Make Emacs functions such as Fatom 'static' by default.
[bpt/emacs.git] / src / floatfns.c
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2011
4 Free Software Foundation, Inc.
5
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
8
9 This file is part of GNU Emacs.
10
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23
24
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
28
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
33
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
36
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
39
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
42
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
48 */
49
50 #include <config.h>
51 #include <signal.h>
52 #include <setjmp.h>
53 #include "lisp.h"
54 #include "syssignal.h"
55
56 #if STDC_HEADERS
57 #include <float.h>
58 #endif
59
60 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
61 #ifndef IEEE_FLOATING_POINT
62 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
63 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
64 #define IEEE_FLOATING_POINT 1
65 #else
66 #define IEEE_FLOATING_POINT 0
67 #endif
68 #endif
69
70 #include <math.h>
71
72 /* This declaration is omitted on some systems, like Ultrix. */
73 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
74 extern double logb (double);
75 #endif /* not HPUX and HAVE_LOGB and no logb macro */
76
77 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
78 /* If those are defined, then this is probably a `matherr' machine. */
79 # ifndef HAVE_MATHERR
80 # define HAVE_MATHERR
81 # endif
82 #endif
83
84 #ifdef NO_MATHERR
85 #undef HAVE_MATHERR
86 #endif
87
88 #ifdef HAVE_MATHERR
89 # ifdef FLOAT_CHECK_ERRNO
90 # undef FLOAT_CHECK_ERRNO
91 # endif
92 # ifdef FLOAT_CHECK_DOMAIN
93 # undef FLOAT_CHECK_DOMAIN
94 # endif
95 #endif
96
97 #ifndef NO_FLOAT_CHECK_ERRNO
98 #define FLOAT_CHECK_ERRNO
99 #endif
100
101 #ifdef FLOAT_CHECK_ERRNO
102 # include <errno.h>
103 #endif
104
105 #ifdef FLOAT_CATCH_SIGILL
106 static void float_error ();
107 #endif
108
109 /* Nonzero while executing in floating point.
110 This tells float_error what to do. */
111
112 static int in_float;
113
114 /* If an argument is out of range for a mathematical function,
115 here is the actual argument value to use in the error message.
116 These variables are used only across the floating point library call
117 so there is no need to staticpro them. */
118
119 static Lisp_Object float_error_arg, float_error_arg2;
120
121 static const char *float_error_fn_name;
122
123 /* Evaluate the floating point expression D, recording NUM
124 as the original argument for error messages.
125 D is normally an assignment expression.
126 Handle errors which may result in signals or may set errno.
127
128 Note that float_error may be declared to return void, so you can't
129 just cast the zero after the colon to (void) to make the types
130 check properly. */
131
132 #ifdef FLOAT_CHECK_ERRNO
133 #define IN_FLOAT(d, name, num) \
134 do { \
135 float_error_arg = num; \
136 float_error_fn_name = name; \
137 in_float = 1; errno = 0; (d); in_float = 0; \
138 switch (errno) { \
139 case 0: break; \
140 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
141 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
142 default: arith_error (float_error_fn_name, float_error_arg); \
143 } \
144 } while (0)
145 #define IN_FLOAT2(d, name, num, num2) \
146 do { \
147 float_error_arg = num; \
148 float_error_arg2 = num2; \
149 float_error_fn_name = name; \
150 in_float = 1; errno = 0; (d); in_float = 0; \
151 switch (errno) { \
152 case 0: break; \
153 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
154 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
155 default: arith_error (float_error_fn_name, float_error_arg); \
156 } \
157 } while (0)
158 #else
159 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
160 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
161 #endif
162
163 /* Convert float to Lisp_Int if it fits, else signal a range error
164 using the given arguments. */
165 #define FLOAT_TO_INT(x, i, name, num) \
166 do \
167 { \
168 if (FIXNUM_OVERFLOW_P (x)) \
169 range_error (name, num); \
170 XSETINT (i, (EMACS_INT)(x)); \
171 } \
172 while (0)
173 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
174 do \
175 { \
176 if (FIXNUM_OVERFLOW_P (x)) \
177 range_error2 (name, num1, num2); \
178 XSETINT (i, (EMACS_INT)(x)); \
179 } \
180 while (0)
181
182 #define arith_error(op,arg) \
183 xsignal2 (Qarith_error, build_string ((op)), (arg))
184 #define range_error(op,arg) \
185 xsignal2 (Qrange_error, build_string ((op)), (arg))
186 #define range_error2(op,a1,a2) \
187 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
188 #define domain_error(op,arg) \
189 xsignal2 (Qdomain_error, build_string ((op)), (arg))
190 #ifdef FLOAT_CHECK_DOMAIN
191 #define domain_error2(op,a1,a2) \
192 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
193 #endif
194
195 /* Extract a Lisp number as a `double', or signal an error. */
196
197 double
198 extract_float (Lisp_Object num)
199 {
200 CHECK_NUMBER_OR_FLOAT (num);
201
202 if (FLOATP (num))
203 return XFLOAT_DATA (num);
204 return (double) XINT (num);
205 }
206 \f
207 /* Trig functions. */
208
209 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
210 doc: /* Return the inverse cosine of ARG. */)
211 (register Lisp_Object arg)
212 {
213 double d = extract_float (arg);
214 #ifdef FLOAT_CHECK_DOMAIN
215 if (d > 1.0 || d < -1.0)
216 domain_error ("acos", arg);
217 #endif
218 IN_FLOAT (d = acos (d), "acos", arg);
219 return make_float (d);
220 }
221
222 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
223 doc: /* Return the inverse sine of ARG. */)
224 (register Lisp_Object arg)
225 {
226 double d = extract_float (arg);
227 #ifdef FLOAT_CHECK_DOMAIN
228 if (d > 1.0 || d < -1.0)
229 domain_error ("asin", arg);
230 #endif
231 IN_FLOAT (d = asin (d), "asin", arg);
232 return make_float (d);
233 }
234
235 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
236 doc: /* Return the inverse tangent of the arguments.
237 If only one argument Y is given, return the inverse tangent of Y.
238 If two arguments Y and X are given, return the inverse tangent of Y
239 divided by X, i.e. the angle in radians between the vector (X, Y)
240 and the x-axis. */)
241 (register Lisp_Object y, Lisp_Object x)
242 {
243 double d = extract_float (y);
244
245 if (NILP (x))
246 IN_FLOAT (d = atan (d), "atan", y);
247 else
248 {
249 double d2 = extract_float (x);
250
251 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
252 }
253 return make_float (d);
254 }
255
256 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
257 doc: /* Return the cosine of ARG. */)
258 (register Lisp_Object arg)
259 {
260 double d = extract_float (arg);
261 IN_FLOAT (d = cos (d), "cos", arg);
262 return make_float (d);
263 }
264
265 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
266 doc: /* Return the sine of ARG. */)
267 (register Lisp_Object arg)
268 {
269 double d = extract_float (arg);
270 IN_FLOAT (d = sin (d), "sin", arg);
271 return make_float (d);
272 }
273
274 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
275 doc: /* Return the tangent of ARG. */)
276 (register Lisp_Object arg)
277 {
278 double d = extract_float (arg);
279 double c = cos (d);
280 #ifdef FLOAT_CHECK_DOMAIN
281 if (c == 0.0)
282 domain_error ("tan", arg);
283 #endif
284 IN_FLOAT (d = sin (d) / c, "tan", arg);
285 return make_float (d);
286 }
287
288 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
289 DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
290 doc: /* Return non nil iff argument X is a NaN. */)
291 (Lisp_Object x)
292 {
293 CHECK_FLOAT (x);
294 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
295 }
296
297 DEFUN ("copysign", Fcopysign, Scopysign, 1, 2, 0,
298 doc: /* Copy sign of X2 to value of X1, and return the result.
299 Cause an error if X1 or X2 is not a float. */)
300 (Lisp_Object x1, Lisp_Object x2)
301 {
302 double f1, f2;
303
304 CHECK_FLOAT (x1);
305 CHECK_FLOAT (x2);
306
307 f1 = XFLOAT_DATA (x1);
308 f2 = XFLOAT_DATA (x2);
309
310 return make_float (copysign (f1, f2));
311 }
312
313 DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
314 doc: /* Get significand and exponent of a floating point number.
315 Breaks the floating point number X into its binary significand SGNFCAND
316 \(a floating point value between 0.5 (included) and 1.0 (excluded))
317 and an integral exponent EXP for 2, such that:
318
319 X = SGNFCAND * 2^EXP
320
321 The function returns the cons cell (SGNFCAND . EXP).
322 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
323 (Lisp_Object x)
324 {
325 double f = XFLOATINT (x);
326
327 if (f == 0.0)
328 return Fcons (make_float (0.0), make_number (0));
329 else
330 {
331 int exponent;
332 double sgnfcand = frexp (f, &exponent);
333 return Fcons (make_float (sgnfcand), make_number (exponent));
334 }
335 }
336
337 DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
338 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
339 Returns the floating point value resulting from multiplying SGNFCAND
340 (the significand) by 2 raised to the power of EXP (the exponent). */)
341 (Lisp_Object sgnfcand, Lisp_Object exponent)
342 {
343 CHECK_NUMBER (exponent);
344 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
345 }
346 #endif
347 \f
348 #if 0 /* Leave these out unless we find there's a reason for them. */
349
350 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
351 doc: /* Return the bessel function j0 of ARG. */)
352 (register Lisp_Object arg)
353 {
354 double d = extract_float (arg);
355 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
356 return make_float (d);
357 }
358
359 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
360 doc: /* Return the bessel function j1 of ARG. */)
361 (register Lisp_Object arg)
362 {
363 double d = extract_float (arg);
364 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
365 return make_float (d);
366 }
367
368 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
369 doc: /* Return the order N bessel function output jn of ARG.
370 The first arg (the order) is truncated to an integer. */)
371 (register Lisp_Object n, Lisp_Object arg)
372 {
373 int i1 = extract_float (n);
374 double f2 = extract_float (arg);
375
376 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
377 return make_float (f2);
378 }
379
380 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
381 doc: /* Return the bessel function y0 of ARG. */)
382 (register Lisp_Object arg)
383 {
384 double d = extract_float (arg);
385 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
386 return make_float (d);
387 }
388
389 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
390 doc: /* Return the bessel function y1 of ARG. */)
391 (register Lisp_Object arg)
392 {
393 double d = extract_float (arg);
394 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
395 return make_float (d);
396 }
397
398 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
399 doc: /* Return the order N bessel function output yn of ARG.
400 The first arg (the order) is truncated to an integer. */)
401 (register Lisp_Object n, Lisp_Object arg)
402 {
403 int i1 = extract_float (n);
404 double f2 = extract_float (arg);
405
406 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
407 return make_float (f2);
408 }
409
410 #endif
411 \f
412 #if 0 /* Leave these out unless we see they are worth having. */
413
414 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
415 doc: /* Return the mathematical error function of ARG. */)
416 (register Lisp_Object arg)
417 {
418 double d = extract_float (arg);
419 IN_FLOAT (d = erf (d), "erf", arg);
420 return make_float (d);
421 }
422
423 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
424 doc: /* Return the complementary error function of ARG. */)
425 (register Lisp_Object arg)
426 {
427 double d = extract_float (arg);
428 IN_FLOAT (d = erfc (d), "erfc", arg);
429 return make_float (d);
430 }
431
432 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
433 doc: /* Return the log gamma of ARG. */)
434 (register Lisp_Object arg)
435 {
436 double d = extract_float (arg);
437 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
438 return make_float (d);
439 }
440
441 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
442 doc: /* Return the cube root of ARG. */)
443 (register Lisp_Object arg)
444 {
445 double d = extract_float (arg);
446 #ifdef HAVE_CBRT
447 IN_FLOAT (d = cbrt (d), "cube-root", arg);
448 #else
449 if (d >= 0.0)
450 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
451 else
452 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
453 #endif
454 return make_float (d);
455 }
456
457 #endif
458 \f
459 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
460 doc: /* Return the exponential base e of ARG. */)
461 (register Lisp_Object arg)
462 {
463 double d = extract_float (arg);
464 #ifdef FLOAT_CHECK_DOMAIN
465 if (d > 709.7827) /* Assume IEEE doubles here */
466 range_error ("exp", arg);
467 else if (d < -709.0)
468 return make_float (0.0);
469 else
470 #endif
471 IN_FLOAT (d = exp (d), "exp", arg);
472 return make_float (d);
473 }
474
475 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
476 doc: /* Return the exponential ARG1 ** ARG2. */)
477 (register Lisp_Object arg1, Lisp_Object arg2)
478 {
479 double f1, f2, f3;
480
481 CHECK_NUMBER_OR_FLOAT (arg1);
482 CHECK_NUMBER_OR_FLOAT (arg2);
483 if (INTEGERP (arg1) /* common lisp spec */
484 && INTEGERP (arg2) /* don't promote, if both are ints, and */
485 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
486 { /* this can be improved by pre-calculating */
487 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
488 Lisp_Object val;
489
490 x = XINT (arg1);
491 y = XINT (arg2);
492 acc = 1;
493
494 if (y < 0)
495 {
496 if (x == 1)
497 acc = 1;
498 else if (x == -1)
499 acc = (y & 1) ? -1 : 1;
500 else
501 acc = 0;
502 }
503 else
504 {
505 while (y > 0)
506 {
507 if (y & 1)
508 acc *= x;
509 x *= x;
510 y = (unsigned)y >> 1;
511 }
512 }
513 XSETINT (val, acc);
514 return val;
515 }
516 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
517 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
518 /* Really should check for overflow, too */
519 if (f1 == 0.0 && f2 == 0.0)
520 f1 = 1.0;
521 #ifdef FLOAT_CHECK_DOMAIN
522 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
523 domain_error2 ("expt", arg1, arg2);
524 #endif
525 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
526 /* Check for overflow in the result. */
527 if (f1 != 0.0 && f3 == 0.0)
528 range_error ("expt", arg1);
529 return make_float (f3);
530 }
531
532 DEFUN ("log", Flog, Slog, 1, 2, 0,
533 doc: /* Return the natural logarithm of ARG.
534 If the optional argument BASE is given, return log ARG using that base. */)
535 (register Lisp_Object arg, Lisp_Object base)
536 {
537 double d = extract_float (arg);
538
539 #ifdef FLOAT_CHECK_DOMAIN
540 if (d <= 0.0)
541 domain_error2 ("log", arg, base);
542 #endif
543 if (NILP (base))
544 IN_FLOAT (d = log (d), "log", arg);
545 else
546 {
547 double b = extract_float (base);
548
549 #ifdef FLOAT_CHECK_DOMAIN
550 if (b <= 0.0 || b == 1.0)
551 domain_error2 ("log", arg, base);
552 #endif
553 if (b == 10.0)
554 IN_FLOAT2 (d = log10 (d), "log", arg, base);
555 else
556 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
557 }
558 return make_float (d);
559 }
560
561 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
562 doc: /* Return the logarithm base 10 of ARG. */)
563 (register Lisp_Object arg)
564 {
565 double d = extract_float (arg);
566 #ifdef FLOAT_CHECK_DOMAIN
567 if (d <= 0.0)
568 domain_error ("log10", arg);
569 #endif
570 IN_FLOAT (d = log10 (d), "log10", arg);
571 return make_float (d);
572 }
573
574 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
575 doc: /* Return the square root of ARG. */)
576 (register Lisp_Object arg)
577 {
578 double d = extract_float (arg);
579 #ifdef FLOAT_CHECK_DOMAIN
580 if (d < 0.0)
581 domain_error ("sqrt", arg);
582 #endif
583 IN_FLOAT (d = sqrt (d), "sqrt", arg);
584 return make_float (d);
585 }
586 \f
587 #if 0 /* Not clearly worth adding. */
588
589 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
590 doc: /* Return the inverse hyperbolic cosine of ARG. */)
591 (register Lisp_Object arg)
592 {
593 double d = extract_float (arg);
594 #ifdef FLOAT_CHECK_DOMAIN
595 if (d < 1.0)
596 domain_error ("acosh", arg);
597 #endif
598 #ifdef HAVE_INVERSE_HYPERBOLIC
599 IN_FLOAT (d = acosh (d), "acosh", arg);
600 #else
601 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
602 #endif
603 return make_float (d);
604 }
605
606 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
607 doc: /* Return the inverse hyperbolic sine of ARG. */)
608 (register Lisp_Object arg)
609 {
610 double d = extract_float (arg);
611 #ifdef HAVE_INVERSE_HYPERBOLIC
612 IN_FLOAT (d = asinh (d), "asinh", arg);
613 #else
614 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
615 #endif
616 return make_float (d);
617 }
618
619 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
620 doc: /* Return the inverse hyperbolic tangent of ARG. */)
621 (register Lisp_Object arg)
622 {
623 double d = extract_float (arg);
624 #ifdef FLOAT_CHECK_DOMAIN
625 if (d >= 1.0 || d <= -1.0)
626 domain_error ("atanh", arg);
627 #endif
628 #ifdef HAVE_INVERSE_HYPERBOLIC
629 IN_FLOAT (d = atanh (d), "atanh", arg);
630 #else
631 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
632 #endif
633 return make_float (d);
634 }
635
636 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
637 doc: /* Return the hyperbolic cosine of ARG. */)
638 (register Lisp_Object arg)
639 {
640 double d = extract_float (arg);
641 #ifdef FLOAT_CHECK_DOMAIN
642 if (d > 710.0 || d < -710.0)
643 range_error ("cosh", arg);
644 #endif
645 IN_FLOAT (d = cosh (d), "cosh", arg);
646 return make_float (d);
647 }
648
649 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
650 doc: /* Return the hyperbolic sine of ARG. */)
651 (register Lisp_Object arg)
652 {
653 double d = extract_float (arg);
654 #ifdef FLOAT_CHECK_DOMAIN
655 if (d > 710.0 || d < -710.0)
656 range_error ("sinh", arg);
657 #endif
658 IN_FLOAT (d = sinh (d), "sinh", arg);
659 return make_float (d);
660 }
661
662 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
663 doc: /* Return the hyperbolic tangent of ARG. */)
664 (register Lisp_Object arg)
665 {
666 double d = extract_float (arg);
667 IN_FLOAT (d = tanh (d), "tanh", arg);
668 return make_float (d);
669 }
670 #endif
671 \f
672 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
673 doc: /* Return the absolute value of ARG. */)
674 (register Lisp_Object arg)
675 {
676 CHECK_NUMBER_OR_FLOAT (arg);
677
678 if (FLOATP (arg))
679 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
680 else if (XINT (arg) < 0)
681 XSETINT (arg, - XINT (arg));
682
683 return arg;
684 }
685
686 DEFUE ("float", Ffloat, Sfloat, 1, 1, 0,
687 doc: /* Return the floating point number equal to ARG. */)
688 (register Lisp_Object arg)
689 {
690 CHECK_NUMBER_OR_FLOAT (arg);
691
692 if (INTEGERP (arg))
693 return make_float ((double) XINT (arg));
694 else /* give 'em the same float back */
695 return arg;
696 }
697
698 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
699 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
700 This is the same as the exponent of a float. */)
701 (Lisp_Object arg)
702 {
703 Lisp_Object val;
704 EMACS_INT value;
705 double f = extract_float (arg);
706
707 if (f == 0.0)
708 value = MOST_NEGATIVE_FIXNUM;
709 else
710 {
711 #ifdef HAVE_LOGB
712 IN_FLOAT (value = logb (f), "logb", arg);
713 #else
714 #ifdef HAVE_FREXP
715 int ivalue;
716 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
717 value = ivalue - 1;
718 #else
719 int i;
720 double d;
721 if (f < 0.0)
722 f = -f;
723 value = -1;
724 while (f < 0.5)
725 {
726 for (i = 1, d = 0.5; d * d >= f; i += i)
727 d *= d;
728 f /= d;
729 value -= i;
730 }
731 while (f >= 1.0)
732 {
733 for (i = 1, d = 2.0; d * d <= f; i += i)
734 d *= d;
735 f /= d;
736 value += i;
737 }
738 #endif
739 #endif
740 }
741 XSETINT (val, value);
742 return val;
743 }
744
745
746 /* the rounding functions */
747
748 static Lisp_Object
749 rounding_driver (Lisp_Object arg, Lisp_Object divisor,
750 double (*double_round) (double),
751 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
752 const char *name)
753 {
754 CHECK_NUMBER_OR_FLOAT (arg);
755
756 if (! NILP (divisor))
757 {
758 EMACS_INT i1, i2;
759
760 CHECK_NUMBER_OR_FLOAT (divisor);
761
762 if (FLOATP (arg) || FLOATP (divisor))
763 {
764 double f1, f2;
765
766 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
767 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
768 if (! IEEE_FLOATING_POINT && f2 == 0)
769 xsignal0 (Qarith_error);
770
771 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
772 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
773 return arg;
774 }
775
776 i1 = XINT (arg);
777 i2 = XINT (divisor);
778
779 if (i2 == 0)
780 xsignal0 (Qarith_error);
781
782 XSETINT (arg, (*int_round2) (i1, i2));
783 return arg;
784 }
785
786 if (FLOATP (arg))
787 {
788 double d;
789
790 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
791 FLOAT_TO_INT (d, arg, name, arg);
792 }
793
794 return arg;
795 }
796
797 /* With C's /, the result is implementation-defined if either operand
798 is negative, so take care with negative operands in the following
799 integer functions. */
800
801 static EMACS_INT
802 ceiling2 (EMACS_INT i1, EMACS_INT i2)
803 {
804 return (i2 < 0
805 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
806 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
807 }
808
809 static EMACS_INT
810 floor2 (EMACS_INT i1, EMACS_INT i2)
811 {
812 return (i2 < 0
813 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
814 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
815 }
816
817 static EMACS_INT
818 truncate2 (EMACS_INT i1, EMACS_INT i2)
819 {
820 return (i2 < 0
821 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
822 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
823 }
824
825 static EMACS_INT
826 round2 (EMACS_INT i1, EMACS_INT i2)
827 {
828 /* The C language's division operator gives us one remainder R, but
829 we want the remainder R1 on the other side of 0 if R1 is closer
830 to 0 than R is; because we want to round to even, we also want R1
831 if R and R1 are the same distance from 0 and if C's quotient is
832 odd. */
833 EMACS_INT q = i1 / i2;
834 EMACS_INT r = i1 % i2;
835 EMACS_INT abs_r = r < 0 ? -r : r;
836 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
837 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
838 }
839
840 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
841 if `rint' exists but does not work right. */
842 #ifdef HAVE_RINT
843 #define emacs_rint rint
844 #else
845 static double
846 emacs_rint (double d)
847 {
848 return floor (d + 0.5);
849 }
850 #endif
851
852 static double
853 double_identity (double d)
854 {
855 return d;
856 }
857
858 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
859 doc: /* Return the smallest integer no less than ARG.
860 This rounds the value towards +inf.
861 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
862 (Lisp_Object arg, Lisp_Object divisor)
863 {
864 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
865 }
866
867 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
868 doc: /* Return the largest integer no greater than ARG.
869 This rounds the value towards -inf.
870 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
871 (Lisp_Object arg, Lisp_Object divisor)
872 {
873 return rounding_driver (arg, divisor, floor, floor2, "floor");
874 }
875
876 DEFUN ("round", Fround, Sround, 1, 2, 0,
877 doc: /* Return the nearest integer to ARG.
878 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
879
880 Rounding a value equidistant between two integers may choose the
881 integer closer to zero, or it may prefer an even integer, depending on
882 your machine. For example, \(round 2.5\) can return 3 on some
883 systems, but 2 on others. */)
884 (Lisp_Object arg, Lisp_Object divisor)
885 {
886 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
887 }
888
889 DEFUE ("truncate", Ftruncate, Struncate, 1, 2, 0,
890 doc: /* Truncate a floating point number to an int.
891 Rounds ARG toward zero.
892 With optional DIVISOR, truncate ARG/DIVISOR. */)
893 (Lisp_Object arg, Lisp_Object divisor)
894 {
895 return rounding_driver (arg, divisor, double_identity, truncate2,
896 "truncate");
897 }
898
899
900 Lisp_Object
901 fmod_float (Lisp_Object x, Lisp_Object y)
902 {
903 double f1, f2;
904
905 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
906 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
907
908 if (! IEEE_FLOATING_POINT && f2 == 0)
909 xsignal0 (Qarith_error);
910
911 /* If the "remainder" comes out with the wrong sign, fix it. */
912 IN_FLOAT2 ((f1 = fmod (f1, f2),
913 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
914 "mod", x, y);
915 return make_float (f1);
916 }
917 \f
918 /* It's not clear these are worth adding. */
919
920 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
921 doc: /* Return the smallest integer no less than ARG, as a float.
922 \(Round toward +inf.\) */)
923 (register Lisp_Object arg)
924 {
925 double d = extract_float (arg);
926 IN_FLOAT (d = ceil (d), "fceiling", arg);
927 return make_float (d);
928 }
929
930 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
931 doc: /* Return the largest integer no greater than ARG, as a float.
932 \(Round towards -inf.\) */)
933 (register Lisp_Object arg)
934 {
935 double d = extract_float (arg);
936 IN_FLOAT (d = floor (d), "ffloor", arg);
937 return make_float (d);
938 }
939
940 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
941 doc: /* Return the nearest integer to ARG, as a float. */)
942 (register Lisp_Object arg)
943 {
944 double d = extract_float (arg);
945 IN_FLOAT (d = emacs_rint (d), "fround", arg);
946 return make_float (d);
947 }
948
949 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
950 doc: /* Truncate a floating point number to an integral float value.
951 Rounds the value toward zero. */)
952 (register Lisp_Object arg)
953 {
954 double d = extract_float (arg);
955 if (d >= 0.0)
956 IN_FLOAT (d = floor (d), "ftruncate", arg);
957 else
958 IN_FLOAT (d = ceil (d), "ftruncate", arg);
959 return make_float (d);
960 }
961 \f
962 #ifdef FLOAT_CATCH_SIGILL
963 static void
964 float_error (signo)
965 int signo;
966 {
967 if (! in_float)
968 fatal_error_signal (signo);
969
970 #ifdef BSD_SYSTEM
971 sigsetmask (SIGEMPTYMASK);
972 #else
973 /* Must reestablish handler each time it is called. */
974 signal (SIGILL, float_error);
975 #endif /* BSD_SYSTEM */
976
977 SIGNAL_THREAD_CHECK (signo);
978 in_float = 0;
979
980 xsignal1 (Qarith_error, float_error_arg);
981 }
982
983 /* Another idea was to replace the library function `infnan'
984 where SIGILL is signaled. */
985
986 #endif /* FLOAT_CATCH_SIGILL */
987
988 #ifdef HAVE_MATHERR
989 int
990 matherr (struct exception *x)
991 {
992 Lisp_Object args;
993 const char *name = x->name;
994
995 if (! in_float)
996 /* Not called from emacs-lisp float routines; do the default thing. */
997 return 0;
998 if (!strcmp (x->name, "pow"))
999 name = "expt";
1000
1001 args
1002 = Fcons (build_string (name),
1003 Fcons (make_float (x->arg1),
1004 ((!strcmp (name, "log") || !strcmp (name, "pow"))
1005 ? Fcons (make_float (x->arg2), Qnil)
1006 : Qnil)));
1007 switch (x->type)
1008 {
1009 case DOMAIN: xsignal (Qdomain_error, args); break;
1010 case SING: xsignal (Qsingularity_error, args); break;
1011 case OVERFLOW: xsignal (Qoverflow_error, args); break;
1012 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1013 default: xsignal (Qarith_error, args); break;
1014 }
1015 return (1); /* don't set errno or print a message */
1016 }
1017 #endif /* HAVE_MATHERR */
1018
1019 void
1020 init_floatfns (void)
1021 {
1022 #ifdef FLOAT_CATCH_SIGILL
1023 signal (SIGILL, float_error);
1024 #endif
1025 in_float = 0;
1026 }
1027
1028 void
1029 syms_of_floatfns (void)
1030 {
1031 defsubr (&Sacos);
1032 defsubr (&Sasin);
1033 defsubr (&Satan);
1034 defsubr (&Scos);
1035 defsubr (&Ssin);
1036 defsubr (&Stan);
1037 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
1038 defsubr (&Sisnan);
1039 defsubr (&Scopysign);
1040 defsubr (&Sfrexp);
1041 defsubr (&Sldexp);
1042 #endif
1043 #if 0
1044 defsubr (&Sacosh);
1045 defsubr (&Sasinh);
1046 defsubr (&Satanh);
1047 defsubr (&Scosh);
1048 defsubr (&Ssinh);
1049 defsubr (&Stanh);
1050 defsubr (&Sbessel_y0);
1051 defsubr (&Sbessel_y1);
1052 defsubr (&Sbessel_yn);
1053 defsubr (&Sbessel_j0);
1054 defsubr (&Sbessel_j1);
1055 defsubr (&Sbessel_jn);
1056 defsubr (&Serf);
1057 defsubr (&Serfc);
1058 defsubr (&Slog_gamma);
1059 defsubr (&Scube_root);
1060 #endif
1061 defsubr (&Sfceiling);
1062 defsubr (&Sffloor);
1063 defsubr (&Sfround);
1064 defsubr (&Sftruncate);
1065 defsubr (&Sexp);
1066 defsubr (&Sexpt);
1067 defsubr (&Slog);
1068 defsubr (&Slog10);
1069 defsubr (&Ssqrt);
1070
1071 defsubr (&Sabs);
1072 defsubr (&Sfloat);
1073 defsubr (&Slogb);
1074 defsubr (&Sceiling);
1075 defsubr (&Sfloor);
1076 defsubr (&Sround);
1077 defsubr (&Struncate);
1078 }