Merged in changes from CVS trunk.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, revoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Number of bytes of consing since GC before another GC should be done. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Nonzero means display messages at beginning and end of GC. */
190
191 int garbage_collection_messages;
192
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
197
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
202
203 /* Number of live and free conses etc. */
204
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
208
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
212 static char *spare_memory;
213
214 /* Amount of spare memory to keep in reserve. */
215
216 #define SPARE_MEMORY (1 << 14)
217
218 /* Number of extra blocks malloc should get when it needs more core. */
219
220 static int malloc_hysteresis;
221
222 /* Non-nil means defun should do purecopy on the function definition. */
223
224 Lisp_Object Vpurify_flag;
225
226 /* Non-nil means we are handling a memory-full error. */
227
228 Lisp_Object Vmemory_full;
229
230 #ifndef HAVE_SHM
231
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
237
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
240
241 #else /* HAVE_SHM */
242
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
245
246 #endif /* HAVE_SHM */
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Index in pure at which next pure object will be allocated.. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
273 char *pending_malloc_warning;
274
275 /* Pre-computed signal argument for use when memory is exhausted. */
276
277 Lisp_Object Vmemory_signal_data;
278
279 /* Maximum amount of C stack to save when a GC happens. */
280
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
284
285 /* Buffer in which we save a copy of the C stack at each GC. */
286
287 char *stack_copy;
288 int stack_copy_size;
289
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
293 int ignore_warnings;
294
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
296
297 /* Hook run after GC has finished. */
298
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
303
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_ttys P_ ((void));
307 extern void mark_backtrace P_ ((void));
308 static void gc_sweep P_ ((void));
309 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
310 static void mark_face_cache P_ ((struct face_cache *));
311
312 #ifdef HAVE_WINDOW_SYSTEM
313 static void mark_image P_ ((struct image *));
314 static void mark_image_cache P_ ((struct frame *));
315 #endif /* HAVE_WINDOW_SYSTEM */
316
317 static struct Lisp_String *allocate_string P_ ((void));
318 static void compact_small_strings P_ ((void));
319 static void free_large_strings P_ ((void));
320 static void sweep_strings P_ ((void));
321
322 extern int message_enable_multibyte;
323
324 /* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
327
328 enum mem_type
329 {
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
345 };
346
347 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
348
349 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350 #include <stdio.h> /* For fprintf. */
351 #endif
352
353 /* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
355
356 Lisp_Object Vdead;
357
358 #ifdef GC_MALLOC_CHECK
359
360 enum mem_type allocated_mem_type;
361 int dont_register_blocks;
362
363 #endif /* GC_MALLOC_CHECK */
364
365 /* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
369
370 A red-black tree is a balanced binary tree with the following
371 properties:
372
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
379
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
382
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
388
389 struct mem_node
390 {
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
394
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
397
398 /* Start and end of allocated region. */
399 void *start, *end;
400
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
403
404 /* Memory type. */
405 enum mem_type type;
406 };
407
408 /* Base address of stack. Set in main. */
409
410 Lisp_Object *stack_base;
411
412 /* Root of the tree describing allocated Lisp memory. */
413
414 static struct mem_node *mem_root;
415
416 /* Lowest and highest known address in the heap. */
417
418 static void *min_heap_address, *max_heap_address;
419
420 /* Sentinel node of the tree. */
421
422 static struct mem_node mem_z;
423 #define MEM_NIL &mem_z
424
425 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
426 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
427 static void lisp_free P_ ((POINTER_TYPE *));
428 static void mark_stack P_ ((void));
429 static int live_vector_p P_ ((struct mem_node *, void *));
430 static int live_buffer_p P_ ((struct mem_node *, void *));
431 static int live_string_p P_ ((struct mem_node *, void *));
432 static int live_cons_p P_ ((struct mem_node *, void *));
433 static int live_symbol_p P_ ((struct mem_node *, void *));
434 static int live_float_p P_ ((struct mem_node *, void *));
435 static int live_misc_p P_ ((struct mem_node *, void *));
436 static void mark_maybe_object P_ ((Lisp_Object));
437 static void mark_memory P_ ((void *, void *));
438 static void mem_init P_ ((void));
439 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440 static void mem_insert_fixup P_ ((struct mem_node *));
441 static void mem_rotate_left P_ ((struct mem_node *));
442 static void mem_rotate_right P_ ((struct mem_node *));
443 static void mem_delete P_ ((struct mem_node *));
444 static void mem_delete_fixup P_ ((struct mem_node *));
445 static INLINE struct mem_node *mem_find P_ ((void *));
446
447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448 static void check_gcpros P_ ((void));
449 #endif
450
451 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
452
453 /* Recording what needs to be marked for gc. */
454
455 struct gcpro *gcprolist;
456
457 /* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
459
460 #define NSTATICS 1280
461 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
462
463 /* Index of next unused slot in staticvec. */
464
465 int staticidx = 0;
466
467 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
468
469
470 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
472
473 #define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
476
477
478 \f
479 /************************************************************************
480 Malloc
481 ************************************************************************/
482
483 /* Function malloc calls this if it finds we are near exhausting storage. */
484
485 void
486 malloc_warning (str)
487 char *str;
488 {
489 pending_malloc_warning = str;
490 }
491
492
493 /* Display an already-pending malloc warning. */
494
495 void
496 display_malloc_warning ()
497 {
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
502 pending_malloc_warning = 0;
503 }
504
505
506 #ifdef DOUG_LEA_MALLOC
507 # define BYTES_USED (mallinfo ().arena)
508 #else
509 # define BYTES_USED _bytes_used
510 #endif
511
512
513 /* Called if malloc returns zero. */
514
515 void
516 memory_full ()
517 {
518 Vmemory_full = Qt;
519
520 #ifndef SYSTEM_MALLOC
521 bytes_used_when_full = BYTES_USED;
522 #endif
523
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
526 {
527 free (spare_memory);
528 spare_memory = 0;
529 }
530
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
533 while (1)
534 Fsignal (Qnil, Vmemory_signal_data);
535 }
536
537
538 /* Called if we can't allocate relocatable space for a buffer. */
539
540 void
541 buffer_memory_full ()
542 {
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
549
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
553
554 Vmemory_full = Qt;
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* Like malloc, but wraps allocated block with header and trailer. */
606
607 POINTER_TYPE *
608 overrun_check_malloc (size)
609 size_t size;
610 {
611 register unsigned char *val;
612
613 val = (unsigned char *) malloc (size + XMALLOC_OVERRUN_CHECK_SIZE*2);
614 if (val)
615 {
616 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
617 val += XMALLOC_OVERRUN_CHECK_SIZE;
618 XMALLOC_PUT_SIZE(val, size);
619 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
620 }
621 return (POINTER_TYPE *)val;
622 }
623
624
625 /* Like realloc, but checks old block for overrun, and wraps new block
626 with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_realloc (block, size)
630 POINTER_TYPE *block;
631 size_t size;
632 {
633 register unsigned char *val = (unsigned char *)block;
634
635 if (val
636 && bcmp (xmalloc_overrun_check_header,
637 val - XMALLOC_OVERRUN_CHECK_SIZE,
638 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
639 {
640 size_t osize = XMALLOC_GET_SIZE (val);
641 if (bcmp (xmalloc_overrun_check_trailer,
642 val + osize,
643 XMALLOC_OVERRUN_CHECK_SIZE))
644 abort ();
645 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
646 val -= XMALLOC_OVERRUN_CHECK_SIZE;
647 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
648 }
649
650 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + XMALLOC_OVERRUN_CHECK_SIZE*2);
651
652 if (val)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 return (POINTER_TYPE *)val;
660 }
661
662 /* Like free, but checks block for overrun. */
663
664 void
665 overrun_check_free (block)
666 POINTER_TYPE *block;
667 {
668 unsigned char *val = (unsigned char *)block;
669
670 if (val
671 && bcmp (xmalloc_overrun_check_header,
672 val - XMALLOC_OVERRUN_CHECK_SIZE,
673 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
674 {
675 size_t osize = XMALLOC_GET_SIZE (val);
676 if (bcmp (xmalloc_overrun_check_trailer,
677 val + osize,
678 XMALLOC_OVERRUN_CHECK_SIZE))
679 abort ();
680 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
681 val -= XMALLOC_OVERRUN_CHECK_SIZE;
682 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684
685 free (val);
686 }
687
688 #undef malloc
689 #undef realloc
690 #undef free
691 #define malloc overrun_check_malloc
692 #define realloc overrun_check_realloc
693 #define free overrun_check_free
694 #endif
695
696
697 /* Like malloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xmalloc (size)
701 size_t size;
702 {
703 register POINTER_TYPE *val;
704
705 BLOCK_INPUT;
706 val = (POINTER_TYPE *) malloc (size);
707 UNBLOCK_INPUT;
708
709 if (!val && size)
710 memory_full ();
711 return val;
712 }
713
714
715 /* Like realloc but check for no memory and block interrupt input.. */
716
717 POINTER_TYPE *
718 xrealloc (block, size)
719 POINTER_TYPE *block;
720 size_t size;
721 {
722 register POINTER_TYPE *val;
723
724 BLOCK_INPUT;
725 /* We must call malloc explicitly when BLOCK is 0, since some
726 reallocs don't do this. */
727 if (! block)
728 val = (POINTER_TYPE *) malloc (size);
729 else
730 val = (POINTER_TYPE *) realloc (block, size);
731 UNBLOCK_INPUT;
732
733 if (!val && size) memory_full ();
734 return val;
735 }
736
737
738 /* Like free but block interrupt input. */
739
740 void
741 xfree (block)
742 POINTER_TYPE *block;
743 {
744 BLOCK_INPUT;
745 free (block);
746 UNBLOCK_INPUT;
747 }
748
749
750 /* Like strdup, but uses xmalloc. */
751
752 char *
753 xstrdup (s)
754 const char *s;
755 {
756 size_t len = strlen (s) + 1;
757 char *p = (char *) xmalloc (len);
758 bcopy (s, p, len);
759 return p;
760 }
761
762
763 /* Unwind for SAFE_ALLOCA */
764
765 Lisp_Object
766 safe_alloca_unwind (arg)
767 Lisp_Object arg;
768 {
769 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
770
771 p->dogc = 0;
772 xfree (p->pointer);
773 p->pointer = 0;
774 free_misc (arg);
775 return Qnil;
776 }
777
778
779 /* Like malloc but used for allocating Lisp data. NBYTES is the
780 number of bytes to allocate, TYPE describes the intended use of the
781 allcated memory block (for strings, for conses, ...). */
782
783 #ifndef USE_LSB_TAG
784 static void *lisp_malloc_loser;
785 #endif
786
787 static POINTER_TYPE *
788 lisp_malloc (nbytes, type)
789 size_t nbytes;
790 enum mem_type type;
791 {
792 register void *val;
793
794 BLOCK_INPUT;
795
796 #ifdef GC_MALLOC_CHECK
797 allocated_mem_type = type;
798 #endif
799
800 val = (void *) malloc (nbytes);
801
802 #ifndef USE_LSB_TAG
803 /* If the memory just allocated cannot be addressed thru a Lisp
804 object's pointer, and it needs to be,
805 that's equivalent to running out of memory. */
806 if (val && type != MEM_TYPE_NON_LISP)
807 {
808 Lisp_Object tem;
809 XSETCONS (tem, (char *) val + nbytes - 1);
810 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
811 {
812 lisp_malloc_loser = val;
813 free (val);
814 val = 0;
815 }
816 }
817 #endif
818
819 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
820 if (val && type != MEM_TYPE_NON_LISP)
821 mem_insert (val, (char *) val + nbytes, type);
822 #endif
823
824 UNBLOCK_INPUT;
825 if (!val && nbytes)
826 memory_full ();
827 return val;
828 }
829
830 /* Free BLOCK. This must be called to free memory allocated with a
831 call to lisp_malloc. */
832
833 static void
834 lisp_free (block)
835 POINTER_TYPE *block;
836 {
837 BLOCK_INPUT;
838 free (block);
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 UNBLOCK_INPUT;
843 }
844
845 /* Allocation of aligned blocks of memory to store Lisp data. */
846 /* The entry point is lisp_align_malloc which returns blocks of at most */
847 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
848
849
850 /* BLOCK_ALIGN has to be a power of 2. */
851 #define BLOCK_ALIGN (1 << 10)
852
853 /* Padding to leave at the end of a malloc'd block. This is to give
854 malloc a chance to minimize the amount of memory wasted to alignment.
855 It should be tuned to the particular malloc library used.
856 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
857 posix_memalign on the other hand would ideally prefer a value of 4
858 because otherwise, there's 1020 bytes wasted between each ablocks.
859 But testing shows that those 1020 will most of the time be efficiently
860 used by malloc to place other objects, so a value of 0 is still preferable
861 unless you have a lot of cons&floats and virtually nothing else. */
862 #define BLOCK_PADDING 0
863 #define BLOCK_BYTES \
864 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
865
866 /* Internal data structures and constants. */
867
868 #define ABLOCKS_SIZE 16
869
870 /* An aligned block of memory. */
871 struct ablock
872 {
873 union
874 {
875 char payload[BLOCK_BYTES];
876 struct ablock *next_free;
877 } x;
878 /* `abase' is the aligned base of the ablocks. */
879 /* It is overloaded to hold the virtual `busy' field that counts
880 the number of used ablock in the parent ablocks.
881 The first ablock has the `busy' field, the others have the `abase'
882 field. To tell the difference, we assume that pointers will have
883 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
884 is used to tell whether the real base of the parent ablocks is `abase'
885 (if not, the word before the first ablock holds a pointer to the
886 real base). */
887 struct ablocks *abase;
888 /* The padding of all but the last ablock is unused. The padding of
889 the last ablock in an ablocks is not allocated. */
890 #if BLOCK_PADDING
891 char padding[BLOCK_PADDING];
892 #endif
893 };
894
895 /* A bunch of consecutive aligned blocks. */
896 struct ablocks
897 {
898 struct ablock blocks[ABLOCKS_SIZE];
899 };
900
901 /* Size of the block requested from malloc or memalign. */
902 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
903
904 #define ABLOCK_ABASE(block) \
905 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
906 ? (struct ablocks *)(block) \
907 : (block)->abase)
908
909 /* Virtual `busy' field. */
910 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
911
912 /* Pointer to the (not necessarily aligned) malloc block. */
913 #ifdef HAVE_POSIX_MEMALIGN
914 #define ABLOCKS_BASE(abase) (abase)
915 #else
916 #define ABLOCKS_BASE(abase) \
917 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
918 #endif
919
920 /* The list of free ablock. */
921 static struct ablock *free_ablock;
922
923 /* Allocate an aligned block of nbytes.
924 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
925 smaller or equal to BLOCK_BYTES. */
926 static POINTER_TYPE *
927 lisp_align_malloc (nbytes, type)
928 size_t nbytes;
929 enum mem_type type;
930 {
931 void *base, *val;
932 struct ablocks *abase;
933
934 eassert (nbytes <= BLOCK_BYTES);
935
936 BLOCK_INPUT;
937
938 #ifdef GC_MALLOC_CHECK
939 allocated_mem_type = type;
940 #endif
941
942 if (!free_ablock)
943 {
944 int i;
945 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
946
947 #ifdef DOUG_LEA_MALLOC
948 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
949 because mapped region contents are not preserved in
950 a dumped Emacs. */
951 mallopt (M_MMAP_MAX, 0);
952 #endif
953
954 #ifdef HAVE_POSIX_MEMALIGN
955 {
956 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
957 if (err)
958 base = NULL;
959 abase = base;
960 }
961 #else
962 base = malloc (ABLOCKS_BYTES);
963 abase = ALIGN (base, BLOCK_ALIGN);
964 #endif
965
966 if (base == 0)
967 {
968 UNBLOCK_INPUT;
969 memory_full ();
970 }
971
972 aligned = (base == abase);
973 if (!aligned)
974 ((void**)abase)[-1] = base;
975
976 #ifdef DOUG_LEA_MALLOC
977 /* Back to a reasonable maximum of mmap'ed areas. */
978 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
979 #endif
980
981 #ifndef USE_LSB_TAG
982 /* If the memory just allocated cannot be addressed thru a Lisp
983 object's pointer, and it needs to be, that's equivalent to
984 running out of memory. */
985 if (type != MEM_TYPE_NON_LISP)
986 {
987 Lisp_Object tem;
988 char *end = (char *) base + ABLOCKS_BYTES - 1;
989 XSETCONS (tem, end);
990 if ((char *) XCONS (tem) != end)
991 {
992 lisp_malloc_loser = base;
993 free (base);
994 UNBLOCK_INPUT;
995 memory_full ();
996 }
997 }
998 #endif
999
1000 /* Initialize the blocks and put them on the free list.
1001 Is `base' was not properly aligned, we can't use the last block. */
1002 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1003 {
1004 abase->blocks[i].abase = abase;
1005 abase->blocks[i].x.next_free = free_ablock;
1006 free_ablock = &abase->blocks[i];
1007 }
1008 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1009
1010 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1011 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1012 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1013 eassert (ABLOCKS_BASE (abase) == base);
1014 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1015 }
1016
1017 abase = ABLOCK_ABASE (free_ablock);
1018 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1019 val = free_ablock;
1020 free_ablock = free_ablock->x.next_free;
1021
1022 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1023 if (val && type != MEM_TYPE_NON_LISP)
1024 mem_insert (val, (char *) val + nbytes, type);
1025 #endif
1026
1027 UNBLOCK_INPUT;
1028 if (!val && nbytes)
1029 memory_full ();
1030
1031 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1032 return val;
1033 }
1034
1035 static void
1036 lisp_align_free (block)
1037 POINTER_TYPE *block;
1038 {
1039 struct ablock *ablock = block;
1040 struct ablocks *abase = ABLOCK_ABASE (ablock);
1041
1042 BLOCK_INPUT;
1043 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1044 mem_delete (mem_find (block));
1045 #endif
1046 /* Put on free list. */
1047 ablock->x.next_free = free_ablock;
1048 free_ablock = ablock;
1049 /* Update busy count. */
1050 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1051
1052 if (2 > (long) ABLOCKS_BUSY (abase))
1053 { /* All the blocks are free. */
1054 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1055 struct ablock **tem = &free_ablock;
1056 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1057
1058 while (*tem)
1059 {
1060 if (*tem >= (struct ablock *) abase && *tem < atop)
1061 {
1062 i++;
1063 *tem = (*tem)->x.next_free;
1064 }
1065 else
1066 tem = &(*tem)->x.next_free;
1067 }
1068 eassert ((aligned & 1) == aligned);
1069 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1070 free (ABLOCKS_BASE (abase));
1071 }
1072 UNBLOCK_INPUT;
1073 }
1074
1075 /* Return a new buffer structure allocated from the heap with
1076 a call to lisp_malloc. */
1077
1078 struct buffer *
1079 allocate_buffer ()
1080 {
1081 struct buffer *b
1082 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1083 MEM_TYPE_BUFFER);
1084 return b;
1085 }
1086
1087 \f
1088 /* Arranging to disable input signals while we're in malloc.
1089
1090 This only works with GNU malloc. To help out systems which can't
1091 use GNU malloc, all the calls to malloc, realloc, and free
1092 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1093 pairs; unfortunately, we have no idea what C library functions
1094 might call malloc, so we can't really protect them unless you're
1095 using GNU malloc. Fortunately, most of the major operating systems
1096 can use GNU malloc. */
1097
1098 #ifndef SYSTEM_MALLOC
1099 #ifndef DOUG_LEA_MALLOC
1100 extern void * (*__malloc_hook) P_ ((size_t));
1101 extern void * (*__realloc_hook) P_ ((void *, size_t));
1102 extern void (*__free_hook) P_ ((void *));
1103 /* Else declared in malloc.h, perhaps with an extra arg. */
1104 #endif /* DOUG_LEA_MALLOC */
1105 static void * (*old_malloc_hook) ();
1106 static void * (*old_realloc_hook) ();
1107 static void (*old_free_hook) ();
1108
1109 /* This function is used as the hook for free to call. */
1110
1111 static void
1112 emacs_blocked_free (ptr)
1113 void *ptr;
1114 {
1115 BLOCK_INPUT_ALLOC;
1116
1117 #ifdef GC_MALLOC_CHECK
1118 if (ptr)
1119 {
1120 struct mem_node *m;
1121
1122 m = mem_find (ptr);
1123 if (m == MEM_NIL || m->start != ptr)
1124 {
1125 fprintf (stderr,
1126 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1127 abort ();
1128 }
1129 else
1130 {
1131 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1132 mem_delete (m);
1133 }
1134 }
1135 #endif /* GC_MALLOC_CHECK */
1136
1137 __free_hook = old_free_hook;
1138 free (ptr);
1139
1140 /* If we released our reserve (due to running out of memory),
1141 and we have a fair amount free once again,
1142 try to set aside another reserve in case we run out once more. */
1143 if (spare_memory == 0
1144 /* Verify there is enough space that even with the malloc
1145 hysteresis this call won't run out again.
1146 The code here is correct as long as SPARE_MEMORY
1147 is substantially larger than the block size malloc uses. */
1148 && (bytes_used_when_full
1149 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1150 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1151
1152 __free_hook = emacs_blocked_free;
1153 UNBLOCK_INPUT_ALLOC;
1154 }
1155
1156
1157 /* If we released our reserve (due to running out of memory),
1158 and we have a fair amount free once again,
1159 try to set aside another reserve in case we run out once more.
1160
1161 This is called when a relocatable block is freed in ralloc.c. */
1162
1163 void
1164 refill_memory_reserve ()
1165 {
1166 if (spare_memory == 0)
1167 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1168 }
1169
1170
1171 /* This function is the malloc hook that Emacs uses. */
1172
1173 static void *
1174 emacs_blocked_malloc (size)
1175 size_t size;
1176 {
1177 void *value;
1178
1179 BLOCK_INPUT_ALLOC;
1180 __malloc_hook = old_malloc_hook;
1181 #ifdef DOUG_LEA_MALLOC
1182 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1183 #else
1184 __malloc_extra_blocks = malloc_hysteresis;
1185 #endif
1186
1187 value = (void *) malloc (size);
1188
1189 #ifdef GC_MALLOC_CHECK
1190 {
1191 struct mem_node *m = mem_find (value);
1192 if (m != MEM_NIL)
1193 {
1194 fprintf (stderr, "Malloc returned %p which is already in use\n",
1195 value);
1196 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1197 m->start, m->end, (char *) m->end - (char *) m->start,
1198 m->type);
1199 abort ();
1200 }
1201
1202 if (!dont_register_blocks)
1203 {
1204 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1205 allocated_mem_type = MEM_TYPE_NON_LISP;
1206 }
1207 }
1208 #endif /* GC_MALLOC_CHECK */
1209
1210 __malloc_hook = emacs_blocked_malloc;
1211 UNBLOCK_INPUT_ALLOC;
1212
1213 /* fprintf (stderr, "%p malloc\n", value); */
1214 return value;
1215 }
1216
1217
1218 /* This function is the realloc hook that Emacs uses. */
1219
1220 static void *
1221 emacs_blocked_realloc (ptr, size)
1222 void *ptr;
1223 size_t size;
1224 {
1225 void *value;
1226
1227 BLOCK_INPUT_ALLOC;
1228 __realloc_hook = old_realloc_hook;
1229
1230 #ifdef GC_MALLOC_CHECK
1231 if (ptr)
1232 {
1233 struct mem_node *m = mem_find (ptr);
1234 if (m == MEM_NIL || m->start != ptr)
1235 {
1236 fprintf (stderr,
1237 "Realloc of %p which wasn't allocated with malloc\n",
1238 ptr);
1239 abort ();
1240 }
1241
1242 mem_delete (m);
1243 }
1244
1245 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1246
1247 /* Prevent malloc from registering blocks. */
1248 dont_register_blocks = 1;
1249 #endif /* GC_MALLOC_CHECK */
1250
1251 value = (void *) realloc (ptr, size);
1252
1253 #ifdef GC_MALLOC_CHECK
1254 dont_register_blocks = 0;
1255
1256 {
1257 struct mem_node *m = mem_find (value);
1258 if (m != MEM_NIL)
1259 {
1260 fprintf (stderr, "Realloc returns memory that is already in use\n");
1261 abort ();
1262 }
1263
1264 /* Can't handle zero size regions in the red-black tree. */
1265 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1266 }
1267
1268 /* fprintf (stderr, "%p <- realloc\n", value); */
1269 #endif /* GC_MALLOC_CHECK */
1270
1271 __realloc_hook = emacs_blocked_realloc;
1272 UNBLOCK_INPUT_ALLOC;
1273
1274 return value;
1275 }
1276
1277
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1280 normal malloc. Some thread implementations need this as they call
1281 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1282 calls malloc because it is the first call, and we have an endless loop. */
1283
1284 void
1285 reset_malloc_hooks ()
1286 {
1287 __free_hook = 0;
1288 __malloc_hook = 0;
1289 __realloc_hook = 0;
1290 }
1291 #endif /* HAVE_GTK_AND_PTHREAD */
1292
1293
1294 /* Called from main to set up malloc to use our hooks. */
1295
1296 void
1297 uninterrupt_malloc ()
1298 {
1299 #ifdef HAVE_GTK_AND_PTHREAD
1300 pthread_mutexattr_t attr;
1301
1302 /* GLIBC has a faster way to do this, but lets keep it portable.
1303 This is according to the Single UNIX Specification. */
1304 pthread_mutexattr_init (&attr);
1305 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1306 pthread_mutex_init (&alloc_mutex, &attr);
1307 #endif /* HAVE_GTK_AND_PTHREAD */
1308
1309 if (__free_hook != emacs_blocked_free)
1310 old_free_hook = __free_hook;
1311 __free_hook = emacs_blocked_free;
1312
1313 if (__malloc_hook != emacs_blocked_malloc)
1314 old_malloc_hook = __malloc_hook;
1315 __malloc_hook = emacs_blocked_malloc;
1316
1317 if (__realloc_hook != emacs_blocked_realloc)
1318 old_realloc_hook = __realloc_hook;
1319 __realloc_hook = emacs_blocked_realloc;
1320 }
1321
1322 #endif /* not SYSTEM_MALLOC */
1323
1324
1325 \f
1326 /***********************************************************************
1327 Interval Allocation
1328 ***********************************************************************/
1329
1330 /* Number of intervals allocated in an interval_block structure.
1331 The 1020 is 1024 minus malloc overhead. */
1332
1333 #define INTERVAL_BLOCK_SIZE \
1334 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1335
1336 /* Intervals are allocated in chunks in form of an interval_block
1337 structure. */
1338
1339 struct interval_block
1340 {
1341 /* Place `intervals' first, to preserve alignment. */
1342 struct interval intervals[INTERVAL_BLOCK_SIZE];
1343 struct interval_block *next;
1344 };
1345
1346 /* Current interval block. Its `next' pointer points to older
1347 blocks. */
1348
1349 struct interval_block *interval_block;
1350
1351 /* Index in interval_block above of the next unused interval
1352 structure. */
1353
1354 static int interval_block_index;
1355
1356 /* Number of free and live intervals. */
1357
1358 static int total_free_intervals, total_intervals;
1359
1360 /* List of free intervals. */
1361
1362 INTERVAL interval_free_list;
1363
1364 /* Total number of interval blocks now in use. */
1365
1366 int n_interval_blocks;
1367
1368
1369 /* Initialize interval allocation. */
1370
1371 static void
1372 init_intervals ()
1373 {
1374 interval_block = NULL;
1375 interval_block_index = INTERVAL_BLOCK_SIZE;
1376 interval_free_list = 0;
1377 n_interval_blocks = 0;
1378 }
1379
1380
1381 /* Return a new interval. */
1382
1383 INTERVAL
1384 make_interval ()
1385 {
1386 INTERVAL val;
1387
1388 if (interval_free_list)
1389 {
1390 val = interval_free_list;
1391 interval_free_list = INTERVAL_PARENT (interval_free_list);
1392 }
1393 else
1394 {
1395 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1396 {
1397 register struct interval_block *newi;
1398
1399 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1400 MEM_TYPE_NON_LISP);
1401
1402 newi->next = interval_block;
1403 interval_block = newi;
1404 interval_block_index = 0;
1405 n_interval_blocks++;
1406 }
1407 val = &interval_block->intervals[interval_block_index++];
1408 }
1409 consing_since_gc += sizeof (struct interval);
1410 intervals_consed++;
1411 RESET_INTERVAL (val);
1412 val->gcmarkbit = 0;
1413 return val;
1414 }
1415
1416
1417 /* Mark Lisp objects in interval I. */
1418
1419 static void
1420 mark_interval (i, dummy)
1421 register INTERVAL i;
1422 Lisp_Object dummy;
1423 {
1424 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1425 i->gcmarkbit = 1;
1426 mark_object (i->plist);
1427 }
1428
1429
1430 /* Mark the interval tree rooted in TREE. Don't call this directly;
1431 use the macro MARK_INTERVAL_TREE instead. */
1432
1433 static void
1434 mark_interval_tree (tree)
1435 register INTERVAL tree;
1436 {
1437 /* No need to test if this tree has been marked already; this
1438 function is always called through the MARK_INTERVAL_TREE macro,
1439 which takes care of that. */
1440
1441 traverse_intervals_noorder (tree, mark_interval, Qnil);
1442 }
1443
1444
1445 /* Mark the interval tree rooted in I. */
1446
1447 #define MARK_INTERVAL_TREE(i) \
1448 do { \
1449 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1450 mark_interval_tree (i); \
1451 } while (0)
1452
1453
1454 #define UNMARK_BALANCE_INTERVALS(i) \
1455 do { \
1456 if (! NULL_INTERVAL_P (i)) \
1457 (i) = balance_intervals (i); \
1458 } while (0)
1459
1460 \f
1461 /* Number support. If NO_UNION_TYPE isn't in effect, we
1462 can't create number objects in macros. */
1463 #ifndef make_number
1464 Lisp_Object
1465 make_number (n)
1466 int n;
1467 {
1468 Lisp_Object obj;
1469 obj.s.val = n;
1470 obj.s.type = Lisp_Int;
1471 return obj;
1472 }
1473 #endif
1474 \f
1475 /***********************************************************************
1476 String Allocation
1477 ***********************************************************************/
1478
1479 /* Lisp_Strings are allocated in string_block structures. When a new
1480 string_block is allocated, all the Lisp_Strings it contains are
1481 added to a free-list string_free_list. When a new Lisp_String is
1482 needed, it is taken from that list. During the sweep phase of GC,
1483 string_blocks that are entirely free are freed, except two which
1484 we keep.
1485
1486 String data is allocated from sblock structures. Strings larger
1487 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1488 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1489
1490 Sblocks consist internally of sdata structures, one for each
1491 Lisp_String. The sdata structure points to the Lisp_String it
1492 belongs to. The Lisp_String points back to the `u.data' member of
1493 its sdata structure.
1494
1495 When a Lisp_String is freed during GC, it is put back on
1496 string_free_list, and its `data' member and its sdata's `string'
1497 pointer is set to null. The size of the string is recorded in the
1498 `u.nbytes' member of the sdata. So, sdata structures that are no
1499 longer used, can be easily recognized, and it's easy to compact the
1500 sblocks of small strings which we do in compact_small_strings. */
1501
1502 /* Size in bytes of an sblock structure used for small strings. This
1503 is 8192 minus malloc overhead. */
1504
1505 #define SBLOCK_SIZE 8188
1506
1507 /* Strings larger than this are considered large strings. String data
1508 for large strings is allocated from individual sblocks. */
1509
1510 #define LARGE_STRING_BYTES 1024
1511
1512 /* Structure describing string memory sub-allocated from an sblock.
1513 This is where the contents of Lisp strings are stored. */
1514
1515 struct sdata
1516 {
1517 /* Back-pointer to the string this sdata belongs to. If null, this
1518 structure is free, and the NBYTES member of the union below
1519 contains the string's byte size (the same value that STRING_BYTES
1520 would return if STRING were non-null). If non-null, STRING_BYTES
1521 (STRING) is the size of the data, and DATA contains the string's
1522 contents. */
1523 struct Lisp_String *string;
1524
1525 #ifdef GC_CHECK_STRING_BYTES
1526
1527 EMACS_INT nbytes;
1528 unsigned char data[1];
1529
1530 #define SDATA_NBYTES(S) (S)->nbytes
1531 #define SDATA_DATA(S) (S)->data
1532
1533 #else /* not GC_CHECK_STRING_BYTES */
1534
1535 union
1536 {
1537 /* When STRING in non-null. */
1538 unsigned char data[1];
1539
1540 /* When STRING is null. */
1541 EMACS_INT nbytes;
1542 } u;
1543
1544
1545 #define SDATA_NBYTES(S) (S)->u.nbytes
1546 #define SDATA_DATA(S) (S)->u.data
1547
1548 #endif /* not GC_CHECK_STRING_BYTES */
1549 };
1550
1551
1552 /* Structure describing a block of memory which is sub-allocated to
1553 obtain string data memory for strings. Blocks for small strings
1554 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1555 as large as needed. */
1556
1557 struct sblock
1558 {
1559 /* Next in list. */
1560 struct sblock *next;
1561
1562 /* Pointer to the next free sdata block. This points past the end
1563 of the sblock if there isn't any space left in this block. */
1564 struct sdata *next_free;
1565
1566 /* Start of data. */
1567 struct sdata first_data;
1568 };
1569
1570 /* Number of Lisp strings in a string_block structure. The 1020 is
1571 1024 minus malloc overhead. */
1572
1573 #define STRING_BLOCK_SIZE \
1574 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1575
1576 /* Structure describing a block from which Lisp_String structures
1577 are allocated. */
1578
1579 struct string_block
1580 {
1581 /* Place `strings' first, to preserve alignment. */
1582 struct Lisp_String strings[STRING_BLOCK_SIZE];
1583 struct string_block *next;
1584 };
1585
1586 /* Head and tail of the list of sblock structures holding Lisp string
1587 data. We always allocate from current_sblock. The NEXT pointers
1588 in the sblock structures go from oldest_sblock to current_sblock. */
1589
1590 static struct sblock *oldest_sblock, *current_sblock;
1591
1592 /* List of sblocks for large strings. */
1593
1594 static struct sblock *large_sblocks;
1595
1596 /* List of string_block structures, and how many there are. */
1597
1598 static struct string_block *string_blocks;
1599 static int n_string_blocks;
1600
1601 /* Free-list of Lisp_Strings. */
1602
1603 static struct Lisp_String *string_free_list;
1604
1605 /* Number of live and free Lisp_Strings. */
1606
1607 static int total_strings, total_free_strings;
1608
1609 /* Number of bytes used by live strings. */
1610
1611 static int total_string_size;
1612
1613 /* Given a pointer to a Lisp_String S which is on the free-list
1614 string_free_list, return a pointer to its successor in the
1615 free-list. */
1616
1617 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1618
1619 /* Return a pointer to the sdata structure belonging to Lisp string S.
1620 S must be live, i.e. S->data must not be null. S->data is actually
1621 a pointer to the `u.data' member of its sdata structure; the
1622 structure starts at a constant offset in front of that. */
1623
1624 #ifdef GC_CHECK_STRING_BYTES
1625
1626 #define SDATA_OF_STRING(S) \
1627 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1628 - sizeof (EMACS_INT)))
1629
1630 #else /* not GC_CHECK_STRING_BYTES */
1631
1632 #define SDATA_OF_STRING(S) \
1633 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1634
1635 #endif /* not GC_CHECK_STRING_BYTES */
1636
1637
1638 #ifdef GC_CHECK_STRING_OVERRUN
1639
1640 /* We check for overrun in string data blocks by appending a small
1641 "cookie" after each allocated string data block, and check for the
1642 presense of this cookie during GC. */
1643
1644 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1645 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1646 { 0xde, 0xad, 0xbe, 0xef };
1647
1648 #else
1649 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1650 #endif
1651
1652 /* Value is the size of an sdata structure large enough to hold NBYTES
1653 bytes of string data. The value returned includes a terminating
1654 NUL byte, the size of the sdata structure, and padding. */
1655
1656 #ifdef GC_CHECK_STRING_BYTES
1657
1658 #define SDATA_SIZE(NBYTES) \
1659 ((sizeof (struct Lisp_String *) \
1660 + (NBYTES) + 1 \
1661 + sizeof (EMACS_INT) \
1662 + sizeof (EMACS_INT) - 1) \
1663 & ~(sizeof (EMACS_INT) - 1))
1664
1665 #else /* not GC_CHECK_STRING_BYTES */
1666
1667 #define SDATA_SIZE(NBYTES) \
1668 ((sizeof (struct Lisp_String *) \
1669 + (NBYTES) + 1 \
1670 + sizeof (EMACS_INT) - 1) \
1671 & ~(sizeof (EMACS_INT) - 1))
1672
1673 #endif /* not GC_CHECK_STRING_BYTES */
1674
1675 /* Extra bytes to allocate for each string. */
1676
1677 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1678
1679 /* Initialize string allocation. Called from init_alloc_once. */
1680
1681 void
1682 init_strings ()
1683 {
1684 total_strings = total_free_strings = total_string_size = 0;
1685 oldest_sblock = current_sblock = large_sblocks = NULL;
1686 string_blocks = NULL;
1687 n_string_blocks = 0;
1688 string_free_list = NULL;
1689 }
1690
1691
1692 #ifdef GC_CHECK_STRING_BYTES
1693
1694 static int check_string_bytes_count;
1695
1696 void check_string_bytes P_ ((int));
1697 void check_sblock P_ ((struct sblock *));
1698
1699 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1700
1701
1702 /* Like GC_STRING_BYTES, but with debugging check. */
1703
1704 int
1705 string_bytes (s)
1706 struct Lisp_String *s;
1707 {
1708 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1709 if (!PURE_POINTER_P (s)
1710 && s->data
1711 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1712 abort ();
1713 return nbytes;
1714 }
1715
1716 /* Check validity of Lisp strings' string_bytes member in B. */
1717
1718 void
1719 check_sblock (b)
1720 struct sblock *b;
1721 {
1722 struct sdata *from, *end, *from_end;
1723
1724 end = b->next_free;
1725
1726 for (from = &b->first_data; from < end; from = from_end)
1727 {
1728 /* Compute the next FROM here because copying below may
1729 overwrite data we need to compute it. */
1730 int nbytes;
1731
1732 /* Check that the string size recorded in the string is the
1733 same as the one recorded in the sdata structure. */
1734 if (from->string)
1735 CHECK_STRING_BYTES (from->string);
1736
1737 if (from->string)
1738 nbytes = GC_STRING_BYTES (from->string);
1739 else
1740 nbytes = SDATA_NBYTES (from);
1741
1742 nbytes = SDATA_SIZE (nbytes);
1743 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1744 }
1745 }
1746
1747
1748 /* Check validity of Lisp strings' string_bytes member. ALL_P
1749 non-zero means check all strings, otherwise check only most
1750 recently allocated strings. Used for hunting a bug. */
1751
1752 void
1753 check_string_bytes (all_p)
1754 int all_p;
1755 {
1756 if (all_p)
1757 {
1758 struct sblock *b;
1759
1760 for (b = large_sblocks; b; b = b->next)
1761 {
1762 struct Lisp_String *s = b->first_data.string;
1763 if (s)
1764 CHECK_STRING_BYTES (s);
1765 }
1766
1767 for (b = oldest_sblock; b; b = b->next)
1768 check_sblock (b);
1769 }
1770 else
1771 check_sblock (current_sblock);
1772 }
1773
1774 #endif /* GC_CHECK_STRING_BYTES */
1775
1776 #ifdef GC_CHECK_STRING_FREE_LIST
1777
1778 /* Walk through the string free list looking for bogus next pointers.
1779 This may catch buffer overrun from a previous string. */
1780
1781 static void
1782 check_string_free_list ()
1783 {
1784 struct Lisp_String *s;
1785
1786 /* Pop a Lisp_String off the free-list. */
1787 s = string_free_list;
1788 while (s != NULL)
1789 {
1790 if ((unsigned)s < 1024)
1791 abort();
1792 s = NEXT_FREE_LISP_STRING (s);
1793 }
1794 }
1795 #else
1796 #define check_string_free_list()
1797 #endif
1798
1799 /* Return a new Lisp_String. */
1800
1801 static struct Lisp_String *
1802 allocate_string ()
1803 {
1804 struct Lisp_String *s;
1805
1806 /* If the free-list is empty, allocate a new string_block, and
1807 add all the Lisp_Strings in it to the free-list. */
1808 if (string_free_list == NULL)
1809 {
1810 struct string_block *b;
1811 int i;
1812
1813 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1814 bzero (b, sizeof *b);
1815 b->next = string_blocks;
1816 string_blocks = b;
1817 ++n_string_blocks;
1818
1819 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1820 {
1821 s = b->strings + i;
1822 NEXT_FREE_LISP_STRING (s) = string_free_list;
1823 string_free_list = s;
1824 }
1825
1826 total_free_strings += STRING_BLOCK_SIZE;
1827 }
1828
1829 check_string_free_list ();
1830
1831 /* Pop a Lisp_String off the free-list. */
1832 s = string_free_list;
1833 string_free_list = NEXT_FREE_LISP_STRING (s);
1834
1835 /* Probably not strictly necessary, but play it safe. */
1836 bzero (s, sizeof *s);
1837
1838 --total_free_strings;
1839 ++total_strings;
1840 ++strings_consed;
1841 consing_since_gc += sizeof *s;
1842
1843 #ifdef GC_CHECK_STRING_BYTES
1844 if (!noninteractive
1845 #ifdef MAC_OS8
1846 && current_sblock
1847 #endif
1848 )
1849 {
1850 if (++check_string_bytes_count == 200)
1851 {
1852 check_string_bytes_count = 0;
1853 check_string_bytes (1);
1854 }
1855 else
1856 check_string_bytes (0);
1857 }
1858 #endif /* GC_CHECK_STRING_BYTES */
1859
1860 return s;
1861 }
1862
1863
1864 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1865 plus a NUL byte at the end. Allocate an sdata structure for S, and
1866 set S->data to its `u.data' member. Store a NUL byte at the end of
1867 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1868 S->data if it was initially non-null. */
1869
1870 void
1871 allocate_string_data (s, nchars, nbytes)
1872 struct Lisp_String *s;
1873 int nchars, nbytes;
1874 {
1875 struct sdata *data, *old_data;
1876 struct sblock *b;
1877 int needed, old_nbytes;
1878
1879 /* Determine the number of bytes needed to store NBYTES bytes
1880 of string data. */
1881 needed = SDATA_SIZE (nbytes);
1882
1883 if (nbytes > LARGE_STRING_BYTES)
1884 {
1885 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1886
1887 #ifdef DOUG_LEA_MALLOC
1888 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1889 because mapped region contents are not preserved in
1890 a dumped Emacs.
1891
1892 In case you think of allowing it in a dumped Emacs at the
1893 cost of not being able to re-dump, there's another reason:
1894 mmap'ed data typically have an address towards the top of the
1895 address space, which won't fit into an EMACS_INT (at least on
1896 32-bit systems with the current tagging scheme). --fx */
1897 mallopt (M_MMAP_MAX, 0);
1898 #endif
1899
1900 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1901
1902 #ifdef DOUG_LEA_MALLOC
1903 /* Back to a reasonable maximum of mmap'ed areas. */
1904 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1905 #endif
1906
1907 b->next_free = &b->first_data;
1908 b->first_data.string = NULL;
1909 b->next = large_sblocks;
1910 large_sblocks = b;
1911 }
1912 else if (current_sblock == NULL
1913 || (((char *) current_sblock + SBLOCK_SIZE
1914 - (char *) current_sblock->next_free)
1915 < (needed + GC_STRING_EXTRA)))
1916 {
1917 /* Not enough room in the current sblock. */
1918 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1919 b->next_free = &b->first_data;
1920 b->first_data.string = NULL;
1921 b->next = NULL;
1922
1923 if (current_sblock)
1924 current_sblock->next = b;
1925 else
1926 oldest_sblock = b;
1927 current_sblock = b;
1928 }
1929 else
1930 b = current_sblock;
1931
1932 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1933 old_nbytes = GC_STRING_BYTES (s);
1934
1935 data = b->next_free;
1936 data->string = s;
1937 s->data = SDATA_DATA (data);
1938 #ifdef GC_CHECK_STRING_BYTES
1939 SDATA_NBYTES (data) = nbytes;
1940 #endif
1941 s->size = nchars;
1942 s->size_byte = nbytes;
1943 s->data[nbytes] = '\0';
1944 #ifdef GC_CHECK_STRING_OVERRUN
1945 bcopy (string_overrun_cookie, (char *) data + needed,
1946 GC_STRING_OVERRUN_COOKIE_SIZE);
1947 #endif
1948 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1949
1950 /* If S had already data assigned, mark that as free by setting its
1951 string back-pointer to null, and recording the size of the data
1952 in it. */
1953 if (old_data)
1954 {
1955 SDATA_NBYTES (old_data) = old_nbytes;
1956 old_data->string = NULL;
1957 }
1958
1959 consing_since_gc += needed;
1960 }
1961
1962
1963 /* Sweep and compact strings. */
1964
1965 static void
1966 sweep_strings ()
1967 {
1968 struct string_block *b, *next;
1969 struct string_block *live_blocks = NULL;
1970
1971 string_free_list = NULL;
1972 total_strings = total_free_strings = 0;
1973 total_string_size = 0;
1974
1975 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1976 for (b = string_blocks; b; b = next)
1977 {
1978 int i, nfree = 0;
1979 struct Lisp_String *free_list_before = string_free_list;
1980
1981 next = b->next;
1982
1983 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1984 {
1985 struct Lisp_String *s = b->strings + i;
1986
1987 if (s->data)
1988 {
1989 /* String was not on free-list before. */
1990 if (STRING_MARKED_P (s))
1991 {
1992 /* String is live; unmark it and its intervals. */
1993 UNMARK_STRING (s);
1994
1995 if (!NULL_INTERVAL_P (s->intervals))
1996 UNMARK_BALANCE_INTERVALS (s->intervals);
1997
1998 ++total_strings;
1999 total_string_size += STRING_BYTES (s);
2000 }
2001 else
2002 {
2003 /* String is dead. Put it on the free-list. */
2004 struct sdata *data = SDATA_OF_STRING (s);
2005
2006 /* Save the size of S in its sdata so that we know
2007 how large that is. Reset the sdata's string
2008 back-pointer so that we know it's free. */
2009 #ifdef GC_CHECK_STRING_BYTES
2010 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2011 abort ();
2012 #else
2013 data->u.nbytes = GC_STRING_BYTES (s);
2014 #endif
2015 data->string = NULL;
2016
2017 /* Reset the strings's `data' member so that we
2018 know it's free. */
2019 s->data = NULL;
2020
2021 /* Put the string on the free-list. */
2022 NEXT_FREE_LISP_STRING (s) = string_free_list;
2023 string_free_list = s;
2024 ++nfree;
2025 }
2026 }
2027 else
2028 {
2029 /* S was on the free-list before. Put it there again. */
2030 NEXT_FREE_LISP_STRING (s) = string_free_list;
2031 string_free_list = s;
2032 ++nfree;
2033 }
2034 }
2035
2036 /* Free blocks that contain free Lisp_Strings only, except
2037 the first two of them. */
2038 if (nfree == STRING_BLOCK_SIZE
2039 && total_free_strings > STRING_BLOCK_SIZE)
2040 {
2041 lisp_free (b);
2042 --n_string_blocks;
2043 string_free_list = free_list_before;
2044 }
2045 else
2046 {
2047 total_free_strings += nfree;
2048 b->next = live_blocks;
2049 live_blocks = b;
2050 }
2051 }
2052
2053 check_string_free_list ();
2054
2055 string_blocks = live_blocks;
2056 free_large_strings ();
2057 compact_small_strings ();
2058
2059 check_string_free_list ();
2060 }
2061
2062
2063 /* Free dead large strings. */
2064
2065 static void
2066 free_large_strings ()
2067 {
2068 struct sblock *b, *next;
2069 struct sblock *live_blocks = NULL;
2070
2071 for (b = large_sblocks; b; b = next)
2072 {
2073 next = b->next;
2074
2075 if (b->first_data.string == NULL)
2076 lisp_free (b);
2077 else
2078 {
2079 b->next = live_blocks;
2080 live_blocks = b;
2081 }
2082 }
2083
2084 large_sblocks = live_blocks;
2085 }
2086
2087
2088 /* Compact data of small strings. Free sblocks that don't contain
2089 data of live strings after compaction. */
2090
2091 static void
2092 compact_small_strings ()
2093 {
2094 struct sblock *b, *tb, *next;
2095 struct sdata *from, *to, *end, *tb_end;
2096 struct sdata *to_end, *from_end;
2097
2098 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2099 to, and TB_END is the end of TB. */
2100 tb = oldest_sblock;
2101 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2102 to = &tb->first_data;
2103
2104 /* Step through the blocks from the oldest to the youngest. We
2105 expect that old blocks will stabilize over time, so that less
2106 copying will happen this way. */
2107 for (b = oldest_sblock; b; b = b->next)
2108 {
2109 end = b->next_free;
2110 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2111
2112 for (from = &b->first_data; from < end; from = from_end)
2113 {
2114 /* Compute the next FROM here because copying below may
2115 overwrite data we need to compute it. */
2116 int nbytes;
2117
2118 #ifdef GC_CHECK_STRING_BYTES
2119 /* Check that the string size recorded in the string is the
2120 same as the one recorded in the sdata structure. */
2121 if (from->string
2122 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2123 abort ();
2124 #endif /* GC_CHECK_STRING_BYTES */
2125
2126 if (from->string)
2127 nbytes = GC_STRING_BYTES (from->string);
2128 else
2129 nbytes = SDATA_NBYTES (from);
2130
2131 if (nbytes > LARGE_STRING_BYTES)
2132 abort ();
2133
2134 nbytes = SDATA_SIZE (nbytes);
2135 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2136
2137 #ifdef GC_CHECK_STRING_OVERRUN
2138 if (bcmp (string_overrun_cookie,
2139 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2140 GC_STRING_OVERRUN_COOKIE_SIZE))
2141 abort ();
2142 #endif
2143
2144 /* FROM->string non-null means it's alive. Copy its data. */
2145 if (from->string)
2146 {
2147 /* If TB is full, proceed with the next sblock. */
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2149 if (to_end > tb_end)
2150 {
2151 tb->next_free = to;
2152 tb = tb->next;
2153 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2154 to = &tb->first_data;
2155 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2156 }
2157
2158 /* Copy, and update the string's `data' pointer. */
2159 if (from != to)
2160 {
2161 xassert (tb != b || to <= from);
2162 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2163 to->string->data = SDATA_DATA (to);
2164 }
2165
2166 /* Advance past the sdata we copied to. */
2167 to = to_end;
2168 }
2169 }
2170 }
2171
2172 /* The rest of the sblocks following TB don't contain live data, so
2173 we can free them. */
2174 for (b = tb->next; b; b = next)
2175 {
2176 next = b->next;
2177 lisp_free (b);
2178 }
2179
2180 tb->next_free = to;
2181 tb->next = NULL;
2182 current_sblock = tb;
2183 }
2184
2185
2186 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2187 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2188 LENGTH must be an integer.
2189 INIT must be an integer that represents a character. */)
2190 (length, init)
2191 Lisp_Object length, init;
2192 {
2193 register Lisp_Object val;
2194 register unsigned char *p, *end;
2195 int c, nbytes;
2196
2197 CHECK_NATNUM (length);
2198 CHECK_NUMBER (init);
2199
2200 c = XINT (init);
2201 if (SINGLE_BYTE_CHAR_P (c))
2202 {
2203 nbytes = XINT (length);
2204 val = make_uninit_string (nbytes);
2205 p = SDATA (val);
2206 end = p + SCHARS (val);
2207 while (p != end)
2208 *p++ = c;
2209 }
2210 else
2211 {
2212 unsigned char str[MAX_MULTIBYTE_LENGTH];
2213 int len = CHAR_STRING (c, str);
2214
2215 nbytes = len * XINT (length);
2216 val = make_uninit_multibyte_string (XINT (length), nbytes);
2217 p = SDATA (val);
2218 end = p + nbytes;
2219 while (p != end)
2220 {
2221 bcopy (str, p, len);
2222 p += len;
2223 }
2224 }
2225
2226 *p = 0;
2227 return val;
2228 }
2229
2230
2231 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2232 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2233 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2234 (length, init)
2235 Lisp_Object length, init;
2236 {
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 int real_init, i;
2240 int length_in_chars, length_in_elts, bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253 p = XBOOL_VECTOR (val);
2254
2255 /* Get rid of any bits that would cause confusion. */
2256 p->vector_size = 0;
2257 XSETBOOL_VECTOR (val, p);
2258 p->size = XFASTINT (length);
2259
2260 real_init = (NILP (init) ? 0 : -1);
2261 for (i = 0; i < length_in_chars ; i++)
2262 p->data[i] = real_init;
2263
2264 /* Clear the extraneous bits in the last byte. */
2265 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2266 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2267 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2268
2269 return val;
2270 }
2271
2272
2273 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2276
2277 Lisp_Object
2278 make_string (contents, nbytes)
2279 const char *contents;
2280 int nbytes;
2281 {
2282 register Lisp_Object val;
2283 int nchars, multibyte_nbytes;
2284
2285 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (contents, length)
2300 const char *contents;
2301 int length;
2302 {
2303 register Lisp_Object val;
2304 val = make_uninit_string (length);
2305 bcopy (contents, SDATA (val), length);
2306 STRING_SET_UNIBYTE (val);
2307 return val;
2308 }
2309
2310
2311 /* Make a multibyte string from NCHARS characters occupying NBYTES
2312 bytes at CONTENTS. */
2313
2314 Lisp_Object
2315 make_multibyte_string (contents, nchars, nbytes)
2316 const char *contents;
2317 int nchars, nbytes;
2318 {
2319 register Lisp_Object val;
2320 val = make_uninit_multibyte_string (nchars, nbytes);
2321 bcopy (contents, SDATA (val), nbytes);
2322 return val;
2323 }
2324
2325
2326 /* Make a string from NCHARS characters occupying NBYTES bytes at
2327 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2328
2329 Lisp_Object
2330 make_string_from_bytes (contents, nchars, nbytes)
2331 const char *contents;
2332 int nchars, nbytes;
2333 {
2334 register Lisp_Object val;
2335 val = make_uninit_multibyte_string (nchars, nbytes);
2336 bcopy (contents, SDATA (val), nbytes);
2337 if (SBYTES (val) == SCHARS (val))
2338 STRING_SET_UNIBYTE (val);
2339 return val;
2340 }
2341
2342
2343 /* Make a string from NCHARS characters occupying NBYTES bytes at
2344 CONTENTS. The argument MULTIBYTE controls whether to label the
2345 string as multibyte. If NCHARS is negative, it counts the number of
2346 characters by itself. */
2347
2348 Lisp_Object
2349 make_specified_string (contents, nchars, nbytes, multibyte)
2350 const char *contents;
2351 int nchars, nbytes;
2352 int multibyte;
2353 {
2354 register Lisp_Object val;
2355
2356 if (nchars < 0)
2357 {
2358 if (multibyte)
2359 nchars = multibyte_chars_in_text (contents, nbytes);
2360 else
2361 nchars = nbytes;
2362 }
2363 val = make_uninit_multibyte_string (nchars, nbytes);
2364 bcopy (contents, SDATA (val), nbytes);
2365 if (!multibyte)
2366 STRING_SET_UNIBYTE (val);
2367 return val;
2368 }
2369
2370
2371 /* Make a string from the data at STR, treating it as multibyte if the
2372 data warrants. */
2373
2374 Lisp_Object
2375 build_string (str)
2376 const char *str;
2377 {
2378 return make_string (str, strlen (str));
2379 }
2380
2381
2382 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2383 occupying LENGTH bytes. */
2384
2385 Lisp_Object
2386 make_uninit_string (length)
2387 int length;
2388 {
2389 Lisp_Object val;
2390 val = make_uninit_multibyte_string (length, length);
2391 STRING_SET_UNIBYTE (val);
2392 return val;
2393 }
2394
2395
2396 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2397 which occupy NBYTES bytes. */
2398
2399 Lisp_Object
2400 make_uninit_multibyte_string (nchars, nbytes)
2401 int nchars, nbytes;
2402 {
2403 Lisp_Object string;
2404 struct Lisp_String *s;
2405
2406 if (nchars < 0)
2407 abort ();
2408
2409 s = allocate_string ();
2410 allocate_string_data (s, nchars, nbytes);
2411 XSETSTRING (string, s);
2412 string_chars_consed += nbytes;
2413 return string;
2414 }
2415
2416
2417 \f
2418 /***********************************************************************
2419 Float Allocation
2420 ***********************************************************************/
2421
2422 /* We store float cells inside of float_blocks, allocating a new
2423 float_block with malloc whenever necessary. Float cells reclaimed
2424 by GC are put on a free list to be reallocated before allocating
2425 any new float cells from the latest float_block. */
2426
2427 #define FLOAT_BLOCK_SIZE \
2428 (((BLOCK_BYTES - sizeof (struct float_block *) \
2429 /* The compiler might add padding at the end. */ \
2430 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2431 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2432
2433 #define GETMARKBIT(block,n) \
2434 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2436 & 1)
2437
2438 #define SETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2441
2442 #define UNSETMARKBIT(block,n) \
2443 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2444 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2445
2446 #define FLOAT_BLOCK(fptr) \
2447 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2448
2449 #define FLOAT_INDEX(fptr) \
2450 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2451
2452 struct float_block
2453 {
2454 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2455 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2456 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2457 struct float_block *next;
2458 };
2459
2460 #define FLOAT_MARKED_P(fptr) \
2461 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462
2463 #define FLOAT_MARK(fptr) \
2464 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465
2466 #define FLOAT_UNMARK(fptr) \
2467 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2468
2469 /* Current float_block. */
2470
2471 struct float_block *float_block;
2472
2473 /* Index of first unused Lisp_Float in the current float_block. */
2474
2475 int float_block_index;
2476
2477 /* Total number of float blocks now in use. */
2478
2479 int n_float_blocks;
2480
2481 /* Free-list of Lisp_Floats. */
2482
2483 struct Lisp_Float *float_free_list;
2484
2485
2486 /* Initialize float allocation. */
2487
2488 void
2489 init_float ()
2490 {
2491 float_block = NULL;
2492 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2493 float_free_list = 0;
2494 n_float_blocks = 0;
2495 }
2496
2497
2498 /* Explicitly free a float cell by putting it on the free-list. */
2499
2500 void
2501 free_float (ptr)
2502 struct Lisp_Float *ptr;
2503 {
2504 *(struct Lisp_Float **)&ptr->data = float_free_list;
2505 float_free_list = ptr;
2506 }
2507
2508
2509 /* Return a new float object with value FLOAT_VALUE. */
2510
2511 Lisp_Object
2512 make_float (float_value)
2513 double float_value;
2514 {
2515 register Lisp_Object val;
2516
2517 if (float_free_list)
2518 {
2519 /* We use the data field for chaining the free list
2520 so that we won't use the same field that has the mark bit. */
2521 XSETFLOAT (val, float_free_list);
2522 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2523 }
2524 else
2525 {
2526 if (float_block_index == FLOAT_BLOCK_SIZE)
2527 {
2528 register struct float_block *new;
2529
2530 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2531 MEM_TYPE_FLOAT);
2532 new->next = float_block;
2533 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2534 float_block = new;
2535 float_block_index = 0;
2536 n_float_blocks++;
2537 }
2538 XSETFLOAT (val, &float_block->floats[float_block_index]);
2539 float_block_index++;
2540 }
2541
2542 XFLOAT_DATA (val) = float_value;
2543 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2544 consing_since_gc += sizeof (struct Lisp_Float);
2545 floats_consed++;
2546 return val;
2547 }
2548
2549
2550 \f
2551 /***********************************************************************
2552 Cons Allocation
2553 ***********************************************************************/
2554
2555 /* We store cons cells inside of cons_blocks, allocating a new
2556 cons_block with malloc whenever necessary. Cons cells reclaimed by
2557 GC are put on a free list to be reallocated before allocating
2558 any new cons cells from the latest cons_block. */
2559
2560 #define CONS_BLOCK_SIZE \
2561 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2563
2564 #define CONS_BLOCK(fptr) \
2565 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2566
2567 #define CONS_INDEX(fptr) \
2568 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2569
2570 struct cons_block
2571 {
2572 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2573 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2574 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2575 struct cons_block *next;
2576 };
2577
2578 #define CONS_MARKED_P(fptr) \
2579 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2580
2581 #define CONS_MARK(fptr) \
2582 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2583
2584 #define CONS_UNMARK(fptr) \
2585 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2586
2587 /* Current cons_block. */
2588
2589 struct cons_block *cons_block;
2590
2591 /* Index of first unused Lisp_Cons in the current block. */
2592
2593 int cons_block_index;
2594
2595 /* Free-list of Lisp_Cons structures. */
2596
2597 struct Lisp_Cons *cons_free_list;
2598
2599 /* Total number of cons blocks now in use. */
2600
2601 int n_cons_blocks;
2602
2603
2604 /* Initialize cons allocation. */
2605
2606 void
2607 init_cons ()
2608 {
2609 cons_block = NULL;
2610 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2611 cons_free_list = 0;
2612 n_cons_blocks = 0;
2613 }
2614
2615
2616 /* Explicitly free a cons cell by putting it on the free-list. */
2617
2618 void
2619 free_cons (ptr)
2620 struct Lisp_Cons *ptr;
2621 {
2622 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2623 #if GC_MARK_STACK
2624 ptr->car = Vdead;
2625 #endif
2626 cons_free_list = ptr;
2627 }
2628
2629 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2630 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2631 (car, cdr)
2632 Lisp_Object car, cdr;
2633 {
2634 register Lisp_Object val;
2635
2636 if (cons_free_list)
2637 {
2638 /* We use the cdr for chaining the free list
2639 so that we won't use the same field that has the mark bit. */
2640 XSETCONS (val, cons_free_list);
2641 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2642 }
2643 else
2644 {
2645 if (cons_block_index == CONS_BLOCK_SIZE)
2646 {
2647 register struct cons_block *new;
2648 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2649 MEM_TYPE_CONS);
2650 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2651 new->next = cons_block;
2652 cons_block = new;
2653 cons_block_index = 0;
2654 n_cons_blocks++;
2655 }
2656 XSETCONS (val, &cons_block->conses[cons_block_index]);
2657 cons_block_index++;
2658 }
2659
2660 XSETCAR (val, car);
2661 XSETCDR (val, cdr);
2662 eassert (!CONS_MARKED_P (XCONS (val)));
2663 consing_since_gc += sizeof (struct Lisp_Cons);
2664 cons_cells_consed++;
2665 return val;
2666 }
2667
2668 /* Get an error now if there's any junk in the cons free list. */
2669 void
2670 check_cons_list ()
2671 {
2672 #ifdef GC_CHECK_CONS_LIST
2673 struct Lisp_Cons *tail = cons_free_list;
2674
2675 while (tail)
2676 tail = *(struct Lisp_Cons **)&tail->cdr;
2677 #endif
2678 }
2679
2680 /* Make a list of 2, 3, 4 or 5 specified objects. */
2681
2682 Lisp_Object
2683 list2 (arg1, arg2)
2684 Lisp_Object arg1, arg2;
2685 {
2686 return Fcons (arg1, Fcons (arg2, Qnil));
2687 }
2688
2689
2690 Lisp_Object
2691 list3 (arg1, arg2, arg3)
2692 Lisp_Object arg1, arg2, arg3;
2693 {
2694 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2695 }
2696
2697
2698 Lisp_Object
2699 list4 (arg1, arg2, arg3, arg4)
2700 Lisp_Object arg1, arg2, arg3, arg4;
2701 {
2702 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2703 }
2704
2705
2706 Lisp_Object
2707 list5 (arg1, arg2, arg3, arg4, arg5)
2708 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2709 {
2710 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2711 Fcons (arg5, Qnil)))));
2712 }
2713
2714
2715 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2716 doc: /* Return a newly created list with specified arguments as elements.
2717 Any number of arguments, even zero arguments, are allowed.
2718 usage: (list &rest OBJECTS) */)
2719 (nargs, args)
2720 int nargs;
2721 register Lisp_Object *args;
2722 {
2723 register Lisp_Object val;
2724 val = Qnil;
2725
2726 while (nargs > 0)
2727 {
2728 nargs--;
2729 val = Fcons (args[nargs], val);
2730 }
2731 return val;
2732 }
2733
2734
2735 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2736 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2737 (length, init)
2738 register Lisp_Object length, init;
2739 {
2740 register Lisp_Object val;
2741 register int size;
2742
2743 CHECK_NATNUM (length);
2744 size = XFASTINT (length);
2745
2746 val = Qnil;
2747 while (size > 0)
2748 {
2749 val = Fcons (init, val);
2750 --size;
2751
2752 if (size > 0)
2753 {
2754 val = Fcons (init, val);
2755 --size;
2756
2757 if (size > 0)
2758 {
2759 val = Fcons (init, val);
2760 --size;
2761
2762 if (size > 0)
2763 {
2764 val = Fcons (init, val);
2765 --size;
2766
2767 if (size > 0)
2768 {
2769 val = Fcons (init, val);
2770 --size;
2771 }
2772 }
2773 }
2774 }
2775
2776 QUIT;
2777 }
2778
2779 return val;
2780 }
2781
2782
2783 \f
2784 /***********************************************************************
2785 Vector Allocation
2786 ***********************************************************************/
2787
2788 /* Singly-linked list of all vectors. */
2789
2790 struct Lisp_Vector *all_vectors;
2791
2792 /* Total number of vector-like objects now in use. */
2793
2794 int n_vectors;
2795
2796
2797 /* Value is a pointer to a newly allocated Lisp_Vector structure
2798 with room for LEN Lisp_Objects. */
2799
2800 static struct Lisp_Vector *
2801 allocate_vectorlike (len, type)
2802 EMACS_INT len;
2803 enum mem_type type;
2804 {
2805 struct Lisp_Vector *p;
2806 size_t nbytes;
2807
2808 #ifdef DOUG_LEA_MALLOC
2809 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2810 because mapped region contents are not preserved in
2811 a dumped Emacs. */
2812 BLOCK_INPUT;
2813 mallopt (M_MMAP_MAX, 0);
2814 UNBLOCK_INPUT;
2815 #endif
2816
2817 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2818 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2819
2820 #ifdef DOUG_LEA_MALLOC
2821 /* Back to a reasonable maximum of mmap'ed areas. */
2822 BLOCK_INPUT;
2823 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2824 UNBLOCK_INPUT;
2825 #endif
2826
2827 consing_since_gc += nbytes;
2828 vector_cells_consed += len;
2829
2830 p->next = all_vectors;
2831 all_vectors = p;
2832 ++n_vectors;
2833 return p;
2834 }
2835
2836
2837 /* Allocate a vector with NSLOTS slots. */
2838
2839 struct Lisp_Vector *
2840 allocate_vector (nslots)
2841 EMACS_INT nslots;
2842 {
2843 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2844 v->size = nslots;
2845 return v;
2846 }
2847
2848
2849 /* Allocate other vector-like structures. */
2850
2851 struct Lisp_Hash_Table *
2852 allocate_hash_table ()
2853 {
2854 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2855 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2856 EMACS_INT i;
2857
2858 v->size = len;
2859 for (i = 0; i < len; ++i)
2860 v->contents[i] = Qnil;
2861
2862 return (struct Lisp_Hash_Table *) v;
2863 }
2864
2865
2866 struct window *
2867 allocate_window ()
2868 {
2869 EMACS_INT len = VECSIZE (struct window);
2870 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2871 EMACS_INT i;
2872
2873 for (i = 0; i < len; ++i)
2874 v->contents[i] = Qnil;
2875 v->size = len;
2876
2877 return (struct window *) v;
2878 }
2879
2880
2881 struct frame *
2882 allocate_frame ()
2883 {
2884 EMACS_INT len = VECSIZE (struct frame);
2885 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2886 EMACS_INT i;
2887
2888 for (i = 0; i < len; ++i)
2889 v->contents[i] = make_number (0);
2890 v->size = len;
2891 return (struct frame *) v;
2892 }
2893
2894
2895 struct Lisp_Process *
2896 allocate_process ()
2897 {
2898 EMACS_INT len = VECSIZE (struct Lisp_Process);
2899 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2900 EMACS_INT i;
2901
2902 for (i = 0; i < len; ++i)
2903 v->contents[i] = Qnil;
2904 v->size = len;
2905
2906 return (struct Lisp_Process *) v;
2907 }
2908
2909
2910 struct Lisp_Vector *
2911 allocate_other_vector (len)
2912 EMACS_INT len;
2913 {
2914 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2915 EMACS_INT i;
2916
2917 for (i = 0; i < len; ++i)
2918 v->contents[i] = Qnil;
2919 v->size = len;
2920
2921 return v;
2922 }
2923
2924
2925 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2926 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2927 See also the function `vector'. */)
2928 (length, init)
2929 register Lisp_Object length, init;
2930 {
2931 Lisp_Object vector;
2932 register EMACS_INT sizei;
2933 register int index;
2934 register struct Lisp_Vector *p;
2935
2936 CHECK_NATNUM (length);
2937 sizei = XFASTINT (length);
2938
2939 p = allocate_vector (sizei);
2940 for (index = 0; index < sizei; index++)
2941 p->contents[index] = init;
2942
2943 XSETVECTOR (vector, p);
2944 return vector;
2945 }
2946
2947
2948 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2949 doc: /* Return a newly created char-table, with purpose PURPOSE.
2950 Each element is initialized to INIT, which defaults to nil.
2951 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2952 The property's value should be an integer between 0 and 10. */)
2953 (purpose, init)
2954 register Lisp_Object purpose, init;
2955 {
2956 Lisp_Object vector;
2957 Lisp_Object n;
2958 CHECK_SYMBOL (purpose);
2959 n = Fget (purpose, Qchar_table_extra_slots);
2960 CHECK_NUMBER (n);
2961 if (XINT (n) < 0 || XINT (n) > 10)
2962 args_out_of_range (n, Qnil);
2963 /* Add 2 to the size for the defalt and parent slots. */
2964 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2965 init);
2966 XCHAR_TABLE (vector)->top = Qt;
2967 XCHAR_TABLE (vector)->parent = Qnil;
2968 XCHAR_TABLE (vector)->purpose = purpose;
2969 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2970 return vector;
2971 }
2972
2973
2974 /* Return a newly created sub char table with default value DEFALT.
2975 Since a sub char table does not appear as a top level Emacs Lisp
2976 object, we don't need a Lisp interface to make it. */
2977
2978 Lisp_Object
2979 make_sub_char_table (defalt)
2980 Lisp_Object defalt;
2981 {
2982 Lisp_Object vector
2983 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2984 XCHAR_TABLE (vector)->top = Qnil;
2985 XCHAR_TABLE (vector)->defalt = defalt;
2986 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2987 return vector;
2988 }
2989
2990
2991 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2992 doc: /* Return a newly created vector with specified arguments as elements.
2993 Any number of arguments, even zero arguments, are allowed.
2994 usage: (vector &rest OBJECTS) */)
2995 (nargs, args)
2996 register int nargs;
2997 Lisp_Object *args;
2998 {
2999 register Lisp_Object len, val;
3000 register int index;
3001 register struct Lisp_Vector *p;
3002
3003 XSETFASTINT (len, nargs);
3004 val = Fmake_vector (len, Qnil);
3005 p = XVECTOR (val);
3006 for (index = 0; index < nargs; index++)
3007 p->contents[index] = args[index];
3008 return val;
3009 }
3010
3011
3012 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3013 doc: /* Create a byte-code object with specified arguments as elements.
3014 The arguments should be the arglist, bytecode-string, constant vector,
3015 stack size, (optional) doc string, and (optional) interactive spec.
3016 The first four arguments are required; at most six have any
3017 significance.
3018 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3019 (nargs, args)
3020 register int nargs;
3021 Lisp_Object *args;
3022 {
3023 register Lisp_Object len, val;
3024 register int index;
3025 register struct Lisp_Vector *p;
3026
3027 XSETFASTINT (len, nargs);
3028 if (!NILP (Vpurify_flag))
3029 val = make_pure_vector ((EMACS_INT) nargs);
3030 else
3031 val = Fmake_vector (len, Qnil);
3032
3033 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3034 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3035 earlier because they produced a raw 8-bit string for byte-code
3036 and now such a byte-code string is loaded as multibyte while
3037 raw 8-bit characters converted to multibyte form. Thus, now we
3038 must convert them back to the original unibyte form. */
3039 args[1] = Fstring_as_unibyte (args[1]);
3040
3041 p = XVECTOR (val);
3042 for (index = 0; index < nargs; index++)
3043 {
3044 if (!NILP (Vpurify_flag))
3045 args[index] = Fpurecopy (args[index]);
3046 p->contents[index] = args[index];
3047 }
3048 XSETCOMPILED (val, p);
3049 return val;
3050 }
3051
3052
3053 \f
3054 /***********************************************************************
3055 Symbol Allocation
3056 ***********************************************************************/
3057
3058 /* Each symbol_block is just under 1020 bytes long, since malloc
3059 really allocates in units of powers of two and uses 4 bytes for its
3060 own overhead. */
3061
3062 #define SYMBOL_BLOCK_SIZE \
3063 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3064
3065 struct symbol_block
3066 {
3067 /* Place `symbols' first, to preserve alignment. */
3068 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3069 struct symbol_block *next;
3070 };
3071
3072 /* Current symbol block and index of first unused Lisp_Symbol
3073 structure in it. */
3074
3075 struct symbol_block *symbol_block;
3076 int symbol_block_index;
3077
3078 /* List of free symbols. */
3079
3080 struct Lisp_Symbol *symbol_free_list;
3081
3082 /* Total number of symbol blocks now in use. */
3083
3084 int n_symbol_blocks;
3085
3086
3087 /* Initialize symbol allocation. */
3088
3089 void
3090 init_symbol ()
3091 {
3092 symbol_block = NULL;
3093 symbol_block_index = SYMBOL_BLOCK_SIZE;
3094 symbol_free_list = 0;
3095 n_symbol_blocks = 0;
3096 }
3097
3098
3099 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3100 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3101 Its value and function definition are void, and its property list is nil. */)
3102 (name)
3103 Lisp_Object name;
3104 {
3105 register Lisp_Object val;
3106 register struct Lisp_Symbol *p;
3107
3108 CHECK_STRING (name);
3109
3110 if (symbol_free_list)
3111 {
3112 XSETSYMBOL (val, symbol_free_list);
3113 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3114 }
3115 else
3116 {
3117 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3118 {
3119 struct symbol_block *new;
3120 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3121 MEM_TYPE_SYMBOL);
3122 new->next = symbol_block;
3123 symbol_block = new;
3124 symbol_block_index = 0;
3125 n_symbol_blocks++;
3126 }
3127 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3128 symbol_block_index++;
3129 }
3130
3131 p = XSYMBOL (val);
3132 p->xname = name;
3133 p->plist = Qnil;
3134 p->value = Qunbound;
3135 p->function = Qunbound;
3136 p->next = NULL;
3137 p->gcmarkbit = 0;
3138 p->interned = SYMBOL_UNINTERNED;
3139 p->constant = 0;
3140 p->indirect_variable = 0;
3141 consing_since_gc += sizeof (struct Lisp_Symbol);
3142 symbols_consed++;
3143 return val;
3144 }
3145
3146
3147 \f
3148 /***********************************************************************
3149 Marker (Misc) Allocation
3150 ***********************************************************************/
3151
3152 /* Allocation of markers and other objects that share that structure.
3153 Works like allocation of conses. */
3154
3155 #define MARKER_BLOCK_SIZE \
3156 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3157
3158 struct marker_block
3159 {
3160 /* Place `markers' first, to preserve alignment. */
3161 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3162 struct marker_block *next;
3163 };
3164
3165 struct marker_block *marker_block;
3166 int marker_block_index;
3167
3168 union Lisp_Misc *marker_free_list;
3169
3170 /* Total number of marker blocks now in use. */
3171
3172 int n_marker_blocks;
3173
3174 void
3175 init_marker ()
3176 {
3177 marker_block = NULL;
3178 marker_block_index = MARKER_BLOCK_SIZE;
3179 marker_free_list = 0;
3180 n_marker_blocks = 0;
3181 }
3182
3183 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3184
3185 Lisp_Object
3186 allocate_misc ()
3187 {
3188 Lisp_Object val;
3189
3190 if (marker_free_list)
3191 {
3192 XSETMISC (val, marker_free_list);
3193 marker_free_list = marker_free_list->u_free.chain;
3194 }
3195 else
3196 {
3197 if (marker_block_index == MARKER_BLOCK_SIZE)
3198 {
3199 struct marker_block *new;
3200 new = (struct marker_block *) lisp_malloc (sizeof *new,
3201 MEM_TYPE_MISC);
3202 new->next = marker_block;
3203 marker_block = new;
3204 marker_block_index = 0;
3205 n_marker_blocks++;
3206 total_free_markers += MARKER_BLOCK_SIZE;
3207 }
3208 XSETMISC (val, &marker_block->markers[marker_block_index]);
3209 marker_block_index++;
3210 }
3211
3212 --total_free_markers;
3213 consing_since_gc += sizeof (union Lisp_Misc);
3214 misc_objects_consed++;
3215 XMARKER (val)->gcmarkbit = 0;
3216 return val;
3217 }
3218
3219 /* Free a Lisp_Misc object */
3220
3221 void
3222 free_misc (misc)
3223 Lisp_Object misc;
3224 {
3225 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3226 XMISC (misc)->u_free.chain = marker_free_list;
3227 marker_free_list = XMISC (misc);
3228
3229 total_free_markers++;
3230 }
3231
3232 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3233 INTEGER. This is used to package C values to call record_unwind_protect.
3234 The unwind function can get the C values back using XSAVE_VALUE. */
3235
3236 Lisp_Object
3237 make_save_value (pointer, integer)
3238 void *pointer;
3239 int integer;
3240 {
3241 register Lisp_Object val;
3242 register struct Lisp_Save_Value *p;
3243
3244 val = allocate_misc ();
3245 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3246 p = XSAVE_VALUE (val);
3247 p->pointer = pointer;
3248 p->integer = integer;
3249 p->dogc = 0;
3250 return val;
3251 }
3252
3253 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3254 doc: /* Return a newly allocated marker which does not point at any place. */)
3255 ()
3256 {
3257 register Lisp_Object val;
3258 register struct Lisp_Marker *p;
3259
3260 val = allocate_misc ();
3261 XMISCTYPE (val) = Lisp_Misc_Marker;
3262 p = XMARKER (val);
3263 p->buffer = 0;
3264 p->bytepos = 0;
3265 p->charpos = 0;
3266 p->next = NULL;
3267 p->insertion_type = 0;
3268 return val;
3269 }
3270
3271 /* Put MARKER back on the free list after using it temporarily. */
3272
3273 void
3274 free_marker (marker)
3275 Lisp_Object marker;
3276 {
3277 unchain_marker (XMARKER (marker));
3278 free_misc (marker);
3279 }
3280
3281 \f
3282 /* Return a newly created vector or string with specified arguments as
3283 elements. If all the arguments are characters that can fit
3284 in a string of events, make a string; otherwise, make a vector.
3285
3286 Any number of arguments, even zero arguments, are allowed. */
3287
3288 Lisp_Object
3289 make_event_array (nargs, args)
3290 register int nargs;
3291 Lisp_Object *args;
3292 {
3293 int i;
3294
3295 for (i = 0; i < nargs; i++)
3296 /* The things that fit in a string
3297 are characters that are in 0...127,
3298 after discarding the meta bit and all the bits above it. */
3299 if (!INTEGERP (args[i])
3300 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3301 return Fvector (nargs, args);
3302
3303 /* Since the loop exited, we know that all the things in it are
3304 characters, so we can make a string. */
3305 {
3306 Lisp_Object result;
3307
3308 result = Fmake_string (make_number (nargs), make_number (0));
3309 for (i = 0; i < nargs; i++)
3310 {
3311 SSET (result, i, XINT (args[i]));
3312 /* Move the meta bit to the right place for a string char. */
3313 if (XINT (args[i]) & CHAR_META)
3314 SSET (result, i, SREF (result, i) | 0x80);
3315 }
3316
3317 return result;
3318 }
3319 }
3320
3321
3322 \f
3323 /************************************************************************
3324 C Stack Marking
3325 ************************************************************************/
3326
3327 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3328
3329 /* Conservative C stack marking requires a method to identify possibly
3330 live Lisp objects given a pointer value. We do this by keeping
3331 track of blocks of Lisp data that are allocated in a red-black tree
3332 (see also the comment of mem_node which is the type of nodes in
3333 that tree). Function lisp_malloc adds information for an allocated
3334 block to the red-black tree with calls to mem_insert, and function
3335 lisp_free removes it with mem_delete. Functions live_string_p etc
3336 call mem_find to lookup information about a given pointer in the
3337 tree, and use that to determine if the pointer points to a Lisp
3338 object or not. */
3339
3340 /* Initialize this part of alloc.c. */
3341
3342 static void
3343 mem_init ()
3344 {
3345 mem_z.left = mem_z.right = MEM_NIL;
3346 mem_z.parent = NULL;
3347 mem_z.color = MEM_BLACK;
3348 mem_z.start = mem_z.end = NULL;
3349 mem_root = MEM_NIL;
3350 }
3351
3352
3353 /* Value is a pointer to the mem_node containing START. Value is
3354 MEM_NIL if there is no node in the tree containing START. */
3355
3356 static INLINE struct mem_node *
3357 mem_find (start)
3358 void *start;
3359 {
3360 struct mem_node *p;
3361
3362 if (start < min_heap_address || start > max_heap_address)
3363 return MEM_NIL;
3364
3365 /* Make the search always successful to speed up the loop below. */
3366 mem_z.start = start;
3367 mem_z.end = (char *) start + 1;
3368
3369 p = mem_root;
3370 while (start < p->start || start >= p->end)
3371 p = start < p->start ? p->left : p->right;
3372 return p;
3373 }
3374
3375
3376 /* Insert a new node into the tree for a block of memory with start
3377 address START, end address END, and type TYPE. Value is a
3378 pointer to the node that was inserted. */
3379
3380 static struct mem_node *
3381 mem_insert (start, end, type)
3382 void *start, *end;
3383 enum mem_type type;
3384 {
3385 struct mem_node *c, *parent, *x;
3386
3387 if (start < min_heap_address)
3388 min_heap_address = start;
3389 if (end > max_heap_address)
3390 max_heap_address = end;
3391
3392 /* See where in the tree a node for START belongs. In this
3393 particular application, it shouldn't happen that a node is already
3394 present. For debugging purposes, let's check that. */
3395 c = mem_root;
3396 parent = NULL;
3397
3398 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3399
3400 while (c != MEM_NIL)
3401 {
3402 if (start >= c->start && start < c->end)
3403 abort ();
3404 parent = c;
3405 c = start < c->start ? c->left : c->right;
3406 }
3407
3408 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3409
3410 while (c != MEM_NIL)
3411 {
3412 parent = c;
3413 c = start < c->start ? c->left : c->right;
3414 }
3415
3416 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3417
3418 /* Create a new node. */
3419 #ifdef GC_MALLOC_CHECK
3420 x = (struct mem_node *) _malloc_internal (sizeof *x);
3421 if (x == NULL)
3422 abort ();
3423 #else
3424 x = (struct mem_node *) xmalloc (sizeof *x);
3425 #endif
3426 x->start = start;
3427 x->end = end;
3428 x->type = type;
3429 x->parent = parent;
3430 x->left = x->right = MEM_NIL;
3431 x->color = MEM_RED;
3432
3433 /* Insert it as child of PARENT or install it as root. */
3434 if (parent)
3435 {
3436 if (start < parent->start)
3437 parent->left = x;
3438 else
3439 parent->right = x;
3440 }
3441 else
3442 mem_root = x;
3443
3444 /* Re-establish red-black tree properties. */
3445 mem_insert_fixup (x);
3446
3447 return x;
3448 }
3449
3450
3451 /* Re-establish the red-black properties of the tree, and thereby
3452 balance the tree, after node X has been inserted; X is always red. */
3453
3454 static void
3455 mem_insert_fixup (x)
3456 struct mem_node *x;
3457 {
3458 while (x != mem_root && x->parent->color == MEM_RED)
3459 {
3460 /* X is red and its parent is red. This is a violation of
3461 red-black tree property #3. */
3462
3463 if (x->parent == x->parent->parent->left)
3464 {
3465 /* We're on the left side of our grandparent, and Y is our
3466 "uncle". */
3467 struct mem_node *y = x->parent->parent->right;
3468
3469 if (y->color == MEM_RED)
3470 {
3471 /* Uncle and parent are red but should be black because
3472 X is red. Change the colors accordingly and proceed
3473 with the grandparent. */
3474 x->parent->color = MEM_BLACK;
3475 y->color = MEM_BLACK;
3476 x->parent->parent->color = MEM_RED;
3477 x = x->parent->parent;
3478 }
3479 else
3480 {
3481 /* Parent and uncle have different colors; parent is
3482 red, uncle is black. */
3483 if (x == x->parent->right)
3484 {
3485 x = x->parent;
3486 mem_rotate_left (x);
3487 }
3488
3489 x->parent->color = MEM_BLACK;
3490 x->parent->parent->color = MEM_RED;
3491 mem_rotate_right (x->parent->parent);
3492 }
3493 }
3494 else
3495 {
3496 /* This is the symmetrical case of above. */
3497 struct mem_node *y = x->parent->parent->left;
3498
3499 if (y->color == MEM_RED)
3500 {
3501 x->parent->color = MEM_BLACK;
3502 y->color = MEM_BLACK;
3503 x->parent->parent->color = MEM_RED;
3504 x = x->parent->parent;
3505 }
3506 else
3507 {
3508 if (x == x->parent->left)
3509 {
3510 x = x->parent;
3511 mem_rotate_right (x);
3512 }
3513
3514 x->parent->color = MEM_BLACK;
3515 x->parent->parent->color = MEM_RED;
3516 mem_rotate_left (x->parent->parent);
3517 }
3518 }
3519 }
3520
3521 /* The root may have been changed to red due to the algorithm. Set
3522 it to black so that property #5 is satisfied. */
3523 mem_root->color = MEM_BLACK;
3524 }
3525
3526
3527 /* (x) (y)
3528 / \ / \
3529 a (y) ===> (x) c
3530 / \ / \
3531 b c a b */
3532
3533 static void
3534 mem_rotate_left (x)
3535 struct mem_node *x;
3536 {
3537 struct mem_node *y;
3538
3539 /* Turn y's left sub-tree into x's right sub-tree. */
3540 y = x->right;
3541 x->right = y->left;
3542 if (y->left != MEM_NIL)
3543 y->left->parent = x;
3544
3545 /* Y's parent was x's parent. */
3546 if (y != MEM_NIL)
3547 y->parent = x->parent;
3548
3549 /* Get the parent to point to y instead of x. */
3550 if (x->parent)
3551 {
3552 if (x == x->parent->left)
3553 x->parent->left = y;
3554 else
3555 x->parent->right = y;
3556 }
3557 else
3558 mem_root = y;
3559
3560 /* Put x on y's left. */
3561 y->left = x;
3562 if (x != MEM_NIL)
3563 x->parent = y;
3564 }
3565
3566
3567 /* (x) (Y)
3568 / \ / \
3569 (y) c ===> a (x)
3570 / \ / \
3571 a b b c */
3572
3573 static void
3574 mem_rotate_right (x)
3575 struct mem_node *x;
3576 {
3577 struct mem_node *y = x->left;
3578
3579 x->left = y->right;
3580 if (y->right != MEM_NIL)
3581 y->right->parent = x;
3582
3583 if (y != MEM_NIL)
3584 y->parent = x->parent;
3585 if (x->parent)
3586 {
3587 if (x == x->parent->right)
3588 x->parent->right = y;
3589 else
3590 x->parent->left = y;
3591 }
3592 else
3593 mem_root = y;
3594
3595 y->right = x;
3596 if (x != MEM_NIL)
3597 x->parent = y;
3598 }
3599
3600
3601 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3602
3603 static void
3604 mem_delete (z)
3605 struct mem_node *z;
3606 {
3607 struct mem_node *x, *y;
3608
3609 if (!z || z == MEM_NIL)
3610 return;
3611
3612 if (z->left == MEM_NIL || z->right == MEM_NIL)
3613 y = z;
3614 else
3615 {
3616 y = z->right;
3617 while (y->left != MEM_NIL)
3618 y = y->left;
3619 }
3620
3621 if (y->left != MEM_NIL)
3622 x = y->left;
3623 else
3624 x = y->right;
3625
3626 x->parent = y->parent;
3627 if (y->parent)
3628 {
3629 if (y == y->parent->left)
3630 y->parent->left = x;
3631 else
3632 y->parent->right = x;
3633 }
3634 else
3635 mem_root = x;
3636
3637 if (y != z)
3638 {
3639 z->start = y->start;
3640 z->end = y->end;
3641 z->type = y->type;
3642 }
3643
3644 if (y->color == MEM_BLACK)
3645 mem_delete_fixup (x);
3646
3647 #ifdef GC_MALLOC_CHECK
3648 _free_internal (y);
3649 #else
3650 xfree (y);
3651 #endif
3652 }
3653
3654
3655 /* Re-establish the red-black properties of the tree, after a
3656 deletion. */
3657
3658 static void
3659 mem_delete_fixup (x)
3660 struct mem_node *x;
3661 {
3662 while (x != mem_root && x->color == MEM_BLACK)
3663 {
3664 if (x == x->parent->left)
3665 {
3666 struct mem_node *w = x->parent->right;
3667
3668 if (w->color == MEM_RED)
3669 {
3670 w->color = MEM_BLACK;
3671 x->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent);
3673 w = x->parent->right;
3674 }
3675
3676 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3677 {
3678 w->color = MEM_RED;
3679 x = x->parent;
3680 }
3681 else
3682 {
3683 if (w->right->color == MEM_BLACK)
3684 {
3685 w->left->color = MEM_BLACK;
3686 w->color = MEM_RED;
3687 mem_rotate_right (w);
3688 w = x->parent->right;
3689 }
3690 w->color = x->parent->color;
3691 x->parent->color = MEM_BLACK;
3692 w->right->color = MEM_BLACK;
3693 mem_rotate_left (x->parent);
3694 x = mem_root;
3695 }
3696 }
3697 else
3698 {
3699 struct mem_node *w = x->parent->left;
3700
3701 if (w->color == MEM_RED)
3702 {
3703 w->color = MEM_BLACK;
3704 x->parent->color = MEM_RED;
3705 mem_rotate_right (x->parent);
3706 w = x->parent->left;
3707 }
3708
3709 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3710 {
3711 w->color = MEM_RED;
3712 x = x->parent;
3713 }
3714 else
3715 {
3716 if (w->left->color == MEM_BLACK)
3717 {
3718 w->right->color = MEM_BLACK;
3719 w->color = MEM_RED;
3720 mem_rotate_left (w);
3721 w = x->parent->left;
3722 }
3723
3724 w->color = x->parent->color;
3725 x->parent->color = MEM_BLACK;
3726 w->left->color = MEM_BLACK;
3727 mem_rotate_right (x->parent);
3728 x = mem_root;
3729 }
3730 }
3731 }
3732
3733 x->color = MEM_BLACK;
3734 }
3735
3736
3737 /* Value is non-zero if P is a pointer to a live Lisp string on
3738 the heap. M is a pointer to the mem_block for P. */
3739
3740 static INLINE int
3741 live_string_p (m, p)
3742 struct mem_node *m;
3743 void *p;
3744 {
3745 if (m->type == MEM_TYPE_STRING)
3746 {
3747 struct string_block *b = (struct string_block *) m->start;
3748 int offset = (char *) p - (char *) &b->strings[0];
3749
3750 /* P must point to the start of a Lisp_String structure, and it
3751 must not be on the free-list. */
3752 return (offset >= 0
3753 && offset % sizeof b->strings[0] == 0
3754 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3755 && ((struct Lisp_String *) p)->data != NULL);
3756 }
3757 else
3758 return 0;
3759 }
3760
3761
3762 /* Value is non-zero if P is a pointer to a live Lisp cons on
3763 the heap. M is a pointer to the mem_block for P. */
3764
3765 static INLINE int
3766 live_cons_p (m, p)
3767 struct mem_node *m;
3768 void *p;
3769 {
3770 if (m->type == MEM_TYPE_CONS)
3771 {
3772 struct cons_block *b = (struct cons_block *) m->start;
3773 int offset = (char *) p - (char *) &b->conses[0];
3774
3775 /* P must point to the start of a Lisp_Cons, not be
3776 one of the unused cells in the current cons block,
3777 and not be on the free-list. */
3778 return (offset >= 0
3779 && offset % sizeof b->conses[0] == 0
3780 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3781 && (b != cons_block
3782 || offset / sizeof b->conses[0] < cons_block_index)
3783 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3784 }
3785 else
3786 return 0;
3787 }
3788
3789
3790 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3791 the heap. M is a pointer to the mem_block for P. */
3792
3793 static INLINE int
3794 live_symbol_p (m, p)
3795 struct mem_node *m;
3796 void *p;
3797 {
3798 if (m->type == MEM_TYPE_SYMBOL)
3799 {
3800 struct symbol_block *b = (struct symbol_block *) m->start;
3801 int offset = (char *) p - (char *) &b->symbols[0];
3802
3803 /* P must point to the start of a Lisp_Symbol, not be
3804 one of the unused cells in the current symbol block,
3805 and not be on the free-list. */
3806 return (offset >= 0
3807 && offset % sizeof b->symbols[0] == 0
3808 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3809 && (b != symbol_block
3810 || offset / sizeof b->symbols[0] < symbol_block_index)
3811 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3812 }
3813 else
3814 return 0;
3815 }
3816
3817
3818 /* Value is non-zero if P is a pointer to a live Lisp float on
3819 the heap. M is a pointer to the mem_block for P. */
3820
3821 static INLINE int
3822 live_float_p (m, p)
3823 struct mem_node *m;
3824 void *p;
3825 {
3826 if (m->type == MEM_TYPE_FLOAT)
3827 {
3828 struct float_block *b = (struct float_block *) m->start;
3829 int offset = (char *) p - (char *) &b->floats[0];
3830
3831 /* P must point to the start of a Lisp_Float and not be
3832 one of the unused cells in the current float block. */
3833 return (offset >= 0
3834 && offset % sizeof b->floats[0] == 0
3835 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3836 && (b != float_block
3837 || offset / sizeof b->floats[0] < float_block_index));
3838 }
3839 else
3840 return 0;
3841 }
3842
3843
3844 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3845 the heap. M is a pointer to the mem_block for P. */
3846
3847 static INLINE int
3848 live_misc_p (m, p)
3849 struct mem_node *m;
3850 void *p;
3851 {
3852 if (m->type == MEM_TYPE_MISC)
3853 {
3854 struct marker_block *b = (struct marker_block *) m->start;
3855 int offset = (char *) p - (char *) &b->markers[0];
3856
3857 /* P must point to the start of a Lisp_Misc, not be
3858 one of the unused cells in the current misc block,
3859 and not be on the free-list. */
3860 return (offset >= 0
3861 && offset % sizeof b->markers[0] == 0
3862 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3863 && (b != marker_block
3864 || offset / sizeof b->markers[0] < marker_block_index)
3865 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3866 }
3867 else
3868 return 0;
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live vector-like object.
3873 M is a pointer to the mem_block for P. */
3874
3875 static INLINE int
3876 live_vector_p (m, p)
3877 struct mem_node *m;
3878 void *p;
3879 {
3880 return (p == m->start
3881 && m->type >= MEM_TYPE_VECTOR
3882 && m->type <= MEM_TYPE_WINDOW);
3883 }
3884
3885
3886 /* Value is non-zero if P is a pointer to a live buffer. M is a
3887 pointer to the mem_block for P. */
3888
3889 static INLINE int
3890 live_buffer_p (m, p)
3891 struct mem_node *m;
3892 void *p;
3893 {
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
3898 && !NILP (((struct buffer *) p)->name));
3899 }
3900
3901 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3902
3903 #if GC_MARK_STACK
3904
3905 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3906
3907 /* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3909
3910 #define MAX_ZOMBIES 10
3911 static Lisp_Object zombies[MAX_ZOMBIES];
3912
3913 /* Number of zombie objects. */
3914
3915 static int nzombies;
3916
3917 /* Number of garbage collections. */
3918
3919 static int ngcs;
3920
3921 /* Average percentage of zombies per collection. */
3922
3923 static double avg_zombies;
3924
3925 /* Max. number of live and zombie objects. */
3926
3927 static int max_live, max_zombies;
3928
3929 /* Average number of live objects per GC. */
3930
3931 static double avg_live;
3932
3933 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3934 doc: /* Show information about live and zombie objects. */)
3935 ()
3936 {
3937 Lisp_Object args[8], zombie_list = Qnil;
3938 int i;
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
3950 }
3951
3952 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953
3954
3955 /* Mark OBJ if we can prove it's a Lisp_Object. */
3956
3957 static INLINE void
3958 mark_maybe_object (obj)
3959 Lisp_Object obj;
3960 {
3961 void *po = (void *) XPNTR (obj);
3962 struct mem_node *m = mem_find (po);
3963
3964 if (m != MEM_NIL)
3965 {
3966 int mark_p = 0;
3967
3968 switch (XGCTYPE (obj))
3969 {
3970 case Lisp_String:
3971 mark_p = (live_string_p (m, po)
3972 && !STRING_MARKED_P ((struct Lisp_String *) po));
3973 break;
3974
3975 case Lisp_Cons:
3976 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3977 break;
3978
3979 case Lisp_Symbol:
3980 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3981 break;
3982
3983 case Lisp_Float:
3984 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3985 break;
3986
3987 case Lisp_Vectorlike:
3988 /* Note: can't check GC_BUFFERP before we know it's a
3989 buffer because checking that dereferences the pointer
3990 PO which might point anywhere. */
3991 if (live_vector_p (m, po))
3992 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3993 else if (live_buffer_p (m, po))
3994 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3995 break;
3996
3997 case Lisp_Misc:
3998 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3999 break;
4000
4001 case Lisp_Int:
4002 case Lisp_Type_Limit:
4003 break;
4004 }
4005
4006 if (mark_p)
4007 {
4008 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4009 if (nzombies < MAX_ZOMBIES)
4010 zombies[nzombies] = obj;
4011 ++nzombies;
4012 #endif
4013 mark_object (obj);
4014 }
4015 }
4016 }
4017
4018
4019 /* If P points to Lisp data, mark that as live if it isn't already
4020 marked. */
4021
4022 static INLINE void
4023 mark_maybe_pointer (p)
4024 void *p;
4025 {
4026 struct mem_node *m;
4027
4028 /* Quickly rule out some values which can't point to Lisp data. We
4029 assume that Lisp data is aligned on even addresses. */
4030 if ((EMACS_INT) p & 1)
4031 return;
4032
4033 m = mem_find (p);
4034 if (m != MEM_NIL)
4035 {
4036 Lisp_Object obj = Qnil;
4037
4038 switch (m->type)
4039 {
4040 case MEM_TYPE_NON_LISP:
4041 /* Nothing to do; not a pointer to Lisp memory. */
4042 break;
4043
4044 case MEM_TYPE_BUFFER:
4045 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4046 XSETVECTOR (obj, p);
4047 break;
4048
4049 case MEM_TYPE_CONS:
4050 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4051 XSETCONS (obj, p);
4052 break;
4053
4054 case MEM_TYPE_STRING:
4055 if (live_string_p (m, p)
4056 && !STRING_MARKED_P ((struct Lisp_String *) p))
4057 XSETSTRING (obj, p);
4058 break;
4059
4060 case MEM_TYPE_MISC:
4061 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4062 XSETMISC (obj, p);
4063 break;
4064
4065 case MEM_TYPE_SYMBOL:
4066 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4067 XSETSYMBOL (obj, p);
4068 break;
4069
4070 case MEM_TYPE_FLOAT:
4071 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4072 XSETFLOAT (obj, p);
4073 break;
4074
4075 case MEM_TYPE_VECTOR:
4076 case MEM_TYPE_PROCESS:
4077 case MEM_TYPE_HASH_TABLE:
4078 case MEM_TYPE_FRAME:
4079 case MEM_TYPE_WINDOW:
4080 if (live_vector_p (m, p))
4081 {
4082 Lisp_Object tem;
4083 XSETVECTOR (tem, p);
4084 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4085 obj = tem;
4086 }
4087 break;
4088
4089 default:
4090 abort ();
4091 }
4092
4093 if (!GC_NILP (obj))
4094 mark_object (obj);
4095 }
4096 }
4097
4098
4099 /* Mark Lisp objects referenced from the address range START..END. */
4100
4101 static void
4102 mark_memory (start, end)
4103 void *start, *end;
4104 {
4105 Lisp_Object *p;
4106 void **pp;
4107
4108 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4109 nzombies = 0;
4110 #endif
4111
4112 /* Make START the pointer to the start of the memory region,
4113 if it isn't already. */
4114 if (end < start)
4115 {
4116 void *tem = start;
4117 start = end;
4118 end = tem;
4119 }
4120
4121 /* Mark Lisp_Objects. */
4122 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4123 mark_maybe_object (*p);
4124
4125 /* Mark Lisp data pointed to. This is necessary because, in some
4126 situations, the C compiler optimizes Lisp objects away, so that
4127 only a pointer to them remains. Example:
4128
4129 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4130 ()
4131 {
4132 Lisp_Object obj = build_string ("test");
4133 struct Lisp_String *s = XSTRING (obj);
4134 Fgarbage_collect ();
4135 fprintf (stderr, "test `%s'\n", s->data);
4136 return Qnil;
4137 }
4138
4139 Here, `obj' isn't really used, and the compiler optimizes it
4140 away. The only reference to the life string is through the
4141 pointer `s'. */
4142
4143 for (pp = (void **) start; (void *) pp < end; ++pp)
4144 mark_maybe_pointer (*pp);
4145 }
4146
4147 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4148 the GCC system configuration. In gcc 3.2, the only systems for
4149 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4150 by others?) and ns32k-pc532-min. */
4151
4152 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4153
4154 static int setjmp_tested_p, longjmps_done;
4155
4156 #define SETJMP_WILL_LIKELY_WORK "\
4157 \n\
4158 Emacs garbage collector has been changed to use conservative stack\n\
4159 marking. Emacs has determined that the method it uses to do the\n\
4160 marking will likely work on your system, but this isn't sure.\n\
4161 \n\
4162 If you are a system-programmer, or can get the help of a local wizard\n\
4163 who is, please take a look at the function mark_stack in alloc.c, and\n\
4164 verify that the methods used are appropriate for your system.\n\
4165 \n\
4166 Please mail the result to <emacs-devel@gnu.org>.\n\
4167 "
4168
4169 #define SETJMP_WILL_NOT_WORK "\
4170 \n\
4171 Emacs garbage collector has been changed to use conservative stack\n\
4172 marking. Emacs has determined that the default method it uses to do the\n\
4173 marking will not work on your system. We will need a system-dependent\n\
4174 solution for your system.\n\
4175 \n\
4176 Please take a look at the function mark_stack in alloc.c, and\n\
4177 try to find a way to make it work on your system.\n\
4178 \n\
4179 Note that you may get false negatives, depending on the compiler.\n\
4180 In particular, you need to use -O with GCC for this test.\n\
4181 \n\
4182 Please mail the result to <emacs-devel@gnu.org>.\n\
4183 "
4184
4185
4186 /* Perform a quick check if it looks like setjmp saves registers in a
4187 jmp_buf. Print a message to stderr saying so. When this test
4188 succeeds, this is _not_ a proof that setjmp is sufficient for
4189 conservative stack marking. Only the sources or a disassembly
4190 can prove that. */
4191
4192 static void
4193 test_setjmp ()
4194 {
4195 char buf[10];
4196 register int x;
4197 jmp_buf jbuf;
4198 int result = 0;
4199
4200 /* Arrange for X to be put in a register. */
4201 sprintf (buf, "1");
4202 x = strlen (buf);
4203 x = 2 * x - 1;
4204
4205 setjmp (jbuf);
4206 if (longjmps_done == 1)
4207 {
4208 /* Came here after the longjmp at the end of the function.
4209
4210 If x == 1, the longjmp has restored the register to its
4211 value before the setjmp, and we can hope that setjmp
4212 saves all such registers in the jmp_buf, although that
4213 isn't sure.
4214
4215 For other values of X, either something really strange is
4216 taking place, or the setjmp just didn't save the register. */
4217
4218 if (x == 1)
4219 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4220 else
4221 {
4222 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4223 exit (1);
4224 }
4225 }
4226
4227 ++longjmps_done;
4228 x = 2;
4229 if (longjmps_done == 1)
4230 longjmp (jbuf, 1);
4231 }
4232
4233 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4234
4235
4236 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4237
4238 /* Abort if anything GCPRO'd doesn't survive the GC. */
4239
4240 static void
4241 check_gcpros ()
4242 {
4243 struct gcpro *p;
4244 int i;
4245
4246 for (p = gcprolist; p; p = p->next)
4247 for (i = 0; i < p->nvars; ++i)
4248 if (!survives_gc_p (p->var[i]))
4249 /* FIXME: It's not necessarily a bug. It might just be that the
4250 GCPRO is unnecessary or should release the object sooner. */
4251 abort ();
4252 }
4253
4254 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4255
4256 static void
4257 dump_zombies ()
4258 {
4259 int i;
4260
4261 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4262 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4263 {
4264 fprintf (stderr, " %d = ", i);
4265 debug_print (zombies[i]);
4266 }
4267 }
4268
4269 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4270
4271
4272 /* Mark live Lisp objects on the C stack.
4273
4274 There are several system-dependent problems to consider when
4275 porting this to new architectures:
4276
4277 Processor Registers
4278
4279 We have to mark Lisp objects in CPU registers that can hold local
4280 variables or are used to pass parameters.
4281
4282 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4283 something that either saves relevant registers on the stack, or
4284 calls mark_maybe_object passing it each register's contents.
4285
4286 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4287 implementation assumes that calling setjmp saves registers we need
4288 to see in a jmp_buf which itself lies on the stack. This doesn't
4289 have to be true! It must be verified for each system, possibly
4290 by taking a look at the source code of setjmp.
4291
4292 Stack Layout
4293
4294 Architectures differ in the way their processor stack is organized.
4295 For example, the stack might look like this
4296
4297 +----------------+
4298 | Lisp_Object | size = 4
4299 +----------------+
4300 | something else | size = 2
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | ... |
4305
4306 In such a case, not every Lisp_Object will be aligned equally. To
4307 find all Lisp_Object on the stack it won't be sufficient to walk
4308 the stack in steps of 4 bytes. Instead, two passes will be
4309 necessary, one starting at the start of the stack, and a second
4310 pass starting at the start of the stack + 2. Likewise, if the
4311 minimal alignment of Lisp_Objects on the stack is 1, four passes
4312 would be necessary, each one starting with one byte more offset
4313 from the stack start.
4314
4315 The current code assumes by default that Lisp_Objects are aligned
4316 equally on the stack. */
4317
4318 static void
4319 mark_stack ()
4320 {
4321 int i;
4322 jmp_buf j;
4323 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4324 void *end;
4325
4326 /* This trick flushes the register windows so that all the state of
4327 the process is contained in the stack. */
4328 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4329 needed on ia64 too. See mach_dep.c, where it also says inline
4330 assembler doesn't work with relevant proprietary compilers. */
4331 #ifdef sparc
4332 asm ("ta 3");
4333 #endif
4334
4335 /* Save registers that we need to see on the stack. We need to see
4336 registers used to hold register variables and registers used to
4337 pass parameters. */
4338 #ifdef GC_SAVE_REGISTERS_ON_STACK
4339 GC_SAVE_REGISTERS_ON_STACK (end);
4340 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4341
4342 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4343 setjmp will definitely work, test it
4344 and print a message with the result
4345 of the test. */
4346 if (!setjmp_tested_p)
4347 {
4348 setjmp_tested_p = 1;
4349 test_setjmp ();
4350 }
4351 #endif /* GC_SETJMP_WORKS */
4352
4353 setjmp (j);
4354 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4355 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4356
4357 /* This assumes that the stack is a contiguous region in memory. If
4358 that's not the case, something has to be done here to iterate
4359 over the stack segments. */
4360 #ifndef GC_LISP_OBJECT_ALIGNMENT
4361 #ifdef __GNUC__
4362 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4363 #else
4364 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4365 #endif
4366 #endif
4367 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4368 mark_memory ((char *) stack_base + i, end);
4369 /* Allow for marking a secondary stack, like the register stack on the
4370 ia64. */
4371 #ifdef GC_MARK_SECONDARY_STACK
4372 GC_MARK_SECONDARY_STACK ();
4373 #endif
4374
4375 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4376 check_gcpros ();
4377 #endif
4378 }
4379
4380
4381 #endif /* GC_MARK_STACK != 0 */
4382
4383
4384 \f
4385 /***********************************************************************
4386 Pure Storage Management
4387 ***********************************************************************/
4388
4389 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4390 pointer to it. TYPE is the Lisp type for which the memory is
4391 allocated. TYPE < 0 means it's not used for a Lisp object.
4392
4393 If store_pure_type_info is set and TYPE is >= 0, the type of
4394 the allocated object is recorded in pure_types. */
4395
4396 static POINTER_TYPE *
4397 pure_alloc (size, type)
4398 size_t size;
4399 int type;
4400 {
4401 POINTER_TYPE *result;
4402 #ifdef USE_LSB_TAG
4403 size_t alignment = (1 << GCTYPEBITS);
4404 #else
4405 size_t alignment = sizeof (EMACS_INT);
4406
4407 /* Give Lisp_Floats an extra alignment. */
4408 if (type == Lisp_Float)
4409 {
4410 #if defined __GNUC__ && __GNUC__ >= 2
4411 alignment = __alignof (struct Lisp_Float);
4412 #else
4413 alignment = sizeof (struct Lisp_Float);
4414 #endif
4415 }
4416 #endif
4417
4418 again:
4419 result = ALIGN (purebeg + pure_bytes_used, alignment);
4420 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4421
4422 if (pure_bytes_used <= pure_size)
4423 return result;
4424
4425 /* Don't allocate a large amount here,
4426 because it might get mmap'd and then its address
4427 might not be usable. */
4428 purebeg = (char *) xmalloc (10000);
4429 pure_size = 10000;
4430 pure_bytes_used_before_overflow += pure_bytes_used - size;
4431 pure_bytes_used = 0;
4432 goto again;
4433 }
4434
4435
4436 /* Print a warning if PURESIZE is too small. */
4437
4438 void
4439 check_pure_size ()
4440 {
4441 if (pure_bytes_used_before_overflow)
4442 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4443 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4444 }
4445
4446
4447 /* Return a string allocated in pure space. DATA is a buffer holding
4448 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4449 non-zero means make the result string multibyte.
4450
4451 Must get an error if pure storage is full, since if it cannot hold
4452 a large string it may be able to hold conses that point to that
4453 string; then the string is not protected from gc. */
4454
4455 Lisp_Object
4456 make_pure_string (data, nchars, nbytes, multibyte)
4457 char *data;
4458 int nchars, nbytes;
4459 int multibyte;
4460 {
4461 Lisp_Object string;
4462 struct Lisp_String *s;
4463
4464 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4465 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4466 s->size = nchars;
4467 s->size_byte = multibyte ? nbytes : -1;
4468 bcopy (data, s->data, nbytes);
4469 s->data[nbytes] = '\0';
4470 s->intervals = NULL_INTERVAL;
4471 XSETSTRING (string, s);
4472 return string;
4473 }
4474
4475
4476 /* Return a cons allocated from pure space. Give it pure copies
4477 of CAR as car and CDR as cdr. */
4478
4479 Lisp_Object
4480 pure_cons (car, cdr)
4481 Lisp_Object car, cdr;
4482 {
4483 register Lisp_Object new;
4484 struct Lisp_Cons *p;
4485
4486 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4487 XSETCONS (new, p);
4488 XSETCAR (new, Fpurecopy (car));
4489 XSETCDR (new, Fpurecopy (cdr));
4490 return new;
4491 }
4492
4493
4494 /* Value is a float object with value NUM allocated from pure space. */
4495
4496 Lisp_Object
4497 make_pure_float (num)
4498 double num;
4499 {
4500 register Lisp_Object new;
4501 struct Lisp_Float *p;
4502
4503 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4504 XSETFLOAT (new, p);
4505 XFLOAT_DATA (new) = num;
4506 return new;
4507 }
4508
4509
4510 /* Return a vector with room for LEN Lisp_Objects allocated from
4511 pure space. */
4512
4513 Lisp_Object
4514 make_pure_vector (len)
4515 EMACS_INT len;
4516 {
4517 Lisp_Object new;
4518 struct Lisp_Vector *p;
4519 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4520
4521 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4522 XSETVECTOR (new, p);
4523 XVECTOR (new)->size = len;
4524 return new;
4525 }
4526
4527
4528 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4529 doc: /* Make a copy of OBJECT in pure storage.
4530 Recursively copies contents of vectors and cons cells.
4531 Does not copy symbols. Copies strings without text properties. */)
4532 (obj)
4533 register Lisp_Object obj;
4534 {
4535 if (NILP (Vpurify_flag))
4536 return obj;
4537
4538 if (PURE_POINTER_P (XPNTR (obj)))
4539 return obj;
4540
4541 if (CONSP (obj))
4542 return pure_cons (XCAR (obj), XCDR (obj));
4543 else if (FLOATP (obj))
4544 return make_pure_float (XFLOAT_DATA (obj));
4545 else if (STRINGP (obj))
4546 return make_pure_string (SDATA (obj), SCHARS (obj),
4547 SBYTES (obj),
4548 STRING_MULTIBYTE (obj));
4549 else if (COMPILEDP (obj) || VECTORP (obj))
4550 {
4551 register struct Lisp_Vector *vec;
4552 register int i;
4553 EMACS_INT size;
4554
4555 size = XVECTOR (obj)->size;
4556 if (size & PSEUDOVECTOR_FLAG)
4557 size &= PSEUDOVECTOR_SIZE_MASK;
4558 vec = XVECTOR (make_pure_vector (size));
4559 for (i = 0; i < size; i++)
4560 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4561 if (COMPILEDP (obj))
4562 XSETCOMPILED (obj, vec);
4563 else
4564 XSETVECTOR (obj, vec);
4565 return obj;
4566 }
4567 else if (MARKERP (obj))
4568 error ("Attempt to copy a marker to pure storage");
4569
4570 return obj;
4571 }
4572
4573
4574 \f
4575 /***********************************************************************
4576 Protection from GC
4577 ***********************************************************************/
4578
4579 /* Put an entry in staticvec, pointing at the variable with address
4580 VARADDRESS. */
4581
4582 void
4583 staticpro (varaddress)
4584 Lisp_Object *varaddress;
4585 {
4586 staticvec[staticidx++] = varaddress;
4587 if (staticidx >= NSTATICS)
4588 abort ();
4589 }
4590
4591 struct catchtag
4592 {
4593 Lisp_Object tag;
4594 Lisp_Object val;
4595 struct catchtag *next;
4596 };
4597
4598 \f
4599 /***********************************************************************
4600 Protection from GC
4601 ***********************************************************************/
4602
4603 /* Temporarily prevent garbage collection. */
4604
4605 int
4606 inhibit_garbage_collection ()
4607 {
4608 int count = SPECPDL_INDEX ();
4609 int nbits = min (VALBITS, BITS_PER_INT);
4610
4611 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4612 return count;
4613 }
4614
4615
4616 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4617 doc: /* Reclaim storage for Lisp objects no longer needed.
4618 Garbage collection happens automatically if you cons more than
4619 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4620 `garbage-collect' normally returns a list with info on amount of space in use:
4621 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4622 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4623 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4624 (USED-STRINGS . FREE-STRINGS))
4625 However, if there was overflow in pure space, `garbage-collect'
4626 returns nil, because real GC can't be done. */)
4627 ()
4628 {
4629 register struct specbinding *bind;
4630 struct catchtag *catch;
4631 struct handler *handler;
4632 char stack_top_variable;
4633 register int i;
4634 int message_p;
4635 Lisp_Object total[8];
4636 int count = SPECPDL_INDEX ();
4637 EMACS_TIME t1, t2, t3;
4638
4639 if (abort_on_gc)
4640 abort ();
4641
4642 /* Can't GC if pure storage overflowed because we can't determine
4643 if something is a pure object or not. */
4644 if (pure_bytes_used_before_overflow)
4645 return Qnil;
4646
4647 /* Don't keep undo information around forever.
4648 Do this early on, so it is no problem if the user quits. */
4649 {
4650 register struct buffer *nextb = all_buffers;
4651
4652 while (nextb)
4653 {
4654 /* If a buffer's undo list is Qt, that means that undo is
4655 turned off in that buffer. Calling truncate_undo_list on
4656 Qt tends to return NULL, which effectively turns undo back on.
4657 So don't call truncate_undo_list if undo_list is Qt. */
4658 if (! EQ (nextb->undo_list, Qt))
4659 truncate_undo_list (nextb);
4660
4661 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4662 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4663 {
4664 /* If a buffer's gap size is more than 10% of the buffer
4665 size, or larger than 2000 bytes, then shrink it
4666 accordingly. Keep a minimum size of 20 bytes. */
4667 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4668
4669 if (nextb->text->gap_size > size)
4670 {
4671 struct buffer *save_current = current_buffer;
4672 current_buffer = nextb;
4673 make_gap (-(nextb->text->gap_size - size));
4674 current_buffer = save_current;
4675 }
4676 }
4677
4678 nextb = nextb->next;
4679 }
4680 }
4681
4682 EMACS_GET_TIME (t1);
4683
4684 /* In case user calls debug_print during GC,
4685 don't let that cause a recursive GC. */
4686 consing_since_gc = 0;
4687
4688 /* Save what's currently displayed in the echo area. */
4689 message_p = push_message ();
4690 record_unwind_protect (pop_message_unwind, Qnil);
4691
4692 /* Save a copy of the contents of the stack, for debugging. */
4693 #if MAX_SAVE_STACK > 0
4694 if (NILP (Vpurify_flag))
4695 {
4696 i = &stack_top_variable - stack_bottom;
4697 if (i < 0) i = -i;
4698 if (i < MAX_SAVE_STACK)
4699 {
4700 if (stack_copy == 0)
4701 stack_copy = (char *) xmalloc (stack_copy_size = i);
4702 else if (stack_copy_size < i)
4703 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4704 if (stack_copy)
4705 {
4706 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4707 bcopy (stack_bottom, stack_copy, i);
4708 else
4709 bcopy (&stack_top_variable, stack_copy, i);
4710 }
4711 }
4712 }
4713 #endif /* MAX_SAVE_STACK > 0 */
4714
4715 if (garbage_collection_messages)
4716 message1_nolog ("Garbage collecting...");
4717
4718 BLOCK_INPUT;
4719
4720 shrink_regexp_cache ();
4721
4722 gc_in_progress = 1;
4723
4724 /* clear_marks (); */
4725
4726 /* Mark all the special slots that serve as the roots of accessibility. */
4727
4728 for (i = 0; i < staticidx; i++)
4729 mark_object (*staticvec[i]);
4730
4731 for (bind = specpdl; bind != specpdl_ptr; bind++)
4732 {
4733 mark_object (bind->symbol);
4734 mark_object (bind->old_value);
4735 }
4736 mark_kboards ();
4737 mark_ttys ();
4738
4739 #ifdef USE_GTK
4740 {
4741 extern void xg_mark_data ();
4742 xg_mark_data ();
4743 }
4744 #endif
4745
4746 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4747 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4748 mark_stack ();
4749 #else
4750 {
4751 register struct gcpro *tail;
4752 for (tail = gcprolist; tail; tail = tail->next)
4753 for (i = 0; i < tail->nvars; i++)
4754 mark_object (tail->var[i]);
4755 }
4756 #endif
4757
4758 mark_byte_stack ();
4759 for (catch = catchlist; catch; catch = catch->next)
4760 {
4761 mark_object (catch->tag);
4762 mark_object (catch->val);
4763 }
4764 for (handler = handlerlist; handler; handler = handler->next)
4765 {
4766 mark_object (handler->handler);
4767 mark_object (handler->var);
4768 }
4769 mark_backtrace ();
4770
4771 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4772 mark_stack ();
4773 #endif
4774
4775 /* Everything is now marked, except for the things that require special
4776 finalization, i.e. the undo_list.
4777 Look thru every buffer's undo list
4778 for elements that update markers that were not marked,
4779 and delete them. */
4780 {
4781 register struct buffer *nextb = all_buffers;
4782
4783 while (nextb)
4784 {
4785 /* If a buffer's undo list is Qt, that means that undo is
4786 turned off in that buffer. Calling truncate_undo_list on
4787 Qt tends to return NULL, which effectively turns undo back on.
4788 So don't call truncate_undo_list if undo_list is Qt. */
4789 if (! EQ (nextb->undo_list, Qt))
4790 {
4791 Lisp_Object tail, prev;
4792 tail = nextb->undo_list;
4793 prev = Qnil;
4794 while (CONSP (tail))
4795 {
4796 if (GC_CONSP (XCAR (tail))
4797 && GC_MARKERP (XCAR (XCAR (tail)))
4798 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4799 {
4800 if (NILP (prev))
4801 nextb->undo_list = tail = XCDR (tail);
4802 else
4803 {
4804 tail = XCDR (tail);
4805 XSETCDR (prev, tail);
4806 }
4807 }
4808 else
4809 {
4810 prev = tail;
4811 tail = XCDR (tail);
4812 }
4813 }
4814 }
4815 /* Now that we have stripped the elements that need not be in the
4816 undo_list any more, we can finally mark the list. */
4817 mark_object (nextb->undo_list);
4818
4819 nextb = nextb->next;
4820 }
4821 }
4822
4823 gc_sweep ();
4824
4825 /* Clear the mark bits that we set in certain root slots. */
4826
4827 unmark_byte_stack ();
4828 VECTOR_UNMARK (&buffer_defaults);
4829 VECTOR_UNMARK (&buffer_local_symbols);
4830
4831 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4832 dump_zombies ();
4833 #endif
4834
4835 UNBLOCK_INPUT;
4836
4837 /* clear_marks (); */
4838 gc_in_progress = 0;
4839
4840 consing_since_gc = 0;
4841 if (gc_cons_threshold < 10000)
4842 gc_cons_threshold = 10000;
4843
4844 if (garbage_collection_messages)
4845 {
4846 if (message_p || minibuf_level > 0)
4847 restore_message ();
4848 else
4849 message1_nolog ("Garbage collecting...done");
4850 }
4851
4852 unbind_to (count, Qnil);
4853
4854 total[0] = Fcons (make_number (total_conses),
4855 make_number (total_free_conses));
4856 total[1] = Fcons (make_number (total_symbols),
4857 make_number (total_free_symbols));
4858 total[2] = Fcons (make_number (total_markers),
4859 make_number (total_free_markers));
4860 total[3] = make_number (total_string_size);
4861 total[4] = make_number (total_vector_size);
4862 total[5] = Fcons (make_number (total_floats),
4863 make_number (total_free_floats));
4864 total[6] = Fcons (make_number (total_intervals),
4865 make_number (total_free_intervals));
4866 total[7] = Fcons (make_number (total_strings),
4867 make_number (total_free_strings));
4868
4869 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4870 {
4871 /* Compute average percentage of zombies. */
4872 double nlive = 0;
4873
4874 for (i = 0; i < 7; ++i)
4875 if (CONSP (total[i]))
4876 nlive += XFASTINT (XCAR (total[i]));
4877
4878 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4879 max_live = max (nlive, max_live);
4880 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4881 max_zombies = max (nzombies, max_zombies);
4882 ++ngcs;
4883 }
4884 #endif
4885
4886 if (!NILP (Vpost_gc_hook))
4887 {
4888 int count = inhibit_garbage_collection ();
4889 safe_run_hooks (Qpost_gc_hook);
4890 unbind_to (count, Qnil);
4891 }
4892
4893 /* Accumulate statistics. */
4894 EMACS_GET_TIME (t2);
4895 EMACS_SUB_TIME (t3, t2, t1);
4896 if (FLOATP (Vgc_elapsed))
4897 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4898 EMACS_SECS (t3) +
4899 EMACS_USECS (t3) * 1.0e-6);
4900 gcs_done++;
4901
4902 return Flist (sizeof total / sizeof *total, total);
4903 }
4904
4905
4906 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4907 only interesting objects referenced from glyphs are strings. */
4908
4909 static void
4910 mark_glyph_matrix (matrix)
4911 struct glyph_matrix *matrix;
4912 {
4913 struct glyph_row *row = matrix->rows;
4914 struct glyph_row *end = row + matrix->nrows;
4915
4916 for (; row < end; ++row)
4917 if (row->enabled_p)
4918 {
4919 int area;
4920 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4921 {
4922 struct glyph *glyph = row->glyphs[area];
4923 struct glyph *end_glyph = glyph + row->used[area];
4924
4925 for (; glyph < end_glyph; ++glyph)
4926 if (GC_STRINGP (glyph->object)
4927 && !STRING_MARKED_P (XSTRING (glyph->object)))
4928 mark_object (glyph->object);
4929 }
4930 }
4931 }
4932
4933
4934 /* Mark Lisp faces in the face cache C. */
4935
4936 static void
4937 mark_face_cache (c)
4938 struct face_cache *c;
4939 {
4940 if (c)
4941 {
4942 int i, j;
4943 for (i = 0; i < c->used; ++i)
4944 {
4945 struct face *face = FACE_FROM_ID (c->f, i);
4946
4947 if (face)
4948 {
4949 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4950 mark_object (face->lface[j]);
4951 }
4952 }
4953 }
4954 }
4955
4956
4957 #ifdef HAVE_WINDOW_SYSTEM
4958
4959 /* Mark Lisp objects in image IMG. */
4960
4961 static void
4962 mark_image (img)
4963 struct image *img;
4964 {
4965 mark_object (img->spec);
4966
4967 if (!NILP (img->data.lisp_val))
4968 mark_object (img->data.lisp_val);
4969 }
4970
4971
4972 /* Mark Lisp objects in image cache of frame F. It's done this way so
4973 that we don't have to include xterm.h here. */
4974
4975 static void
4976 mark_image_cache (f)
4977 struct frame *f;
4978 {
4979 forall_images_in_image_cache (f, mark_image);
4980 }
4981
4982 #endif /* HAVE_X_WINDOWS */
4983
4984
4985 \f
4986 /* Mark reference to a Lisp_Object.
4987 If the object referred to has not been seen yet, recursively mark
4988 all the references contained in it. */
4989
4990 #define LAST_MARKED_SIZE 500
4991 Lisp_Object last_marked[LAST_MARKED_SIZE];
4992 int last_marked_index;
4993
4994 /* For debugging--call abort when we cdr down this many
4995 links of a list, in mark_object. In debugging,
4996 the call to abort will hit a breakpoint.
4997 Normally this is zero and the check never goes off. */
4998 int mark_object_loop_halt;
4999
5000 void
5001 mark_object (arg)
5002 Lisp_Object arg;
5003 {
5004 register Lisp_Object obj = arg;
5005 #ifdef GC_CHECK_MARKED_OBJECTS
5006 void *po;
5007 struct mem_node *m;
5008 #endif
5009 int cdr_count = 0;
5010
5011 loop:
5012
5013 if (PURE_POINTER_P (XPNTR (obj)))
5014 return;
5015
5016 last_marked[last_marked_index++] = obj;
5017 if (last_marked_index == LAST_MARKED_SIZE)
5018 last_marked_index = 0;
5019
5020 /* Perform some sanity checks on the objects marked here. Abort if
5021 we encounter an object we know is bogus. This increases GC time
5022 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5023 #ifdef GC_CHECK_MARKED_OBJECTS
5024
5025 po = (void *) XPNTR (obj);
5026
5027 /* Check that the object pointed to by PO is known to be a Lisp
5028 structure allocated from the heap. */
5029 #define CHECK_ALLOCATED() \
5030 do { \
5031 m = mem_find (po); \
5032 if (m == MEM_NIL) \
5033 abort (); \
5034 } while (0)
5035
5036 /* Check that the object pointed to by PO is live, using predicate
5037 function LIVEP. */
5038 #define CHECK_LIVE(LIVEP) \
5039 do { \
5040 if (!LIVEP (m, po)) \
5041 abort (); \
5042 } while (0)
5043
5044 /* Check both of the above conditions. */
5045 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5046 do { \
5047 CHECK_ALLOCATED (); \
5048 CHECK_LIVE (LIVEP); \
5049 } while (0) \
5050
5051 #else /* not GC_CHECK_MARKED_OBJECTS */
5052
5053 #define CHECK_ALLOCATED() (void) 0
5054 #define CHECK_LIVE(LIVEP) (void) 0
5055 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5056
5057 #endif /* not GC_CHECK_MARKED_OBJECTS */
5058
5059 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5060 {
5061 case Lisp_String:
5062 {
5063 register struct Lisp_String *ptr = XSTRING (obj);
5064 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5065 MARK_INTERVAL_TREE (ptr->intervals);
5066 MARK_STRING (ptr);
5067 #ifdef GC_CHECK_STRING_BYTES
5068 /* Check that the string size recorded in the string is the
5069 same as the one recorded in the sdata structure. */
5070 CHECK_STRING_BYTES (ptr);
5071 #endif /* GC_CHECK_STRING_BYTES */
5072 }
5073 break;
5074
5075 case Lisp_Vectorlike:
5076 #ifdef GC_CHECK_MARKED_OBJECTS
5077 m = mem_find (po);
5078 if (m == MEM_NIL && !GC_SUBRP (obj)
5079 && po != &buffer_defaults
5080 && po != &buffer_local_symbols)
5081 abort ();
5082 #endif /* GC_CHECK_MARKED_OBJECTS */
5083
5084 if (GC_BUFFERP (obj))
5085 {
5086 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5087 {
5088 #ifdef GC_CHECK_MARKED_OBJECTS
5089 if (po != &buffer_defaults && po != &buffer_local_symbols)
5090 {
5091 struct buffer *b;
5092 for (b = all_buffers; b && b != po; b = b->next)
5093 ;
5094 if (b == NULL)
5095 abort ();
5096 }
5097 #endif /* GC_CHECK_MARKED_OBJECTS */
5098 mark_buffer (obj);
5099 }
5100 }
5101 else if (GC_SUBRP (obj))
5102 break;
5103 else if (GC_COMPILEDP (obj))
5104 /* We could treat this just like a vector, but it is better to
5105 save the COMPILED_CONSTANTS element for last and avoid
5106 recursion there. */
5107 {
5108 register struct Lisp_Vector *ptr = XVECTOR (obj);
5109 register EMACS_INT size = ptr->size;
5110 register int i;
5111
5112 if (VECTOR_MARKED_P (ptr))
5113 break; /* Already marked */
5114
5115 CHECK_LIVE (live_vector_p);
5116 VECTOR_MARK (ptr); /* Else mark it */
5117 size &= PSEUDOVECTOR_SIZE_MASK;
5118 for (i = 0; i < size; i++) /* and then mark its elements */
5119 {
5120 if (i != COMPILED_CONSTANTS)
5121 mark_object (ptr->contents[i]);
5122 }
5123 obj = ptr->contents[COMPILED_CONSTANTS];
5124 goto loop;
5125 }
5126 else if (GC_FRAMEP (obj))
5127 {
5128 register struct frame *ptr = XFRAME (obj);
5129
5130 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5131 VECTOR_MARK (ptr); /* Else mark it */
5132
5133 CHECK_LIVE (live_vector_p);
5134 mark_object (ptr->name);
5135 mark_object (ptr->icon_name);
5136 mark_object (ptr->title);
5137 mark_object (ptr->focus_frame);
5138 mark_object (ptr->selected_window);
5139 mark_object (ptr->minibuffer_window);
5140 mark_object (ptr->param_alist);
5141 mark_object (ptr->scroll_bars);
5142 mark_object (ptr->condemned_scroll_bars);
5143 mark_object (ptr->menu_bar_items);
5144 mark_object (ptr->face_alist);
5145 mark_object (ptr->menu_bar_vector);
5146 mark_object (ptr->buffer_predicate);
5147 mark_object (ptr->buffer_list);
5148 mark_object (ptr->menu_bar_window);
5149 mark_object (ptr->tool_bar_window);
5150 mark_face_cache (ptr->face_cache);
5151 #ifdef HAVE_WINDOW_SYSTEM
5152 mark_image_cache (ptr);
5153 mark_object (ptr->tool_bar_items);
5154 mark_object (ptr->desired_tool_bar_string);
5155 mark_object (ptr->current_tool_bar_string);
5156 #endif /* HAVE_WINDOW_SYSTEM */
5157 }
5158 else if (GC_BOOL_VECTOR_P (obj))
5159 {
5160 register struct Lisp_Vector *ptr = XVECTOR (obj);
5161
5162 if (VECTOR_MARKED_P (ptr))
5163 break; /* Already marked */
5164 CHECK_LIVE (live_vector_p);
5165 VECTOR_MARK (ptr); /* Else mark it */
5166 }
5167 else if (GC_WINDOWP (obj))
5168 {
5169 register struct Lisp_Vector *ptr = XVECTOR (obj);
5170 struct window *w = XWINDOW (obj);
5171 register int i;
5172
5173 /* Stop if already marked. */
5174 if (VECTOR_MARKED_P (ptr))
5175 break;
5176
5177 /* Mark it. */
5178 CHECK_LIVE (live_vector_p);
5179 VECTOR_MARK (ptr);
5180
5181 /* There is no Lisp data above The member CURRENT_MATRIX in
5182 struct WINDOW. Stop marking when that slot is reached. */
5183 for (i = 0;
5184 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5185 i++)
5186 mark_object (ptr->contents[i]);
5187
5188 /* Mark glyphs for leaf windows. Marking window matrices is
5189 sufficient because frame matrices use the same glyph
5190 memory. */
5191 if (NILP (w->hchild)
5192 && NILP (w->vchild)
5193 && w->current_matrix)
5194 {
5195 mark_glyph_matrix (w->current_matrix);
5196 mark_glyph_matrix (w->desired_matrix);
5197 }
5198 }
5199 else if (GC_HASH_TABLE_P (obj))
5200 {
5201 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5202
5203 /* Stop if already marked. */
5204 if (VECTOR_MARKED_P (h))
5205 break;
5206
5207 /* Mark it. */
5208 CHECK_LIVE (live_vector_p);
5209 VECTOR_MARK (h);
5210
5211 /* Mark contents. */
5212 /* Do not mark next_free or next_weak.
5213 Being in the next_weak chain
5214 should not keep the hash table alive.
5215 No need to mark `count' since it is an integer. */
5216 mark_object (h->test);
5217 mark_object (h->weak);
5218 mark_object (h->rehash_size);
5219 mark_object (h->rehash_threshold);
5220 mark_object (h->hash);
5221 mark_object (h->next);
5222 mark_object (h->index);
5223 mark_object (h->user_hash_function);
5224 mark_object (h->user_cmp_function);
5225
5226 /* If hash table is not weak, mark all keys and values.
5227 For weak tables, mark only the vector. */
5228 if (GC_NILP (h->weak))
5229 mark_object (h->key_and_value);
5230 else
5231 VECTOR_MARK (XVECTOR (h->key_and_value));
5232 }
5233 else
5234 {
5235 register struct Lisp_Vector *ptr = XVECTOR (obj);
5236 register EMACS_INT size = ptr->size;
5237 register int i;
5238
5239 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5240 CHECK_LIVE (live_vector_p);
5241 VECTOR_MARK (ptr); /* Else mark it */
5242 if (size & PSEUDOVECTOR_FLAG)
5243 size &= PSEUDOVECTOR_SIZE_MASK;
5244
5245 for (i = 0; i < size; i++) /* and then mark its elements */
5246 mark_object (ptr->contents[i]);
5247 }
5248 break;
5249
5250 case Lisp_Symbol:
5251 {
5252 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5253 struct Lisp_Symbol *ptrx;
5254
5255 if (ptr->gcmarkbit) break;
5256 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5257 ptr->gcmarkbit = 1;
5258 mark_object (ptr->value);
5259 mark_object (ptr->function);
5260 mark_object (ptr->plist);
5261
5262 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5263 MARK_STRING (XSTRING (ptr->xname));
5264 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5265
5266 /* Note that we do not mark the obarray of the symbol.
5267 It is safe not to do so because nothing accesses that
5268 slot except to check whether it is nil. */
5269 ptr = ptr->next;
5270 if (ptr)
5271 {
5272 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5273 XSETSYMBOL (obj, ptrx);
5274 goto loop;
5275 }
5276 }
5277 break;
5278
5279 case Lisp_Misc:
5280 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5281 if (XMARKER (obj)->gcmarkbit)
5282 break;
5283 XMARKER (obj)->gcmarkbit = 1;
5284
5285 switch (XMISCTYPE (obj))
5286 {
5287 case Lisp_Misc_Buffer_Local_Value:
5288 case Lisp_Misc_Some_Buffer_Local_Value:
5289 {
5290 register struct Lisp_Buffer_Local_Value *ptr
5291 = XBUFFER_LOCAL_VALUE (obj);
5292 /* If the cdr is nil, avoid recursion for the car. */
5293 if (EQ (ptr->cdr, Qnil))
5294 {
5295 obj = ptr->realvalue;
5296 goto loop;
5297 }
5298 mark_object (ptr->realvalue);
5299 mark_object (ptr->buffer);
5300 mark_object (ptr->frame);
5301 obj = ptr->cdr;
5302 goto loop;
5303 }
5304
5305 case Lisp_Misc_Marker:
5306 /* DO NOT mark thru the marker's chain.
5307 The buffer's markers chain does not preserve markers from gc;
5308 instead, markers are removed from the chain when freed by gc. */
5309 break;
5310
5311 case Lisp_Misc_Intfwd:
5312 case Lisp_Misc_Boolfwd:
5313 case Lisp_Misc_Objfwd:
5314 case Lisp_Misc_Buffer_Objfwd:
5315 case Lisp_Misc_Kboard_Objfwd:
5316 /* Don't bother with Lisp_Buffer_Objfwd,
5317 since all markable slots in current buffer marked anyway. */
5318 /* Don't need to do Lisp_Objfwd, since the places they point
5319 are protected with staticpro. */
5320 break;
5321
5322 case Lisp_Misc_Save_Value:
5323 #if GC_MARK_STACK
5324 {
5325 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5326 /* If DOGC is set, POINTER is the address of a memory
5327 area containing INTEGER potential Lisp_Objects. */
5328 if (ptr->dogc)
5329 {
5330 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5331 int nelt;
5332 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5333 mark_maybe_object (*p);
5334 }
5335 }
5336 #endif
5337 break;
5338
5339 case Lisp_Misc_Overlay:
5340 {
5341 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5342 mark_object (ptr->start);
5343 mark_object (ptr->end);
5344 mark_object (ptr->plist);
5345 if (ptr->next)
5346 {
5347 XSETMISC (obj, ptr->next);
5348 goto loop;
5349 }
5350 }
5351 break;
5352
5353 default:
5354 abort ();
5355 }
5356 break;
5357
5358 case Lisp_Cons:
5359 {
5360 register struct Lisp_Cons *ptr = XCONS (obj);
5361 if (CONS_MARKED_P (ptr)) break;
5362 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5363 CONS_MARK (ptr);
5364 /* If the cdr is nil, avoid recursion for the car. */
5365 if (EQ (ptr->cdr, Qnil))
5366 {
5367 obj = ptr->car;
5368 cdr_count = 0;
5369 goto loop;
5370 }
5371 mark_object (ptr->car);
5372 obj = ptr->cdr;
5373 cdr_count++;
5374 if (cdr_count == mark_object_loop_halt)
5375 abort ();
5376 goto loop;
5377 }
5378
5379 case Lisp_Float:
5380 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5381 FLOAT_MARK (XFLOAT (obj));
5382 break;
5383
5384 case Lisp_Int:
5385 break;
5386
5387 default:
5388 abort ();
5389 }
5390
5391 #undef CHECK_LIVE
5392 #undef CHECK_ALLOCATED
5393 #undef CHECK_ALLOCATED_AND_LIVE
5394 }
5395
5396 /* Mark the pointers in a buffer structure. */
5397
5398 static void
5399 mark_buffer (buf)
5400 Lisp_Object buf;
5401 {
5402 register struct buffer *buffer = XBUFFER (buf);
5403 register Lisp_Object *ptr, tmp;
5404 Lisp_Object base_buffer;
5405
5406 VECTOR_MARK (buffer);
5407
5408 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5409
5410 /* For now, we just don't mark the undo_list. It's done later in
5411 a special way just before the sweep phase, and after stripping
5412 some of its elements that are not needed any more. */
5413
5414 if (buffer->overlays_before)
5415 {
5416 XSETMISC (tmp, buffer->overlays_before);
5417 mark_object (tmp);
5418 }
5419 if (buffer->overlays_after)
5420 {
5421 XSETMISC (tmp, buffer->overlays_after);
5422 mark_object (tmp);
5423 }
5424
5425 for (ptr = &buffer->name;
5426 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5427 ptr++)
5428 mark_object (*ptr);
5429
5430 /* If this is an indirect buffer, mark its base buffer. */
5431 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5432 {
5433 XSETBUFFER (base_buffer, buffer->base_buffer);
5434 mark_buffer (base_buffer);
5435 }
5436 }
5437
5438
5439 /* Value is non-zero if OBJ will survive the current GC because it's
5440 either marked or does not need to be marked to survive. */
5441
5442 int
5443 survives_gc_p (obj)
5444 Lisp_Object obj;
5445 {
5446 int survives_p;
5447
5448 switch (XGCTYPE (obj))
5449 {
5450 case Lisp_Int:
5451 survives_p = 1;
5452 break;
5453
5454 case Lisp_Symbol:
5455 survives_p = XSYMBOL (obj)->gcmarkbit;
5456 break;
5457
5458 case Lisp_Misc:
5459 survives_p = XMARKER (obj)->gcmarkbit;
5460 break;
5461
5462 case Lisp_String:
5463 survives_p = STRING_MARKED_P (XSTRING (obj));
5464 break;
5465
5466 case Lisp_Vectorlike:
5467 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5468 break;
5469
5470 case Lisp_Cons:
5471 survives_p = CONS_MARKED_P (XCONS (obj));
5472 break;
5473
5474 case Lisp_Float:
5475 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5476 break;
5477
5478 default:
5479 abort ();
5480 }
5481
5482 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5483 }
5484
5485
5486 \f
5487 /* Sweep: find all structures not marked, and free them. */
5488
5489 static void
5490 gc_sweep ()
5491 {
5492 /* Remove or mark entries in weak hash tables.
5493 This must be done before any object is unmarked. */
5494 sweep_weak_hash_tables ();
5495
5496 sweep_strings ();
5497 #ifdef GC_CHECK_STRING_BYTES
5498 if (!noninteractive)
5499 check_string_bytes (1);
5500 #endif
5501
5502 /* Put all unmarked conses on free list */
5503 {
5504 register struct cons_block *cblk;
5505 struct cons_block **cprev = &cons_block;
5506 register int lim = cons_block_index;
5507 register int num_free = 0, num_used = 0;
5508
5509 cons_free_list = 0;
5510
5511 for (cblk = cons_block; cblk; cblk = *cprev)
5512 {
5513 register int i;
5514 int this_free = 0;
5515 for (i = 0; i < lim; i++)
5516 if (!CONS_MARKED_P (&cblk->conses[i]))
5517 {
5518 this_free++;
5519 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5520 cons_free_list = &cblk->conses[i];
5521 #if GC_MARK_STACK
5522 cons_free_list->car = Vdead;
5523 #endif
5524 }
5525 else
5526 {
5527 num_used++;
5528 CONS_UNMARK (&cblk->conses[i]);
5529 }
5530 lim = CONS_BLOCK_SIZE;
5531 /* If this block contains only free conses and we have already
5532 seen more than two blocks worth of free conses then deallocate
5533 this block. */
5534 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5535 {
5536 *cprev = cblk->next;
5537 /* Unhook from the free list. */
5538 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5539 lisp_align_free (cblk);
5540 n_cons_blocks--;
5541 }
5542 else
5543 {
5544 num_free += this_free;
5545 cprev = &cblk->next;
5546 }
5547 }
5548 total_conses = num_used;
5549 total_free_conses = num_free;
5550 }
5551
5552 /* Put all unmarked floats on free list */
5553 {
5554 register struct float_block *fblk;
5555 struct float_block **fprev = &float_block;
5556 register int lim = float_block_index;
5557 register int num_free = 0, num_used = 0;
5558
5559 float_free_list = 0;
5560
5561 for (fblk = float_block; fblk; fblk = *fprev)
5562 {
5563 register int i;
5564 int this_free = 0;
5565 for (i = 0; i < lim; i++)
5566 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5567 {
5568 this_free++;
5569 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5570 float_free_list = &fblk->floats[i];
5571 }
5572 else
5573 {
5574 num_used++;
5575 FLOAT_UNMARK (&fblk->floats[i]);
5576 }
5577 lim = FLOAT_BLOCK_SIZE;
5578 /* If this block contains only free floats and we have already
5579 seen more than two blocks worth of free floats then deallocate
5580 this block. */
5581 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5582 {
5583 *fprev = fblk->next;
5584 /* Unhook from the free list. */
5585 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5586 lisp_align_free (fblk);
5587 n_float_blocks--;
5588 }
5589 else
5590 {
5591 num_free += this_free;
5592 fprev = &fblk->next;
5593 }
5594 }
5595 total_floats = num_used;
5596 total_free_floats = num_free;
5597 }
5598
5599 /* Put all unmarked intervals on free list */
5600 {
5601 register struct interval_block *iblk;
5602 struct interval_block **iprev = &interval_block;
5603 register int lim = interval_block_index;
5604 register int num_free = 0, num_used = 0;
5605
5606 interval_free_list = 0;
5607
5608 for (iblk = interval_block; iblk; iblk = *iprev)
5609 {
5610 register int i;
5611 int this_free = 0;
5612
5613 for (i = 0; i < lim; i++)
5614 {
5615 if (!iblk->intervals[i].gcmarkbit)
5616 {
5617 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5618 interval_free_list = &iblk->intervals[i];
5619 this_free++;
5620 }
5621 else
5622 {
5623 num_used++;
5624 iblk->intervals[i].gcmarkbit = 0;
5625 }
5626 }
5627 lim = INTERVAL_BLOCK_SIZE;
5628 /* If this block contains only free intervals and we have already
5629 seen more than two blocks worth of free intervals then
5630 deallocate this block. */
5631 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5632 {
5633 *iprev = iblk->next;
5634 /* Unhook from the free list. */
5635 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5636 lisp_free (iblk);
5637 n_interval_blocks--;
5638 }
5639 else
5640 {
5641 num_free += this_free;
5642 iprev = &iblk->next;
5643 }
5644 }
5645 total_intervals = num_used;
5646 total_free_intervals = num_free;
5647 }
5648
5649 /* Put all unmarked symbols on free list */
5650 {
5651 register struct symbol_block *sblk;
5652 struct symbol_block **sprev = &symbol_block;
5653 register int lim = symbol_block_index;
5654 register int num_free = 0, num_used = 0;
5655
5656 symbol_free_list = NULL;
5657
5658 for (sblk = symbol_block; sblk; sblk = *sprev)
5659 {
5660 int this_free = 0;
5661 struct Lisp_Symbol *sym = sblk->symbols;
5662 struct Lisp_Symbol *end = sym + lim;
5663
5664 for (; sym < end; ++sym)
5665 {
5666 /* Check if the symbol was created during loadup. In such a case
5667 it might be pointed to by pure bytecode which we don't trace,
5668 so we conservatively assume that it is live. */
5669 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5670
5671 if (!sym->gcmarkbit && !pure_p)
5672 {
5673 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5674 symbol_free_list = sym;
5675 #if GC_MARK_STACK
5676 symbol_free_list->function = Vdead;
5677 #endif
5678 ++this_free;
5679 }
5680 else
5681 {
5682 ++num_used;
5683 if (!pure_p)
5684 UNMARK_STRING (XSTRING (sym->xname));
5685 sym->gcmarkbit = 0;
5686 }
5687 }
5688
5689 lim = SYMBOL_BLOCK_SIZE;
5690 /* If this block contains only free symbols and we have already
5691 seen more than two blocks worth of free symbols then deallocate
5692 this block. */
5693 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5694 {
5695 *sprev = sblk->next;
5696 /* Unhook from the free list. */
5697 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5698 lisp_free (sblk);
5699 n_symbol_blocks--;
5700 }
5701 else
5702 {
5703 num_free += this_free;
5704 sprev = &sblk->next;
5705 }
5706 }
5707 total_symbols = num_used;
5708 total_free_symbols = num_free;
5709 }
5710
5711 /* Put all unmarked misc's on free list.
5712 For a marker, first unchain it from the buffer it points into. */
5713 {
5714 register struct marker_block *mblk;
5715 struct marker_block **mprev = &marker_block;
5716 register int lim = marker_block_index;
5717 register int num_free = 0, num_used = 0;
5718
5719 marker_free_list = 0;
5720
5721 for (mblk = marker_block; mblk; mblk = *mprev)
5722 {
5723 register int i;
5724 int this_free = 0;
5725
5726 for (i = 0; i < lim; i++)
5727 {
5728 if (!mblk->markers[i].u_marker.gcmarkbit)
5729 {
5730 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5731 unchain_marker (&mblk->markers[i].u_marker);
5732 /* Set the type of the freed object to Lisp_Misc_Free.
5733 We could leave the type alone, since nobody checks it,
5734 but this might catch bugs faster. */
5735 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5736 mblk->markers[i].u_free.chain = marker_free_list;
5737 marker_free_list = &mblk->markers[i];
5738 this_free++;
5739 }
5740 else
5741 {
5742 num_used++;
5743 mblk->markers[i].u_marker.gcmarkbit = 0;
5744 }
5745 }
5746 lim = MARKER_BLOCK_SIZE;
5747 /* If this block contains only free markers and we have already
5748 seen more than two blocks worth of free markers then deallocate
5749 this block. */
5750 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5751 {
5752 *mprev = mblk->next;
5753 /* Unhook from the free list. */
5754 marker_free_list = mblk->markers[0].u_free.chain;
5755 lisp_free (mblk);
5756 n_marker_blocks--;
5757 }
5758 else
5759 {
5760 num_free += this_free;
5761 mprev = &mblk->next;
5762 }
5763 }
5764
5765 total_markers = num_used;
5766 total_free_markers = num_free;
5767 }
5768
5769 /* Free all unmarked buffers */
5770 {
5771 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5772
5773 while (buffer)
5774 if (!VECTOR_MARKED_P (buffer))
5775 {
5776 if (prev)
5777 prev->next = buffer->next;
5778 else
5779 all_buffers = buffer->next;
5780 next = buffer->next;
5781 lisp_free (buffer);
5782 buffer = next;
5783 }
5784 else
5785 {
5786 VECTOR_UNMARK (buffer);
5787 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5788 prev = buffer, buffer = buffer->next;
5789 }
5790 }
5791
5792 /* Free all unmarked vectors */
5793 {
5794 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5795 total_vector_size = 0;
5796
5797 while (vector)
5798 if (!VECTOR_MARKED_P (vector))
5799 {
5800 if (prev)
5801 prev->next = vector->next;
5802 else
5803 all_vectors = vector->next;
5804 next = vector->next;
5805 lisp_free (vector);
5806 n_vectors--;
5807 vector = next;
5808
5809 }
5810 else
5811 {
5812 VECTOR_UNMARK (vector);
5813 if (vector->size & PSEUDOVECTOR_FLAG)
5814 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5815 else
5816 total_vector_size += vector->size;
5817 prev = vector, vector = vector->next;
5818 }
5819 }
5820
5821 #ifdef GC_CHECK_STRING_BYTES
5822 if (!noninteractive)
5823 check_string_bytes (1);
5824 #endif
5825 }
5826
5827
5828
5829 \f
5830 /* Debugging aids. */
5831
5832 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5833 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5834 This may be helpful in debugging Emacs's memory usage.
5835 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5836 ()
5837 {
5838 Lisp_Object end;
5839
5840 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5841
5842 return end;
5843 }
5844
5845 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5846 doc: /* Return a list of counters that measure how much consing there has been.
5847 Each of these counters increments for a certain kind of object.
5848 The counters wrap around from the largest positive integer to zero.
5849 Garbage collection does not decrease them.
5850 The elements of the value are as follows:
5851 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5852 All are in units of 1 = one object consed
5853 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5854 objects consed.
5855 MISCS include overlays, markers, and some internal types.
5856 Frames, windows, buffers, and subprocesses count as vectors
5857 (but the contents of a buffer's text do not count here). */)
5858 ()
5859 {
5860 Lisp_Object consed[8];
5861
5862 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5863 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5864 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5865 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5866 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5867 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5868 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5869 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5870
5871 return Flist (8, consed);
5872 }
5873
5874 int suppress_checking;
5875 void
5876 die (msg, file, line)
5877 const char *msg;
5878 const char *file;
5879 int line;
5880 {
5881 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5882 file, line, msg);
5883 abort ();
5884 }
5885 \f
5886 /* Initialization */
5887
5888 void
5889 init_alloc_once ()
5890 {
5891 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5892 purebeg = PUREBEG;
5893 pure_size = PURESIZE;
5894 pure_bytes_used = 0;
5895 pure_bytes_used_before_overflow = 0;
5896
5897 /* Initialize the list of free aligned blocks. */
5898 free_ablock = NULL;
5899
5900 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5901 mem_init ();
5902 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5903 #endif
5904
5905 all_vectors = 0;
5906 ignore_warnings = 1;
5907 #ifdef DOUG_LEA_MALLOC
5908 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5909 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5910 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5911 #endif
5912 init_strings ();
5913 init_cons ();
5914 init_symbol ();
5915 init_marker ();
5916 init_float ();
5917 init_intervals ();
5918
5919 #ifdef REL_ALLOC
5920 malloc_hysteresis = 32;
5921 #else
5922 malloc_hysteresis = 0;
5923 #endif
5924
5925 spare_memory = (char *) malloc (SPARE_MEMORY);
5926
5927 ignore_warnings = 0;
5928 gcprolist = 0;
5929 byte_stack_list = 0;
5930 staticidx = 0;
5931 consing_since_gc = 0;
5932 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5933 #ifdef VIRT_ADDR_VARIES
5934 malloc_sbrk_unused = 1<<22; /* A large number */
5935 malloc_sbrk_used = 100000; /* as reasonable as any number */
5936 #endif /* VIRT_ADDR_VARIES */
5937 }
5938
5939 void
5940 init_alloc ()
5941 {
5942 gcprolist = 0;
5943 byte_stack_list = 0;
5944 #if GC_MARK_STACK
5945 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5946 setjmp_tested_p = longjmps_done = 0;
5947 #endif
5948 #endif
5949 Vgc_elapsed = make_float (0.0);
5950 gcs_done = 0;
5951 }
5952
5953 void
5954 syms_of_alloc ()
5955 {
5956 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5957 doc: /* *Number of bytes of consing between garbage collections.
5958 Garbage collection can happen automatically once this many bytes have been
5959 allocated since the last garbage collection. All data types count.
5960
5961 Garbage collection happens automatically only when `eval' is called.
5962
5963 By binding this temporarily to a large number, you can effectively
5964 prevent garbage collection during a part of the program. */);
5965
5966 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5967 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5968
5969 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5970 doc: /* Number of cons cells that have been consed so far. */);
5971
5972 DEFVAR_INT ("floats-consed", &floats_consed,
5973 doc: /* Number of floats that have been consed so far. */);
5974
5975 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5976 doc: /* Number of vector cells that have been consed so far. */);
5977
5978 DEFVAR_INT ("symbols-consed", &symbols_consed,
5979 doc: /* Number of symbols that have been consed so far. */);
5980
5981 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5982 doc: /* Number of string characters that have been consed so far. */);
5983
5984 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5985 doc: /* Number of miscellaneous objects that have been consed so far. */);
5986
5987 DEFVAR_INT ("intervals-consed", &intervals_consed,
5988 doc: /* Number of intervals that have been consed so far. */);
5989
5990 DEFVAR_INT ("strings-consed", &strings_consed,
5991 doc: /* Number of strings that have been consed so far. */);
5992
5993 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5994 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5995 This means that certain objects should be allocated in shared (pure) space. */);
5996
5997 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5998 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5999 garbage_collection_messages = 0;
6000
6001 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6002 doc: /* Hook run after garbage collection has finished. */);
6003 Vpost_gc_hook = Qnil;
6004 Qpost_gc_hook = intern ("post-gc-hook");
6005 staticpro (&Qpost_gc_hook);
6006
6007 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6008 doc: /* Precomputed `signal' argument for memory-full error. */);
6009 /* We build this in advance because if we wait until we need it, we might
6010 not be able to allocate the memory to hold it. */
6011 Vmemory_signal_data
6012 = list2 (Qerror,
6013 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6014
6015 DEFVAR_LISP ("memory-full", &Vmemory_full,
6016 doc: /* Non-nil means we are handling a memory-full error. */);
6017 Vmemory_full = Qnil;
6018
6019 staticpro (&Qgc_cons_threshold);
6020 Qgc_cons_threshold = intern ("gc-cons-threshold");
6021
6022 staticpro (&Qchar_table_extra_slots);
6023 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6024
6025 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6026 doc: /* Accumulated time elapsed in garbage collections.
6027 The time is in seconds as a floating point value. */);
6028 DEFVAR_INT ("gcs-done", &gcs_done,
6029 doc: /* Accumulated number of garbage collections done. */);
6030
6031 defsubr (&Scons);
6032 defsubr (&Slist);
6033 defsubr (&Svector);
6034 defsubr (&Smake_byte_code);
6035 defsubr (&Smake_list);
6036 defsubr (&Smake_vector);
6037 defsubr (&Smake_char_table);
6038 defsubr (&Smake_string);
6039 defsubr (&Smake_bool_vector);
6040 defsubr (&Smake_symbol);
6041 defsubr (&Smake_marker);
6042 defsubr (&Spurecopy);
6043 defsubr (&Sgarbage_collect);
6044 defsubr (&Smemory_limit);
6045 defsubr (&Smemory_use_counts);
6046
6047 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6048 defsubr (&Sgc_status);
6049 #endif
6050 }
6051
6052 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6053 (do not change this comment) */