(CODING_FINISH_INTERRUPT): New macro.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*** TABLE OF CONTENTS ***
23
24 1. Preamble
25 2. Emacs' internal format (emacs-mule) handlers
26 3. ISO2022 handlers
27 4. Shift-JIS and BIG5 handlers
28 5. CCL handlers
29 6. End-of-line handlers
30 7. C library functions
31 8. Emacs Lisp library functions
32 9. Post-amble
33
34 */
35
36 /*** GENERAL NOTE on CODING SYSTEM ***
37
38 Coding system is an encoding mechanism of one or more character
39 sets. Here's a list of coding systems which Emacs can handle. When
40 we say "decode", it means converting some other coding system to
41 Emacs' internal format (emacs-internal), and when we say "encode",
42 it means converting the coding system emacs-mule to some other
43 coding system.
44
45 0. Emacs' internal format (emacs-mule)
46
47 Emacs itself holds a multi-lingual character in a buffer and a string
48 in a special format. Details are described in section 2.
49
50 1. ISO2022
51
52 The most famous coding system for multiple character sets. X's
53 Compound Text, various EUCs (Extended Unix Code), and coding
54 systems used in Internet communication such as ISO-2022-JP are
55 all variants of ISO2022. Details are described in section 3.
56
57 2. SJIS (or Shift-JIS or MS-Kanji-Code)
58
59 A coding system to encode character sets: ASCII, JISX0201, and
60 JISX0208. Widely used for PC's in Japan. Details are described in
61 section 4.
62
63 3. BIG5
64
65 A coding system to encode character sets: ASCII and Big5. Widely
66 used by Chinese (mainly in Taiwan and Hong Kong). Details are
67 described in section 4. In this file, when we write "BIG5"
68 (all uppercase), we mean the coding system, and when we write
69 "Big5" (capitalized), we mean the character set.
70
71 4. Raw text
72
73 A coding system for a text containing random 8-bit code. Emacs does
74 no code conversion on such a text except for end-of-line format.
75
76 5. Other
77
78 If a user wants to read/write a text encoded in a coding system not
79 listed above, he can supply a decoder and an encoder for it in CCL
80 (Code Conversion Language) programs. Emacs executes the CCL program
81 while reading/writing.
82
83 Emacs represents a coding system by a Lisp symbol that has a property
84 `coding-system'. But, before actually using the coding system, the
85 information about it is set in a structure of type `struct
86 coding_system' for rapid processing. See section 6 for more details.
87
88 */
89
90 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
91
92 How end-of-line of a text is encoded depends on a system. For
93 instance, Unix's format is just one byte of `line-feed' code,
94 whereas DOS's format is two-byte sequence of `carriage-return' and
95 `line-feed' codes. MacOS's format is usually one byte of
96 `carriage-return'.
97
98 Since text characters encoding and end-of-line encoding are
99 independent, any coding system described above can take
100 any format of end-of-line. So, Emacs has information of format of
101 end-of-line in each coding-system. See section 6 for more details.
102
103 */
104
105 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
106
107 These functions check if a text between SRC and SRC_END is encoded
108 in the coding system category XXX. Each returns an integer value in
109 which appropriate flag bits for the category XXX is set. The flag
110 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
111 template of these functions. */
112 #if 0
113 int
114 detect_coding_emacs_mule (src, src_end)
115 unsigned char *src, *src_end;
116 {
117 ...
118 }
119 #endif
120
121 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
122
123 These functions decode SRC_BYTES length text at SOURCE encoded in
124 CODING to Emacs' internal format (emacs-mule). The resulting text
125 goes to a place pointed to by DESTINATION, the length of which
126 should not exceed DST_BYTES. These functions set the information of
127 original and decoded texts in the members produced, produced_char,
128 consumed, and consumed_char of the structure *CODING.
129
130 The return value is an integer (CODING_FINISH_XXX) indicating how
131 the decoding finished.
132
133 DST_BYTES zero means that source area and destination area are
134 overlapped, which means that we can produce a decoded text until it
135 reaches at the head of not-yet-decoded source text.
136
137 Below is a template of these functions. */
138 #if 0
139 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
140 struct coding_system *coding;
141 unsigned char *source, *destination;
142 int src_bytes, dst_bytes;
143 {
144 ...
145 }
146 #endif
147
148 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
149
150 These functions encode SRC_BYTES length text at SOURCE of Emacs'
151 internal format (emacs-mule) to CODING. The resulting text goes to
152 a place pointed to by DESTINATION, the length of which should not
153 exceed DST_BYTES. These functions set the information of
154 original and encoded texts in the members produced, produced_char,
155 consumed, and consumed_char of the structure *CODING.
156
157 The return value is an integer (CODING_FINISH_XXX) indicating how
158 the encoding finished.
159
160 DST_BYTES zero means that source area and destination area are
161 overlapped, which means that we can produce a decoded text until it
162 reaches at the head of not-yet-decoded source text.
163
164 Below is a template of these functions. */
165 #if 0
166 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
167 struct coding_system *coding;
168 unsigned char *source, *destination;
169 int src_bytes, dst_bytes;
170 {
171 ...
172 }
173 #endif
174
175 /*** COMMONLY USED MACROS ***/
176
177 /* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
178 THREE_MORE_BYTES safely get one, two, and three bytes from the
179 source text respectively. If there are not enough bytes in the
180 source, they jump to `label_end_of_loop'. The caller should set
181 variables `src' and `src_end' to appropriate areas in advance. */
182
183 #define ONE_MORE_BYTE(c1) \
184 do { \
185 if (src < src_end) \
186 c1 = *src++; \
187 else \
188 goto label_end_of_loop; \
189 } while (0)
190
191 #define TWO_MORE_BYTES(c1, c2) \
192 do { \
193 if (src + 1 < src_end) \
194 c1 = *src++, c2 = *src++; \
195 else \
196 goto label_end_of_loop; \
197 } while (0)
198
199 #define THREE_MORE_BYTES(c1, c2, c3) \
200 do { \
201 if (src + 2 < src_end) \
202 c1 = *src++, c2 = *src++, c3 = *src++; \
203 else \
204 goto label_end_of_loop; \
205 } while (0)
206
207 /* The following three macros DECODE_CHARACTER_ASCII,
208 DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
209 the multi-byte form of a character of each class at the place
210 pointed by `dst'. The caller should set the variable `dst' to
211 point to an appropriate area and the variable `coding' to point to
212 the coding-system of the currently decoding text in advance. */
213
214 /* Decode one ASCII character C. */
215
216 #define DECODE_CHARACTER_ASCII(c) \
217 do { \
218 if (COMPOSING_P (coding->composing)) \
219 *dst++ = 0xA0, *dst++ = (c) | 0x80; \
220 else \
221 { \
222 *dst++ = (c); \
223 coding->produced_char++; \
224 } \
225 } while (0)
226
227 /* Decode one DIMENSION1 character whose charset is CHARSET and whose
228 position-code is C. */
229
230 #define DECODE_CHARACTER_DIMENSION1(charset, c) \
231 do { \
232 unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \
233 if (COMPOSING_P (coding->composing)) \
234 *dst++ = leading_code + 0x20; \
235 else \
236 { \
237 *dst++ = leading_code; \
238 coding->produced_char++; \
239 } \
240 if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \
241 *dst++ = leading_code; \
242 *dst++ = (c) | 0x80; \
243 } while (0)
244
245 /* Decode one DIMENSION2 character whose charset is CHARSET and whose
246 position-codes are C1 and C2. */
247
248 #define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \
249 do { \
250 DECODE_CHARACTER_DIMENSION1 (charset, c1); \
251 *dst++ = (c2) | 0x80; \
252 } while (0)
253
254 \f
255 /*** 1. Preamble ***/
256
257 #include <stdio.h>
258
259 #ifdef emacs
260
261 #include <config.h>
262 #include "lisp.h"
263 #include "buffer.h"
264 #include "charset.h"
265 #include "ccl.h"
266 #include "coding.h"
267 #include "window.h"
268
269 #else /* not emacs */
270
271 #include "mulelib.h"
272
273 #endif /* not emacs */
274
275 Lisp_Object Qcoding_system, Qeol_type;
276 Lisp_Object Qbuffer_file_coding_system;
277 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
278 Lisp_Object Qno_conversion, Qundecided;
279 Lisp_Object Qcoding_system_history;
280 Lisp_Object Qsafe_charsets;
281 Lisp_Object Qvalid_codes;
282
283 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
284 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
285 Lisp_Object Qstart_process, Qopen_network_stream;
286 Lisp_Object Qtarget_idx;
287
288 Lisp_Object Vselect_safe_coding_system_function;
289
290 /* Mnemonic character of each format of end-of-line. */
291 int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
292 /* Mnemonic character to indicate format of end-of-line is not yet
293 decided. */
294 int eol_mnemonic_undecided;
295
296 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
297 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
298 int system_eol_type;
299
300 #ifdef emacs
301
302 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
303
304 Lisp_Object Qcoding_system_p, Qcoding_system_error;
305
306 /* Coding system emacs-mule and raw-text are for converting only
307 end-of-line format. */
308 Lisp_Object Qemacs_mule, Qraw_text;
309
310 /* Coding-systems are handed between Emacs Lisp programs and C internal
311 routines by the following three variables. */
312 /* Coding-system for reading files and receiving data from process. */
313 Lisp_Object Vcoding_system_for_read;
314 /* Coding-system for writing files and sending data to process. */
315 Lisp_Object Vcoding_system_for_write;
316 /* Coding-system actually used in the latest I/O. */
317 Lisp_Object Vlast_coding_system_used;
318
319 /* A vector of length 256 which contains information about special
320 Latin codes (especially for dealing with Microsoft codes). */
321 Lisp_Object Vlatin_extra_code_table;
322
323 /* Flag to inhibit code conversion of end-of-line format. */
324 int inhibit_eol_conversion;
325
326 /* Flag to make buffer-file-coding-system inherit from process-coding. */
327 int inherit_process_coding_system;
328
329 /* Coding system to be used to encode text for terminal display. */
330 struct coding_system terminal_coding;
331
332 /* Coding system to be used to encode text for terminal display when
333 terminal coding system is nil. */
334 struct coding_system safe_terminal_coding;
335
336 /* Coding system of what is sent from terminal keyboard. */
337 struct coding_system keyboard_coding;
338
339 /* Default coding system to be used to write a file. */
340 struct coding_system default_buffer_file_coding;
341
342 Lisp_Object Vfile_coding_system_alist;
343 Lisp_Object Vprocess_coding_system_alist;
344 Lisp_Object Vnetwork_coding_system_alist;
345
346 #endif /* emacs */
347
348 Lisp_Object Qcoding_category, Qcoding_category_index;
349
350 /* List of symbols `coding-category-xxx' ordered by priority. */
351 Lisp_Object Vcoding_category_list;
352
353 /* Table of coding categories (Lisp symbols). */
354 Lisp_Object Vcoding_category_table;
355
356 /* Table of names of symbol for each coding-category. */
357 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
358 "coding-category-emacs-mule",
359 "coding-category-sjis",
360 "coding-category-iso-7",
361 "coding-category-iso-7-tight",
362 "coding-category-iso-8-1",
363 "coding-category-iso-8-2",
364 "coding-category-iso-7-else",
365 "coding-category-iso-8-else",
366 "coding-category-ccl",
367 "coding-category-big5",
368 "coding-category-raw-text",
369 "coding-category-binary"
370 };
371
372 /* Table of pointers to coding systems corresponding to each coding
373 categories. */
374 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
375
376 /* Table of coding category masks. Nth element is a mask for a coding
377 cateogry of which priority is Nth. */
378 static
379 int coding_priorities[CODING_CATEGORY_IDX_MAX];
380
381 /* Flag to tell if we look up translation table on character code
382 conversion. */
383 Lisp_Object Venable_character_translation;
384 /* Standard translation table to look up on decoding (reading). */
385 Lisp_Object Vstandard_translation_table_for_decode;
386 /* Standard translation table to look up on encoding (writing). */
387 Lisp_Object Vstandard_translation_table_for_encode;
388
389 Lisp_Object Qtranslation_table;
390 Lisp_Object Qtranslation_table_id;
391 Lisp_Object Qtranslation_table_for_decode;
392 Lisp_Object Qtranslation_table_for_encode;
393
394 /* Alist of charsets vs revision number. */
395 Lisp_Object Vcharset_revision_alist;
396
397 /* Default coding systems used for process I/O. */
398 Lisp_Object Vdefault_process_coding_system;
399
400 \f
401 /*** 2. Emacs internal format (emacs-mule) handlers ***/
402
403 /* Emacs' internal format for encoding multiple character sets is a
404 kind of multi-byte encoding, i.e. characters are encoded by
405 variable-length sequences of one-byte codes. ASCII characters
406 and control characters (e.g. `tab', `newline') are represented by
407 one-byte sequences which are their ASCII codes, in the range 0x00
408 through 0x7F. The other characters are represented by a sequence
409 of `base leading-code', optional `extended leading-code', and one
410 or two `position-code's. The length of the sequence is determined
411 by the base leading-code. Leading-code takes the range 0x80
412 through 0x9F, whereas extended leading-code and position-code take
413 the range 0xA0 through 0xFF. See `charset.h' for more details
414 about leading-code and position-code.
415
416 There's one exception to this rule. Special leading-code
417 `leading-code-composition' denotes that the following several
418 characters should be composed into one character. Leading-codes of
419 components (except for ASCII) are added 0x20. An ASCII character
420 component is represented by a 2-byte sequence of `0xA0' and
421 `ASCII-code + 0x80'. See also the comments in `charset.h' for the
422 details of composite character. Hence, we can summarize the code
423 range as follows:
424
425 --- CODE RANGE of Emacs' internal format ---
426 (character set) (range)
427 ASCII 0x00 .. 0x7F
428 ELSE (1st byte) 0x80 .. 0x9F
429 (rest bytes) 0xA0 .. 0xFF
430 ---------------------------------------------
431
432 */
433
434 enum emacs_code_class_type emacs_code_class[256];
435
436 /* Go to the next statement only if *SRC is accessible and the code is
437 greater than 0xA0. */
438 #define CHECK_CODE_RANGE_A0_FF \
439 do { \
440 if (src >= src_end) \
441 goto label_end_of_switch; \
442 else if (*src++ < 0xA0) \
443 return 0; \
444 } while (0)
445
446 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
447 Check if a text is encoded in Emacs' internal format. If it is,
448 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
449
450 int
451 detect_coding_emacs_mule (src, src_end)
452 unsigned char *src, *src_end;
453 {
454 unsigned char c;
455 int composing = 0;
456
457 while (src < src_end)
458 {
459 c = *src++;
460
461 if (composing)
462 {
463 if (c < 0xA0)
464 composing = 0;
465 else
466 c -= 0x20;
467 }
468
469 switch (emacs_code_class[c])
470 {
471 case EMACS_ascii_code:
472 case EMACS_linefeed_code:
473 break;
474
475 case EMACS_control_code:
476 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
477 return 0;
478 break;
479
480 case EMACS_invalid_code:
481 return 0;
482
483 case EMACS_leading_code_composition: /* c == 0x80 */
484 if (composing)
485 CHECK_CODE_RANGE_A0_FF;
486 else
487 composing = 1;
488 break;
489
490 case EMACS_leading_code_4:
491 CHECK_CODE_RANGE_A0_FF;
492 /* fall down to check it two more times ... */
493
494 case EMACS_leading_code_3:
495 CHECK_CODE_RANGE_A0_FF;
496 /* fall down to check it one more time ... */
497
498 case EMACS_leading_code_2:
499 CHECK_CODE_RANGE_A0_FF;
500 break;
501
502 default:
503 label_end_of_switch:
504 break;
505 }
506 }
507 return CODING_CATEGORY_MASK_EMACS_MULE;
508 }
509
510 \f
511 /*** 3. ISO2022 handlers ***/
512
513 /* The following note describes the coding system ISO2022 briefly.
514 Since the intention of this note is to help in understanding of
515 the programs in this file, some parts are NOT ACCURATE or OVERLY
516 SIMPLIFIED. For the thorough understanding, please refer to the
517 original document of ISO2022.
518
519 ISO2022 provides many mechanisms to encode several character sets
520 in 7-bit and 8-bit environment. If one chooses 7-bite environment,
521 all text is encoded by codes of less than 128. This may make the
522 encoded text a little bit longer, but the text gets more stability
523 to pass through several gateways (some of them strip off the MSB).
524
525 There are two kinds of character set: control character set and
526 graphic character set. The former contains control characters such
527 as `newline' and `escape' to provide control functions (control
528 functions are provided also by escape sequences). The latter
529 contains graphic characters such as ' A' and '-'. Emacs recognizes
530 two control character sets and many graphic character sets.
531
532 Graphic character sets are classified into one of the following
533 four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96,
534 DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of
535 bytes (DIMENSION) and the number of characters in one dimension
536 (CHARS) of the set. In addition, each character set is assigned an
537 identification tag (called "final character" and denoted as <F>
538 here after) which is unique in each class. <F> of each character
539 set is decided by ECMA(*) when it is registered in ISO. Code range
540 of <F> is 0x30..0x7F (0x30..0x3F are for private use only).
541
542 Note (*): ECMA = European Computer Manufacturers Association
543
544 Here are examples of graphic character set [NAME(<F>)]:
545 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
546 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
547 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
548 o DIMENSION2_CHARS96 -- none for the moment
549
550 A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
551 C0 [0x00..0x1F] -- control character plane 0
552 GL [0x20..0x7F] -- graphic character plane 0
553 C1 [0x80..0x9F] -- control character plane 1
554 GR [0xA0..0xFF] -- graphic character plane 1
555
556 A control character set is directly designated and invoked to C0 or
557 C1 by an escape sequence. The most common case is that ISO646's
558 control character set is designated/invoked to C0 and ISO6429's
559 control character set is designated/invoked to C1, and usually
560 these designations/invocations are omitted in a coded text. With
561 7-bit environment, only C0 can be used, and a control character for
562 C1 is encoded by an appropriate escape sequence to fit in the
563 environment. All control characters for C1 are defined the
564 corresponding escape sequences.
565
566 A graphic character set is at first designated to one of four
567 graphic registers (G0 through G3), then these graphic registers are
568 invoked to GL or GR. These designations and invocations can be
569 done independently. The most common case is that G0 is invoked to
570 GL, G1 is invoked to GR, and ASCII is designated to G0, and usually
571 these invocations and designations are omitted in a coded text.
572 With 7-bit environment, only GL can be used.
573
574 When a graphic character set of CHARS94 is invoked to GL, code 0x20
575 and 0x7F of GL area work as control characters SPACE and DEL
576 respectively, and code 0xA0 and 0xFF of GR area should not be used.
577
578 There are two ways of invocation: locking-shift and single-shift.
579 With locking-shift, the invocation lasts until the next different
580 invocation, whereas with single-shift, the invocation works only
581 for the following character and doesn't affect locking-shift.
582 Invocations are done by the following control characters or escape
583 sequences.
584
585 ----------------------------------------------------------------------
586 function control char escape sequence description
587 ----------------------------------------------------------------------
588 SI (shift-in) 0x0F none invoke G0 to GL
589 SO (shift-out) 0x0E none invoke G1 to GL
590 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
591 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
592 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 into GL
593 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 into GL
594 ----------------------------------------------------------------------
595 The first four are for locking-shift. Control characters for these
596 functions are defined by macros ISO_CODE_XXX in `coding.h'.
597
598 Designations are done by the following escape sequences.
599 ----------------------------------------------------------------------
600 escape sequence description
601 ----------------------------------------------------------------------
602 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
603 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
604 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
605 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
606 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
607 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
608 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
609 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
610 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
611 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
612 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
613 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
614 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
615 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
616 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
617 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
618 ----------------------------------------------------------------------
619
620 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
621 of dimension 1, chars 94, and final character <F>, and etc.
622
623 Note (*): Although these designations are not allowed in ISO2022,
624 Emacs accepts them on decoding, and produces them on encoding
625 CHARS96 character set in a coding system which is characterized as
626 7-bit environment, non-locking-shift, and non-single-shift.
627
628 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
629 '(' can be omitted. We call this as "short-form" here after.
630
631 Now you may notice that there are a lot of ways for encoding the
632 same multilingual text in ISO2022. Actually, there exists many
633 coding systems such as Compound Text (used in X's inter client
634 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
635 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
636 localized platforms), and all of these are variants of ISO2022.
637
638 In addition to the above, Emacs handles two more kinds of escape
639 sequences: ISO6429's direction specification and Emacs' private
640 sequence for specifying character composition.
641
642 ISO6429's direction specification takes the following format:
643 o CSI ']' -- end of the current direction
644 o CSI '0' ']' -- end of the current direction
645 o CSI '1' ']' -- start of left-to-right text
646 o CSI '2' ']' -- start of right-to-left text
647 The control character CSI (0x9B: control sequence introducer) is
648 abbreviated to the escape sequence ESC '[' in 7-bit environment.
649
650 Character composition specification takes the following format:
651 o ESC '0' -- start character composition
652 o ESC '1' -- end character composition
653 Since these are not standard escape sequences of any ISO, the use
654 of them for these meaning is restricted to Emacs only. */
655
656 enum iso_code_class_type iso_code_class[256];
657
658 #define CHARSET_OK(idx, charset) \
659 (coding_system_table[idx] \
660 && (coding_system_table[idx]->safe_charsets[charset] \
661 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION \
662 (coding_system_table[idx], charset) \
663 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)))
664
665 #define SHIFT_OUT_OK(idx) \
666 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
667
668 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
669 Check if a text is encoded in ISO2022. If it is, returns an
670 integer in which appropriate flag bits any of:
671 CODING_CATEGORY_MASK_ISO_7
672 CODING_CATEGORY_MASK_ISO_7_TIGHT
673 CODING_CATEGORY_MASK_ISO_8_1
674 CODING_CATEGORY_MASK_ISO_8_2
675 CODING_CATEGORY_MASK_ISO_7_ELSE
676 CODING_CATEGORY_MASK_ISO_8_ELSE
677 are set. If a code which should never appear in ISO2022 is found,
678 returns 0. */
679
680 int
681 detect_coding_iso2022 (src, src_end)
682 unsigned char *src, *src_end;
683 {
684 int mask = CODING_CATEGORY_MASK_ISO;
685 int mask_found = 0;
686 int reg[4], shift_out = 0, single_shifting = 0;
687 int c, c1, i, charset;
688
689 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
690 while (mask && src < src_end)
691 {
692 c = *src++;
693 switch (c)
694 {
695 case ISO_CODE_ESC:
696 single_shifting = 0;
697 if (src >= src_end)
698 break;
699 c = *src++;
700 if (c >= '(' && c <= '/')
701 {
702 /* Designation sequence for a charset of dimension 1. */
703 if (src >= src_end)
704 break;
705 c1 = *src++;
706 if (c1 < ' ' || c1 >= 0x80
707 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
708 /* Invalid designation sequence. Just ignore. */
709 break;
710 reg[(c - '(') % 4] = charset;
711 }
712 else if (c == '$')
713 {
714 /* Designation sequence for a charset of dimension 2. */
715 if (src >= src_end)
716 break;
717 c = *src++;
718 if (c >= '@' && c <= 'B')
719 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
720 reg[0] = charset = iso_charset_table[1][0][c];
721 else if (c >= '(' && c <= '/')
722 {
723 if (src >= src_end)
724 break;
725 c1 = *src++;
726 if (c1 < ' ' || c1 >= 0x80
727 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
728 /* Invalid designation sequence. Just ignore. */
729 break;
730 reg[(c - '(') % 4] = charset;
731 }
732 else
733 /* Invalid designation sequence. Just ignore. */
734 break;
735 }
736 else if (c == 'N' || c == 'O')
737 {
738 /* ESC <Fe> for SS2 or SS3. */
739 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
740 break;
741 }
742 else if (c == '0' || c == '1' || c == '2')
743 /* ESC <Fp> for start/end composition. Just ignore. */
744 break;
745 else
746 /* Invalid escape sequence. Just ignore. */
747 break;
748
749 /* We found a valid designation sequence for CHARSET. */
750 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
751 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset))
752 mask_found |= CODING_CATEGORY_MASK_ISO_7;
753 else
754 mask &= ~CODING_CATEGORY_MASK_ISO_7;
755 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset))
756 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
757 else
758 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
759 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset))
760 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
761 else
762 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
763 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset))
764 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
765 else
766 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
767 break;
768
769 case ISO_CODE_SO:
770 single_shifting = 0;
771 if (shift_out == 0
772 && (reg[1] >= 0
773 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
774 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
775 {
776 /* Locking shift out. */
777 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
778 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
779 }
780 break;
781
782 case ISO_CODE_SI:
783 single_shifting = 0;
784 if (shift_out == 1)
785 {
786 /* Locking shift in. */
787 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
788 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
789 }
790 break;
791
792 case ISO_CODE_CSI:
793 single_shifting = 0;
794 case ISO_CODE_SS2:
795 case ISO_CODE_SS3:
796 {
797 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
798
799 if (c != ISO_CODE_CSI)
800 {
801 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
802 & CODING_FLAG_ISO_SINGLE_SHIFT)
803 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
804 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
805 & CODING_FLAG_ISO_SINGLE_SHIFT)
806 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
807 single_shifting = 1;
808 }
809 if (VECTORP (Vlatin_extra_code_table)
810 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
811 {
812 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
813 & CODING_FLAG_ISO_LATIN_EXTRA)
814 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
815 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
816 & CODING_FLAG_ISO_LATIN_EXTRA)
817 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
818 }
819 mask &= newmask;
820 mask_found |= newmask;
821 }
822 break;
823
824 default:
825 if (c < 0x80)
826 {
827 single_shifting = 0;
828 break;
829 }
830 else if (c < 0xA0)
831 {
832 single_shifting = 0;
833 if (VECTORP (Vlatin_extra_code_table)
834 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
835 {
836 int newmask = 0;
837
838 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
839 & CODING_FLAG_ISO_LATIN_EXTRA)
840 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
841 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
842 & CODING_FLAG_ISO_LATIN_EXTRA)
843 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
844 mask &= newmask;
845 mask_found |= newmask;
846 }
847 else
848 return 0;
849 }
850 else
851 {
852 unsigned char *src_begin = src;
853
854 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
855 | CODING_CATEGORY_MASK_ISO_7_ELSE);
856 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
857 /* Check the length of succeeding codes of the range
858 0xA0..0FF. If the byte length is odd, we exclude
859 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
860 when we are not single shifting. */
861 if (!single_shifting)
862 {
863 while (src < src_end && *src >= 0xA0)
864 src++;
865 if ((src - src_begin - 1) & 1 && src < src_end)
866 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
867 else
868 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
869 }
870 }
871 break;
872 }
873 }
874
875 return (mask & mask_found);
876 }
877
878 /* Decode a character of which charset is CHARSET and the 1st position
879 code is C1. If dimension of CHARSET is 2, the 2nd position code is
880 fetched from SRC and set to C2. If CHARSET is negative, it means
881 that we are decoding ill formed text, and what we can do is just to
882 read C1 as is. */
883
884 #define DECODE_ISO_CHARACTER(charset, c1) \
885 do { \
886 int c_alt, charset_alt = (charset); \
887 if (COMPOSING_HEAD_P (coding->composing)) \
888 { \
889 *dst++ = LEADING_CODE_COMPOSITION; \
890 if (COMPOSING_WITH_RULE_P (coding->composing)) \
891 /* To tell composition rules are embeded. */ \
892 *dst++ = 0xFF; \
893 coding->composing += 2; \
894 } \
895 if (charset_alt >= 0) \
896 { \
897 if (CHARSET_DIMENSION (charset_alt) == 2) \
898 { \
899 ONE_MORE_BYTE (c2); \
900 if (iso_code_class[(c2) & 0x7F] != ISO_0x20_or_0x7F \
901 && iso_code_class[(c2) & 0x7F] != ISO_graphic_plane_0) \
902 { \
903 src--; \
904 charset_alt = CHARSET_ASCII; \
905 } \
906 } \
907 if (!NILP (translation_table) \
908 && ((c_alt = translate_char (translation_table, \
909 -1, charset_alt, c1, c2)) >= 0)) \
910 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
911 } \
912 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
913 DECODE_CHARACTER_ASCII (c1); \
914 else if (CHARSET_DIMENSION (charset_alt) == 1) \
915 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
916 else \
917 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
918 if (COMPOSING_WITH_RULE_P (coding->composing)) \
919 /* To tell a composition rule follows. */ \
920 coding->composing = COMPOSING_WITH_RULE_RULE; \
921 } while (0)
922
923 /* Set designation state into CODING. */
924 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
925 do { \
926 int charset = ISO_CHARSET_TABLE (make_number (dimension), \
927 make_number (chars), \
928 make_number (final_char)); \
929 if (charset >= 0 \
930 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
931 || coding->safe_charsets[charset])) \
932 { \
933 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
934 && reg == 0 \
935 && charset == CHARSET_ASCII) \
936 { \
937 /* We should insert this designation sequence as is so \
938 that it is surely written back to a file. */ \
939 coding->spec.iso2022.last_invalid_designation_register = -1; \
940 goto label_invalid_code; \
941 } \
942 coding->spec.iso2022.last_invalid_designation_register = -1; \
943 if ((coding->mode & CODING_MODE_DIRECTION) \
944 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
945 charset = CHARSET_REVERSE_CHARSET (charset); \
946 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
947 } \
948 else \
949 { \
950 coding->spec.iso2022.last_invalid_designation_register = reg; \
951 goto label_invalid_code; \
952 } \
953 } while (0)
954
955 /* Check if the current composing sequence contains only valid codes.
956 If the composing sequence doesn't end before SRC_END, return -1.
957 Else, if it contains only valid codes, return 0.
958 Else return the length of the composing sequence. */
959
960 int
961 check_composing_code (coding, src, src_end)
962 struct coding_system *coding;
963 unsigned char *src, *src_end;
964 {
965 unsigned char *src_start = src;
966 int invalid_code_found = 0;
967 int charset, c, c1, dim;
968
969 while (src < src_end)
970 {
971 if (*src++ != ISO_CODE_ESC) continue;
972 if (src >= src_end) break;
973 if ((c = *src++) == '1') /* end of compsition */
974 return (invalid_code_found ? src - src_start : 0);
975 if (src + 2 >= src_end) break;
976 if (!coding->flags & CODING_FLAG_ISO_DESIGNATION)
977 invalid_code_found = 1;
978 else
979 {
980 dim = 0;
981 if (c == '$')
982 {
983 dim = 1;
984 c = (*src >= '@' && *src <= 'B') ? '(' : *src++;
985 }
986 if (c >= '(' && c <= '/')
987 {
988 c1 = *src++;
989 if ((c1 < ' ' || c1 >= 0x80)
990 || (charset = iso_charset_table[dim][c >= ','][c1]) < 0
991 || ! coding->safe_charsets[charset]
992 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
993 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
994 invalid_code_found = 1;
995 }
996 else
997 invalid_code_found = 1;
998 }
999 }
1000 return (invalid_code_found
1001 ? src - src_start
1002 : (coding->mode & CODING_MODE_LAST_BLOCK ? 0 : -1));
1003 }
1004
1005 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1006
1007 int
1008 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1009 struct coding_system *coding;
1010 unsigned char *source, *destination;
1011 int src_bytes, dst_bytes;
1012 {
1013 unsigned char *src = source;
1014 unsigned char *src_end = source + src_bytes;
1015 unsigned char *dst = destination;
1016 unsigned char *dst_end = destination + dst_bytes;
1017 /* Since the maximum bytes produced by each loop is 7, we subtract 6
1018 from DST_END to assure that overflow checking is necessary only
1019 at the head of loop. */
1020 unsigned char *adjusted_dst_end = dst_end - 6;
1021 int charset;
1022 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1023 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1024 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1025 Lisp_Object translation_table
1026 = coding->translation_table_for_decode;
1027 int result = CODING_FINISH_NORMAL;
1028
1029 if (!NILP (Venable_character_translation) && NILP (translation_table))
1030 translation_table = Vstandard_translation_table_for_decode;
1031
1032 coding->produced_char = 0;
1033 coding->fake_multibyte = 0;
1034 while (src < src_end && (dst_bytes
1035 ? (dst < adjusted_dst_end)
1036 : (dst < src - 6)))
1037 {
1038 /* SRC_BASE remembers the start position in source in each loop.
1039 The loop will be exited when there's not enough source text
1040 to analyze long escape sequence or 2-byte code (within macros
1041 ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset
1042 to SRC_BASE before exiting. */
1043 unsigned char *src_base = src;
1044 int c1 = *src++, c2;
1045
1046 switch (iso_code_class [c1])
1047 {
1048 case ISO_0x20_or_0x7F:
1049 if (!coding->composing
1050 && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
1051 {
1052 /* This is SPACE or DEL. */
1053 *dst++ = c1;
1054 coding->produced_char++;
1055 break;
1056 }
1057 /* This is a graphic character, we fall down ... */
1058
1059 case ISO_graphic_plane_0:
1060 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1061 {
1062 /* This is a composition rule. */
1063 *dst++ = c1 | 0x80;
1064 coding->composing = COMPOSING_WITH_RULE_TAIL;
1065 }
1066 else
1067 DECODE_ISO_CHARACTER (charset0, c1);
1068 break;
1069
1070 case ISO_0xA0_or_0xFF:
1071 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1072 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1073 goto label_invalid_code;
1074 /* This is a graphic character, we fall down ... */
1075
1076 case ISO_graphic_plane_1:
1077 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1078 goto label_invalid_code;
1079 else
1080 DECODE_ISO_CHARACTER (charset1, c1);
1081 break;
1082
1083 case ISO_control_code:
1084 /* All ISO2022 control characters in this class have the
1085 same representation in Emacs internal format. */
1086 if (c1 == '\n'
1087 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1088 && (coding->eol_type == CODING_EOL_CR
1089 || coding->eol_type == CODING_EOL_CRLF))
1090 {
1091 result = CODING_FINISH_INCONSISTENT_EOL;
1092 goto label_end_of_loop_2;
1093 }
1094 *dst++ = c1;
1095 coding->produced_char++;
1096 break;
1097
1098 case ISO_carriage_return:
1099 if (coding->eol_type == CODING_EOL_CR)
1100 *dst++ = '\n';
1101 else if (coding->eol_type == CODING_EOL_CRLF)
1102 {
1103 ONE_MORE_BYTE (c1);
1104 if (c1 == ISO_CODE_LF)
1105 *dst++ = '\n';
1106 else
1107 {
1108 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1109 {
1110 result = CODING_FINISH_INCONSISTENT_EOL;
1111 goto label_end_of_loop_2;
1112 }
1113 src--;
1114 *dst++ = '\r';
1115 }
1116 }
1117 else
1118 *dst++ = c1;
1119 coding->produced_char++;
1120 break;
1121
1122 case ISO_shift_out:
1123 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1124 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1125 goto label_invalid_code;
1126 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1127 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1128 break;
1129
1130 case ISO_shift_in:
1131 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1132 goto label_invalid_code;
1133 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1134 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1135 break;
1136
1137 case ISO_single_shift_2_7:
1138 case ISO_single_shift_2:
1139 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1140 goto label_invalid_code;
1141 /* SS2 is handled as an escape sequence of ESC 'N' */
1142 c1 = 'N';
1143 goto label_escape_sequence;
1144
1145 case ISO_single_shift_3:
1146 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1147 goto label_invalid_code;
1148 /* SS2 is handled as an escape sequence of ESC 'O' */
1149 c1 = 'O';
1150 goto label_escape_sequence;
1151
1152 case ISO_control_sequence_introducer:
1153 /* CSI is handled as an escape sequence of ESC '[' ... */
1154 c1 = '[';
1155 goto label_escape_sequence;
1156
1157 case ISO_escape:
1158 ONE_MORE_BYTE (c1);
1159 label_escape_sequence:
1160 /* Escape sequences handled by Emacs are invocation,
1161 designation, direction specification, and character
1162 composition specification. */
1163 switch (c1)
1164 {
1165 case '&': /* revision of following character set */
1166 ONE_MORE_BYTE (c1);
1167 if (!(c1 >= '@' && c1 <= '~'))
1168 goto label_invalid_code;
1169 ONE_MORE_BYTE (c1);
1170 if (c1 != ISO_CODE_ESC)
1171 goto label_invalid_code;
1172 ONE_MORE_BYTE (c1);
1173 goto label_escape_sequence;
1174
1175 case '$': /* designation of 2-byte character set */
1176 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1177 goto label_invalid_code;
1178 ONE_MORE_BYTE (c1);
1179 if (c1 >= '@' && c1 <= 'B')
1180 { /* designation of JISX0208.1978, GB2312.1980,
1181 or JISX0208.1980 */
1182 DECODE_DESIGNATION (0, 2, 94, c1);
1183 }
1184 else if (c1 >= 0x28 && c1 <= 0x2B)
1185 { /* designation of DIMENSION2_CHARS94 character set */
1186 ONE_MORE_BYTE (c2);
1187 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1188 }
1189 else if (c1 >= 0x2C && c1 <= 0x2F)
1190 { /* designation of DIMENSION2_CHARS96 character set */
1191 ONE_MORE_BYTE (c2);
1192 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1193 }
1194 else
1195 goto label_invalid_code;
1196 break;
1197
1198 case 'n': /* invocation of locking-shift-2 */
1199 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1200 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1201 goto label_invalid_code;
1202 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1203 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1204 break;
1205
1206 case 'o': /* invocation of locking-shift-3 */
1207 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1208 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1209 goto label_invalid_code;
1210 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1211 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1212 break;
1213
1214 case 'N': /* invocation of single-shift-2 */
1215 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1216 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1217 goto label_invalid_code;
1218 ONE_MORE_BYTE (c1);
1219 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1220 DECODE_ISO_CHARACTER (charset, c1);
1221 break;
1222
1223 case 'O': /* invocation of single-shift-3 */
1224 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1225 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1226 goto label_invalid_code;
1227 ONE_MORE_BYTE (c1);
1228 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1229 DECODE_ISO_CHARACTER (charset, c1);
1230 break;
1231
1232 case '0': case '2': /* start composing */
1233 /* Before processing composing, we must be sure that all
1234 characters being composed are supported by CODING.
1235 If not, we must give up composing and insert the
1236 bunch of codes for composing as is without decoding. */
1237 {
1238 int result1;
1239
1240 result1 = check_composing_code (coding, src, src_end);
1241 if (result1 == 0)
1242 {
1243 coding->composing = (c1 == '0'
1244 ? COMPOSING_NO_RULE_HEAD
1245 : COMPOSING_WITH_RULE_HEAD);
1246 coding->produced_char++;
1247 }
1248 else if (result1 > 0)
1249 {
1250 if (result1 + 2 < (dst_bytes ? dst_end : src_base) - dst)
1251 {
1252 bcopy (src_base, dst, result1 + 2);
1253 src += result1;
1254 dst += result1 + 2;
1255 coding->produced_char += result1 + 2;
1256 }
1257 else
1258 {
1259 result = CODING_FINISH_INSUFFICIENT_DST;
1260 goto label_end_of_loop_2;
1261 }
1262 }
1263 else
1264 goto label_end_of_loop;
1265 }
1266 break;
1267
1268 case '1': /* end composing */
1269 coding->composing = COMPOSING_NO;
1270 break;
1271
1272 case '[': /* specification of direction */
1273 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1274 goto label_invalid_code;
1275 /* For the moment, nested direction is not supported.
1276 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1277 left-to-right, and nozero means right-to-left. */
1278 ONE_MORE_BYTE (c1);
1279 switch (c1)
1280 {
1281 case ']': /* end of the current direction */
1282 coding->mode &= ~CODING_MODE_DIRECTION;
1283
1284 case '0': /* end of the current direction */
1285 case '1': /* start of left-to-right direction */
1286 ONE_MORE_BYTE (c1);
1287 if (c1 == ']')
1288 coding->mode &= ~CODING_MODE_DIRECTION;
1289 else
1290 goto label_invalid_code;
1291 break;
1292
1293 case '2': /* start of right-to-left direction */
1294 ONE_MORE_BYTE (c1);
1295 if (c1 == ']')
1296 coding->mode |= CODING_MODE_DIRECTION;
1297 else
1298 goto label_invalid_code;
1299 break;
1300
1301 default:
1302 goto label_invalid_code;
1303 }
1304 break;
1305
1306 default:
1307 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1308 goto label_invalid_code;
1309 if (c1 >= 0x28 && c1 <= 0x2B)
1310 { /* designation of DIMENSION1_CHARS94 character set */
1311 ONE_MORE_BYTE (c2);
1312 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1313 }
1314 else if (c1 >= 0x2C && c1 <= 0x2F)
1315 { /* designation of DIMENSION1_CHARS96 character set */
1316 ONE_MORE_BYTE (c2);
1317 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
1318 }
1319 else
1320 {
1321 goto label_invalid_code;
1322 }
1323 }
1324 /* We must update these variables now. */
1325 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1326 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1327 break;
1328
1329 label_invalid_code:
1330 while (src_base < src)
1331 *dst++ = *src_base++;
1332 coding->fake_multibyte = 1;
1333 }
1334 continue;
1335
1336 label_end_of_loop:
1337 result = CODING_FINISH_INSUFFICIENT_SRC;
1338 label_end_of_loop_2:
1339 src = src_base;
1340 break;
1341 }
1342
1343 if (src < src_end)
1344 {
1345 if (result == CODING_FINISH_NORMAL)
1346 result = CODING_FINISH_INSUFFICIENT_DST;
1347 else if (result != CODING_FINISH_INCONSISTENT_EOL
1348 && coding->mode & CODING_MODE_LAST_BLOCK)
1349 {
1350 /* This is the last block of the text to be decoded. We had
1351 better just flush out all remaining codes in the text
1352 although they are not valid characters. */
1353 src_bytes = src_end - src;
1354 if (dst_bytes && (dst_end - dst < src_bytes))
1355 src_bytes = dst_end - dst;
1356 bcopy (src, dst, src_bytes);
1357 dst += src_bytes;
1358 src += src_bytes;
1359 coding->fake_multibyte = 1;
1360 }
1361 }
1362
1363 coding->consumed = coding->consumed_char = src - source;
1364 coding->produced = dst - destination;
1365 return result;
1366 }
1367
1368 /* ISO2022 encoding stuff. */
1369
1370 /*
1371 It is not enough to say just "ISO2022" on encoding, we have to
1372 specify more details. In Emacs, each coding system of ISO2022
1373 variant has the following specifications:
1374 1. Initial designation to G0 thru G3.
1375 2. Allows short-form designation?
1376 3. ASCII should be designated to G0 before control characters?
1377 4. ASCII should be designated to G0 at end of line?
1378 5. 7-bit environment or 8-bit environment?
1379 6. Use locking-shift?
1380 7. Use Single-shift?
1381 And the following two are only for Japanese:
1382 8. Use ASCII in place of JIS0201-1976-Roman?
1383 9. Use JISX0208-1983 in place of JISX0208-1978?
1384 These specifications are encoded in `coding->flags' as flag bits
1385 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1386 details.
1387 */
1388
1389 /* Produce codes (escape sequence) for designating CHARSET to graphic
1390 register REG. If <final-char> of CHARSET is '@', 'A', or 'B' and
1391 the coding system CODING allows, produce designation sequence of
1392 short-form. */
1393
1394 #define ENCODE_DESIGNATION(charset, reg, coding) \
1395 do { \
1396 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1397 char *intermediate_char_94 = "()*+"; \
1398 char *intermediate_char_96 = ",-./"; \
1399 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
1400 if (revision < 255) \
1401 { \
1402 *dst++ = ISO_CODE_ESC; \
1403 *dst++ = '&'; \
1404 *dst++ = '@' + revision; \
1405 } \
1406 *dst++ = ISO_CODE_ESC; \
1407 if (CHARSET_DIMENSION (charset) == 1) \
1408 { \
1409 if (CHARSET_CHARS (charset) == 94) \
1410 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1411 else \
1412 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1413 } \
1414 else \
1415 { \
1416 *dst++ = '$'; \
1417 if (CHARSET_CHARS (charset) == 94) \
1418 { \
1419 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1420 || reg != 0 \
1421 || final_char < '@' || final_char > 'B') \
1422 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1423 } \
1424 else \
1425 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1426 } \
1427 *dst++ = final_char; \
1428 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1429 } while (0)
1430
1431 /* The following two macros produce codes (control character or escape
1432 sequence) for ISO2022 single-shift functions (single-shift-2 and
1433 single-shift-3). */
1434
1435 #define ENCODE_SINGLE_SHIFT_2 \
1436 do { \
1437 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1438 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1439 else \
1440 { \
1441 *dst++ = ISO_CODE_SS2; \
1442 coding->fake_multibyte = 1; \
1443 } \
1444 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1445 } while (0)
1446
1447 #define ENCODE_SINGLE_SHIFT_3 \
1448 do { \
1449 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1450 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1451 else \
1452 { \
1453 *dst++ = ISO_CODE_SS3; \
1454 coding->fake_multibyte = 1; \
1455 } \
1456 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1457 } while (0)
1458
1459 /* The following four macros produce codes (control character or
1460 escape sequence) for ISO2022 locking-shift functions (shift-in,
1461 shift-out, locking-shift-2, and locking-shift-3). */
1462
1463 #define ENCODE_SHIFT_IN \
1464 do { \
1465 *dst++ = ISO_CODE_SI; \
1466 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1467 } while (0)
1468
1469 #define ENCODE_SHIFT_OUT \
1470 do { \
1471 *dst++ = ISO_CODE_SO; \
1472 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1473 } while (0)
1474
1475 #define ENCODE_LOCKING_SHIFT_2 \
1476 do { \
1477 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1478 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1479 } while (0)
1480
1481 #define ENCODE_LOCKING_SHIFT_3 \
1482 do { \
1483 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1484 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1485 } while (0)
1486
1487 /* Produce codes for a DIMENSION1 character whose character set is
1488 CHARSET and whose position-code is C1. Designation and invocation
1489 sequences are also produced in advance if necessary. */
1490
1491
1492 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1493 do { \
1494 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1495 { \
1496 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1497 *dst++ = c1 & 0x7F; \
1498 else \
1499 *dst++ = c1 | 0x80; \
1500 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1501 break; \
1502 } \
1503 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1504 { \
1505 *dst++ = c1 & 0x7F; \
1506 break; \
1507 } \
1508 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1509 { \
1510 *dst++ = c1 | 0x80; \
1511 break; \
1512 } \
1513 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1514 && !coding->safe_charsets[charset]) \
1515 { \
1516 /* We should not encode this character, instead produce one or \
1517 two `?'s. */ \
1518 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1519 if (CHARSET_WIDTH (charset) == 2) \
1520 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1521 break; \
1522 } \
1523 else \
1524 /* Since CHARSET is not yet invoked to any graphic planes, we \
1525 must invoke it, or, at first, designate it to some graphic \
1526 register. Then repeat the loop to actually produce the \
1527 character. */ \
1528 dst = encode_invocation_designation (charset, coding, dst); \
1529 } while (1)
1530
1531 /* Produce codes for a DIMENSION2 character whose character set is
1532 CHARSET and whose position-codes are C1 and C2. Designation and
1533 invocation codes are also produced in advance if necessary. */
1534
1535 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1536 do { \
1537 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1538 { \
1539 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1540 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1541 else \
1542 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1543 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1544 break; \
1545 } \
1546 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1547 { \
1548 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1549 break; \
1550 } \
1551 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1552 { \
1553 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1554 break; \
1555 } \
1556 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1557 && !coding->safe_charsets[charset]) \
1558 { \
1559 /* We should not encode this character, instead produce one or \
1560 two `?'s. */ \
1561 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1562 if (CHARSET_WIDTH (charset) == 2) \
1563 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1564 break; \
1565 } \
1566 else \
1567 /* Since CHARSET is not yet invoked to any graphic planes, we \
1568 must invoke it, or, at first, designate it to some graphic \
1569 register. Then repeat the loop to actually produce the \
1570 character. */ \
1571 dst = encode_invocation_designation (charset, coding, dst); \
1572 } while (1)
1573
1574 #define ENCODE_ISO_CHARACTER(charset, c1, c2) \
1575 do { \
1576 int c_alt, charset_alt; \
1577 if (!NILP (translation_table) \
1578 && ((c_alt = translate_char (translation_table, -1, \
1579 charset, c1, c2)) \
1580 >= 0)) \
1581 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1582 else \
1583 charset_alt = charset; \
1584 if (CHARSET_DIMENSION (charset_alt) == 1) \
1585 { \
1586 if (charset == CHARSET_ASCII \
1587 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
1588 charset_alt = charset_latin_jisx0201; \
1589 ENCODE_ISO_CHARACTER_DIMENSION1 (charset_alt, c1); \
1590 } \
1591 else \
1592 { \
1593 if (charset == charset_jisx0208 \
1594 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
1595 charset_alt = charset_jisx0208_1978; \
1596 ENCODE_ISO_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
1597 } \
1598 if (! COMPOSING_P (coding->composing)) \
1599 coding->consumed_char++; \
1600 } while (0)
1601
1602 /* Produce designation and invocation codes at a place pointed by DST
1603 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1604 Return new DST. */
1605
1606 unsigned char *
1607 encode_invocation_designation (charset, coding, dst)
1608 int charset;
1609 struct coding_system *coding;
1610 unsigned char *dst;
1611 {
1612 int reg; /* graphic register number */
1613
1614 /* At first, check designations. */
1615 for (reg = 0; reg < 4; reg++)
1616 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1617 break;
1618
1619 if (reg >= 4)
1620 {
1621 /* CHARSET is not yet designated to any graphic registers. */
1622 /* At first check the requested designation. */
1623 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1624 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1625 /* Since CHARSET requests no special designation, designate it
1626 to graphic register 0. */
1627 reg = 0;
1628
1629 ENCODE_DESIGNATION (charset, reg, coding);
1630 }
1631
1632 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1633 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1634 {
1635 /* Since the graphic register REG is not invoked to any graphic
1636 planes, invoke it to graphic plane 0. */
1637 switch (reg)
1638 {
1639 case 0: /* graphic register 0 */
1640 ENCODE_SHIFT_IN;
1641 break;
1642
1643 case 1: /* graphic register 1 */
1644 ENCODE_SHIFT_OUT;
1645 break;
1646
1647 case 2: /* graphic register 2 */
1648 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1649 ENCODE_SINGLE_SHIFT_2;
1650 else
1651 ENCODE_LOCKING_SHIFT_2;
1652 break;
1653
1654 case 3: /* graphic register 3 */
1655 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1656 ENCODE_SINGLE_SHIFT_3;
1657 else
1658 ENCODE_LOCKING_SHIFT_3;
1659 break;
1660 }
1661 }
1662 return dst;
1663 }
1664
1665 /* The following two macros produce codes for indicating composition. */
1666 #define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0'
1667 #define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2'
1668 #define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1'
1669
1670 /* The following three macros produce codes for indicating direction
1671 of text. */
1672 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1673 do { \
1674 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1675 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1676 else \
1677 *dst++ = ISO_CODE_CSI; \
1678 } while (0)
1679
1680 #define ENCODE_DIRECTION_R2L \
1681 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'
1682
1683 #define ENCODE_DIRECTION_L2R \
1684 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'
1685
1686 /* Produce codes for designation and invocation to reset the graphic
1687 planes and registers to initial state. */
1688 #define ENCODE_RESET_PLANE_AND_REGISTER \
1689 do { \
1690 int reg; \
1691 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1692 ENCODE_SHIFT_IN; \
1693 for (reg = 0; reg < 4; reg++) \
1694 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1695 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1696 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1697 ENCODE_DESIGNATION \
1698 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1699 } while (0)
1700
1701 /* Produce designation sequences of charsets in the line started from
1702 SRC to a place pointed by *DSTP, and update DSTP.
1703
1704 If the current block ends before any end-of-line, we may fail to
1705 find all the necessary designations. */
1706
1707 void
1708 encode_designation_at_bol (coding, table, src, src_end, dstp)
1709 struct coding_system *coding;
1710 Lisp_Object table;
1711 unsigned char *src, *src_end, **dstp;
1712 {
1713 int charset, c, found = 0, reg;
1714 /* Table of charsets to be designated to each graphic register. */
1715 int r[4];
1716 unsigned char *dst = *dstp;
1717
1718 for (reg = 0; reg < 4; reg++)
1719 r[reg] = -1;
1720
1721 while (src < src_end && *src != '\n' && found < 4)
1722 {
1723 int bytes = BYTES_BY_CHAR_HEAD (*src);
1724
1725 if (NILP (table))
1726 charset = CHARSET_AT (src);
1727 else
1728 {
1729 int c_alt;
1730 unsigned char c1, c2;
1731
1732 SPLIT_STRING(src, bytes, charset, c1, c2);
1733 if ((c_alt = translate_char (table, -1, charset, c1, c2)) >= 0)
1734 charset = CHAR_CHARSET (c_alt);
1735 }
1736
1737 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1738 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
1739 {
1740 found++;
1741 r[reg] = charset;
1742 }
1743
1744 src += bytes;
1745 }
1746
1747 if (found)
1748 {
1749 for (reg = 0; reg < 4; reg++)
1750 if (r[reg] >= 0
1751 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
1752 ENCODE_DESIGNATION (r[reg], reg, coding);
1753 *dstp = dst;
1754 }
1755 }
1756
1757 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
1758
1759 int
1760 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1761 struct coding_system *coding;
1762 unsigned char *source, *destination;
1763 int src_bytes, dst_bytes;
1764 {
1765 unsigned char *src = source;
1766 unsigned char *src_end = source + src_bytes;
1767 unsigned char *dst = destination;
1768 unsigned char *dst_end = destination + dst_bytes;
1769 /* Since the maximum bytes produced by each loop is 20, we subtract 19
1770 from DST_END to assure overflow checking is necessary only at the
1771 head of loop. */
1772 unsigned char *adjusted_dst_end = dst_end - 19;
1773 Lisp_Object translation_table
1774 = coding->translation_table_for_encode;
1775 int result = CODING_FINISH_NORMAL;
1776
1777 if (!NILP (Venable_character_translation) && NILP (translation_table))
1778 translation_table = Vstandard_translation_table_for_encode;
1779
1780 coding->consumed_char = 0;
1781 coding->fake_multibyte = 0;
1782 while (src < src_end && (dst_bytes
1783 ? (dst < adjusted_dst_end)
1784 : (dst < src - 19)))
1785 {
1786 /* SRC_BASE remembers the start position in source in each loop.
1787 The loop will be exited when there's not enough source text
1788 to analyze multi-byte codes (within macros ONE_MORE_BYTE,
1789 TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is
1790 reset to SRC_BASE before exiting. */
1791 unsigned char *src_base = src;
1792 int charset, c1, c2, c3, c4;
1793
1794 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
1795 && CODING_SPEC_ISO_BOL (coding))
1796 {
1797 /* We have to produce designation sequences if any now. */
1798 encode_designation_at_bol (coding, translation_table,
1799 src, src_end, &dst);
1800 CODING_SPEC_ISO_BOL (coding) = 0;
1801 }
1802
1803 c1 = *src++;
1804 /* If we are seeing a component of a composite character, we are
1805 seeing a leading-code encoded irregularly for composition, or
1806 a composition rule if composing with rule. We must set C1 to
1807 a normal leading-code or an ASCII code. If we are not seeing
1808 a composite character, we must reset composition,
1809 designation, and invocation states. */
1810 if (COMPOSING_P (coding->composing))
1811 {
1812 if (c1 < 0xA0)
1813 {
1814 /* We are not in a composite character any longer. */
1815 coding->composing = COMPOSING_NO;
1816 ENCODE_RESET_PLANE_AND_REGISTER;
1817 ENCODE_COMPOSITION_END;
1818 }
1819 else
1820 {
1821 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1822 {
1823 *dst++ = c1 & 0x7F;
1824 coding->composing = COMPOSING_WITH_RULE_HEAD;
1825 continue;
1826 }
1827 else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
1828 coding->composing = COMPOSING_WITH_RULE_RULE;
1829 if (c1 == 0xA0)
1830 {
1831 /* This is an ASCII component. */
1832 ONE_MORE_BYTE (c1);
1833 c1 &= 0x7F;
1834 }
1835 else
1836 /* This is a leading-code of non ASCII component. */
1837 c1 -= 0x20;
1838 }
1839 }
1840
1841 /* Now encode one character. C1 is a control character, an
1842 ASCII character, or a leading-code of multi-byte character. */
1843 switch (emacs_code_class[c1])
1844 {
1845 case EMACS_ascii_code:
1846 ENCODE_ISO_CHARACTER (CHARSET_ASCII, c1, /* dummy */ c2);
1847 break;
1848
1849 case EMACS_control_code:
1850 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1851 ENCODE_RESET_PLANE_AND_REGISTER;
1852 *dst++ = c1;
1853 coding->consumed_char++;
1854 break;
1855
1856 case EMACS_carriage_return_code:
1857 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
1858 {
1859 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1860 ENCODE_RESET_PLANE_AND_REGISTER;
1861 *dst++ = c1;
1862 coding->consumed_char++;
1863 break;
1864 }
1865 /* fall down to treat '\r' as '\n' ... */
1866
1867 case EMACS_linefeed_code:
1868 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
1869 ENCODE_RESET_PLANE_AND_REGISTER;
1870 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
1871 bcopy (coding->spec.iso2022.initial_designation,
1872 coding->spec.iso2022.current_designation,
1873 sizeof coding->spec.iso2022.initial_designation);
1874 if (coding->eol_type == CODING_EOL_LF
1875 || coding->eol_type == CODING_EOL_UNDECIDED)
1876 *dst++ = ISO_CODE_LF;
1877 else if (coding->eol_type == CODING_EOL_CRLF)
1878 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
1879 else
1880 *dst++ = ISO_CODE_CR;
1881 CODING_SPEC_ISO_BOL (coding) = 1;
1882 coding->consumed_char++;
1883 break;
1884
1885 case EMACS_leading_code_2:
1886 ONE_MORE_BYTE (c2);
1887 if (c2 < 0xA0)
1888 {
1889 /* invalid sequence */
1890 *dst++ = c1;
1891 src--;
1892 coding->consumed_char++;
1893 }
1894 else
1895 ENCODE_ISO_CHARACTER (c1, c2, /* dummy */ c3);
1896 break;
1897
1898 case EMACS_leading_code_3:
1899 TWO_MORE_BYTES (c2, c3);
1900 if (c2 < 0xA0 || c3 < 0xA0)
1901 {
1902 /* invalid sequence */
1903 *dst++ = c1;
1904 src -= 2;
1905 coding->consumed_char++;
1906 }
1907 else if (c1 < LEADING_CODE_PRIVATE_11)
1908 ENCODE_ISO_CHARACTER (c1, c2, c3);
1909 else
1910 ENCODE_ISO_CHARACTER (c2, c3, /* dummy */ c4);
1911 break;
1912
1913 case EMACS_leading_code_4:
1914 THREE_MORE_BYTES (c2, c3, c4);
1915 if (c2 < 0xA0 || c3 < 0xA0 || c4 < 0xA0)
1916 {
1917 /* invalid sequence */
1918 *dst++ = c1;
1919 src -= 3;
1920 coding->consumed_char++;
1921 }
1922 else
1923 ENCODE_ISO_CHARACTER (c2, c3, c4);
1924 break;
1925
1926 case EMACS_leading_code_composition:
1927 ONE_MORE_BYTE (c2);
1928 if (c2 < 0xA0)
1929 {
1930 /* invalid sequence */
1931 *dst++ = c1;
1932 src--;
1933 coding->consumed_char++;
1934 }
1935 else if (c2 == 0xFF)
1936 {
1937 ENCODE_RESET_PLANE_AND_REGISTER;
1938 coding->composing = COMPOSING_WITH_RULE_HEAD;
1939 ENCODE_COMPOSITION_WITH_RULE_START;
1940 coding->consumed_char++;
1941 }
1942 else
1943 {
1944 ENCODE_RESET_PLANE_AND_REGISTER;
1945 /* Rewind one byte because it is a character code of
1946 composition elements. */
1947 src--;
1948 coding->composing = COMPOSING_NO_RULE_HEAD;
1949 ENCODE_COMPOSITION_NO_RULE_START;
1950 coding->consumed_char++;
1951 }
1952 break;
1953
1954 case EMACS_invalid_code:
1955 *dst++ = c1;
1956 coding->consumed_char++;
1957 break;
1958 }
1959 continue;
1960 label_end_of_loop:
1961 result = CODING_FINISH_INSUFFICIENT_SRC;
1962 src = src_base;
1963 break;
1964 }
1965
1966 if (src < src_end && result == CODING_FINISH_NORMAL)
1967 result = CODING_FINISH_INSUFFICIENT_DST;
1968
1969 /* If this is the last block of the text to be encoded, we must
1970 reset graphic planes and registers to the initial state, and
1971 flush out the carryover if any. */
1972 if (coding->mode & CODING_MODE_LAST_BLOCK)
1973 {
1974 ENCODE_RESET_PLANE_AND_REGISTER;
1975 if (COMPOSING_P (coding->composing))
1976 ENCODE_COMPOSITION_END;
1977 }
1978 coding->consumed = src - source;
1979 coding->produced = coding->produced_char = dst - destination;
1980 return result;
1981 }
1982
1983 \f
1984 /*** 4. SJIS and BIG5 handlers ***/
1985
1986 /* Although SJIS and BIG5 are not ISO's coding system, they are used
1987 quite widely. So, for the moment, Emacs supports them in the bare
1988 C code. But, in the future, they may be supported only by CCL. */
1989
1990 /* SJIS is a coding system encoding three character sets: ASCII, right
1991 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
1992 as is. A character of charset katakana-jisx0201 is encoded by
1993 "position-code + 0x80". A character of charset japanese-jisx0208
1994 is encoded in 2-byte but two position-codes are divided and shifted
1995 so that it fit in the range below.
1996
1997 --- CODE RANGE of SJIS ---
1998 (character set) (range)
1999 ASCII 0x00 .. 0x7F
2000 KATAKANA-JISX0201 0xA0 .. 0xDF
2001 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xEF
2002 (2nd byte) 0x40 .. 0xFF
2003 -------------------------------
2004
2005 */
2006
2007 /* BIG5 is a coding system encoding two character sets: ASCII and
2008 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2009 character set and is encoded in two-byte.
2010
2011 --- CODE RANGE of BIG5 ---
2012 (character set) (range)
2013 ASCII 0x00 .. 0x7F
2014 Big5 (1st byte) 0xA1 .. 0xFE
2015 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2016 --------------------------
2017
2018 Since the number of characters in Big5 is larger than maximum
2019 characters in Emacs' charset (96x96), it can't be handled as one
2020 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2021 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2022 contains frequently used characters and the latter contains less
2023 frequently used characters. */
2024
2025 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2026 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2027 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2028 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2029
2030 /* Number of Big5 characters which have the same code in 1st byte. */
2031 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2032
2033 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2034 do { \
2035 unsigned int temp \
2036 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2037 if (b1 < 0xC9) \
2038 charset = charset_big5_1; \
2039 else \
2040 { \
2041 charset = charset_big5_2; \
2042 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2043 } \
2044 c1 = temp / (0xFF - 0xA1) + 0x21; \
2045 c2 = temp % (0xFF - 0xA1) + 0x21; \
2046 } while (0)
2047
2048 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2049 do { \
2050 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2051 if (charset == charset_big5_2) \
2052 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2053 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2054 b2 = temp % BIG5_SAME_ROW; \
2055 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2056 } while (0)
2057
2058 #define DECODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2059 do { \
2060 int c_alt, charset_alt = (charset); \
2061 if (!NILP (translation_table) \
2062 && ((c_alt = translate_char (translation_table, \
2063 -1, (charset), c1, c2)) >= 0)) \
2064 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2065 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
2066 DECODE_CHARACTER_ASCII (c1); \
2067 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2068 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
2069 else \
2070 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
2071 } while (0)
2072
2073 #define ENCODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2074 do { \
2075 int c_alt, charset_alt; \
2076 if (!NILP (translation_table) \
2077 && ((c_alt = translate_char (translation_table, -1, \
2078 charset, c1, c2)) \
2079 >= 0)) \
2080 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2081 else \
2082 charset_alt = charset; \
2083 if (charset_alt == charset_ascii) \
2084 *dst++ = c1; \
2085 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2086 { \
2087 if (sjis_p && charset_alt == charset_katakana_jisx0201) \
2088 *dst++ = c1; \
2089 else \
2090 { \
2091 *dst++ = charset_alt, *dst++ = c1; \
2092 coding->fake_multibyte = 1; \
2093 } \
2094 } \
2095 else \
2096 { \
2097 c1 &= 0x7F, c2 &= 0x7F; \
2098 if (sjis_p && charset_alt == charset_jisx0208) \
2099 { \
2100 unsigned char s1, s2; \
2101 \
2102 ENCODE_SJIS (c1, c2, s1, s2); \
2103 *dst++ = s1, *dst++ = s2; \
2104 coding->fake_multibyte = 1; \
2105 } \
2106 else if (!sjis_p \
2107 && (charset_alt == charset_big5_1 \
2108 || charset_alt == charset_big5_2)) \
2109 { \
2110 unsigned char b1, b2; \
2111 \
2112 ENCODE_BIG5 (charset_alt, c1, c2, b1, b2); \
2113 *dst++ = b1, *dst++ = b2; \
2114 } \
2115 else \
2116 { \
2117 *dst++ = charset_alt, *dst++ = c1, *dst++ = c2; \
2118 coding->fake_multibyte = 1; \
2119 } \
2120 } \
2121 coding->consumed_char++; \
2122 } while (0);
2123
2124 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2125 Check if a text is encoded in SJIS. If it is, return
2126 CODING_CATEGORY_MASK_SJIS, else return 0. */
2127
2128 int
2129 detect_coding_sjis (src, src_end)
2130 unsigned char *src, *src_end;
2131 {
2132 unsigned char c;
2133
2134 while (src < src_end)
2135 {
2136 c = *src++;
2137 if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
2138 {
2139 if (src < src_end && *src++ < 0x40)
2140 return 0;
2141 }
2142 }
2143 return CODING_CATEGORY_MASK_SJIS;
2144 }
2145
2146 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2147 Check if a text is encoded in BIG5. If it is, return
2148 CODING_CATEGORY_MASK_BIG5, else return 0. */
2149
2150 int
2151 detect_coding_big5 (src, src_end)
2152 unsigned char *src, *src_end;
2153 {
2154 unsigned char c;
2155
2156 while (src < src_end)
2157 {
2158 c = *src++;
2159 if (c >= 0xA1)
2160 {
2161 if (src >= src_end)
2162 break;
2163 c = *src++;
2164 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
2165 return 0;
2166 }
2167 }
2168 return CODING_CATEGORY_MASK_BIG5;
2169 }
2170
2171 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2172 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2173
2174 int
2175 decode_coding_sjis_big5 (coding, source, destination,
2176 src_bytes, dst_bytes, sjis_p)
2177 struct coding_system *coding;
2178 unsigned char *source, *destination;
2179 int src_bytes, dst_bytes;
2180 int sjis_p;
2181 {
2182 unsigned char *src = source;
2183 unsigned char *src_end = source + src_bytes;
2184 unsigned char *dst = destination;
2185 unsigned char *dst_end = destination + dst_bytes;
2186 /* Since the maximum bytes produced by each loop is 4, we subtract 3
2187 from DST_END to assure overflow checking is necessary only at the
2188 head of loop. */
2189 unsigned char *adjusted_dst_end = dst_end - 3;
2190 Lisp_Object translation_table
2191 = coding->translation_table_for_decode;
2192 int result = CODING_FINISH_NORMAL;
2193
2194 if (!NILP (Venable_character_translation) && NILP (translation_table))
2195 translation_table = Vstandard_translation_table_for_decode;
2196
2197 coding->produced_char = 0;
2198 coding->fake_multibyte = 0;
2199 while (src < src_end && (dst_bytes
2200 ? (dst < adjusted_dst_end)
2201 : (dst < src - 3)))
2202 {
2203 /* SRC_BASE remembers the start position in source in each loop.
2204 The loop will be exited when there's not enough source text
2205 to analyze two-byte character (within macro ONE_MORE_BYTE).
2206 In that case, SRC is reset to SRC_BASE before exiting. */
2207 unsigned char *src_base = src;
2208 unsigned char c1 = *src++, c2, c3, c4;
2209
2210 if (c1 < 0x20)
2211 {
2212 if (c1 == '\r')
2213 {
2214 if (coding->eol_type == CODING_EOL_CRLF)
2215 {
2216 ONE_MORE_BYTE (c2);
2217 if (c2 == '\n')
2218 *dst++ = c2;
2219 else if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2220 {
2221 result = CODING_FINISH_INCONSISTENT_EOL;
2222 goto label_end_of_loop_2;
2223 }
2224 else
2225 /* To process C2 again, SRC is subtracted by 1. */
2226 *dst++ = c1, src--;
2227 }
2228 else if (coding->eol_type == CODING_EOL_CR)
2229 *dst++ = '\n';
2230 else
2231 *dst++ = c1;
2232 }
2233 else if (c1 == '\n'
2234 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2235 && (coding->eol_type == CODING_EOL_CR
2236 || coding->eol_type == CODING_EOL_CRLF))
2237 {
2238 result = CODING_FINISH_INCONSISTENT_EOL;
2239 goto label_end_of_loop_2;
2240 }
2241 else
2242 *dst++ = c1;
2243 coding->produced_char++;
2244 }
2245 else if (c1 < 0x80)
2246 DECODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2247 else
2248 {
2249 if (sjis_p)
2250 {
2251 if (c1 < 0xA0 || (c1 >= 0xE0 && c1 < 0xF0))
2252 {
2253 /* SJIS -> JISX0208 */
2254 ONE_MORE_BYTE (c2);
2255 if (c2 >= 0x40)
2256 {
2257 DECODE_SJIS (c1, c2, c3, c4);
2258 DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4);
2259 }
2260 else
2261 goto label_invalid_code_2;
2262 }
2263 else if (c1 < 0xE0)
2264 /* SJIS -> JISX0201-Kana */
2265 DECODE_SJIS_BIG5_CHARACTER (charset_katakana_jisx0201, c1,
2266 /* dummy */ c2);
2267 else
2268 goto label_invalid_code_1;
2269 }
2270 else
2271 {
2272 /* BIG5 -> Big5 */
2273 if (c1 >= 0xA1 && c1 <= 0xFE)
2274 {
2275 ONE_MORE_BYTE (c2);
2276 if ((c2 >= 0x40 && c2 <= 0x7E) || (c2 >= 0xA1 && c2 <= 0xFE))
2277 {
2278 int charset;
2279
2280 DECODE_BIG5 (c1, c2, charset, c3, c4);
2281 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
2282 }
2283 else
2284 goto label_invalid_code_2;
2285 }
2286 else
2287 goto label_invalid_code_1;
2288 }
2289 }
2290 continue;
2291
2292 label_invalid_code_1:
2293 *dst++ = c1;
2294 coding->produced_char++;
2295 coding->fake_multibyte = 1;
2296 continue;
2297
2298 label_invalid_code_2:
2299 *dst++ = c1; *dst++= c2;
2300 coding->produced_char += 2;
2301 coding->fake_multibyte = 1;
2302 continue;
2303
2304 label_end_of_loop:
2305 result = CODING_FINISH_INSUFFICIENT_SRC;
2306 label_end_of_loop_2:
2307 src = src_base;
2308 break;
2309 }
2310
2311 if (src < src_end)
2312 {
2313 if (result == CODING_FINISH_NORMAL)
2314 result = CODING_FINISH_INSUFFICIENT_DST;
2315 else if (result != CODING_FINISH_INCONSISTENT_EOL
2316 && coding->mode & CODING_MODE_LAST_BLOCK)
2317 {
2318 src_bytes = src_end - src;
2319 if (dst_bytes && (dst_end - dst < src_bytes))
2320 src_bytes = dst_end - dst;
2321 bcopy (dst, src, src_bytes);
2322 src += src_bytes;
2323 dst += src_bytes;
2324 coding->fake_multibyte = 1;
2325 }
2326 }
2327
2328 coding->consumed = coding->consumed_char = src - source;
2329 coding->produced = dst - destination;
2330 return result;
2331 }
2332
2333 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2334 This function can encode `charset_ascii', `charset_katakana_jisx0201',
2335 `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are
2336 sure that all these charsets are registered as official charset
2337 (i.e. do not have extended leading-codes). Characters of other
2338 charsets are produced without any encoding. If SJIS_P is 1, encode
2339 SJIS text, else encode BIG5 text. */
2340
2341 int
2342 encode_coding_sjis_big5 (coding, source, destination,
2343 src_bytes, dst_bytes, sjis_p)
2344 struct coding_system *coding;
2345 unsigned char *source, *destination;
2346 int src_bytes, dst_bytes;
2347 int sjis_p;
2348 {
2349 unsigned char *src = source;
2350 unsigned char *src_end = source + src_bytes;
2351 unsigned char *dst = destination;
2352 unsigned char *dst_end = destination + dst_bytes;
2353 /* Since the maximum bytes produced by each loop is 2, we subtract 1
2354 from DST_END to assure overflow checking is necessary only at the
2355 head of loop. */
2356 unsigned char *adjusted_dst_end = dst_end - 1;
2357 Lisp_Object translation_table
2358 = coding->translation_table_for_encode;
2359 int result = CODING_FINISH_NORMAL;
2360
2361 if (!NILP (Venable_character_translation) && NILP (translation_table))
2362 translation_table = Vstandard_translation_table_for_encode;
2363
2364 coding->consumed_char = 0;
2365 coding->fake_multibyte = 0;
2366 while (src < src_end && (dst_bytes
2367 ? (dst < adjusted_dst_end)
2368 : (dst < src - 1)))
2369 {
2370 /* SRC_BASE remembers the start position in source in each loop.
2371 The loop will be exited when there's not enough source text
2372 to analyze multi-byte codes (within macros ONE_MORE_BYTE and
2373 TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE
2374 before exiting. */
2375 unsigned char *src_base = src;
2376 unsigned char c1 = *src++, c2, c3, c4;
2377
2378 if (coding->composing)
2379 {
2380 if (c1 == 0xA0)
2381 {
2382 ONE_MORE_BYTE (c1);
2383 c1 &= 0x7F;
2384 }
2385 else if (c1 >= 0xA0)
2386 c1 -= 0x20;
2387 else
2388 coding->composing = 0;
2389 }
2390
2391 switch (emacs_code_class[c1])
2392 {
2393 case EMACS_ascii_code:
2394 ENCODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2395 break;
2396
2397 case EMACS_control_code:
2398 *dst++ = c1;
2399 coding->consumed_char++;
2400 break;
2401
2402 case EMACS_carriage_return_code:
2403 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2404 {
2405 *dst++ = c1;
2406 coding->consumed_char++;
2407 break;
2408 }
2409 /* fall down to treat '\r' as '\n' ... */
2410
2411 case EMACS_linefeed_code:
2412 if (coding->eol_type == CODING_EOL_LF
2413 || coding->eol_type == CODING_EOL_UNDECIDED)
2414 *dst++ = '\n';
2415 else if (coding->eol_type == CODING_EOL_CRLF)
2416 *dst++ = '\r', *dst++ = '\n';
2417 else
2418 *dst++ = '\r';
2419 coding->consumed_char++;
2420 break;
2421
2422 case EMACS_leading_code_2:
2423 ONE_MORE_BYTE (c2);
2424 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, /* dummy */ c3);
2425 break;
2426
2427 case EMACS_leading_code_3:
2428 TWO_MORE_BYTES (c2, c3);
2429 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, c3);
2430 break;
2431
2432 case EMACS_leading_code_4:
2433 THREE_MORE_BYTES (c2, c3, c4);
2434 ENCODE_SJIS_BIG5_CHARACTER (c2, c3, c4);
2435 break;
2436
2437 case EMACS_leading_code_composition:
2438 coding->composing = 1;
2439 break;
2440
2441 default: /* i.e. case EMACS_invalid_code: */
2442 *dst++ = c1;
2443 coding->consumed_char++;
2444 }
2445 continue;
2446
2447 label_end_of_loop:
2448 result = CODING_FINISH_INSUFFICIENT_SRC;
2449 src = src_base;
2450 break;
2451 }
2452
2453 if (result == CODING_FINISH_NORMAL
2454 && src < src_end)
2455 result = CODING_FINISH_INSUFFICIENT_DST;
2456 coding->consumed = src - source;
2457 coding->produced = coding->produced_char = dst - destination;
2458 return result;
2459 }
2460
2461 \f
2462 /*** 5. CCL handlers ***/
2463
2464 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2465 Check if a text is encoded in a coding system of which
2466 encoder/decoder are written in CCL program. If it is, return
2467 CODING_CATEGORY_MASK_CCL, else return 0. */
2468
2469 int
2470 detect_coding_ccl (src, src_end)
2471 unsigned char *src, *src_end;
2472 {
2473 unsigned char *valid;
2474
2475 /* No coding system is assigned to coding-category-ccl. */
2476 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
2477 return 0;
2478
2479 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
2480 while (src < src_end)
2481 {
2482 if (! valid[*src]) return 0;
2483 src++;
2484 }
2485 return CODING_CATEGORY_MASK_CCL;
2486 }
2487
2488 \f
2489 /*** 6. End-of-line handlers ***/
2490
2491 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2492 This function is called only when `coding->eol_type' is
2493 CODING_EOL_CRLF or CODING_EOL_CR. */
2494
2495 int
2496 decode_eol (coding, source, destination, src_bytes, dst_bytes)
2497 struct coding_system *coding;
2498 unsigned char *source, *destination;
2499 int src_bytes, dst_bytes;
2500 {
2501 unsigned char *src = source;
2502 unsigned char *src_end = source + src_bytes;
2503 unsigned char *dst = destination;
2504 unsigned char *dst_end = destination + dst_bytes;
2505 unsigned char c;
2506 int result = CODING_FINISH_NORMAL;
2507
2508 coding->fake_multibyte = 0;
2509
2510 if (src_bytes <= 0)
2511 return result;
2512
2513 switch (coding->eol_type)
2514 {
2515 case CODING_EOL_CRLF:
2516 {
2517 /* Since the maximum bytes produced by each loop is 2, we
2518 subtract 1 from DST_END to assure overflow checking is
2519 necessary only at the head of loop. */
2520 unsigned char *adjusted_dst_end = dst_end - 1;
2521
2522 while (src < src_end && (dst_bytes
2523 ? (dst < adjusted_dst_end)
2524 : (dst < src - 1)))
2525 {
2526 unsigned char *src_base = src;
2527
2528 c = *src++;
2529 if (c == '\r')
2530 {
2531 ONE_MORE_BYTE (c);
2532 if (c != '\n')
2533 {
2534 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2535 {
2536 result = CODING_FINISH_INCONSISTENT_EOL;
2537 goto label_end_of_loop_2;
2538 }
2539 *dst++ = '\r';
2540 if (BASE_LEADING_CODE_P (c))
2541 coding->fake_multibyte = 1;
2542 }
2543 *dst++ = c;
2544 }
2545 else if (c == '\n'
2546 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
2547 {
2548 result = CODING_FINISH_INCONSISTENT_EOL;
2549 goto label_end_of_loop_2;
2550 }
2551 else
2552 {
2553 *dst++ = c;
2554 if (BASE_LEADING_CODE_P (c))
2555 coding->fake_multibyte = 1;
2556 }
2557 continue;
2558
2559 label_end_of_loop:
2560 result = CODING_FINISH_INSUFFICIENT_SRC;
2561 label_end_of_loop_2:
2562 src = src_base;
2563 break;
2564 }
2565 if (result == CODING_FINISH_NORMAL
2566 && src < src_end)
2567 result = CODING_FINISH_INSUFFICIENT_DST;
2568 }
2569 break;
2570
2571 case CODING_EOL_CR:
2572 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2573 {
2574 while (src < src_end)
2575 {
2576 if ((c = *src++) == '\n')
2577 break;
2578 if (BASE_LEADING_CODE_P (c))
2579 coding->fake_multibyte = 1;
2580 }
2581 if (*--src == '\n')
2582 {
2583 src_bytes = src - source;
2584 result = CODING_FINISH_INCONSISTENT_EOL;
2585 }
2586 }
2587 if (dst_bytes && src_bytes > dst_bytes)
2588 {
2589 result = CODING_FINISH_INSUFFICIENT_DST;
2590 src_bytes = dst_bytes;
2591 }
2592 if (dst_bytes)
2593 bcopy (source, destination, src_bytes);
2594 else
2595 safe_bcopy (source, destination, src_bytes);
2596 src = source + src_bytes;
2597 while (src_bytes--) if (*dst++ == '\r') dst[-1] = '\n';
2598 break;
2599
2600 default: /* i.e. case: CODING_EOL_LF */
2601 if (dst_bytes && src_bytes > dst_bytes)
2602 {
2603 result = CODING_FINISH_INSUFFICIENT_DST;
2604 src_bytes = dst_bytes;
2605 }
2606 if (dst_bytes)
2607 bcopy (source, destination, src_bytes);
2608 else
2609 safe_bcopy (source, destination, src_bytes);
2610 src += src_bytes;
2611 dst += src_bytes;
2612 coding->fake_multibyte = 1;
2613 break;
2614 }
2615
2616 coding->consumed = coding->consumed_char = src - source;
2617 coding->produced = coding->produced_char = dst - destination;
2618 return result;
2619 }
2620
2621 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2622 format of end-of-line according to `coding->eol_type'. If
2623 `coding->mode & CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code
2624 '\r' in source text also means end-of-line. */
2625
2626 int
2627 encode_eol (coding, source, destination, src_bytes, dst_bytes)
2628 struct coding_system *coding;
2629 unsigned char *source, *destination;
2630 int src_bytes, dst_bytes;
2631 {
2632 unsigned char *src = source;
2633 unsigned char *dst = destination;
2634 int result = CODING_FINISH_NORMAL;
2635
2636 coding->fake_multibyte = 0;
2637
2638 if (coding->eol_type == CODING_EOL_CRLF)
2639 {
2640 unsigned char c;
2641 unsigned char *src_end = source + src_bytes;
2642 unsigned char *dst_end = destination + dst_bytes;
2643 /* Since the maximum bytes produced by each loop is 2, we
2644 subtract 1 from DST_END to assure overflow checking is
2645 necessary only at the head of loop. */
2646 unsigned char *adjusted_dst_end = dst_end - 1;
2647
2648 while (src < src_end && (dst_bytes
2649 ? (dst < adjusted_dst_end)
2650 : (dst < src - 1)))
2651 {
2652 c = *src++;
2653 if (c == '\n'
2654 || (c == '\r' && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)))
2655 *dst++ = '\r', *dst++ = '\n';
2656 else
2657 {
2658 *dst++ = c;
2659 if (BASE_LEADING_CODE_P (c))
2660 coding->fake_multibyte = 1;
2661 }
2662 }
2663 if (src < src_end)
2664 result = CODING_FINISH_INSUFFICIENT_DST;
2665 }
2666 else
2667 {
2668 unsigned char c;
2669
2670 if (dst_bytes && src_bytes > dst_bytes)
2671 {
2672 src_bytes = dst_bytes;
2673 result = CODING_FINISH_INSUFFICIENT_DST;
2674 }
2675 if (dst_bytes)
2676 bcopy (source, destination, src_bytes);
2677 else
2678 safe_bcopy (source, destination, src_bytes);
2679 dst_bytes = src_bytes;
2680 if (coding->eol_type == CODING_EOL_CR)
2681 {
2682 while (src_bytes--)
2683 {
2684 if ((c = *dst++) == '\n')
2685 dst[-1] = '\r';
2686 else if (BASE_LEADING_CODE_P (c))
2687 coding->fake_multibyte = 1;
2688 }
2689 }
2690 else
2691 {
2692 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
2693 {
2694 while (src_bytes--)
2695 if (*dst++ == '\r') dst[-1] = '\n';
2696 }
2697 coding->fake_multibyte = 1;
2698 }
2699 src = source + dst_bytes;
2700 dst = destination + dst_bytes;
2701 }
2702
2703 coding->consumed = coding->consumed_char = src - source;
2704 coding->produced = coding->produced_char = dst - destination;
2705 return result;
2706 }
2707
2708 \f
2709 /*** 7. C library functions ***/
2710
2711 /* In Emacs Lisp, coding system is represented by a Lisp symbol which
2712 has a property `coding-system'. The value of this property is a
2713 vector of length 5 (called as coding-vector). Among elements of
2714 this vector, the first (element[0]) and the fifth (element[4])
2715 carry important information for decoding/encoding. Before
2716 decoding/encoding, this information should be set in fields of a
2717 structure of type `coding_system'.
2718
2719 A value of property `coding-system' can be a symbol of another
2720 subsidiary coding-system. In that case, Emacs gets coding-vector
2721 from that symbol.
2722
2723 `element[0]' contains information to be set in `coding->type'. The
2724 value and its meaning is as follows:
2725
2726 0 -- coding_type_emacs_mule
2727 1 -- coding_type_sjis
2728 2 -- coding_type_iso2022
2729 3 -- coding_type_big5
2730 4 -- coding_type_ccl encoder/decoder written in CCL
2731 nil -- coding_type_no_conversion
2732 t -- coding_type_undecided (automatic conversion on decoding,
2733 no-conversion on encoding)
2734
2735 `element[4]' contains information to be set in `coding->flags' and
2736 `coding->spec'. The meaning varies by `coding->type'.
2737
2738 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2739 of length 32 (of which the first 13 sub-elements are used now).
2740 Meanings of these sub-elements are:
2741
2742 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2743 If the value is an integer of valid charset, the charset is
2744 assumed to be designated to graphic register N initially.
2745
2746 If the value is minus, it is a minus value of charset which
2747 reserves graphic register N, which means that the charset is
2748 not designated initially but should be designated to graphic
2749 register N just before encoding a character in that charset.
2750
2751 If the value is nil, graphic register N is never used on
2752 encoding.
2753
2754 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2755 Each value takes t or nil. See the section ISO2022 of
2756 `coding.h' for more information.
2757
2758 If `coding->type' is `coding_type_big5', element[4] is t to denote
2759 BIG5-ETen or nil to denote BIG5-HKU.
2760
2761 If `coding->type' takes the other value, element[4] is ignored.
2762
2763 Emacs Lisp's coding system also carries information about format of
2764 end-of-line in a value of property `eol-type'. If the value is
2765 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2766 means CODING_EOL_CR. If it is not integer, it should be a vector
2767 of subsidiary coding systems of which property `eol-type' has one
2768 of above values.
2769
2770 */
2771
2772 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2773 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2774 is setup so that no conversion is necessary and return -1, else
2775 return 0. */
2776
2777 int
2778 setup_coding_system (coding_system, coding)
2779 Lisp_Object coding_system;
2780 struct coding_system *coding;
2781 {
2782 Lisp_Object coding_spec, coding_type, eol_type, plist;
2783 Lisp_Object val;
2784 int i;
2785
2786 /* Initialize some fields required for all kinds of coding systems. */
2787 coding->symbol = coding_system;
2788 coding->common_flags = 0;
2789 coding->mode = 0;
2790 coding->heading_ascii = -1;
2791 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2792 coding_spec = Fget (coding_system, Qcoding_system);
2793 if (!VECTORP (coding_spec)
2794 || XVECTOR (coding_spec)->size != 5
2795 || !CONSP (XVECTOR (coding_spec)->contents[3]))
2796 goto label_invalid_coding_system;
2797
2798 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
2799 if (VECTORP (eol_type))
2800 {
2801 coding->eol_type = CODING_EOL_UNDECIDED;
2802 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
2803 }
2804 else if (XFASTINT (eol_type) == 1)
2805 {
2806 coding->eol_type = CODING_EOL_CRLF;
2807 coding->common_flags
2808 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2809 }
2810 else if (XFASTINT (eol_type) == 2)
2811 {
2812 coding->eol_type = CODING_EOL_CR;
2813 coding->common_flags
2814 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2815 }
2816 else
2817 coding->eol_type = CODING_EOL_LF;
2818
2819 coding_type = XVECTOR (coding_spec)->contents[0];
2820 /* Try short cut. */
2821 if (SYMBOLP (coding_type))
2822 {
2823 if (EQ (coding_type, Qt))
2824 {
2825 coding->type = coding_type_undecided;
2826 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
2827 }
2828 else
2829 coding->type = coding_type_no_conversion;
2830 return 0;
2831 }
2832
2833 /* Initialize remaining fields. */
2834 coding->composing = 0;
2835 coding->translation_table_for_decode = Qnil;
2836 coding->translation_table_for_encode = Qnil;
2837
2838 /* Get values of coding system properties:
2839 `post-read-conversion', `pre-write-conversion',
2840 `translation-table-for-decode', `translation-table-for-encode'. */
2841 plist = XVECTOR (coding_spec)->contents[3];
2842 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
2843 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
2844 val = Fplist_get (plist, Qtranslation_table_for_decode);
2845 if (SYMBOLP (val))
2846 val = Fget (val, Qtranslation_table_for_decode);
2847 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
2848 val = Fplist_get (plist, Qtranslation_table_for_encode);
2849 if (SYMBOLP (val))
2850 val = Fget (val, Qtranslation_table_for_encode);
2851 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
2852 val = Fplist_get (plist, Qcoding_category);
2853 if (!NILP (val))
2854 {
2855 val = Fget (val, Qcoding_category_index);
2856 if (INTEGERP (val))
2857 coding->category_idx = XINT (val);
2858 else
2859 goto label_invalid_coding_system;
2860 }
2861 else
2862 goto label_invalid_coding_system;
2863
2864 val = Fplist_get (plist, Qsafe_charsets);
2865 if (EQ (val, Qt))
2866 {
2867 for (i = 0; i <= MAX_CHARSET; i++)
2868 coding->safe_charsets[i] = 1;
2869 }
2870 else
2871 {
2872 bzero (coding->safe_charsets, MAX_CHARSET + 1);
2873 while (CONSP (val))
2874 {
2875 if ((i = get_charset_id (XCONS (val)->car)) >= 0)
2876 coding->safe_charsets[i] = 1;
2877 val = XCONS (val)->cdr;
2878 }
2879 }
2880
2881 switch (XFASTINT (coding_type))
2882 {
2883 case 0:
2884 coding->type = coding_type_emacs_mule;
2885 if (!NILP (coding->post_read_conversion))
2886 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
2887 if (!NILP (coding->pre_write_conversion))
2888 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
2889 break;
2890
2891 case 1:
2892 coding->type = coding_type_sjis;
2893 coding->common_flags
2894 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2895 break;
2896
2897 case 2:
2898 coding->type = coding_type_iso2022;
2899 coding->common_flags
2900 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2901 {
2902 Lisp_Object val, temp;
2903 Lisp_Object *flags;
2904 int i, charset, reg_bits = 0;
2905
2906 val = XVECTOR (coding_spec)->contents[4];
2907
2908 if (!VECTORP (val) || XVECTOR (val)->size != 32)
2909 goto label_invalid_coding_system;
2910
2911 flags = XVECTOR (val)->contents;
2912 coding->flags
2913 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
2914 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
2915 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
2916 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
2917 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
2918 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
2919 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
2920 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
2921 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
2922 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
2923 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
2924 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
2925 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
2926 );
2927
2928 /* Invoke graphic register 0 to plane 0. */
2929 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
2930 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
2931 CODING_SPEC_ISO_INVOCATION (coding, 1)
2932 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
2933 /* Not single shifting at first. */
2934 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
2935 /* Beginning of buffer should also be regarded as bol. */
2936 CODING_SPEC_ISO_BOL (coding) = 1;
2937
2938 for (charset = 0; charset <= MAX_CHARSET; charset++)
2939 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
2940 val = Vcharset_revision_alist;
2941 while (CONSP (val))
2942 {
2943 charset = get_charset_id (Fcar_safe (XCONS (val)->car));
2944 if (charset >= 0
2945 && (temp = Fcdr_safe (XCONS (val)->car), INTEGERP (temp))
2946 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
2947 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
2948 val = XCONS (val)->cdr;
2949 }
2950
2951 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
2952 FLAGS[REG] can be one of below:
2953 integer CHARSET: CHARSET occupies register I,
2954 t: designate nothing to REG initially, but can be used
2955 by any charsets,
2956 list of integer, nil, or t: designate the first
2957 element (if integer) to REG initially, the remaining
2958 elements (if integer) is designated to REG on request,
2959 if an element is t, REG can be used by any charsets,
2960 nil: REG is never used. */
2961 for (charset = 0; charset <= MAX_CHARSET; charset++)
2962 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2963 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
2964 for (i = 0; i < 4; i++)
2965 {
2966 if (INTEGERP (flags[i])
2967 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
2968 || (charset = get_charset_id (flags[i])) >= 0)
2969 {
2970 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2971 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
2972 }
2973 else if (EQ (flags[i], Qt))
2974 {
2975 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2976 reg_bits |= 1 << i;
2977 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
2978 }
2979 else if (CONSP (flags[i]))
2980 {
2981 Lisp_Object tail;
2982 tail = flags[i];
2983
2984 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
2985 if (INTEGERP (XCONS (tail)->car)
2986 && (charset = XINT (XCONS (tail)->car),
2987 CHARSET_VALID_P (charset))
2988 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
2989 {
2990 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2991 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
2992 }
2993 else
2994 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2995 tail = XCONS (tail)->cdr;
2996 while (CONSP (tail))
2997 {
2998 if (INTEGERP (XCONS (tail)->car)
2999 && (charset = XINT (XCONS (tail)->car),
3000 CHARSET_VALID_P (charset))
3001 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
3002 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3003 = i;
3004 else if (EQ (XCONS (tail)->car, Qt))
3005 reg_bits |= 1 << i;
3006 tail = XCONS (tail)->cdr;
3007 }
3008 }
3009 else
3010 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3011
3012 CODING_SPEC_ISO_DESIGNATION (coding, i)
3013 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3014 }
3015
3016 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3017 {
3018 /* REG 1 can be used only by locking shift in 7-bit env. */
3019 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3020 reg_bits &= ~2;
3021 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3022 /* Without any shifting, only REG 0 and 1 can be used. */
3023 reg_bits &= 3;
3024 }
3025
3026 if (reg_bits)
3027 for (charset = 0; charset <= MAX_CHARSET; charset++)
3028 {
3029 if (CHARSET_VALID_P (charset))
3030 {
3031 /* There exist some default graphic registers to be
3032 used CHARSET. */
3033
3034 /* We had better avoid designating a charset of
3035 CHARS96 to REG 0 as far as possible. */
3036 if (CHARSET_CHARS (charset) == 96)
3037 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3038 = (reg_bits & 2
3039 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3040 else
3041 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3042 = (reg_bits & 1
3043 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3044 }
3045 }
3046 }
3047 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3048 coding->spec.iso2022.last_invalid_designation_register = -1;
3049 break;
3050
3051 case 3:
3052 coding->type = coding_type_big5;
3053 coding->common_flags
3054 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3055 coding->flags
3056 = (NILP (XVECTOR (coding_spec)->contents[4])
3057 ? CODING_FLAG_BIG5_HKU
3058 : CODING_FLAG_BIG5_ETEN);
3059 break;
3060
3061 case 4:
3062 coding->type = coding_type_ccl;
3063 coding->common_flags
3064 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3065 {
3066 Lisp_Object val;
3067 Lisp_Object decoder, encoder;
3068
3069 val = XVECTOR (coding_spec)->contents[4];
3070 if (CONSP (val)
3071 && SYMBOLP (XCONS (val)->car)
3072 && !NILP (decoder = Fget (XCONS (val)->car, Qccl_program_idx))
3073 && !NILP (decoder = Fcdr (Faref (Vccl_program_table, decoder)))
3074 && SYMBOLP (XCONS (val)->cdr)
3075 && !NILP (encoder = Fget (XCONS (val)->cdr, Qccl_program_idx))
3076 && !NILP (encoder = Fcdr (Faref (Vccl_program_table, encoder))))
3077 {
3078 setup_ccl_program (&(coding->spec.ccl.decoder), decoder);
3079 setup_ccl_program (&(coding->spec.ccl.encoder), encoder);
3080 }
3081 else
3082 goto label_invalid_coding_system;
3083
3084 bzero (coding->spec.ccl.valid_codes, 256);
3085 val = Fplist_get (plist, Qvalid_codes);
3086 if (CONSP (val))
3087 {
3088 Lisp_Object this;
3089
3090 for (; CONSP (val); val = XCONS (val)->cdr)
3091 {
3092 this = XCONS (val)->car;
3093 if (INTEGERP (this)
3094 && XINT (this) >= 0 && XINT (this) < 256)
3095 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3096 else if (CONSP (this)
3097 && INTEGERP (XCONS (this)->car)
3098 && INTEGERP (XCONS (this)->cdr))
3099 {
3100 int start = XINT (XCONS (this)->car);
3101 int end = XINT (XCONS (this)->cdr);
3102
3103 if (start >= 0 && start <= end && end < 256)
3104 while (start < end)
3105 coding->spec.ccl.valid_codes[start++] = 1;
3106 }
3107 }
3108 }
3109 }
3110 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3111 break;
3112
3113 case 5:
3114 coding->type = coding_type_raw_text;
3115 break;
3116
3117 default:
3118 goto label_invalid_coding_system;
3119 }
3120 return 0;
3121
3122 label_invalid_coding_system:
3123 coding->type = coding_type_no_conversion;
3124 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3125 coding->common_flags = 0;
3126 coding->eol_type = CODING_EOL_LF;
3127 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3128 return -1;
3129 }
3130
3131 /* Setup raw-text or one of its subsidiaries in the structure
3132 coding_system CODING according to the already setup value eol_type
3133 in CODING. CODING should be setup for some coding system in
3134 advance. */
3135
3136 void
3137 setup_raw_text_coding_system (coding)
3138 struct coding_system *coding;
3139 {
3140 if (coding->type != coding_type_raw_text)
3141 {
3142 coding->symbol = Qraw_text;
3143 coding->type = coding_type_raw_text;
3144 if (coding->eol_type != CODING_EOL_UNDECIDED)
3145 {
3146 Lisp_Object subsidiaries;
3147 subsidiaries = Fget (Qraw_text, Qeol_type);
3148
3149 if (VECTORP (subsidiaries)
3150 && XVECTOR (subsidiaries)->size == 3)
3151 coding->symbol
3152 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3153 }
3154 }
3155 return;
3156 }
3157
3158 /* Emacs has a mechanism to automatically detect a coding system if it
3159 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3160 it's impossible to distinguish some coding systems accurately
3161 because they use the same range of codes. So, at first, coding
3162 systems are categorized into 7, those are:
3163
3164 o coding-category-emacs-mule
3165
3166 The category for a coding system which has the same code range
3167 as Emacs' internal format. Assigned the coding-system (Lisp
3168 symbol) `emacs-mule' by default.
3169
3170 o coding-category-sjis
3171
3172 The category for a coding system which has the same code range
3173 as SJIS. Assigned the coding-system (Lisp
3174 symbol) `japanese-shift-jis' by default.
3175
3176 o coding-category-iso-7
3177
3178 The category for a coding system which has the same code range
3179 as ISO2022 of 7-bit environment. This doesn't use any locking
3180 shift and single shift functions. This can encode/decode all
3181 charsets. Assigned the coding-system (Lisp symbol)
3182 `iso-2022-7bit' by default.
3183
3184 o coding-category-iso-7-tight
3185
3186 Same as coding-category-iso-7 except that this can
3187 encode/decode only the specified charsets.
3188
3189 o coding-category-iso-8-1
3190
3191 The category for a coding system which has the same code range
3192 as ISO2022 of 8-bit environment and graphic plane 1 used only
3193 for DIMENSION1 charset. This doesn't use any locking shift
3194 and single shift functions. Assigned the coding-system (Lisp
3195 symbol) `iso-latin-1' by default.
3196
3197 o coding-category-iso-8-2
3198
3199 The category for a coding system which has the same code range
3200 as ISO2022 of 8-bit environment and graphic plane 1 used only
3201 for DIMENSION2 charset. This doesn't use any locking shift
3202 and single shift functions. Assigned the coding-system (Lisp
3203 symbol) `japanese-iso-8bit' by default.
3204
3205 o coding-category-iso-7-else
3206
3207 The category for a coding system which has the same code range
3208 as ISO2022 of 7-bit environemnt but uses locking shift or
3209 single shift functions. Assigned the coding-system (Lisp
3210 symbol) `iso-2022-7bit-lock' by default.
3211
3212 o coding-category-iso-8-else
3213
3214 The category for a coding system which has the same code range
3215 as ISO2022 of 8-bit environemnt but uses locking shift or
3216 single shift functions. Assigned the coding-system (Lisp
3217 symbol) `iso-2022-8bit-ss2' by default.
3218
3219 o coding-category-big5
3220
3221 The category for a coding system which has the same code range
3222 as BIG5. Assigned the coding-system (Lisp symbol)
3223 `cn-big5' by default.
3224
3225 o coding-category-ccl
3226
3227 The category for a coding system of which encoder/decoder is
3228 written in CCL programs. The default value is nil, i.e., no
3229 coding system is assigned.
3230
3231 o coding-category-binary
3232
3233 The category for a coding system not categorized in any of the
3234 above. Assigned the coding-system (Lisp symbol)
3235 `no-conversion' by default.
3236
3237 Each of them is a Lisp symbol and the value is an actual
3238 `coding-system's (this is also a Lisp symbol) assigned by a user.
3239 What Emacs does actually is to detect a category of coding system.
3240 Then, it uses a `coding-system' assigned to it. If Emacs can't
3241 decide only one possible category, it selects a category of the
3242 highest priority. Priorities of categories are also specified by a
3243 user in a Lisp variable `coding-category-list'.
3244
3245 */
3246
3247 static
3248 int ascii_skip_code[256];
3249
3250 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3251 If it detects possible coding systems, return an integer in which
3252 appropriate flag bits are set. Flag bits are defined by macros
3253 CODING_CATEGORY_MASK_XXX in `coding.h'.
3254
3255 How many ASCII characters are at the head is returned as *SKIP. */
3256
3257 static int
3258 detect_coding_mask (source, src_bytes, priorities, skip)
3259 unsigned char *source;
3260 int src_bytes, *priorities, *skip;
3261 {
3262 register unsigned char c;
3263 unsigned char *src = source, *src_end = source + src_bytes;
3264 unsigned int mask;
3265 int i;
3266
3267 /* At first, skip all ASCII characters and control characters except
3268 for three ISO2022 specific control characters. */
3269 ascii_skip_code[ISO_CODE_SO] = 0;
3270 ascii_skip_code[ISO_CODE_SI] = 0;
3271 ascii_skip_code[ISO_CODE_ESC] = 0;
3272
3273 label_loop_detect_coding:
3274 while (src < src_end && ascii_skip_code[*src]) src++;
3275 *skip = src - source;
3276
3277 if (src >= src_end)
3278 /* We found nothing other than ASCII. There's nothing to do. */
3279 return 0;
3280
3281 c = *src;
3282 /* The text seems to be encoded in some multilingual coding system.
3283 Now, try to find in which coding system the text is encoded. */
3284 if (c < 0x80)
3285 {
3286 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3287 /* C is an ISO2022 specific control code of C0. */
3288 mask = detect_coding_iso2022 (src, src_end);
3289 if (mask == 0)
3290 {
3291 /* No valid ISO2022 code follows C. Try again. */
3292 src++;
3293 if (c == ISO_CODE_ESC)
3294 ascii_skip_code[ISO_CODE_ESC] = 1;
3295 else
3296 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3297 goto label_loop_detect_coding;
3298 }
3299 if (priorities)
3300 goto label_return_highest_only;
3301 }
3302 else
3303 {
3304 int try;
3305
3306 if (c < 0xA0)
3307 {
3308 /* C is the first byte of SJIS character code,
3309 or a leading-code of Emacs' internal format (emacs-mule). */
3310 try = CODING_CATEGORY_MASK_SJIS | CODING_CATEGORY_MASK_EMACS_MULE;
3311
3312 /* Or, if C is a special latin extra code,
3313 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3314 or is an ISO2022 control-sequence-introducer (CSI),
3315 we should also consider the possibility of ISO2022 codings. */
3316 if ((VECTORP (Vlatin_extra_code_table)
3317 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3318 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
3319 || (c == ISO_CODE_CSI
3320 && (src < src_end
3321 && (*src == ']'
3322 || ((*src == '0' || *src == '1' || *src == '2')
3323 && src + 1 < src_end
3324 && src[1] == ']')))))
3325 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
3326 | CODING_CATEGORY_MASK_ISO_8BIT);
3327 }
3328 else
3329 /* C is a character of ISO2022 in graphic plane right,
3330 or a SJIS's 1-byte character code (i.e. JISX0201),
3331 or the first byte of BIG5's 2-byte code. */
3332 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
3333 | CODING_CATEGORY_MASK_ISO_8BIT
3334 | CODING_CATEGORY_MASK_SJIS
3335 | CODING_CATEGORY_MASK_BIG5);
3336
3337 /* Or, we may have to consider the possibility of CCL. */
3338 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
3339 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
3340 ->spec.ccl.valid_codes)[c])
3341 try |= CODING_CATEGORY_MASK_CCL;
3342
3343 mask = 0;
3344 if (priorities)
3345 {
3346 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3347 {
3348 if (priorities[i] & try & CODING_CATEGORY_MASK_ISO)
3349 mask = detect_coding_iso2022 (src, src_end);
3350 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
3351 mask = detect_coding_sjis (src, src_end);
3352 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
3353 mask = detect_coding_big5 (src, src_end);
3354 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
3355 mask = detect_coding_emacs_mule (src, src_end);
3356 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
3357 mask = detect_coding_ccl (src, src_end);
3358 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
3359 mask = CODING_CATEGORY_MASK_RAW_TEXT;
3360 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
3361 mask = CODING_CATEGORY_MASK_BINARY;
3362 if (mask)
3363 goto label_return_highest_only;
3364 }
3365 return CODING_CATEGORY_MASK_RAW_TEXT;
3366 }
3367 if (try & CODING_CATEGORY_MASK_ISO)
3368 mask |= detect_coding_iso2022 (src, src_end);
3369 if (try & CODING_CATEGORY_MASK_SJIS)
3370 mask |= detect_coding_sjis (src, src_end);
3371 if (try & CODING_CATEGORY_MASK_BIG5)
3372 mask |= detect_coding_big5 (src, src_end);
3373 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
3374 mask |= detect_coding_emacs_mule (src, src_end);
3375 if (try & CODING_CATEGORY_MASK_CCL)
3376 mask |= detect_coding_ccl (src, src_end);
3377 }
3378 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
3379
3380 label_return_highest_only:
3381 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3382 {
3383 if (mask & priorities[i])
3384 return priorities[i];
3385 }
3386 return CODING_CATEGORY_MASK_RAW_TEXT;
3387 }
3388
3389 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
3390 The information of the detected coding system is set in CODING. */
3391
3392 void
3393 detect_coding (coding, src, src_bytes)
3394 struct coding_system *coding;
3395 unsigned char *src;
3396 int src_bytes;
3397 {
3398 unsigned int idx;
3399 int skip, mask, i;
3400 Lisp_Object val;
3401
3402 val = Vcoding_category_list;
3403 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip);
3404 coding->heading_ascii = skip;
3405
3406 if (!mask) return;
3407
3408 /* We found a single coding system of the highest priority in MASK. */
3409 idx = 0;
3410 while (mask && ! (mask & 1)) mask >>= 1, idx++;
3411 if (! mask)
3412 idx = CODING_CATEGORY_IDX_RAW_TEXT;
3413
3414 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
3415
3416 if (coding->eol_type != CODING_EOL_UNDECIDED)
3417 {
3418 Lisp_Object tmp;
3419
3420 tmp = Fget (val, Qeol_type);
3421 if (VECTORP (tmp))
3422 val = XVECTOR (tmp)->contents[coding->eol_type];
3423 }
3424 setup_coding_system (val, coding);
3425 /* Set this again because setup_coding_system reset this member. */
3426 coding->heading_ascii = skip;
3427 }
3428
3429 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
3430 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
3431 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
3432
3433 How many non-eol characters are at the head is returned as *SKIP. */
3434
3435 #define MAX_EOL_CHECK_COUNT 3
3436
3437 static int
3438 detect_eol_type (source, src_bytes, skip)
3439 unsigned char *source;
3440 int src_bytes, *skip;
3441 {
3442 unsigned char *src = source, *src_end = src + src_bytes;
3443 unsigned char c;
3444 int total = 0; /* How many end-of-lines are found so far. */
3445 int eol_type = CODING_EOL_UNDECIDED;
3446 int this_eol_type;
3447
3448 *skip = 0;
3449
3450 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
3451 {
3452 c = *src++;
3453 if (c == '\n' || c == '\r')
3454 {
3455 if (*skip == 0)
3456 *skip = src - 1 - source;
3457 total++;
3458 if (c == '\n')
3459 this_eol_type = CODING_EOL_LF;
3460 else if (src >= src_end || *src != '\n')
3461 this_eol_type = CODING_EOL_CR;
3462 else
3463 this_eol_type = CODING_EOL_CRLF, src++;
3464
3465 if (eol_type == CODING_EOL_UNDECIDED)
3466 /* This is the first end-of-line. */
3467 eol_type = this_eol_type;
3468 else if (eol_type != this_eol_type)
3469 {
3470 /* The found type is different from what found before. */
3471 eol_type = CODING_EOL_INCONSISTENT;
3472 break;
3473 }
3474 }
3475 }
3476
3477 if (*skip == 0)
3478 *skip = src_end - source;
3479 return eol_type;
3480 }
3481
3482 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
3483 is encoded. If it detects an appropriate format of end-of-line, it
3484 sets the information in *CODING. */
3485
3486 void
3487 detect_eol (coding, src, src_bytes)
3488 struct coding_system *coding;
3489 unsigned char *src;
3490 int src_bytes;
3491 {
3492 Lisp_Object val;
3493 int skip;
3494 int eol_type = detect_eol_type (src, src_bytes, &skip);
3495
3496 if (coding->heading_ascii > skip)
3497 coding->heading_ascii = skip;
3498 else
3499 skip = coding->heading_ascii;
3500
3501 if (eol_type == CODING_EOL_UNDECIDED)
3502 return;
3503 if (eol_type == CODING_EOL_INCONSISTENT)
3504 {
3505 #if 0
3506 /* This code is suppressed until we find a better way to
3507 distinguish raw text file and binary file. */
3508
3509 /* If we have already detected that the coding is raw-text, the
3510 coding should actually be no-conversion. */
3511 if (coding->type == coding_type_raw_text)
3512 {
3513 setup_coding_system (Qno_conversion, coding);
3514 return;
3515 }
3516 /* Else, let's decode only text code anyway. */
3517 #endif /* 0 */
3518 eol_type = CODING_EOL_LF;
3519 }
3520
3521 val = Fget (coding->symbol, Qeol_type);
3522 if (VECTORP (val) && XVECTOR (val)->size == 3)
3523 {
3524 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
3525 coding->heading_ascii = skip;
3526 }
3527 }
3528
3529 #define CONVERSION_BUFFER_EXTRA_ROOM 256
3530
3531 #define DECODING_BUFFER_MAG(coding) \
3532 (coding->type == coding_type_iso2022 \
3533 ? 3 \
3534 : ((coding->type == coding_type_sjis || coding->type == coding_type_big5) \
3535 ? 2 \
3536 : (coding->type == coding_type_raw_text \
3537 ? 1 \
3538 : (coding->type == coding_type_ccl \
3539 ? coding->spec.ccl.decoder.buf_magnification \
3540 : 2))))
3541
3542 /* Return maximum size (bytes) of a buffer enough for decoding
3543 SRC_BYTES of text encoded in CODING. */
3544
3545 int
3546 decoding_buffer_size (coding, src_bytes)
3547 struct coding_system *coding;
3548 int src_bytes;
3549 {
3550 return (src_bytes * DECODING_BUFFER_MAG (coding)
3551 + CONVERSION_BUFFER_EXTRA_ROOM);
3552 }
3553
3554 /* Return maximum size (bytes) of a buffer enough for encoding
3555 SRC_BYTES of text to CODING. */
3556
3557 int
3558 encoding_buffer_size (coding, src_bytes)
3559 struct coding_system *coding;
3560 int src_bytes;
3561 {
3562 int magnification;
3563
3564 if (coding->type == coding_type_ccl)
3565 magnification = coding->spec.ccl.encoder.buf_magnification;
3566 else
3567 magnification = 3;
3568
3569 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
3570 }
3571
3572 #ifndef MINIMUM_CONVERSION_BUFFER_SIZE
3573 #define MINIMUM_CONVERSION_BUFFER_SIZE 1024
3574 #endif
3575
3576 char *conversion_buffer;
3577 int conversion_buffer_size;
3578
3579 /* Return a pointer to a SIZE bytes of buffer to be used for encoding
3580 or decoding. Sufficient memory is allocated automatically. If we
3581 run out of memory, return NULL. */
3582
3583 char *
3584 get_conversion_buffer (size)
3585 int size;
3586 {
3587 if (size > conversion_buffer_size)
3588 {
3589 char *buf;
3590 int real_size = conversion_buffer_size * 2;
3591
3592 while (real_size < size) real_size *= 2;
3593 buf = (char *) xmalloc (real_size);
3594 xfree (conversion_buffer);
3595 conversion_buffer = buf;
3596 conversion_buffer_size = real_size;
3597 }
3598 return conversion_buffer;
3599 }
3600
3601 int
3602 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
3603 struct coding_system *coding;
3604 unsigned char *source, *destination;
3605 int src_bytes, dst_bytes, encodep;
3606 {
3607 struct ccl_program *ccl
3608 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
3609 int result;
3610
3611 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
3612
3613 coding->produced = ccl_driver (ccl, source, destination,
3614 src_bytes, dst_bytes, &(coding->consumed));
3615 coding->produced_char
3616 = multibyte_chars_in_text (destination, coding->produced);
3617 coding->consumed_char
3618 = multibyte_chars_in_text (source, coding->consumed);
3619
3620 switch (ccl->status)
3621 {
3622 case CCL_STAT_SUSPEND_BY_SRC:
3623 result = CODING_FINISH_INSUFFICIENT_SRC;
3624 break;
3625 case CCL_STAT_SUSPEND_BY_DST:
3626 result = CODING_FINISH_INSUFFICIENT_DST;
3627 break;
3628 default:
3629 result = CODING_FINISH_NORMAL;
3630 break;
3631 }
3632 return result;
3633 }
3634
3635 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
3636 decoding, it may detect coding system and format of end-of-line if
3637 those are not yet decided. */
3638
3639 int
3640 decode_coding (coding, source, destination, src_bytes, dst_bytes)
3641 struct coding_system *coding;
3642 unsigned char *source, *destination;
3643 int src_bytes, dst_bytes;
3644 {
3645 int result;
3646
3647 if (src_bytes <= 0
3648 && ! (coding->mode & CODING_MODE_LAST_BLOCK
3649 && CODING_REQUIRE_FLUSHING (coding)))
3650 {
3651 coding->produced = coding->produced_char = 0;
3652 coding->consumed = coding->consumed_char = 0;
3653 coding->fake_multibyte = 0;
3654 return CODING_FINISH_NORMAL;
3655 }
3656
3657 if (coding->type == coding_type_undecided)
3658 detect_coding (coding, source, src_bytes);
3659
3660 if (coding->eol_type == CODING_EOL_UNDECIDED)
3661 detect_eol (coding, source, src_bytes);
3662
3663 switch (coding->type)
3664 {
3665 case coding_type_emacs_mule:
3666 case coding_type_undecided:
3667 case coding_type_raw_text:
3668 if (coding->eol_type == CODING_EOL_LF
3669 || coding->eol_type == CODING_EOL_UNDECIDED)
3670 goto label_no_conversion;
3671 result = decode_eol (coding, source, destination, src_bytes, dst_bytes);
3672 break;
3673
3674 case coding_type_sjis:
3675 result = decode_coding_sjis_big5 (coding, source, destination,
3676 src_bytes, dst_bytes, 1);
3677 break;
3678
3679 case coding_type_iso2022:
3680 result = decode_coding_iso2022 (coding, source, destination,
3681 src_bytes, dst_bytes);
3682 break;
3683
3684 case coding_type_big5:
3685 result = decode_coding_sjis_big5 (coding, source, destination,
3686 src_bytes, dst_bytes, 0);
3687 break;
3688
3689 case coding_type_ccl:
3690 result = ccl_coding_driver (coding, source, destination,
3691 src_bytes, dst_bytes, 0);
3692 break;
3693
3694 default: /* i.e. case coding_type_no_conversion: */
3695 label_no_conversion:
3696 if (dst_bytes && src_bytes > dst_bytes)
3697 {
3698 coding->produced = dst_bytes;
3699 result = CODING_FINISH_INSUFFICIENT_DST;
3700 }
3701 else
3702 {
3703 coding->produced = src_bytes;
3704 result = CODING_FINISH_NORMAL;
3705 }
3706 if (dst_bytes)
3707 bcopy (source, destination, coding->produced);
3708 else
3709 safe_bcopy (source, destination, coding->produced);
3710 coding->fake_multibyte = 1;
3711 coding->consumed
3712 = coding->consumed_char = coding->produced_char = coding->produced;
3713 break;
3714 }
3715
3716 return result;
3717 }
3718
3719 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". */
3720
3721 int
3722 encode_coding (coding, source, destination, src_bytes, dst_bytes)
3723 struct coding_system *coding;
3724 unsigned char *source, *destination;
3725 int src_bytes, dst_bytes;
3726 {
3727 int result;
3728
3729 if (src_bytes <= 0
3730 && ! (coding->mode & CODING_MODE_LAST_BLOCK
3731 && CODING_REQUIRE_FLUSHING (coding)))
3732 {
3733 coding->produced = coding->produced_char = 0;
3734 coding->consumed = coding->consumed_char = 0;
3735 coding->fake_multibyte = 0;
3736 return CODING_FINISH_NORMAL;
3737 }
3738
3739 switch (coding->type)
3740 {
3741 case coding_type_emacs_mule:
3742 case coding_type_undecided:
3743 case coding_type_raw_text:
3744 if (coding->eol_type == CODING_EOL_LF
3745 || coding->eol_type == CODING_EOL_UNDECIDED)
3746 goto label_no_conversion;
3747 result = encode_eol (coding, source, destination, src_bytes, dst_bytes);
3748 break;
3749
3750 case coding_type_sjis:
3751 result = encode_coding_sjis_big5 (coding, source, destination,
3752 src_bytes, dst_bytes, 1);
3753 break;
3754
3755 case coding_type_iso2022:
3756 result = encode_coding_iso2022 (coding, source, destination,
3757 src_bytes, dst_bytes);
3758 break;
3759
3760 case coding_type_big5:
3761 result = encode_coding_sjis_big5 (coding, source, destination,
3762 src_bytes, dst_bytes, 0);
3763 break;
3764
3765 case coding_type_ccl:
3766 result = ccl_coding_driver (coding, source, destination,
3767 src_bytes, dst_bytes, 1);
3768 break;
3769
3770 default: /* i.e. case coding_type_no_conversion: */
3771 label_no_conversion:
3772 if (dst_bytes && src_bytes > dst_bytes)
3773 {
3774 coding->produced = dst_bytes;
3775 result = CODING_FINISH_INSUFFICIENT_DST;
3776 }
3777 else
3778 {
3779 coding->produced = src_bytes;
3780 result = CODING_FINISH_NORMAL;
3781 }
3782 if (dst_bytes)
3783 bcopy (source, destination, coding->produced);
3784 else
3785 safe_bcopy (source, destination, coding->produced);
3786 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3787 {
3788 unsigned char *p = destination, *pend = p + coding->produced;
3789 while (p < pend)
3790 if (*p++ == '\015') p[-1] = '\n';
3791 }
3792 coding->fake_multibyte = 1;
3793 coding->consumed
3794 = coding->consumed_char = coding->produced_char = coding->produced;
3795 break;
3796 }
3797
3798 return result;
3799 }
3800
3801 /* Scan text in the region between *BEG and *END (byte positions),
3802 skip characters which we don't have to decode by coding system
3803 CODING at the head and tail, then set *BEG and *END to the region
3804 of the text we actually have to convert. The caller should move
3805 the gap out of the region in advance.
3806
3807 If STR is not NULL, *BEG and *END are indices into STR. */
3808
3809 static void
3810 shrink_decoding_region (beg, end, coding, str)
3811 int *beg, *end;
3812 struct coding_system *coding;
3813 unsigned char *str;
3814 {
3815 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
3816 int eol_conversion;
3817
3818 if (coding->type == coding_type_ccl
3819 || coding->type == coding_type_undecided
3820 || !NILP (coding->post_read_conversion))
3821 {
3822 /* We can't skip any data. */
3823 return;
3824 }
3825 else if (coding->type == coding_type_no_conversion)
3826 {
3827 /* We need no conversion, but don't have to skip any data here.
3828 Decoding routine handles them effectively anyway. */
3829 return;
3830 }
3831
3832 eol_conversion = (coding->eol_type != CODING_EOL_LF);
3833
3834 if ((! eol_conversion) && (coding->heading_ascii >= 0))
3835 /* Detection routine has already found how much we can skip at the
3836 head. */
3837 *beg += coding->heading_ascii;
3838
3839 if (str)
3840 {
3841 begp_orig = begp = str + *beg;
3842 endp_orig = endp = str + *end;
3843 }
3844 else
3845 {
3846 begp_orig = begp = BYTE_POS_ADDR (*beg);
3847 endp_orig = endp = begp + *end - *beg;
3848 }
3849
3850 switch (coding->type)
3851 {
3852 case coding_type_emacs_mule:
3853 case coding_type_raw_text:
3854 if (eol_conversion)
3855 {
3856 if (coding->heading_ascii < 0)
3857 while (begp < endp && *begp != '\r' && *begp < 0x80) begp++;
3858 while (begp < endp && endp[-1] != '\r' && endp[-1] < 0x80)
3859 endp--;
3860 /* Do not consider LF as ascii if preceded by CR, since that
3861 confuses eol decoding. */
3862 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3863 endp++;
3864 }
3865 else
3866 begp = endp;
3867 break;
3868
3869 case coding_type_sjis:
3870 case coding_type_big5:
3871 /* We can skip all ASCII characters at the head. */
3872 if (coding->heading_ascii < 0)
3873 {
3874 if (eol_conversion)
3875 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
3876 else
3877 while (begp < endp && *begp < 0x80) begp++;
3878 }
3879 /* We can skip all ASCII characters at the tail except for the
3880 second byte of SJIS or BIG5 code. */
3881 if (eol_conversion)
3882 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
3883 else
3884 while (begp < endp && endp[-1] < 0x80) endp--;
3885 /* Do not consider LF as ascii if preceded by CR, since that
3886 confuses eol decoding. */
3887 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3888 endp++;
3889 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
3890 endp++;
3891 break;
3892
3893 default: /* i.e. case coding_type_iso2022: */
3894 if (coding->heading_ascii < 0)
3895 {
3896 /* We can skip all ASCII characters at the head except for a
3897 few control codes. */
3898 while (begp < endp && (c = *begp) < 0x80
3899 && c != ISO_CODE_CR && c != ISO_CODE_SO
3900 && c != ISO_CODE_SI && c != ISO_CODE_ESC
3901 && (!eol_conversion || c != ISO_CODE_LF))
3902 begp++;
3903 }
3904 switch (coding->category_idx)
3905 {
3906 case CODING_CATEGORY_IDX_ISO_8_1:
3907 case CODING_CATEGORY_IDX_ISO_8_2:
3908 /* We can skip all ASCII characters at the tail. */
3909 if (eol_conversion)
3910 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
3911 else
3912 while (begp < endp && endp[-1] < 0x80) endp--;
3913 /* Do not consider LF as ascii if preceded by CR, since that
3914 confuses eol decoding. */
3915 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3916 endp++;
3917 break;
3918
3919 case CODING_CATEGORY_IDX_ISO_7:
3920 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
3921 /* We can skip all charactes at the tail except for ESC and
3922 the following 2-byte at the tail. */
3923 if (eol_conversion)
3924 while (begp < endp
3925 && (c = endp[-1]) < 0x80 && c != ISO_CODE_ESC && c != '\r')
3926 endp--;
3927 else
3928 while (begp < endp
3929 && (c = endp[-1]) < 0x80 && c != ISO_CODE_ESC)
3930 endp--;
3931 /* Do not consider LF as ascii if preceded by CR, since that
3932 confuses eol decoding. */
3933 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3934 endp++;
3935 if (begp < endp && endp[-1] == ISO_CODE_ESC)
3936 {
3937 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
3938 /* This is an ASCII designation sequence. We can
3939 surely skip the tail. */
3940 endp += 2;
3941 else
3942 /* Hmmm, we can't skip the tail. */
3943 endp = endp_orig;
3944 }
3945 }
3946 }
3947 *beg += begp - begp_orig;
3948 *end += endp - endp_orig;
3949 return;
3950 }
3951
3952 /* Like shrink_decoding_region but for encoding. */
3953
3954 static void
3955 shrink_encoding_region (beg, end, coding, str)
3956 int *beg, *end;
3957 struct coding_system *coding;
3958 unsigned char *str;
3959 {
3960 unsigned char *begp_orig, *begp, *endp_orig, *endp;
3961 int eol_conversion;
3962
3963 if (coding->type == coding_type_ccl)
3964 /* We can't skip any data. */
3965 return;
3966 else if (coding->type == coding_type_no_conversion)
3967 {
3968 /* We need no conversion. */
3969 *beg = *end;
3970 return;
3971 }
3972
3973 if (str)
3974 {
3975 begp_orig = begp = str + *beg;
3976 endp_orig = endp = str + *end;
3977 }
3978 else
3979 {
3980 begp_orig = begp = BYTE_POS_ADDR (*beg);
3981 endp_orig = endp = begp + *end - *beg;
3982 }
3983
3984 eol_conversion = (coding->eol_type == CODING_EOL_CR
3985 || coding->eol_type == CODING_EOL_CRLF);
3986
3987 /* Here, we don't have to check coding->pre_write_conversion because
3988 the caller is expected to have handled it already. */
3989 switch (coding->type)
3990 {
3991 case coding_type_undecided:
3992 case coding_type_emacs_mule:
3993 case coding_type_raw_text:
3994 if (eol_conversion)
3995 {
3996 while (begp < endp && *begp != '\n') begp++;
3997 while (begp < endp && endp[-1] != '\n') endp--;
3998 }
3999 else
4000 begp = endp;
4001 break;
4002
4003 case coding_type_iso2022:
4004 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
4005 {
4006 unsigned char *bol = begp;
4007 while (begp < endp && *begp < 0x80)
4008 {
4009 begp++;
4010 if (begp[-1] == '\n')
4011 bol = begp;
4012 }
4013 begp = bol;
4014 goto label_skip_tail;
4015 }
4016 /* fall down ... */
4017
4018 default:
4019 /* We can skip all ASCII characters at the head and tail. */
4020 if (eol_conversion)
4021 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
4022 else
4023 while (begp < endp && *begp < 0x80) begp++;
4024 label_skip_tail:
4025 if (eol_conversion)
4026 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
4027 else
4028 while (begp < endp && *(endp - 1) < 0x80) endp--;
4029 break;
4030 }
4031
4032 *beg += begp - begp_orig;
4033 *end += endp - endp_orig;
4034 return;
4035 }
4036
4037 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
4038 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
4039 coding system CODING, and return the status code of code conversion
4040 (currently, this value has no meaning).
4041
4042 How many characters (and bytes) are converted to how many
4043 characters (and bytes) are recorded in members of the structure
4044 CODING.
4045
4046 If REPLACE is nonzero, we do various things as if the original text
4047 is deleted and a new text is inserted. See the comments in
4048 replace_range (insdel.c) to know what we are doing. */
4049
4050 int
4051 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
4052 int from, from_byte, to, to_byte, encodep, replace;
4053 struct coding_system *coding;
4054 {
4055 int len = to - from, len_byte = to_byte - from_byte;
4056 int require, inserted, inserted_byte;
4057 int head_skip, tail_skip, total_skip;
4058 Lisp_Object saved_coding_symbol;
4059 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
4060 int first = 1;
4061 int fake_multibyte = 0;
4062 unsigned char *src, *dst;
4063 Lisp_Object deletion;
4064
4065 deletion = Qnil;
4066 saved_coding_symbol = Qnil;
4067
4068 if (from < PT && PT < to)
4069 SET_PT_BOTH (from, from_byte);
4070
4071 if (replace)
4072 {
4073 int saved_from = from;
4074
4075 prepare_to_modify_buffer (from, to, &from);
4076 if (saved_from != from)
4077 {
4078 to = from + len;
4079 if (multibyte)
4080 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
4081 else
4082 from_byte = from, to_byte = to;
4083 len_byte = to_byte - from_byte;
4084 }
4085 }
4086
4087 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4088 {
4089 /* We must detect encoding of text and eol format. */
4090
4091 if (from < GPT && to > GPT)
4092 move_gap_both (from, from_byte);
4093 if (coding->type == coding_type_undecided)
4094 {
4095 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
4096 if (coding->type == coding_type_undecided)
4097 /* It seems that the text contains only ASCII, but we
4098 should not left it undecided because the deeper
4099 decoding routine (decode_coding) tries to detect the
4100 encodings again in vain. */
4101 coding->type = coding_type_emacs_mule;
4102 }
4103 if (coding->eol_type == CODING_EOL_UNDECIDED)
4104 {
4105 saved_coding_symbol = coding->symbol;
4106 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
4107 if (coding->eol_type == CODING_EOL_UNDECIDED)
4108 coding->eol_type = CODING_EOL_LF;
4109 /* We had better recover the original eol format if we
4110 encounter an inconsitent eol format while decoding. */
4111 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4112 }
4113 }
4114
4115 coding->consumed_char = len, coding->consumed = len_byte;
4116
4117 if (encodep
4118 ? ! CODING_REQUIRE_ENCODING (coding)
4119 : ! CODING_REQUIRE_DECODING (coding))
4120 {
4121 coding->produced = len_byte;
4122 if (multibyte
4123 && ! replace
4124 /* See the comment of the member heading_ascii in coding.h. */
4125 && coding->heading_ascii < len_byte)
4126 {
4127 /* We still may have to combine byte at the head and the
4128 tail of the text in the region. */
4129 if (from < GPT && GPT < to)
4130 move_gap_both (to, to_byte);
4131 len = multibyte_chars_in_text (BYTE_POS_ADDR (from_byte), len_byte);
4132 adjust_after_insert (from, from_byte, to, to_byte, len);
4133 coding->produced_char = len;
4134 }
4135 else
4136 {
4137 if (!replace)
4138 adjust_after_insert (from, from_byte, to, to_byte, len_byte);
4139 coding->produced_char = len_byte;
4140 }
4141 return 0;
4142 }
4143
4144 /* Now we convert the text. */
4145
4146 /* For encoding, we must process pre-write-conversion in advance. */
4147 if (encodep
4148 && ! NILP (coding->pre_write_conversion)
4149 && SYMBOLP (coding->pre_write_conversion)
4150 && ! NILP (Ffboundp (coding->pre_write_conversion)))
4151 {
4152 /* The function in pre-write-conversion may put a new text in a
4153 new buffer. */
4154 struct buffer *prev = current_buffer, *new;
4155
4156 call2 (coding->pre_write_conversion,
4157 make_number (from), make_number (to));
4158 if (current_buffer != prev)
4159 {
4160 len = ZV - BEGV;
4161 new = current_buffer;
4162 set_buffer_internal_1 (prev);
4163 del_range_2 (from, from_byte, to, to_byte);
4164 insert_from_buffer (new, BEG, len, 0);
4165 to = from + len;
4166 to_byte = multibyte ? CHAR_TO_BYTE (to) : to;
4167 len_byte = to_byte - from_byte;
4168 }
4169 }
4170
4171 if (replace)
4172 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
4173
4174 /* Try to skip the heading and tailing ASCIIs. */
4175 {
4176 int from_byte_orig = from_byte, to_byte_orig = to_byte;
4177
4178 if (from < GPT && GPT < to)
4179 move_gap_both (from, from_byte);
4180 if (encodep)
4181 shrink_encoding_region (&from_byte, &to_byte, coding, NULL);
4182 else
4183 shrink_decoding_region (&from_byte, &to_byte, coding, NULL);
4184 if (from_byte == to_byte
4185 && ! (coding->mode & CODING_MODE_LAST_BLOCK
4186 && CODING_REQUIRE_FLUSHING (coding)))
4187 {
4188 coding->produced = len_byte;
4189 coding->produced_char = multibyte ? len : len_byte;
4190 if (!replace)
4191 /* We must record and adjust for this new text now. */
4192 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
4193 return 0;
4194 }
4195
4196 head_skip = from_byte - from_byte_orig;
4197 tail_skip = to_byte_orig - to_byte;
4198 total_skip = head_skip + tail_skip;
4199 from += head_skip;
4200 to -= tail_skip;
4201 len -= total_skip; len_byte -= total_skip;
4202 }
4203
4204 /* For converion, we must put the gap before the text in addition to
4205 making the gap larger for efficient decoding. The required gap
4206 size starts from 2000 which is the magic number used in make_gap.
4207 But, after one batch of conversion, it will be incremented if we
4208 find that it is not enough . */
4209 require = 2000;
4210
4211 if (GAP_SIZE < require)
4212 make_gap (require - GAP_SIZE);
4213 move_gap_both (from, from_byte);
4214
4215 inserted = inserted_byte = 0;
4216 src = GAP_END_ADDR, dst = GPT_ADDR;
4217
4218 GAP_SIZE += len_byte;
4219 ZV -= len;
4220 Z -= len;
4221 ZV_BYTE -= len_byte;
4222 Z_BYTE -= len_byte;
4223
4224 if (GPT - BEG < beg_unchanged)
4225 beg_unchanged = GPT - BEG;
4226 if (Z - GPT < end_unchanged)
4227 end_unchanged = Z - GPT;
4228
4229 for (;;)
4230 {
4231 int result;
4232
4233 /* The buffer memory is changed from:
4234 +--------+converted-text+---------+-------original-text------+---+
4235 |<-from->|<--inserted-->|---------|<-----------len---------->|---|
4236 |<------------------- GAP_SIZE -------------------->| */
4237 if (encodep)
4238 result = encode_coding (coding, src, dst, len_byte, 0);
4239 else
4240 result = decode_coding (coding, src, dst, len_byte, 0);
4241 /* to:
4242 +--------+-------converted-text--------+--+---original-text--+---+
4243 |<-from->|<--inserted-->|<--produced-->|--|<-(len-consumed)->|---|
4244 |<------------------- GAP_SIZE -------------------->| */
4245 if (coding->fake_multibyte)
4246 fake_multibyte = 1;
4247
4248 if (!encodep && !multibyte)
4249 coding->produced_char = coding->produced;
4250 inserted += coding->produced_char;
4251 inserted_byte += coding->produced;
4252 len_byte -= coding->consumed;
4253 src += coding->consumed;
4254 dst += inserted_byte;
4255
4256 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4257 {
4258 unsigned char *pend = dst, *p = pend - inserted_byte;
4259
4260 /* Encode LFs back to the original eol format (CR or CRLF). */
4261 if (coding->eol_type == CODING_EOL_CR)
4262 {
4263 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
4264 }
4265 else
4266 {
4267 int count = 0;
4268
4269 while (p < pend) if (*p++ == '\n') count++;
4270 if (src - dst < count)
4271 {
4272 /* We don't have sufficient room for putting LFs
4273 back to CRLF. We must record converted and
4274 not-yet-converted text back to the buffer
4275 content, enlarge the gap, then record them out of
4276 the buffer contents again. */
4277 int add = len_byte + inserted_byte;
4278
4279 GAP_SIZE -= add;
4280 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4281 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4282 make_gap (count - GAP_SIZE);
4283 GAP_SIZE += add;
4284 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4285 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4286 /* Don't forget to update SRC, DST, and PEND. */
4287 src = GAP_END_ADDR - len_byte;
4288 dst = GPT_ADDR + inserted_byte;
4289 pend = dst;
4290 }
4291 inserted += count;
4292 inserted_byte += count;
4293 coding->produced += count;
4294 p = dst = pend + count;
4295 while (count)
4296 {
4297 *--p = *--pend;
4298 if (*p == '\n') count--, *--p = '\r';
4299 }
4300 }
4301
4302 /* Suppress eol-format conversion in the further conversion. */
4303 coding->eol_type = CODING_EOL_LF;
4304
4305 /* Restore the original symbol. */
4306 coding->symbol = saved_coding_symbol;
4307
4308 continue;
4309 }
4310 if (len_byte <= 0)
4311 break;
4312 if (result == CODING_FINISH_INSUFFICIENT_SRC)
4313 {
4314 /* The source text ends in invalid codes. Let's just
4315 make them valid buffer contents, and finish conversion. */
4316 inserted += len_byte;
4317 inserted_byte += len_byte;
4318 while (len_byte--)
4319 *dst++ = *src++;
4320 fake_multibyte = 1;
4321 break;
4322 }
4323 if (first)
4324 {
4325 /* We have just done the first batch of conversion which was
4326 stoped because of insufficient gap. Let's reconsider the
4327 required gap size (i.e. SRT - DST) now.
4328
4329 We have converted ORIG bytes (== coding->consumed) into
4330 NEW bytes (coding->produced). To convert the remaining
4331 LEN bytes, we may need REQUIRE bytes of gap, where:
4332 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
4333 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
4334 Here, we are sure that NEW >= ORIG. */
4335 float ratio = coding->produced - coding->consumed;
4336 ratio /= coding->consumed;
4337 require = len_byte * ratio;
4338 first = 0;
4339 }
4340 if ((src - dst) < (require + 2000))
4341 {
4342 /* See the comment above the previous call of make_gap. */
4343 int add = len_byte + inserted_byte;
4344
4345 GAP_SIZE -= add;
4346 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4347 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4348 make_gap (require + 2000);
4349 GAP_SIZE += add;
4350 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4351 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4352 /* Don't forget to update SRC, DST. */
4353 src = GAP_END_ADDR - len_byte;
4354 dst = GPT_ADDR + inserted_byte;
4355 }
4356 }
4357 if (src - dst > 0) *dst = 0; /* Put an anchor. */
4358
4359 if (multibyte
4360 && (fake_multibyte
4361 || !encodep && (to - from) != (to_byte - from_byte)))
4362 inserted = multibyte_chars_in_text (GPT_ADDR, inserted_byte);
4363
4364 /* If we have shrinked the conversion area, adjust it now. */
4365 if (total_skip > 0)
4366 {
4367 if (tail_skip > 0)
4368 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
4369 inserted += total_skip; inserted_byte += total_skip;
4370 GAP_SIZE += total_skip;
4371 GPT -= head_skip; GPT_BYTE -= head_skip;
4372 ZV -= total_skip; ZV_BYTE -= total_skip;
4373 Z -= total_skip; Z_BYTE -= total_skip;
4374 from -= head_skip; from_byte -= head_skip;
4375 to += tail_skip; to_byte += tail_skip;
4376 }
4377
4378 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
4379
4380 if (! encodep && ! NILP (coding->post_read_conversion))
4381 {
4382 Lisp_Object val;
4383 int orig_inserted = inserted, pos = PT;
4384
4385 if (from != pos)
4386 temp_set_point_both (current_buffer, from, from_byte);
4387 val = call1 (coding->post_read_conversion, make_number (inserted));
4388 if (! NILP (val))
4389 {
4390 CHECK_NUMBER (val, 0);
4391 inserted = XFASTINT (val);
4392 }
4393 if (pos >= from + orig_inserted)
4394 temp_set_point (current_buffer, pos + (inserted - orig_inserted));
4395 }
4396
4397 signal_after_change (from, to - from, inserted);
4398
4399 {
4400 coding->consumed = to_byte - from_byte;
4401 coding->consumed_char = to - from;
4402 coding->produced = inserted_byte;
4403 coding->produced_char = inserted;
4404 }
4405
4406 return 0;
4407 }
4408
4409 Lisp_Object
4410 code_convert_string (str, coding, encodep, nocopy)
4411 Lisp_Object str;
4412 struct coding_system *coding;
4413 int encodep, nocopy;
4414 {
4415 int len;
4416 char *buf;
4417 int from = 0, to = XSTRING (str)->size;
4418 int to_byte = STRING_BYTES (XSTRING (str));
4419 struct gcpro gcpro1;
4420 Lisp_Object saved_coding_symbol;
4421 int result;
4422
4423 saved_coding_symbol = Qnil;
4424 if (encodep && !NILP (coding->pre_write_conversion)
4425 || !encodep && !NILP (coding->post_read_conversion))
4426 {
4427 /* Since we have to call Lisp functions which assume target text
4428 is in a buffer, after setting a temporary buffer, call
4429 code_convert_region. */
4430 int count = specpdl_ptr - specpdl;
4431 struct buffer *prev = current_buffer;
4432
4433 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4434 temp_output_buffer_setup (" *code-converting-work*");
4435 set_buffer_internal (XBUFFER (Vstandard_output));
4436 if (encodep)
4437 insert_from_string (str, 0, 0, to, to_byte, 0);
4438 else
4439 {
4440 /* We must insert the contents of STR as is without
4441 unibyte<->multibyte conversion. */
4442 current_buffer->enable_multibyte_characters = Qnil;
4443 insert_from_string (str, 0, 0, to_byte, to_byte, 0);
4444 current_buffer->enable_multibyte_characters = Qt;
4445 }
4446 code_convert_region (BEGV, BEGV_BYTE, ZV, ZV_BYTE, coding, encodep, 1);
4447 if (encodep)
4448 /* We must return the buffer contents as unibyte string. */
4449 current_buffer->enable_multibyte_characters = Qnil;
4450 str = make_buffer_string (BEGV, ZV, 0);
4451 set_buffer_internal (prev);
4452 return unbind_to (count, str);
4453 }
4454
4455 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4456 {
4457 /* See the comments in code_convert_region. */
4458 if (coding->type == coding_type_undecided)
4459 {
4460 detect_coding (coding, XSTRING (str)->data, to_byte);
4461 if (coding->type == coding_type_undecided)
4462 coding->type = coding_type_emacs_mule;
4463 }
4464 if (coding->eol_type == CODING_EOL_UNDECIDED)
4465 {
4466 saved_coding_symbol = coding->symbol;
4467 detect_eol (coding, XSTRING (str)->data, to_byte);
4468 if (coding->eol_type == CODING_EOL_UNDECIDED)
4469 coding->eol_type = CODING_EOL_LF;
4470 /* We had better recover the original eol format if we
4471 encounter an inconsitent eol format while decoding. */
4472 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4473 }
4474 }
4475
4476 if (encodep
4477 ? ! CODING_REQUIRE_ENCODING (coding)
4478 : ! CODING_REQUIRE_DECODING (coding))
4479 from = to_byte;
4480 else
4481 {
4482 /* Try to skip the heading and tailing ASCIIs. */
4483 if (encodep)
4484 shrink_encoding_region (&from, &to_byte, coding, XSTRING (str)->data);
4485 else
4486 shrink_decoding_region (&from, &to_byte, coding, XSTRING (str)->data);
4487 }
4488 if (from == to_byte
4489 && ! (coding->mode & CODING_MODE_LAST_BLOCK
4490 && CODING_REQUIRE_FLUSHING (coding)))
4491 return (nocopy ? str : Fcopy_sequence (str));
4492
4493 if (encodep)
4494 len = encoding_buffer_size (coding, to_byte - from);
4495 else
4496 len = decoding_buffer_size (coding, to_byte - from);
4497 len += from + STRING_BYTES (XSTRING (str)) - to_byte;
4498 GCPRO1 (str);
4499 buf = get_conversion_buffer (len);
4500 UNGCPRO;
4501
4502 if (from > 0)
4503 bcopy (XSTRING (str)->data, buf, from);
4504 result = (encodep
4505 ? encode_coding (coding, XSTRING (str)->data + from,
4506 buf + from, to_byte - from, len)
4507 : decode_coding (coding, XSTRING (str)->data + from,
4508 buf + from, to_byte - from, len));
4509 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4510 {
4511 /* We simple try to decode the whole string again but without
4512 eol-conversion this time. */
4513 coding->eol_type = CODING_EOL_LF;
4514 coding->symbol = saved_coding_symbol;
4515 return code_convert_string (str, coding, encodep, nocopy);
4516 }
4517
4518 bcopy (XSTRING (str)->data + to_byte, buf + from + coding->produced,
4519 STRING_BYTES (XSTRING (str)) - to_byte);
4520
4521 len = from + STRING_BYTES (XSTRING (str)) - to_byte;
4522 if (encodep)
4523 str = make_unibyte_string (buf, len + coding->produced);
4524 else
4525 {
4526 int chars= (coding->fake_multibyte
4527 ? multibyte_chars_in_text (buf + from, coding->produced)
4528 : coding->produced_char);
4529 str = make_multibyte_string (buf, len + chars, len + coding->produced);
4530 }
4531
4532 return str;
4533 }
4534
4535 \f
4536 #ifdef emacs
4537 /*** 8. Emacs Lisp library functions ***/
4538
4539 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
4540 "Return t if OBJECT is nil or a coding-system.\n\
4541 See the documentation of `make-coding-system' for information\n\
4542 about coding-system objects.")
4543 (obj)
4544 Lisp_Object obj;
4545 {
4546 if (NILP (obj))
4547 return Qt;
4548 if (!SYMBOLP (obj))
4549 return Qnil;
4550 /* Get coding-spec vector for OBJ. */
4551 obj = Fget (obj, Qcoding_system);
4552 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
4553 ? Qt : Qnil);
4554 }
4555
4556 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
4557 Sread_non_nil_coding_system, 1, 1, 0,
4558 "Read a coding system from the minibuffer, prompting with string PROMPT.")
4559 (prompt)
4560 Lisp_Object prompt;
4561 {
4562 Lisp_Object val;
4563 do
4564 {
4565 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4566 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
4567 }
4568 while (XSTRING (val)->size == 0);
4569 return (Fintern (val, Qnil));
4570 }
4571
4572 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
4573 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
4574 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
4575 (prompt, default_coding_system)
4576 Lisp_Object prompt, default_coding_system;
4577 {
4578 Lisp_Object val;
4579 if (SYMBOLP (default_coding_system))
4580 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
4581 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4582 Qt, Qnil, Qcoding_system_history,
4583 default_coding_system, Qnil);
4584 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
4585 }
4586
4587 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
4588 1, 1, 0,
4589 "Check validity of CODING-SYSTEM.\n\
4590 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
4591 It is valid if it is a symbol with a non-nil `coding-system' property.\n\
4592 The value of property should be a vector of length 5.")
4593 (coding_system)
4594 Lisp_Object coding_system;
4595 {
4596 CHECK_SYMBOL (coding_system, 0);
4597 if (!NILP (Fcoding_system_p (coding_system)))
4598 return coding_system;
4599 while (1)
4600 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
4601 }
4602 \f
4603 Lisp_Object
4604 detect_coding_system (src, src_bytes, highest)
4605 unsigned char *src;
4606 int src_bytes, highest;
4607 {
4608 int coding_mask, eol_type;
4609 Lisp_Object val, tmp;
4610 int dummy;
4611
4612 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy);
4613 eol_type = detect_eol_type (src, src_bytes, &dummy);
4614 if (eol_type == CODING_EOL_INCONSISTENT)
4615 eol_type = CODING_EOL_UNDECIDED;
4616
4617 if (!coding_mask)
4618 {
4619 val = Qundecided;
4620 if (eol_type != CODING_EOL_UNDECIDED)
4621 {
4622 Lisp_Object val2;
4623 val2 = Fget (Qundecided, Qeol_type);
4624 if (VECTORP (val2))
4625 val = XVECTOR (val2)->contents[eol_type];
4626 }
4627 return (highest ? val : Fcons (val, Qnil));
4628 }
4629
4630 /* At first, gather possible coding systems in VAL. */
4631 val = Qnil;
4632 for (tmp = Vcoding_category_list; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4633 {
4634 int idx
4635 = XFASTINT (Fget (XCONS (tmp)->car, Qcoding_category_index));
4636 if (coding_mask & (1 << idx))
4637 {
4638 val = Fcons (Fsymbol_value (XCONS (tmp)->car), val);
4639 if (highest)
4640 break;
4641 }
4642 }
4643 if (!highest)
4644 val = Fnreverse (val);
4645
4646 /* Then, replace the elements with subsidiary coding systems. */
4647 for (tmp = val; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4648 {
4649 if (eol_type != CODING_EOL_UNDECIDED
4650 && eol_type != CODING_EOL_INCONSISTENT)
4651 {
4652 Lisp_Object eol;
4653 eol = Fget (XCONS (tmp)->car, Qeol_type);
4654 if (VECTORP (eol))
4655 XCONS (tmp)->car = XVECTOR (eol)->contents[eol_type];
4656 }
4657 }
4658 return (highest ? XCONS (val)->car : val);
4659 }
4660
4661 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
4662 2, 3, 0,
4663 "Detect coding system of the text in the region between START and END.\n\
4664 Return a list of possible coding systems ordered by priority.\n\
4665 \n\
4666 If only ASCII characters are found, it returns a list of single element\n\
4667 `undecided' or its subsidiary coding system according to a detected\n\
4668 end-of-line format.\n\
4669 \n\
4670 If optional argument HIGHEST is non-nil, return the coding system of\n\
4671 highest priority.")
4672 (start, end, highest)
4673 Lisp_Object start, end, highest;
4674 {
4675 int from, to;
4676 int from_byte, to_byte;
4677
4678 CHECK_NUMBER_COERCE_MARKER (start, 0);
4679 CHECK_NUMBER_COERCE_MARKER (end, 1);
4680
4681 validate_region (&start, &end);
4682 from = XINT (start), to = XINT (end);
4683 from_byte = CHAR_TO_BYTE (from);
4684 to_byte = CHAR_TO_BYTE (to);
4685
4686 if (from < GPT && to >= GPT)
4687 move_gap_both (to, to_byte);
4688
4689 return detect_coding_system (BYTE_POS_ADDR (from_byte),
4690 to_byte - from_byte,
4691 !NILP (highest));
4692 }
4693
4694 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
4695 1, 2, 0,
4696 "Detect coding system of the text in STRING.\n\
4697 Return a list of possible coding systems ordered by priority.\n\
4698 \n\
4699 If only ASCII characters are found, it returns a list of single element\n\
4700 `undecided' or its subsidiary coding system according to a detected\n\
4701 end-of-line format.\n\
4702 \n\
4703 If optional argument HIGHEST is non-nil, return the coding system of\n\
4704 highest priority.")
4705 (string, highest)
4706 Lisp_Object string, highest;
4707 {
4708 CHECK_STRING (string, 0);
4709
4710 return detect_coding_system (XSTRING (string)->data,
4711 STRING_BYTES (XSTRING (string)),
4712 !NILP (highest));
4713 }
4714
4715 Lisp_Object
4716 code_convert_region1 (start, end, coding_system, encodep)
4717 Lisp_Object start, end, coding_system;
4718 int encodep;
4719 {
4720 struct coding_system coding;
4721 int from, to, len;
4722
4723 CHECK_NUMBER_COERCE_MARKER (start, 0);
4724 CHECK_NUMBER_COERCE_MARKER (end, 1);
4725 CHECK_SYMBOL (coding_system, 2);
4726
4727 validate_region (&start, &end);
4728 from = XFASTINT (start);
4729 to = XFASTINT (end);
4730
4731 if (NILP (coding_system))
4732 return make_number (to - from);
4733
4734 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4735 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4736
4737 /* The code conversion routine can not preserve text properties for
4738 now. So, we must remove all text properties in the region. */
4739 Fset_text_properties (start, end, Qnil, Qnil);
4740
4741 coding.mode |= CODING_MODE_LAST_BLOCK;
4742 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
4743 &coding, encodep, 1);
4744 Vlast_coding_system_used = coding.symbol;
4745 return make_number (coding.produced_char);
4746 }
4747
4748 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
4749 3, 3, "r\nzCoding system: ",
4750 "Decode the current region by specified coding system.\n\
4751 When called from a program, takes three arguments:\n\
4752 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
4753 This function sets `last-coding-system-used' to the precise coding system\n\
4754 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4755 not fully specified.)\n\
4756 It returns the length of the decoded text.")
4757 (start, end, coding_system)
4758 Lisp_Object start, end, coding_system;
4759 {
4760 return code_convert_region1 (start, end, coding_system, 0);
4761 }
4762
4763 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
4764 3, 3, "r\nzCoding system: ",
4765 "Encode the current region by specified coding system.\n\
4766 When called from a program, takes three arguments:\n\
4767 START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
4768 This function sets `last-coding-system-used' to the precise coding system\n\
4769 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4770 not fully specified.)\n\
4771 It returns the length of the encoded text.")
4772 (start, end, coding_system)
4773 Lisp_Object start, end, coding_system;
4774 {
4775 return code_convert_region1 (start, end, coding_system, 1);
4776 }
4777
4778 Lisp_Object
4779 code_convert_string1 (string, coding_system, nocopy, encodep)
4780 Lisp_Object string, coding_system, nocopy;
4781 int encodep;
4782 {
4783 struct coding_system coding;
4784
4785 CHECK_STRING (string, 0);
4786 CHECK_SYMBOL (coding_system, 1);
4787
4788 if (NILP (coding_system))
4789 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
4790
4791 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4792 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4793
4794 coding.mode |= CODING_MODE_LAST_BLOCK;
4795 Vlast_coding_system_used = coding.symbol;
4796 return code_convert_string (string, &coding, encodep, !NILP (nocopy));
4797 }
4798
4799 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
4800 2, 3, 0,
4801 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
4802 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
4803 if the decoding operation is trivial.\n\
4804 This function sets `last-coding-system-used' to the precise coding system\n\
4805 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4806 not fully specified.)")
4807 (string, coding_system, nocopy)
4808 Lisp_Object string, coding_system, nocopy;
4809 {
4810 return code_convert_string1 (string, coding_system, nocopy, 0);
4811 }
4812
4813 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
4814 2, 3, 0,
4815 "Encode STRING to CODING-SYSTEM, and return the result.\n\
4816 Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
4817 if the encoding operation is trivial.\n\
4818 This function sets `last-coding-system-used' to the precise coding system\n\
4819 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4820 not fully specified.)")
4821 (string, coding_system, nocopy)
4822 Lisp_Object string, coding_system, nocopy;
4823 {
4824 return code_convert_string1 (string, coding_system, nocopy, 1);
4825 }
4826
4827 /* Encode or decode STRING according to CODING_SYSTEM.
4828 Do not set Vlast_coding_system_used. */
4829
4830 Lisp_Object
4831 code_convert_string_norecord (string, coding_system, encodep)
4832 Lisp_Object string, coding_system;
4833 int encodep;
4834 {
4835 struct coding_system coding;
4836
4837 CHECK_STRING (string, 0);
4838 CHECK_SYMBOL (coding_system, 1);
4839
4840 if (NILP (coding_system))
4841 return string;
4842
4843 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4844 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4845
4846 coding.mode |= CODING_MODE_LAST_BLOCK;
4847 return code_convert_string (string, &coding, encodep, Qt);
4848 }
4849 \f
4850 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
4851 "Decode a JISX0208 character of shift-jis encoding.\n\
4852 CODE is the character code in SJIS.\n\
4853 Return the corresponding character.")
4854 (code)
4855 Lisp_Object code;
4856 {
4857 unsigned char c1, c2, s1, s2;
4858 Lisp_Object val;
4859
4860 CHECK_NUMBER (code, 0);
4861 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
4862 DECODE_SJIS (s1, s2, c1, c2);
4863 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
4864 return val;
4865 }
4866
4867 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
4868 "Encode a JISX0208 character CHAR to SJIS coding system.\n\
4869 Return the corresponding character code in SJIS.")
4870 (ch)
4871 Lisp_Object ch;
4872 {
4873 int charset, c1, c2, s1, s2;
4874 Lisp_Object val;
4875
4876 CHECK_NUMBER (ch, 0);
4877 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
4878 if (charset == charset_jisx0208)
4879 {
4880 ENCODE_SJIS (c1, c2, s1, s2);
4881 XSETFASTINT (val, (s1 << 8) | s2);
4882 }
4883 else
4884 XSETFASTINT (val, 0);
4885 return val;
4886 }
4887
4888 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
4889 "Decode a Big5 character CODE of BIG5 coding system.\n\
4890 CODE is the character code in BIG5.\n\
4891 Return the corresponding character.")
4892 (code)
4893 Lisp_Object code;
4894 {
4895 int charset;
4896 unsigned char b1, b2, c1, c2;
4897 Lisp_Object val;
4898
4899 CHECK_NUMBER (code, 0);
4900 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
4901 DECODE_BIG5 (b1, b2, charset, c1, c2);
4902 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
4903 return val;
4904 }
4905
4906 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
4907 "Encode the Big5 character CHAR to BIG5 coding system.\n\
4908 Return the corresponding character code in Big5.")
4909 (ch)
4910 Lisp_Object ch;
4911 {
4912 int charset, c1, c2, b1, b2;
4913 Lisp_Object val;
4914
4915 CHECK_NUMBER (ch, 0);
4916 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
4917 if (charset == charset_big5_1 || charset == charset_big5_2)
4918 {
4919 ENCODE_BIG5 (charset, c1, c2, b1, b2);
4920 XSETFASTINT (val, (b1 << 8) | b2);
4921 }
4922 else
4923 XSETFASTINT (val, 0);
4924 return val;
4925 }
4926 \f
4927 DEFUN ("set-terminal-coding-system-internal",
4928 Fset_terminal_coding_system_internal,
4929 Sset_terminal_coding_system_internal, 1, 1, 0, "")
4930 (coding_system)
4931 Lisp_Object coding_system;
4932 {
4933 CHECK_SYMBOL (coding_system, 0);
4934 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
4935 /* We had better not send unsafe characters to terminal. */
4936 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
4937
4938 return Qnil;
4939 }
4940
4941 DEFUN ("set-safe-terminal-coding-system-internal",
4942 Fset_safe_terminal_coding_system_internal,
4943 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
4944 (coding_system)
4945 Lisp_Object coding_system;
4946 {
4947 CHECK_SYMBOL (coding_system, 0);
4948 setup_coding_system (Fcheck_coding_system (coding_system),
4949 &safe_terminal_coding);
4950 return Qnil;
4951 }
4952
4953 DEFUN ("terminal-coding-system",
4954 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
4955 "Return coding system specified for terminal output.")
4956 ()
4957 {
4958 return terminal_coding.symbol;
4959 }
4960
4961 DEFUN ("set-keyboard-coding-system-internal",
4962 Fset_keyboard_coding_system_internal,
4963 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
4964 (coding_system)
4965 Lisp_Object coding_system;
4966 {
4967 CHECK_SYMBOL (coding_system, 0);
4968 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
4969 return Qnil;
4970 }
4971
4972 DEFUN ("keyboard-coding-system",
4973 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
4974 "Return coding system specified for decoding keyboard input.")
4975 ()
4976 {
4977 return keyboard_coding.symbol;
4978 }
4979
4980 \f
4981 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
4982 Sfind_operation_coding_system, 1, MANY, 0,
4983 "Choose a coding system for an operation based on the target name.\n\
4984 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).\n\
4985 DECODING-SYSTEM is the coding system to use for decoding\n\
4986 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
4987 for encoding (in case OPERATION does encoding).\n\
4988 \n\
4989 The first argument OPERATION specifies an I/O primitive:\n\
4990 For file I/O, `insert-file-contents' or `write-region'.\n\
4991 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
4992 For network I/O, `open-network-stream'.\n\
4993 \n\
4994 The remaining arguments should be the same arguments that were passed\n\
4995 to the primitive. Depending on which primitive, one of those arguments\n\
4996 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
4997 whichever argument specifies the file name is TARGET.\n\
4998 \n\
4999 TARGET has a meaning which depends on OPERATION:\n\
5000 For file I/O, TARGET is a file name.\n\
5001 For process I/O, TARGET is a process name.\n\
5002 For network I/O, TARGET is a service name or a port number\n\
5003 \n\
5004 This function looks up what specified for TARGET in,\n\
5005 `file-coding-system-alist', `process-coding-system-alist',\n\
5006 or `network-coding-system-alist' depending on OPERATION.\n\
5007 They may specify a coding system, a cons of coding systems,\n\
5008 or a function symbol to call.\n\
5009 In the last case, we call the function with one argument,\n\
5010 which is a list of all the arguments given to this function.")
5011 (nargs, args)
5012 int nargs;
5013 Lisp_Object *args;
5014 {
5015 Lisp_Object operation, target_idx, target, val;
5016 register Lisp_Object chain;
5017
5018 if (nargs < 2)
5019 error ("Too few arguments");
5020 operation = args[0];
5021 if (!SYMBOLP (operation)
5022 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
5023 error ("Invalid first arguement");
5024 if (nargs < 1 + XINT (target_idx))
5025 error ("Too few arguments for operation: %s",
5026 XSYMBOL (operation)->name->data);
5027 target = args[XINT (target_idx) + 1];
5028 if (!(STRINGP (target)
5029 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
5030 error ("Invalid %dth argument", XINT (target_idx) + 1);
5031
5032 chain = ((EQ (operation, Qinsert_file_contents)
5033 || EQ (operation, Qwrite_region))
5034 ? Vfile_coding_system_alist
5035 : (EQ (operation, Qopen_network_stream)
5036 ? Vnetwork_coding_system_alist
5037 : Vprocess_coding_system_alist));
5038 if (NILP (chain))
5039 return Qnil;
5040
5041 for (; CONSP (chain); chain = XCONS (chain)->cdr)
5042 {
5043 Lisp_Object elt;
5044 elt = XCONS (chain)->car;
5045
5046 if (CONSP (elt)
5047 && ((STRINGP (target)
5048 && STRINGP (XCONS (elt)->car)
5049 && fast_string_match (XCONS (elt)->car, target) >= 0)
5050 || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
5051 {
5052 val = XCONS (elt)->cdr;
5053 /* Here, if VAL is both a valid coding system and a valid
5054 function symbol, we return VAL as a coding system. */
5055 if (CONSP (val))
5056 return val;
5057 if (! SYMBOLP (val))
5058 return Qnil;
5059 if (! NILP (Fcoding_system_p (val)))
5060 return Fcons (val, val);
5061 if (! NILP (Ffboundp (val)))
5062 {
5063 val = call1 (val, Flist (nargs, args));
5064 if (CONSP (val))
5065 return val;
5066 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
5067 return Fcons (val, val);
5068 }
5069 return Qnil;
5070 }
5071 }
5072 return Qnil;
5073 }
5074
5075 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
5076 Supdate_coding_systems_internal, 0, 0, 0,
5077 "Update internal database for ISO2022 and CCL based coding systems.\n\
5078 When values of the following coding categories are changed, you must\n\
5079 call this function:\n\
5080 coding-category-iso-7, coding-category-iso-7-tight,\n\
5081 coding-category-iso-8-1, coding-category-iso-8-2,\n\
5082 coding-category-iso-7-else, coding-category-iso-8-else,\n\
5083 coding-category-ccl")
5084 ()
5085 {
5086 int i;
5087
5088 for (i = CODING_CATEGORY_IDX_ISO_7; i <= CODING_CATEGORY_IDX_CCL; i++)
5089 {
5090 Lisp_Object val;
5091
5092 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value;
5093 if (!NILP (val))
5094 {
5095 if (! coding_system_table[i])
5096 coding_system_table[i] = ((struct coding_system *)
5097 xmalloc (sizeof (struct coding_system)));
5098 setup_coding_system (val, coding_system_table[i]);
5099 }
5100 else if (coding_system_table[i])
5101 {
5102 xfree (coding_system_table[i]);
5103 coding_system_table[i] = NULL;
5104 }
5105 }
5106
5107 return Qnil;
5108 }
5109
5110 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
5111 Sset_coding_priority_internal, 0, 0, 0,
5112 "Update internal database for the current value of `coding-category-list'.\n\
5113 This function is internal use only.")
5114 ()
5115 {
5116 int i = 0, idx;
5117 Lisp_Object val;
5118
5119 val = Vcoding_category_list;
5120
5121 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
5122 {
5123 if (! SYMBOLP (XCONS (val)->car))
5124 break;
5125 idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
5126 if (idx >= CODING_CATEGORY_IDX_MAX)
5127 break;
5128 coding_priorities[i++] = (1 << idx);
5129 val = XCONS (val)->cdr;
5130 }
5131 /* If coding-category-list is valid and contains all coding
5132 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
5133 the following code saves Emacs from craching. */
5134 while (i < CODING_CATEGORY_IDX_MAX)
5135 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
5136
5137 return Qnil;
5138 }
5139
5140 #endif /* emacs */
5141
5142 \f
5143 /*** 9. Post-amble ***/
5144
5145 void
5146 init_coding ()
5147 {
5148 conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
5149 }
5150
5151 void
5152 init_coding_once ()
5153 {
5154 int i;
5155
5156 /* Emacs' internal format specific initialize routine. */
5157 for (i = 0; i <= 0x20; i++)
5158 emacs_code_class[i] = EMACS_control_code;
5159 emacs_code_class[0x0A] = EMACS_linefeed_code;
5160 emacs_code_class[0x0D] = EMACS_carriage_return_code;
5161 for (i = 0x21 ; i < 0x7F; i++)
5162 emacs_code_class[i] = EMACS_ascii_code;
5163 emacs_code_class[0x7F] = EMACS_control_code;
5164 emacs_code_class[0x80] = EMACS_leading_code_composition;
5165 for (i = 0x81; i < 0xFF; i++)
5166 emacs_code_class[i] = EMACS_invalid_code;
5167 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
5168 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
5169 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
5170 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
5171
5172 /* ISO2022 specific initialize routine. */
5173 for (i = 0; i < 0x20; i++)
5174 iso_code_class[i] = ISO_control_code;
5175 for (i = 0x21; i < 0x7F; i++)
5176 iso_code_class[i] = ISO_graphic_plane_0;
5177 for (i = 0x80; i < 0xA0; i++)
5178 iso_code_class[i] = ISO_control_code;
5179 for (i = 0xA1; i < 0xFF; i++)
5180 iso_code_class[i] = ISO_graphic_plane_1;
5181 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
5182 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
5183 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
5184 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
5185 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
5186 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
5187 iso_code_class[ISO_CODE_ESC] = ISO_escape;
5188 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
5189 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
5190 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
5191
5192 conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
5193
5194 setup_coding_system (Qnil, &keyboard_coding);
5195 setup_coding_system (Qnil, &terminal_coding);
5196 setup_coding_system (Qnil, &safe_terminal_coding);
5197 setup_coding_system (Qnil, &default_buffer_file_coding);
5198
5199 bzero (coding_system_table, sizeof coding_system_table);
5200
5201 bzero (ascii_skip_code, sizeof ascii_skip_code);
5202 for (i = 0; i < 128; i++)
5203 ascii_skip_code[i] = 1;
5204
5205 #if defined (MSDOS) || defined (WINDOWSNT)
5206 system_eol_type = CODING_EOL_CRLF;
5207 #else
5208 system_eol_type = CODING_EOL_LF;
5209 #endif
5210 }
5211
5212 #ifdef emacs
5213
5214 void
5215 syms_of_coding ()
5216 {
5217 Qtarget_idx = intern ("target-idx");
5218 staticpro (&Qtarget_idx);
5219
5220 Qcoding_system_history = intern ("coding-system-history");
5221 staticpro (&Qcoding_system_history);
5222 Fset (Qcoding_system_history, Qnil);
5223
5224 /* Target FILENAME is the first argument. */
5225 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
5226 /* Target FILENAME is the third argument. */
5227 Fput (Qwrite_region, Qtarget_idx, make_number (2));
5228
5229 Qcall_process = intern ("call-process");
5230 staticpro (&Qcall_process);
5231 /* Target PROGRAM is the first argument. */
5232 Fput (Qcall_process, Qtarget_idx, make_number (0));
5233
5234 Qcall_process_region = intern ("call-process-region");
5235 staticpro (&Qcall_process_region);
5236 /* Target PROGRAM is the third argument. */
5237 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
5238
5239 Qstart_process = intern ("start-process");
5240 staticpro (&Qstart_process);
5241 /* Target PROGRAM is the third argument. */
5242 Fput (Qstart_process, Qtarget_idx, make_number (2));
5243
5244 Qopen_network_stream = intern ("open-network-stream");
5245 staticpro (&Qopen_network_stream);
5246 /* Target SERVICE is the fourth argument. */
5247 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
5248
5249 Qcoding_system = intern ("coding-system");
5250 staticpro (&Qcoding_system);
5251
5252 Qeol_type = intern ("eol-type");
5253 staticpro (&Qeol_type);
5254
5255 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
5256 staticpro (&Qbuffer_file_coding_system);
5257
5258 Qpost_read_conversion = intern ("post-read-conversion");
5259 staticpro (&Qpost_read_conversion);
5260
5261 Qpre_write_conversion = intern ("pre-write-conversion");
5262 staticpro (&Qpre_write_conversion);
5263
5264 Qno_conversion = intern ("no-conversion");
5265 staticpro (&Qno_conversion);
5266
5267 Qundecided = intern ("undecided");
5268 staticpro (&Qundecided);
5269
5270 Qcoding_system_p = intern ("coding-system-p");
5271 staticpro (&Qcoding_system_p);
5272
5273 Qcoding_system_error = intern ("coding-system-error");
5274 staticpro (&Qcoding_system_error);
5275
5276 Fput (Qcoding_system_error, Qerror_conditions,
5277 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
5278 Fput (Qcoding_system_error, Qerror_message,
5279 build_string ("Invalid coding system"));
5280
5281 Qcoding_category = intern ("coding-category");
5282 staticpro (&Qcoding_category);
5283 Qcoding_category_index = intern ("coding-category-index");
5284 staticpro (&Qcoding_category_index);
5285
5286 Vcoding_category_table
5287 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
5288 staticpro (&Vcoding_category_table);
5289 {
5290 int i;
5291 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
5292 {
5293 XVECTOR (Vcoding_category_table)->contents[i]
5294 = intern (coding_category_name[i]);
5295 Fput (XVECTOR (Vcoding_category_table)->contents[i],
5296 Qcoding_category_index, make_number (i));
5297 }
5298 }
5299
5300 Qtranslation_table = intern ("translation-table");
5301 staticpro (&Qtranslation_table);
5302 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
5303
5304 Qtranslation_table_id = intern ("translation-table-id");
5305 staticpro (&Qtranslation_table_id);
5306
5307 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
5308 staticpro (&Qtranslation_table_for_decode);
5309
5310 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
5311 staticpro (&Qtranslation_table_for_encode);
5312
5313 Qsafe_charsets = intern ("safe-charsets");
5314 staticpro (&Qsafe_charsets);
5315
5316 Qvalid_codes = intern ("valid-codes");
5317 staticpro (&Qvalid_codes);
5318
5319 Qemacs_mule = intern ("emacs-mule");
5320 staticpro (&Qemacs_mule);
5321
5322 Qraw_text = intern ("raw-text");
5323 staticpro (&Qraw_text);
5324
5325 defsubr (&Scoding_system_p);
5326 defsubr (&Sread_coding_system);
5327 defsubr (&Sread_non_nil_coding_system);
5328 defsubr (&Scheck_coding_system);
5329 defsubr (&Sdetect_coding_region);
5330 defsubr (&Sdetect_coding_string);
5331 defsubr (&Sdecode_coding_region);
5332 defsubr (&Sencode_coding_region);
5333 defsubr (&Sdecode_coding_string);
5334 defsubr (&Sencode_coding_string);
5335 defsubr (&Sdecode_sjis_char);
5336 defsubr (&Sencode_sjis_char);
5337 defsubr (&Sdecode_big5_char);
5338 defsubr (&Sencode_big5_char);
5339 defsubr (&Sset_terminal_coding_system_internal);
5340 defsubr (&Sset_safe_terminal_coding_system_internal);
5341 defsubr (&Sterminal_coding_system);
5342 defsubr (&Sset_keyboard_coding_system_internal);
5343 defsubr (&Skeyboard_coding_system);
5344 defsubr (&Sfind_operation_coding_system);
5345 defsubr (&Supdate_coding_systems_internal);
5346 defsubr (&Sset_coding_priority_internal);
5347
5348 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
5349 "List of coding systems.\n\
5350 \n\
5351 Do not alter the value of this variable manually. This variable should be\n\
5352 updated by the functions `make-coding-system' and\n\
5353 `define-coding-system-alias'.");
5354 Vcoding_system_list = Qnil;
5355
5356 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
5357 "Alist of coding system names.\n\
5358 Each element is one element list of coding system name.\n\
5359 This variable is given to `completing-read' as TABLE argument.\n\
5360 \n\
5361 Do not alter the value of this variable manually. This variable should be\n\
5362 updated by the functions `make-coding-system' and\n\
5363 `define-coding-system-alias'.");
5364 Vcoding_system_alist = Qnil;
5365
5366 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
5367 "List of coding-categories (symbols) ordered by priority.");
5368 {
5369 int i;
5370
5371 Vcoding_category_list = Qnil;
5372 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
5373 Vcoding_category_list
5374 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
5375 Vcoding_category_list);
5376 }
5377
5378 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
5379 "Specify the coding system for read operations.\n\
5380 It is useful to bind this variable with `let', but do not set it globally.\n\
5381 If the value is a coding system, it is used for decoding on read operation.\n\
5382 If not, an appropriate element is used from one of the coding system alists:\n\
5383 There are three such tables, `file-coding-system-alist',\n\
5384 `process-coding-system-alist', and `network-coding-system-alist'.");
5385 Vcoding_system_for_read = Qnil;
5386
5387 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
5388 "Specify the coding system for write operations.\n\
5389 It is useful to bind this variable with `let', but do not set it globally.\n\
5390 If the value is a coding system, it is used for encoding on write operation.\n\
5391 If not, an appropriate element is used from one of the coding system alists:\n\
5392 There are three such tables, `file-coding-system-alist',\n\
5393 `process-coding-system-alist', and `network-coding-system-alist'.");
5394 Vcoding_system_for_write = Qnil;
5395
5396 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
5397 "Coding system used in the latest file or process I/O.");
5398 Vlast_coding_system_used = Qnil;
5399
5400 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
5401 "*Non-nil inhibit code conversion of end-of-line format in any cases.");
5402 inhibit_eol_conversion = 0;
5403
5404 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
5405 "Non-nil means process buffer inherits coding system of process output.\n\
5406 Bind it to t if the process output is to be treated as if it were a file\n\
5407 read from some filesystem.");
5408 inherit_process_coding_system = 0;
5409
5410 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
5411 "Alist to decide a coding system to use for a file I/O operation.\n\
5412 The format is ((PATTERN . VAL) ...),\n\
5413 where PATTERN is a regular expression matching a file name,\n\
5414 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5415 If VAL is a coding system, it is used for both decoding and encoding\n\
5416 the file contents.\n\
5417 If VAL is a cons of coding systems, the car part is used for decoding,\n\
5418 and the cdr part is used for encoding.\n\
5419 If VAL is a function symbol, the function must return a coding system\n\
5420 or a cons of coding systems which are used as above.\n\
5421 \n\
5422 See also the function `find-operation-coding-system'\n\
5423 and the variable `auto-coding-alist'.");
5424 Vfile_coding_system_alist = Qnil;
5425
5426 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
5427 "Alist to decide a coding system to use for a process I/O operation.\n\
5428 The format is ((PATTERN . VAL) ...),\n\
5429 where PATTERN is a regular expression matching a program name,\n\
5430 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5431 If VAL is a coding system, it is used for both decoding what received\n\
5432 from the program and encoding what sent to the program.\n\
5433 If VAL is a cons of coding systems, the car part is used for decoding,\n\
5434 and the cdr part is used for encoding.\n\
5435 If VAL is a function symbol, the function must return a coding system\n\
5436 or a cons of coding systems which are used as above.\n\
5437 \n\
5438 See also the function `find-operation-coding-system'.");
5439 Vprocess_coding_system_alist = Qnil;
5440
5441 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
5442 "Alist to decide a coding system to use for a network I/O operation.\n\
5443 The format is ((PATTERN . VAL) ...),\n\
5444 where PATTERN is a regular expression matching a network service name\n\
5445 or is a port number to connect to,\n\
5446 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5447 If VAL is a coding system, it is used for both decoding what received\n\
5448 from the network stream and encoding what sent to the network stream.\n\
5449 If VAL is a cons of coding systems, the car part is used for decoding,\n\
5450 and the cdr part is used for encoding.\n\
5451 If VAL is a function symbol, the function must return a coding system\n\
5452 or a cons of coding systems which are used as above.\n\
5453 \n\
5454 See also the function `find-operation-coding-system'.");
5455 Vnetwork_coding_system_alist = Qnil;
5456
5457 DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix,
5458 "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) .");
5459 eol_mnemonic_unix = ':';
5460
5461 DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos,
5462 "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF).");
5463 eol_mnemonic_dos = '\\';
5464
5465 DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac,
5466 "Mnemonic character indicating MAC-like end-of-line format (i.e. CR).");
5467 eol_mnemonic_mac = '/';
5468
5469 DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
5470 "Mnemonic character indicating end-of-line format is not yet decided.");
5471 eol_mnemonic_undecided = ':';
5472
5473 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
5474 "*Non-nil enables character translation while encoding and decoding.");
5475 Venable_character_translation = Qt;
5476
5477 DEFVAR_LISP ("standard-translation-table-for-decode",
5478 &Vstandard_translation_table_for_decode,
5479 "Table for translating characters while decoding.");
5480 Vstandard_translation_table_for_decode = Qnil;
5481
5482 DEFVAR_LISP ("standard-translation-table-for-encode",
5483 &Vstandard_translation_table_for_encode,
5484 "Table for translationg characters while encoding.");
5485 Vstandard_translation_table_for_encode = Qnil;
5486
5487 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
5488 "Alist of charsets vs revision numbers.\n\
5489 While encoding, if a charset (car part of an element) is found,\n\
5490 designate it with the escape sequence identifing revision (cdr part of the element).");
5491 Vcharset_revision_alist = Qnil;
5492
5493 DEFVAR_LISP ("default-process-coding-system",
5494 &Vdefault_process_coding_system,
5495 "Cons of coding systems used for process I/O by default.\n\
5496 The car part is used for decoding a process output,\n\
5497 the cdr part is used for encoding a text to be sent to a process.");
5498 Vdefault_process_coding_system = Qnil;
5499
5500 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
5501 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
5502 This is a vector of length 256.\n\
5503 If Nth element is non-nil, the existence of code N in a file\n\
5504 \(or output of subprocess) doesn't prevent it to be detected as\n\
5505 a coding system of ISO 2022 variant which has a flag\n\
5506 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
5507 or reading output of a subprocess.\n\
5508 Only 128th through 159th elements has a meaning.");
5509 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
5510
5511 DEFVAR_LISP ("select-safe-coding-system-function",
5512 &Vselect_safe_coding_system_function,
5513 "Function to call to select safe coding system for encoding a text.\n\
5514 \n\
5515 If set, this function is called to force a user to select a proper\n\
5516 coding system which can encode the text in the case that a default\n\
5517 coding system used in each operation can't encode the text.\n\
5518 \n\
5519 The default value is `select-safe-coding-system' (which see).");
5520 Vselect_safe_coding_system_function = Qnil;
5521
5522 }
5523
5524 #endif /* emacs */