* alloc.c (allocate_string_data): Remove dead code.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x650
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #if USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #if ! USE_LSB_TAG
897 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #if ! USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #if ! USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587 \f
1588 /***********************************************************************
1589 String Allocation
1590 ***********************************************************************/
1591
1592 /* Lisp_Strings are allocated in string_block structures. When a new
1593 string_block is allocated, all the Lisp_Strings it contains are
1594 added to a free-list string_free_list. When a new Lisp_String is
1595 needed, it is taken from that list. During the sweep phase of GC,
1596 string_blocks that are entirely free are freed, except two which
1597 we keep.
1598
1599 String data is allocated from sblock structures. Strings larger
1600 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1601 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1602
1603 Sblocks consist internally of sdata structures, one for each
1604 Lisp_String. The sdata structure points to the Lisp_String it
1605 belongs to. The Lisp_String points back to the `u.data' member of
1606 its sdata structure.
1607
1608 When a Lisp_String is freed during GC, it is put back on
1609 string_free_list, and its `data' member and its sdata's `string'
1610 pointer is set to null. The size of the string is recorded in the
1611 `u.nbytes' member of the sdata. So, sdata structures that are no
1612 longer used, can be easily recognized, and it's easy to compact the
1613 sblocks of small strings which we do in compact_small_strings. */
1614
1615 /* Size in bytes of an sblock structure used for small strings. This
1616 is 8192 minus malloc overhead. */
1617
1618 #define SBLOCK_SIZE 8188
1619
1620 /* Strings larger than this are considered large strings. String data
1621 for large strings is allocated from individual sblocks. */
1622
1623 #define LARGE_STRING_BYTES 1024
1624
1625 /* Structure describing string memory sub-allocated from an sblock.
1626 This is where the contents of Lisp strings are stored. */
1627
1628 struct sdata
1629 {
1630 /* Back-pointer to the string this sdata belongs to. If null, this
1631 structure is free, and the NBYTES member of the union below
1632 contains the string's byte size (the same value that STRING_BYTES
1633 would return if STRING were non-null). If non-null, STRING_BYTES
1634 (STRING) is the size of the data, and DATA contains the string's
1635 contents. */
1636 struct Lisp_String *string;
1637
1638 #ifdef GC_CHECK_STRING_BYTES
1639
1640 ptrdiff_t nbytes;
1641 unsigned char data[1];
1642
1643 #define SDATA_NBYTES(S) (S)->nbytes
1644 #define SDATA_DATA(S) (S)->data
1645 #define SDATA_SELECTOR(member) member
1646
1647 #else /* not GC_CHECK_STRING_BYTES */
1648
1649 union
1650 {
1651 /* When STRING is non-null. */
1652 unsigned char data[1];
1653
1654 /* When STRING is null. */
1655 ptrdiff_t nbytes;
1656 } u;
1657
1658 #define SDATA_NBYTES(S) (S)->u.nbytes
1659 #define SDATA_DATA(S) (S)->u.data
1660 #define SDATA_SELECTOR(member) u.member
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1665 };
1666
1667
1668 /* Structure describing a block of memory which is sub-allocated to
1669 obtain string data memory for strings. Blocks for small strings
1670 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1671 as large as needed. */
1672
1673 struct sblock
1674 {
1675 /* Next in list. */
1676 struct sblock *next;
1677
1678 /* Pointer to the next free sdata block. This points past the end
1679 of the sblock if there isn't any space left in this block. */
1680 struct sdata *next_free;
1681
1682 /* Start of data. */
1683 struct sdata first_data;
1684 };
1685
1686 /* Number of Lisp strings in a string_block structure. The 1020 is
1687 1024 minus malloc overhead. */
1688
1689 #define STRING_BLOCK_SIZE \
1690 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1691
1692 /* Structure describing a block from which Lisp_String structures
1693 are allocated. */
1694
1695 struct string_block
1696 {
1697 /* Place `strings' first, to preserve alignment. */
1698 struct Lisp_String strings[STRING_BLOCK_SIZE];
1699 struct string_block *next;
1700 };
1701
1702 /* Head and tail of the list of sblock structures holding Lisp string
1703 data. We always allocate from current_sblock. The NEXT pointers
1704 in the sblock structures go from oldest_sblock to current_sblock. */
1705
1706 static struct sblock *oldest_sblock, *current_sblock;
1707
1708 /* List of sblocks for large strings. */
1709
1710 static struct sblock *large_sblocks;
1711
1712 /* List of string_block structures. */
1713
1714 static struct string_block *string_blocks;
1715
1716 /* Free-list of Lisp_Strings. */
1717
1718 static struct Lisp_String *string_free_list;
1719
1720 /* Number of live and free Lisp_Strings. */
1721
1722 static EMACS_INT total_strings, total_free_strings;
1723
1724 /* Number of bytes used by live strings. */
1725
1726 static EMACS_INT total_string_size;
1727
1728 /* Given a pointer to a Lisp_String S which is on the free-list
1729 string_free_list, return a pointer to its successor in the
1730 free-list. */
1731
1732 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1733
1734 /* Return a pointer to the sdata structure belonging to Lisp string S.
1735 S must be live, i.e. S->data must not be null. S->data is actually
1736 a pointer to the `u.data' member of its sdata structure; the
1737 structure starts at a constant offset in front of that. */
1738
1739 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740
1741
1742 #ifdef GC_CHECK_STRING_OVERRUN
1743
1744 /* We check for overrun in string data blocks by appending a small
1745 "cookie" after each allocated string data block, and check for the
1746 presence of this cookie during GC. */
1747
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1749 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1750 { '\xde', '\xad', '\xbe', '\xef' };
1751
1752 #else
1753 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1754 #endif
1755
1756 /* Value is the size of an sdata structure large enough to hold NBYTES
1757 bytes of string data. The value returned includes a terminating
1758 NUL byte, the size of the sdata structure, and padding. */
1759
1760 #ifdef GC_CHECK_STRING_BYTES
1761
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (NBYTES) + 1 \
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
1767
1768 #else /* not GC_CHECK_STRING_BYTES */
1769
1770 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1771 less than the size of that member. The 'max' is not needed when
1772 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1773 alignment code reserves enough space. */
1774
1775 #define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
1777 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1778 ? NBYTES \
1779 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1780 + 1 \
1781 + sizeof (ptrdiff_t) - 1) \
1782 & ~(sizeof (ptrdiff_t) - 1))
1783
1784 #endif /* not GC_CHECK_STRING_BYTES */
1785
1786 /* Extra bytes to allocate for each string. */
1787
1788 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1789
1790 /* Exact bound on the number of bytes in a string, not counting the
1791 terminating null. A string cannot contain more bytes than
1792 STRING_BYTES_BOUND, nor can it be so long that the size_t
1793 arithmetic in allocate_string_data would overflow while it is
1794 calculating a value to be passed to malloc. */
1795 #define STRING_BYTES_MAX \
1796 min (STRING_BYTES_BOUND, \
1797 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1798 - GC_STRING_EXTRA \
1799 - offsetof (struct sblock, first_data) \
1800 - SDATA_DATA_OFFSET) \
1801 & ~(sizeof (EMACS_INT) - 1)))
1802
1803 /* Initialize string allocation. Called from init_alloc_once. */
1804
1805 static void
1806 init_strings (void)
1807 {
1808 total_strings = total_free_strings = total_string_size = 0;
1809 oldest_sblock = current_sblock = large_sblocks = NULL;
1810 string_blocks = NULL;
1811 string_free_list = NULL;
1812 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1813 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1814 }
1815
1816
1817 #ifdef GC_CHECK_STRING_BYTES
1818
1819 static int check_string_bytes_count;
1820
1821 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1822
1823
1824 /* Like GC_STRING_BYTES, but with debugging check. */
1825
1826 ptrdiff_t
1827 string_bytes (struct Lisp_String *s)
1828 {
1829 ptrdiff_t nbytes =
1830 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1831
1832 if (!PURE_POINTER_P (s)
1833 && s->data
1834 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1835 abort ();
1836 return nbytes;
1837 }
1838
1839 /* Check validity of Lisp strings' string_bytes member in B. */
1840
1841 static void
1842 check_sblock (struct sblock *b)
1843 {
1844 struct sdata *from, *end, *from_end;
1845
1846 end = b->next_free;
1847
1848 for (from = &b->first_data; from < end; from = from_end)
1849 {
1850 /* Compute the next FROM here because copying below may
1851 overwrite data we need to compute it. */
1852 ptrdiff_t nbytes;
1853
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string)
1857 CHECK_STRING_BYTES (from->string);
1858
1859 if (from->string)
1860 nbytes = GC_STRING_BYTES (from->string);
1861 else
1862 nbytes = SDATA_NBYTES (from);
1863
1864 nbytes = SDATA_SIZE (nbytes);
1865 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1866 }
1867 }
1868
1869
1870 /* Check validity of Lisp strings' string_bytes member. ALL_P
1871 non-zero means check all strings, otherwise check only most
1872 recently allocated strings. Used for hunting a bug. */
1873
1874 static void
1875 check_string_bytes (int all_p)
1876 {
1877 if (all_p)
1878 {
1879 struct sblock *b;
1880
1881 for (b = large_sblocks; b; b = b->next)
1882 {
1883 struct Lisp_String *s = b->first_data.string;
1884 if (s)
1885 CHECK_STRING_BYTES (s);
1886 }
1887
1888 for (b = oldest_sblock; b; b = b->next)
1889 check_sblock (b);
1890 }
1891 else
1892 check_sblock (current_sblock);
1893 }
1894
1895 #endif /* GC_CHECK_STRING_BYTES */
1896
1897 #ifdef GC_CHECK_STRING_FREE_LIST
1898
1899 /* Walk through the string free list looking for bogus next pointers.
1900 This may catch buffer overrun from a previous string. */
1901
1902 static void
1903 check_string_free_list (void)
1904 {
1905 struct Lisp_String *s;
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 while (s != NULL)
1910 {
1911 if ((uintptr_t) s < 1024)
1912 abort ();
1913 s = NEXT_FREE_LISP_STRING (s);
1914 }
1915 }
1916 #else
1917 #define check_string_free_list()
1918 #endif
1919
1920 /* Return a new Lisp_String. */
1921
1922 static struct Lisp_String *
1923 allocate_string (void)
1924 {
1925 struct Lisp_String *s;
1926
1927 /* eassert (!handling_signal); */
1928
1929 MALLOC_BLOCK_INPUT;
1930
1931 /* If the free-list is empty, allocate a new string_block, and
1932 add all the Lisp_Strings in it to the free-list. */
1933 if (string_free_list == NULL)
1934 {
1935 struct string_block *b;
1936 int i;
1937
1938 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1939 b->next = string_blocks;
1940 string_blocks = b;
1941
1942 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1943 {
1944 s = b->strings + i;
1945 /* Every string on a free list should have NULL data pointer. */
1946 s->data = NULL;
1947 NEXT_FREE_LISP_STRING (s) = string_free_list;
1948 string_free_list = s;
1949 }
1950
1951 total_free_strings += STRING_BLOCK_SIZE;
1952 }
1953
1954 check_string_free_list ();
1955
1956 /* Pop a Lisp_String off the free-list. */
1957 s = string_free_list;
1958 string_free_list = NEXT_FREE_LISP_STRING (s);
1959
1960 MALLOC_UNBLOCK_INPUT;
1961
1962 --total_free_strings;
1963 ++total_strings;
1964 ++strings_consed;
1965 consing_since_gc += sizeof *s;
1966
1967 #ifdef GC_CHECK_STRING_BYTES
1968 if (!noninteractive)
1969 {
1970 if (++check_string_bytes_count == 200)
1971 {
1972 check_string_bytes_count = 0;
1973 check_string_bytes (1);
1974 }
1975 else
1976 check_string_bytes (0);
1977 }
1978 #endif /* GC_CHECK_STRING_BYTES */
1979
1980 return s;
1981 }
1982
1983
1984 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1985 plus a NUL byte at the end. Allocate an sdata structure for S, and
1986 set S->data to its `u.data' member. Store a NUL byte at the end of
1987 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1988 S->data if it was initially non-null. */
1989
1990 void
1991 allocate_string_data (struct Lisp_String *s,
1992 EMACS_INT nchars, EMACS_INT nbytes)
1993 {
1994 struct sdata *data;
1995 struct sblock *b;
1996 ptrdiff_t needed;
1997
1998 if (STRING_BYTES_MAX < nbytes)
1999 string_overflow ();
2000
2001 /* Determine the number of bytes needed to store NBYTES bytes
2002 of string data. */
2003 needed = SDATA_SIZE (nbytes);
2004
2005 MALLOC_BLOCK_INPUT;
2006
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2010
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2023
2024 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2025
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2030
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2040 {
2041 /* Not enough room in the current sblock. */
2042 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
2055
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
2059 MALLOC_UNBLOCK_INPUT;
2060
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073 consing_since_gc += needed;
2074 }
2075
2076
2077 /* Sweep and compact strings. */
2078
2079 static void
2080 sweep_strings (void)
2081 {
2082 struct string_block *b, *next;
2083 struct string_block *live_blocks = NULL;
2084
2085 string_free_list = NULL;
2086 total_strings = total_free_strings = 0;
2087 total_string_size = 0;
2088
2089 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2090 for (b = string_blocks; b; b = next)
2091 {
2092 int i, nfree = 0;
2093 struct Lisp_String *free_list_before = string_free_list;
2094
2095 next = b->next;
2096
2097 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2098 {
2099 struct Lisp_String *s = b->strings + i;
2100
2101 if (s->data)
2102 {
2103 /* String was not on free-list before. */
2104 if (STRING_MARKED_P (s))
2105 {
2106 /* String is live; unmark it and its intervals. */
2107 UNMARK_STRING (s);
2108
2109 if (!NULL_INTERVAL_P (s->intervals))
2110 UNMARK_BALANCE_INTERVALS (s->intervals);
2111
2112 ++total_strings;
2113 total_string_size += STRING_BYTES (s);
2114 }
2115 else
2116 {
2117 /* String is dead. Put it on the free-list. */
2118 struct sdata *data = SDATA_OF_STRING (s);
2119
2120 /* Save the size of S in its sdata so that we know
2121 how large that is. Reset the sdata's string
2122 back-pointer so that we know it's free. */
2123 #ifdef GC_CHECK_STRING_BYTES
2124 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2125 abort ();
2126 #else
2127 data->u.nbytes = GC_STRING_BYTES (s);
2128 #endif
2129 data->string = NULL;
2130
2131 /* Reset the strings's `data' member so that we
2132 know it's free. */
2133 s->data = NULL;
2134
2135 /* Put the string on the free-list. */
2136 NEXT_FREE_LISP_STRING (s) = string_free_list;
2137 string_free_list = s;
2138 ++nfree;
2139 }
2140 }
2141 else
2142 {
2143 /* S was on the free-list before. Put it there again. */
2144 NEXT_FREE_LISP_STRING (s) = string_free_list;
2145 string_free_list = s;
2146 ++nfree;
2147 }
2148 }
2149
2150 /* Free blocks that contain free Lisp_Strings only, except
2151 the first two of them. */
2152 if (nfree == STRING_BLOCK_SIZE
2153 && total_free_strings > STRING_BLOCK_SIZE)
2154 {
2155 lisp_free (b);
2156 string_free_list = free_list_before;
2157 }
2158 else
2159 {
2160 total_free_strings += nfree;
2161 b->next = live_blocks;
2162 live_blocks = b;
2163 }
2164 }
2165
2166 check_string_free_list ();
2167
2168 string_blocks = live_blocks;
2169 free_large_strings ();
2170 compact_small_strings ();
2171
2172 check_string_free_list ();
2173 }
2174
2175
2176 /* Free dead large strings. */
2177
2178 static void
2179 free_large_strings (void)
2180 {
2181 struct sblock *b, *next;
2182 struct sblock *live_blocks = NULL;
2183
2184 for (b = large_sblocks; b; b = next)
2185 {
2186 next = b->next;
2187
2188 if (b->first_data.string == NULL)
2189 lisp_free (b);
2190 else
2191 {
2192 b->next = live_blocks;
2193 live_blocks = b;
2194 }
2195 }
2196
2197 large_sblocks = live_blocks;
2198 }
2199
2200
2201 /* Compact data of small strings. Free sblocks that don't contain
2202 data of live strings after compaction. */
2203
2204 static void
2205 compact_small_strings (void)
2206 {
2207 struct sblock *b, *tb, *next;
2208 struct sdata *from, *to, *end, *tb_end;
2209 struct sdata *to_end, *from_end;
2210
2211 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2212 to, and TB_END is the end of TB. */
2213 tb = oldest_sblock;
2214 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2215 to = &tb->first_data;
2216
2217 /* Step through the blocks from the oldest to the youngest. We
2218 expect that old blocks will stabilize over time, so that less
2219 copying will happen this way. */
2220 for (b = oldest_sblock; b; b = b->next)
2221 {
2222 end = b->next_free;
2223 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2224
2225 for (from = &b->first_data; from < end; from = from_end)
2226 {
2227 /* Compute the next FROM here because copying below may
2228 overwrite data we need to compute it. */
2229 ptrdiff_t nbytes;
2230
2231 #ifdef GC_CHECK_STRING_BYTES
2232 /* Check that the string size recorded in the string is the
2233 same as the one recorded in the sdata structure. */
2234 if (from->string
2235 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2236 abort ();
2237 #endif /* GC_CHECK_STRING_BYTES */
2238
2239 if (from->string)
2240 nbytes = GC_STRING_BYTES (from->string);
2241 else
2242 nbytes = SDATA_NBYTES (from);
2243
2244 if (nbytes > LARGE_STRING_BYTES)
2245 abort ();
2246
2247 nbytes = SDATA_SIZE (nbytes);
2248 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2249
2250 #ifdef GC_CHECK_STRING_OVERRUN
2251 if (memcmp (string_overrun_cookie,
2252 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2253 GC_STRING_OVERRUN_COOKIE_SIZE))
2254 abort ();
2255 #endif
2256
2257 /* FROM->string non-null means it's alive. Copy its data. */
2258 if (from->string)
2259 {
2260 /* If TB is full, proceed with the next sblock. */
2261 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2262 if (to_end > tb_end)
2263 {
2264 tb->next_free = to;
2265 tb = tb->next;
2266 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2267 to = &tb->first_data;
2268 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2269 }
2270
2271 /* Copy, and update the string's `data' pointer. */
2272 if (from != to)
2273 {
2274 xassert (tb != b || to < from);
2275 memmove (to, from, nbytes + GC_STRING_EXTRA);
2276 to->string->data = SDATA_DATA (to);
2277 }
2278
2279 /* Advance past the sdata we copied to. */
2280 to = to_end;
2281 }
2282 }
2283 }
2284
2285 /* The rest of the sblocks following TB don't contain live data, so
2286 we can free them. */
2287 for (b = tb->next; b; b = next)
2288 {
2289 next = b->next;
2290 lisp_free (b);
2291 }
2292
2293 tb->next_free = to;
2294 tb->next = NULL;
2295 current_sblock = tb;
2296 }
2297
2298 void
2299 string_overflow (void)
2300 {
2301 error ("Maximum string size exceeded");
2302 }
2303
2304 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2305 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2306 LENGTH must be an integer.
2307 INIT must be an integer that represents a character. */)
2308 (Lisp_Object length, Lisp_Object init)
2309 {
2310 register Lisp_Object val;
2311 register unsigned char *p, *end;
2312 int c;
2313 EMACS_INT nbytes;
2314
2315 CHECK_NATNUM (length);
2316 CHECK_CHARACTER (init);
2317
2318 c = XFASTINT (init);
2319 if (ASCII_CHAR_P (c))
2320 {
2321 nbytes = XINT (length);
2322 val = make_uninit_string (nbytes);
2323 p = SDATA (val);
2324 end = p + SCHARS (val);
2325 while (p != end)
2326 *p++ = c;
2327 }
2328 else
2329 {
2330 unsigned char str[MAX_MULTIBYTE_LENGTH];
2331 int len = CHAR_STRING (c, str);
2332 EMACS_INT string_len = XINT (length);
2333
2334 if (string_len > STRING_BYTES_MAX / len)
2335 string_overflow ();
2336 nbytes = len * string_len;
2337 val = make_uninit_multibyte_string (string_len, nbytes);
2338 p = SDATA (val);
2339 end = p + nbytes;
2340 while (p != end)
2341 {
2342 memcpy (p, str, len);
2343 p += len;
2344 }
2345 }
2346
2347 *p = 0;
2348 return val;
2349 }
2350
2351
2352 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2353 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2354 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2355 (Lisp_Object length, Lisp_Object init)
2356 {
2357 register Lisp_Object val;
2358 struct Lisp_Bool_Vector *p;
2359 ptrdiff_t length_in_chars;
2360 EMACS_INT length_in_elts;
2361 int bits_per_value;
2362
2363 CHECK_NATNUM (length);
2364
2365 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2366
2367 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2368
2369 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2370 slot `size' of the struct Lisp_Bool_Vector. */
2371 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2372
2373 /* No Lisp_Object to trace in there. */
2374 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2375
2376 p = XBOOL_VECTOR (val);
2377 p->size = XFASTINT (length);
2378
2379 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2380 / BOOL_VECTOR_BITS_PER_CHAR);
2381 if (length_in_chars)
2382 {
2383 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2384
2385 /* Clear any extraneous bits in the last byte. */
2386 p->data[length_in_chars - 1]
2387 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2388 }
2389
2390 return val;
2391 }
2392
2393
2394 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2395 of characters from the contents. This string may be unibyte or
2396 multibyte, depending on the contents. */
2397
2398 Lisp_Object
2399 make_string (const char *contents, ptrdiff_t nbytes)
2400 {
2401 register Lisp_Object val;
2402 ptrdiff_t nchars, multibyte_nbytes;
2403
2404 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2405 &nchars, &multibyte_nbytes);
2406 if (nbytes == nchars || nbytes != multibyte_nbytes)
2407 /* CONTENTS contains no multibyte sequences or contains an invalid
2408 multibyte sequence. We must make unibyte string. */
2409 val = make_unibyte_string (contents, nbytes);
2410 else
2411 val = make_multibyte_string (contents, nchars, nbytes);
2412 return val;
2413 }
2414
2415
2416 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2417
2418 Lisp_Object
2419 make_unibyte_string (const char *contents, ptrdiff_t length)
2420 {
2421 register Lisp_Object val;
2422 val = make_uninit_string (length);
2423 memcpy (SDATA (val), contents, length);
2424 return val;
2425 }
2426
2427
2428 /* Make a multibyte string from NCHARS characters occupying NBYTES
2429 bytes at CONTENTS. */
2430
2431 Lisp_Object
2432 make_multibyte_string (const char *contents,
2433 ptrdiff_t nchars, ptrdiff_t nbytes)
2434 {
2435 register Lisp_Object val;
2436 val = make_uninit_multibyte_string (nchars, nbytes);
2437 memcpy (SDATA (val), contents, nbytes);
2438 return val;
2439 }
2440
2441
2442 /* Make a string from NCHARS characters occupying NBYTES bytes at
2443 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2444
2445 Lisp_Object
2446 make_string_from_bytes (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes)
2448 {
2449 register Lisp_Object val;
2450 val = make_uninit_multibyte_string (nchars, nbytes);
2451 memcpy (SDATA (val), contents, nbytes);
2452 if (SBYTES (val) == SCHARS (val))
2453 STRING_SET_UNIBYTE (val);
2454 return val;
2455 }
2456
2457
2458 /* Make a string from NCHARS characters occupying NBYTES bytes at
2459 CONTENTS. The argument MULTIBYTE controls whether to label the
2460 string as multibyte. If NCHARS is negative, it counts the number of
2461 characters by itself. */
2462
2463 Lisp_Object
2464 make_specified_string (const char *contents,
2465 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2466 {
2467 register Lisp_Object val;
2468
2469 if (nchars < 0)
2470 {
2471 if (multibyte)
2472 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2473 nbytes);
2474 else
2475 nchars = nbytes;
2476 }
2477 val = make_uninit_multibyte_string (nchars, nbytes);
2478 memcpy (SDATA (val), contents, nbytes);
2479 if (!multibyte)
2480 STRING_SET_UNIBYTE (val);
2481 return val;
2482 }
2483
2484
2485 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2486 occupying LENGTH bytes. */
2487
2488 Lisp_Object
2489 make_uninit_string (EMACS_INT length)
2490 {
2491 Lisp_Object val;
2492
2493 if (!length)
2494 return empty_unibyte_string;
2495 val = make_uninit_multibyte_string (length, length);
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2498 }
2499
2500
2501 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2502 which occupy NBYTES bytes. */
2503
2504 Lisp_Object
2505 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2506 {
2507 Lisp_Object string;
2508 struct Lisp_String *s;
2509
2510 if (nchars < 0)
2511 abort ();
2512 if (!nbytes)
2513 return empty_multibyte_string;
2514
2515 s = allocate_string ();
2516 s->intervals = NULL_INTERVAL;
2517 allocate_string_data (s, nchars, nbytes);
2518 XSETSTRING (string, s);
2519 string_chars_consed += nbytes;
2520 return string;
2521 }
2522
2523
2524 \f
2525 /***********************************************************************
2526 Float Allocation
2527 ***********************************************************************/
2528
2529 /* We store float cells inside of float_blocks, allocating a new
2530 float_block with malloc whenever necessary. Float cells reclaimed
2531 by GC are put on a free list to be reallocated before allocating
2532 any new float cells from the latest float_block. */
2533
2534 #define FLOAT_BLOCK_SIZE \
2535 (((BLOCK_BYTES - sizeof (struct float_block *) \
2536 /* The compiler might add padding at the end. */ \
2537 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2538 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2539
2540 #define GETMARKBIT(block,n) \
2541 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2542 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2543 & 1)
2544
2545 #define SETMARKBIT(block,n) \
2546 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2547 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2548
2549 #define UNSETMARKBIT(block,n) \
2550 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2551 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2552
2553 #define FLOAT_BLOCK(fptr) \
2554 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2555
2556 #define FLOAT_INDEX(fptr) \
2557 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2558
2559 struct float_block
2560 {
2561 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2562 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2563 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2564 struct float_block *next;
2565 };
2566
2567 #define FLOAT_MARKED_P(fptr) \
2568 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2569
2570 #define FLOAT_MARK(fptr) \
2571 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572
2573 #define FLOAT_UNMARK(fptr) \
2574 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2575
2576 /* Current float_block. */
2577
2578 static struct float_block *float_block;
2579
2580 /* Index of first unused Lisp_Float in the current float_block. */
2581
2582 static int float_block_index;
2583
2584 /* Free-list of Lisp_Floats. */
2585
2586 static struct Lisp_Float *float_free_list;
2587
2588
2589 /* Initialize float allocation. */
2590
2591 static void
2592 init_float (void)
2593 {
2594 float_block = NULL;
2595 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2596 float_free_list = 0;
2597 }
2598
2599
2600 /* Return a new float object with value FLOAT_VALUE. */
2601
2602 Lisp_Object
2603 make_float (double float_value)
2604 {
2605 register Lisp_Object val;
2606
2607 /* eassert (!handling_signal); */
2608
2609 MALLOC_BLOCK_INPUT;
2610
2611 if (float_free_list)
2612 {
2613 /* We use the data field for chaining the free list
2614 so that we won't use the same field that has the mark bit. */
2615 XSETFLOAT (val, float_free_list);
2616 float_free_list = float_free_list->u.chain;
2617 }
2618 else
2619 {
2620 if (float_block_index == FLOAT_BLOCK_SIZE)
2621 {
2622 register struct float_block *new;
2623
2624 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2625 MEM_TYPE_FLOAT);
2626 new->next = float_block;
2627 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2628 float_block = new;
2629 float_block_index = 0;
2630 }
2631 XSETFLOAT (val, &float_block->floats[float_block_index]);
2632 float_block_index++;
2633 }
2634
2635 MALLOC_UNBLOCK_INPUT;
2636
2637 XFLOAT_INIT (val, float_value);
2638 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2639 consing_since_gc += sizeof (struct Lisp_Float);
2640 floats_consed++;
2641 return val;
2642 }
2643
2644
2645 \f
2646 /***********************************************************************
2647 Cons Allocation
2648 ***********************************************************************/
2649
2650 /* We store cons cells inside of cons_blocks, allocating a new
2651 cons_block with malloc whenever necessary. Cons cells reclaimed by
2652 GC are put on a free list to be reallocated before allocating
2653 any new cons cells from the latest cons_block. */
2654
2655 #define CONS_BLOCK_SIZE \
2656 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2657 /* The compiler might add padding at the end. */ \
2658 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2659 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2660
2661 #define CONS_BLOCK(fptr) \
2662 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2663
2664 #define CONS_INDEX(fptr) \
2665 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2666
2667 struct cons_block
2668 {
2669 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2670 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2671 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2672 struct cons_block *next;
2673 };
2674
2675 #define CONS_MARKED_P(fptr) \
2676 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2677
2678 #define CONS_MARK(fptr) \
2679 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2680
2681 #define CONS_UNMARK(fptr) \
2682 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 /* Current cons_block. */
2685
2686 static struct cons_block *cons_block;
2687
2688 /* Index of first unused Lisp_Cons in the current block. */
2689
2690 static int cons_block_index;
2691
2692 /* Free-list of Lisp_Cons structures. */
2693
2694 static struct Lisp_Cons *cons_free_list;
2695
2696
2697 /* Initialize cons allocation. */
2698
2699 static void
2700 init_cons (void)
2701 {
2702 cons_block = NULL;
2703 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2704 cons_free_list = 0;
2705 }
2706
2707
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2709
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2712 {
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 }
2719
2720 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2721 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2722 (Lisp_Object car, Lisp_Object cdr)
2723 {
2724 register Lisp_Object val;
2725
2726 /* eassert (!handling_signal); */
2727
2728 MALLOC_BLOCK_INPUT;
2729
2730 if (cons_free_list)
2731 {
2732 /* We use the cdr for chaining the free list
2733 so that we won't use the same field that has the mark bit. */
2734 XSETCONS (val, cons_free_list);
2735 cons_free_list = cons_free_list->u.chain;
2736 }
2737 else
2738 {
2739 if (cons_block_index == CONS_BLOCK_SIZE)
2740 {
2741 register struct cons_block *new;
2742 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2743 MEM_TYPE_CONS);
2744 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2745 new->next = cons_block;
2746 cons_block = new;
2747 cons_block_index = 0;
2748 }
2749 XSETCONS (val, &cons_block->conses[cons_block_index]);
2750 cons_block_index++;
2751 }
2752
2753 MALLOC_UNBLOCK_INPUT;
2754
2755 XSETCAR (val, car);
2756 XSETCDR (val, cdr);
2757 eassert (!CONS_MARKED_P (XCONS (val)));
2758 consing_since_gc += sizeof (struct Lisp_Cons);
2759 cons_cells_consed++;
2760 return val;
2761 }
2762
2763 #ifdef GC_CHECK_CONS_LIST
2764 /* Get an error now if there's any junk in the cons free list. */
2765 void
2766 check_cons_list (void)
2767 {
2768 struct Lisp_Cons *tail = cons_free_list;
2769
2770 while (tail)
2771 tail = tail->u.chain;
2772 }
2773 #endif
2774
2775 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2776
2777 Lisp_Object
2778 list1 (Lisp_Object arg1)
2779 {
2780 return Fcons (arg1, Qnil);
2781 }
2782
2783 Lisp_Object
2784 list2 (Lisp_Object arg1, Lisp_Object arg2)
2785 {
2786 return Fcons (arg1, Fcons (arg2, Qnil));
2787 }
2788
2789
2790 Lisp_Object
2791 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2792 {
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2794 }
2795
2796
2797 Lisp_Object
2798 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2799 {
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2801 }
2802
2803
2804 Lisp_Object
2805 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2806 {
2807 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2808 Fcons (arg5, Qnil)))));
2809 }
2810
2811
2812 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2813 doc: /* Return a newly created list with specified arguments as elements.
2814 Any number of arguments, even zero arguments, are allowed.
2815 usage: (list &rest OBJECTS) */)
2816 (ptrdiff_t nargs, Lisp_Object *args)
2817 {
2818 register Lisp_Object val;
2819 val = Qnil;
2820
2821 while (nargs > 0)
2822 {
2823 nargs--;
2824 val = Fcons (args[nargs], val);
2825 }
2826 return val;
2827 }
2828
2829
2830 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2831 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2832 (register Lisp_Object length, Lisp_Object init)
2833 {
2834 register Lisp_Object val;
2835 register EMACS_INT size;
2836
2837 CHECK_NATNUM (length);
2838 size = XFASTINT (length);
2839
2840 val = Qnil;
2841 while (size > 0)
2842 {
2843 val = Fcons (init, val);
2844 --size;
2845
2846 if (size > 0)
2847 {
2848 val = Fcons (init, val);
2849 --size;
2850
2851 if (size > 0)
2852 {
2853 val = Fcons (init, val);
2854 --size;
2855
2856 if (size > 0)
2857 {
2858 val = Fcons (init, val);
2859 --size;
2860
2861 if (size > 0)
2862 {
2863 val = Fcons (init, val);
2864 --size;
2865 }
2866 }
2867 }
2868 }
2869
2870 QUIT;
2871 }
2872
2873 return val;
2874 }
2875
2876
2877 \f
2878 /***********************************************************************
2879 Vector Allocation
2880 ***********************************************************************/
2881
2882 /* This value is balanced well enough to avoid too much internal overhead
2883 for the most common cases; it's not required to be a power of two, but
2884 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2885
2886 #define VECTOR_BLOCK_SIZE 4096
2887
2888 /* Handy constants for vectorlike objects. */
2889 enum
2890 {
2891 header_size = offsetof (struct Lisp_Vector, contents),
2892 word_size = sizeof (Lisp_Object),
2893 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2894 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2895 };
2896
2897 /* ROUNDUP_SIZE must be a power of 2. */
2898 verify ((roundup_size & (roundup_size - 1)) == 0);
2899
2900 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2901
2902 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2903
2904 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2905
2906 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2907
2908 /* Size of the minimal vector allocated from block. */
2909
2910 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2911
2912 /* Size of the largest vector allocated from block. */
2913
2914 #define VBLOCK_BYTES_MAX \
2915 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2916
2917 /* We maintain one free list for each possible block-allocated
2918 vector size, and this is the number of free lists we have. */
2919
2920 #define VECTOR_MAX_FREE_LIST_INDEX \
2921 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2922
2923 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2924 this special value ORed with vector's memory footprint size. */
2925
2926 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2927 | (VECTOR_BLOCK_SIZE - 1)))
2928
2929 /* Common shortcut to advance vector pointer over a block data. */
2930
2931 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2932
2933 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2934
2935 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2936
2937 /* Common shortcut to setup vector on a free list. */
2938
2939 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2940 do { \
2941 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2942 eassert ((nbytes) % roundup_size == 0); \
2943 (index) = VINDEX (nbytes); \
2944 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2945 (v)->header.next.vector = vector_free_lists[index]; \
2946 vector_free_lists[index] = (v); \
2947 } while (0)
2948
2949 struct vector_block
2950 {
2951 char data[VECTOR_BLOCK_BYTES];
2952 struct vector_block *next;
2953 };
2954
2955 /* Chain of vector blocks. */
2956
2957 static struct vector_block *vector_blocks;
2958
2959 /* Vector free lists, where NTH item points to a chain of free
2960 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2961
2962 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2963
2964 /* Singly-linked list of large vectors. */
2965
2966 static struct Lisp_Vector *large_vectors;
2967
2968 /* The only vector with 0 slots, allocated from pure space. */
2969
2970 static struct Lisp_Vector *zero_vector;
2971
2972 /* Get a new vector block. */
2973
2974 static struct vector_block *
2975 allocate_vector_block (void)
2976 {
2977 struct vector_block *block;
2978
2979 #ifdef DOUG_LEA_MALLOC
2980 mallopt (M_MMAP_MAX, 0);
2981 #endif
2982
2983 block = xmalloc (sizeof (struct vector_block));
2984
2985 #ifdef DOUG_LEA_MALLOC
2986 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2987 #endif
2988
2989 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2990 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2991 MEM_TYPE_VECTOR_BLOCK);
2992 #endif
2993
2994 block->next = vector_blocks;
2995 vector_blocks = block;
2996 return block;
2997 }
2998
2999 /* Called once to initialize vector allocation. */
3000
3001 static void
3002 init_vectors (void)
3003 {
3004 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3005 zero_vector->header.size = 0;
3006 }
3007
3008 /* Allocate vector from a vector block. */
3009
3010 static struct Lisp_Vector *
3011 allocate_vector_from_block (size_t nbytes)
3012 {
3013 struct Lisp_Vector *vector, *rest;
3014 struct vector_block *block;
3015 size_t index, restbytes;
3016
3017 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3018 eassert (nbytes % roundup_size == 0);
3019
3020 /* First, try to allocate from a free list
3021 containing vectors of the requested size. */
3022 index = VINDEX (nbytes);
3023 if (vector_free_lists[index])
3024 {
3025 vector = vector_free_lists[index];
3026 vector_free_lists[index] = vector->header.next.vector;
3027 vector->header.next.nbytes = nbytes;
3028 return vector;
3029 }
3030
3031 /* Next, check free lists containing larger vectors. Since
3032 we will split the result, we should have remaining space
3033 large enough to use for one-slot vector at least. */
3034 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3035 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3036 if (vector_free_lists[index])
3037 {
3038 /* This vector is larger than requested. */
3039 vector = vector_free_lists[index];
3040 vector_free_lists[index] = vector->header.next.vector;
3041 vector->header.next.nbytes = nbytes;
3042
3043 /* Excess bytes are used for the smaller vector,
3044 which should be set on an appropriate free list. */
3045 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3046 eassert (restbytes % roundup_size == 0);
3047 rest = ADVANCE (vector, nbytes);
3048 SETUP_ON_FREE_LIST (rest, restbytes, index);
3049 return vector;
3050 }
3051
3052 /* Finally, need a new vector block. */
3053 block = allocate_vector_block ();
3054
3055 /* New vector will be at the beginning of this block. */
3056 vector = (struct Lisp_Vector *) block->data;
3057 vector->header.next.nbytes = nbytes;
3058
3059 /* If the rest of space from this block is large enough
3060 for one-slot vector at least, set up it on a free list. */
3061 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3062 if (restbytes >= VBLOCK_BYTES_MIN)
3063 {
3064 eassert (restbytes % roundup_size == 0);
3065 rest = ADVANCE (vector, nbytes);
3066 SETUP_ON_FREE_LIST (rest, restbytes, index);
3067 }
3068 return vector;
3069 }
3070
3071 /* Return how many Lisp_Objects can be stored in V. */
3072
3073 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3074 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3075 (v)->header.size)
3076
3077 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3078
3079 #define VECTOR_IN_BLOCK(vector, block) \
3080 ((char *) (vector) <= (block)->data \
3081 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3082
3083 /* Reclaim space used by unmarked vectors. */
3084
3085 static void
3086 sweep_vectors (void)
3087 {
3088 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3089 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3090
3091 total_vector_size = 0;
3092 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3093
3094 /* Looking through vector blocks. */
3095
3096 for (block = vector_blocks; block; block = *bprev)
3097 {
3098 int free_this_block = 0;
3099
3100 for (vector = (struct Lisp_Vector *) block->data;
3101 VECTOR_IN_BLOCK (vector, block); vector = next)
3102 {
3103 if (VECTOR_MARKED_P (vector))
3104 {
3105 VECTOR_UNMARK (vector);
3106 total_vector_size += VECTOR_SIZE (vector);
3107 next = ADVANCE (vector, vector->header.next.nbytes);
3108 }
3109 else
3110 {
3111 ptrdiff_t nbytes;
3112
3113 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3114 == VECTOR_FREE_LIST_FLAG)
3115 vector->header.next.nbytes =
3116 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3117
3118 next = ADVANCE (vector, vector->header.next.nbytes);
3119
3120 /* While NEXT is not marked, try to coalesce with VECTOR,
3121 thus making VECTOR of the largest possible size. */
3122
3123 while (VECTOR_IN_BLOCK (next, block))
3124 {
3125 if (VECTOR_MARKED_P (next))
3126 break;
3127 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3128 == VECTOR_FREE_LIST_FLAG)
3129 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3130 else
3131 nbytes = next->header.next.nbytes;
3132 vector->header.next.nbytes += nbytes;
3133 next = ADVANCE (next, nbytes);
3134 }
3135
3136 eassert (vector->header.next.nbytes % roundup_size == 0);
3137
3138 if (vector == (struct Lisp_Vector *) block->data
3139 && !VECTOR_IN_BLOCK (next, block))
3140 /* This block should be freed because all of it's
3141 space was coalesced into the only free vector. */
3142 free_this_block = 1;
3143 else
3144 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3145 }
3146 }
3147
3148 if (free_this_block)
3149 {
3150 *bprev = block->next;
3151 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3152 mem_delete (mem_find (block->data));
3153 #endif
3154 xfree (block);
3155 }
3156 else
3157 bprev = &block->next;
3158 }
3159
3160 /* Sweep large vectors. */
3161
3162 for (vector = large_vectors; vector; vector = *vprev)
3163 {
3164 if (VECTOR_MARKED_P (vector))
3165 {
3166 VECTOR_UNMARK (vector);
3167 total_vector_size += VECTOR_SIZE (vector);
3168 vprev = &vector->header.next.vector;
3169 }
3170 else
3171 {
3172 *vprev = vector->header.next.vector;
3173 lisp_free (vector);
3174 }
3175 }
3176 }
3177
3178 /* Value is a pointer to a newly allocated Lisp_Vector structure
3179 with room for LEN Lisp_Objects. */
3180
3181 static struct Lisp_Vector *
3182 allocate_vectorlike (ptrdiff_t len)
3183 {
3184 struct Lisp_Vector *p;
3185 size_t nbytes;
3186
3187 MALLOC_BLOCK_INPUT;
3188
3189 #ifdef DOUG_LEA_MALLOC
3190 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3191 because mapped region contents are not preserved in
3192 a dumped Emacs. */
3193 mallopt (M_MMAP_MAX, 0);
3194 #endif
3195
3196 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3197 /* eassert (!handling_signal); */
3198
3199 if (len == 0)
3200 {
3201 MALLOC_UNBLOCK_INPUT;
3202 return zero_vector;
3203 }
3204
3205 nbytes = header_size + len * word_size;
3206
3207 if (nbytes <= VBLOCK_BYTES_MAX)
3208 p = allocate_vector_from_block (vroundup (nbytes));
3209 else
3210 {
3211 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3212 p->header.next.vector = large_vectors;
3213 large_vectors = p;
3214 }
3215
3216 #ifdef DOUG_LEA_MALLOC
3217 /* Back to a reasonable maximum of mmap'ed areas. */
3218 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3219 #endif
3220
3221 consing_since_gc += nbytes;
3222 vector_cells_consed += len;
3223
3224 MALLOC_UNBLOCK_INPUT;
3225
3226 return p;
3227 }
3228
3229
3230 /* Allocate a vector with LEN slots. */
3231
3232 struct Lisp_Vector *
3233 allocate_vector (EMACS_INT len)
3234 {
3235 struct Lisp_Vector *v;
3236 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3237
3238 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3239 memory_full (SIZE_MAX);
3240 v = allocate_vectorlike (len);
3241 v->header.size = len;
3242 return v;
3243 }
3244
3245
3246 /* Allocate other vector-like structures. */
3247
3248 struct Lisp_Vector *
3249 allocate_pseudovector (int memlen, int lisplen, int tag)
3250 {
3251 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3252 int i;
3253
3254 /* Only the first lisplen slots will be traced normally by the GC. */
3255 for (i = 0; i < lisplen; ++i)
3256 v->contents[i] = Qnil;
3257
3258 XSETPVECTYPESIZE (v, tag, lisplen);
3259 return v;
3260 }
3261
3262 struct Lisp_Hash_Table *
3263 allocate_hash_table (void)
3264 {
3265 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3266 }
3267
3268 struct window *
3269 allocate_window (void)
3270 {
3271 struct window *w;
3272
3273 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3274 /* Users assumes that non-Lisp data is zeroed. */
3275 memset (&w->current_matrix, 0,
3276 sizeof (*w) - offsetof (struct window, current_matrix));
3277 return w;
3278 }
3279
3280 struct terminal *
3281 allocate_terminal (void)
3282 {
3283 struct terminal *t;
3284
3285 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3286 /* Users assumes that non-Lisp data is zeroed. */
3287 memset (&t->next_terminal, 0,
3288 sizeof (*t) - offsetof (struct terminal, next_terminal));
3289 return t;
3290 }
3291
3292 struct frame *
3293 allocate_frame (void)
3294 {
3295 struct frame *f;
3296
3297 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3298 /* Users assumes that non-Lisp data is zeroed. */
3299 memset (&f->face_cache, 0,
3300 sizeof (*f) - offsetof (struct frame, face_cache));
3301 return f;
3302 }
3303
3304 struct Lisp_Process *
3305 allocate_process (void)
3306 {
3307 struct Lisp_Process *p;
3308
3309 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3310 /* Users assumes that non-Lisp data is zeroed. */
3311 memset (&p->pid, 0,
3312 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3313 return p;
3314 }
3315
3316 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3317 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3318 See also the function `vector'. */)
3319 (register Lisp_Object length, Lisp_Object init)
3320 {
3321 Lisp_Object vector;
3322 register ptrdiff_t sizei;
3323 register ptrdiff_t i;
3324 register struct Lisp_Vector *p;
3325
3326 CHECK_NATNUM (length);
3327
3328 p = allocate_vector (XFASTINT (length));
3329 sizei = XFASTINT (length);
3330 for (i = 0; i < sizei; i++)
3331 p->contents[i] = init;
3332
3333 XSETVECTOR (vector, p);
3334 return vector;
3335 }
3336
3337
3338 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3339 doc: /* Return a newly created vector with specified arguments as elements.
3340 Any number of arguments, even zero arguments, are allowed.
3341 usage: (vector &rest OBJECTS) */)
3342 (ptrdiff_t nargs, Lisp_Object *args)
3343 {
3344 register Lisp_Object len, val;
3345 ptrdiff_t i;
3346 register struct Lisp_Vector *p;
3347
3348 XSETFASTINT (len, nargs);
3349 val = Fmake_vector (len, Qnil);
3350 p = XVECTOR (val);
3351 for (i = 0; i < nargs; i++)
3352 p->contents[i] = args[i];
3353 return val;
3354 }
3355
3356 void
3357 make_byte_code (struct Lisp_Vector *v)
3358 {
3359 if (v->header.size > 1 && STRINGP (v->contents[1])
3360 && STRING_MULTIBYTE (v->contents[1]))
3361 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3362 earlier because they produced a raw 8-bit string for byte-code
3363 and now such a byte-code string is loaded as multibyte while
3364 raw 8-bit characters converted to multibyte form. Thus, now we
3365 must convert them back to the original unibyte form. */
3366 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3367 XSETPVECTYPE (v, PVEC_COMPILED);
3368 }
3369
3370 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3371 doc: /* Create a byte-code object with specified arguments as elements.
3372 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3373 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3374 and (optional) INTERACTIVE-SPEC.
3375 The first four arguments are required; at most six have any
3376 significance.
3377 The ARGLIST can be either like the one of `lambda', in which case the arguments
3378 will be dynamically bound before executing the byte code, or it can be an
3379 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3380 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3381 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3382 argument to catch the left-over arguments. If such an integer is used, the
3383 arguments will not be dynamically bound but will be instead pushed on the
3384 stack before executing the byte-code.
3385 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3386 (ptrdiff_t nargs, Lisp_Object *args)
3387 {
3388 register Lisp_Object len, val;
3389 ptrdiff_t i;
3390 register struct Lisp_Vector *p;
3391
3392 /* We used to purecopy everything here, if purify-flga was set. This worked
3393 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3394 dangerous, since make-byte-code is used during execution to build
3395 closures, so any closure built during the preload phase would end up
3396 copied into pure space, including its free variables, which is sometimes
3397 just wasteful and other times plainly wrong (e.g. those free vars may want
3398 to be setcar'd). */
3399
3400 XSETFASTINT (len, nargs);
3401 val = Fmake_vector (len, Qnil);
3402
3403 p = XVECTOR (val);
3404 for (i = 0; i < nargs; i++)
3405 p->contents[i] = args[i];
3406 make_byte_code (p);
3407 XSETCOMPILED (val, p);
3408 return val;
3409 }
3410
3411
3412 \f
3413 /***********************************************************************
3414 Symbol Allocation
3415 ***********************************************************************/
3416
3417 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3418 of the required alignment if LSB tags are used. */
3419
3420 union aligned_Lisp_Symbol
3421 {
3422 struct Lisp_Symbol s;
3423 #if USE_LSB_TAG
3424 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3425 & -(1 << GCTYPEBITS)];
3426 #endif
3427 };
3428
3429 /* Each symbol_block is just under 1020 bytes long, since malloc
3430 really allocates in units of powers of two and uses 4 bytes for its
3431 own overhead. */
3432
3433 #define SYMBOL_BLOCK_SIZE \
3434 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3435
3436 struct symbol_block
3437 {
3438 /* Place `symbols' first, to preserve alignment. */
3439 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3440 struct symbol_block *next;
3441 };
3442
3443 /* Current symbol block and index of first unused Lisp_Symbol
3444 structure in it. */
3445
3446 static struct symbol_block *symbol_block;
3447 static int symbol_block_index;
3448
3449 /* List of free symbols. */
3450
3451 static struct Lisp_Symbol *symbol_free_list;
3452
3453
3454 /* Initialize symbol allocation. */
3455
3456 static void
3457 init_symbol (void)
3458 {
3459 symbol_block = NULL;
3460 symbol_block_index = SYMBOL_BLOCK_SIZE;
3461 symbol_free_list = 0;
3462 }
3463
3464
3465 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3466 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3467 Its value and function definition are void, and its property list is nil. */)
3468 (Lisp_Object name)
3469 {
3470 register Lisp_Object val;
3471 register struct Lisp_Symbol *p;
3472
3473 CHECK_STRING (name);
3474
3475 /* eassert (!handling_signal); */
3476
3477 MALLOC_BLOCK_INPUT;
3478
3479 if (symbol_free_list)
3480 {
3481 XSETSYMBOL (val, symbol_free_list);
3482 symbol_free_list = symbol_free_list->next;
3483 }
3484 else
3485 {
3486 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3487 {
3488 struct symbol_block *new;
3489 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3490 MEM_TYPE_SYMBOL);
3491 new->next = symbol_block;
3492 symbol_block = new;
3493 symbol_block_index = 0;
3494 }
3495 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3496 symbol_block_index++;
3497 }
3498
3499 MALLOC_UNBLOCK_INPUT;
3500
3501 p = XSYMBOL (val);
3502 p->xname = name;
3503 p->plist = Qnil;
3504 p->redirect = SYMBOL_PLAINVAL;
3505 SET_SYMBOL_VAL (p, Qunbound);
3506 p->function = Qunbound;
3507 p->next = NULL;
3508 p->gcmarkbit = 0;
3509 p->interned = SYMBOL_UNINTERNED;
3510 p->constant = 0;
3511 p->declared_special = 0;
3512 consing_since_gc += sizeof (struct Lisp_Symbol);
3513 symbols_consed++;
3514 return val;
3515 }
3516
3517
3518 \f
3519 /***********************************************************************
3520 Marker (Misc) Allocation
3521 ***********************************************************************/
3522
3523 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3524 the required alignment when LSB tags are used. */
3525
3526 union aligned_Lisp_Misc
3527 {
3528 union Lisp_Misc m;
3529 #if USE_LSB_TAG
3530 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3531 & -(1 << GCTYPEBITS)];
3532 #endif
3533 };
3534
3535 /* Allocation of markers and other objects that share that structure.
3536 Works like allocation of conses. */
3537
3538 #define MARKER_BLOCK_SIZE \
3539 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3540
3541 struct marker_block
3542 {
3543 /* Place `markers' first, to preserve alignment. */
3544 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3545 struct marker_block *next;
3546 };
3547
3548 static struct marker_block *marker_block;
3549 static int marker_block_index;
3550
3551 static union Lisp_Misc *marker_free_list;
3552
3553 static void
3554 init_marker (void)
3555 {
3556 marker_block = NULL;
3557 marker_block_index = MARKER_BLOCK_SIZE;
3558 marker_free_list = 0;
3559 }
3560
3561 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3562
3563 Lisp_Object
3564 allocate_misc (void)
3565 {
3566 Lisp_Object val;
3567
3568 /* eassert (!handling_signal); */
3569
3570 MALLOC_BLOCK_INPUT;
3571
3572 if (marker_free_list)
3573 {
3574 XSETMISC (val, marker_free_list);
3575 marker_free_list = marker_free_list->u_free.chain;
3576 }
3577 else
3578 {
3579 if (marker_block_index == MARKER_BLOCK_SIZE)
3580 {
3581 struct marker_block *new;
3582 new = (struct marker_block *) lisp_malloc (sizeof *new,
3583 MEM_TYPE_MISC);
3584 new->next = marker_block;
3585 marker_block = new;
3586 marker_block_index = 0;
3587 total_free_markers += MARKER_BLOCK_SIZE;
3588 }
3589 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3590 marker_block_index++;
3591 }
3592
3593 MALLOC_UNBLOCK_INPUT;
3594
3595 --total_free_markers;
3596 consing_since_gc += sizeof (union Lisp_Misc);
3597 misc_objects_consed++;
3598 XMISCANY (val)->gcmarkbit = 0;
3599 return val;
3600 }
3601
3602 /* Free a Lisp_Misc object */
3603
3604 static void
3605 free_misc (Lisp_Object misc)
3606 {
3607 XMISCTYPE (misc) = Lisp_Misc_Free;
3608 XMISC (misc)->u_free.chain = marker_free_list;
3609 marker_free_list = XMISC (misc);
3610
3611 total_free_markers++;
3612 }
3613
3614 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3615 INTEGER. This is used to package C values to call record_unwind_protect.
3616 The unwind function can get the C values back using XSAVE_VALUE. */
3617
3618 Lisp_Object
3619 make_save_value (void *pointer, ptrdiff_t integer)
3620 {
3621 register Lisp_Object val;
3622 register struct Lisp_Save_Value *p;
3623
3624 val = allocate_misc ();
3625 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3626 p = XSAVE_VALUE (val);
3627 p->pointer = pointer;
3628 p->integer = integer;
3629 p->dogc = 0;
3630 return val;
3631 }
3632
3633 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3634 doc: /* Return a newly allocated marker which does not point at any place. */)
3635 (void)
3636 {
3637 register Lisp_Object val;
3638 register struct Lisp_Marker *p;
3639
3640 val = allocate_misc ();
3641 XMISCTYPE (val) = Lisp_Misc_Marker;
3642 p = XMARKER (val);
3643 p->buffer = 0;
3644 p->bytepos = 0;
3645 p->charpos = 0;
3646 p->next = NULL;
3647 p->insertion_type = 0;
3648 return val;
3649 }
3650
3651 /* Put MARKER back on the free list after using it temporarily. */
3652
3653 void
3654 free_marker (Lisp_Object marker)
3655 {
3656 unchain_marker (XMARKER (marker));
3657 free_misc (marker);
3658 }
3659
3660 \f
3661 /* Return a newly created vector or string with specified arguments as
3662 elements. If all the arguments are characters that can fit
3663 in a string of events, make a string; otherwise, make a vector.
3664
3665 Any number of arguments, even zero arguments, are allowed. */
3666
3667 Lisp_Object
3668 make_event_array (register int nargs, Lisp_Object *args)
3669 {
3670 int i;
3671
3672 for (i = 0; i < nargs; i++)
3673 /* The things that fit in a string
3674 are characters that are in 0...127,
3675 after discarding the meta bit and all the bits above it. */
3676 if (!INTEGERP (args[i])
3677 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3678 return Fvector (nargs, args);
3679
3680 /* Since the loop exited, we know that all the things in it are
3681 characters, so we can make a string. */
3682 {
3683 Lisp_Object result;
3684
3685 result = Fmake_string (make_number (nargs), make_number (0));
3686 for (i = 0; i < nargs; i++)
3687 {
3688 SSET (result, i, XINT (args[i]));
3689 /* Move the meta bit to the right place for a string char. */
3690 if (XINT (args[i]) & CHAR_META)
3691 SSET (result, i, SREF (result, i) | 0x80);
3692 }
3693
3694 return result;
3695 }
3696 }
3697
3698
3699 \f
3700 /************************************************************************
3701 Memory Full Handling
3702 ************************************************************************/
3703
3704
3705 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3706 there may have been size_t overflow so that malloc was never
3707 called, or perhaps malloc was invoked successfully but the
3708 resulting pointer had problems fitting into a tagged EMACS_INT. In
3709 either case this counts as memory being full even though malloc did
3710 not fail. */
3711
3712 void
3713 memory_full (size_t nbytes)
3714 {
3715 /* Do not go into hysterics merely because a large request failed. */
3716 int enough_free_memory = 0;
3717 if (SPARE_MEMORY < nbytes)
3718 {
3719 void *p;
3720
3721 MALLOC_BLOCK_INPUT;
3722 p = malloc (SPARE_MEMORY);
3723 if (p)
3724 {
3725 free (p);
3726 enough_free_memory = 1;
3727 }
3728 MALLOC_UNBLOCK_INPUT;
3729 }
3730
3731 if (! enough_free_memory)
3732 {
3733 int i;
3734
3735 Vmemory_full = Qt;
3736
3737 memory_full_cons_threshold = sizeof (struct cons_block);
3738
3739 /* The first time we get here, free the spare memory. */
3740 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3741 if (spare_memory[i])
3742 {
3743 if (i == 0)
3744 free (spare_memory[i]);
3745 else if (i >= 1 && i <= 4)
3746 lisp_align_free (spare_memory[i]);
3747 else
3748 lisp_free (spare_memory[i]);
3749 spare_memory[i] = 0;
3750 }
3751
3752 /* Record the space now used. When it decreases substantially,
3753 we can refill the memory reserve. */
3754 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3755 bytes_used_when_full = BYTES_USED;
3756 #endif
3757 }
3758
3759 /* This used to call error, but if we've run out of memory, we could
3760 get infinite recursion trying to build the string. */
3761 xsignal (Qnil, Vmemory_signal_data);
3762 }
3763
3764 /* If we released our reserve (due to running out of memory),
3765 and we have a fair amount free once again,
3766 try to set aside another reserve in case we run out once more.
3767
3768 This is called when a relocatable block is freed in ralloc.c,
3769 and also directly from this file, in case we're not using ralloc.c. */
3770
3771 void
3772 refill_memory_reserve (void)
3773 {
3774 #ifndef SYSTEM_MALLOC
3775 if (spare_memory[0] == 0)
3776 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3777 if (spare_memory[1] == 0)
3778 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3779 MEM_TYPE_CONS);
3780 if (spare_memory[2] == 0)
3781 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3782 MEM_TYPE_CONS);
3783 if (spare_memory[3] == 0)
3784 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3785 MEM_TYPE_CONS);
3786 if (spare_memory[4] == 0)
3787 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3788 MEM_TYPE_CONS);
3789 if (spare_memory[5] == 0)
3790 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3791 MEM_TYPE_STRING);
3792 if (spare_memory[6] == 0)
3793 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3794 MEM_TYPE_STRING);
3795 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3796 Vmemory_full = Qnil;
3797 #endif
3798 }
3799 \f
3800 /************************************************************************
3801 C Stack Marking
3802 ************************************************************************/
3803
3804 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3805
3806 /* Conservative C stack marking requires a method to identify possibly
3807 live Lisp objects given a pointer value. We do this by keeping
3808 track of blocks of Lisp data that are allocated in a red-black tree
3809 (see also the comment of mem_node which is the type of nodes in
3810 that tree). Function lisp_malloc adds information for an allocated
3811 block to the red-black tree with calls to mem_insert, and function
3812 lisp_free removes it with mem_delete. Functions live_string_p etc
3813 call mem_find to lookup information about a given pointer in the
3814 tree, and use that to determine if the pointer points to a Lisp
3815 object or not. */
3816
3817 /* Initialize this part of alloc.c. */
3818
3819 static void
3820 mem_init (void)
3821 {
3822 mem_z.left = mem_z.right = MEM_NIL;
3823 mem_z.parent = NULL;
3824 mem_z.color = MEM_BLACK;
3825 mem_z.start = mem_z.end = NULL;
3826 mem_root = MEM_NIL;
3827 }
3828
3829
3830 /* Value is a pointer to the mem_node containing START. Value is
3831 MEM_NIL if there is no node in the tree containing START. */
3832
3833 static inline struct mem_node *
3834 mem_find (void *start)
3835 {
3836 struct mem_node *p;
3837
3838 if (start < min_heap_address || start > max_heap_address)
3839 return MEM_NIL;
3840
3841 /* Make the search always successful to speed up the loop below. */
3842 mem_z.start = start;
3843 mem_z.end = (char *) start + 1;
3844
3845 p = mem_root;
3846 while (start < p->start || start >= p->end)
3847 p = start < p->start ? p->left : p->right;
3848 return p;
3849 }
3850
3851
3852 /* Insert a new node into the tree for a block of memory with start
3853 address START, end address END, and type TYPE. Value is a
3854 pointer to the node that was inserted. */
3855
3856 static struct mem_node *
3857 mem_insert (void *start, void *end, enum mem_type type)
3858 {
3859 struct mem_node *c, *parent, *x;
3860
3861 if (min_heap_address == NULL || start < min_heap_address)
3862 min_heap_address = start;
3863 if (max_heap_address == NULL || end > max_heap_address)
3864 max_heap_address = end;
3865
3866 /* See where in the tree a node for START belongs. In this
3867 particular application, it shouldn't happen that a node is already
3868 present. For debugging purposes, let's check that. */
3869 c = mem_root;
3870 parent = NULL;
3871
3872 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3873
3874 while (c != MEM_NIL)
3875 {
3876 if (start >= c->start && start < c->end)
3877 abort ();
3878 parent = c;
3879 c = start < c->start ? c->left : c->right;
3880 }
3881
3882 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3883
3884 while (c != MEM_NIL)
3885 {
3886 parent = c;
3887 c = start < c->start ? c->left : c->right;
3888 }
3889
3890 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3891
3892 /* Create a new node. */
3893 #ifdef GC_MALLOC_CHECK
3894 x = (struct mem_node *) _malloc_internal (sizeof *x);
3895 if (x == NULL)
3896 abort ();
3897 #else
3898 x = (struct mem_node *) xmalloc (sizeof *x);
3899 #endif
3900 x->start = start;
3901 x->end = end;
3902 x->type = type;
3903 x->parent = parent;
3904 x->left = x->right = MEM_NIL;
3905 x->color = MEM_RED;
3906
3907 /* Insert it as child of PARENT or install it as root. */
3908 if (parent)
3909 {
3910 if (start < parent->start)
3911 parent->left = x;
3912 else
3913 parent->right = x;
3914 }
3915 else
3916 mem_root = x;
3917
3918 /* Re-establish red-black tree properties. */
3919 mem_insert_fixup (x);
3920
3921 return x;
3922 }
3923
3924
3925 /* Re-establish the red-black properties of the tree, and thereby
3926 balance the tree, after node X has been inserted; X is always red. */
3927
3928 static void
3929 mem_insert_fixup (struct mem_node *x)
3930 {
3931 while (x != mem_root && x->parent->color == MEM_RED)
3932 {
3933 /* X is red and its parent is red. This is a violation of
3934 red-black tree property #3. */
3935
3936 if (x->parent == x->parent->parent->left)
3937 {
3938 /* We're on the left side of our grandparent, and Y is our
3939 "uncle". */
3940 struct mem_node *y = x->parent->parent->right;
3941
3942 if (y->color == MEM_RED)
3943 {
3944 /* Uncle and parent are red but should be black because
3945 X is red. Change the colors accordingly and proceed
3946 with the grandparent. */
3947 x->parent->color = MEM_BLACK;
3948 y->color = MEM_BLACK;
3949 x->parent->parent->color = MEM_RED;
3950 x = x->parent->parent;
3951 }
3952 else
3953 {
3954 /* Parent and uncle have different colors; parent is
3955 red, uncle is black. */
3956 if (x == x->parent->right)
3957 {
3958 x = x->parent;
3959 mem_rotate_left (x);
3960 }
3961
3962 x->parent->color = MEM_BLACK;
3963 x->parent->parent->color = MEM_RED;
3964 mem_rotate_right (x->parent->parent);
3965 }
3966 }
3967 else
3968 {
3969 /* This is the symmetrical case of above. */
3970 struct mem_node *y = x->parent->parent->left;
3971
3972 if (y->color == MEM_RED)
3973 {
3974 x->parent->color = MEM_BLACK;
3975 y->color = MEM_BLACK;
3976 x->parent->parent->color = MEM_RED;
3977 x = x->parent->parent;
3978 }
3979 else
3980 {
3981 if (x == x->parent->left)
3982 {
3983 x = x->parent;
3984 mem_rotate_right (x);
3985 }
3986
3987 x->parent->color = MEM_BLACK;
3988 x->parent->parent->color = MEM_RED;
3989 mem_rotate_left (x->parent->parent);
3990 }
3991 }
3992 }
3993
3994 /* The root may have been changed to red due to the algorithm. Set
3995 it to black so that property #5 is satisfied. */
3996 mem_root->color = MEM_BLACK;
3997 }
3998
3999
4000 /* (x) (y)
4001 / \ / \
4002 a (y) ===> (x) c
4003 / \ / \
4004 b c a b */
4005
4006 static void
4007 mem_rotate_left (struct mem_node *x)
4008 {
4009 struct mem_node *y;
4010
4011 /* Turn y's left sub-tree into x's right sub-tree. */
4012 y = x->right;
4013 x->right = y->left;
4014 if (y->left != MEM_NIL)
4015 y->left->parent = x;
4016
4017 /* Y's parent was x's parent. */
4018 if (y != MEM_NIL)
4019 y->parent = x->parent;
4020
4021 /* Get the parent to point to y instead of x. */
4022 if (x->parent)
4023 {
4024 if (x == x->parent->left)
4025 x->parent->left = y;
4026 else
4027 x->parent->right = y;
4028 }
4029 else
4030 mem_root = y;
4031
4032 /* Put x on y's left. */
4033 y->left = x;
4034 if (x != MEM_NIL)
4035 x->parent = y;
4036 }
4037
4038
4039 /* (x) (Y)
4040 / \ / \
4041 (y) c ===> a (x)
4042 / \ / \
4043 a b b c */
4044
4045 static void
4046 mem_rotate_right (struct mem_node *x)
4047 {
4048 struct mem_node *y = x->left;
4049
4050 x->left = y->right;
4051 if (y->right != MEM_NIL)
4052 y->right->parent = x;
4053
4054 if (y != MEM_NIL)
4055 y->parent = x->parent;
4056 if (x->parent)
4057 {
4058 if (x == x->parent->right)
4059 x->parent->right = y;
4060 else
4061 x->parent->left = y;
4062 }
4063 else
4064 mem_root = y;
4065
4066 y->right = x;
4067 if (x != MEM_NIL)
4068 x->parent = y;
4069 }
4070
4071
4072 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4073
4074 static void
4075 mem_delete (struct mem_node *z)
4076 {
4077 struct mem_node *x, *y;
4078
4079 if (!z || z == MEM_NIL)
4080 return;
4081
4082 if (z->left == MEM_NIL || z->right == MEM_NIL)
4083 y = z;
4084 else
4085 {
4086 y = z->right;
4087 while (y->left != MEM_NIL)
4088 y = y->left;
4089 }
4090
4091 if (y->left != MEM_NIL)
4092 x = y->left;
4093 else
4094 x = y->right;
4095
4096 x->parent = y->parent;
4097 if (y->parent)
4098 {
4099 if (y == y->parent->left)
4100 y->parent->left = x;
4101 else
4102 y->parent->right = x;
4103 }
4104 else
4105 mem_root = x;
4106
4107 if (y != z)
4108 {
4109 z->start = y->start;
4110 z->end = y->end;
4111 z->type = y->type;
4112 }
4113
4114 if (y->color == MEM_BLACK)
4115 mem_delete_fixup (x);
4116
4117 #ifdef GC_MALLOC_CHECK
4118 _free_internal (y);
4119 #else
4120 xfree (y);
4121 #endif
4122 }
4123
4124
4125 /* Re-establish the red-black properties of the tree, after a
4126 deletion. */
4127
4128 static void
4129 mem_delete_fixup (struct mem_node *x)
4130 {
4131 while (x != mem_root && x->color == MEM_BLACK)
4132 {
4133 if (x == x->parent->left)
4134 {
4135 struct mem_node *w = x->parent->right;
4136
4137 if (w->color == MEM_RED)
4138 {
4139 w->color = MEM_BLACK;
4140 x->parent->color = MEM_RED;
4141 mem_rotate_left (x->parent);
4142 w = x->parent->right;
4143 }
4144
4145 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4146 {
4147 w->color = MEM_RED;
4148 x = x->parent;
4149 }
4150 else
4151 {
4152 if (w->right->color == MEM_BLACK)
4153 {
4154 w->left->color = MEM_BLACK;
4155 w->color = MEM_RED;
4156 mem_rotate_right (w);
4157 w = x->parent->right;
4158 }
4159 w->color = x->parent->color;
4160 x->parent->color = MEM_BLACK;
4161 w->right->color = MEM_BLACK;
4162 mem_rotate_left (x->parent);
4163 x = mem_root;
4164 }
4165 }
4166 else
4167 {
4168 struct mem_node *w = x->parent->left;
4169
4170 if (w->color == MEM_RED)
4171 {
4172 w->color = MEM_BLACK;
4173 x->parent->color = MEM_RED;
4174 mem_rotate_right (x->parent);
4175 w = x->parent->left;
4176 }
4177
4178 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4179 {
4180 w->color = MEM_RED;
4181 x = x->parent;
4182 }
4183 else
4184 {
4185 if (w->left->color == MEM_BLACK)
4186 {
4187 w->right->color = MEM_BLACK;
4188 w->color = MEM_RED;
4189 mem_rotate_left (w);
4190 w = x->parent->left;
4191 }
4192
4193 w->color = x->parent->color;
4194 x->parent->color = MEM_BLACK;
4195 w->left->color = MEM_BLACK;
4196 mem_rotate_right (x->parent);
4197 x = mem_root;
4198 }
4199 }
4200 }
4201
4202 x->color = MEM_BLACK;
4203 }
4204
4205
4206 /* Value is non-zero if P is a pointer to a live Lisp string on
4207 the heap. M is a pointer to the mem_block for P. */
4208
4209 static inline int
4210 live_string_p (struct mem_node *m, void *p)
4211 {
4212 if (m->type == MEM_TYPE_STRING)
4213 {
4214 struct string_block *b = (struct string_block *) m->start;
4215 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4216
4217 /* P must point to the start of a Lisp_String structure, and it
4218 must not be on the free-list. */
4219 return (offset >= 0
4220 && offset % sizeof b->strings[0] == 0
4221 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4222 && ((struct Lisp_String *) p)->data != NULL);
4223 }
4224 else
4225 return 0;
4226 }
4227
4228
4229 /* Value is non-zero if P is a pointer to a live Lisp cons on
4230 the heap. M is a pointer to the mem_block for P. */
4231
4232 static inline int
4233 live_cons_p (struct mem_node *m, void *p)
4234 {
4235 if (m->type == MEM_TYPE_CONS)
4236 {
4237 struct cons_block *b = (struct cons_block *) m->start;
4238 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4239
4240 /* P must point to the start of a Lisp_Cons, not be
4241 one of the unused cells in the current cons block,
4242 and not be on the free-list. */
4243 return (offset >= 0
4244 && offset % sizeof b->conses[0] == 0
4245 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4246 && (b != cons_block
4247 || offset / sizeof b->conses[0] < cons_block_index)
4248 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4249 }
4250 else
4251 return 0;
4252 }
4253
4254
4255 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4256 the heap. M is a pointer to the mem_block for P. */
4257
4258 static inline int
4259 live_symbol_p (struct mem_node *m, void *p)
4260 {
4261 if (m->type == MEM_TYPE_SYMBOL)
4262 {
4263 struct symbol_block *b = (struct symbol_block *) m->start;
4264 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4265
4266 /* P must point to the start of a Lisp_Symbol, not be
4267 one of the unused cells in the current symbol block,
4268 and not be on the free-list. */
4269 return (offset >= 0
4270 && offset % sizeof b->symbols[0] == 0
4271 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4272 && (b != symbol_block
4273 || offset / sizeof b->symbols[0] < symbol_block_index)
4274 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4275 }
4276 else
4277 return 0;
4278 }
4279
4280
4281 /* Value is non-zero if P is a pointer to a live Lisp float on
4282 the heap. M is a pointer to the mem_block for P. */
4283
4284 static inline int
4285 live_float_p (struct mem_node *m, void *p)
4286 {
4287 if (m->type == MEM_TYPE_FLOAT)
4288 {
4289 struct float_block *b = (struct float_block *) m->start;
4290 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4291
4292 /* P must point to the start of a Lisp_Float and not be
4293 one of the unused cells in the current float block. */
4294 return (offset >= 0
4295 && offset % sizeof b->floats[0] == 0
4296 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4297 && (b != float_block
4298 || offset / sizeof b->floats[0] < float_block_index));
4299 }
4300 else
4301 return 0;
4302 }
4303
4304
4305 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4306 the heap. M is a pointer to the mem_block for P. */
4307
4308 static inline int
4309 live_misc_p (struct mem_node *m, void *p)
4310 {
4311 if (m->type == MEM_TYPE_MISC)
4312 {
4313 struct marker_block *b = (struct marker_block *) m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4315
4316 /* P must point to the start of a Lisp_Misc, not be
4317 one of the unused cells in the current misc block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->markers[0] == 0
4321 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4322 && (b != marker_block
4323 || offset / sizeof b->markers[0] < marker_block_index)
4324 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4325 }
4326 else
4327 return 0;
4328 }
4329
4330
4331 /* Value is non-zero if P is a pointer to a live vector-like object.
4332 M is a pointer to the mem_block for P. */
4333
4334 static inline int
4335 live_vector_p (struct mem_node *m, void *p)
4336 {
4337 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4338 {
4339 /* This memory node corresponds to a vector block. */
4340 struct vector_block *block = (struct vector_block *) m->start;
4341 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4342
4343 /* P is in the block's allocation range. Scan the block
4344 up to P and see whether P points to the start of some
4345 vector which is not on a free list. FIXME: check whether
4346 some allocation patterns (probably a lot of short vectors)
4347 may cause a substantial overhead of this loop. */
4348 while (VECTOR_IN_BLOCK (vector, block)
4349 && vector <= (struct Lisp_Vector *) p)
4350 {
4351 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4352 == VECTOR_FREE_LIST_FLAG)
4353 vector = ADVANCE (vector, (vector->header.size
4354 & (VECTOR_BLOCK_SIZE - 1)));
4355 else if (vector == p)
4356 return 1;
4357 else
4358 vector = ADVANCE (vector, vector->header.next.nbytes);
4359 }
4360 }
4361 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4362 /* This memory node corresponds to a large vector. */
4363 return 1;
4364 return 0;
4365 }
4366
4367
4368 /* Value is non-zero if P is a pointer to a live buffer. M is a
4369 pointer to the mem_block for P. */
4370
4371 static inline int
4372 live_buffer_p (struct mem_node *m, void *p)
4373 {
4374 /* P must point to the start of the block, and the buffer
4375 must not have been killed. */
4376 return (m->type == MEM_TYPE_BUFFER
4377 && p == m->start
4378 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4379 }
4380
4381 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4382
4383 #if GC_MARK_STACK
4384
4385 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4386
4387 /* Array of objects that are kept alive because the C stack contains
4388 a pattern that looks like a reference to them . */
4389
4390 #define MAX_ZOMBIES 10
4391 static Lisp_Object zombies[MAX_ZOMBIES];
4392
4393 /* Number of zombie objects. */
4394
4395 static EMACS_INT nzombies;
4396
4397 /* Number of garbage collections. */
4398
4399 static EMACS_INT ngcs;
4400
4401 /* Average percentage of zombies per collection. */
4402
4403 static double avg_zombies;
4404
4405 /* Max. number of live and zombie objects. */
4406
4407 static EMACS_INT max_live, max_zombies;
4408
4409 /* Average number of live objects per GC. */
4410
4411 static double avg_live;
4412
4413 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4414 doc: /* Show information about live and zombie objects. */)
4415 (void)
4416 {
4417 Lisp_Object args[8], zombie_list = Qnil;
4418 EMACS_INT i;
4419 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4420 zombie_list = Fcons (zombies[i], zombie_list);
4421 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4422 args[1] = make_number (ngcs);
4423 args[2] = make_float (avg_live);
4424 args[3] = make_float (avg_zombies);
4425 args[4] = make_float (avg_zombies / avg_live / 100);
4426 args[5] = make_number (max_live);
4427 args[6] = make_number (max_zombies);
4428 args[7] = zombie_list;
4429 return Fmessage (8, args);
4430 }
4431
4432 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4433
4434
4435 /* Mark OBJ if we can prove it's a Lisp_Object. */
4436
4437 static inline void
4438 mark_maybe_object (Lisp_Object obj)
4439 {
4440 void *po;
4441 struct mem_node *m;
4442
4443 if (INTEGERP (obj))
4444 return;
4445
4446 po = (void *) XPNTR (obj);
4447 m = mem_find (po);
4448
4449 if (m != MEM_NIL)
4450 {
4451 int mark_p = 0;
4452
4453 switch (XTYPE (obj))
4454 {
4455 case Lisp_String:
4456 mark_p = (live_string_p (m, po)
4457 && !STRING_MARKED_P ((struct Lisp_String *) po));
4458 break;
4459
4460 case Lisp_Cons:
4461 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4462 break;
4463
4464 case Lisp_Symbol:
4465 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4466 break;
4467
4468 case Lisp_Float:
4469 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4470 break;
4471
4472 case Lisp_Vectorlike:
4473 /* Note: can't check BUFFERP before we know it's a
4474 buffer because checking that dereferences the pointer
4475 PO which might point anywhere. */
4476 if (live_vector_p (m, po))
4477 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4478 else if (live_buffer_p (m, po))
4479 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4480 break;
4481
4482 case Lisp_Misc:
4483 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4484 break;
4485
4486 default:
4487 break;
4488 }
4489
4490 if (mark_p)
4491 {
4492 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4493 if (nzombies < MAX_ZOMBIES)
4494 zombies[nzombies] = obj;
4495 ++nzombies;
4496 #endif
4497 mark_object (obj);
4498 }
4499 }
4500 }
4501
4502
4503 /* If P points to Lisp data, mark that as live if it isn't already
4504 marked. */
4505
4506 static inline void
4507 mark_maybe_pointer (void *p)
4508 {
4509 struct mem_node *m;
4510
4511 /* Quickly rule out some values which can't point to Lisp data.
4512 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4513 Otherwise, assume that Lisp data is aligned on even addresses. */
4514 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4515 return;
4516
4517 m = mem_find (p);
4518 if (m != MEM_NIL)
4519 {
4520 Lisp_Object obj = Qnil;
4521
4522 switch (m->type)
4523 {
4524 case MEM_TYPE_NON_LISP:
4525 /* Nothing to do; not a pointer to Lisp memory. */
4526 break;
4527
4528 case MEM_TYPE_BUFFER:
4529 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4530 XSETVECTOR (obj, p);
4531 break;
4532
4533 case MEM_TYPE_CONS:
4534 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4535 XSETCONS (obj, p);
4536 break;
4537
4538 case MEM_TYPE_STRING:
4539 if (live_string_p (m, p)
4540 && !STRING_MARKED_P ((struct Lisp_String *) p))
4541 XSETSTRING (obj, p);
4542 break;
4543
4544 case MEM_TYPE_MISC:
4545 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4546 XSETMISC (obj, p);
4547 break;
4548
4549 case MEM_TYPE_SYMBOL:
4550 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4551 XSETSYMBOL (obj, p);
4552 break;
4553
4554 case MEM_TYPE_FLOAT:
4555 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4556 XSETFLOAT (obj, p);
4557 break;
4558
4559 case MEM_TYPE_VECTORLIKE:
4560 case MEM_TYPE_VECTOR_BLOCK:
4561 if (live_vector_p (m, p))
4562 {
4563 Lisp_Object tem;
4564 XSETVECTOR (tem, p);
4565 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4566 obj = tem;
4567 }
4568 break;
4569
4570 default:
4571 abort ();
4572 }
4573
4574 if (!NILP (obj))
4575 mark_object (obj);
4576 }
4577 }
4578
4579
4580 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4581 a smaller alignment than GCC's __alignof__ and mark_memory might
4582 miss objects if __alignof__ were used. */
4583 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4584
4585 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4586 not suffice, which is the typical case. A host where a Lisp_Object is
4587 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4588 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4589 suffice to widen it to to a Lisp_Object and check it that way. */
4590 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4591 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4592 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4593 nor mark_maybe_object can follow the pointers. This should not occur on
4594 any practical porting target. */
4595 # error "MSB type bits straddle pointer-word boundaries"
4596 # endif
4597 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4598 pointer words that hold pointers ORed with type bits. */
4599 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4600 #else
4601 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4602 words that hold unmodified pointers. */
4603 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4604 #endif
4605
4606 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4607 or END+OFFSET..START. */
4608
4609 static void
4610 mark_memory (void *start, void *end)
4611 #ifdef __clang__
4612 /* Do not allow -faddress-sanitizer to check this function, since it
4613 crosses the function stack boundary, and thus would yield many
4614 false positives. */
4615 __attribute__((no_address_safety_analysis))
4616 #endif
4617 {
4618 void **pp;
4619 int i;
4620
4621 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4622 nzombies = 0;
4623 #endif
4624
4625 /* Make START the pointer to the start of the memory region,
4626 if it isn't already. */
4627 if (end < start)
4628 {
4629 void *tem = start;
4630 start = end;
4631 end = tem;
4632 }
4633
4634 /* Mark Lisp data pointed to. This is necessary because, in some
4635 situations, the C compiler optimizes Lisp objects away, so that
4636 only a pointer to them remains. Example:
4637
4638 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4639 ()
4640 {
4641 Lisp_Object obj = build_string ("test");
4642 struct Lisp_String *s = XSTRING (obj);
4643 Fgarbage_collect ();
4644 fprintf (stderr, "test `%s'\n", s->data);
4645 return Qnil;
4646 }
4647
4648 Here, `obj' isn't really used, and the compiler optimizes it
4649 away. The only reference to the life string is through the
4650 pointer `s'. */
4651
4652 for (pp = start; (void *) pp < end; pp++)
4653 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4654 {
4655 void *p = *(void **) ((char *) pp + i);
4656 mark_maybe_pointer (p);
4657 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4658 mark_maybe_object (XIL ((intptr_t) p));
4659 }
4660 }
4661
4662 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4663 the GCC system configuration. In gcc 3.2, the only systems for
4664 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4665 by others?) and ns32k-pc532-min. */
4666
4667 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4668
4669 static int setjmp_tested_p, longjmps_done;
4670
4671 #define SETJMP_WILL_LIKELY_WORK "\
4672 \n\
4673 Emacs garbage collector has been changed to use conservative stack\n\
4674 marking. Emacs has determined that the method it uses to do the\n\
4675 marking will likely work on your system, but this isn't sure.\n\
4676 \n\
4677 If you are a system-programmer, or can get the help of a local wizard\n\
4678 who is, please take a look at the function mark_stack in alloc.c, and\n\
4679 verify that the methods used are appropriate for your system.\n\
4680 \n\
4681 Please mail the result to <emacs-devel@gnu.org>.\n\
4682 "
4683
4684 #define SETJMP_WILL_NOT_WORK "\
4685 \n\
4686 Emacs garbage collector has been changed to use conservative stack\n\
4687 marking. Emacs has determined that the default method it uses to do the\n\
4688 marking will not work on your system. We will need a system-dependent\n\
4689 solution for your system.\n\
4690 \n\
4691 Please take a look at the function mark_stack in alloc.c, and\n\
4692 try to find a way to make it work on your system.\n\
4693 \n\
4694 Note that you may get false negatives, depending on the compiler.\n\
4695 In particular, you need to use -O with GCC for this test.\n\
4696 \n\
4697 Please mail the result to <emacs-devel@gnu.org>.\n\
4698 "
4699
4700
4701 /* Perform a quick check if it looks like setjmp saves registers in a
4702 jmp_buf. Print a message to stderr saying so. When this test
4703 succeeds, this is _not_ a proof that setjmp is sufficient for
4704 conservative stack marking. Only the sources or a disassembly
4705 can prove that. */
4706
4707 static void
4708 test_setjmp (void)
4709 {
4710 char buf[10];
4711 register int x;
4712 jmp_buf jbuf;
4713 int result = 0;
4714
4715 /* Arrange for X to be put in a register. */
4716 sprintf (buf, "1");
4717 x = strlen (buf);
4718 x = 2 * x - 1;
4719
4720 setjmp (jbuf);
4721 if (longjmps_done == 1)
4722 {
4723 /* Came here after the longjmp at the end of the function.
4724
4725 If x == 1, the longjmp has restored the register to its
4726 value before the setjmp, and we can hope that setjmp
4727 saves all such registers in the jmp_buf, although that
4728 isn't sure.
4729
4730 For other values of X, either something really strange is
4731 taking place, or the setjmp just didn't save the register. */
4732
4733 if (x == 1)
4734 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4735 else
4736 {
4737 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4738 exit (1);
4739 }
4740 }
4741
4742 ++longjmps_done;
4743 x = 2;
4744 if (longjmps_done == 1)
4745 longjmp (jbuf, 1);
4746 }
4747
4748 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4749
4750
4751 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4752
4753 /* Abort if anything GCPRO'd doesn't survive the GC. */
4754
4755 static void
4756 check_gcpros (void)
4757 {
4758 struct gcpro *p;
4759 ptrdiff_t i;
4760
4761 for (p = gcprolist; p; p = p->next)
4762 for (i = 0; i < p->nvars; ++i)
4763 if (!survives_gc_p (p->var[i]))
4764 /* FIXME: It's not necessarily a bug. It might just be that the
4765 GCPRO is unnecessary or should release the object sooner. */
4766 abort ();
4767 }
4768
4769 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4770
4771 static void
4772 dump_zombies (void)
4773 {
4774 int i;
4775
4776 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4777 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4778 {
4779 fprintf (stderr, " %d = ", i);
4780 debug_print (zombies[i]);
4781 }
4782 }
4783
4784 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4785
4786
4787 /* Mark live Lisp objects on the C stack.
4788
4789 There are several system-dependent problems to consider when
4790 porting this to new architectures:
4791
4792 Processor Registers
4793
4794 We have to mark Lisp objects in CPU registers that can hold local
4795 variables or are used to pass parameters.
4796
4797 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4798 something that either saves relevant registers on the stack, or
4799 calls mark_maybe_object passing it each register's contents.
4800
4801 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4802 implementation assumes that calling setjmp saves registers we need
4803 to see in a jmp_buf which itself lies on the stack. This doesn't
4804 have to be true! It must be verified for each system, possibly
4805 by taking a look at the source code of setjmp.
4806
4807 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4808 can use it as a machine independent method to store all registers
4809 to the stack. In this case the macros described in the previous
4810 two paragraphs are not used.
4811
4812 Stack Layout
4813
4814 Architectures differ in the way their processor stack is organized.
4815 For example, the stack might look like this
4816
4817 +----------------+
4818 | Lisp_Object | size = 4
4819 +----------------+
4820 | something else | size = 2
4821 +----------------+
4822 | Lisp_Object | size = 4
4823 +----------------+
4824 | ... |
4825
4826 In such a case, not every Lisp_Object will be aligned equally. To
4827 find all Lisp_Object on the stack it won't be sufficient to walk
4828 the stack in steps of 4 bytes. Instead, two passes will be
4829 necessary, one starting at the start of the stack, and a second
4830 pass starting at the start of the stack + 2. Likewise, if the
4831 minimal alignment of Lisp_Objects on the stack is 1, four passes
4832 would be necessary, each one starting with one byte more offset
4833 from the stack start. */
4834
4835 static void
4836 mark_stack (void)
4837 {
4838 void *end;
4839
4840 #ifdef HAVE___BUILTIN_UNWIND_INIT
4841 /* Force callee-saved registers and register windows onto the stack.
4842 This is the preferred method if available, obviating the need for
4843 machine dependent methods. */
4844 __builtin_unwind_init ();
4845 end = &end;
4846 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4847 #ifndef GC_SAVE_REGISTERS_ON_STACK
4848 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4849 union aligned_jmpbuf {
4850 Lisp_Object o;
4851 jmp_buf j;
4852 } j;
4853 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4854 #endif
4855 /* This trick flushes the register windows so that all the state of
4856 the process is contained in the stack. */
4857 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4858 needed on ia64 too. See mach_dep.c, where it also says inline
4859 assembler doesn't work with relevant proprietary compilers. */
4860 #ifdef __sparc__
4861 #if defined (__sparc64__) && defined (__FreeBSD__)
4862 /* FreeBSD does not have a ta 3 handler. */
4863 asm ("flushw");
4864 #else
4865 asm ("ta 3");
4866 #endif
4867 #endif
4868
4869 /* Save registers that we need to see on the stack. We need to see
4870 registers used to hold register variables and registers used to
4871 pass parameters. */
4872 #ifdef GC_SAVE_REGISTERS_ON_STACK
4873 GC_SAVE_REGISTERS_ON_STACK (end);
4874 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4875
4876 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4877 setjmp will definitely work, test it
4878 and print a message with the result
4879 of the test. */
4880 if (!setjmp_tested_p)
4881 {
4882 setjmp_tested_p = 1;
4883 test_setjmp ();
4884 }
4885 #endif /* GC_SETJMP_WORKS */
4886
4887 setjmp (j.j);
4888 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4889 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4890 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4891
4892 /* This assumes that the stack is a contiguous region in memory. If
4893 that's not the case, something has to be done here to iterate
4894 over the stack segments. */
4895 mark_memory (stack_base, end);
4896
4897 /* Allow for marking a secondary stack, like the register stack on the
4898 ia64. */
4899 #ifdef GC_MARK_SECONDARY_STACK
4900 GC_MARK_SECONDARY_STACK ();
4901 #endif
4902
4903 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4904 check_gcpros ();
4905 #endif
4906 }
4907
4908 #endif /* GC_MARK_STACK != 0 */
4909
4910
4911 /* Determine whether it is safe to access memory at address P. */
4912 static int
4913 valid_pointer_p (void *p)
4914 {
4915 #ifdef WINDOWSNT
4916 return w32_valid_pointer_p (p, 16);
4917 #else
4918 int fd[2];
4919
4920 /* Obviously, we cannot just access it (we would SEGV trying), so we
4921 trick the o/s to tell us whether p is a valid pointer.
4922 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4923 not validate p in that case. */
4924
4925 if (pipe (fd) == 0)
4926 {
4927 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4928 emacs_close (fd[1]);
4929 emacs_close (fd[0]);
4930 return valid;
4931 }
4932
4933 return -1;
4934 #endif
4935 }
4936
4937 /* Return 1 if OBJ is a valid lisp object.
4938 Return 0 if OBJ is NOT a valid lisp object.
4939 Return -1 if we cannot validate OBJ.
4940 This function can be quite slow,
4941 so it should only be used in code for manual debugging. */
4942
4943 int
4944 valid_lisp_object_p (Lisp_Object obj)
4945 {
4946 void *p;
4947 #if GC_MARK_STACK
4948 struct mem_node *m;
4949 #endif
4950
4951 if (INTEGERP (obj))
4952 return 1;
4953
4954 p = (void *) XPNTR (obj);
4955 if (PURE_POINTER_P (p))
4956 return 1;
4957
4958 #if !GC_MARK_STACK
4959 return valid_pointer_p (p);
4960 #else
4961
4962 m = mem_find (p);
4963
4964 if (m == MEM_NIL)
4965 {
4966 int valid = valid_pointer_p (p);
4967 if (valid <= 0)
4968 return valid;
4969
4970 if (SUBRP (obj))
4971 return 1;
4972
4973 return 0;
4974 }
4975
4976 switch (m->type)
4977 {
4978 case MEM_TYPE_NON_LISP:
4979 return 0;
4980
4981 case MEM_TYPE_BUFFER:
4982 return live_buffer_p (m, p);
4983
4984 case MEM_TYPE_CONS:
4985 return live_cons_p (m, p);
4986
4987 case MEM_TYPE_STRING:
4988 return live_string_p (m, p);
4989
4990 case MEM_TYPE_MISC:
4991 return live_misc_p (m, p);
4992
4993 case MEM_TYPE_SYMBOL:
4994 return live_symbol_p (m, p);
4995
4996 case MEM_TYPE_FLOAT:
4997 return live_float_p (m, p);
4998
4999 case MEM_TYPE_VECTORLIKE:
5000 case MEM_TYPE_VECTOR_BLOCK:
5001 return live_vector_p (m, p);
5002
5003 default:
5004 break;
5005 }
5006
5007 return 0;
5008 #endif
5009 }
5010
5011
5012
5013 \f
5014 /***********************************************************************
5015 Pure Storage Management
5016 ***********************************************************************/
5017
5018 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5019 pointer to it. TYPE is the Lisp type for which the memory is
5020 allocated. TYPE < 0 means it's not used for a Lisp object. */
5021
5022 static void *
5023 pure_alloc (size_t size, int type)
5024 {
5025 void *result;
5026 #if USE_LSB_TAG
5027 size_t alignment = (1 << GCTYPEBITS);
5028 #else
5029 size_t alignment = sizeof (EMACS_INT);
5030
5031 /* Give Lisp_Floats an extra alignment. */
5032 if (type == Lisp_Float)
5033 {
5034 #if defined __GNUC__ && __GNUC__ >= 2
5035 alignment = __alignof (struct Lisp_Float);
5036 #else
5037 alignment = sizeof (struct Lisp_Float);
5038 #endif
5039 }
5040 #endif
5041
5042 again:
5043 if (type >= 0)
5044 {
5045 /* Allocate space for a Lisp object from the beginning of the free
5046 space with taking account of alignment. */
5047 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5048 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5049 }
5050 else
5051 {
5052 /* Allocate space for a non-Lisp object from the end of the free
5053 space. */
5054 pure_bytes_used_non_lisp += size;
5055 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5056 }
5057 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5058
5059 if (pure_bytes_used <= pure_size)
5060 return result;
5061
5062 /* Don't allocate a large amount here,
5063 because it might get mmap'd and then its address
5064 might not be usable. */
5065 purebeg = (char *) xmalloc (10000);
5066 pure_size = 10000;
5067 pure_bytes_used_before_overflow += pure_bytes_used - size;
5068 pure_bytes_used = 0;
5069 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5070 goto again;
5071 }
5072
5073
5074 /* Print a warning if PURESIZE is too small. */
5075
5076 void
5077 check_pure_size (void)
5078 {
5079 if (pure_bytes_used_before_overflow)
5080 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5081 " bytes needed)"),
5082 pure_bytes_used + pure_bytes_used_before_overflow);
5083 }
5084
5085
5086 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5087 the non-Lisp data pool of the pure storage, and return its start
5088 address. Return NULL if not found. */
5089
5090 static char *
5091 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5092 {
5093 int i;
5094 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5095 const unsigned char *p;
5096 char *non_lisp_beg;
5097
5098 if (pure_bytes_used_non_lisp <= nbytes)
5099 return NULL;
5100
5101 /* Set up the Boyer-Moore table. */
5102 skip = nbytes + 1;
5103 for (i = 0; i < 256; i++)
5104 bm_skip[i] = skip;
5105
5106 p = (const unsigned char *) data;
5107 while (--skip > 0)
5108 bm_skip[*p++] = skip;
5109
5110 last_char_skip = bm_skip['\0'];
5111
5112 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5113 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5114
5115 /* See the comments in the function `boyer_moore' (search.c) for the
5116 use of `infinity'. */
5117 infinity = pure_bytes_used_non_lisp + 1;
5118 bm_skip['\0'] = infinity;
5119
5120 p = (const unsigned char *) non_lisp_beg + nbytes;
5121 start = 0;
5122 do
5123 {
5124 /* Check the last character (== '\0'). */
5125 do
5126 {
5127 start += bm_skip[*(p + start)];
5128 }
5129 while (start <= start_max);
5130
5131 if (start < infinity)
5132 /* Couldn't find the last character. */
5133 return NULL;
5134
5135 /* No less than `infinity' means we could find the last
5136 character at `p[start - infinity]'. */
5137 start -= infinity;
5138
5139 /* Check the remaining characters. */
5140 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5141 /* Found. */
5142 return non_lisp_beg + start;
5143
5144 start += last_char_skip;
5145 }
5146 while (start <= start_max);
5147
5148 return NULL;
5149 }
5150
5151
5152 /* Return a string allocated in pure space. DATA is a buffer holding
5153 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5154 non-zero means make the result string multibyte.
5155
5156 Must get an error if pure storage is full, since if it cannot hold
5157 a large string it may be able to hold conses that point to that
5158 string; then the string is not protected from gc. */
5159
5160 Lisp_Object
5161 make_pure_string (const char *data,
5162 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5163 {
5164 Lisp_Object string;
5165 struct Lisp_String *s;
5166
5167 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5168 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5169 if (s->data == NULL)
5170 {
5171 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5172 memcpy (s->data, data, nbytes);
5173 s->data[nbytes] = '\0';
5174 }
5175 s->size = nchars;
5176 s->size_byte = multibyte ? nbytes : -1;
5177 s->intervals = NULL_INTERVAL;
5178 XSETSTRING (string, s);
5179 return string;
5180 }
5181
5182 /* Return a string a string allocated in pure space. Do not allocate
5183 the string data, just point to DATA. */
5184
5185 Lisp_Object
5186 make_pure_c_string (const char *data)
5187 {
5188 Lisp_Object string;
5189 struct Lisp_String *s;
5190 ptrdiff_t nchars = strlen (data);
5191
5192 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5193 s->size = nchars;
5194 s->size_byte = -1;
5195 s->data = (unsigned char *) data;
5196 s->intervals = NULL_INTERVAL;
5197 XSETSTRING (string, s);
5198 return string;
5199 }
5200
5201 /* Return a cons allocated from pure space. Give it pure copies
5202 of CAR as car and CDR as cdr. */
5203
5204 Lisp_Object
5205 pure_cons (Lisp_Object car, Lisp_Object cdr)
5206 {
5207 register Lisp_Object new;
5208 struct Lisp_Cons *p;
5209
5210 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5211 XSETCONS (new, p);
5212 XSETCAR (new, Fpurecopy (car));
5213 XSETCDR (new, Fpurecopy (cdr));
5214 return new;
5215 }
5216
5217
5218 /* Value is a float object with value NUM allocated from pure space. */
5219
5220 static Lisp_Object
5221 make_pure_float (double num)
5222 {
5223 register Lisp_Object new;
5224 struct Lisp_Float *p;
5225
5226 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5227 XSETFLOAT (new, p);
5228 XFLOAT_INIT (new, num);
5229 return new;
5230 }
5231
5232
5233 /* Return a vector with room for LEN Lisp_Objects allocated from
5234 pure space. */
5235
5236 static Lisp_Object
5237 make_pure_vector (ptrdiff_t len)
5238 {
5239 Lisp_Object new;
5240 struct Lisp_Vector *p;
5241 size_t size = (offsetof (struct Lisp_Vector, contents)
5242 + len * sizeof (Lisp_Object));
5243
5244 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5245 XSETVECTOR (new, p);
5246 XVECTOR (new)->header.size = len;
5247 return new;
5248 }
5249
5250
5251 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5252 doc: /* Make a copy of object OBJ in pure storage.
5253 Recursively copies contents of vectors and cons cells.
5254 Does not copy symbols. Copies strings without text properties. */)
5255 (register Lisp_Object obj)
5256 {
5257 if (NILP (Vpurify_flag))
5258 return obj;
5259
5260 if (PURE_POINTER_P (XPNTR (obj)))
5261 return obj;
5262
5263 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5264 {
5265 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5266 if (!NILP (tmp))
5267 return tmp;
5268 }
5269
5270 if (CONSP (obj))
5271 obj = pure_cons (XCAR (obj), XCDR (obj));
5272 else if (FLOATP (obj))
5273 obj = make_pure_float (XFLOAT_DATA (obj));
5274 else if (STRINGP (obj))
5275 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5276 SBYTES (obj),
5277 STRING_MULTIBYTE (obj));
5278 else if (COMPILEDP (obj) || VECTORP (obj))
5279 {
5280 register struct Lisp_Vector *vec;
5281 register ptrdiff_t i;
5282 ptrdiff_t size;
5283
5284 size = ASIZE (obj);
5285 if (size & PSEUDOVECTOR_FLAG)
5286 size &= PSEUDOVECTOR_SIZE_MASK;
5287 vec = XVECTOR (make_pure_vector (size));
5288 for (i = 0; i < size; i++)
5289 vec->contents[i] = Fpurecopy (AREF (obj, i));
5290 if (COMPILEDP (obj))
5291 {
5292 XSETPVECTYPE (vec, PVEC_COMPILED);
5293 XSETCOMPILED (obj, vec);
5294 }
5295 else
5296 XSETVECTOR (obj, vec);
5297 }
5298 else if (MARKERP (obj))
5299 error ("Attempt to copy a marker to pure storage");
5300 else
5301 /* Not purified, don't hash-cons. */
5302 return obj;
5303
5304 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5305 Fputhash (obj, obj, Vpurify_flag);
5306
5307 return obj;
5308 }
5309
5310
5311 \f
5312 /***********************************************************************
5313 Protection from GC
5314 ***********************************************************************/
5315
5316 /* Put an entry in staticvec, pointing at the variable with address
5317 VARADDRESS. */
5318
5319 void
5320 staticpro (Lisp_Object *varaddress)
5321 {
5322 staticvec[staticidx++] = varaddress;
5323 if (staticidx >= NSTATICS)
5324 abort ();
5325 }
5326
5327 \f
5328 /***********************************************************************
5329 Protection from GC
5330 ***********************************************************************/
5331
5332 /* Temporarily prevent garbage collection. */
5333
5334 ptrdiff_t
5335 inhibit_garbage_collection (void)
5336 {
5337 ptrdiff_t count = SPECPDL_INDEX ();
5338
5339 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5340 return count;
5341 }
5342
5343
5344 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5345 doc: /* Reclaim storage for Lisp objects no longer needed.
5346 Garbage collection happens automatically if you cons more than
5347 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5348 `garbage-collect' normally returns a list with info on amount of space in use:
5349 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5350 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5351 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5352 (USED-STRINGS . FREE-STRINGS))
5353 However, if there was overflow in pure space, `garbage-collect'
5354 returns nil, because real GC can't be done.
5355 See Info node `(elisp)Garbage Collection'. */)
5356 (void)
5357 {
5358 register struct specbinding *bind;
5359 char stack_top_variable;
5360 ptrdiff_t i;
5361 int message_p;
5362 Lisp_Object total[8];
5363 ptrdiff_t count = SPECPDL_INDEX ();
5364 EMACS_TIME t1, t2, t3;
5365
5366 if (abort_on_gc)
5367 abort ();
5368
5369 /* Can't GC if pure storage overflowed because we can't determine
5370 if something is a pure object or not. */
5371 if (pure_bytes_used_before_overflow)
5372 return Qnil;
5373
5374 CHECK_CONS_LIST ();
5375
5376 /* Don't keep undo information around forever.
5377 Do this early on, so it is no problem if the user quits. */
5378 {
5379 register struct buffer *nextb = all_buffers;
5380
5381 while (nextb)
5382 {
5383 /* If a buffer's undo list is Qt, that means that undo is
5384 turned off in that buffer. Calling truncate_undo_list on
5385 Qt tends to return NULL, which effectively turns undo back on.
5386 So don't call truncate_undo_list if undo_list is Qt. */
5387 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5388 truncate_undo_list (nextb);
5389
5390 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5391 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5392 && ! nextb->text->inhibit_shrinking)
5393 {
5394 /* If a buffer's gap size is more than 10% of the buffer
5395 size, or larger than 2000 bytes, then shrink it
5396 accordingly. Keep a minimum size of 20 bytes. */
5397 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5398
5399 if (nextb->text->gap_size > size)
5400 {
5401 struct buffer *save_current = current_buffer;
5402 current_buffer = nextb;
5403 make_gap (-(nextb->text->gap_size - size));
5404 current_buffer = save_current;
5405 }
5406 }
5407
5408 nextb = nextb->header.next.buffer;
5409 }
5410 }
5411
5412 EMACS_GET_TIME (t1);
5413
5414 /* In case user calls debug_print during GC,
5415 don't let that cause a recursive GC. */
5416 consing_since_gc = 0;
5417
5418 /* Save what's currently displayed in the echo area. */
5419 message_p = push_message ();
5420 record_unwind_protect (pop_message_unwind, Qnil);
5421
5422 /* Save a copy of the contents of the stack, for debugging. */
5423 #if MAX_SAVE_STACK > 0
5424 if (NILP (Vpurify_flag))
5425 {
5426 char *stack;
5427 ptrdiff_t stack_size;
5428 if (&stack_top_variable < stack_bottom)
5429 {
5430 stack = &stack_top_variable;
5431 stack_size = stack_bottom - &stack_top_variable;
5432 }
5433 else
5434 {
5435 stack = stack_bottom;
5436 stack_size = &stack_top_variable - stack_bottom;
5437 }
5438 if (stack_size <= MAX_SAVE_STACK)
5439 {
5440 if (stack_copy_size < stack_size)
5441 {
5442 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5443 stack_copy_size = stack_size;
5444 }
5445 memcpy (stack_copy, stack, stack_size);
5446 }
5447 }
5448 #endif /* MAX_SAVE_STACK > 0 */
5449
5450 if (garbage_collection_messages)
5451 message1_nolog ("Garbage collecting...");
5452
5453 BLOCK_INPUT;
5454
5455 shrink_regexp_cache ();
5456
5457 gc_in_progress = 1;
5458
5459 /* clear_marks (); */
5460
5461 /* Mark all the special slots that serve as the roots of accessibility. */
5462
5463 for (i = 0; i < staticidx; i++)
5464 mark_object (*staticvec[i]);
5465
5466 for (bind = specpdl; bind != specpdl_ptr; bind++)
5467 {
5468 mark_object (bind->symbol);
5469 mark_object (bind->old_value);
5470 }
5471 mark_terminals ();
5472 mark_kboards ();
5473 mark_ttys ();
5474
5475 #ifdef USE_GTK
5476 {
5477 extern void xg_mark_data (void);
5478 xg_mark_data ();
5479 }
5480 #endif
5481
5482 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5483 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5484 mark_stack ();
5485 #else
5486 {
5487 register struct gcpro *tail;
5488 for (tail = gcprolist; tail; tail = tail->next)
5489 for (i = 0; i < tail->nvars; i++)
5490 mark_object (tail->var[i]);
5491 }
5492 mark_byte_stack ();
5493 {
5494 struct catchtag *catch;
5495 struct handler *handler;
5496
5497 for (catch = catchlist; catch; catch = catch->next)
5498 {
5499 mark_object (catch->tag);
5500 mark_object (catch->val);
5501 }
5502 for (handler = handlerlist; handler; handler = handler->next)
5503 {
5504 mark_object (handler->handler);
5505 mark_object (handler->var);
5506 }
5507 }
5508 mark_backtrace ();
5509 #endif
5510
5511 #ifdef HAVE_WINDOW_SYSTEM
5512 mark_fringe_data ();
5513 #endif
5514
5515 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5516 mark_stack ();
5517 #endif
5518
5519 /* Everything is now marked, except for the things that require special
5520 finalization, i.e. the undo_list.
5521 Look thru every buffer's undo list
5522 for elements that update markers that were not marked,
5523 and delete them. */
5524 {
5525 register struct buffer *nextb = all_buffers;
5526
5527 while (nextb)
5528 {
5529 /* If a buffer's undo list is Qt, that means that undo is
5530 turned off in that buffer. Calling truncate_undo_list on
5531 Qt tends to return NULL, which effectively turns undo back on.
5532 So don't call truncate_undo_list if undo_list is Qt. */
5533 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5534 {
5535 Lisp_Object tail, prev;
5536 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5537 prev = Qnil;
5538 while (CONSP (tail))
5539 {
5540 if (CONSP (XCAR (tail))
5541 && MARKERP (XCAR (XCAR (tail)))
5542 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5543 {
5544 if (NILP (prev))
5545 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5546 else
5547 {
5548 tail = XCDR (tail);
5549 XSETCDR (prev, tail);
5550 }
5551 }
5552 else
5553 {
5554 prev = tail;
5555 tail = XCDR (tail);
5556 }
5557 }
5558 }
5559 /* Now that we have stripped the elements that need not be in the
5560 undo_list any more, we can finally mark the list. */
5561 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5562
5563 nextb = nextb->header.next.buffer;
5564 }
5565 }
5566
5567 gc_sweep ();
5568
5569 /* Clear the mark bits that we set in certain root slots. */
5570
5571 unmark_byte_stack ();
5572 VECTOR_UNMARK (&buffer_defaults);
5573 VECTOR_UNMARK (&buffer_local_symbols);
5574
5575 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5576 dump_zombies ();
5577 #endif
5578
5579 UNBLOCK_INPUT;
5580
5581 CHECK_CONS_LIST ();
5582
5583 /* clear_marks (); */
5584 gc_in_progress = 0;
5585
5586 consing_since_gc = 0;
5587 if (gc_cons_threshold < 10000)
5588 gc_cons_threshold = 10000;
5589
5590 gc_relative_threshold = 0;
5591 if (FLOATP (Vgc_cons_percentage))
5592 { /* Set gc_cons_combined_threshold. */
5593 double tot = 0;
5594
5595 tot += total_conses * sizeof (struct Lisp_Cons);
5596 tot += total_symbols * sizeof (struct Lisp_Symbol);
5597 tot += total_markers * sizeof (union Lisp_Misc);
5598 tot += total_string_size;
5599 tot += total_vector_size * sizeof (Lisp_Object);
5600 tot += total_floats * sizeof (struct Lisp_Float);
5601 tot += total_intervals * sizeof (struct interval);
5602 tot += total_strings * sizeof (struct Lisp_String);
5603
5604 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5605 if (0 < tot)
5606 {
5607 if (tot < TYPE_MAXIMUM (EMACS_INT))
5608 gc_relative_threshold = tot;
5609 else
5610 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5611 }
5612 }
5613
5614 if (garbage_collection_messages)
5615 {
5616 if (message_p || minibuf_level > 0)
5617 restore_message ();
5618 else
5619 message1_nolog ("Garbage collecting...done");
5620 }
5621
5622 unbind_to (count, Qnil);
5623
5624 total[0] = Fcons (make_number (total_conses),
5625 make_number (total_free_conses));
5626 total[1] = Fcons (make_number (total_symbols),
5627 make_number (total_free_symbols));
5628 total[2] = Fcons (make_number (total_markers),
5629 make_number (total_free_markers));
5630 total[3] = make_number (total_string_size);
5631 total[4] = make_number (total_vector_size);
5632 total[5] = Fcons (make_number (total_floats),
5633 make_number (total_free_floats));
5634 total[6] = Fcons (make_number (total_intervals),
5635 make_number (total_free_intervals));
5636 total[7] = Fcons (make_number (total_strings),
5637 make_number (total_free_strings));
5638
5639 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5640 {
5641 /* Compute average percentage of zombies. */
5642 double nlive = 0;
5643
5644 for (i = 0; i < 7; ++i)
5645 if (CONSP (total[i]))
5646 nlive += XFASTINT (XCAR (total[i]));
5647
5648 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5649 max_live = max (nlive, max_live);
5650 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5651 max_zombies = max (nzombies, max_zombies);
5652 ++ngcs;
5653 }
5654 #endif
5655
5656 if (!NILP (Vpost_gc_hook))
5657 {
5658 ptrdiff_t gc_count = inhibit_garbage_collection ();
5659 safe_run_hooks (Qpost_gc_hook);
5660 unbind_to (gc_count, Qnil);
5661 }
5662
5663 /* Accumulate statistics. */
5664 if (FLOATP (Vgc_elapsed))
5665 {
5666 EMACS_GET_TIME (t2);
5667 EMACS_SUB_TIME (t3, t2, t1);
5668 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5669 + EMACS_TIME_TO_DOUBLE (t3));
5670 }
5671
5672 gcs_done++;
5673
5674 return Flist (sizeof total / sizeof *total, total);
5675 }
5676
5677
5678 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5679 only interesting objects referenced from glyphs are strings. */
5680
5681 static void
5682 mark_glyph_matrix (struct glyph_matrix *matrix)
5683 {
5684 struct glyph_row *row = matrix->rows;
5685 struct glyph_row *end = row + matrix->nrows;
5686
5687 for (; row < end; ++row)
5688 if (row->enabled_p)
5689 {
5690 int area;
5691 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5692 {
5693 struct glyph *glyph = row->glyphs[area];
5694 struct glyph *end_glyph = glyph + row->used[area];
5695
5696 for (; glyph < end_glyph; ++glyph)
5697 if (STRINGP (glyph->object)
5698 && !STRING_MARKED_P (XSTRING (glyph->object)))
5699 mark_object (glyph->object);
5700 }
5701 }
5702 }
5703
5704
5705 /* Mark Lisp faces in the face cache C. */
5706
5707 static void
5708 mark_face_cache (struct face_cache *c)
5709 {
5710 if (c)
5711 {
5712 int i, j;
5713 for (i = 0; i < c->used; ++i)
5714 {
5715 struct face *face = FACE_FROM_ID (c->f, i);
5716
5717 if (face)
5718 {
5719 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5720 mark_object (face->lface[j]);
5721 }
5722 }
5723 }
5724 }
5725
5726
5727 \f
5728 /* Mark reference to a Lisp_Object.
5729 If the object referred to has not been seen yet, recursively mark
5730 all the references contained in it. */
5731
5732 #define LAST_MARKED_SIZE 500
5733 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5734 static int last_marked_index;
5735
5736 /* For debugging--call abort when we cdr down this many
5737 links of a list, in mark_object. In debugging,
5738 the call to abort will hit a breakpoint.
5739 Normally this is zero and the check never goes off. */
5740 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5741
5742 static void
5743 mark_vectorlike (struct Lisp_Vector *ptr)
5744 {
5745 ptrdiff_t size = ptr->header.size;
5746 ptrdiff_t i;
5747
5748 eassert (!VECTOR_MARKED_P (ptr));
5749 VECTOR_MARK (ptr); /* Else mark it */
5750 if (size & PSEUDOVECTOR_FLAG)
5751 size &= PSEUDOVECTOR_SIZE_MASK;
5752
5753 /* Note that this size is not the memory-footprint size, but only
5754 the number of Lisp_Object fields that we should trace.
5755 The distinction is used e.g. by Lisp_Process which places extra
5756 non-Lisp_Object fields at the end of the structure. */
5757 for (i = 0; i < size; i++) /* and then mark its elements */
5758 mark_object (ptr->contents[i]);
5759 }
5760
5761 /* Like mark_vectorlike but optimized for char-tables (and
5762 sub-char-tables) assuming that the contents are mostly integers or
5763 symbols. */
5764
5765 static void
5766 mark_char_table (struct Lisp_Vector *ptr)
5767 {
5768 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5769 int i;
5770
5771 eassert (!VECTOR_MARKED_P (ptr));
5772 VECTOR_MARK (ptr);
5773 for (i = 0; i < size; i++)
5774 {
5775 Lisp_Object val = ptr->contents[i];
5776
5777 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5778 continue;
5779 if (SUB_CHAR_TABLE_P (val))
5780 {
5781 if (! VECTOR_MARKED_P (XVECTOR (val)))
5782 mark_char_table (XVECTOR (val));
5783 }
5784 else
5785 mark_object (val);
5786 }
5787 }
5788
5789 void
5790 mark_object (Lisp_Object arg)
5791 {
5792 register Lisp_Object obj = arg;
5793 #ifdef GC_CHECK_MARKED_OBJECTS
5794 void *po;
5795 struct mem_node *m;
5796 #endif
5797 ptrdiff_t cdr_count = 0;
5798
5799 loop:
5800
5801 if (PURE_POINTER_P (XPNTR (obj)))
5802 return;
5803
5804 last_marked[last_marked_index++] = obj;
5805 if (last_marked_index == LAST_MARKED_SIZE)
5806 last_marked_index = 0;
5807
5808 /* Perform some sanity checks on the objects marked here. Abort if
5809 we encounter an object we know is bogus. This increases GC time
5810 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5811 #ifdef GC_CHECK_MARKED_OBJECTS
5812
5813 po = (void *) XPNTR (obj);
5814
5815 /* Check that the object pointed to by PO is known to be a Lisp
5816 structure allocated from the heap. */
5817 #define CHECK_ALLOCATED() \
5818 do { \
5819 m = mem_find (po); \
5820 if (m == MEM_NIL) \
5821 abort (); \
5822 } while (0)
5823
5824 /* Check that the object pointed to by PO is live, using predicate
5825 function LIVEP. */
5826 #define CHECK_LIVE(LIVEP) \
5827 do { \
5828 if (!LIVEP (m, po)) \
5829 abort (); \
5830 } while (0)
5831
5832 /* Check both of the above conditions. */
5833 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5834 do { \
5835 CHECK_ALLOCATED (); \
5836 CHECK_LIVE (LIVEP); \
5837 } while (0) \
5838
5839 #else /* not GC_CHECK_MARKED_OBJECTS */
5840
5841 #define CHECK_LIVE(LIVEP) (void) 0
5842 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5843
5844 #endif /* not GC_CHECK_MARKED_OBJECTS */
5845
5846 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5847 {
5848 case Lisp_String:
5849 {
5850 register struct Lisp_String *ptr = XSTRING (obj);
5851 if (STRING_MARKED_P (ptr))
5852 break;
5853 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5854 MARK_INTERVAL_TREE (ptr->intervals);
5855 MARK_STRING (ptr);
5856 #ifdef GC_CHECK_STRING_BYTES
5857 /* Check that the string size recorded in the string is the
5858 same as the one recorded in the sdata structure. */
5859 CHECK_STRING_BYTES (ptr);
5860 #endif /* GC_CHECK_STRING_BYTES */
5861 }
5862 break;
5863
5864 case Lisp_Vectorlike:
5865 if (VECTOR_MARKED_P (XVECTOR (obj)))
5866 break;
5867 #ifdef GC_CHECK_MARKED_OBJECTS
5868 m = mem_find (po);
5869 if (m == MEM_NIL && !SUBRP (obj)
5870 && po != &buffer_defaults
5871 && po != &buffer_local_symbols)
5872 abort ();
5873 #endif /* GC_CHECK_MARKED_OBJECTS */
5874
5875 if (BUFFERP (obj))
5876 {
5877 #ifdef GC_CHECK_MARKED_OBJECTS
5878 if (po != &buffer_defaults && po != &buffer_local_symbols)
5879 {
5880 struct buffer *b;
5881 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5882 ;
5883 if (b == NULL)
5884 abort ();
5885 }
5886 #endif /* GC_CHECK_MARKED_OBJECTS */
5887 mark_buffer (obj);
5888 }
5889 else if (SUBRP (obj))
5890 break;
5891 else if (COMPILEDP (obj))
5892 /* We could treat this just like a vector, but it is better to
5893 save the COMPILED_CONSTANTS element for last and avoid
5894 recursion there. */
5895 {
5896 register struct Lisp_Vector *ptr = XVECTOR (obj);
5897 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5898 int i;
5899
5900 CHECK_LIVE (live_vector_p);
5901 VECTOR_MARK (ptr); /* Else mark it */
5902 for (i = 0; i < size; i++) /* and then mark its elements */
5903 {
5904 if (i != COMPILED_CONSTANTS)
5905 mark_object (ptr->contents[i]);
5906 }
5907 obj = ptr->contents[COMPILED_CONSTANTS];
5908 goto loop;
5909 }
5910 else if (FRAMEP (obj))
5911 {
5912 register struct frame *ptr = XFRAME (obj);
5913 mark_vectorlike (XVECTOR (obj));
5914 mark_face_cache (ptr->face_cache);
5915 }
5916 else if (WINDOWP (obj))
5917 {
5918 register struct Lisp_Vector *ptr = XVECTOR (obj);
5919 struct window *w = XWINDOW (obj);
5920 mark_vectorlike (ptr);
5921 /* Mark glyphs for leaf windows. Marking window matrices is
5922 sufficient because frame matrices use the same glyph
5923 memory. */
5924 if (NILP (w->hchild)
5925 && NILP (w->vchild)
5926 && w->current_matrix)
5927 {
5928 mark_glyph_matrix (w->current_matrix);
5929 mark_glyph_matrix (w->desired_matrix);
5930 }
5931 }
5932 else if (HASH_TABLE_P (obj))
5933 {
5934 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5935 mark_vectorlike ((struct Lisp_Vector *)h);
5936 /* If hash table is not weak, mark all keys and values.
5937 For weak tables, mark only the vector. */
5938 if (NILP (h->weak))
5939 mark_object (h->key_and_value);
5940 else
5941 VECTOR_MARK (XVECTOR (h->key_and_value));
5942 }
5943 else if (CHAR_TABLE_P (obj))
5944 mark_char_table (XVECTOR (obj));
5945 else
5946 mark_vectorlike (XVECTOR (obj));
5947 break;
5948
5949 case Lisp_Symbol:
5950 {
5951 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5952 struct Lisp_Symbol *ptrx;
5953
5954 if (ptr->gcmarkbit)
5955 break;
5956 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5957 ptr->gcmarkbit = 1;
5958 mark_object (ptr->function);
5959 mark_object (ptr->plist);
5960 switch (ptr->redirect)
5961 {
5962 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5963 case SYMBOL_VARALIAS:
5964 {
5965 Lisp_Object tem;
5966 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5967 mark_object (tem);
5968 break;
5969 }
5970 case SYMBOL_LOCALIZED:
5971 {
5972 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5973 /* If the value is forwarded to a buffer or keyboard field,
5974 these are marked when we see the corresponding object.
5975 And if it's forwarded to a C variable, either it's not
5976 a Lisp_Object var, or it's staticpro'd already. */
5977 mark_object (blv->where);
5978 mark_object (blv->valcell);
5979 mark_object (blv->defcell);
5980 break;
5981 }
5982 case SYMBOL_FORWARDED:
5983 /* If the value is forwarded to a buffer or keyboard field,
5984 these are marked when we see the corresponding object.
5985 And if it's forwarded to a C variable, either it's not
5986 a Lisp_Object var, or it's staticpro'd already. */
5987 break;
5988 default: abort ();
5989 }
5990 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5991 MARK_STRING (XSTRING (ptr->xname));
5992 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5993
5994 ptr = ptr->next;
5995 if (ptr)
5996 {
5997 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5998 XSETSYMBOL (obj, ptrx);
5999 goto loop;
6000 }
6001 }
6002 break;
6003
6004 case Lisp_Misc:
6005 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6006 if (XMISCANY (obj)->gcmarkbit)
6007 break;
6008 XMISCANY (obj)->gcmarkbit = 1;
6009
6010 switch (XMISCTYPE (obj))
6011 {
6012
6013 case Lisp_Misc_Marker:
6014 /* DO NOT mark thru the marker's chain.
6015 The buffer's markers chain does not preserve markers from gc;
6016 instead, markers are removed from the chain when freed by gc. */
6017 break;
6018
6019 case Lisp_Misc_Save_Value:
6020 #if GC_MARK_STACK
6021 {
6022 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6023 /* If DOGC is set, POINTER is the address of a memory
6024 area containing INTEGER potential Lisp_Objects. */
6025 if (ptr->dogc)
6026 {
6027 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6028 ptrdiff_t nelt;
6029 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6030 mark_maybe_object (*p);
6031 }
6032 }
6033 #endif
6034 break;
6035
6036 case Lisp_Misc_Overlay:
6037 {
6038 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6039 mark_object (ptr->start);
6040 mark_object (ptr->end);
6041 mark_object (ptr->plist);
6042 if (ptr->next)
6043 {
6044 XSETMISC (obj, ptr->next);
6045 goto loop;
6046 }
6047 }
6048 break;
6049
6050 default:
6051 abort ();
6052 }
6053 break;
6054
6055 case Lisp_Cons:
6056 {
6057 register struct Lisp_Cons *ptr = XCONS (obj);
6058 if (CONS_MARKED_P (ptr))
6059 break;
6060 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6061 CONS_MARK (ptr);
6062 /* If the cdr is nil, avoid recursion for the car. */
6063 if (EQ (ptr->u.cdr, Qnil))
6064 {
6065 obj = ptr->car;
6066 cdr_count = 0;
6067 goto loop;
6068 }
6069 mark_object (ptr->car);
6070 obj = ptr->u.cdr;
6071 cdr_count++;
6072 if (cdr_count == mark_object_loop_halt)
6073 abort ();
6074 goto loop;
6075 }
6076
6077 case Lisp_Float:
6078 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6079 FLOAT_MARK (XFLOAT (obj));
6080 break;
6081
6082 case_Lisp_Int:
6083 break;
6084
6085 default:
6086 abort ();
6087 }
6088
6089 #undef CHECK_LIVE
6090 #undef CHECK_ALLOCATED
6091 #undef CHECK_ALLOCATED_AND_LIVE
6092 }
6093
6094 /* Mark the pointers in a buffer structure. */
6095
6096 static void
6097 mark_buffer (Lisp_Object buf)
6098 {
6099 register struct buffer *buffer = XBUFFER (buf);
6100 register Lisp_Object *ptr, tmp;
6101 Lisp_Object base_buffer;
6102
6103 eassert (!VECTOR_MARKED_P (buffer));
6104 VECTOR_MARK (buffer);
6105
6106 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6107
6108 /* For now, we just don't mark the undo_list. It's done later in
6109 a special way just before the sweep phase, and after stripping
6110 some of its elements that are not needed any more. */
6111
6112 if (buffer->overlays_before)
6113 {
6114 XSETMISC (tmp, buffer->overlays_before);
6115 mark_object (tmp);
6116 }
6117 if (buffer->overlays_after)
6118 {
6119 XSETMISC (tmp, buffer->overlays_after);
6120 mark_object (tmp);
6121 }
6122
6123 /* buffer-local Lisp variables start at `undo_list',
6124 tho only the ones from `name' on are GC'd normally. */
6125 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6126 ptr <= &PER_BUFFER_VALUE (buffer,
6127 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6128 ptr++)
6129 mark_object (*ptr);
6130
6131 /* If this is an indirect buffer, mark its base buffer. */
6132 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6133 {
6134 XSETBUFFER (base_buffer, buffer->base_buffer);
6135 mark_buffer (base_buffer);
6136 }
6137 }
6138
6139 /* Mark the Lisp pointers in the terminal objects.
6140 Called by Fgarbage_collect. */
6141
6142 static void
6143 mark_terminals (void)
6144 {
6145 struct terminal *t;
6146 for (t = terminal_list; t; t = t->next_terminal)
6147 {
6148 eassert (t->name != NULL);
6149 #ifdef HAVE_WINDOW_SYSTEM
6150 /* If a terminal object is reachable from a stacpro'ed object,
6151 it might have been marked already. Make sure the image cache
6152 gets marked. */
6153 mark_image_cache (t->image_cache);
6154 #endif /* HAVE_WINDOW_SYSTEM */
6155 if (!VECTOR_MARKED_P (t))
6156 mark_vectorlike ((struct Lisp_Vector *)t);
6157 }
6158 }
6159
6160
6161
6162 /* Value is non-zero if OBJ will survive the current GC because it's
6163 either marked or does not need to be marked to survive. */
6164
6165 int
6166 survives_gc_p (Lisp_Object obj)
6167 {
6168 int survives_p;
6169
6170 switch (XTYPE (obj))
6171 {
6172 case_Lisp_Int:
6173 survives_p = 1;
6174 break;
6175
6176 case Lisp_Symbol:
6177 survives_p = XSYMBOL (obj)->gcmarkbit;
6178 break;
6179
6180 case Lisp_Misc:
6181 survives_p = XMISCANY (obj)->gcmarkbit;
6182 break;
6183
6184 case Lisp_String:
6185 survives_p = STRING_MARKED_P (XSTRING (obj));
6186 break;
6187
6188 case Lisp_Vectorlike:
6189 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6190 break;
6191
6192 case Lisp_Cons:
6193 survives_p = CONS_MARKED_P (XCONS (obj));
6194 break;
6195
6196 case Lisp_Float:
6197 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6198 break;
6199
6200 default:
6201 abort ();
6202 }
6203
6204 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6205 }
6206
6207
6208 \f
6209 /* Sweep: find all structures not marked, and free them. */
6210
6211 static void
6212 gc_sweep (void)
6213 {
6214 /* Remove or mark entries in weak hash tables.
6215 This must be done before any object is unmarked. */
6216 sweep_weak_hash_tables ();
6217
6218 sweep_strings ();
6219 #ifdef GC_CHECK_STRING_BYTES
6220 if (!noninteractive)
6221 check_string_bytes (1);
6222 #endif
6223
6224 /* Put all unmarked conses on free list */
6225 {
6226 register struct cons_block *cblk;
6227 struct cons_block **cprev = &cons_block;
6228 register int lim = cons_block_index;
6229 EMACS_INT num_free = 0, num_used = 0;
6230
6231 cons_free_list = 0;
6232
6233 for (cblk = cons_block; cblk; cblk = *cprev)
6234 {
6235 register int i = 0;
6236 int this_free = 0;
6237 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6238
6239 /* Scan the mark bits an int at a time. */
6240 for (i = 0; i < ilim; i++)
6241 {
6242 if (cblk->gcmarkbits[i] == -1)
6243 {
6244 /* Fast path - all cons cells for this int are marked. */
6245 cblk->gcmarkbits[i] = 0;
6246 num_used += BITS_PER_INT;
6247 }
6248 else
6249 {
6250 /* Some cons cells for this int are not marked.
6251 Find which ones, and free them. */
6252 int start, pos, stop;
6253
6254 start = i * BITS_PER_INT;
6255 stop = lim - start;
6256 if (stop > BITS_PER_INT)
6257 stop = BITS_PER_INT;
6258 stop += start;
6259
6260 for (pos = start; pos < stop; pos++)
6261 {
6262 if (!CONS_MARKED_P (&cblk->conses[pos]))
6263 {
6264 this_free++;
6265 cblk->conses[pos].u.chain = cons_free_list;
6266 cons_free_list = &cblk->conses[pos];
6267 #if GC_MARK_STACK
6268 cons_free_list->car = Vdead;
6269 #endif
6270 }
6271 else
6272 {
6273 num_used++;
6274 CONS_UNMARK (&cblk->conses[pos]);
6275 }
6276 }
6277 }
6278 }
6279
6280 lim = CONS_BLOCK_SIZE;
6281 /* If this block contains only free conses and we have already
6282 seen more than two blocks worth of free conses then deallocate
6283 this block. */
6284 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6285 {
6286 *cprev = cblk->next;
6287 /* Unhook from the free list. */
6288 cons_free_list = cblk->conses[0].u.chain;
6289 lisp_align_free (cblk);
6290 }
6291 else
6292 {
6293 num_free += this_free;
6294 cprev = &cblk->next;
6295 }
6296 }
6297 total_conses = num_used;
6298 total_free_conses = num_free;
6299 }
6300
6301 /* Put all unmarked floats on free list */
6302 {
6303 register struct float_block *fblk;
6304 struct float_block **fprev = &float_block;
6305 register int lim = float_block_index;
6306 EMACS_INT num_free = 0, num_used = 0;
6307
6308 float_free_list = 0;
6309
6310 for (fblk = float_block; fblk; fblk = *fprev)
6311 {
6312 register int i;
6313 int this_free = 0;
6314 for (i = 0; i < lim; i++)
6315 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6316 {
6317 this_free++;
6318 fblk->floats[i].u.chain = float_free_list;
6319 float_free_list = &fblk->floats[i];
6320 }
6321 else
6322 {
6323 num_used++;
6324 FLOAT_UNMARK (&fblk->floats[i]);
6325 }
6326 lim = FLOAT_BLOCK_SIZE;
6327 /* If this block contains only free floats and we have already
6328 seen more than two blocks worth of free floats then deallocate
6329 this block. */
6330 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6331 {
6332 *fprev = fblk->next;
6333 /* Unhook from the free list. */
6334 float_free_list = fblk->floats[0].u.chain;
6335 lisp_align_free (fblk);
6336 }
6337 else
6338 {
6339 num_free += this_free;
6340 fprev = &fblk->next;
6341 }
6342 }
6343 total_floats = num_used;
6344 total_free_floats = num_free;
6345 }
6346
6347 /* Put all unmarked intervals on free list */
6348 {
6349 register struct interval_block *iblk;
6350 struct interval_block **iprev = &interval_block;
6351 register int lim = interval_block_index;
6352 EMACS_INT num_free = 0, num_used = 0;
6353
6354 interval_free_list = 0;
6355
6356 for (iblk = interval_block; iblk; iblk = *iprev)
6357 {
6358 register int i;
6359 int this_free = 0;
6360
6361 for (i = 0; i < lim; i++)
6362 {
6363 if (!iblk->intervals[i].gcmarkbit)
6364 {
6365 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6366 interval_free_list = &iblk->intervals[i];
6367 this_free++;
6368 }
6369 else
6370 {
6371 num_used++;
6372 iblk->intervals[i].gcmarkbit = 0;
6373 }
6374 }
6375 lim = INTERVAL_BLOCK_SIZE;
6376 /* If this block contains only free intervals and we have already
6377 seen more than two blocks worth of free intervals then
6378 deallocate this block. */
6379 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6380 {
6381 *iprev = iblk->next;
6382 /* Unhook from the free list. */
6383 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6384 lisp_free (iblk);
6385 }
6386 else
6387 {
6388 num_free += this_free;
6389 iprev = &iblk->next;
6390 }
6391 }
6392 total_intervals = num_used;
6393 total_free_intervals = num_free;
6394 }
6395
6396 /* Put all unmarked symbols on free list */
6397 {
6398 register struct symbol_block *sblk;
6399 struct symbol_block **sprev = &symbol_block;
6400 register int lim = symbol_block_index;
6401 EMACS_INT num_free = 0, num_used = 0;
6402
6403 symbol_free_list = NULL;
6404
6405 for (sblk = symbol_block; sblk; sblk = *sprev)
6406 {
6407 int this_free = 0;
6408 union aligned_Lisp_Symbol *sym = sblk->symbols;
6409 union aligned_Lisp_Symbol *end = sym + lim;
6410
6411 for (; sym < end; ++sym)
6412 {
6413 /* Check if the symbol was created during loadup. In such a case
6414 it might be pointed to by pure bytecode which we don't trace,
6415 so we conservatively assume that it is live. */
6416 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6417
6418 if (!sym->s.gcmarkbit && !pure_p)
6419 {
6420 if (sym->s.redirect == SYMBOL_LOCALIZED)
6421 xfree (SYMBOL_BLV (&sym->s));
6422 sym->s.next = symbol_free_list;
6423 symbol_free_list = &sym->s;
6424 #if GC_MARK_STACK
6425 symbol_free_list->function = Vdead;
6426 #endif
6427 ++this_free;
6428 }
6429 else
6430 {
6431 ++num_used;
6432 if (!pure_p)
6433 UNMARK_STRING (XSTRING (sym->s.xname));
6434 sym->s.gcmarkbit = 0;
6435 }
6436 }
6437
6438 lim = SYMBOL_BLOCK_SIZE;
6439 /* If this block contains only free symbols and we have already
6440 seen more than two blocks worth of free symbols then deallocate
6441 this block. */
6442 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6443 {
6444 *sprev = sblk->next;
6445 /* Unhook from the free list. */
6446 symbol_free_list = sblk->symbols[0].s.next;
6447 lisp_free (sblk);
6448 }
6449 else
6450 {
6451 num_free += this_free;
6452 sprev = &sblk->next;
6453 }
6454 }
6455 total_symbols = num_used;
6456 total_free_symbols = num_free;
6457 }
6458
6459 /* Put all unmarked misc's on free list.
6460 For a marker, first unchain it from the buffer it points into. */
6461 {
6462 register struct marker_block *mblk;
6463 struct marker_block **mprev = &marker_block;
6464 register int lim = marker_block_index;
6465 EMACS_INT num_free = 0, num_used = 0;
6466
6467 marker_free_list = 0;
6468
6469 for (mblk = marker_block; mblk; mblk = *mprev)
6470 {
6471 register int i;
6472 int this_free = 0;
6473
6474 for (i = 0; i < lim; i++)
6475 {
6476 if (!mblk->markers[i].m.u_any.gcmarkbit)
6477 {
6478 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6479 unchain_marker (&mblk->markers[i].m.u_marker);
6480 /* Set the type of the freed object to Lisp_Misc_Free.
6481 We could leave the type alone, since nobody checks it,
6482 but this might catch bugs faster. */
6483 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6484 mblk->markers[i].m.u_free.chain = marker_free_list;
6485 marker_free_list = &mblk->markers[i].m;
6486 this_free++;
6487 }
6488 else
6489 {
6490 num_used++;
6491 mblk->markers[i].m.u_any.gcmarkbit = 0;
6492 }
6493 }
6494 lim = MARKER_BLOCK_SIZE;
6495 /* If this block contains only free markers and we have already
6496 seen more than two blocks worth of free markers then deallocate
6497 this block. */
6498 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6499 {
6500 *mprev = mblk->next;
6501 /* Unhook from the free list. */
6502 marker_free_list = mblk->markers[0].m.u_free.chain;
6503 lisp_free (mblk);
6504 }
6505 else
6506 {
6507 num_free += this_free;
6508 mprev = &mblk->next;
6509 }
6510 }
6511
6512 total_markers = num_used;
6513 total_free_markers = num_free;
6514 }
6515
6516 /* Free all unmarked buffers */
6517 {
6518 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6519
6520 while (buffer)
6521 if (!VECTOR_MARKED_P (buffer))
6522 {
6523 if (prev)
6524 prev->header.next = buffer->header.next;
6525 else
6526 all_buffers = buffer->header.next.buffer;
6527 next = buffer->header.next.buffer;
6528 lisp_free (buffer);
6529 buffer = next;
6530 }
6531 else
6532 {
6533 VECTOR_UNMARK (buffer);
6534 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6535 prev = buffer, buffer = buffer->header.next.buffer;
6536 }
6537 }
6538
6539 sweep_vectors ();
6540
6541 #ifdef GC_CHECK_STRING_BYTES
6542 if (!noninteractive)
6543 check_string_bytes (1);
6544 #endif
6545 }
6546
6547
6548
6549 \f
6550 /* Debugging aids. */
6551
6552 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6553 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6554 This may be helpful in debugging Emacs's memory usage.
6555 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6556 (void)
6557 {
6558 Lisp_Object end;
6559
6560 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6561
6562 return end;
6563 }
6564
6565 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6566 doc: /* Return a list of counters that measure how much consing there has been.
6567 Each of these counters increments for a certain kind of object.
6568 The counters wrap around from the largest positive integer to zero.
6569 Garbage collection does not decrease them.
6570 The elements of the value are as follows:
6571 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6572 All are in units of 1 = one object consed
6573 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6574 objects consed.
6575 MISCS include overlays, markers, and some internal types.
6576 Frames, windows, buffers, and subprocesses count as vectors
6577 (but the contents of a buffer's text do not count here). */)
6578 (void)
6579 {
6580 Lisp_Object consed[8];
6581
6582 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6583 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6584 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6585 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6586 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6587 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6588 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6589 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6590
6591 return Flist (8, consed);
6592 }
6593
6594 /* Find at most FIND_MAX symbols which have OBJ as their value or
6595 function. This is used in gdbinit's `xwhichsymbols' command. */
6596
6597 Lisp_Object
6598 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6599 {
6600 struct symbol_block *sblk;
6601 ptrdiff_t gc_count = inhibit_garbage_collection ();
6602 Lisp_Object found = Qnil;
6603
6604 if (! DEADP (obj))
6605 {
6606 for (sblk = symbol_block; sblk; sblk = sblk->next)
6607 {
6608 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6609 int bn;
6610
6611 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6612 {
6613 struct Lisp_Symbol *sym = &aligned_sym->s;
6614 Lisp_Object val;
6615 Lisp_Object tem;
6616
6617 if (sblk == symbol_block && bn >= symbol_block_index)
6618 break;
6619
6620 XSETSYMBOL (tem, sym);
6621 val = find_symbol_value (tem);
6622 if (EQ (val, obj)
6623 || EQ (sym->function, obj)
6624 || (!NILP (sym->function)
6625 && COMPILEDP (sym->function)
6626 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6627 || (!NILP (val)
6628 && COMPILEDP (val)
6629 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6630 {
6631 found = Fcons (tem, found);
6632 if (--find_max == 0)
6633 goto out;
6634 }
6635 }
6636 }
6637 }
6638
6639 out:
6640 unbind_to (gc_count, Qnil);
6641 return found;
6642 }
6643
6644 #ifdef ENABLE_CHECKING
6645 int suppress_checking;
6646
6647 void
6648 die (const char *msg, const char *file, int line)
6649 {
6650 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6651 file, line, msg);
6652 abort ();
6653 }
6654 #endif
6655 \f
6656 /* Initialization */
6657
6658 void
6659 init_alloc_once (void)
6660 {
6661 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6662 purebeg = PUREBEG;
6663 pure_size = PURESIZE;
6664 pure_bytes_used = 0;
6665 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6666 pure_bytes_used_before_overflow = 0;
6667
6668 /* Initialize the list of free aligned blocks. */
6669 free_ablock = NULL;
6670
6671 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6672 mem_init ();
6673 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6674 #endif
6675
6676 ignore_warnings = 1;
6677 #ifdef DOUG_LEA_MALLOC
6678 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6679 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6680 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6681 #endif
6682 init_strings ();
6683 init_cons ();
6684 init_symbol ();
6685 init_marker ();
6686 init_float ();
6687 init_intervals ();
6688 init_vectors ();
6689 init_weak_hash_tables ();
6690
6691 #ifdef REL_ALLOC
6692 malloc_hysteresis = 32;
6693 #else
6694 malloc_hysteresis = 0;
6695 #endif
6696
6697 refill_memory_reserve ();
6698
6699 ignore_warnings = 0;
6700 gcprolist = 0;
6701 byte_stack_list = 0;
6702 staticidx = 0;
6703 consing_since_gc = 0;
6704 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6705 gc_relative_threshold = 0;
6706 }
6707
6708 void
6709 init_alloc (void)
6710 {
6711 gcprolist = 0;
6712 byte_stack_list = 0;
6713 #if GC_MARK_STACK
6714 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6715 setjmp_tested_p = longjmps_done = 0;
6716 #endif
6717 #endif
6718 Vgc_elapsed = make_float (0.0);
6719 gcs_done = 0;
6720 }
6721
6722 void
6723 syms_of_alloc (void)
6724 {
6725 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6726 doc: /* Number of bytes of consing between garbage collections.
6727 Garbage collection can happen automatically once this many bytes have been
6728 allocated since the last garbage collection. All data types count.
6729
6730 Garbage collection happens automatically only when `eval' is called.
6731
6732 By binding this temporarily to a large number, you can effectively
6733 prevent garbage collection during a part of the program.
6734 See also `gc-cons-percentage'. */);
6735
6736 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6737 doc: /* Portion of the heap used for allocation.
6738 Garbage collection can happen automatically once this portion of the heap
6739 has been allocated since the last garbage collection.
6740 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6741 Vgc_cons_percentage = make_float (0.1);
6742
6743 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6744 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6745
6746 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6747 doc: /* Number of cons cells that have been consed so far. */);
6748
6749 DEFVAR_INT ("floats-consed", floats_consed,
6750 doc: /* Number of floats that have been consed so far. */);
6751
6752 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6753 doc: /* Number of vector cells that have been consed so far. */);
6754
6755 DEFVAR_INT ("symbols-consed", symbols_consed,
6756 doc: /* Number of symbols that have been consed so far. */);
6757
6758 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6759 doc: /* Number of string characters that have been consed so far. */);
6760
6761 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6762 doc: /* Number of miscellaneous objects that have been consed so far.
6763 These include markers and overlays, plus certain objects not visible
6764 to users. */);
6765
6766 DEFVAR_INT ("intervals-consed", intervals_consed,
6767 doc: /* Number of intervals that have been consed so far. */);
6768
6769 DEFVAR_INT ("strings-consed", strings_consed,
6770 doc: /* Number of strings that have been consed so far. */);
6771
6772 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6773 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6774 This means that certain objects should be allocated in shared (pure) space.
6775 It can also be set to a hash-table, in which case this table is used to
6776 do hash-consing of the objects allocated to pure space. */);
6777
6778 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6779 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6780 garbage_collection_messages = 0;
6781
6782 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6783 doc: /* Hook run after garbage collection has finished. */);
6784 Vpost_gc_hook = Qnil;
6785 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6786
6787 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6788 doc: /* Precomputed `signal' argument for memory-full error. */);
6789 /* We build this in advance because if we wait until we need it, we might
6790 not be able to allocate the memory to hold it. */
6791 Vmemory_signal_data
6792 = pure_cons (Qerror,
6793 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6794
6795 DEFVAR_LISP ("memory-full", Vmemory_full,
6796 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6797 Vmemory_full = Qnil;
6798
6799 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6800 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6801
6802 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6803 doc: /* Accumulated time elapsed in garbage collections.
6804 The time is in seconds as a floating point value. */);
6805 DEFVAR_INT ("gcs-done", gcs_done,
6806 doc: /* Accumulated number of garbage collections done. */);
6807
6808 defsubr (&Scons);
6809 defsubr (&Slist);
6810 defsubr (&Svector);
6811 defsubr (&Smake_byte_code);
6812 defsubr (&Smake_list);
6813 defsubr (&Smake_vector);
6814 defsubr (&Smake_string);
6815 defsubr (&Smake_bool_vector);
6816 defsubr (&Smake_symbol);
6817 defsubr (&Smake_marker);
6818 defsubr (&Spurecopy);
6819 defsubr (&Sgarbage_collect);
6820 defsubr (&Smemory_limit);
6821 defsubr (&Smemory_use_counts);
6822
6823 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6824 defsubr (&Sgc_status);
6825 #endif
6826 }