Use __builtin_unwind_init if available
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 #include <signal.h>
31
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
54
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
57
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
61
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
67
68 #include <fcntl.h>
69
70 #ifdef WINDOWSNT
71 #include "w32.h"
72 #endif
73
74 #ifdef DOUG_LEA_MALLOC
75
76 #include <malloc.h>
77 /* malloc.h #defines this as size_t, at least in glibc2. */
78 #ifndef __malloc_size_t
79 #define __malloc_size_t int
80 #endif
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 #define __malloc_size_t size_t
92 extern __malloc_size_t _bytes_used;
93 extern __malloc_size_t __malloc_extra_blocks;
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
98
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
103
104 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
105 functions below are called from malloc, there is a chance that one
106 of these threads preempts the Emacs main thread and the hook variables
107 end up in an inconsistent state. So we have a mutex to prevent that (note
108 that the backend handles concurrent access to malloc within its own threads
109 but Emacs code running in the main thread is not included in that control).
110
111 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
112 happens in one of the backend threads we will have two threads that tries
113 to run Emacs code at once, and the code is not prepared for that.
114 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
115
116 static pthread_mutex_t alloc_mutex;
117
118 #define BLOCK_INPUT_ALLOC \
119 do \
120 { \
121 if (pthread_equal (pthread_self (), main_thread)) \
122 BLOCK_INPUT; \
123 pthread_mutex_lock (&alloc_mutex); \
124 } \
125 while (0)
126 #define UNBLOCK_INPUT_ALLOC \
127 do \
128 { \
129 pthread_mutex_unlock (&alloc_mutex); \
130 if (pthread_equal (pthread_self (), main_thread)) \
131 UNBLOCK_INPUT; \
132 } \
133 while (0)
134
135 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
138 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
139
140 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
156
157 /* Value is the number of bytes/chars of S, a pointer to a struct
158 Lisp_String. This must be used instead of STRING_BYTES (S) or
159 S->size during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
164
165 /* Number of bytes of consing done since the last gc. */
166
167 int consing_since_gc;
168
169 /* Count the amount of consing of various sorts of space. */
170
171 EMACS_INT cons_cells_consed;
172 EMACS_INT floats_consed;
173 EMACS_INT vector_cells_consed;
174 EMACS_INT symbols_consed;
175 EMACS_INT string_chars_consed;
176 EMACS_INT misc_objects_consed;
177 EMACS_INT intervals_consed;
178 EMACS_INT strings_consed;
179
180 /* Minimum number of bytes of consing since GC before next GC. */
181
182 EMACS_INT gc_cons_threshold;
183
184 /* Similar minimum, computed from Vgc_cons_percentage. */
185
186 EMACS_INT gc_relative_threshold;
187
188 static Lisp_Object Vgc_cons_percentage;
189
190 /* Minimum number of bytes of consing since GC before next GC,
191 when memory is full. */
192
193 EMACS_INT memory_full_cons_threshold;
194
195 /* Nonzero during GC. */
196
197 int gc_in_progress;
198
199 /* Nonzero means abort if try to GC.
200 This is for code which is written on the assumption that
201 no GC will happen, so as to verify that assumption. */
202
203 int abort_on_gc;
204
205 /* Nonzero means display messages at beginning and end of GC. */
206
207 int garbage_collection_messages;
208
209 /* Number of live and free conses etc. */
210
211 static int total_conses, total_markers, total_symbols, total_vector_size;
212 static int total_free_conses, total_free_markers, total_free_symbols;
213 static int total_free_floats, total_floats;
214
215 /* Points to memory space allocated as "spare", to be freed if we run
216 out of memory. We keep one large block, four cons-blocks, and
217 two string blocks. */
218
219 static char *spare_memory[7];
220
221 /* Amount of spare memory to keep in large reserve block. */
222
223 #define SPARE_MEMORY (1 << 14)
224
225 /* Number of extra blocks malloc should get when it needs more core. */
226
227 static int malloc_hysteresis;
228
229 /* Non-nil means defun should do purecopy on the function definition. */
230
231 Lisp_Object Vpurify_flag;
232
233 /* Non-nil means we are handling a memory-full error. */
234
235 Lisp_Object Vmemory_full;
236
237 /* Initialize it to a nonzero value to force it into data space
238 (rather than bss space). That way unexec will remap it into text
239 space (pure), on some systems. We have not implemented the
240 remapping on more recent systems because this is less important
241 nowadays than in the days of small memories and timesharing. */
242
243 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
244 #define PUREBEG (char *) pure
245
246 /* Pointer to the pure area, and its size. */
247
248 static char *purebeg;
249 static size_t pure_size;
250
251 /* Number of bytes of pure storage used before pure storage overflowed.
252 If this is non-zero, this implies that an overflow occurred. */
253
254 static size_t pure_bytes_used_before_overflow;
255
256 /* Value is non-zero if P points into pure space. */
257
258 #define PURE_POINTER_P(P) \
259 (((PNTR_COMPARISON_TYPE) (P) \
260 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
261 && ((PNTR_COMPARISON_TYPE) (P) \
262 >= (PNTR_COMPARISON_TYPE) purebeg))
263
264 /* Total number of bytes allocated in pure storage. */
265
266 EMACS_INT pure_bytes_used;
267
268 /* Index in pure at which next pure Lisp object will be allocated.. */
269
270 static EMACS_INT pure_bytes_used_lisp;
271
272 /* Number of bytes allocated for non-Lisp objects in pure storage. */
273
274 static EMACS_INT pure_bytes_used_non_lisp;
275
276 /* If nonzero, this is a warning delivered by malloc and not yet
277 displayed. */
278
279 const char *pending_malloc_warning;
280
281 /* Pre-computed signal argument for use when memory is exhausted. */
282
283 Lisp_Object Vmemory_signal_data;
284
285 /* Maximum amount of C stack to save when a GC happens. */
286
287 #ifndef MAX_SAVE_STACK
288 #define MAX_SAVE_STACK 16000
289 #endif
290
291 /* Buffer in which we save a copy of the C stack at each GC. */
292
293 static char *stack_copy;
294 static int stack_copy_size;
295
296 /* Non-zero means ignore malloc warnings. Set during initialization.
297 Currently not used. */
298
299 static int ignore_warnings;
300
301 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
302
303 /* Hook run after GC has finished. */
304
305 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
306
307 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
308 EMACS_INT gcs_done; /* accumulated GCs */
309
310 static void mark_buffer (Lisp_Object);
311 static void mark_terminals (void);
312 extern void mark_kboards (void);
313 extern void mark_ttys (void);
314 extern void mark_backtrace (void);
315 static void gc_sweep (void);
316 static void mark_glyph_matrix (struct glyph_matrix *);
317 static void mark_face_cache (struct face_cache *);
318
319 #ifdef HAVE_WINDOW_SYSTEM
320 extern void mark_fringe_data (void);
321 #endif /* HAVE_WINDOW_SYSTEM */
322
323 static struct Lisp_String *allocate_string (void);
324 static void compact_small_strings (void);
325 static void free_large_strings (void);
326 static void sweep_strings (void);
327
328 extern int message_enable_multibyte;
329
330 /* When scanning the C stack for live Lisp objects, Emacs keeps track
331 of what memory allocated via lisp_malloc is intended for what
332 purpose. This enumeration specifies the type of memory. */
333
334 enum mem_type
335 {
336 MEM_TYPE_NON_LISP,
337 MEM_TYPE_BUFFER,
338 MEM_TYPE_CONS,
339 MEM_TYPE_STRING,
340 MEM_TYPE_MISC,
341 MEM_TYPE_SYMBOL,
342 MEM_TYPE_FLOAT,
343 /* We used to keep separate mem_types for subtypes of vectors such as
344 process, hash_table, frame, terminal, and window, but we never made
345 use of the distinction, so it only caused source-code complexity
346 and runtime slowdown. Minor but pointless. */
347 MEM_TYPE_VECTORLIKE
348 };
349
350 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
351 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
352
353
354 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
355
356 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
357 #include <stdio.h> /* For fprintf. */
358 #endif
359
360 /* A unique object in pure space used to make some Lisp objects
361 on free lists recognizable in O(1). */
362
363 static Lisp_Object Vdead;
364
365 #ifdef GC_MALLOC_CHECK
366
367 enum mem_type allocated_mem_type;
368 static int dont_register_blocks;
369
370 #endif /* GC_MALLOC_CHECK */
371
372 /* A node in the red-black tree describing allocated memory containing
373 Lisp data. Each such block is recorded with its start and end
374 address when it is allocated, and removed from the tree when it
375 is freed.
376
377 A red-black tree is a balanced binary tree with the following
378 properties:
379
380 1. Every node is either red or black.
381 2. Every leaf is black.
382 3. If a node is red, then both of its children are black.
383 4. Every simple path from a node to a descendant leaf contains
384 the same number of black nodes.
385 5. The root is always black.
386
387 When nodes are inserted into the tree, or deleted from the tree,
388 the tree is "fixed" so that these properties are always true.
389
390 A red-black tree with N internal nodes has height at most 2
391 log(N+1). Searches, insertions and deletions are done in O(log N).
392 Please see a text book about data structures for a detailed
393 description of red-black trees. Any book worth its salt should
394 describe them. */
395
396 struct mem_node
397 {
398 /* Children of this node. These pointers are never NULL. When there
399 is no child, the value is MEM_NIL, which points to a dummy node. */
400 struct mem_node *left, *right;
401
402 /* The parent of this node. In the root node, this is NULL. */
403 struct mem_node *parent;
404
405 /* Start and end of allocated region. */
406 void *start, *end;
407
408 /* Node color. */
409 enum {MEM_BLACK, MEM_RED} color;
410
411 /* Memory type. */
412 enum mem_type type;
413 };
414
415 /* Base address of stack. Set in main. */
416
417 Lisp_Object *stack_base;
418
419 /* Root of the tree describing allocated Lisp memory. */
420
421 static struct mem_node *mem_root;
422
423 /* Lowest and highest known address in the heap. */
424
425 static void *min_heap_address, *max_heap_address;
426
427 /* Sentinel node of the tree. */
428
429 static struct mem_node mem_z;
430 #define MEM_NIL &mem_z
431
432 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
433 static void lisp_free (POINTER_TYPE *);
434 static void mark_stack (void);
435 static int live_vector_p (struct mem_node *, void *);
436 static int live_buffer_p (struct mem_node *, void *);
437 static int live_string_p (struct mem_node *, void *);
438 static int live_cons_p (struct mem_node *, void *);
439 static int live_symbol_p (struct mem_node *, void *);
440 static int live_float_p (struct mem_node *, void *);
441 static int live_misc_p (struct mem_node *, void *);
442 static void mark_maybe_object (Lisp_Object);
443 static void mark_memory (void *, void *, int);
444 static void mem_init (void);
445 static struct mem_node *mem_insert (void *, void *, enum mem_type);
446 static void mem_insert_fixup (struct mem_node *);
447 static void mem_rotate_left (struct mem_node *);
448 static void mem_rotate_right (struct mem_node *);
449 static void mem_delete (struct mem_node *);
450 static void mem_delete_fixup (struct mem_node *);
451 static INLINE struct mem_node *mem_find (void *);
452
453
454 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
455 static void check_gcpros (void);
456 #endif
457
458 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
459
460 /* Recording what needs to be marked for gc. */
461
462 struct gcpro *gcprolist;
463
464 /* Addresses of staticpro'd variables. Initialize it to a nonzero
465 value; otherwise some compilers put it into BSS. */
466
467 #define NSTATICS 0x640
468 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
469
470 /* Index of next unused slot in staticvec. */
471
472 static int staticidx = 0;
473
474 static POINTER_TYPE *pure_alloc (size_t, int);
475
476
477 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
478 ALIGNMENT must be a power of 2. */
479
480 #define ALIGN(ptr, ALIGNMENT) \
481 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
482 & ~((ALIGNMENT) - 1)))
483
484
485 \f
486 /************************************************************************
487 Malloc
488 ************************************************************************/
489
490 /* Function malloc calls this if it finds we are near exhausting storage. */
491
492 void
493 malloc_warning (const char *str)
494 {
495 pending_malloc_warning = str;
496 }
497
498
499 /* Display an already-pending malloc warning. */
500
501 void
502 display_malloc_warning (void)
503 {
504 call3 (intern ("display-warning"),
505 intern ("alloc"),
506 build_string (pending_malloc_warning),
507 intern ("emergency"));
508 pending_malloc_warning = 0;
509 }
510
511
512 #ifdef DOUG_LEA_MALLOC
513 # define BYTES_USED (mallinfo ().uordblks)
514 #else
515 # define BYTES_USED _bytes_used
516 #endif
517 \f
518 /* Called if we can't allocate relocatable space for a buffer. */
519
520 void
521 buffer_memory_full (void)
522 {
523 /* If buffers use the relocating allocator, no need to free
524 spare_memory, because we may have plenty of malloc space left
525 that we could get, and if we don't, the malloc that fails will
526 itself cause spare_memory to be freed. If buffers don't use the
527 relocating allocator, treat this like any other failing
528 malloc. */
529
530 #ifndef REL_ALLOC
531 memory_full ();
532 #endif
533
534 /* This used to call error, but if we've run out of memory, we could
535 get infinite recursion trying to build the string. */
536 xsignal (Qnil, Vmemory_signal_data);
537 }
538
539
540 #ifdef XMALLOC_OVERRUN_CHECK
541
542 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
543 and a 16 byte trailer around each block.
544
545 The header consists of 12 fixed bytes + a 4 byte integer contaning the
546 original block size, while the trailer consists of 16 fixed bytes.
547
548 The header is used to detect whether this block has been allocated
549 through these functions -- as it seems that some low-level libc
550 functions may bypass the malloc hooks.
551 */
552
553
554 #define XMALLOC_OVERRUN_CHECK_SIZE 16
555
556 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
557 { 0x9a, 0x9b, 0xae, 0xaf,
558 0xbf, 0xbe, 0xce, 0xcf,
559 0xea, 0xeb, 0xec, 0xed };
560
561 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { 0xaa, 0xab, 0xac, 0xad,
563 0xba, 0xbb, 0xbc, 0xbd,
564 0xca, 0xcb, 0xcc, 0xcd,
565 0xda, 0xdb, 0xdc, 0xdd };
566
567 /* Macros to insert and extract the block size in the header. */
568
569 #define XMALLOC_PUT_SIZE(ptr, size) \
570 (ptr[-1] = (size & 0xff), \
571 ptr[-2] = ((size >> 8) & 0xff), \
572 ptr[-3] = ((size >> 16) & 0xff), \
573 ptr[-4] = ((size >> 24) & 0xff))
574
575 #define XMALLOC_GET_SIZE(ptr) \
576 (size_t)((unsigned)(ptr[-1]) | \
577 ((unsigned)(ptr[-2]) << 8) | \
578 ((unsigned)(ptr[-3]) << 16) | \
579 ((unsigned)(ptr[-4]) << 24))
580
581
582 /* The call depth in overrun_check functions. For example, this might happen:
583 xmalloc()
584 overrun_check_malloc()
585 -> malloc -> (via hook)_-> emacs_blocked_malloc
586 -> overrun_check_malloc
587 call malloc (hooks are NULL, so real malloc is called).
588 malloc returns 10000.
589 add overhead, return 10016.
590 <- (back in overrun_check_malloc)
591 add overhead again, return 10032
592 xmalloc returns 10032.
593
594 (time passes).
595
596 xfree(10032)
597 overrun_check_free(10032)
598 decrease overhed
599 free(10016) <- crash, because 10000 is the original pointer. */
600
601 static int check_depth;
602
603 /* Like malloc, but wraps allocated block with header and trailer. */
604
605 POINTER_TYPE *
606 overrun_check_malloc (size)
607 size_t size;
608 {
609 register unsigned char *val;
610 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
611
612 val = (unsigned char *) malloc (size + overhead);
613 if (val && check_depth == 1)
614 {
615 memcpy (val, xmalloc_overrun_check_header,
616 XMALLOC_OVERRUN_CHECK_SIZE - 4);
617 val += XMALLOC_OVERRUN_CHECK_SIZE;
618 XMALLOC_PUT_SIZE(val, size);
619 memcpy (val + size, xmalloc_overrun_check_trailer,
620 XMALLOC_OVERRUN_CHECK_SIZE);
621 }
622 --check_depth;
623 return (POINTER_TYPE *)val;
624 }
625
626
627 /* Like realloc, but checks old block for overrun, and wraps new block
628 with header and trailer. */
629
630 POINTER_TYPE *
631 overrun_check_realloc (block, size)
632 POINTER_TYPE *block;
633 size_t size;
634 {
635 register unsigned char *val = (unsigned char *)block;
636 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
637
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
651 }
652
653 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
654
655 if (val && check_depth == 1)
656 {
657 memcpy (val, xmalloc_overrun_check_header,
658 XMALLOC_OVERRUN_CHECK_SIZE - 4);
659 val += XMALLOC_OVERRUN_CHECK_SIZE;
660 XMALLOC_PUT_SIZE(val, size);
661 memcpy (val + size, xmalloc_overrun_check_trailer,
662 XMALLOC_OVERRUN_CHECK_SIZE);
663 }
664 --check_depth;
665 return (POINTER_TYPE *)val;
666 }
667
668 /* Like free, but checks block for overrun. */
669
670 void
671 overrun_check_free (block)
672 POINTER_TYPE *block;
673 {
674 unsigned char *val = (unsigned char *)block;
675
676 ++check_depth;
677 if (val
678 && check_depth == 1
679 && memcmp (xmalloc_overrun_check_header,
680 val - XMALLOC_OVERRUN_CHECK_SIZE,
681 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
682 {
683 size_t osize = XMALLOC_GET_SIZE (val);
684 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
685 XMALLOC_OVERRUN_CHECK_SIZE))
686 abort ();
687 #ifdef XMALLOC_CLEAR_FREE_MEMORY
688 val -= XMALLOC_OVERRUN_CHECK_SIZE;
689 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
690 #else
691 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
692 val -= XMALLOC_OVERRUN_CHECK_SIZE;
693 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
694 #endif
695 }
696
697 free (val);
698 --check_depth;
699 }
700
701 #undef malloc
702 #undef realloc
703 #undef free
704 #define malloc overrun_check_malloc
705 #define realloc overrun_check_realloc
706 #define free overrun_check_free
707 #endif
708
709 #ifdef SYNC_INPUT
710 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
711 there's no need to block input around malloc. */
712 #define MALLOC_BLOCK_INPUT ((void)0)
713 #define MALLOC_UNBLOCK_INPUT ((void)0)
714 #else
715 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
716 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
717 #endif
718
719 /* Like malloc but check for no memory and block interrupt input.. */
720
721 POINTER_TYPE *
722 xmalloc (size_t size)
723 {
724 register POINTER_TYPE *val;
725
726 MALLOC_BLOCK_INPUT;
727 val = (POINTER_TYPE *) malloc (size);
728 MALLOC_UNBLOCK_INPUT;
729
730 if (!val && size)
731 memory_full ();
732 return val;
733 }
734
735
736 /* Like realloc but check for no memory and block interrupt input.. */
737
738 POINTER_TYPE *
739 xrealloc (POINTER_TYPE *block, size_t size)
740 {
741 register POINTER_TYPE *val;
742
743 MALLOC_BLOCK_INPUT;
744 /* We must call malloc explicitly when BLOCK is 0, since some
745 reallocs don't do this. */
746 if (! block)
747 val = (POINTER_TYPE *) malloc (size);
748 else
749 val = (POINTER_TYPE *) realloc (block, size);
750 MALLOC_UNBLOCK_INPUT;
751
752 if (!val && size) memory_full ();
753 return val;
754 }
755
756
757 /* Like free but block interrupt input. */
758
759 void
760 xfree (POINTER_TYPE *block)
761 {
762 if (!block)
763 return;
764 MALLOC_BLOCK_INPUT;
765 free (block);
766 MALLOC_UNBLOCK_INPUT;
767 /* We don't call refill_memory_reserve here
768 because that duplicates doing so in emacs_blocked_free
769 and the criterion should go there. */
770 }
771
772
773 /* Like strdup, but uses xmalloc. */
774
775 char *
776 xstrdup (const char *s)
777 {
778 size_t len = strlen (s) + 1;
779 char *p = (char *) xmalloc (len);
780 memcpy (p, s, len);
781 return p;
782 }
783
784
785 /* Unwind for SAFE_ALLOCA */
786
787 Lisp_Object
788 safe_alloca_unwind (Lisp_Object arg)
789 {
790 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
791
792 p->dogc = 0;
793 xfree (p->pointer);
794 p->pointer = 0;
795 free_misc (arg);
796 return Qnil;
797 }
798
799
800 /* Like malloc but used for allocating Lisp data. NBYTES is the
801 number of bytes to allocate, TYPE describes the intended use of the
802 allcated memory block (for strings, for conses, ...). */
803
804 #ifndef USE_LSB_TAG
805 static void *lisp_malloc_loser;
806 #endif
807
808 static POINTER_TYPE *
809 lisp_malloc (size_t nbytes, enum mem_type type)
810 {
811 register void *val;
812
813 MALLOC_BLOCK_INPUT;
814
815 #ifdef GC_MALLOC_CHECK
816 allocated_mem_type = type;
817 #endif
818
819 val = (void *) malloc (nbytes);
820
821 #ifndef USE_LSB_TAG
822 /* If the memory just allocated cannot be addressed thru a Lisp
823 object's pointer, and it needs to be,
824 that's equivalent to running out of memory. */
825 if (val && type != MEM_TYPE_NON_LISP)
826 {
827 Lisp_Object tem;
828 XSETCONS (tem, (char *) val + nbytes - 1);
829 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
830 {
831 lisp_malloc_loser = val;
832 free (val);
833 val = 0;
834 }
835 }
836 #endif
837
838 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
839 if (val && type != MEM_TYPE_NON_LISP)
840 mem_insert (val, (char *) val + nbytes, type);
841 #endif
842
843 MALLOC_UNBLOCK_INPUT;
844 if (!val && nbytes)
845 memory_full ();
846 return val;
847 }
848
849 /* Free BLOCK. This must be called to free memory allocated with a
850 call to lisp_malloc. */
851
852 static void
853 lisp_free (POINTER_TYPE *block)
854 {
855 MALLOC_BLOCK_INPUT;
856 free (block);
857 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
858 mem_delete (mem_find (block));
859 #endif
860 MALLOC_UNBLOCK_INPUT;
861 }
862
863 /* Allocation of aligned blocks of memory to store Lisp data. */
864 /* The entry point is lisp_align_malloc which returns blocks of at most */
865 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
866
867 /* Use posix_memalloc if the system has it and we're using the system's
868 malloc (because our gmalloc.c routines don't have posix_memalign although
869 its memalloc could be used). */
870 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
871 #define USE_POSIX_MEMALIGN 1
872 #endif
873
874 /* BLOCK_ALIGN has to be a power of 2. */
875 #define BLOCK_ALIGN (1 << 10)
876
877 /* Padding to leave at the end of a malloc'd block. This is to give
878 malloc a chance to minimize the amount of memory wasted to alignment.
879 It should be tuned to the particular malloc library used.
880 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
881 posix_memalign on the other hand would ideally prefer a value of 4
882 because otherwise, there's 1020 bytes wasted between each ablocks.
883 In Emacs, testing shows that those 1020 can most of the time be
884 efficiently used by malloc to place other objects, so a value of 0 can
885 still preferable unless you have a lot of aligned blocks and virtually
886 nothing else. */
887 #define BLOCK_PADDING 0
888 #define BLOCK_BYTES \
889 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
890
891 /* Internal data structures and constants. */
892
893 #define ABLOCKS_SIZE 16
894
895 /* An aligned block of memory. */
896 struct ablock
897 {
898 union
899 {
900 char payload[BLOCK_BYTES];
901 struct ablock *next_free;
902 } x;
903 /* `abase' is the aligned base of the ablocks. */
904 /* It is overloaded to hold the virtual `busy' field that counts
905 the number of used ablock in the parent ablocks.
906 The first ablock has the `busy' field, the others have the `abase'
907 field. To tell the difference, we assume that pointers will have
908 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
909 is used to tell whether the real base of the parent ablocks is `abase'
910 (if not, the word before the first ablock holds a pointer to the
911 real base). */
912 struct ablocks *abase;
913 /* The padding of all but the last ablock is unused. The padding of
914 the last ablock in an ablocks is not allocated. */
915 #if BLOCK_PADDING
916 char padding[BLOCK_PADDING];
917 #endif
918 };
919
920 /* A bunch of consecutive aligned blocks. */
921 struct ablocks
922 {
923 struct ablock blocks[ABLOCKS_SIZE];
924 };
925
926 /* Size of the block requested from malloc or memalign. */
927 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
928
929 #define ABLOCK_ABASE(block) \
930 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
931 ? (struct ablocks *)(block) \
932 : (block)->abase)
933
934 /* Virtual `busy' field. */
935 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
936
937 /* Pointer to the (not necessarily aligned) malloc block. */
938 #ifdef USE_POSIX_MEMALIGN
939 #define ABLOCKS_BASE(abase) (abase)
940 #else
941 #define ABLOCKS_BASE(abase) \
942 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
943 #endif
944
945 /* The list of free ablock. */
946 static struct ablock *free_ablock;
947
948 /* Allocate an aligned block of nbytes.
949 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
950 smaller or equal to BLOCK_BYTES. */
951 static POINTER_TYPE *
952 lisp_align_malloc (size_t nbytes, enum mem_type type)
953 {
954 void *base, *val;
955 struct ablocks *abase;
956
957 eassert (nbytes <= BLOCK_BYTES);
958
959 MALLOC_BLOCK_INPUT;
960
961 #ifdef GC_MALLOC_CHECK
962 allocated_mem_type = type;
963 #endif
964
965 if (!free_ablock)
966 {
967 int i;
968 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
969
970 #ifdef DOUG_LEA_MALLOC
971 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
972 because mapped region contents are not preserved in
973 a dumped Emacs. */
974 mallopt (M_MMAP_MAX, 0);
975 #endif
976
977 #ifdef USE_POSIX_MEMALIGN
978 {
979 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
980 if (err)
981 base = NULL;
982 abase = base;
983 }
984 #else
985 base = malloc (ABLOCKS_BYTES);
986 abase = ALIGN (base, BLOCK_ALIGN);
987 #endif
988
989 if (base == 0)
990 {
991 MALLOC_UNBLOCK_INPUT;
992 memory_full ();
993 }
994
995 aligned = (base == abase);
996 if (!aligned)
997 ((void**)abase)[-1] = base;
998
999 #ifdef DOUG_LEA_MALLOC
1000 /* Back to a reasonable maximum of mmap'ed areas. */
1001 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1002 #endif
1003
1004 #ifndef USE_LSB_TAG
1005 /* If the memory just allocated cannot be addressed thru a Lisp
1006 object's pointer, and it needs to be, that's equivalent to
1007 running out of memory. */
1008 if (type != MEM_TYPE_NON_LISP)
1009 {
1010 Lisp_Object tem;
1011 char *end = (char *) base + ABLOCKS_BYTES - 1;
1012 XSETCONS (tem, end);
1013 if ((char *) XCONS (tem) != end)
1014 {
1015 lisp_malloc_loser = base;
1016 free (base);
1017 MALLOC_UNBLOCK_INPUT;
1018 memory_full ();
1019 }
1020 }
1021 #endif
1022
1023 /* Initialize the blocks and put them on the free list.
1024 Is `base' was not properly aligned, we can't use the last block. */
1025 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1026 {
1027 abase->blocks[i].abase = abase;
1028 abase->blocks[i].x.next_free = free_ablock;
1029 free_ablock = &abase->blocks[i];
1030 }
1031 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1032
1033 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1034 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1035 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1036 eassert (ABLOCKS_BASE (abase) == base);
1037 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1038 }
1039
1040 abase = ABLOCK_ABASE (free_ablock);
1041 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1042 val = free_ablock;
1043 free_ablock = free_ablock->x.next_free;
1044
1045 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1046 if (val && type != MEM_TYPE_NON_LISP)
1047 mem_insert (val, (char *) val + nbytes, type);
1048 #endif
1049
1050 MALLOC_UNBLOCK_INPUT;
1051 if (!val && nbytes)
1052 memory_full ();
1053
1054 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1055 return val;
1056 }
1057
1058 static void
1059 lisp_align_free (POINTER_TYPE *block)
1060 {
1061 struct ablock *ablock = block;
1062 struct ablocks *abase = ABLOCK_ABASE (ablock);
1063
1064 MALLOC_BLOCK_INPUT;
1065 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1066 mem_delete (mem_find (block));
1067 #endif
1068 /* Put on free list. */
1069 ablock->x.next_free = free_ablock;
1070 free_ablock = ablock;
1071 /* Update busy count. */
1072 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1073
1074 if (2 > (long) ABLOCKS_BUSY (abase))
1075 { /* All the blocks are free. */
1076 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1077 struct ablock **tem = &free_ablock;
1078 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1079
1080 while (*tem)
1081 {
1082 if (*tem >= (struct ablock *) abase && *tem < atop)
1083 {
1084 i++;
1085 *tem = (*tem)->x.next_free;
1086 }
1087 else
1088 tem = &(*tem)->x.next_free;
1089 }
1090 eassert ((aligned & 1) == aligned);
1091 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1092 #ifdef USE_POSIX_MEMALIGN
1093 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1094 #endif
1095 free (ABLOCKS_BASE (abase));
1096 }
1097 MALLOC_UNBLOCK_INPUT;
1098 }
1099
1100 /* Return a new buffer structure allocated from the heap with
1101 a call to lisp_malloc. */
1102
1103 struct buffer *
1104 allocate_buffer (void)
1105 {
1106 struct buffer *b
1107 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1108 MEM_TYPE_BUFFER);
1109 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1110 XSETPVECTYPE (b, PVEC_BUFFER);
1111 return b;
1112 }
1113
1114 \f
1115 #ifndef SYSTEM_MALLOC
1116
1117 /* Arranging to disable input signals while we're in malloc.
1118
1119 This only works with GNU malloc. To help out systems which can't
1120 use GNU malloc, all the calls to malloc, realloc, and free
1121 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1122 pair; unfortunately, we have no idea what C library functions
1123 might call malloc, so we can't really protect them unless you're
1124 using GNU malloc. Fortunately, most of the major operating systems
1125 can use GNU malloc. */
1126
1127 #ifndef SYNC_INPUT
1128 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1129 there's no need to block input around malloc. */
1130
1131 #ifndef DOUG_LEA_MALLOC
1132 extern void * (*__malloc_hook) (size_t, const void *);
1133 extern void * (*__realloc_hook) (void *, size_t, const void *);
1134 extern void (*__free_hook) (void *, const void *);
1135 /* Else declared in malloc.h, perhaps with an extra arg. */
1136 #endif /* DOUG_LEA_MALLOC */
1137 static void * (*old_malloc_hook) (size_t, const void *);
1138 static void * (*old_realloc_hook) (void *, size_t, const void*);
1139 static void (*old_free_hook) (void*, const void*);
1140
1141 static __malloc_size_t bytes_used_when_reconsidered;
1142
1143 /* This function is used as the hook for free to call. */
1144
1145 static void
1146 emacs_blocked_free (void *ptr, const void *ptr2)
1147 {
1148 BLOCK_INPUT_ALLOC;
1149
1150 #ifdef GC_MALLOC_CHECK
1151 if (ptr)
1152 {
1153 struct mem_node *m;
1154
1155 m = mem_find (ptr);
1156 if (m == MEM_NIL || m->start != ptr)
1157 {
1158 fprintf (stderr,
1159 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1160 abort ();
1161 }
1162 else
1163 {
1164 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1165 mem_delete (m);
1166 }
1167 }
1168 #endif /* GC_MALLOC_CHECK */
1169
1170 __free_hook = old_free_hook;
1171 free (ptr);
1172
1173 /* If we released our reserve (due to running out of memory),
1174 and we have a fair amount free once again,
1175 try to set aside another reserve in case we run out once more. */
1176 if (! NILP (Vmemory_full)
1177 /* Verify there is enough space that even with the malloc
1178 hysteresis this call won't run out again.
1179 The code here is correct as long as SPARE_MEMORY
1180 is substantially larger than the block size malloc uses. */
1181 && (bytes_used_when_full
1182 > ((bytes_used_when_reconsidered = BYTES_USED)
1183 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1184 refill_memory_reserve ();
1185
1186 __free_hook = emacs_blocked_free;
1187 UNBLOCK_INPUT_ALLOC;
1188 }
1189
1190
1191 /* This function is the malloc hook that Emacs uses. */
1192
1193 static void *
1194 emacs_blocked_malloc (size_t size, const void *ptr)
1195 {
1196 void *value;
1197
1198 BLOCK_INPUT_ALLOC;
1199 __malloc_hook = old_malloc_hook;
1200 #ifdef DOUG_LEA_MALLOC
1201 /* Segfaults on my system. --lorentey */
1202 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1203 #else
1204 __malloc_extra_blocks = malloc_hysteresis;
1205 #endif
1206
1207 value = (void *) malloc (size);
1208
1209 #ifdef GC_MALLOC_CHECK
1210 {
1211 struct mem_node *m = mem_find (value);
1212 if (m != MEM_NIL)
1213 {
1214 fprintf (stderr, "Malloc returned %p which is already in use\n",
1215 value);
1216 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1217 m->start, m->end, (char *) m->end - (char *) m->start,
1218 m->type);
1219 abort ();
1220 }
1221
1222 if (!dont_register_blocks)
1223 {
1224 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1225 allocated_mem_type = MEM_TYPE_NON_LISP;
1226 }
1227 }
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 __malloc_hook = emacs_blocked_malloc;
1231 UNBLOCK_INPUT_ALLOC;
1232
1233 /* fprintf (stderr, "%p malloc\n", value); */
1234 return value;
1235 }
1236
1237
1238 /* This function is the realloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1242 {
1243 void *value;
1244
1245 BLOCK_INPUT_ALLOC;
1246 __realloc_hook = old_realloc_hook;
1247
1248 #ifdef GC_MALLOC_CHECK
1249 if (ptr)
1250 {
1251 struct mem_node *m = mem_find (ptr);
1252 if (m == MEM_NIL || m->start != ptr)
1253 {
1254 fprintf (stderr,
1255 "Realloc of %p which wasn't allocated with malloc\n",
1256 ptr);
1257 abort ();
1258 }
1259
1260 mem_delete (m);
1261 }
1262
1263 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1264
1265 /* Prevent malloc from registering blocks. */
1266 dont_register_blocks = 1;
1267 #endif /* GC_MALLOC_CHECK */
1268
1269 value = (void *) realloc (ptr, size);
1270
1271 #ifdef GC_MALLOC_CHECK
1272 dont_register_blocks = 0;
1273
1274 {
1275 struct mem_node *m = mem_find (value);
1276 if (m != MEM_NIL)
1277 {
1278 fprintf (stderr, "Realloc returns memory that is already in use\n");
1279 abort ();
1280 }
1281
1282 /* Can't handle zero size regions in the red-black tree. */
1283 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1284 }
1285
1286 /* fprintf (stderr, "%p <- realloc\n", value); */
1287 #endif /* GC_MALLOC_CHECK */
1288
1289 __realloc_hook = emacs_blocked_realloc;
1290 UNBLOCK_INPUT_ALLOC;
1291
1292 return value;
1293 }
1294
1295
1296 #ifdef HAVE_GTK_AND_PTHREAD
1297 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1298 normal malloc. Some thread implementations need this as they call
1299 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1300 calls malloc because it is the first call, and we have an endless loop. */
1301
1302 void
1303 reset_malloc_hooks ()
1304 {
1305 __free_hook = old_free_hook;
1306 __malloc_hook = old_malloc_hook;
1307 __realloc_hook = old_realloc_hook;
1308 }
1309 #endif /* HAVE_GTK_AND_PTHREAD */
1310
1311
1312 /* Called from main to set up malloc to use our hooks. */
1313
1314 void
1315 uninterrupt_malloc (void)
1316 {
1317 #ifdef HAVE_GTK_AND_PTHREAD
1318 #ifdef DOUG_LEA_MALLOC
1319 pthread_mutexattr_t attr;
1320
1321 /* GLIBC has a faster way to do this, but lets keep it portable.
1322 This is according to the Single UNIX Specification. */
1323 pthread_mutexattr_init (&attr);
1324 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1325 pthread_mutex_init (&alloc_mutex, &attr);
1326 #else /* !DOUG_LEA_MALLOC */
1327 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1328 and the bundled gmalloc.c doesn't require it. */
1329 pthread_mutex_init (&alloc_mutex, NULL);
1330 #endif /* !DOUG_LEA_MALLOC */
1331 #endif /* HAVE_GTK_AND_PTHREAD */
1332
1333 if (__free_hook != emacs_blocked_free)
1334 old_free_hook = __free_hook;
1335 __free_hook = emacs_blocked_free;
1336
1337 if (__malloc_hook != emacs_blocked_malloc)
1338 old_malloc_hook = __malloc_hook;
1339 __malloc_hook = emacs_blocked_malloc;
1340
1341 if (__realloc_hook != emacs_blocked_realloc)
1342 old_realloc_hook = __realloc_hook;
1343 __realloc_hook = emacs_blocked_realloc;
1344 }
1345
1346 #endif /* not SYNC_INPUT */
1347 #endif /* not SYSTEM_MALLOC */
1348
1349
1350 \f
1351 /***********************************************************************
1352 Interval Allocation
1353 ***********************************************************************/
1354
1355 /* Number of intervals allocated in an interval_block structure.
1356 The 1020 is 1024 minus malloc overhead. */
1357
1358 #define INTERVAL_BLOCK_SIZE \
1359 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1360
1361 /* Intervals are allocated in chunks in form of an interval_block
1362 structure. */
1363
1364 struct interval_block
1365 {
1366 /* Place `intervals' first, to preserve alignment. */
1367 struct interval intervals[INTERVAL_BLOCK_SIZE];
1368 struct interval_block *next;
1369 };
1370
1371 /* Current interval block. Its `next' pointer points to older
1372 blocks. */
1373
1374 static struct interval_block *interval_block;
1375
1376 /* Index in interval_block above of the next unused interval
1377 structure. */
1378
1379 static int interval_block_index;
1380
1381 /* Number of free and live intervals. */
1382
1383 static int total_free_intervals, total_intervals;
1384
1385 /* List of free intervals. */
1386
1387 INTERVAL interval_free_list;
1388
1389 /* Total number of interval blocks now in use. */
1390
1391 static int n_interval_blocks;
1392
1393
1394 /* Initialize interval allocation. */
1395
1396 static void
1397 init_intervals (void)
1398 {
1399 interval_block = NULL;
1400 interval_block_index = INTERVAL_BLOCK_SIZE;
1401 interval_free_list = 0;
1402 n_interval_blocks = 0;
1403 }
1404
1405
1406 /* Return a new interval. */
1407
1408 INTERVAL
1409 make_interval (void)
1410 {
1411 INTERVAL val;
1412
1413 /* eassert (!handling_signal); */
1414
1415 MALLOC_BLOCK_INPUT;
1416
1417 if (interval_free_list)
1418 {
1419 val = interval_free_list;
1420 interval_free_list = INTERVAL_PARENT (interval_free_list);
1421 }
1422 else
1423 {
1424 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1425 {
1426 register struct interval_block *newi;
1427
1428 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1429 MEM_TYPE_NON_LISP);
1430
1431 newi->next = interval_block;
1432 interval_block = newi;
1433 interval_block_index = 0;
1434 n_interval_blocks++;
1435 }
1436 val = &interval_block->intervals[interval_block_index++];
1437 }
1438
1439 MALLOC_UNBLOCK_INPUT;
1440
1441 consing_since_gc += sizeof (struct interval);
1442 intervals_consed++;
1443 RESET_INTERVAL (val);
1444 val->gcmarkbit = 0;
1445 return val;
1446 }
1447
1448
1449 /* Mark Lisp objects in interval I. */
1450
1451 static void
1452 mark_interval (register INTERVAL i, Lisp_Object dummy)
1453 {
1454 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1455 i->gcmarkbit = 1;
1456 mark_object (i->plist);
1457 }
1458
1459
1460 /* Mark the interval tree rooted in TREE. Don't call this directly;
1461 use the macro MARK_INTERVAL_TREE instead. */
1462
1463 static void
1464 mark_interval_tree (register INTERVAL tree)
1465 {
1466 /* No need to test if this tree has been marked already; this
1467 function is always called through the MARK_INTERVAL_TREE macro,
1468 which takes care of that. */
1469
1470 traverse_intervals_noorder (tree, mark_interval, Qnil);
1471 }
1472
1473
1474 /* Mark the interval tree rooted in I. */
1475
1476 #define MARK_INTERVAL_TREE(i) \
1477 do { \
1478 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1479 mark_interval_tree (i); \
1480 } while (0)
1481
1482
1483 #define UNMARK_BALANCE_INTERVALS(i) \
1484 do { \
1485 if (! NULL_INTERVAL_P (i)) \
1486 (i) = balance_intervals (i); \
1487 } while (0)
1488
1489 \f
1490 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1491 can't create number objects in macros. */
1492 #ifndef make_number
1493 Lisp_Object
1494 make_number (EMACS_INT n)
1495 {
1496 Lisp_Object obj;
1497 obj.s.val = n;
1498 obj.s.type = Lisp_Int;
1499 return obj;
1500 }
1501 #endif
1502 \f
1503 /***********************************************************************
1504 String Allocation
1505 ***********************************************************************/
1506
1507 /* Lisp_Strings are allocated in string_block structures. When a new
1508 string_block is allocated, all the Lisp_Strings it contains are
1509 added to a free-list string_free_list. When a new Lisp_String is
1510 needed, it is taken from that list. During the sweep phase of GC,
1511 string_blocks that are entirely free are freed, except two which
1512 we keep.
1513
1514 String data is allocated from sblock structures. Strings larger
1515 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1516 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1517
1518 Sblocks consist internally of sdata structures, one for each
1519 Lisp_String. The sdata structure points to the Lisp_String it
1520 belongs to. The Lisp_String points back to the `u.data' member of
1521 its sdata structure.
1522
1523 When a Lisp_String is freed during GC, it is put back on
1524 string_free_list, and its `data' member and its sdata's `string'
1525 pointer is set to null. The size of the string is recorded in the
1526 `u.nbytes' member of the sdata. So, sdata structures that are no
1527 longer used, can be easily recognized, and it's easy to compact the
1528 sblocks of small strings which we do in compact_small_strings. */
1529
1530 /* Size in bytes of an sblock structure used for small strings. This
1531 is 8192 minus malloc overhead. */
1532
1533 #define SBLOCK_SIZE 8188
1534
1535 /* Strings larger than this are considered large strings. String data
1536 for large strings is allocated from individual sblocks. */
1537
1538 #define LARGE_STRING_BYTES 1024
1539
1540 /* Structure describing string memory sub-allocated from an sblock.
1541 This is where the contents of Lisp strings are stored. */
1542
1543 struct sdata
1544 {
1545 /* Back-pointer to the string this sdata belongs to. If null, this
1546 structure is free, and the NBYTES member of the union below
1547 contains the string's byte size (the same value that STRING_BYTES
1548 would return if STRING were non-null). If non-null, STRING_BYTES
1549 (STRING) is the size of the data, and DATA contains the string's
1550 contents. */
1551 struct Lisp_String *string;
1552
1553 #ifdef GC_CHECK_STRING_BYTES
1554
1555 EMACS_INT nbytes;
1556 unsigned char data[1];
1557
1558 #define SDATA_NBYTES(S) (S)->nbytes
1559 #define SDATA_DATA(S) (S)->data
1560
1561 #else /* not GC_CHECK_STRING_BYTES */
1562
1563 union
1564 {
1565 /* When STRING in non-null. */
1566 unsigned char data[1];
1567
1568 /* When STRING is null. */
1569 EMACS_INT nbytes;
1570 } u;
1571
1572
1573 #define SDATA_NBYTES(S) (S)->u.nbytes
1574 #define SDATA_DATA(S) (S)->u.data
1575
1576 #endif /* not GC_CHECK_STRING_BYTES */
1577 };
1578
1579
1580 /* Structure describing a block of memory which is sub-allocated to
1581 obtain string data memory for strings. Blocks for small strings
1582 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1583 as large as needed. */
1584
1585 struct sblock
1586 {
1587 /* Next in list. */
1588 struct sblock *next;
1589
1590 /* Pointer to the next free sdata block. This points past the end
1591 of the sblock if there isn't any space left in this block. */
1592 struct sdata *next_free;
1593
1594 /* Start of data. */
1595 struct sdata first_data;
1596 };
1597
1598 /* Number of Lisp strings in a string_block structure. The 1020 is
1599 1024 minus malloc overhead. */
1600
1601 #define STRING_BLOCK_SIZE \
1602 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1603
1604 /* Structure describing a block from which Lisp_String structures
1605 are allocated. */
1606
1607 struct string_block
1608 {
1609 /* Place `strings' first, to preserve alignment. */
1610 struct Lisp_String strings[STRING_BLOCK_SIZE];
1611 struct string_block *next;
1612 };
1613
1614 /* Head and tail of the list of sblock structures holding Lisp string
1615 data. We always allocate from current_sblock. The NEXT pointers
1616 in the sblock structures go from oldest_sblock to current_sblock. */
1617
1618 static struct sblock *oldest_sblock, *current_sblock;
1619
1620 /* List of sblocks for large strings. */
1621
1622 static struct sblock *large_sblocks;
1623
1624 /* List of string_block structures, and how many there are. */
1625
1626 static struct string_block *string_blocks;
1627 static int n_string_blocks;
1628
1629 /* Free-list of Lisp_Strings. */
1630
1631 static struct Lisp_String *string_free_list;
1632
1633 /* Number of live and free Lisp_Strings. */
1634
1635 static int total_strings, total_free_strings;
1636
1637 /* Number of bytes used by live strings. */
1638
1639 static EMACS_INT total_string_size;
1640
1641 /* Given a pointer to a Lisp_String S which is on the free-list
1642 string_free_list, return a pointer to its successor in the
1643 free-list. */
1644
1645 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1646
1647 /* Return a pointer to the sdata structure belonging to Lisp string S.
1648 S must be live, i.e. S->data must not be null. S->data is actually
1649 a pointer to the `u.data' member of its sdata structure; the
1650 structure starts at a constant offset in front of that. */
1651
1652 #ifdef GC_CHECK_STRING_BYTES
1653
1654 #define SDATA_OF_STRING(S) \
1655 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1656 - sizeof (EMACS_INT)))
1657
1658 #else /* not GC_CHECK_STRING_BYTES */
1659
1660 #define SDATA_OF_STRING(S) \
1661 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1662
1663 #endif /* not GC_CHECK_STRING_BYTES */
1664
1665
1666 #ifdef GC_CHECK_STRING_OVERRUN
1667
1668 /* We check for overrun in string data blocks by appending a small
1669 "cookie" after each allocated string data block, and check for the
1670 presence of this cookie during GC. */
1671
1672 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1673 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1674 { 0xde, 0xad, 0xbe, 0xef };
1675
1676 #else
1677 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1678 #endif
1679
1680 /* Value is the size of an sdata structure large enough to hold NBYTES
1681 bytes of string data. The value returned includes a terminating
1682 NUL byte, the size of the sdata structure, and padding. */
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685
1686 #define SDATA_SIZE(NBYTES) \
1687 ((sizeof (struct Lisp_String *) \
1688 + (NBYTES) + 1 \
1689 + sizeof (EMACS_INT) \
1690 + sizeof (EMACS_INT) - 1) \
1691 & ~(sizeof (EMACS_INT) - 1))
1692
1693 #else /* not GC_CHECK_STRING_BYTES */
1694
1695 #define SDATA_SIZE(NBYTES) \
1696 ((sizeof (struct Lisp_String *) \
1697 + (NBYTES) + 1 \
1698 + sizeof (EMACS_INT) - 1) \
1699 & ~(sizeof (EMACS_INT) - 1))
1700
1701 #endif /* not GC_CHECK_STRING_BYTES */
1702
1703 /* Extra bytes to allocate for each string. */
1704
1705 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1706
1707 /* Initialize string allocation. Called from init_alloc_once. */
1708
1709 static void
1710 init_strings (void)
1711 {
1712 total_strings = total_free_strings = total_string_size = 0;
1713 oldest_sblock = current_sblock = large_sblocks = NULL;
1714 string_blocks = NULL;
1715 n_string_blocks = 0;
1716 string_free_list = NULL;
1717 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1718 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1719 }
1720
1721
1722 #ifdef GC_CHECK_STRING_BYTES
1723
1724 static int check_string_bytes_count;
1725
1726 static void check_string_bytes (int);
1727 static void check_sblock (struct sblock *);
1728
1729 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1730
1731
1732 /* Like GC_STRING_BYTES, but with debugging check. */
1733
1734 EMACS_INT
1735 string_bytes (struct Lisp_String *s)
1736 {
1737 EMACS_INT nbytes =
1738 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1739
1740 if (!PURE_POINTER_P (s)
1741 && s->data
1742 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1743 abort ();
1744 return nbytes;
1745 }
1746
1747 /* Check validity of Lisp strings' string_bytes member in B. */
1748
1749 static void
1750 check_sblock (b)
1751 struct sblock *b;
1752 {
1753 struct sdata *from, *end, *from_end;
1754
1755 end = b->next_free;
1756
1757 for (from = &b->first_data; from < end; from = from_end)
1758 {
1759 /* Compute the next FROM here because copying below may
1760 overwrite data we need to compute it. */
1761 EMACS_INT nbytes;
1762
1763 /* Check that the string size recorded in the string is the
1764 same as the one recorded in the sdata structure. */
1765 if (from->string)
1766 CHECK_STRING_BYTES (from->string);
1767
1768 if (from->string)
1769 nbytes = GC_STRING_BYTES (from->string);
1770 else
1771 nbytes = SDATA_NBYTES (from);
1772
1773 nbytes = SDATA_SIZE (nbytes);
1774 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1775 }
1776 }
1777
1778
1779 /* Check validity of Lisp strings' string_bytes member. ALL_P
1780 non-zero means check all strings, otherwise check only most
1781 recently allocated strings. Used for hunting a bug. */
1782
1783 static void
1784 check_string_bytes (all_p)
1785 int all_p;
1786 {
1787 if (all_p)
1788 {
1789 struct sblock *b;
1790
1791 for (b = large_sblocks; b; b = b->next)
1792 {
1793 struct Lisp_String *s = b->first_data.string;
1794 if (s)
1795 CHECK_STRING_BYTES (s);
1796 }
1797
1798 for (b = oldest_sblock; b; b = b->next)
1799 check_sblock (b);
1800 }
1801 else
1802 check_sblock (current_sblock);
1803 }
1804
1805 #endif /* GC_CHECK_STRING_BYTES */
1806
1807 #ifdef GC_CHECK_STRING_FREE_LIST
1808
1809 /* Walk through the string free list looking for bogus next pointers.
1810 This may catch buffer overrun from a previous string. */
1811
1812 static void
1813 check_string_free_list ()
1814 {
1815 struct Lisp_String *s;
1816
1817 /* Pop a Lisp_String off the free-list. */
1818 s = string_free_list;
1819 while (s != NULL)
1820 {
1821 if ((unsigned long)s < 1024)
1822 abort();
1823 s = NEXT_FREE_LISP_STRING (s);
1824 }
1825 }
1826 #else
1827 #define check_string_free_list()
1828 #endif
1829
1830 /* Return a new Lisp_String. */
1831
1832 static struct Lisp_String *
1833 allocate_string (void)
1834 {
1835 struct Lisp_String *s;
1836
1837 /* eassert (!handling_signal); */
1838
1839 MALLOC_BLOCK_INPUT;
1840
1841 /* If the free-list is empty, allocate a new string_block, and
1842 add all the Lisp_Strings in it to the free-list. */
1843 if (string_free_list == NULL)
1844 {
1845 struct string_block *b;
1846 int i;
1847
1848 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1849 memset (b, 0, sizeof *b);
1850 b->next = string_blocks;
1851 string_blocks = b;
1852 ++n_string_blocks;
1853
1854 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1855 {
1856 s = b->strings + i;
1857 NEXT_FREE_LISP_STRING (s) = string_free_list;
1858 string_free_list = s;
1859 }
1860
1861 total_free_strings += STRING_BLOCK_SIZE;
1862 }
1863
1864 check_string_free_list ();
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 string_free_list = NEXT_FREE_LISP_STRING (s);
1869
1870 MALLOC_UNBLOCK_INPUT;
1871
1872 /* Probably not strictly necessary, but play it safe. */
1873 memset (s, 0, sizeof *s);
1874
1875 --total_free_strings;
1876 ++total_strings;
1877 ++strings_consed;
1878 consing_since_gc += sizeof *s;
1879
1880 #ifdef GC_CHECK_STRING_BYTES
1881 if (!noninteractive)
1882 {
1883 if (++check_string_bytes_count == 200)
1884 {
1885 check_string_bytes_count = 0;
1886 check_string_bytes (1);
1887 }
1888 else
1889 check_string_bytes (0);
1890 }
1891 #endif /* GC_CHECK_STRING_BYTES */
1892
1893 return s;
1894 }
1895
1896
1897 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1898 plus a NUL byte at the end. Allocate an sdata structure for S, and
1899 set S->data to its `u.data' member. Store a NUL byte at the end of
1900 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1901 S->data if it was initially non-null. */
1902
1903 void
1904 allocate_string_data (struct Lisp_String *s,
1905 EMACS_INT nchars, EMACS_INT nbytes)
1906 {
1907 struct sdata *data, *old_data;
1908 struct sblock *b;
1909 EMACS_INT needed, old_nbytes;
1910
1911 /* Determine the number of bytes needed to store NBYTES bytes
1912 of string data. */
1913 needed = SDATA_SIZE (nbytes);
1914 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1915 old_nbytes = GC_STRING_BYTES (s);
1916
1917 MALLOC_BLOCK_INPUT;
1918
1919 if (nbytes > LARGE_STRING_BYTES)
1920 {
1921 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1922
1923 #ifdef DOUG_LEA_MALLOC
1924 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1925 because mapped region contents are not preserved in
1926 a dumped Emacs.
1927
1928 In case you think of allowing it in a dumped Emacs at the
1929 cost of not being able to re-dump, there's another reason:
1930 mmap'ed data typically have an address towards the top of the
1931 address space, which won't fit into an EMACS_INT (at least on
1932 32-bit systems with the current tagging scheme). --fx */
1933 mallopt (M_MMAP_MAX, 0);
1934 #endif
1935
1936 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1937
1938 #ifdef DOUG_LEA_MALLOC
1939 /* Back to a reasonable maximum of mmap'ed areas. */
1940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1941 #endif
1942
1943 b->next_free = &b->first_data;
1944 b->first_data.string = NULL;
1945 b->next = large_sblocks;
1946 large_sblocks = b;
1947 }
1948 else if (current_sblock == NULL
1949 || (((char *) current_sblock + SBLOCK_SIZE
1950 - (char *) current_sblock->next_free)
1951 < (needed + GC_STRING_EXTRA)))
1952 {
1953 /* Not enough room in the current sblock. */
1954 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1955 b->next_free = &b->first_data;
1956 b->first_data.string = NULL;
1957 b->next = NULL;
1958
1959 if (current_sblock)
1960 current_sblock->next = b;
1961 else
1962 oldest_sblock = b;
1963 current_sblock = b;
1964 }
1965 else
1966 b = current_sblock;
1967
1968 data = b->next_free;
1969 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1970
1971 MALLOC_UNBLOCK_INPUT;
1972
1973 data->string = s;
1974 s->data = SDATA_DATA (data);
1975 #ifdef GC_CHECK_STRING_BYTES
1976 SDATA_NBYTES (data) = nbytes;
1977 #endif
1978 s->size = nchars;
1979 s->size_byte = nbytes;
1980 s->data[nbytes] = '\0';
1981 #ifdef GC_CHECK_STRING_OVERRUN
1982 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1983 #endif
1984
1985 /* If S had already data assigned, mark that as free by setting its
1986 string back-pointer to null, and recording the size of the data
1987 in it. */
1988 if (old_data)
1989 {
1990 SDATA_NBYTES (old_data) = old_nbytes;
1991 old_data->string = NULL;
1992 }
1993
1994 consing_since_gc += needed;
1995 }
1996
1997
1998 /* Sweep and compact strings. */
1999
2000 static void
2001 sweep_strings (void)
2002 {
2003 struct string_block *b, *next;
2004 struct string_block *live_blocks = NULL;
2005
2006 string_free_list = NULL;
2007 total_strings = total_free_strings = 0;
2008 total_string_size = 0;
2009
2010 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2011 for (b = string_blocks; b; b = next)
2012 {
2013 int i, nfree = 0;
2014 struct Lisp_String *free_list_before = string_free_list;
2015
2016 next = b->next;
2017
2018 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2019 {
2020 struct Lisp_String *s = b->strings + i;
2021
2022 if (s->data)
2023 {
2024 /* String was not on free-list before. */
2025 if (STRING_MARKED_P (s))
2026 {
2027 /* String is live; unmark it and its intervals. */
2028 UNMARK_STRING (s);
2029
2030 if (!NULL_INTERVAL_P (s->intervals))
2031 UNMARK_BALANCE_INTERVALS (s->intervals);
2032
2033 ++total_strings;
2034 total_string_size += STRING_BYTES (s);
2035 }
2036 else
2037 {
2038 /* String is dead. Put it on the free-list. */
2039 struct sdata *data = SDATA_OF_STRING (s);
2040
2041 /* Save the size of S in its sdata so that we know
2042 how large that is. Reset the sdata's string
2043 back-pointer so that we know it's free. */
2044 #ifdef GC_CHECK_STRING_BYTES
2045 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2046 abort ();
2047 #else
2048 data->u.nbytes = GC_STRING_BYTES (s);
2049 #endif
2050 data->string = NULL;
2051
2052 /* Reset the strings's `data' member so that we
2053 know it's free. */
2054 s->data = NULL;
2055
2056 /* Put the string on the free-list. */
2057 NEXT_FREE_LISP_STRING (s) = string_free_list;
2058 string_free_list = s;
2059 ++nfree;
2060 }
2061 }
2062 else
2063 {
2064 /* S was on the free-list before. Put it there again. */
2065 NEXT_FREE_LISP_STRING (s) = string_free_list;
2066 string_free_list = s;
2067 ++nfree;
2068 }
2069 }
2070
2071 /* Free blocks that contain free Lisp_Strings only, except
2072 the first two of them. */
2073 if (nfree == STRING_BLOCK_SIZE
2074 && total_free_strings > STRING_BLOCK_SIZE)
2075 {
2076 lisp_free (b);
2077 --n_string_blocks;
2078 string_free_list = free_list_before;
2079 }
2080 else
2081 {
2082 total_free_strings += nfree;
2083 b->next = live_blocks;
2084 live_blocks = b;
2085 }
2086 }
2087
2088 check_string_free_list ();
2089
2090 string_blocks = live_blocks;
2091 free_large_strings ();
2092 compact_small_strings ();
2093
2094 check_string_free_list ();
2095 }
2096
2097
2098 /* Free dead large strings. */
2099
2100 static void
2101 free_large_strings (void)
2102 {
2103 struct sblock *b, *next;
2104 struct sblock *live_blocks = NULL;
2105
2106 for (b = large_sblocks; b; b = next)
2107 {
2108 next = b->next;
2109
2110 if (b->first_data.string == NULL)
2111 lisp_free (b);
2112 else
2113 {
2114 b->next = live_blocks;
2115 live_blocks = b;
2116 }
2117 }
2118
2119 large_sblocks = live_blocks;
2120 }
2121
2122
2123 /* Compact data of small strings. Free sblocks that don't contain
2124 data of live strings after compaction. */
2125
2126 static void
2127 compact_small_strings (void)
2128 {
2129 struct sblock *b, *tb, *next;
2130 struct sdata *from, *to, *end, *tb_end;
2131 struct sdata *to_end, *from_end;
2132
2133 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2134 to, and TB_END is the end of TB. */
2135 tb = oldest_sblock;
2136 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2137 to = &tb->first_data;
2138
2139 /* Step through the blocks from the oldest to the youngest. We
2140 expect that old blocks will stabilize over time, so that less
2141 copying will happen this way. */
2142 for (b = oldest_sblock; b; b = b->next)
2143 {
2144 end = b->next_free;
2145 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2146
2147 for (from = &b->first_data; from < end; from = from_end)
2148 {
2149 /* Compute the next FROM here because copying below may
2150 overwrite data we need to compute it. */
2151 EMACS_INT nbytes;
2152
2153 #ifdef GC_CHECK_STRING_BYTES
2154 /* Check that the string size recorded in the string is the
2155 same as the one recorded in the sdata structure. */
2156 if (from->string
2157 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2158 abort ();
2159 #endif /* GC_CHECK_STRING_BYTES */
2160
2161 if (from->string)
2162 nbytes = GC_STRING_BYTES (from->string);
2163 else
2164 nbytes = SDATA_NBYTES (from);
2165
2166 if (nbytes > LARGE_STRING_BYTES)
2167 abort ();
2168
2169 nbytes = SDATA_SIZE (nbytes);
2170 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2171
2172 #ifdef GC_CHECK_STRING_OVERRUN
2173 if (memcmp (string_overrun_cookie,
2174 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2175 GC_STRING_OVERRUN_COOKIE_SIZE))
2176 abort ();
2177 #endif
2178
2179 /* FROM->string non-null means it's alive. Copy its data. */
2180 if (from->string)
2181 {
2182 /* If TB is full, proceed with the next sblock. */
2183 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2184 if (to_end > tb_end)
2185 {
2186 tb->next_free = to;
2187 tb = tb->next;
2188 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2189 to = &tb->first_data;
2190 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2191 }
2192
2193 /* Copy, and update the string's `data' pointer. */
2194 if (from != to)
2195 {
2196 xassert (tb != b || to <= from);
2197 memmove (to, from, nbytes + GC_STRING_EXTRA);
2198 to->string->data = SDATA_DATA (to);
2199 }
2200
2201 /* Advance past the sdata we copied to. */
2202 to = to_end;
2203 }
2204 }
2205 }
2206
2207 /* The rest of the sblocks following TB don't contain live data, so
2208 we can free them. */
2209 for (b = tb->next; b; b = next)
2210 {
2211 next = b->next;
2212 lisp_free (b);
2213 }
2214
2215 tb->next_free = to;
2216 tb->next = NULL;
2217 current_sblock = tb;
2218 }
2219
2220
2221 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2222 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2223 LENGTH must be an integer.
2224 INIT must be an integer that represents a character. */)
2225 (Lisp_Object length, Lisp_Object init)
2226 {
2227 register Lisp_Object val;
2228 register unsigned char *p, *end;
2229 int c;
2230 EMACS_INT nbytes;
2231
2232 CHECK_NATNUM (length);
2233 CHECK_NUMBER (init);
2234
2235 c = XINT (init);
2236 if (ASCII_CHAR_P (c))
2237 {
2238 nbytes = XINT (length);
2239 val = make_uninit_string (nbytes);
2240 p = SDATA (val);
2241 end = p + SCHARS (val);
2242 while (p != end)
2243 *p++ = c;
2244 }
2245 else
2246 {
2247 unsigned char str[MAX_MULTIBYTE_LENGTH];
2248 int len = CHAR_STRING (c, str);
2249 EMACS_INT string_len = XINT (length);
2250
2251 if (string_len > MOST_POSITIVE_FIXNUM / len)
2252 error ("Maximum string size exceeded");
2253 nbytes = len * string_len;
2254 val = make_uninit_multibyte_string (string_len, nbytes);
2255 p = SDATA (val);
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 memcpy (p, str, len);
2260 p += len;
2261 }
2262 }
2263
2264 *p = 0;
2265 return val;
2266 }
2267
2268
2269 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2271 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (Lisp_Object length, Lisp_Object init)
2273 {
2274 register Lisp_Object val;
2275 struct Lisp_Bool_Vector *p;
2276 int real_init, i;
2277 EMACS_INT length_in_chars, length_in_elts;
2278 int bits_per_value;
2279
2280 CHECK_NATNUM (length);
2281
2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291
2292 /* Get rid of any bits that would cause confusion. */
2293 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2294 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2295 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2296
2297 p = XBOOL_VECTOR (val);
2298 p->size = XFASTINT (length);
2299
2300 real_init = (NILP (init) ? 0 : -1);
2301 for (i = 0; i < length_in_chars ; i++)
2302 p->data[i] = real_init;
2303
2304 /* Clear the extraneous bits in the last byte. */
2305 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2306 p->data[length_in_chars - 1]
2307 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2308
2309 return val;
2310 }
2311
2312
2313 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2314 of characters from the contents. This string may be unibyte or
2315 multibyte, depending on the contents. */
2316
2317 Lisp_Object
2318 make_string (const char *contents, EMACS_INT nbytes)
2319 {
2320 register Lisp_Object val;
2321 EMACS_INT nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2330 return val;
2331 }
2332
2333
2334 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (const char *contents, EMACS_INT length)
2338 {
2339 register Lisp_Object val;
2340 val = make_uninit_string (length);
2341 memcpy (SDATA (val), contents, length);
2342 STRING_SET_UNIBYTE (val);
2343 return val;
2344 }
2345
2346
2347 /* Make a multibyte string from NCHARS characters occupying NBYTES
2348 bytes at CONTENTS. */
2349
2350 Lisp_Object
2351 make_multibyte_string (const char *contents,
2352 EMACS_INT nchars, EMACS_INT nbytes)
2353 {
2354 register Lisp_Object val;
2355 val = make_uninit_multibyte_string (nchars, nbytes);
2356 memcpy (SDATA (val), contents, nbytes);
2357 return val;
2358 }
2359
2360
2361 /* Make a string from NCHARS characters occupying NBYTES bytes at
2362 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2363
2364 Lisp_Object
2365 make_string_from_bytes (const char *contents,
2366 EMACS_INT nchars, EMACS_INT nbytes)
2367 {
2368 register Lisp_Object val;
2369 val = make_uninit_multibyte_string (nchars, nbytes);
2370 memcpy (SDATA (val), contents, nbytes);
2371 if (SBYTES (val) == SCHARS (val))
2372 STRING_SET_UNIBYTE (val);
2373 return val;
2374 }
2375
2376
2377 /* Make a string from NCHARS characters occupying NBYTES bytes at
2378 CONTENTS. The argument MULTIBYTE controls whether to label the
2379 string as multibyte. If NCHARS is negative, it counts the number of
2380 characters by itself. */
2381
2382 Lisp_Object
2383 make_specified_string (const char *contents,
2384 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2385 {
2386 register Lisp_Object val;
2387
2388 if (nchars < 0)
2389 {
2390 if (multibyte)
2391 nchars = multibyte_chars_in_text (contents, nbytes);
2392 else
2393 nchars = nbytes;
2394 }
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 memcpy (SDATA (val), contents, nbytes);
2397 if (!multibyte)
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a string from the data at STR, treating it as multibyte if the
2404 data warrants. */
2405
2406 Lisp_Object
2407 build_string (const char *str)
2408 {
2409 return make_string (str, strlen (str));
2410 }
2411
2412
2413 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2414 occupying LENGTH bytes. */
2415
2416 Lisp_Object
2417 make_uninit_string (EMACS_INT length)
2418 {
2419 Lisp_Object val;
2420
2421 if (!length)
2422 return empty_unibyte_string;
2423 val = make_uninit_multibyte_string (length, length);
2424 STRING_SET_UNIBYTE (val);
2425 return val;
2426 }
2427
2428
2429 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2430 which occupy NBYTES bytes. */
2431
2432 Lisp_Object
2433 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2434 {
2435 Lisp_Object string;
2436 struct Lisp_String *s;
2437
2438 if (nchars < 0)
2439 abort ();
2440 if (!nbytes)
2441 return empty_multibyte_string;
2442
2443 s = allocate_string ();
2444 allocate_string_data (s, nchars, nbytes);
2445 XSETSTRING (string, s);
2446 string_chars_consed += nbytes;
2447 return string;
2448 }
2449
2450
2451 \f
2452 /***********************************************************************
2453 Float Allocation
2454 ***********************************************************************/
2455
2456 /* We store float cells inside of float_blocks, allocating a new
2457 float_block with malloc whenever necessary. Float cells reclaimed
2458 by GC are put on a free list to be reallocated before allocating
2459 any new float cells from the latest float_block. */
2460
2461 #define FLOAT_BLOCK_SIZE \
2462 (((BLOCK_BYTES - sizeof (struct float_block *) \
2463 /* The compiler might add padding at the end. */ \
2464 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2465 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2466
2467 #define GETMARKBIT(block,n) \
2468 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2469 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2470 & 1)
2471
2472 #define SETMARKBIT(block,n) \
2473 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2474 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2475
2476 #define UNSETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2479
2480 #define FLOAT_BLOCK(fptr) \
2481 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2482
2483 #define FLOAT_INDEX(fptr) \
2484 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2485
2486 struct float_block
2487 {
2488 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2489 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2490 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2491 struct float_block *next;
2492 };
2493
2494 #define FLOAT_MARKED_P(fptr) \
2495 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2496
2497 #define FLOAT_MARK(fptr) \
2498 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2499
2500 #define FLOAT_UNMARK(fptr) \
2501 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2502
2503 /* Current float_block. */
2504
2505 struct float_block *float_block;
2506
2507 /* Index of first unused Lisp_Float in the current float_block. */
2508
2509 int float_block_index;
2510
2511 /* Total number of float blocks now in use. */
2512
2513 int n_float_blocks;
2514
2515 /* Free-list of Lisp_Floats. */
2516
2517 struct Lisp_Float *float_free_list;
2518
2519
2520 /* Initialize float allocation. */
2521
2522 static void
2523 init_float (void)
2524 {
2525 float_block = NULL;
2526 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2527 float_free_list = 0;
2528 n_float_blocks = 0;
2529 }
2530
2531
2532 /* Return a new float object with value FLOAT_VALUE. */
2533
2534 Lisp_Object
2535 make_float (double float_value)
2536 {
2537 register Lisp_Object val;
2538
2539 /* eassert (!handling_signal); */
2540
2541 MALLOC_BLOCK_INPUT;
2542
2543 if (float_free_list)
2544 {
2545 /* We use the data field for chaining the free list
2546 so that we won't use the same field that has the mark bit. */
2547 XSETFLOAT (val, float_free_list);
2548 float_free_list = float_free_list->u.chain;
2549 }
2550 else
2551 {
2552 if (float_block_index == FLOAT_BLOCK_SIZE)
2553 {
2554 register struct float_block *new;
2555
2556 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2557 MEM_TYPE_FLOAT);
2558 new->next = float_block;
2559 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2560 float_block = new;
2561 float_block_index = 0;
2562 n_float_blocks++;
2563 }
2564 XSETFLOAT (val, &float_block->floats[float_block_index]);
2565 float_block_index++;
2566 }
2567
2568 MALLOC_UNBLOCK_INPUT;
2569
2570 XFLOAT_INIT (val, float_value);
2571 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2572 consing_since_gc += sizeof (struct Lisp_Float);
2573 floats_consed++;
2574 return val;
2575 }
2576
2577
2578 \f
2579 /***********************************************************************
2580 Cons Allocation
2581 ***********************************************************************/
2582
2583 /* We store cons cells inside of cons_blocks, allocating a new
2584 cons_block with malloc whenever necessary. Cons cells reclaimed by
2585 GC are put on a free list to be reallocated before allocating
2586 any new cons cells from the latest cons_block. */
2587
2588 #define CONS_BLOCK_SIZE \
2589 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2590 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2591
2592 #define CONS_BLOCK(fptr) \
2593 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2594
2595 #define CONS_INDEX(fptr) \
2596 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2597
2598 struct cons_block
2599 {
2600 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2601 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2602 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2603 struct cons_block *next;
2604 };
2605
2606 #define CONS_MARKED_P(fptr) \
2607 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2608
2609 #define CONS_MARK(fptr) \
2610 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2611
2612 #define CONS_UNMARK(fptr) \
2613 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2614
2615 /* Current cons_block. */
2616
2617 struct cons_block *cons_block;
2618
2619 /* Index of first unused Lisp_Cons in the current block. */
2620
2621 int cons_block_index;
2622
2623 /* Free-list of Lisp_Cons structures. */
2624
2625 struct Lisp_Cons *cons_free_list;
2626
2627 /* Total number of cons blocks now in use. */
2628
2629 static int n_cons_blocks;
2630
2631
2632 /* Initialize cons allocation. */
2633
2634 static void
2635 init_cons (void)
2636 {
2637 cons_block = NULL;
2638 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2639 cons_free_list = 0;
2640 n_cons_blocks = 0;
2641 }
2642
2643
2644 /* Explicitly free a cons cell by putting it on the free-list. */
2645
2646 void
2647 free_cons (struct Lisp_Cons *ptr)
2648 {
2649 ptr->u.chain = cons_free_list;
2650 #if GC_MARK_STACK
2651 ptr->car = Vdead;
2652 #endif
2653 cons_free_list = ptr;
2654 }
2655
2656 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2657 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2658 (Lisp_Object car, Lisp_Object cdr)
2659 {
2660 register Lisp_Object val;
2661
2662 /* eassert (!handling_signal); */
2663
2664 MALLOC_BLOCK_INPUT;
2665
2666 if (cons_free_list)
2667 {
2668 /* We use the cdr for chaining the free list
2669 so that we won't use the same field that has the mark bit. */
2670 XSETCONS (val, cons_free_list);
2671 cons_free_list = cons_free_list->u.chain;
2672 }
2673 else
2674 {
2675 if (cons_block_index == CONS_BLOCK_SIZE)
2676 {
2677 register struct cons_block *new;
2678 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2679 MEM_TYPE_CONS);
2680 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2681 new->next = cons_block;
2682 cons_block = new;
2683 cons_block_index = 0;
2684 n_cons_blocks++;
2685 }
2686 XSETCONS (val, &cons_block->conses[cons_block_index]);
2687 cons_block_index++;
2688 }
2689
2690 MALLOC_UNBLOCK_INPUT;
2691
2692 XSETCAR (val, car);
2693 XSETCDR (val, cdr);
2694 eassert (!CONS_MARKED_P (XCONS (val)));
2695 consing_since_gc += sizeof (struct Lisp_Cons);
2696 cons_cells_consed++;
2697 return val;
2698 }
2699
2700 /* Get an error now if there's any junk in the cons free list. */
2701 void
2702 check_cons_list (void)
2703 {
2704 #ifdef GC_CHECK_CONS_LIST
2705 struct Lisp_Cons *tail = cons_free_list;
2706
2707 while (tail)
2708 tail = tail->u.chain;
2709 #endif
2710 }
2711
2712 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2713
2714 Lisp_Object
2715 list1 (Lisp_Object arg1)
2716 {
2717 return Fcons (arg1, Qnil);
2718 }
2719
2720 Lisp_Object
2721 list2 (Lisp_Object arg1, Lisp_Object arg2)
2722 {
2723 return Fcons (arg1, Fcons (arg2, Qnil));
2724 }
2725
2726
2727 Lisp_Object
2728 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2729 {
2730 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2731 }
2732
2733
2734 Lisp_Object
2735 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2736 {
2737 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2738 }
2739
2740
2741 Lisp_Object
2742 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2743 {
2744 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2745 Fcons (arg5, Qnil)))));
2746 }
2747
2748
2749 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2750 doc: /* Return a newly created list with specified arguments as elements.
2751 Any number of arguments, even zero arguments, are allowed.
2752 usage: (list &rest OBJECTS) */)
2753 (int nargs, register Lisp_Object *args)
2754 {
2755 register Lisp_Object val;
2756 val = Qnil;
2757
2758 while (nargs > 0)
2759 {
2760 nargs--;
2761 val = Fcons (args[nargs], val);
2762 }
2763 return val;
2764 }
2765
2766
2767 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2768 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2769 (register Lisp_Object length, Lisp_Object init)
2770 {
2771 register Lisp_Object val;
2772 register EMACS_INT size;
2773
2774 CHECK_NATNUM (length);
2775 size = XFASTINT (length);
2776
2777 val = Qnil;
2778 while (size > 0)
2779 {
2780 val = Fcons (init, val);
2781 --size;
2782
2783 if (size > 0)
2784 {
2785 val = Fcons (init, val);
2786 --size;
2787
2788 if (size > 0)
2789 {
2790 val = Fcons (init, val);
2791 --size;
2792
2793 if (size > 0)
2794 {
2795 val = Fcons (init, val);
2796 --size;
2797
2798 if (size > 0)
2799 {
2800 val = Fcons (init, val);
2801 --size;
2802 }
2803 }
2804 }
2805 }
2806
2807 QUIT;
2808 }
2809
2810 return val;
2811 }
2812
2813
2814 \f
2815 /***********************************************************************
2816 Vector Allocation
2817 ***********************************************************************/
2818
2819 /* Singly-linked list of all vectors. */
2820
2821 static struct Lisp_Vector *all_vectors;
2822
2823 /* Total number of vector-like objects now in use. */
2824
2825 static int n_vectors;
2826
2827
2828 /* Value is a pointer to a newly allocated Lisp_Vector structure
2829 with room for LEN Lisp_Objects. */
2830
2831 static struct Lisp_Vector *
2832 allocate_vectorlike (EMACS_INT len)
2833 {
2834 struct Lisp_Vector *p;
2835 size_t nbytes;
2836
2837 MALLOC_BLOCK_INPUT;
2838
2839 #ifdef DOUG_LEA_MALLOC
2840 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2841 because mapped region contents are not preserved in
2842 a dumped Emacs. */
2843 mallopt (M_MMAP_MAX, 0);
2844 #endif
2845
2846 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2847 /* eassert (!handling_signal); */
2848
2849 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2850 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2851
2852 #ifdef DOUG_LEA_MALLOC
2853 /* Back to a reasonable maximum of mmap'ed areas. */
2854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2855 #endif
2856
2857 consing_since_gc += nbytes;
2858 vector_cells_consed += len;
2859
2860 p->next = all_vectors;
2861 all_vectors = p;
2862
2863 MALLOC_UNBLOCK_INPUT;
2864
2865 ++n_vectors;
2866 return p;
2867 }
2868
2869
2870 /* Allocate a vector with NSLOTS slots. */
2871
2872 struct Lisp_Vector *
2873 allocate_vector (EMACS_INT nslots)
2874 {
2875 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2876 v->size = nslots;
2877 return v;
2878 }
2879
2880
2881 /* Allocate other vector-like structures. */
2882
2883 struct Lisp_Vector *
2884 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2885 {
2886 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2887 EMACS_INT i;
2888
2889 /* Only the first lisplen slots will be traced normally by the GC. */
2890 v->size = lisplen;
2891 for (i = 0; i < lisplen; ++i)
2892 v->contents[i] = Qnil;
2893
2894 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2895 return v;
2896 }
2897
2898 struct Lisp_Hash_Table *
2899 allocate_hash_table (void)
2900 {
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2902 }
2903
2904
2905 struct window *
2906 allocate_window (void)
2907 {
2908 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2909 }
2910
2911
2912 struct terminal *
2913 allocate_terminal (void)
2914 {
2915 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2916 next_terminal, PVEC_TERMINAL);
2917 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2918 memset (&t->next_terminal, 0,
2919 (char*) (t + 1) - (char*) &t->next_terminal);
2920
2921 return t;
2922 }
2923
2924 struct frame *
2925 allocate_frame (void)
2926 {
2927 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2928 face_cache, PVEC_FRAME);
2929 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2930 memset (&f->face_cache, 0,
2931 (char *) (f + 1) - (char *) &f->face_cache);
2932 return f;
2933 }
2934
2935
2936 struct Lisp_Process *
2937 allocate_process (void)
2938 {
2939 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2940 }
2941
2942
2943 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2944 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2945 See also the function `vector'. */)
2946 (register Lisp_Object length, Lisp_Object init)
2947 {
2948 Lisp_Object vector;
2949 register EMACS_INT sizei;
2950 register EMACS_INT index;
2951 register struct Lisp_Vector *p;
2952
2953 CHECK_NATNUM (length);
2954 sizei = XFASTINT (length);
2955
2956 p = allocate_vector (sizei);
2957 for (index = 0; index < sizei; index++)
2958 p->contents[index] = init;
2959
2960 XSETVECTOR (vector, p);
2961 return vector;
2962 }
2963
2964
2965 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2966 doc: /* Return a newly created vector with specified arguments as elements.
2967 Any number of arguments, even zero arguments, are allowed.
2968 usage: (vector &rest OBJECTS) */)
2969 (register int nargs, Lisp_Object *args)
2970 {
2971 register Lisp_Object len, val;
2972 register int index;
2973 register struct Lisp_Vector *p;
2974
2975 XSETFASTINT (len, nargs);
2976 val = Fmake_vector (len, Qnil);
2977 p = XVECTOR (val);
2978 for (index = 0; index < nargs; index++)
2979 p->contents[index] = args[index];
2980 return val;
2981 }
2982
2983
2984 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2985 doc: /* Create a byte-code object with specified arguments as elements.
2986 The arguments should be the arglist, bytecode-string, constant vector,
2987 stack size, (optional) doc string, and (optional) interactive spec.
2988 The first four arguments are required; at most six have any
2989 significance.
2990 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2991 (register int nargs, Lisp_Object *args)
2992 {
2993 register Lisp_Object len, val;
2994 register int index;
2995 register struct Lisp_Vector *p;
2996
2997 XSETFASTINT (len, nargs);
2998 if (!NILP (Vpurify_flag))
2999 val = make_pure_vector ((EMACS_INT) nargs);
3000 else
3001 val = Fmake_vector (len, Qnil);
3002
3003 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3004 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3005 earlier because they produced a raw 8-bit string for byte-code
3006 and now such a byte-code string is loaded as multibyte while
3007 raw 8-bit characters converted to multibyte form. Thus, now we
3008 must convert them back to the original unibyte form. */
3009 args[1] = Fstring_as_unibyte (args[1]);
3010
3011 p = XVECTOR (val);
3012 for (index = 0; index < nargs; index++)
3013 {
3014 if (!NILP (Vpurify_flag))
3015 args[index] = Fpurecopy (args[index]);
3016 p->contents[index] = args[index];
3017 }
3018 XSETPVECTYPE (p, PVEC_COMPILED);
3019 XSETCOMPILED (val, p);
3020 return val;
3021 }
3022
3023
3024 \f
3025 /***********************************************************************
3026 Symbol Allocation
3027 ***********************************************************************/
3028
3029 /* Each symbol_block is just under 1020 bytes long, since malloc
3030 really allocates in units of powers of two and uses 4 bytes for its
3031 own overhead. */
3032
3033 #define SYMBOL_BLOCK_SIZE \
3034 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3035
3036 struct symbol_block
3037 {
3038 /* Place `symbols' first, to preserve alignment. */
3039 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3040 struct symbol_block *next;
3041 };
3042
3043 /* Current symbol block and index of first unused Lisp_Symbol
3044 structure in it. */
3045
3046 static struct symbol_block *symbol_block;
3047 static int symbol_block_index;
3048
3049 /* List of free symbols. */
3050
3051 static struct Lisp_Symbol *symbol_free_list;
3052
3053 /* Total number of symbol blocks now in use. */
3054
3055 static int n_symbol_blocks;
3056
3057
3058 /* Initialize symbol allocation. */
3059
3060 static void
3061 init_symbol (void)
3062 {
3063 symbol_block = NULL;
3064 symbol_block_index = SYMBOL_BLOCK_SIZE;
3065 symbol_free_list = 0;
3066 n_symbol_blocks = 0;
3067 }
3068
3069
3070 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3071 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3072 Its value and function definition are void, and its property list is nil. */)
3073 (Lisp_Object name)
3074 {
3075 register Lisp_Object val;
3076 register struct Lisp_Symbol *p;
3077
3078 CHECK_STRING (name);
3079
3080 /* eassert (!handling_signal); */
3081
3082 MALLOC_BLOCK_INPUT;
3083
3084 if (symbol_free_list)
3085 {
3086 XSETSYMBOL (val, symbol_free_list);
3087 symbol_free_list = symbol_free_list->next;
3088 }
3089 else
3090 {
3091 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3092 {
3093 struct symbol_block *new;
3094 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3095 MEM_TYPE_SYMBOL);
3096 new->next = symbol_block;
3097 symbol_block = new;
3098 symbol_block_index = 0;
3099 n_symbol_blocks++;
3100 }
3101 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3102 symbol_block_index++;
3103 }
3104
3105 MALLOC_UNBLOCK_INPUT;
3106
3107 p = XSYMBOL (val);
3108 p->xname = name;
3109 p->plist = Qnil;
3110 p->redirect = SYMBOL_PLAINVAL;
3111 SET_SYMBOL_VAL (p, Qunbound);
3112 p->function = Qunbound;
3113 p->next = NULL;
3114 p->gcmarkbit = 0;
3115 p->interned = SYMBOL_UNINTERNED;
3116 p->constant = 0;
3117 consing_since_gc += sizeof (struct Lisp_Symbol);
3118 symbols_consed++;
3119 return val;
3120 }
3121
3122
3123 \f
3124 /***********************************************************************
3125 Marker (Misc) Allocation
3126 ***********************************************************************/
3127
3128 /* Allocation of markers and other objects that share that structure.
3129 Works like allocation of conses. */
3130
3131 #define MARKER_BLOCK_SIZE \
3132 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3133
3134 struct marker_block
3135 {
3136 /* Place `markers' first, to preserve alignment. */
3137 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3138 struct marker_block *next;
3139 };
3140
3141 static struct marker_block *marker_block;
3142 static int marker_block_index;
3143
3144 static union Lisp_Misc *marker_free_list;
3145
3146 /* Total number of marker blocks now in use. */
3147
3148 static int n_marker_blocks;
3149
3150 static void
3151 init_marker (void)
3152 {
3153 marker_block = NULL;
3154 marker_block_index = MARKER_BLOCK_SIZE;
3155 marker_free_list = 0;
3156 n_marker_blocks = 0;
3157 }
3158
3159 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3160
3161 Lisp_Object
3162 allocate_misc (void)
3163 {
3164 Lisp_Object val;
3165
3166 /* eassert (!handling_signal); */
3167
3168 MALLOC_BLOCK_INPUT;
3169
3170 if (marker_free_list)
3171 {
3172 XSETMISC (val, marker_free_list);
3173 marker_free_list = marker_free_list->u_free.chain;
3174 }
3175 else
3176 {
3177 if (marker_block_index == MARKER_BLOCK_SIZE)
3178 {
3179 struct marker_block *new;
3180 new = (struct marker_block *) lisp_malloc (sizeof *new,
3181 MEM_TYPE_MISC);
3182 new->next = marker_block;
3183 marker_block = new;
3184 marker_block_index = 0;
3185 n_marker_blocks++;
3186 total_free_markers += MARKER_BLOCK_SIZE;
3187 }
3188 XSETMISC (val, &marker_block->markers[marker_block_index]);
3189 marker_block_index++;
3190 }
3191
3192 MALLOC_UNBLOCK_INPUT;
3193
3194 --total_free_markers;
3195 consing_since_gc += sizeof (union Lisp_Misc);
3196 misc_objects_consed++;
3197 XMISCANY (val)->gcmarkbit = 0;
3198 return val;
3199 }
3200
3201 /* Free a Lisp_Misc object */
3202
3203 void
3204 free_misc (Lisp_Object misc)
3205 {
3206 XMISCTYPE (misc) = Lisp_Misc_Free;
3207 XMISC (misc)->u_free.chain = marker_free_list;
3208 marker_free_list = XMISC (misc);
3209
3210 total_free_markers++;
3211 }
3212
3213 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3214 INTEGER. This is used to package C values to call record_unwind_protect.
3215 The unwind function can get the C values back using XSAVE_VALUE. */
3216
3217 Lisp_Object
3218 make_save_value (void *pointer, int integer)
3219 {
3220 register Lisp_Object val;
3221 register struct Lisp_Save_Value *p;
3222
3223 val = allocate_misc ();
3224 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3225 p = XSAVE_VALUE (val);
3226 p->pointer = pointer;
3227 p->integer = integer;
3228 p->dogc = 0;
3229 return val;
3230 }
3231
3232 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3233 doc: /* Return a newly allocated marker which does not point at any place. */)
3234 (void)
3235 {
3236 register Lisp_Object val;
3237 register struct Lisp_Marker *p;
3238
3239 val = allocate_misc ();
3240 XMISCTYPE (val) = Lisp_Misc_Marker;
3241 p = XMARKER (val);
3242 p->buffer = 0;
3243 p->bytepos = 0;
3244 p->charpos = 0;
3245 p->next = NULL;
3246 p->insertion_type = 0;
3247 return val;
3248 }
3249
3250 /* Put MARKER back on the free list after using it temporarily. */
3251
3252 void
3253 free_marker (Lisp_Object marker)
3254 {
3255 unchain_marker (XMARKER (marker));
3256 free_misc (marker);
3257 }
3258
3259 \f
3260 /* Return a newly created vector or string with specified arguments as
3261 elements. If all the arguments are characters that can fit
3262 in a string of events, make a string; otherwise, make a vector.
3263
3264 Any number of arguments, even zero arguments, are allowed. */
3265
3266 Lisp_Object
3267 make_event_array (register int nargs, Lisp_Object *args)
3268 {
3269 int i;
3270
3271 for (i = 0; i < nargs; i++)
3272 /* The things that fit in a string
3273 are characters that are in 0...127,
3274 after discarding the meta bit and all the bits above it. */
3275 if (!INTEGERP (args[i])
3276 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3277 return Fvector (nargs, args);
3278
3279 /* Since the loop exited, we know that all the things in it are
3280 characters, so we can make a string. */
3281 {
3282 Lisp_Object result;
3283
3284 result = Fmake_string (make_number (nargs), make_number (0));
3285 for (i = 0; i < nargs; i++)
3286 {
3287 SSET (result, i, XINT (args[i]));
3288 /* Move the meta bit to the right place for a string char. */
3289 if (XINT (args[i]) & CHAR_META)
3290 SSET (result, i, SREF (result, i) | 0x80);
3291 }
3292
3293 return result;
3294 }
3295 }
3296
3297
3298 \f
3299 /************************************************************************
3300 Memory Full Handling
3301 ************************************************************************/
3302
3303
3304 /* Called if malloc returns zero. */
3305
3306 void
3307 memory_full (void)
3308 {
3309 int i;
3310
3311 Vmemory_full = Qt;
3312
3313 memory_full_cons_threshold = sizeof (struct cons_block);
3314
3315 /* The first time we get here, free the spare memory. */
3316 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3317 if (spare_memory[i])
3318 {
3319 if (i == 0)
3320 free (spare_memory[i]);
3321 else if (i >= 1 && i <= 4)
3322 lisp_align_free (spare_memory[i]);
3323 else
3324 lisp_free (spare_memory[i]);
3325 spare_memory[i] = 0;
3326 }
3327
3328 /* Record the space now used. When it decreases substantially,
3329 we can refill the memory reserve. */
3330 #ifndef SYSTEM_MALLOC
3331 bytes_used_when_full = BYTES_USED;
3332 #endif
3333
3334 /* This used to call error, but if we've run out of memory, we could
3335 get infinite recursion trying to build the string. */
3336 xsignal (Qnil, Vmemory_signal_data);
3337 }
3338
3339 /* If we released our reserve (due to running out of memory),
3340 and we have a fair amount free once again,
3341 try to set aside another reserve in case we run out once more.
3342
3343 This is called when a relocatable block is freed in ralloc.c,
3344 and also directly from this file, in case we're not using ralloc.c. */
3345
3346 void
3347 refill_memory_reserve (void)
3348 {
3349 #ifndef SYSTEM_MALLOC
3350 if (spare_memory[0] == 0)
3351 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3352 if (spare_memory[1] == 0)
3353 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3354 MEM_TYPE_CONS);
3355 if (spare_memory[2] == 0)
3356 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3357 MEM_TYPE_CONS);
3358 if (spare_memory[3] == 0)
3359 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3360 MEM_TYPE_CONS);
3361 if (spare_memory[4] == 0)
3362 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3363 MEM_TYPE_CONS);
3364 if (spare_memory[5] == 0)
3365 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3366 MEM_TYPE_STRING);
3367 if (spare_memory[6] == 0)
3368 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3369 MEM_TYPE_STRING);
3370 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3371 Vmemory_full = Qnil;
3372 #endif
3373 }
3374 \f
3375 /************************************************************************
3376 C Stack Marking
3377 ************************************************************************/
3378
3379 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3380
3381 /* Conservative C stack marking requires a method to identify possibly
3382 live Lisp objects given a pointer value. We do this by keeping
3383 track of blocks of Lisp data that are allocated in a red-black tree
3384 (see also the comment of mem_node which is the type of nodes in
3385 that tree). Function lisp_malloc adds information for an allocated
3386 block to the red-black tree with calls to mem_insert, and function
3387 lisp_free removes it with mem_delete. Functions live_string_p etc
3388 call mem_find to lookup information about a given pointer in the
3389 tree, and use that to determine if the pointer points to a Lisp
3390 object or not. */
3391
3392 /* Initialize this part of alloc.c. */
3393
3394 static void
3395 mem_init (void)
3396 {
3397 mem_z.left = mem_z.right = MEM_NIL;
3398 mem_z.parent = NULL;
3399 mem_z.color = MEM_BLACK;
3400 mem_z.start = mem_z.end = NULL;
3401 mem_root = MEM_NIL;
3402 }
3403
3404
3405 /* Value is a pointer to the mem_node containing START. Value is
3406 MEM_NIL if there is no node in the tree containing START. */
3407
3408 static INLINE struct mem_node *
3409 mem_find (void *start)
3410 {
3411 struct mem_node *p;
3412
3413 if (start < min_heap_address || start > max_heap_address)
3414 return MEM_NIL;
3415
3416 /* Make the search always successful to speed up the loop below. */
3417 mem_z.start = start;
3418 mem_z.end = (char *) start + 1;
3419
3420 p = mem_root;
3421 while (start < p->start || start >= p->end)
3422 p = start < p->start ? p->left : p->right;
3423 return p;
3424 }
3425
3426
3427 /* Insert a new node into the tree for a block of memory with start
3428 address START, end address END, and type TYPE. Value is a
3429 pointer to the node that was inserted. */
3430
3431 static struct mem_node *
3432 mem_insert (void *start, void *end, enum mem_type type)
3433 {
3434 struct mem_node *c, *parent, *x;
3435
3436 if (min_heap_address == NULL || start < min_heap_address)
3437 min_heap_address = start;
3438 if (max_heap_address == NULL || end > max_heap_address)
3439 max_heap_address = end;
3440
3441 /* See where in the tree a node for START belongs. In this
3442 particular application, it shouldn't happen that a node is already
3443 present. For debugging purposes, let's check that. */
3444 c = mem_root;
3445 parent = NULL;
3446
3447 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3448
3449 while (c != MEM_NIL)
3450 {
3451 if (start >= c->start && start < c->end)
3452 abort ();
3453 parent = c;
3454 c = start < c->start ? c->left : c->right;
3455 }
3456
3457 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3458
3459 while (c != MEM_NIL)
3460 {
3461 parent = c;
3462 c = start < c->start ? c->left : c->right;
3463 }
3464
3465 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3466
3467 /* Create a new node. */
3468 #ifdef GC_MALLOC_CHECK
3469 x = (struct mem_node *) _malloc_internal (sizeof *x);
3470 if (x == NULL)
3471 abort ();
3472 #else
3473 x = (struct mem_node *) xmalloc (sizeof *x);
3474 #endif
3475 x->start = start;
3476 x->end = end;
3477 x->type = type;
3478 x->parent = parent;
3479 x->left = x->right = MEM_NIL;
3480 x->color = MEM_RED;
3481
3482 /* Insert it as child of PARENT or install it as root. */
3483 if (parent)
3484 {
3485 if (start < parent->start)
3486 parent->left = x;
3487 else
3488 parent->right = x;
3489 }
3490 else
3491 mem_root = x;
3492
3493 /* Re-establish red-black tree properties. */
3494 mem_insert_fixup (x);
3495
3496 return x;
3497 }
3498
3499
3500 /* Re-establish the red-black properties of the tree, and thereby
3501 balance the tree, after node X has been inserted; X is always red. */
3502
3503 static void
3504 mem_insert_fixup (struct mem_node *x)
3505 {
3506 while (x != mem_root && x->parent->color == MEM_RED)
3507 {
3508 /* X is red and its parent is red. This is a violation of
3509 red-black tree property #3. */
3510
3511 if (x->parent == x->parent->parent->left)
3512 {
3513 /* We're on the left side of our grandparent, and Y is our
3514 "uncle". */
3515 struct mem_node *y = x->parent->parent->right;
3516
3517 if (y->color == MEM_RED)
3518 {
3519 /* Uncle and parent are red but should be black because
3520 X is red. Change the colors accordingly and proceed
3521 with the grandparent. */
3522 x->parent->color = MEM_BLACK;
3523 y->color = MEM_BLACK;
3524 x->parent->parent->color = MEM_RED;
3525 x = x->parent->parent;
3526 }
3527 else
3528 {
3529 /* Parent and uncle have different colors; parent is
3530 red, uncle is black. */
3531 if (x == x->parent->right)
3532 {
3533 x = x->parent;
3534 mem_rotate_left (x);
3535 }
3536
3537 x->parent->color = MEM_BLACK;
3538 x->parent->parent->color = MEM_RED;
3539 mem_rotate_right (x->parent->parent);
3540 }
3541 }
3542 else
3543 {
3544 /* This is the symmetrical case of above. */
3545 struct mem_node *y = x->parent->parent->left;
3546
3547 if (y->color == MEM_RED)
3548 {
3549 x->parent->color = MEM_BLACK;
3550 y->color = MEM_BLACK;
3551 x->parent->parent->color = MEM_RED;
3552 x = x->parent->parent;
3553 }
3554 else
3555 {
3556 if (x == x->parent->left)
3557 {
3558 x = x->parent;
3559 mem_rotate_right (x);
3560 }
3561
3562 x->parent->color = MEM_BLACK;
3563 x->parent->parent->color = MEM_RED;
3564 mem_rotate_left (x->parent->parent);
3565 }
3566 }
3567 }
3568
3569 /* The root may have been changed to red due to the algorithm. Set
3570 it to black so that property #5 is satisfied. */
3571 mem_root->color = MEM_BLACK;
3572 }
3573
3574
3575 /* (x) (y)
3576 / \ / \
3577 a (y) ===> (x) c
3578 / \ / \
3579 b c a b */
3580
3581 static void
3582 mem_rotate_left (struct mem_node *x)
3583 {
3584 struct mem_node *y;
3585
3586 /* Turn y's left sub-tree into x's right sub-tree. */
3587 y = x->right;
3588 x->right = y->left;
3589 if (y->left != MEM_NIL)
3590 y->left->parent = x;
3591
3592 /* Y's parent was x's parent. */
3593 if (y != MEM_NIL)
3594 y->parent = x->parent;
3595
3596 /* Get the parent to point to y instead of x. */
3597 if (x->parent)
3598 {
3599 if (x == x->parent->left)
3600 x->parent->left = y;
3601 else
3602 x->parent->right = y;
3603 }
3604 else
3605 mem_root = y;
3606
3607 /* Put x on y's left. */
3608 y->left = x;
3609 if (x != MEM_NIL)
3610 x->parent = y;
3611 }
3612
3613
3614 /* (x) (Y)
3615 / \ / \
3616 (y) c ===> a (x)
3617 / \ / \
3618 a b b c */
3619
3620 static void
3621 mem_rotate_right (struct mem_node *x)
3622 {
3623 struct mem_node *y = x->left;
3624
3625 x->left = y->right;
3626 if (y->right != MEM_NIL)
3627 y->right->parent = x;
3628
3629 if (y != MEM_NIL)
3630 y->parent = x->parent;
3631 if (x->parent)
3632 {
3633 if (x == x->parent->right)
3634 x->parent->right = y;
3635 else
3636 x->parent->left = y;
3637 }
3638 else
3639 mem_root = y;
3640
3641 y->right = x;
3642 if (x != MEM_NIL)
3643 x->parent = y;
3644 }
3645
3646
3647 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3648
3649 static void
3650 mem_delete (struct mem_node *z)
3651 {
3652 struct mem_node *x, *y;
3653
3654 if (!z || z == MEM_NIL)
3655 return;
3656
3657 if (z->left == MEM_NIL || z->right == MEM_NIL)
3658 y = z;
3659 else
3660 {
3661 y = z->right;
3662 while (y->left != MEM_NIL)
3663 y = y->left;
3664 }
3665
3666 if (y->left != MEM_NIL)
3667 x = y->left;
3668 else
3669 x = y->right;
3670
3671 x->parent = y->parent;
3672 if (y->parent)
3673 {
3674 if (y == y->parent->left)
3675 y->parent->left = x;
3676 else
3677 y->parent->right = x;
3678 }
3679 else
3680 mem_root = x;
3681
3682 if (y != z)
3683 {
3684 z->start = y->start;
3685 z->end = y->end;
3686 z->type = y->type;
3687 }
3688
3689 if (y->color == MEM_BLACK)
3690 mem_delete_fixup (x);
3691
3692 #ifdef GC_MALLOC_CHECK
3693 _free_internal (y);
3694 #else
3695 xfree (y);
3696 #endif
3697 }
3698
3699
3700 /* Re-establish the red-black properties of the tree, after a
3701 deletion. */
3702
3703 static void
3704 mem_delete_fixup (struct mem_node *x)
3705 {
3706 while (x != mem_root && x->color == MEM_BLACK)
3707 {
3708 if (x == x->parent->left)
3709 {
3710 struct mem_node *w = x->parent->right;
3711
3712 if (w->color == MEM_RED)
3713 {
3714 w->color = MEM_BLACK;
3715 x->parent->color = MEM_RED;
3716 mem_rotate_left (x->parent);
3717 w = x->parent->right;
3718 }
3719
3720 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3721 {
3722 w->color = MEM_RED;
3723 x = x->parent;
3724 }
3725 else
3726 {
3727 if (w->right->color == MEM_BLACK)
3728 {
3729 w->left->color = MEM_BLACK;
3730 w->color = MEM_RED;
3731 mem_rotate_right (w);
3732 w = x->parent->right;
3733 }
3734 w->color = x->parent->color;
3735 x->parent->color = MEM_BLACK;
3736 w->right->color = MEM_BLACK;
3737 mem_rotate_left (x->parent);
3738 x = mem_root;
3739 }
3740 }
3741 else
3742 {
3743 struct mem_node *w = x->parent->left;
3744
3745 if (w->color == MEM_RED)
3746 {
3747 w->color = MEM_BLACK;
3748 x->parent->color = MEM_RED;
3749 mem_rotate_right (x->parent);
3750 w = x->parent->left;
3751 }
3752
3753 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3754 {
3755 w->color = MEM_RED;
3756 x = x->parent;
3757 }
3758 else
3759 {
3760 if (w->left->color == MEM_BLACK)
3761 {
3762 w->right->color = MEM_BLACK;
3763 w->color = MEM_RED;
3764 mem_rotate_left (w);
3765 w = x->parent->left;
3766 }
3767
3768 w->color = x->parent->color;
3769 x->parent->color = MEM_BLACK;
3770 w->left->color = MEM_BLACK;
3771 mem_rotate_right (x->parent);
3772 x = mem_root;
3773 }
3774 }
3775 }
3776
3777 x->color = MEM_BLACK;
3778 }
3779
3780
3781 /* Value is non-zero if P is a pointer to a live Lisp string on
3782 the heap. M is a pointer to the mem_block for P. */
3783
3784 static INLINE int
3785 live_string_p (struct mem_node *m, void *p)
3786 {
3787 if (m->type == MEM_TYPE_STRING)
3788 {
3789 struct string_block *b = (struct string_block *) m->start;
3790 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3791
3792 /* P must point to the start of a Lisp_String structure, and it
3793 must not be on the free-list. */
3794 return (offset >= 0
3795 && offset % sizeof b->strings[0] == 0
3796 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3797 && ((struct Lisp_String *) p)->data != NULL);
3798 }
3799 else
3800 return 0;
3801 }
3802
3803
3804 /* Value is non-zero if P is a pointer to a live Lisp cons on
3805 the heap. M is a pointer to the mem_block for P. */
3806
3807 static INLINE int
3808 live_cons_p (struct mem_node *m, void *p)
3809 {
3810 if (m->type == MEM_TYPE_CONS)
3811 {
3812 struct cons_block *b = (struct cons_block *) m->start;
3813 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3814
3815 /* P must point to the start of a Lisp_Cons, not be
3816 one of the unused cells in the current cons block,
3817 and not be on the free-list. */
3818 return (offset >= 0
3819 && offset % sizeof b->conses[0] == 0
3820 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3821 && (b != cons_block
3822 || offset / sizeof b->conses[0] < cons_block_index)
3823 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3824 }
3825 else
3826 return 0;
3827 }
3828
3829
3830 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3831 the heap. M is a pointer to the mem_block for P. */
3832
3833 static INLINE int
3834 live_symbol_p (struct mem_node *m, void *p)
3835 {
3836 if (m->type == MEM_TYPE_SYMBOL)
3837 {
3838 struct symbol_block *b = (struct symbol_block *) m->start;
3839 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3840
3841 /* P must point to the start of a Lisp_Symbol, not be
3842 one of the unused cells in the current symbol block,
3843 and not be on the free-list. */
3844 return (offset >= 0
3845 && offset % sizeof b->symbols[0] == 0
3846 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3847 && (b != symbol_block
3848 || offset / sizeof b->symbols[0] < symbol_block_index)
3849 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3850 }
3851 else
3852 return 0;
3853 }
3854
3855
3856 /* Value is non-zero if P is a pointer to a live Lisp float on
3857 the heap. M is a pointer to the mem_block for P. */
3858
3859 static INLINE int
3860 live_float_p (struct mem_node *m, void *p)
3861 {
3862 if (m->type == MEM_TYPE_FLOAT)
3863 {
3864 struct float_block *b = (struct float_block *) m->start;
3865 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3866
3867 /* P must point to the start of a Lisp_Float and not be
3868 one of the unused cells in the current float block. */
3869 return (offset >= 0
3870 && offset % sizeof b->floats[0] == 0
3871 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3872 && (b != float_block
3873 || offset / sizeof b->floats[0] < float_block_index));
3874 }
3875 else
3876 return 0;
3877 }
3878
3879
3880 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3881 the heap. M is a pointer to the mem_block for P. */
3882
3883 static INLINE int
3884 live_misc_p (struct mem_node *m, void *p)
3885 {
3886 if (m->type == MEM_TYPE_MISC)
3887 {
3888 struct marker_block *b = (struct marker_block *) m->start;
3889 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3890
3891 /* P must point to the start of a Lisp_Misc, not be
3892 one of the unused cells in the current misc block,
3893 and not be on the free-list. */
3894 return (offset >= 0
3895 && offset % sizeof b->markers[0] == 0
3896 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3897 && (b != marker_block
3898 || offset / sizeof b->markers[0] < marker_block_index)
3899 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3900 }
3901 else
3902 return 0;
3903 }
3904
3905
3906 /* Value is non-zero if P is a pointer to a live vector-like object.
3907 M is a pointer to the mem_block for P. */
3908
3909 static INLINE int
3910 live_vector_p (struct mem_node *m, void *p)
3911 {
3912 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3913 }
3914
3915
3916 /* Value is non-zero if P is a pointer to a live buffer. M is a
3917 pointer to the mem_block for P. */
3918
3919 static INLINE int
3920 live_buffer_p (struct mem_node *m, void *p)
3921 {
3922 /* P must point to the start of the block, and the buffer
3923 must not have been killed. */
3924 return (m->type == MEM_TYPE_BUFFER
3925 && p == m->start
3926 && !NILP (((struct buffer *) p)->name));
3927 }
3928
3929 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3930
3931 #if GC_MARK_STACK
3932
3933 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3934
3935 /* Array of objects that are kept alive because the C stack contains
3936 a pattern that looks like a reference to them . */
3937
3938 #define MAX_ZOMBIES 10
3939 static Lisp_Object zombies[MAX_ZOMBIES];
3940
3941 /* Number of zombie objects. */
3942
3943 static int nzombies;
3944
3945 /* Number of garbage collections. */
3946
3947 static int ngcs;
3948
3949 /* Average percentage of zombies per collection. */
3950
3951 static double avg_zombies;
3952
3953 /* Max. number of live and zombie objects. */
3954
3955 static int max_live, max_zombies;
3956
3957 /* Average number of live objects per GC. */
3958
3959 static double avg_live;
3960
3961 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3962 doc: /* Show information about live and zombie objects. */)
3963 (void)
3964 {
3965 Lisp_Object args[8], zombie_list = Qnil;
3966 int i;
3967 for (i = 0; i < nzombies; i++)
3968 zombie_list = Fcons (zombies[i], zombie_list);
3969 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3970 args[1] = make_number (ngcs);
3971 args[2] = make_float (avg_live);
3972 args[3] = make_float (avg_zombies);
3973 args[4] = make_float (avg_zombies / avg_live / 100);
3974 args[5] = make_number (max_live);
3975 args[6] = make_number (max_zombies);
3976 args[7] = zombie_list;
3977 return Fmessage (8, args);
3978 }
3979
3980 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3981
3982
3983 /* Mark OBJ if we can prove it's a Lisp_Object. */
3984
3985 static INLINE void
3986 mark_maybe_object (Lisp_Object obj)
3987 {
3988 void *po;
3989 struct mem_node *m;
3990
3991 if (INTEGERP (obj))
3992 return;
3993
3994 po = (void *) XPNTR (obj);
3995 m = mem_find (po);
3996
3997 if (m != MEM_NIL)
3998 {
3999 int mark_p = 0;
4000
4001 switch (XTYPE (obj))
4002 {
4003 case Lisp_String:
4004 mark_p = (live_string_p (m, po)
4005 && !STRING_MARKED_P ((struct Lisp_String *) po));
4006 break;
4007
4008 case Lisp_Cons:
4009 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4010 break;
4011
4012 case Lisp_Symbol:
4013 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4014 break;
4015
4016 case Lisp_Float:
4017 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4018 break;
4019
4020 case Lisp_Vectorlike:
4021 /* Note: can't check BUFFERP before we know it's a
4022 buffer because checking that dereferences the pointer
4023 PO which might point anywhere. */
4024 if (live_vector_p (m, po))
4025 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4026 else if (live_buffer_p (m, po))
4027 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4028 break;
4029
4030 case Lisp_Misc:
4031 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4032 break;
4033
4034 default:
4035 break;
4036 }
4037
4038 if (mark_p)
4039 {
4040 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4041 if (nzombies < MAX_ZOMBIES)
4042 zombies[nzombies] = obj;
4043 ++nzombies;
4044 #endif
4045 mark_object (obj);
4046 }
4047 }
4048 }
4049
4050
4051 /* If P points to Lisp data, mark that as live if it isn't already
4052 marked. */
4053
4054 static INLINE void
4055 mark_maybe_pointer (void *p)
4056 {
4057 struct mem_node *m;
4058
4059 /* Quickly rule out some values which can't point to Lisp data. */
4060 if ((EMACS_INT) p %
4061 #ifdef USE_LSB_TAG
4062 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4063 #else
4064 2 /* We assume that Lisp data is aligned on even addresses. */
4065 #endif
4066 )
4067 return;
4068
4069 m = mem_find (p);
4070 if (m != MEM_NIL)
4071 {
4072 Lisp_Object obj = Qnil;
4073
4074 switch (m->type)
4075 {
4076 case MEM_TYPE_NON_LISP:
4077 /* Nothing to do; not a pointer to Lisp memory. */
4078 break;
4079
4080 case MEM_TYPE_BUFFER:
4081 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4082 XSETVECTOR (obj, p);
4083 break;
4084
4085 case MEM_TYPE_CONS:
4086 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4087 XSETCONS (obj, p);
4088 break;
4089
4090 case MEM_TYPE_STRING:
4091 if (live_string_p (m, p)
4092 && !STRING_MARKED_P ((struct Lisp_String *) p))
4093 XSETSTRING (obj, p);
4094 break;
4095
4096 case MEM_TYPE_MISC:
4097 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4098 XSETMISC (obj, p);
4099 break;
4100
4101 case MEM_TYPE_SYMBOL:
4102 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4103 XSETSYMBOL (obj, p);
4104 break;
4105
4106 case MEM_TYPE_FLOAT:
4107 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4108 XSETFLOAT (obj, p);
4109 break;
4110
4111 case MEM_TYPE_VECTORLIKE:
4112 if (live_vector_p (m, p))
4113 {
4114 Lisp_Object tem;
4115 XSETVECTOR (tem, p);
4116 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4117 obj = tem;
4118 }
4119 break;
4120
4121 default:
4122 abort ();
4123 }
4124
4125 if (!NILP (obj))
4126 mark_object (obj);
4127 }
4128 }
4129
4130
4131 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4132 or END+OFFSET..START. */
4133
4134 static void
4135 mark_memory (void *start, void *end, int offset)
4136 {
4137 Lisp_Object *p;
4138 void **pp;
4139
4140 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4141 nzombies = 0;
4142 #endif
4143
4144 /* Make START the pointer to the start of the memory region,
4145 if it isn't already. */
4146 if (end < start)
4147 {
4148 void *tem = start;
4149 start = end;
4150 end = tem;
4151 }
4152
4153 /* Mark Lisp_Objects. */
4154 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4155 mark_maybe_object (*p);
4156
4157 /* Mark Lisp data pointed to. This is necessary because, in some
4158 situations, the C compiler optimizes Lisp objects away, so that
4159 only a pointer to them remains. Example:
4160
4161 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4162 ()
4163 {
4164 Lisp_Object obj = build_string ("test");
4165 struct Lisp_String *s = XSTRING (obj);
4166 Fgarbage_collect ();
4167 fprintf (stderr, "test `%s'\n", s->data);
4168 return Qnil;
4169 }
4170
4171 Here, `obj' isn't really used, and the compiler optimizes it
4172 away. The only reference to the life string is through the
4173 pointer `s'. */
4174
4175 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4176 mark_maybe_pointer (*pp);
4177 }
4178
4179 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4180 the GCC system configuration. In gcc 3.2, the only systems for
4181 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4182 by others?) and ns32k-pc532-min. */
4183
4184 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4185
4186 static int setjmp_tested_p, longjmps_done;
4187
4188 #define SETJMP_WILL_LIKELY_WORK "\
4189 \n\
4190 Emacs garbage collector has been changed to use conservative stack\n\
4191 marking. Emacs has determined that the method it uses to do the\n\
4192 marking will likely work on your system, but this isn't sure.\n\
4193 \n\
4194 If you are a system-programmer, or can get the help of a local wizard\n\
4195 who is, please take a look at the function mark_stack in alloc.c, and\n\
4196 verify that the methods used are appropriate for your system.\n\
4197 \n\
4198 Please mail the result to <emacs-devel@gnu.org>.\n\
4199 "
4200
4201 #define SETJMP_WILL_NOT_WORK "\
4202 \n\
4203 Emacs garbage collector has been changed to use conservative stack\n\
4204 marking. Emacs has determined that the default method it uses to do the\n\
4205 marking will not work on your system. We will need a system-dependent\n\
4206 solution for your system.\n\
4207 \n\
4208 Please take a look at the function mark_stack in alloc.c, and\n\
4209 try to find a way to make it work on your system.\n\
4210 \n\
4211 Note that you may get false negatives, depending on the compiler.\n\
4212 In particular, you need to use -O with GCC for this test.\n\
4213 \n\
4214 Please mail the result to <emacs-devel@gnu.org>.\n\
4215 "
4216
4217
4218 /* Perform a quick check if it looks like setjmp saves registers in a
4219 jmp_buf. Print a message to stderr saying so. When this test
4220 succeeds, this is _not_ a proof that setjmp is sufficient for
4221 conservative stack marking. Only the sources or a disassembly
4222 can prove that. */
4223
4224 static void
4225 test_setjmp (void)
4226 {
4227 char buf[10];
4228 register int x;
4229 jmp_buf jbuf;
4230 int result = 0;
4231
4232 /* Arrange for X to be put in a register. */
4233 sprintf (buf, "1");
4234 x = strlen (buf);
4235 x = 2 * x - 1;
4236
4237 setjmp (jbuf);
4238 if (longjmps_done == 1)
4239 {
4240 /* Came here after the longjmp at the end of the function.
4241
4242 If x == 1, the longjmp has restored the register to its
4243 value before the setjmp, and we can hope that setjmp
4244 saves all such registers in the jmp_buf, although that
4245 isn't sure.
4246
4247 For other values of X, either something really strange is
4248 taking place, or the setjmp just didn't save the register. */
4249
4250 if (x == 1)
4251 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4252 else
4253 {
4254 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4255 exit (1);
4256 }
4257 }
4258
4259 ++longjmps_done;
4260 x = 2;
4261 if (longjmps_done == 1)
4262 longjmp (jbuf, 1);
4263 }
4264
4265 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4266
4267
4268 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4269
4270 /* Abort if anything GCPRO'd doesn't survive the GC. */
4271
4272 static void
4273 check_gcpros (void)
4274 {
4275 struct gcpro *p;
4276 int i;
4277
4278 for (p = gcprolist; p; p = p->next)
4279 for (i = 0; i < p->nvars; ++i)
4280 if (!survives_gc_p (p->var[i]))
4281 /* FIXME: It's not necessarily a bug. It might just be that the
4282 GCPRO is unnecessary or should release the object sooner. */
4283 abort ();
4284 }
4285
4286 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4287
4288 static void
4289 dump_zombies (void)
4290 {
4291 int i;
4292
4293 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4294 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4295 {
4296 fprintf (stderr, " %d = ", i);
4297 debug_print (zombies[i]);
4298 }
4299 }
4300
4301 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4302
4303
4304 /* Mark live Lisp objects on the C stack.
4305
4306 There are several system-dependent problems to consider when
4307 porting this to new architectures:
4308
4309 Processor Registers
4310
4311 We have to mark Lisp objects in CPU registers that can hold local
4312 variables or are used to pass parameters.
4313
4314 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4315 something that either saves relevant registers on the stack, or
4316 calls mark_maybe_object passing it each register's contents.
4317
4318 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4319 implementation assumes that calling setjmp saves registers we need
4320 to see in a jmp_buf which itself lies on the stack. This doesn't
4321 have to be true! It must be verified for each system, possibly
4322 by taking a look at the source code of setjmp.
4323
4324 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4325 can use it as a machine independent method to store all registers
4326 to the stack. In this case the macros described in the previous
4327 two paragraphs are not used.
4328
4329 Stack Layout
4330
4331 Architectures differ in the way their processor stack is organized.
4332 For example, the stack might look like this
4333
4334 +----------------+
4335 | Lisp_Object | size = 4
4336 +----------------+
4337 | something else | size = 2
4338 +----------------+
4339 | Lisp_Object | size = 4
4340 +----------------+
4341 | ... |
4342
4343 In such a case, not every Lisp_Object will be aligned equally. To
4344 find all Lisp_Object on the stack it won't be sufficient to walk
4345 the stack in steps of 4 bytes. Instead, two passes will be
4346 necessary, one starting at the start of the stack, and a second
4347 pass starting at the start of the stack + 2. Likewise, if the
4348 minimal alignment of Lisp_Objects on the stack is 1, four passes
4349 would be necessary, each one starting with one byte more offset
4350 from the stack start.
4351
4352 The current code assumes by default that Lisp_Objects are aligned
4353 equally on the stack. */
4354
4355 static void
4356 mark_stack (void)
4357 {
4358 int i;
4359 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4360 union aligned_jmpbuf {
4361 Lisp_Object o;
4362 jmp_buf j;
4363 } j;
4364 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4365 void *end;
4366
4367 #ifdef HAVE___BUILTIN_UNWIND_INIT
4368 /* Force callee-saved registers and register windows onto the stack.
4369 This is the preferred method if available, obviating the need for
4370 machine dependent methods. */
4371 __builtin_unwind_init ();
4372 end = &end;
4373 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4374 /* This trick flushes the register windows so that all the state of
4375 the process is contained in the stack. */
4376 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4377 needed on ia64 too. See mach_dep.c, where it also says inline
4378 assembler doesn't work with relevant proprietary compilers. */
4379 #ifdef __sparc__
4380 #if defined (__sparc64__) && defined (__FreeBSD__)
4381 /* FreeBSD does not have a ta 3 handler. */
4382 asm ("flushw");
4383 #else
4384 asm ("ta 3");
4385 #endif
4386 #endif
4387
4388 /* Save registers that we need to see on the stack. We need to see
4389 registers used to hold register variables and registers used to
4390 pass parameters. */
4391 #ifdef GC_SAVE_REGISTERS_ON_STACK
4392 GC_SAVE_REGISTERS_ON_STACK (end);
4393 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4394
4395 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4396 setjmp will definitely work, test it
4397 and print a message with the result
4398 of the test. */
4399 if (!setjmp_tested_p)
4400 {
4401 setjmp_tested_p = 1;
4402 test_setjmp ();
4403 }
4404 #endif /* GC_SETJMP_WORKS */
4405
4406 setjmp (j.j);
4407 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4408 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4409 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4410
4411 /* This assumes that the stack is a contiguous region in memory. If
4412 that's not the case, something has to be done here to iterate
4413 over the stack segments. */
4414 #ifndef GC_LISP_OBJECT_ALIGNMENT
4415 #ifdef __GNUC__
4416 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4417 #else
4418 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4419 #endif
4420 #endif
4421 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4422 mark_memory (stack_base, end, i);
4423 /* Allow for marking a secondary stack, like the register stack on the
4424 ia64. */
4425 #ifdef GC_MARK_SECONDARY_STACK
4426 GC_MARK_SECONDARY_STACK ();
4427 #endif
4428
4429 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4430 check_gcpros ();
4431 #endif
4432 }
4433
4434 #endif /* GC_MARK_STACK != 0 */
4435
4436
4437 /* Determine whether it is safe to access memory at address P. */
4438 static int
4439 valid_pointer_p (void *p)
4440 {
4441 #ifdef WINDOWSNT
4442 return w32_valid_pointer_p (p, 16);
4443 #else
4444 int fd;
4445
4446 /* Obviously, we cannot just access it (we would SEGV trying), so we
4447 trick the o/s to tell us whether p is a valid pointer.
4448 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4449 not validate p in that case. */
4450
4451 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4452 {
4453 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4454 emacs_close (fd);
4455 unlink ("__Valid__Lisp__Object__");
4456 return valid;
4457 }
4458
4459 return -1;
4460 #endif
4461 }
4462
4463 /* Return 1 if OBJ is a valid lisp object.
4464 Return 0 if OBJ is NOT a valid lisp object.
4465 Return -1 if we cannot validate OBJ.
4466 This function can be quite slow,
4467 so it should only be used in code for manual debugging. */
4468
4469 int
4470 valid_lisp_object_p (Lisp_Object obj)
4471 {
4472 void *p;
4473 #if GC_MARK_STACK
4474 struct mem_node *m;
4475 #endif
4476
4477 if (INTEGERP (obj))
4478 return 1;
4479
4480 p = (void *) XPNTR (obj);
4481 if (PURE_POINTER_P (p))
4482 return 1;
4483
4484 #if !GC_MARK_STACK
4485 return valid_pointer_p (p);
4486 #else
4487
4488 m = mem_find (p);
4489
4490 if (m == MEM_NIL)
4491 {
4492 int valid = valid_pointer_p (p);
4493 if (valid <= 0)
4494 return valid;
4495
4496 if (SUBRP (obj))
4497 return 1;
4498
4499 return 0;
4500 }
4501
4502 switch (m->type)
4503 {
4504 case MEM_TYPE_NON_LISP:
4505 return 0;
4506
4507 case MEM_TYPE_BUFFER:
4508 return live_buffer_p (m, p);
4509
4510 case MEM_TYPE_CONS:
4511 return live_cons_p (m, p);
4512
4513 case MEM_TYPE_STRING:
4514 return live_string_p (m, p);
4515
4516 case MEM_TYPE_MISC:
4517 return live_misc_p (m, p);
4518
4519 case MEM_TYPE_SYMBOL:
4520 return live_symbol_p (m, p);
4521
4522 case MEM_TYPE_FLOAT:
4523 return live_float_p (m, p);
4524
4525 case MEM_TYPE_VECTORLIKE:
4526 return live_vector_p (m, p);
4527
4528 default:
4529 break;
4530 }
4531
4532 return 0;
4533 #endif
4534 }
4535
4536
4537
4538 \f
4539 /***********************************************************************
4540 Pure Storage Management
4541 ***********************************************************************/
4542
4543 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4544 pointer to it. TYPE is the Lisp type for which the memory is
4545 allocated. TYPE < 0 means it's not used for a Lisp object. */
4546
4547 static POINTER_TYPE *
4548 pure_alloc (size_t size, int type)
4549 {
4550 POINTER_TYPE *result;
4551 #ifdef USE_LSB_TAG
4552 size_t alignment = (1 << GCTYPEBITS);
4553 #else
4554 size_t alignment = sizeof (EMACS_INT);
4555
4556 /* Give Lisp_Floats an extra alignment. */
4557 if (type == Lisp_Float)
4558 {
4559 #if defined __GNUC__ && __GNUC__ >= 2
4560 alignment = __alignof (struct Lisp_Float);
4561 #else
4562 alignment = sizeof (struct Lisp_Float);
4563 #endif
4564 }
4565 #endif
4566
4567 again:
4568 if (type >= 0)
4569 {
4570 /* Allocate space for a Lisp object from the beginning of the free
4571 space with taking account of alignment. */
4572 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4573 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4574 }
4575 else
4576 {
4577 /* Allocate space for a non-Lisp object from the end of the free
4578 space. */
4579 pure_bytes_used_non_lisp += size;
4580 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4581 }
4582 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4583
4584 if (pure_bytes_used <= pure_size)
4585 return result;
4586
4587 /* Don't allocate a large amount here,
4588 because it might get mmap'd and then its address
4589 might not be usable. */
4590 purebeg = (char *) xmalloc (10000);
4591 pure_size = 10000;
4592 pure_bytes_used_before_overflow += pure_bytes_used - size;
4593 pure_bytes_used = 0;
4594 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4595 goto again;
4596 }
4597
4598
4599 /* Print a warning if PURESIZE is too small. */
4600
4601 void
4602 check_pure_size (void)
4603 {
4604 if (pure_bytes_used_before_overflow)
4605 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4606 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4607 }
4608
4609
4610 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4611 the non-Lisp data pool of the pure storage, and return its start
4612 address. Return NULL if not found. */
4613
4614 static char *
4615 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4616 {
4617 int i;
4618 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4619 const unsigned char *p;
4620 char *non_lisp_beg;
4621
4622 if (pure_bytes_used_non_lisp < nbytes + 1)
4623 return NULL;
4624
4625 /* Set up the Boyer-Moore table. */
4626 skip = nbytes + 1;
4627 for (i = 0; i < 256; i++)
4628 bm_skip[i] = skip;
4629
4630 p = (const unsigned char *) data;
4631 while (--skip > 0)
4632 bm_skip[*p++] = skip;
4633
4634 last_char_skip = bm_skip['\0'];
4635
4636 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4637 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4638
4639 /* See the comments in the function `boyer_moore' (search.c) for the
4640 use of `infinity'. */
4641 infinity = pure_bytes_used_non_lisp + 1;
4642 bm_skip['\0'] = infinity;
4643
4644 p = (const unsigned char *) non_lisp_beg + nbytes;
4645 start = 0;
4646 do
4647 {
4648 /* Check the last character (== '\0'). */
4649 do
4650 {
4651 start += bm_skip[*(p + start)];
4652 }
4653 while (start <= start_max);
4654
4655 if (start < infinity)
4656 /* Couldn't find the last character. */
4657 return NULL;
4658
4659 /* No less than `infinity' means we could find the last
4660 character at `p[start - infinity]'. */
4661 start -= infinity;
4662
4663 /* Check the remaining characters. */
4664 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4665 /* Found. */
4666 return non_lisp_beg + start;
4667
4668 start += last_char_skip;
4669 }
4670 while (start <= start_max);
4671
4672 return NULL;
4673 }
4674
4675
4676 /* Return a string allocated in pure space. DATA is a buffer holding
4677 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4678 non-zero means make the result string multibyte.
4679
4680 Must get an error if pure storage is full, since if it cannot hold
4681 a large string it may be able to hold conses that point to that
4682 string; then the string is not protected from gc. */
4683
4684 Lisp_Object
4685 make_pure_string (const char *data,
4686 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4687 {
4688 Lisp_Object string;
4689 struct Lisp_String *s;
4690
4691 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4692 s->data = find_string_data_in_pure (data, nbytes);
4693 if (s->data == NULL)
4694 {
4695 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4696 memcpy (s->data, data, nbytes);
4697 s->data[nbytes] = '\0';
4698 }
4699 s->size = nchars;
4700 s->size_byte = multibyte ? nbytes : -1;
4701 s->intervals = NULL_INTERVAL;
4702 XSETSTRING (string, s);
4703 return string;
4704 }
4705
4706 /* Return a string a string allocated in pure space. Do not allocate
4707 the string data, just point to DATA. */
4708
4709 Lisp_Object
4710 make_pure_c_string (const char *data)
4711 {
4712 Lisp_Object string;
4713 struct Lisp_String *s;
4714 EMACS_INT nchars = strlen (data);
4715
4716 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4717 s->size = nchars;
4718 s->size_byte = -1;
4719 s->data = (unsigned char *) data;
4720 s->intervals = NULL_INTERVAL;
4721 XSETSTRING (string, s);
4722 return string;
4723 }
4724
4725 /* Return a cons allocated from pure space. Give it pure copies
4726 of CAR as car and CDR as cdr. */
4727
4728 Lisp_Object
4729 pure_cons (Lisp_Object car, Lisp_Object cdr)
4730 {
4731 register Lisp_Object new;
4732 struct Lisp_Cons *p;
4733
4734 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4735 XSETCONS (new, p);
4736 XSETCAR (new, Fpurecopy (car));
4737 XSETCDR (new, Fpurecopy (cdr));
4738 return new;
4739 }
4740
4741
4742 /* Value is a float object with value NUM allocated from pure space. */
4743
4744 static Lisp_Object
4745 make_pure_float (double num)
4746 {
4747 register Lisp_Object new;
4748 struct Lisp_Float *p;
4749
4750 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4751 XSETFLOAT (new, p);
4752 XFLOAT_INIT (new, num);
4753 return new;
4754 }
4755
4756
4757 /* Return a vector with room for LEN Lisp_Objects allocated from
4758 pure space. */
4759
4760 Lisp_Object
4761 make_pure_vector (EMACS_INT len)
4762 {
4763 Lisp_Object new;
4764 struct Lisp_Vector *p;
4765 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4766
4767 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4768 XSETVECTOR (new, p);
4769 XVECTOR (new)->size = len;
4770 return new;
4771 }
4772
4773
4774 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4775 doc: /* Make a copy of object OBJ in pure storage.
4776 Recursively copies contents of vectors and cons cells.
4777 Does not copy symbols. Copies strings without text properties. */)
4778 (register Lisp_Object obj)
4779 {
4780 if (NILP (Vpurify_flag))
4781 return obj;
4782
4783 if (PURE_POINTER_P (XPNTR (obj)))
4784 return obj;
4785
4786 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4787 {
4788 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4789 if (!NILP (tmp))
4790 return tmp;
4791 }
4792
4793 if (CONSP (obj))
4794 obj = pure_cons (XCAR (obj), XCDR (obj));
4795 else if (FLOATP (obj))
4796 obj = make_pure_float (XFLOAT_DATA (obj));
4797 else if (STRINGP (obj))
4798 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4799 SBYTES (obj),
4800 STRING_MULTIBYTE (obj));
4801 else if (COMPILEDP (obj) || VECTORP (obj))
4802 {
4803 register struct Lisp_Vector *vec;
4804 register EMACS_INT i;
4805 EMACS_INT size;
4806
4807 size = XVECTOR (obj)->size;
4808 if (size & PSEUDOVECTOR_FLAG)
4809 size &= PSEUDOVECTOR_SIZE_MASK;
4810 vec = XVECTOR (make_pure_vector (size));
4811 for (i = 0; i < size; i++)
4812 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4813 if (COMPILEDP (obj))
4814 {
4815 XSETPVECTYPE (vec, PVEC_COMPILED);
4816 XSETCOMPILED (obj, vec);
4817 }
4818 else
4819 XSETVECTOR (obj, vec);
4820 }
4821 else if (MARKERP (obj))
4822 error ("Attempt to copy a marker to pure storage");
4823 else
4824 /* Not purified, don't hash-cons. */
4825 return obj;
4826
4827 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4828 Fputhash (obj, obj, Vpurify_flag);
4829
4830 return obj;
4831 }
4832
4833
4834 \f
4835 /***********************************************************************
4836 Protection from GC
4837 ***********************************************************************/
4838
4839 /* Put an entry in staticvec, pointing at the variable with address
4840 VARADDRESS. */
4841
4842 void
4843 staticpro (Lisp_Object *varaddress)
4844 {
4845 staticvec[staticidx++] = varaddress;
4846 if (staticidx >= NSTATICS)
4847 abort ();
4848 }
4849
4850 \f
4851 /***********************************************************************
4852 Protection from GC
4853 ***********************************************************************/
4854
4855 /* Temporarily prevent garbage collection. */
4856
4857 int
4858 inhibit_garbage_collection (void)
4859 {
4860 int count = SPECPDL_INDEX ();
4861 int nbits = min (VALBITS, BITS_PER_INT);
4862
4863 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4864 return count;
4865 }
4866
4867
4868 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4869 doc: /* Reclaim storage for Lisp objects no longer needed.
4870 Garbage collection happens automatically if you cons more than
4871 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4872 `garbage-collect' normally returns a list with info on amount of space in use:
4873 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4874 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4875 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4876 (USED-STRINGS . FREE-STRINGS))
4877 However, if there was overflow in pure space, `garbage-collect'
4878 returns nil, because real GC can't be done. */)
4879 (void)
4880 {
4881 register struct specbinding *bind;
4882 struct catchtag *catch;
4883 struct handler *handler;
4884 char stack_top_variable;
4885 register int i;
4886 int message_p;
4887 Lisp_Object total[8];
4888 int count = SPECPDL_INDEX ();
4889 EMACS_TIME t1, t2, t3;
4890
4891 if (abort_on_gc)
4892 abort ();
4893
4894 /* Can't GC if pure storage overflowed because we can't determine
4895 if something is a pure object or not. */
4896 if (pure_bytes_used_before_overflow)
4897 return Qnil;
4898
4899 CHECK_CONS_LIST ();
4900
4901 /* Don't keep undo information around forever.
4902 Do this early on, so it is no problem if the user quits. */
4903 {
4904 register struct buffer *nextb = all_buffers;
4905
4906 while (nextb)
4907 {
4908 /* If a buffer's undo list is Qt, that means that undo is
4909 turned off in that buffer. Calling truncate_undo_list on
4910 Qt tends to return NULL, which effectively turns undo back on.
4911 So don't call truncate_undo_list if undo_list is Qt. */
4912 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4913 truncate_undo_list (nextb);
4914
4915 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4916 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4917 && ! nextb->text->inhibit_shrinking)
4918 {
4919 /* If a buffer's gap size is more than 10% of the buffer
4920 size, or larger than 2000 bytes, then shrink it
4921 accordingly. Keep a minimum size of 20 bytes. */
4922 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4923
4924 if (nextb->text->gap_size > size)
4925 {
4926 struct buffer *save_current = current_buffer;
4927 current_buffer = nextb;
4928 make_gap (-(nextb->text->gap_size - size));
4929 current_buffer = save_current;
4930 }
4931 }
4932
4933 nextb = nextb->next;
4934 }
4935 }
4936
4937 EMACS_GET_TIME (t1);
4938
4939 /* In case user calls debug_print during GC,
4940 don't let that cause a recursive GC. */
4941 consing_since_gc = 0;
4942
4943 /* Save what's currently displayed in the echo area. */
4944 message_p = push_message ();
4945 record_unwind_protect (pop_message_unwind, Qnil);
4946
4947 /* Save a copy of the contents of the stack, for debugging. */
4948 #if MAX_SAVE_STACK > 0
4949 if (NILP (Vpurify_flag))
4950 {
4951 i = &stack_top_variable - stack_bottom;
4952 if (i < 0) i = -i;
4953 if (i < MAX_SAVE_STACK)
4954 {
4955 if (stack_copy == 0)
4956 stack_copy = (char *) xmalloc (stack_copy_size = i);
4957 else if (stack_copy_size < i)
4958 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4959 if (stack_copy)
4960 {
4961 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4962 memcpy (stack_copy, stack_bottom, i);
4963 else
4964 memcpy (stack_copy, &stack_top_variable, i);
4965 }
4966 }
4967 }
4968 #endif /* MAX_SAVE_STACK > 0 */
4969
4970 if (garbage_collection_messages)
4971 message1_nolog ("Garbage collecting...");
4972
4973 BLOCK_INPUT;
4974
4975 shrink_regexp_cache ();
4976
4977 gc_in_progress = 1;
4978
4979 /* clear_marks (); */
4980
4981 /* Mark all the special slots that serve as the roots of accessibility. */
4982
4983 for (i = 0; i < staticidx; i++)
4984 mark_object (*staticvec[i]);
4985
4986 for (bind = specpdl; bind != specpdl_ptr; bind++)
4987 {
4988 mark_object (bind->symbol);
4989 mark_object (bind->old_value);
4990 }
4991 mark_terminals ();
4992 mark_kboards ();
4993 mark_ttys ();
4994
4995 #ifdef USE_GTK
4996 {
4997 extern void xg_mark_data (void);
4998 xg_mark_data ();
4999 }
5000 #endif
5001
5002 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5003 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5004 mark_stack ();
5005 #else
5006 {
5007 register struct gcpro *tail;
5008 for (tail = gcprolist; tail; tail = tail->next)
5009 for (i = 0; i < tail->nvars; i++)
5010 mark_object (tail->var[i]);
5011 }
5012 #endif
5013
5014 mark_byte_stack ();
5015 for (catch = catchlist; catch; catch = catch->next)
5016 {
5017 mark_object (catch->tag);
5018 mark_object (catch->val);
5019 }
5020 for (handler = handlerlist; handler; handler = handler->next)
5021 {
5022 mark_object (handler->handler);
5023 mark_object (handler->var);
5024 }
5025 mark_backtrace ();
5026
5027 #ifdef HAVE_WINDOW_SYSTEM
5028 mark_fringe_data ();
5029 #endif
5030
5031 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5032 mark_stack ();
5033 #endif
5034
5035 /* Everything is now marked, except for the things that require special
5036 finalization, i.e. the undo_list.
5037 Look thru every buffer's undo list
5038 for elements that update markers that were not marked,
5039 and delete them. */
5040 {
5041 register struct buffer *nextb = all_buffers;
5042
5043 while (nextb)
5044 {
5045 /* If a buffer's undo list is Qt, that means that undo is
5046 turned off in that buffer. Calling truncate_undo_list on
5047 Qt tends to return NULL, which effectively turns undo back on.
5048 So don't call truncate_undo_list if undo_list is Qt. */
5049 if (! EQ (nextb->undo_list, Qt))
5050 {
5051 Lisp_Object tail, prev;
5052 tail = nextb->undo_list;
5053 prev = Qnil;
5054 while (CONSP (tail))
5055 {
5056 if (CONSP (XCAR (tail))
5057 && MARKERP (XCAR (XCAR (tail)))
5058 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5059 {
5060 if (NILP (prev))
5061 nextb->undo_list = tail = XCDR (tail);
5062 else
5063 {
5064 tail = XCDR (tail);
5065 XSETCDR (prev, tail);
5066 }
5067 }
5068 else
5069 {
5070 prev = tail;
5071 tail = XCDR (tail);
5072 }
5073 }
5074 }
5075 /* Now that we have stripped the elements that need not be in the
5076 undo_list any more, we can finally mark the list. */
5077 mark_object (nextb->undo_list);
5078
5079 nextb = nextb->next;
5080 }
5081 }
5082
5083 gc_sweep ();
5084
5085 /* Clear the mark bits that we set in certain root slots. */
5086
5087 unmark_byte_stack ();
5088 VECTOR_UNMARK (&buffer_defaults);
5089 VECTOR_UNMARK (&buffer_local_symbols);
5090
5091 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5092 dump_zombies ();
5093 #endif
5094
5095 UNBLOCK_INPUT;
5096
5097 CHECK_CONS_LIST ();
5098
5099 /* clear_marks (); */
5100 gc_in_progress = 0;
5101
5102 consing_since_gc = 0;
5103 if (gc_cons_threshold < 10000)
5104 gc_cons_threshold = 10000;
5105
5106 if (FLOATP (Vgc_cons_percentage))
5107 { /* Set gc_cons_combined_threshold. */
5108 EMACS_INT total = 0;
5109
5110 total += total_conses * sizeof (struct Lisp_Cons);
5111 total += total_symbols * sizeof (struct Lisp_Symbol);
5112 total += total_markers * sizeof (union Lisp_Misc);
5113 total += total_string_size;
5114 total += total_vector_size * sizeof (Lisp_Object);
5115 total += total_floats * sizeof (struct Lisp_Float);
5116 total += total_intervals * sizeof (struct interval);
5117 total += total_strings * sizeof (struct Lisp_String);
5118
5119 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5120 }
5121 else
5122 gc_relative_threshold = 0;
5123
5124 if (garbage_collection_messages)
5125 {
5126 if (message_p || minibuf_level > 0)
5127 restore_message ();
5128 else
5129 message1_nolog ("Garbage collecting...done");
5130 }
5131
5132 unbind_to (count, Qnil);
5133
5134 total[0] = Fcons (make_number (total_conses),
5135 make_number (total_free_conses));
5136 total[1] = Fcons (make_number (total_symbols),
5137 make_number (total_free_symbols));
5138 total[2] = Fcons (make_number (total_markers),
5139 make_number (total_free_markers));
5140 total[3] = make_number (total_string_size);
5141 total[4] = make_number (total_vector_size);
5142 total[5] = Fcons (make_number (total_floats),
5143 make_number (total_free_floats));
5144 total[6] = Fcons (make_number (total_intervals),
5145 make_number (total_free_intervals));
5146 total[7] = Fcons (make_number (total_strings),
5147 make_number (total_free_strings));
5148
5149 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5150 {
5151 /* Compute average percentage of zombies. */
5152 double nlive = 0;
5153
5154 for (i = 0; i < 7; ++i)
5155 if (CONSP (total[i]))
5156 nlive += XFASTINT (XCAR (total[i]));
5157
5158 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5159 max_live = max (nlive, max_live);
5160 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5161 max_zombies = max (nzombies, max_zombies);
5162 ++ngcs;
5163 }
5164 #endif
5165
5166 if (!NILP (Vpost_gc_hook))
5167 {
5168 int count = inhibit_garbage_collection ();
5169 safe_run_hooks (Qpost_gc_hook);
5170 unbind_to (count, Qnil);
5171 }
5172
5173 /* Accumulate statistics. */
5174 EMACS_GET_TIME (t2);
5175 EMACS_SUB_TIME (t3, t2, t1);
5176 if (FLOATP (Vgc_elapsed))
5177 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5178 EMACS_SECS (t3) +
5179 EMACS_USECS (t3) * 1.0e-6);
5180 gcs_done++;
5181
5182 return Flist (sizeof total / sizeof *total, total);
5183 }
5184
5185
5186 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5187 only interesting objects referenced from glyphs are strings. */
5188
5189 static void
5190 mark_glyph_matrix (struct glyph_matrix *matrix)
5191 {
5192 struct glyph_row *row = matrix->rows;
5193 struct glyph_row *end = row + matrix->nrows;
5194
5195 for (; row < end; ++row)
5196 if (row->enabled_p)
5197 {
5198 int area;
5199 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5200 {
5201 struct glyph *glyph = row->glyphs[area];
5202 struct glyph *end_glyph = glyph + row->used[area];
5203
5204 for (; glyph < end_glyph; ++glyph)
5205 if (STRINGP (glyph->object)
5206 && !STRING_MARKED_P (XSTRING (glyph->object)))
5207 mark_object (glyph->object);
5208 }
5209 }
5210 }
5211
5212
5213 /* Mark Lisp faces in the face cache C. */
5214
5215 static void
5216 mark_face_cache (struct face_cache *c)
5217 {
5218 if (c)
5219 {
5220 int i, j;
5221 for (i = 0; i < c->used; ++i)
5222 {
5223 struct face *face = FACE_FROM_ID (c->f, i);
5224
5225 if (face)
5226 {
5227 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5228 mark_object (face->lface[j]);
5229 }
5230 }
5231 }
5232 }
5233
5234
5235 \f
5236 /* Mark reference to a Lisp_Object.
5237 If the object referred to has not been seen yet, recursively mark
5238 all the references contained in it. */
5239
5240 #define LAST_MARKED_SIZE 500
5241 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5242 int last_marked_index;
5243
5244 /* For debugging--call abort when we cdr down this many
5245 links of a list, in mark_object. In debugging,
5246 the call to abort will hit a breakpoint.
5247 Normally this is zero and the check never goes off. */
5248 static int mark_object_loop_halt;
5249
5250 static void
5251 mark_vectorlike (struct Lisp_Vector *ptr)
5252 {
5253 register EMACS_UINT size = ptr->size;
5254 register EMACS_UINT i;
5255
5256 eassert (!VECTOR_MARKED_P (ptr));
5257 VECTOR_MARK (ptr); /* Else mark it */
5258 if (size & PSEUDOVECTOR_FLAG)
5259 size &= PSEUDOVECTOR_SIZE_MASK;
5260
5261 /* Note that this size is not the memory-footprint size, but only
5262 the number of Lisp_Object fields that we should trace.
5263 The distinction is used e.g. by Lisp_Process which places extra
5264 non-Lisp_Object fields at the end of the structure. */
5265 for (i = 0; i < size; i++) /* and then mark its elements */
5266 mark_object (ptr->contents[i]);
5267 }
5268
5269 /* Like mark_vectorlike but optimized for char-tables (and
5270 sub-char-tables) assuming that the contents are mostly integers or
5271 symbols. */
5272
5273 static void
5274 mark_char_table (struct Lisp_Vector *ptr)
5275 {
5276 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5277 register EMACS_UINT i;
5278
5279 eassert (!VECTOR_MARKED_P (ptr));
5280 VECTOR_MARK (ptr);
5281 for (i = 0; i < size; i++)
5282 {
5283 Lisp_Object val = ptr->contents[i];
5284
5285 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5286 continue;
5287 if (SUB_CHAR_TABLE_P (val))
5288 {
5289 if (! VECTOR_MARKED_P (XVECTOR (val)))
5290 mark_char_table (XVECTOR (val));
5291 }
5292 else
5293 mark_object (val);
5294 }
5295 }
5296
5297 void
5298 mark_object (Lisp_Object arg)
5299 {
5300 register Lisp_Object obj = arg;
5301 #ifdef GC_CHECK_MARKED_OBJECTS
5302 void *po;
5303 struct mem_node *m;
5304 #endif
5305 int cdr_count = 0;
5306
5307 loop:
5308
5309 if (PURE_POINTER_P (XPNTR (obj)))
5310 return;
5311
5312 last_marked[last_marked_index++] = obj;
5313 if (last_marked_index == LAST_MARKED_SIZE)
5314 last_marked_index = 0;
5315
5316 /* Perform some sanity checks on the objects marked here. Abort if
5317 we encounter an object we know is bogus. This increases GC time
5318 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5319 #ifdef GC_CHECK_MARKED_OBJECTS
5320
5321 po = (void *) XPNTR (obj);
5322
5323 /* Check that the object pointed to by PO is known to be a Lisp
5324 structure allocated from the heap. */
5325 #define CHECK_ALLOCATED() \
5326 do { \
5327 m = mem_find (po); \
5328 if (m == MEM_NIL) \
5329 abort (); \
5330 } while (0)
5331
5332 /* Check that the object pointed to by PO is live, using predicate
5333 function LIVEP. */
5334 #define CHECK_LIVE(LIVEP) \
5335 do { \
5336 if (!LIVEP (m, po)) \
5337 abort (); \
5338 } while (0)
5339
5340 /* Check both of the above conditions. */
5341 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5342 do { \
5343 CHECK_ALLOCATED (); \
5344 CHECK_LIVE (LIVEP); \
5345 } while (0) \
5346
5347 #else /* not GC_CHECK_MARKED_OBJECTS */
5348
5349 #define CHECK_ALLOCATED() (void) 0
5350 #define CHECK_LIVE(LIVEP) (void) 0
5351 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5352
5353 #endif /* not GC_CHECK_MARKED_OBJECTS */
5354
5355 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5356 {
5357 case Lisp_String:
5358 {
5359 register struct Lisp_String *ptr = XSTRING (obj);
5360 if (STRING_MARKED_P (ptr))
5361 break;
5362 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5363 MARK_INTERVAL_TREE (ptr->intervals);
5364 MARK_STRING (ptr);
5365 #ifdef GC_CHECK_STRING_BYTES
5366 /* Check that the string size recorded in the string is the
5367 same as the one recorded in the sdata structure. */
5368 CHECK_STRING_BYTES (ptr);
5369 #endif /* GC_CHECK_STRING_BYTES */
5370 }
5371 break;
5372
5373 case Lisp_Vectorlike:
5374 if (VECTOR_MARKED_P (XVECTOR (obj)))
5375 break;
5376 #ifdef GC_CHECK_MARKED_OBJECTS
5377 m = mem_find (po);
5378 if (m == MEM_NIL && !SUBRP (obj)
5379 && po != &buffer_defaults
5380 && po != &buffer_local_symbols)
5381 abort ();
5382 #endif /* GC_CHECK_MARKED_OBJECTS */
5383
5384 if (BUFFERP (obj))
5385 {
5386 #ifdef GC_CHECK_MARKED_OBJECTS
5387 if (po != &buffer_defaults && po != &buffer_local_symbols)
5388 {
5389 struct buffer *b;
5390 for (b = all_buffers; b && b != po; b = b->next)
5391 ;
5392 if (b == NULL)
5393 abort ();
5394 }
5395 #endif /* GC_CHECK_MARKED_OBJECTS */
5396 mark_buffer (obj);
5397 }
5398 else if (SUBRP (obj))
5399 break;
5400 else if (COMPILEDP (obj))
5401 /* We could treat this just like a vector, but it is better to
5402 save the COMPILED_CONSTANTS element for last and avoid
5403 recursion there. */
5404 {
5405 register struct Lisp_Vector *ptr = XVECTOR (obj);
5406 register EMACS_UINT size = ptr->size;
5407 register EMACS_UINT i;
5408
5409 CHECK_LIVE (live_vector_p);
5410 VECTOR_MARK (ptr); /* Else mark it */
5411 size &= PSEUDOVECTOR_SIZE_MASK;
5412 for (i = 0; i < size; i++) /* and then mark its elements */
5413 {
5414 if (i != COMPILED_CONSTANTS)
5415 mark_object (ptr->contents[i]);
5416 }
5417 obj = ptr->contents[COMPILED_CONSTANTS];
5418 goto loop;
5419 }
5420 else if (FRAMEP (obj))
5421 {
5422 register struct frame *ptr = XFRAME (obj);
5423 mark_vectorlike (XVECTOR (obj));
5424 mark_face_cache (ptr->face_cache);
5425 }
5426 else if (WINDOWP (obj))
5427 {
5428 register struct Lisp_Vector *ptr = XVECTOR (obj);
5429 struct window *w = XWINDOW (obj);
5430 mark_vectorlike (ptr);
5431 /* Mark glyphs for leaf windows. Marking window matrices is
5432 sufficient because frame matrices use the same glyph
5433 memory. */
5434 if (NILP (w->hchild)
5435 && NILP (w->vchild)
5436 && w->current_matrix)
5437 {
5438 mark_glyph_matrix (w->current_matrix);
5439 mark_glyph_matrix (w->desired_matrix);
5440 }
5441 }
5442 else if (HASH_TABLE_P (obj))
5443 {
5444 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5445 mark_vectorlike ((struct Lisp_Vector *)h);
5446 /* If hash table is not weak, mark all keys and values.
5447 For weak tables, mark only the vector. */
5448 if (NILP (h->weak))
5449 mark_object (h->key_and_value);
5450 else
5451 VECTOR_MARK (XVECTOR (h->key_and_value));
5452 }
5453 else if (CHAR_TABLE_P (obj))
5454 mark_char_table (XVECTOR (obj));
5455 else
5456 mark_vectorlike (XVECTOR (obj));
5457 break;
5458
5459 case Lisp_Symbol:
5460 {
5461 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5462 struct Lisp_Symbol *ptrx;
5463
5464 if (ptr->gcmarkbit)
5465 break;
5466 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5467 ptr->gcmarkbit = 1;
5468 mark_object (ptr->function);
5469 mark_object (ptr->plist);
5470 switch (ptr->redirect)
5471 {
5472 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5473 case SYMBOL_VARALIAS:
5474 {
5475 Lisp_Object tem;
5476 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5477 mark_object (tem);
5478 break;
5479 }
5480 case SYMBOL_LOCALIZED:
5481 {
5482 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5483 /* If the value is forwarded to a buffer or keyboard field,
5484 these are marked when we see the corresponding object.
5485 And if it's forwarded to a C variable, either it's not
5486 a Lisp_Object var, or it's staticpro'd already. */
5487 mark_object (blv->where);
5488 mark_object (blv->valcell);
5489 mark_object (blv->defcell);
5490 break;
5491 }
5492 case SYMBOL_FORWARDED:
5493 /* If the value is forwarded to a buffer or keyboard field,
5494 these are marked when we see the corresponding object.
5495 And if it's forwarded to a C variable, either it's not
5496 a Lisp_Object var, or it's staticpro'd already. */
5497 break;
5498 default: abort ();
5499 }
5500 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5501 MARK_STRING (XSTRING (ptr->xname));
5502 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5503
5504 ptr = ptr->next;
5505 if (ptr)
5506 {
5507 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5508 XSETSYMBOL (obj, ptrx);
5509 goto loop;
5510 }
5511 }
5512 break;
5513
5514 case Lisp_Misc:
5515 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5516 if (XMISCANY (obj)->gcmarkbit)
5517 break;
5518 XMISCANY (obj)->gcmarkbit = 1;
5519
5520 switch (XMISCTYPE (obj))
5521 {
5522
5523 case Lisp_Misc_Marker:
5524 /* DO NOT mark thru the marker's chain.
5525 The buffer's markers chain does not preserve markers from gc;
5526 instead, markers are removed from the chain when freed by gc. */
5527 break;
5528
5529 case Lisp_Misc_Save_Value:
5530 #if GC_MARK_STACK
5531 {
5532 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5533 /* If DOGC is set, POINTER is the address of a memory
5534 area containing INTEGER potential Lisp_Objects. */
5535 if (ptr->dogc)
5536 {
5537 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5538 int nelt;
5539 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5540 mark_maybe_object (*p);
5541 }
5542 }
5543 #endif
5544 break;
5545
5546 case Lisp_Misc_Overlay:
5547 {
5548 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5549 mark_object (ptr->start);
5550 mark_object (ptr->end);
5551 mark_object (ptr->plist);
5552 if (ptr->next)
5553 {
5554 XSETMISC (obj, ptr->next);
5555 goto loop;
5556 }
5557 }
5558 break;
5559
5560 default:
5561 abort ();
5562 }
5563 break;
5564
5565 case Lisp_Cons:
5566 {
5567 register struct Lisp_Cons *ptr = XCONS (obj);
5568 if (CONS_MARKED_P (ptr))
5569 break;
5570 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5571 CONS_MARK (ptr);
5572 /* If the cdr is nil, avoid recursion for the car. */
5573 if (EQ (ptr->u.cdr, Qnil))
5574 {
5575 obj = ptr->car;
5576 cdr_count = 0;
5577 goto loop;
5578 }
5579 mark_object (ptr->car);
5580 obj = ptr->u.cdr;
5581 cdr_count++;
5582 if (cdr_count == mark_object_loop_halt)
5583 abort ();
5584 goto loop;
5585 }
5586
5587 case Lisp_Float:
5588 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5589 FLOAT_MARK (XFLOAT (obj));
5590 break;
5591
5592 case_Lisp_Int:
5593 break;
5594
5595 default:
5596 abort ();
5597 }
5598
5599 #undef CHECK_LIVE
5600 #undef CHECK_ALLOCATED
5601 #undef CHECK_ALLOCATED_AND_LIVE
5602 }
5603
5604 /* Mark the pointers in a buffer structure. */
5605
5606 static void
5607 mark_buffer (Lisp_Object buf)
5608 {
5609 register struct buffer *buffer = XBUFFER (buf);
5610 register Lisp_Object *ptr, tmp;
5611 Lisp_Object base_buffer;
5612
5613 eassert (!VECTOR_MARKED_P (buffer));
5614 VECTOR_MARK (buffer);
5615
5616 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5617
5618 /* For now, we just don't mark the undo_list. It's done later in
5619 a special way just before the sweep phase, and after stripping
5620 some of its elements that are not needed any more. */
5621
5622 if (buffer->overlays_before)
5623 {
5624 XSETMISC (tmp, buffer->overlays_before);
5625 mark_object (tmp);
5626 }
5627 if (buffer->overlays_after)
5628 {
5629 XSETMISC (tmp, buffer->overlays_after);
5630 mark_object (tmp);
5631 }
5632
5633 /* buffer-local Lisp variables start at `undo_list',
5634 tho only the ones from `name' on are GC'd normally. */
5635 for (ptr = &buffer->name;
5636 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5637 ptr++)
5638 mark_object (*ptr);
5639
5640 /* If this is an indirect buffer, mark its base buffer. */
5641 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5642 {
5643 XSETBUFFER (base_buffer, buffer->base_buffer);
5644 mark_buffer (base_buffer);
5645 }
5646 }
5647
5648 /* Mark the Lisp pointers in the terminal objects.
5649 Called by the Fgarbage_collector. */
5650
5651 static void
5652 mark_terminals (void)
5653 {
5654 struct terminal *t;
5655 for (t = terminal_list; t; t = t->next_terminal)
5656 {
5657 eassert (t->name != NULL);
5658 #ifdef HAVE_WINDOW_SYSTEM
5659 /* If a terminal object is reachable from a stacpro'ed object,
5660 it might have been marked already. Make sure the image cache
5661 gets marked. */
5662 mark_image_cache (t->image_cache);
5663 #endif /* HAVE_WINDOW_SYSTEM */
5664 if (!VECTOR_MARKED_P (t))
5665 mark_vectorlike ((struct Lisp_Vector *)t);
5666 }
5667 }
5668
5669
5670
5671 /* Value is non-zero if OBJ will survive the current GC because it's
5672 either marked or does not need to be marked to survive. */
5673
5674 int
5675 survives_gc_p (Lisp_Object obj)
5676 {
5677 int survives_p;
5678
5679 switch (XTYPE (obj))
5680 {
5681 case_Lisp_Int:
5682 survives_p = 1;
5683 break;
5684
5685 case Lisp_Symbol:
5686 survives_p = XSYMBOL (obj)->gcmarkbit;
5687 break;
5688
5689 case Lisp_Misc:
5690 survives_p = XMISCANY (obj)->gcmarkbit;
5691 break;
5692
5693 case Lisp_String:
5694 survives_p = STRING_MARKED_P (XSTRING (obj));
5695 break;
5696
5697 case Lisp_Vectorlike:
5698 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5699 break;
5700
5701 case Lisp_Cons:
5702 survives_p = CONS_MARKED_P (XCONS (obj));
5703 break;
5704
5705 case Lisp_Float:
5706 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5707 break;
5708
5709 default:
5710 abort ();
5711 }
5712
5713 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5714 }
5715
5716
5717 \f
5718 /* Sweep: find all structures not marked, and free them. */
5719
5720 static void
5721 gc_sweep (void)
5722 {
5723 /* Remove or mark entries in weak hash tables.
5724 This must be done before any object is unmarked. */
5725 sweep_weak_hash_tables ();
5726
5727 sweep_strings ();
5728 #ifdef GC_CHECK_STRING_BYTES
5729 if (!noninteractive)
5730 check_string_bytes (1);
5731 #endif
5732
5733 /* Put all unmarked conses on free list */
5734 {
5735 register struct cons_block *cblk;
5736 struct cons_block **cprev = &cons_block;
5737 register int lim = cons_block_index;
5738 register int num_free = 0, num_used = 0;
5739
5740 cons_free_list = 0;
5741
5742 for (cblk = cons_block; cblk; cblk = *cprev)
5743 {
5744 register int i = 0;
5745 int this_free = 0;
5746 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5747
5748 /* Scan the mark bits an int at a time. */
5749 for (i = 0; i <= ilim; i++)
5750 {
5751 if (cblk->gcmarkbits[i] == -1)
5752 {
5753 /* Fast path - all cons cells for this int are marked. */
5754 cblk->gcmarkbits[i] = 0;
5755 num_used += BITS_PER_INT;
5756 }
5757 else
5758 {
5759 /* Some cons cells for this int are not marked.
5760 Find which ones, and free them. */
5761 int start, pos, stop;
5762
5763 start = i * BITS_PER_INT;
5764 stop = lim - start;
5765 if (stop > BITS_PER_INT)
5766 stop = BITS_PER_INT;
5767 stop += start;
5768
5769 for (pos = start; pos < stop; pos++)
5770 {
5771 if (!CONS_MARKED_P (&cblk->conses[pos]))
5772 {
5773 this_free++;
5774 cblk->conses[pos].u.chain = cons_free_list;
5775 cons_free_list = &cblk->conses[pos];
5776 #if GC_MARK_STACK
5777 cons_free_list->car = Vdead;
5778 #endif
5779 }
5780 else
5781 {
5782 num_used++;
5783 CONS_UNMARK (&cblk->conses[pos]);
5784 }
5785 }
5786 }
5787 }
5788
5789 lim = CONS_BLOCK_SIZE;
5790 /* If this block contains only free conses and we have already
5791 seen more than two blocks worth of free conses then deallocate
5792 this block. */
5793 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5794 {
5795 *cprev = cblk->next;
5796 /* Unhook from the free list. */
5797 cons_free_list = cblk->conses[0].u.chain;
5798 lisp_align_free (cblk);
5799 n_cons_blocks--;
5800 }
5801 else
5802 {
5803 num_free += this_free;
5804 cprev = &cblk->next;
5805 }
5806 }
5807 total_conses = num_used;
5808 total_free_conses = num_free;
5809 }
5810
5811 /* Put all unmarked floats on free list */
5812 {
5813 register struct float_block *fblk;
5814 struct float_block **fprev = &float_block;
5815 register int lim = float_block_index;
5816 register int num_free = 0, num_used = 0;
5817
5818 float_free_list = 0;
5819
5820 for (fblk = float_block; fblk; fblk = *fprev)
5821 {
5822 register int i;
5823 int this_free = 0;
5824 for (i = 0; i < lim; i++)
5825 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5826 {
5827 this_free++;
5828 fblk->floats[i].u.chain = float_free_list;
5829 float_free_list = &fblk->floats[i];
5830 }
5831 else
5832 {
5833 num_used++;
5834 FLOAT_UNMARK (&fblk->floats[i]);
5835 }
5836 lim = FLOAT_BLOCK_SIZE;
5837 /* If this block contains only free floats and we have already
5838 seen more than two blocks worth of free floats then deallocate
5839 this block. */
5840 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5841 {
5842 *fprev = fblk->next;
5843 /* Unhook from the free list. */
5844 float_free_list = fblk->floats[0].u.chain;
5845 lisp_align_free (fblk);
5846 n_float_blocks--;
5847 }
5848 else
5849 {
5850 num_free += this_free;
5851 fprev = &fblk->next;
5852 }
5853 }
5854 total_floats = num_used;
5855 total_free_floats = num_free;
5856 }
5857
5858 /* Put all unmarked intervals on free list */
5859 {
5860 register struct interval_block *iblk;
5861 struct interval_block **iprev = &interval_block;
5862 register int lim = interval_block_index;
5863 register int num_free = 0, num_used = 0;
5864
5865 interval_free_list = 0;
5866
5867 for (iblk = interval_block; iblk; iblk = *iprev)
5868 {
5869 register int i;
5870 int this_free = 0;
5871
5872 for (i = 0; i < lim; i++)
5873 {
5874 if (!iblk->intervals[i].gcmarkbit)
5875 {
5876 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5877 interval_free_list = &iblk->intervals[i];
5878 this_free++;
5879 }
5880 else
5881 {
5882 num_used++;
5883 iblk->intervals[i].gcmarkbit = 0;
5884 }
5885 }
5886 lim = INTERVAL_BLOCK_SIZE;
5887 /* If this block contains only free intervals and we have already
5888 seen more than two blocks worth of free intervals then
5889 deallocate this block. */
5890 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5891 {
5892 *iprev = iblk->next;
5893 /* Unhook from the free list. */
5894 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5895 lisp_free (iblk);
5896 n_interval_blocks--;
5897 }
5898 else
5899 {
5900 num_free += this_free;
5901 iprev = &iblk->next;
5902 }
5903 }
5904 total_intervals = num_used;
5905 total_free_intervals = num_free;
5906 }
5907
5908 /* Put all unmarked symbols on free list */
5909 {
5910 register struct symbol_block *sblk;
5911 struct symbol_block **sprev = &symbol_block;
5912 register int lim = symbol_block_index;
5913 register int num_free = 0, num_used = 0;
5914
5915 symbol_free_list = NULL;
5916
5917 for (sblk = symbol_block; sblk; sblk = *sprev)
5918 {
5919 int this_free = 0;
5920 struct Lisp_Symbol *sym = sblk->symbols;
5921 struct Lisp_Symbol *end = sym + lim;
5922
5923 for (; sym < end; ++sym)
5924 {
5925 /* Check if the symbol was created during loadup. In such a case
5926 it might be pointed to by pure bytecode which we don't trace,
5927 so we conservatively assume that it is live. */
5928 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5929
5930 if (!sym->gcmarkbit && !pure_p)
5931 {
5932 if (sym->redirect == SYMBOL_LOCALIZED)
5933 xfree (SYMBOL_BLV (sym));
5934 sym->next = symbol_free_list;
5935 symbol_free_list = sym;
5936 #if GC_MARK_STACK
5937 symbol_free_list->function = Vdead;
5938 #endif
5939 ++this_free;
5940 }
5941 else
5942 {
5943 ++num_used;
5944 if (!pure_p)
5945 UNMARK_STRING (XSTRING (sym->xname));
5946 sym->gcmarkbit = 0;
5947 }
5948 }
5949
5950 lim = SYMBOL_BLOCK_SIZE;
5951 /* If this block contains only free symbols and we have already
5952 seen more than two blocks worth of free symbols then deallocate
5953 this block. */
5954 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5955 {
5956 *sprev = sblk->next;
5957 /* Unhook from the free list. */
5958 symbol_free_list = sblk->symbols[0].next;
5959 lisp_free (sblk);
5960 n_symbol_blocks--;
5961 }
5962 else
5963 {
5964 num_free += this_free;
5965 sprev = &sblk->next;
5966 }
5967 }
5968 total_symbols = num_used;
5969 total_free_symbols = num_free;
5970 }
5971
5972 /* Put all unmarked misc's on free list.
5973 For a marker, first unchain it from the buffer it points into. */
5974 {
5975 register struct marker_block *mblk;
5976 struct marker_block **mprev = &marker_block;
5977 register int lim = marker_block_index;
5978 register int num_free = 0, num_used = 0;
5979
5980 marker_free_list = 0;
5981
5982 for (mblk = marker_block; mblk; mblk = *mprev)
5983 {
5984 register int i;
5985 int this_free = 0;
5986
5987 for (i = 0; i < lim; i++)
5988 {
5989 if (!mblk->markers[i].u_any.gcmarkbit)
5990 {
5991 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5992 unchain_marker (&mblk->markers[i].u_marker);
5993 /* Set the type of the freed object to Lisp_Misc_Free.
5994 We could leave the type alone, since nobody checks it,
5995 but this might catch bugs faster. */
5996 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5997 mblk->markers[i].u_free.chain = marker_free_list;
5998 marker_free_list = &mblk->markers[i];
5999 this_free++;
6000 }
6001 else
6002 {
6003 num_used++;
6004 mblk->markers[i].u_any.gcmarkbit = 0;
6005 }
6006 }
6007 lim = MARKER_BLOCK_SIZE;
6008 /* If this block contains only free markers and we have already
6009 seen more than two blocks worth of free markers then deallocate
6010 this block. */
6011 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6012 {
6013 *mprev = mblk->next;
6014 /* Unhook from the free list. */
6015 marker_free_list = mblk->markers[0].u_free.chain;
6016 lisp_free (mblk);
6017 n_marker_blocks--;
6018 }
6019 else
6020 {
6021 num_free += this_free;
6022 mprev = &mblk->next;
6023 }
6024 }
6025
6026 total_markers = num_used;
6027 total_free_markers = num_free;
6028 }
6029
6030 /* Free all unmarked buffers */
6031 {
6032 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6033
6034 while (buffer)
6035 if (!VECTOR_MARKED_P (buffer))
6036 {
6037 if (prev)
6038 prev->next = buffer->next;
6039 else
6040 all_buffers = buffer->next;
6041 next = buffer->next;
6042 lisp_free (buffer);
6043 buffer = next;
6044 }
6045 else
6046 {
6047 VECTOR_UNMARK (buffer);
6048 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6049 prev = buffer, buffer = buffer->next;
6050 }
6051 }
6052
6053 /* Free all unmarked vectors */
6054 {
6055 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6056 total_vector_size = 0;
6057
6058 while (vector)
6059 if (!VECTOR_MARKED_P (vector))
6060 {
6061 if (prev)
6062 prev->next = vector->next;
6063 else
6064 all_vectors = vector->next;
6065 next = vector->next;
6066 lisp_free (vector);
6067 n_vectors--;
6068 vector = next;
6069
6070 }
6071 else
6072 {
6073 VECTOR_UNMARK (vector);
6074 if (vector->size & PSEUDOVECTOR_FLAG)
6075 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6076 else
6077 total_vector_size += vector->size;
6078 prev = vector, vector = vector->next;
6079 }
6080 }
6081
6082 #ifdef GC_CHECK_STRING_BYTES
6083 if (!noninteractive)
6084 check_string_bytes (1);
6085 #endif
6086 }
6087
6088
6089
6090 \f
6091 /* Debugging aids. */
6092
6093 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6094 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6095 This may be helpful in debugging Emacs's memory usage.
6096 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6097 (void)
6098 {
6099 Lisp_Object end;
6100
6101 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6102
6103 return end;
6104 }
6105
6106 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6107 doc: /* Return a list of counters that measure how much consing there has been.
6108 Each of these counters increments for a certain kind of object.
6109 The counters wrap around from the largest positive integer to zero.
6110 Garbage collection does not decrease them.
6111 The elements of the value are as follows:
6112 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6113 All are in units of 1 = one object consed
6114 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6115 objects consed.
6116 MISCS include overlays, markers, and some internal types.
6117 Frames, windows, buffers, and subprocesses count as vectors
6118 (but the contents of a buffer's text do not count here). */)
6119 (void)
6120 {
6121 Lisp_Object consed[8];
6122
6123 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6124 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6125 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6126 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6127 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6128 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6129 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6130 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6131
6132 return Flist (8, consed);
6133 }
6134
6135 int suppress_checking;
6136
6137 void
6138 die (const char *msg, const char *file, int line)
6139 {
6140 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6141 file, line, msg);
6142 abort ();
6143 }
6144 \f
6145 /* Initialization */
6146
6147 void
6148 init_alloc_once (void)
6149 {
6150 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6151 purebeg = PUREBEG;
6152 pure_size = PURESIZE;
6153 pure_bytes_used = 0;
6154 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6155 pure_bytes_used_before_overflow = 0;
6156
6157 /* Initialize the list of free aligned blocks. */
6158 free_ablock = NULL;
6159
6160 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6161 mem_init ();
6162 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6163 #endif
6164
6165 all_vectors = 0;
6166 ignore_warnings = 1;
6167 #ifdef DOUG_LEA_MALLOC
6168 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6169 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6170 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6171 #endif
6172 init_strings ();
6173 init_cons ();
6174 init_symbol ();
6175 init_marker ();
6176 init_float ();
6177 init_intervals ();
6178 init_weak_hash_tables ();
6179
6180 #ifdef REL_ALLOC
6181 malloc_hysteresis = 32;
6182 #else
6183 malloc_hysteresis = 0;
6184 #endif
6185
6186 refill_memory_reserve ();
6187
6188 ignore_warnings = 0;
6189 gcprolist = 0;
6190 byte_stack_list = 0;
6191 staticidx = 0;
6192 consing_since_gc = 0;
6193 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6194 gc_relative_threshold = 0;
6195 }
6196
6197 void
6198 init_alloc (void)
6199 {
6200 gcprolist = 0;
6201 byte_stack_list = 0;
6202 #if GC_MARK_STACK
6203 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6204 setjmp_tested_p = longjmps_done = 0;
6205 #endif
6206 #endif
6207 Vgc_elapsed = make_float (0.0);
6208 gcs_done = 0;
6209 }
6210
6211 void
6212 syms_of_alloc (void)
6213 {
6214 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6215 doc: /* *Number of bytes of consing between garbage collections.
6216 Garbage collection can happen automatically once this many bytes have been
6217 allocated since the last garbage collection. All data types count.
6218
6219 Garbage collection happens automatically only when `eval' is called.
6220
6221 By binding this temporarily to a large number, you can effectively
6222 prevent garbage collection during a part of the program.
6223 See also `gc-cons-percentage'. */);
6224
6225 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6226 doc: /* *Portion of the heap used for allocation.
6227 Garbage collection can happen automatically once this portion of the heap
6228 has been allocated since the last garbage collection.
6229 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6230 Vgc_cons_percentage = make_float (0.1);
6231
6232 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6233 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6234
6235 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6236 doc: /* Number of cons cells that have been consed so far. */);
6237
6238 DEFVAR_INT ("floats-consed", &floats_consed,
6239 doc: /* Number of floats that have been consed so far. */);
6240
6241 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6242 doc: /* Number of vector cells that have been consed so far. */);
6243
6244 DEFVAR_INT ("symbols-consed", &symbols_consed,
6245 doc: /* Number of symbols that have been consed so far. */);
6246
6247 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6248 doc: /* Number of string characters that have been consed so far. */);
6249
6250 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6251 doc: /* Number of miscellaneous objects that have been consed so far. */);
6252
6253 DEFVAR_INT ("intervals-consed", &intervals_consed,
6254 doc: /* Number of intervals that have been consed so far. */);
6255
6256 DEFVAR_INT ("strings-consed", &strings_consed,
6257 doc: /* Number of strings that have been consed so far. */);
6258
6259 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6260 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6261 This means that certain objects should be allocated in shared (pure) space.
6262 It can also be set to a hash-table, in which case this table is used to
6263 do hash-consing of the objects allocated to pure space. */);
6264
6265 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6266 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6267 garbage_collection_messages = 0;
6268
6269 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6270 doc: /* Hook run after garbage collection has finished. */);
6271 Vpost_gc_hook = Qnil;
6272 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6273 staticpro (&Qpost_gc_hook);
6274
6275 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6276 doc: /* Precomputed `signal' argument for memory-full error. */);
6277 /* We build this in advance because if we wait until we need it, we might
6278 not be able to allocate the memory to hold it. */
6279 Vmemory_signal_data
6280 = pure_cons (Qerror,
6281 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6282
6283 DEFVAR_LISP ("memory-full", &Vmemory_full,
6284 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6285 Vmemory_full = Qnil;
6286
6287 staticpro (&Qgc_cons_threshold);
6288 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6289
6290 staticpro (&Qchar_table_extra_slots);
6291 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6292
6293 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6294 doc: /* Accumulated time elapsed in garbage collections.
6295 The time is in seconds as a floating point value. */);
6296 DEFVAR_INT ("gcs-done", &gcs_done,
6297 doc: /* Accumulated number of garbage collections done. */);
6298
6299 defsubr (&Scons);
6300 defsubr (&Slist);
6301 defsubr (&Svector);
6302 defsubr (&Smake_byte_code);
6303 defsubr (&Smake_list);
6304 defsubr (&Smake_vector);
6305 defsubr (&Smake_string);
6306 defsubr (&Smake_bool_vector);
6307 defsubr (&Smake_symbol);
6308 defsubr (&Smake_marker);
6309 defsubr (&Spurecopy);
6310 defsubr (&Sgarbage_collect);
6311 defsubr (&Smemory_limit);
6312 defsubr (&Smemory_use_counts);
6313
6314 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6315 defsubr (&Sgc_status);
6316 #endif
6317 }
6318
6319 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6320 (do not change this comment) */