDL_INDEX ();
5339
5340 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5341 return count;
5342 }
5343
5344
5345 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5346 doc: /* Reclaim storage for Lisp objects no longer needed.
5347 Garbage collection happens automatically if you cons more than
5348 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5349 `garbage-collect' normally returns a list with info on amount of space in use:
5350 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5351 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5352 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5353 (USED-STRINGS . FREE-STRINGS))
5354 However, if there was overflow in pure space, `garbage-collect'
5355 returns nil, because real GC can't be done.
5356 See Info node `(elisp)Garbage Collection'. */)
5357 (void)
5358 {
5359 register struct specbinding *bind;
5360 char stack_top_variable;
5361 ptrdiff_t i;
5362 int message_p;
5363 Lisp_Object total[8];
5364 ptrdiff_t count = SPECPDL_INDEX ();
5365 EMACS_TIME t1, t2, t3;
5366
5367 if (abort_on_gc)
5368 abort ();
5369
5370 /* Can't GC if pure storage overflowed because we can't determine
5371 if something is a pure object or not. */
5372 if (pure_bytes_used_before_overflow)
5373 return Qnil;
5374
5375 CHECK_CONS_LIST ();
5376
5377 /* Don't keep undo information around forever.
5378 Do this early on, so it is no problem if the user quits. */
5379 {
5380 register struct buffer *nextb = all_buffers;
5381
5382 while (nextb)
5383 {
5384 /* If a buffer's undo list is Qt, that means that undo is
5385 turned off in that buffer. Calling truncate_undo_list on
5386 Qt tends to return NULL, which effectively turns undo back on.
5387 So don't call truncate_undo_list if undo_list is Qt. */
5388 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5389 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5390 truncate_undo_list (nextb);
5391
5392 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5393 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5394 && ! nextb->text->inhibit_shrinking)
5395 {
5396 /* If a buffer's gap size is more than 10% of the buffer
5397 size, or larger than 2000 bytes, then shrink it
5398 accordingly. Keep a minimum size of 20 bytes. */
5399 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5400
5401 if (nextb->text->gap_size > size)
5402 {
5403 struct buffer *save_current = current_buffer;
5404 current_buffer = nextb;
5405 make_gap (-(nextb->text->gap_size - size));
5406 current_buffer = save_current;
5407 }
5408 }
5409
5410 nextb = nextb->header.next.buffer;
5411 }
5412 }
5413
5414 EMACS_GET_TIME (t1);
5415
5416 /* In case user calls debug_print during GC,
5417 don't let that cause a recursive GC. */
5418 consing_since_gc = 0;
5419
5420 /* Save what's currently displayed in the echo area. */
5421 message_p = push_message ();
5422 record_unwind_protect (pop_message_unwind, Qnil);
5423
5424 /* Save a copy of the contents of the stack, for debugging. */
5425 #if MAX_SAVE_STACK > 0
5426 if (NILP (Vpurify_flag))
5427 {
5428 char *stack;
5429 ptrdiff_t stack_size;
5430 if (&stack_top_variable < stack_bottom)
5431 {
5432 stack = &stack_top_variable;
5433 stack_size = stack_bottom - &stack_top_variable;
5434 }
5435 else
5436 {
5437 stack = stack_bottom;
5438 stack_size = &stack_top_variable - stack_bottom;
5439 }
5440 if (stack_size <= MAX_SAVE_STACK)
5441 {
5442 if (stack_copy_size < stack_size)
5443 {
5444 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5445 stack_copy_size = stack_size;
5446 }
5447 memcpy (stack_copy, stack, stack_size);
5448 }
5449 }
5450 #endif /* MAX_SAVE_STACK > 0 */
5451
5452 if (garbage_collection_messages)
5453 message1_nolog ("Garbage collecting...");
5454
5455 BLOCK_INPUT;
5456
5457 shrink_regexp_cache ();
5458
5459 gc_in_progress = 1;
5460
5461 /* clear_marks (); */
5462
5463 /* Mark all the special slots that serve as the roots of accessibility. */
5464
5465 for (i = 0; i < staticidx; i++)
5466 mark_object (*staticvec[i]);
5467
5468 for (bind = specpdl; bind != specpdl_ptr; bind++)
5469 {
5470 mark_object (bind->symbol);
5471 mark_object (bind->old_value);
5472 }
5473 mark_terminals ();
5474 mark_kboards ();
5475 mark_ttys ();
5476
5477 #ifdef USE_GTK
5478 {
5479 extern void xg_mark_data (void);
5480 xg_mark_data ();
5481 }
5482 #endif
5483
5484 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5485 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5486 mark_stack ();
5487 #else
5488 {
5489 register struct gcpro *tail;
5490 for (tail = gcprolist; tail; tail = tail->next)
5491 for (i = 0; i < tail->nvars; i++)
5492 mark_object (tail->var[i]);
5493 }
5494 mark_byte_stack ();
5495 {
5496 struct catchtag *catch;
5497 struct handler *handler;
5498
5499 for (catch = catchlist; catch; catch = catch->next)
5500 {
5501 mark_object (catch->tag);
5502 mark_object (catch->val);
5503 }
5504 for (handler = handlerlist; handler; handler = handler->next)
5505 {
5506 mark_object (handler->handler);
5507 mark_object (handler->var);
5508 }
5509 }
5510 mark_backtrace ();
5511 #endif
5512
5513 #ifdef HAVE_WINDOW_SYSTEM
5514 mark_fringe_data ();
5515 #endif
5516
5517 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5518 mark_stack ();
5519 #endif
5520
5521 /* Everything is now marked, except for the things that require special
5522 finalization, i.e. the undo_list.
5523 Look thru every buffer's undo list
5524 for elements that update markers that were not marked,
5525 and delete them. */
5526 {
5527 register struct buffer *nextb = all_buffers;
5528
5529 while (nextb)
5530 {
5531 /* If a buffer's undo list is Qt, that means that undo is
5532 turned off in that buffer. Calling truncate_undo_list on
5533 Qt tends to return NULL, which effectively turns undo back on.
5534 So don't call truncate_undo_list if undo_list is Qt. */
5535 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5536 {
5537 Lisp_Object tail, prev;
5538 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5539 prev = Qnil;
5540 while (CONSP (tail))
5541 {
5542 if (CONSP (XCAR (tail))
5543 && MARKERP (XCAR (XCAR (tail)))
5544 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5545 {
5546 if (NILP (prev))
5547 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5548 else
5549 {
5550 tail = XCDR (tail);
5551 XSETCDR (prev, tail);
5552 }
5553 }
5554 else
5555 {
5556 prev = tail;
5557 tail = XCDR (tail);
5558 }
5559 }
5560 }
5561 /* Now that we have stripped the elements that need not be in the
5562 undo_list any more, we can finally mark the list. */
5563 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5564
5565 nextb = nextb->header.next.buffer;
5566 }
5567 }
5568
5569 gc_sweep ();
5570
5571 /* Clear the mark bits that we set in certain root slots. */
5572
5573 unmark_byte_stack ();
5574 VECTOR_UNMARK (&buffer_defaults);
5575 VECTOR_UNMARK (&buffer_local_symbols);
5576
5577 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5578 dump_zombies ();
5579 #endif
5580
5581 UNBLOCK_INPUT;
5582
5583 CHECK_CONS_LIST ();
5584
5585 /* clear_marks (); */
5586 gc_in_progress = 0;
5587
5588 consing_since_gc = 0;
5589 if (gc_cons_threshold < 10000)
5590 gc_cons_threshold = 10000;
5591
5592 gc_relative_threshold = 0;
5593 if (FLOATP (Vgc_cons_percentage))
5594 { /* Set gc_cons_combined_threshold. */
5595 double tot = 0;
5596
5597 tot += total_conses * sizeof (struct Lisp_Cons);
5598 tot += total_symbols * sizeof (struct Lisp_Symbol);
5599 tot += total_markers * sizeof (union Lisp_Misc);
5600 tot += total_string_size;
5601 tot += total_vector_size * sizeof (Lisp_Object);
5602 tot += total_floats * sizeof (struct Lisp_Float);
5603 tot += total_intervals * sizeof (struct interval);
5604 tot += total_strings * sizeof (struct Lisp_String);
5605
5606 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5607 if (0 < tot)
5608 {
5609 if (tot < TYPE_MAXIMUM (EMACS_INT))
5610 gc_relative_threshold = tot;
5611 else
5612 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5613 }
5614 }
5615
5616 if (garbage_collection_messages)
5617 {
5618 if (message_p || minibuf_level > 0)
5619 restore_message ();
5620 else
5621 message1_nolog ("Garbage collecting...done");
5622 }
5623
5624 unbind_to (count, Qnil);
5625
5626 total[0] = Fcons (make_number (total_conses),
5627 make_number (total_free_conses));
5628 total[1] = Fcons (make_number (total_symbols),
5629 make_number (total_free_symbols));
5630 total[2] = Fcons (make_number (total_markers),
5631 make_number (total_free_markers));
5632 total[3] = make_number (total_string_size);
5633 total[4] = make_number (total_vector_size);
5634 total[5] = Fcons (make_number (total_floats),
5635 make_number (total_free_floats));
5636 total[6] = Fcons (make_number (total_intervals),
5637 make_number (total_free_intervals));
5638 total[7] = Fcons (make_number (total_strings),
5639 make_number (total_free_strings));
5640
5641 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5642 {
5643 /* Compute average percentage of zombies. */
5644 double nlive = 0;
5645
5646 for (i = 0; i < 7; ++i)
5647 if (CONSP (total[i]))
5648 nlive += XFASTINT (XCAR (total[i]));
5649
5650 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5651 max_live = max (nlive, max_live);
5652 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5653 max_zombies = max (nzombies, max_zombies);
5654 ++ngcs;
5655 }
5656 #endif
5657
5658 if (!NILP (Vpost_gc_hook))
5659 {
5660 ptrdiff_t gc_count = inhibit_garbage_collection ();
5661 safe_run_hooks (Qpost_gc_hook);
5662 unbind_to (gc_count, Qnil);
5663 }
5664
5665 /* Accumulate statistics. */
5666 if (FLOATP (Vgc_elapsed))
5667 {
5668 EMACS_GET_TIME (t2);
5669 EMACS_SUB_TIME (t3, t2, t1);
5670 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5671 + EMACS_TIME_TO_DOUBLE (t3));
5672 }
5673
5674 gcs_done++;
5675
5676 return Flist (sizeof total / sizeof *total, total);
5677 }
5678
5679
5680 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5681 only interesting objects referenced from glyphs are strings. */
5682
5683 static void
5684 mark_glyph_matrix (struct glyph_matrix *matrix)
5685 {
5686 struct glyph_row *row = matrix->rows;
5687 struct glyph_row *end = row + matrix->nrows;
5688
5689 for (; row < end; ++row)
5690 if (row->enabled_p)
5691 {
5692 int area;
5693 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5694 {
5695 struct glyph *glyph = row->glyphs[area];
5696 struct glyph *end_glyph = glyph + row->used[area];
5697
5698 for (; glyph < end_glyph; ++glyph)
5699 if (STRINGP (glyph->object)
5700 && !STRING_MARKED_P (XSTRING (glyph->object)))
5701 mark_object (glyph->object);
5702 }
5703 }
5704 }
5705
5706
5707 /* Mark Lisp faces in the face cache C. */
5708
5709 static void
5710 mark_face_cache (struct face_cache *c)
5711 {
5712 if (c)
5713 {
5714 int i, j;
5715 for (i = 0; i < c->used; ++i)
5716 {
5717 struct face *face = FACE_FROM_ID (c->f, i);
5718
5719 if (face)
5720 {
5721 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5722 mark_object (face->lface[j]);
5723 }
5724 }
5725 }
5726 }
5727
5728
5729 \f
5730 /* Mark reference to a Lisp_Object.
5731 If the object referred to has not been seen yet, recursively mark
5732 all the references contained in it. */
5733
5734 #define LAST_MARKED_SIZE 500
5735 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5736 static int last_marked_index;
5737
5738 /* For debugging--call abort when we cdr down this many
5739 links of a list, in mark_object. In debugging,
5740 the call to abort will hit a breakpoint.
5741 Normally this is zero and the check never goes off. */
5742 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5743
5744 static void
5745 mark_vectorlike (struct Lisp_Vector *ptr)
5746 {
5747 ptrdiff_t size = ptr->header.size;
5748 ptrdiff_t i;
5749
5750 eassert (!VECTOR_MARKED_P (ptr));
5751 VECTOR_MARK (ptr); /* Else mark it. */
5752 if (size & PSEUDOVECTOR_FLAG)
5753 size &= PSEUDOVECTOR_SIZE_MASK;
5754
5755 /* Note that this size is not the memory-footprint size, but only
5756 the number of Lisp_Object fields that we should trace.
5757 The distinction is used e.g. by Lisp_Process which places extra
5758 non-Lisp_Object fields at the end of the structure... */
5759 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5760 mark_object (ptr->contents[i]);
5761 }
5762
5763 /* Like mark_vectorlike but optimized for char-tables (and
5764 sub-char-tables) assuming that the contents are mostly integers or
5765 symbols. */
5766
5767 static void
5768 mark_char_table (struct Lisp_Vector *ptr)
5769 {
5770 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5771 int i;
5772
5773 eassert (!VECTOR_MARKED_P (ptr));
5774 VECTOR_MARK (ptr);
5775 for (i = 0; i < size; i++)
5776 {
5777 Lisp_Object val = ptr->contents[i];
5778
5779 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5780 continue;
5781 if (SUB_CHAR_TABLE_P (val))
5782 {
5783 if (! VECTOR_MARKED_P (XVECTOR (val)))
5784 mark_char_table (XVECTOR (val));
5785 }
5786 else
5787 mark_object (val);
5788 }
5789 }
5790
5791 /* Mark the chain of overlays starting at PTR. */
5792
5793 static void
5794 mark_overlay (struct Lisp_Overlay *ptr)
5795 {
5796 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5797 {
5798 ptr->gcmarkbit = 1;
5799 mark_object (ptr->start);
5800 mark_object (ptr->end);
5801 mark_object (ptr->plist);
5802 }
5803 }
5804
5805 /* Mark Lisp_Objects and special pointers in BUFFER. */
5806
5807 static void
5808 mark_buffer (struct buffer *buffer)
5809 {
5810 /* This is handled much like other pseudovectors... */
5811 mark_vectorlike ((struct Lisp_Vector *) buffer);
5812
5813 /* ...but there are some buffer-specific things. */
5814
5815 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5816
5817 /* For now, we just don't mark the undo_list. It's done later in
5818 a special way just before the sweep phase, and after stripping
5819 some of its elements that are not needed any more. */
5820
5821 mark_overlay (buffer->overlays_before);
5822 mark_overlay (buffer->overlays_after);
5823
5824 /* If this is an indirect buffer, mark its base buffer. */
5825 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5826 mark_buffer (buffer->base_buffer);
5827 }
5828
5829 /* Determine type of generic Lisp_Object and mark it accordingly. */
5830
5831 void
5832 mark_object (Lisp_Object arg)
5833 {
5834 register Lisp_Object obj = arg;
5835 #ifdef GC_CHECK_MARKED_OBJECTS
5836 void *po;
5837 struct mem_node *m;
5838 #endif
5839 ptrdiff_t cdr_count = 0;
5840
5841 loop:
5842
5843 if (PURE_POINTER_P (XPNTR (obj)))
5844 return;
5845
5846 last_marked[last_marked_index++] = obj;
5847 if (last_marked_index == LAST_MARKED_SIZE)
5848 last_marked_index = 0;
5849
5850 /* Perform some sanity checks on the objects marked here. Abort if
5851 we encounter an object we know is bogus. This increases GC time
5852 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5853 #ifdef GC_CHECK_MARKED_OBJECTS
5854
5855 po = (void *) XPNTR (obj);
5856
5857 /* Check that the object pointed to by PO is known to be a Lisp
5858 structure allocated from the heap. */
5859 #define CHECK_ALLOCATED() \
5860 do { \
5861 m = mem_find (po); \
5862 if (m == MEM_NIL) \
5863 abort (); \
5864 } while (0)
5865
5866 /* Check that the object pointed to by PO is live, using predicate
5867 function LIVEP. */
5868 #define CHECK_LIVE(LIVEP) \
5869 do { \
5870 if (!LIVEP (m, po)) \
5871 abort (); \
5872 } while (0)
5873
5874 /* Check both of the above conditions. */
5875 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5876 do { \
5877 CHECK_ALLOCATED (); \
5878 CHECK_LIVE (LIVEP); \
5879 } while (0) \
5880
5881 #else /* not GC_CHECK_MARKED_OBJECTS */
5882
5883 #define CHECK_LIVE(LIVEP) (void) 0
5884 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5885
5886 #endif /* not GC_CHECK_MARKED_OBJECTS */
5887
5888 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5889 {
5890 case Lisp_String:
5891 {
5892 register struct Lisp_String *ptr = XSTRING (obj);
5893 if (STRING_MARKED_P (ptr))
5894 break;
5895 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5896 MARK_STRING (ptr);
5897 MARK_INTERVAL_TREE (ptr->intervals);
5898 #ifdef GC_CHECK_STRING_BYTES
5899 /* Check that the string size recorded in the string is the
5900 same as the one recorded in the sdata structure. */
5901 CHECK_STRING_BYTES (ptr);
5902 #endif /* GC_CHECK_STRING_BYTES */
5903 }
5904 break;
5905
5906 case Lisp_Vectorlike:
5907 {
5908 register struct Lisp_Vector *ptr = XVECTOR (obj);
5909 register ptrdiff_t pvectype;
5910
5911 if (VECTOR_MARKED_P (ptr))
5912 break;
5913
5914 #ifdef GC_CHECK_MARKED_OBJECTS
5915 m = mem_find (po);
5916 if (m == MEM_NIL && !SUBRP (obj)
5917 && po != &buffer_defaults
5918 && po != &buffer_local_symbols)
5919 abort ();
5920 #endif /* GC_CHECK_MARKED_OBJECTS */
5921
5922 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5923 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5924 >> PSEUDOVECTOR_SIZE_BITS);
5925 else
5926 pvectype = 0;
5927
5928 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5929 CHECK_LIVE (live_vector_p);
5930
5931 switch (pvectype)
5932 {
5933 case PVEC_BUFFER:
5934 #ifdef GC_CHECK_MARKED_OBJECTS
5935 if (po != &buffer_defaults && po != &buffer_local_symbols)
5936 {
5937 struct buffer *b = all_buffers;
5938 for (; b && b != po; b = b->header.next.buffer)
5939 ;
5940 if (b == NULL)
5941 abort ();
5942 }
5943 #endif /* GC_CHECK_MARKED_OBJECTS */
5944 mark_buffer ((struct buffer *) ptr);
5945 break;
5946
5947 case PVEC_COMPILED:
5948 { /* We could treat this just like a vector, but it is better
5949 to save the COMPILED_CONSTANTS element for last and avoid
5950 recursion there. */
5951 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5952 int i;
5953
5954 VECTOR_MARK (ptr);
5955 for (i = 0; i < size; i++)
5956 if (i != COMPILED_CONSTANTS)
5957 mark_object (ptr->contents[i]);
5958 if (size > COMPILED_CONSTANTS)
5959 {
5960 obj = ptr->contents[COMPILED_CONSTANTS];
5961 goto loop;
5962 }
5963 }
5964 break;
5965
5966 case PVEC_FRAME:
5967 {
5968 mark_vectorlike (ptr);
5969 mark_face_cache (((struct frame *) ptr)->face_cache);
5970 }
5971 break;
5972
5973 case PVEC_WINDOW:
5974 {
5975 struct window *w = (struct window *) ptr;
5976
5977 mark_vectorlike (ptr);
5978 /* Mark glyphs for leaf windows. Marking window
5979 matrices is sufficient because frame matrices
5980 use the same glyph memory. */
5981 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
5982 {
5983 mark_glyph_matrix (w->current_matrix);
5984 mark_glyph_matrix (w->desired_matrix);
5985 }
5986 }
5987 break;
5988
5989 case PVEC_HASH_TABLE:
5990 {
5991 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5992
5993 mark_vectorlike (ptr);
5994 /* If hash table is not weak, mark all keys and values.
5995 For weak tables, mark only the vector. */
5996 if (NILP (h->weak))
5997 mark_object (h->key_and_value);
5998 else
5999 VECTOR_MARK (XVECTOR (h->key_and_value));
6000 }
6001 break;
6002
6003 case PVEC_CHAR_TABLE:
6004 mark_char_table (ptr);
6005 break;
6006
6007 case PVEC_BOOL_VECTOR:
6008 /* No Lisp_Objects to mark in a bool vector. */
6009 VECTOR_MARK (ptr);
6010 break;
6011
6012 case PVEC_SUBR:
6013 break;
6014
6015 case PVEC_FREE:
6016 abort ();
6017
6018 default:
6019 mark_vectorlike (ptr);
6020 }
6021 }
6022 break;
6023
6024 case Lisp_Symbol:
6025 {
6026 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6027 struct Lisp_Symbol *ptrx;
6028
6029 if (ptr->gcmarkbit)
6030 break;
6031 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6032 ptr->gcmarkbit = 1;
6033 mark_object (ptr->function);
6034 mark_object (ptr->plist);
6035 switch (ptr->redirect)
6036 {
6037 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6038 case SYMBOL_VARALIAS:
6039 {
6040 Lisp_Object tem;
6041 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6042 mark_object (tem);
6043 break;
6044 }
6045 case SYMBOL_LOCALIZED:
6046 {
6047 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6048 /* If the value is forwarded to a buffer or keyboard field,
6049 these are marked when we see the corresponding object.
6050 And if it's forwarded to a C variable, either it's not
6051 a Lisp_Object var, or it's staticpro'd already. */
6052 mark_object (blv->where);
6053 mark_object (blv->valcell);
6054 mark_object (blv->defcell);
6055 break;
6056 }
6057 case SYMBOL_FORWARDED:
6058 /* If the value is forwarded to a buffer or keyboard field,
6059 these are marked when we see the corresponding object.
6060 And if it's forwarded to a C variable, either it's not
6061 a Lisp_Object var, or it's staticpro'd already. */
6062 break;
6063 default: abort ();
6064 }
6065 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6066 MARK_STRING (XSTRING (ptr->xname));
6067 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6068
6069 ptr = ptr->next;
6070 if (ptr)
6071 {
6072 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6073 XSETSYMBOL (obj, ptrx);
6074 goto loop;
6075 }
6076 }
6077 break;
6078
6079 case Lisp_Misc:
6080 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6081
6082 if (XMISCANY (obj)->gcmarkbit)
6083 break;
6084
6085 switch (XMISCTYPE (obj))
6086 {
6087 case Lisp_Misc_Marker:
6088 /* DO NOT mark thru the marker's chain.
6089 The buffer's markers chain does not preserve markers from gc;
6090 instead, markers are removed from the chain when freed by gc. */
6091 XMISCANY (obj)->gcmarkbit = 1;
6092 break;
6093
6094 case Lisp_Misc_Save_Value:
6095 XMISCANY (obj)->gcmarkbit = 1;
6096 #if GC_MARK_STACK
6097 {
6098 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6099 /* If DOGC is set, POINTER is the address of a memory
6100 area containing INTEGER potential Lisp_Objects. */
6101 if (ptr->dogc)
6102 {
6103 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6104 ptrdiff_t nelt;
6105 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6106 mark_maybe_object (*p);
6107 }
6108 }
6109 #endif
6110 break;
6111
6112 case Lisp_Misc_Overlay:
6113 mark_overlay (XOVERLAY (obj));
6114 break;
6115
6116 default:
6117 abort ();
6118 }
6119 break;
6120
6121 case Lisp_Cons:
6122 {
6123 register struct Lisp_Cons *ptr = XCONS (obj);
6124 if (CONS_MARKED_P (ptr))
6125 break;
6126 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6127 CONS_MARK (ptr);
6128 /* If the cdr is nil, avoid recursion for the car. */
6129 if (EQ (ptr->u.cdr, Qnil))
6130 {
6131 obj = ptr->car;
6132 cdr_count = 0;
6133 goto loop;
6134 }
6135 mark_object (ptr->car);
6136 obj = ptr->u.cdr;
6137 cdr_count++;
6138 if (cdr_count == mark_object_loop_halt)
6139 abort ();
6140 goto loop;
6141 }
6142
6143 case Lisp_Float:
6144 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6145 FLOAT_MARK (XFLOAT (obj));
6146 break;
6147
6148 case_Lisp_Int:
6149 break;
6150
6151 default:
6152 abort ();
6153 }
6154
6155 #undef CHECK_LIVE
6156 #undef CHECK_ALLOCATED
6157 #undef CHECK_ALLOCATED_AND_LIVE
6158 }
6159 /* Mark the Lisp pointers in the terminal objects.
6160 Called by Fgarbage_collect. */
6161
6162 static void
6163 mark_terminals (void)
6164 {
6165 struct terminal *t;
6166 for (t = terminal_list; t; t = t->next_terminal)
6167 {
6168 eassert (t->name != NULL);
6169 #ifdef HAVE_WINDOW_SYSTEM
6170 /* If a terminal object is reachable from a stacpro'ed object,
6171 it might have been marked already. Make sure the image cache
6172 gets marked. */
6173 mark_image_cache (t->image_cache);
6174 #endif /* HAVE_WINDOW_SYSTEM */
6175 if (!VECTOR_MARKED_P (t))
6176 mark_vectorlike ((struct Lisp_Vector *)t);
6177 }
6178 }
6179
6180
6181
6182 /* Value is non-zero if OBJ will survive the current GC because it's
6183 either marked or does not need to be marked to survive. */
6184
6185 int
6186 survives_gc_p (Lisp_Object obj)
6187 {
6188 int survives_p;
6189
6190 switch (XTYPE (obj))
6191 {
6192 case_Lisp_Int:
6193 survives_p = 1;
6194 break;
6195
6196 case Lisp_Symbol:
6197 survives_p = XSYMBOL (obj)->gcmarkbit;
6198 break;
6199
6200 case Lisp_Misc:
6201 survives_p = XMISCANY (obj)->gcmarkbit;
6202 break;
6203
6204 case Lisp_String:
6205 survives_p = STRING_MARKED_P (XSTRING (obj));
6206 break;
6207
6208 case Lisp_Vectorlike:
6209 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6210 break;
6211
6212 case Lisp_Cons:
6213 survives_p = CONS_MARKED_P (XCONS (obj));
6214 break;
6215
6216 case Lisp_Float:
6217 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6218 break;
6219
6220 default:
6221 abort ();
6222 }
6223
6224 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6225 }
6226
6227
6228 \f
6229 /* Sweep: find all structures not marked, and free them. */
6230
6231 static void
6232 gc_sweep (void)
6233 {
6234 /* Remove or mark entries in weak hash tables.
6235 This must be done before any object is unmarked. */
6236 sweep_weak_hash_tables ();
6237
6238 sweep_strings ();
6239 #ifdef GC_CHECK_STRING_BYTES
6240 if (!noninteractive)
6241 check_string_bytes (1);
6242 #endif
6243
6244 /* Put all unmarked conses on free list */
6245 {
6246 register struct cons_block *cblk;
6247 struct cons_block **cprev = &cons_block;
6248 register int lim = cons_block_index;
6249 EMACS_INT num_free = 0, num_used = 0;
6250
6251 cons_free_list = 0;
6252
6253 for (cblk = cons_block; cblk; cblk = *cprev)
6254 {
6255 register int i = 0;
6256 int this_free = 0;
6257 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6258
6259 /* Scan the mark bits an int at a time. */
6260 for (i = 0; i < ilim; i++)
6261 {
6262 if (cblk->gcmarkbits[i] == -1)
6263 {
6264 /* Fast path - all cons cells for this int are marked. */
6265 cblk->gcmarkbits[i] = 0;
6266 num_used += BITS_PER_INT;
6267 }
6268 else
6269 {
6270 /* Some cons cells for this int are not marked.
6271 Find which ones, and free them. */
6272 int start, pos, stop;
6273
6274 start = i * BITS_PER_INT;
6275 stop = lim - start;
6276 if (stop > BITS_PER_INT)
6277 stop = BITS_PER_INT;
6278 stop += start;
6279
6280 for (pos = start; pos < stop; pos++)
6281 {
6282 if (!CONS_MARKED_P (&cblk->conses[pos]))
6283 {
6284 this_free++;
6285 cblk->conses[pos].u.chain = cons_free_list;
6286 cons_free_list = &cblk->conses[pos];
6287 #if GC_MARK_STACK
6288 cons_free_list->car = Vdead;
6289 #endif
6290 }
6291 else
6292 {
6293 num_used++;
6294 CONS_UNMARK (&cblk->conses[pos]);
6295 }
6296 }
6297 }
6298 }
6299
6300 lim = CONS_BLOCK_SIZE;
6301 /* If this block contains only free conses and we have already
6302 seen more than two blocks worth of free conses then deallocate
6303 this block. */
6304 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6305 {
6306 *cprev = cblk->next;
6307 /* Unhook from the free list. */
6308 cons_free_list = cblk->conses[0].u.chain;
6309 lisp_align_free (cblk);
6310 }
6311 else
6312 {
6313 num_free += this_free;
6314 cprev = &cblk->next;
6315 }
6316 }
6317 total_conses = num_used;
6318 total_free_conses = num_free;
6319 }
6320
6321 /* Put all unmarked floats on free list */
6322 {
6323 register struct float_block *fblk;
6324 struct float_block **fprev = &float_block;
6325 register int lim = float_block_index;
6326 EMACS_INT num_free = 0, num_used = 0;
6327
6328 float_free_list = 0;
6329
6330 for (fblk = float_block; fblk; fblk = *fprev)
6331 {
6332 register int i;
6333 int this_free = 0;
6334 for (i = 0; i < lim; i++)
6335 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6336 {
6337 this_free++;
6338 fblk->floats[i].u.chain = float_free_list;
6339 float_free_list = &fblk->floats[i];
6340 }
6341 else
6342 {
6343 num_used++;
6344 FLOAT_UNMARK (&fblk->floats[i]);
6345 }
6346 lim = FLOAT_BLOCK_SIZE;
6347 /* If this block contains only free floats and we have already
6348 seen more than two blocks worth of free floats then deallocate
6349 this block. */
6350 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6351 {
6352 *fprev = fblk->next;
6353 /* Unhook from the free list. */
6354 float_free_list = fblk->floats[0].u.chain;
6355 lisp_align_free (fblk);
6356 }
6357 else
6358 {
6359 num_free += this_free;
6360 fprev = &fblk->next;
6361 }
6362 }
6363 total_floats = num_used;
6364 total_free_floats = num_free;
6365 }
6366
6367 /* Put all unmarked intervals on free list */
6368 {
6369 register struct interval_block *iblk;
6370 struct interval_block **iprev = &interval_block;
6371 register int lim = interval_block_index;
6372 EMACS_INT num_free = 0, num_used = 0;
6373
6374 interval_free_list = 0;
6375
6376 for (iblk = interval_block; iblk; iblk = *iprev)
6377 {
6378 register int i;
6379 int this_free = 0;
6380
6381 for (i = 0; i < lim; i++)
6382 {
6383 if (!iblk->intervals[i].gcmarkbit)
6384 {
6385 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6386 interval_free_list = &iblk->intervals[i];
6387 this_free++;
6388 }
6389 else
6390 {
6391 num_used++;
6392 iblk->intervals[i].gcmarkbit = 0;
6393 }
6394 }
6395 lim = INTERVAL_BLOCK_SIZE;
6396 /* If this block contains only free intervals and we have already
6397 seen more than two blocks worth of free intervals then
6398 deallocate this block. */
6399 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6400 {
6401 *iprev = iblk->next;
6402 /* Unhook from the free list. */
6403 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6404 lisp_free (iblk);
6405 }
6406 else
6407 {
6408 num_free += this_free;
6409 iprev = &iblk->next;
6410 }
6411 }
6412 total_intervals = num_used;
6413 total_free_intervals = num_free;
6414 }
6415
6416 /* Put all unmarked symbols on free list */
6417 {
6418 register struct symbol_block *sblk;
6419 struct symbol_block **sprev = &symbol_block;
6420 register int lim = symbol_block_index;
6421 EMACS_INT num_free = 0, num_used = 0;
6422
6423 symbol_free_list = NULL;
6424
6425 for (sblk = symbol_block; sblk; sblk = *sprev)
6426 {
6427 int this_free = 0;
6428 union aligned_Lisp_Symbol *sym = sblk->symbols;
6429 union aligned_Lisp_Symbol *end = sym + lim;
6430
6431 for (; sym < end; ++sym)
6432 {
6433 /* Check if the symbol was created during loadup. In such a case
6434 it might be pointed to by pure bytecode which we don't trace,
6435 so we conservatively assume that it is live. */
6436 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6437
6438 if (!sym->s.gcmarkbit && !pure_p)
6439 {
6440 if (sym->s.redirect == SYMBOL_LOCALIZED)
6441 xfree (SYMBOL_BLV (&sym->s));
6442 sym->s.next = symbol_free_list;
6443 symbol_free_list = &sym->s;
6444 #if GC_MARK_STACK
6445 symbol_free_list->function = Vdead;
6446 #endif
6447 ++this_free;
6448 }
6449 else
6450 {
6451 ++num_used;
6452 if (!pure_p)
6453 UNMARK_STRING (XSTRING (sym->s.xname));
6454 sym->s.gcmarkbit = 0;
6455 }
6456 }
6457
6458 lim = SYMBOL_BLOCK_SIZE;
6459 /* If this block contains only free symbols and we have already
6460 seen more than two blocks worth of free symbols then deallocate
6461 this block. */
6462 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6463 {
6464 *sprev = sblk->next;
6465 /* Unhook from the free list. */
6466 symbol_free_list = sblk->symbols[0].s.next;
6467 lisp_free (sblk);
6468 }
6469 else
6470 {
6471 num_free += this_free;
6472 sprev = &sblk->next;
6473 }
6474 }
6475 total_symbols = num_used;
6476 total_free_symbols = num_free;
6477 }
6478
6479 /* Put all unmarked misc's on free list.
6480 For a marker, first unchain it from the buffer it points into. */
6481 {
6482 register struct marker_block *mblk;
6483 struct marker_block **mprev = &marker_block;
6484 register int lim = marker_block_index;
6485 EMACS_INT num_free = 0, num_used = 0;
6486
6487 marker_free_list = 0;
6488
6489 for (mblk = marker_block; mblk; mblk = *mprev)
6490 {
6491 register int i;
6492 int this_free = 0;
6493
6494 for (i = 0; i < lim; i++)
6495 {
6496 if (!mblk->markers[i].m.u_any.gcmarkbit)
6497 {
6498 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6499 unchain_marker (&mblk->markers[i].m.u_marker);
6500 /* Set the type of the freed object to Lisp_Misc_Free.
6501 We could leave the type alone, since nobody checks it,
6502 but this might catch bugs faster. */
6503 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6504 mblk->markers[i].m.u_free.chain = marker_free_list;
6505 marker_free_list = &mblk->markers[i].m;
6506 this_free++;
6507 }
6508 else
6509 {
6510 num_used++;
6511 mblk->markers[i].m.u_any.gcmarkbit = 0;
6512 }
6513 }
6514 lim = MARKER_BLOCK_SIZE;
6515 /* If this block contains only free markers and we have already
6516 seen more than two blocks worth of free markers then deallocate
6517 this block. */
6518 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6519 {
6520 *mprev = mblk->next;
6521 /* Unhook from the free list. */
6522 marker_free_list = mblk->markers[0].m.u_free.chain;
6523 lisp_free (mblk);
6524 }
6525 else
6526 {
6527 num_free += this_free;
6528 mprev = &mblk->next;
6529 }
6530 }
6531
6532 total_markers = num_used;
6533 total_free_markers = num_free;
6534 }
6535
6536 /* Free all unmarked buffers */
6537 {
6538 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6539
6540 while (buffer)
6541 if (!VECTOR_MARKED_P (buffer))
6542 {
6543 if (prev)
6544 prev->header.next = buffer->header.next;
6545 else
6546 all_buffers = buffer->header.next.buffer;
6547 next = buffer->header.next.buffer;
6548 lisp_free (buffer);
6549 buffer = next;
6550 }
6551 else
6552 {
6553 VECTOR_UNMARK (buffer);
6554 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6555 prev = buffer, buffer = buffer->header.next.buffer;
6556 }
6557 }
6558
6559 sweep_vectors ();
6560
6561 #ifdef GC_CHECK_STRING_BYTES
6562 if (!noninteractive)
6563 check_string_bytes (1);
6564 #endif
6565 }
6566
6567
6568
6569 \f
6570 /* Debugging aids. */
6571
6572 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6573 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6574 This may be helpful in debugging Emacs's memory usage.
6575 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6576 (void)
6577 {
6578 Lisp_Object end;
6579
6580 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6581
6582 return end;
6583 }
6584
6585 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6586 doc: /* Return a list of counters that measure how much consing there has been.
6587 Each of these counters increments for a certain kind of object.
6588 The counters wrap around from the largest positive integer to zero.
6589 Garbage collection does not decrease them.
6590 The elements of the value are as follows:
6591 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6592 All are in units of 1 = one object consed
6593 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6594 objects consed.
6595 MISCS include overlays, markers, and some internal types.
6596 Frames, windows, buffers, and subprocesses count as vectors
6597 (but the contents of a buffer's text do not count here). */)
6598 (void)
6599 {
6600 Lisp_Object consed[8];
6601
6602 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6603 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6604 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6605 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6606 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6607 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6608 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6609 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6610
6611 return Flist (8, consed);
6612 }
6613
6614 /* Find at most FIND_MAX symbols which have OBJ as their value or
6615 function. This is used in gdbinit's `xwhichsymbols' command. */
6616
6617 Lisp_Object
6618 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6619 {
6620 struct symbol_block *sblk;
6621 ptrdiff_t gc_count = inhibit_garbage_collection ();
6622 Lisp_Object found = Qnil;
6623
6624 if (! DEADP (obj))
6625 {
6626 for (sblk = symbol_block; sblk; sblk = sblk->next)
6627 {
6628 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6629 int bn;
6630
6631 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6632 {
6633 struct Lisp_Symbol *sym = &aligned_sym->s;
6634 Lisp_Object val;
6635 Lisp_Object tem;
6636
6637 if (sblk == symbol_block && bn >= symbol_block_index)
6638 break;
6639
6640 XSETSYMBOL (tem, sym);
6641 val = find_symbol_value (tem);
6642 if (EQ (val, obj)
6643 || EQ (sym->function, obj)
6644 || (!NILP (sym->function)
6645 && COMPILEDP (sym->function)
6646 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6647 || (!NILP (val)
6648 && COMPILEDP (val)
6649 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6650 {
6651 found = Fcons (tem, found);
6652 if (--find_max == 0)
6653 goto out;
6654 }
6655 }
6656 }
6657 }
6658
6659 out:
6660 unbind_to (gc_count, Qnil);
6661 return found;
6662 }
6663
6664 #ifdef ENABLE_CHECKING
6665 int suppress_checking;
6666
6667 void
6668 die (const char *msg, const char *file, int line)
6669 {
6670 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6671 file, line, msg);
6672 abort ();
6673 }
6674 #endif
6675 \f
6676 /* Initialization */
6677
6678 void
6679 init_alloc_once (void)
6680 {
6681 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6682 purebeg = PUREBEG;
6683 pure_size = PURESIZE;
6684 pure_bytes_used = 0;
6685 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6686 pure_bytes_used_before_overflow = 0;
6687
6688 /* Initialize the list of free aligned blocks. */
6689 free_ablock = NULL;
6690
6691 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6692 mem_init ();
6693 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6694 #endif
6695
6696 ignore_warnings = 1;
6697 #ifdef DOUG_LEA_MALLOC
6698 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6699 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6700 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6701 #endif
6702 init_strings ();
6703 init_cons ();
6704 init_symbol ();
6705 init_marker ();
6706 init_float ();
6707 init_intervals ();
6708 init_vectors ();
6709 init_weak_hash_tables ();
6710
6711 #ifdef REL_ALLOC
6712 malloc_hysteresis = 32;
6713 #else
6714 malloc_hysteresis = 0;
6715 #endif
6716
6717 refill_memory_reserve ();
6718
6719 ignore_warnings = 0;
6720 gcprolist = 0;
6721 byte_stack_list = 0;
6722 staticidx = 0;
6723 consing_since_gc = 0;
6724 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6725 gc_relative_threshold = 0;
6726 }
6727
6728 void
6729 init_alloc (void)
6730 {
6731 gcprolist = 0;
6732 byte_stack_list = 0;
6733 #if GC_MARK_STACK
6734 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6735 setjmp_tested_p = longjmps_done = 0;
6736 #endif
6737 #endif
6738 Vgc_elapsed = make_float (0.0);
6739 gcs_done = 0;
6740 }
6741
6742 void
6743 syms_of_alloc (void)
6744 {
6745 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6746 doc: /* Number of bytes of consing between garbage collections.
6747 Garbage collection can happen automatically once this many bytes have been
6748 allocated since the last garbage collection. All data types count.
6749
6750 Garbage collection happens automatically only when `eval' is called.
6751
6752 By binding this temporarily to a large number, you can effectively
6753 prevent garbage collection during a part of the program.
6754 See also `gc-cons-percentage'. */);
6755
6756 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6757 doc: /* Portion of the heap used for allocation.
6758 Garbage collection can happen automatically once this portion of the heap
6759 has been allocated since the last garbage collection.
6760 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6761 Vgc_cons_percentage = make_float (0.1);
6762
6763 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6764 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6765
6766 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6767 doc: /* Number of cons cells that have been consed so far. */);
6768
6769 DEFVAR_INT ("floats-consed", floats_consed,
6770 doc: /* Number of floats that have been consed so far. */);
6771
6772 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6773 doc: /* Number of vector cells that have been consed so far. */);
6774
6775 DEFVAR_INT ("symbols-consed", symbols_consed,
6776 doc: /* Number of symbols that have been consed so far. */);
6777
6778 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6779 doc: /* Number of string characters that have been consed so far. */);
6780
6781 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6782 doc: /* Number of miscellaneous objects that have been consed so far.
6783 These include markers and overlays, plus certain objects not visible
6784 to users. */);
6785
6786 DEFVAR_INT ("intervals-consed", intervals_consed,
6787 doc: /* Number of intervals that have been consed so far. */);
6788
6789 DEFVAR_INT ("strings-consed", strings_consed,
6790 doc: /* Number of strings that have been consed so far. */);
6791
6792 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6793 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6794 This means that certain objects should be allocated in shared (pure) space.
6795 It can also be set to a hash-table, in which case this table is used to
6796 do hash-consing of the objects allocated to pure space. */);
6797
6798 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6799 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6800 garbage_collection_messages = 0;
6801
6802 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6803 doc: /* Hook run after garbage collection has finished. */);
6804 Vpost_gc_hook = Qnil;
6805 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6806
6807 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6808 doc: /* Precomputed `signal' argument for memory-full error. */);
6809 /* We build this in advance because if we wait until we need it, we might
6810 not be able to allocate the memory to hold it. */
6811 Vmemory_signal_data
6812 = pure_cons (Qerror,
6813 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6814
6815 DEFVAR_LISP ("memory-full", Vmemory_full,
6816 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6817 Vmemory_full = Qnil;
6818
6819 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6820 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6821
6822 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6823 doc: /* Accumulated time elapsed in garbage collections.
6824 The time is in seconds as a floating point value. */);
6825 DEFVAR_INT ("gcs-done", gcs_done,
6826 doc: /* Accumulated number of garbage collections done. */);
6827
6828 defsubr (&Scons);
6829 defsubr (&Slist);
6830 defsubr (&Svector);
6831 defsubr (&Smake_byte_code);
6832 defsubr (&Smake_list);
6833 defsubr (&Smake_vector);
6834 defsubr (&Smake_string);
6835 defsubr (&Smake_bool_vector);
6836 defsubr (&Smake_symbol);
6837 defsubr (&Smake_marker);
6838 defsubr (&Spurecopy);
6839 defsubr (&Sgarbage_collect);
6840 defsubr (&Smemory_limit);
6841 defsubr (&Smemory_use_counts);
6842
6843 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6844 defsubr (&Sgc_status);
6845 #endif
6846 }