Make Emacs functions such as Fatom 'static' by default.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
156
157 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
159 strings. */
160
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 #if MAX_SAVE_STACK > 0
258 static char *stack_copy;
259 static size_t stack_copy_size;
260 #endif
261
262 /* Non-zero means ignore malloc warnings. Set during initialization.
263 Currently not used. */
264
265 static int ignore_warnings;
266
267 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283
284 extern int message_enable_multibyte;
285
286 /* When scanning the C stack for live Lisp objects, Emacs keeps track
287 of what memory allocated via lisp_malloc is intended for what
288 purpose. This enumeration specifies the type of memory. */
289
290 enum mem_type
291 {
292 MEM_TYPE_NON_LISP,
293 MEM_TYPE_BUFFER,
294 MEM_TYPE_CONS,
295 MEM_TYPE_STRING,
296 MEM_TYPE_MISC,
297 MEM_TYPE_SYMBOL,
298 MEM_TYPE_FLOAT,
299 /* We used to keep separate mem_types for subtypes of vectors such as
300 process, hash_table, frame, terminal, and window, but we never made
301 use of the distinction, so it only caused source-code complexity
302 and runtime slowdown. Minor but pointless. */
303 MEM_TYPE_VECTORLIKE
304 };
305
306 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
307 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
308
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
313 #include <stdio.h> /* For fprintf. */
314 #endif
315
316 /* A unique object in pure space used to make some Lisp objects
317 on free lists recognizable in O(1). */
318
319 static Lisp_Object Vdead;
320
321 #ifdef GC_MALLOC_CHECK
322
323 enum mem_type allocated_mem_type;
324 static int dont_register_blocks;
325
326 #endif /* GC_MALLOC_CHECK */
327
328 /* A node in the red-black tree describing allocated memory containing
329 Lisp data. Each such block is recorded with its start and end
330 address when it is allocated, and removed from the tree when it
331 is freed.
332
333 A red-black tree is a balanced binary tree with the following
334 properties:
335
336 1. Every node is either red or black.
337 2. Every leaf is black.
338 3. If a node is red, then both of its children are black.
339 4. Every simple path from a node to a descendant leaf contains
340 the same number of black nodes.
341 5. The root is always black.
342
343 When nodes are inserted into the tree, or deleted from the tree,
344 the tree is "fixed" so that these properties are always true.
345
346 A red-black tree with N internal nodes has height at most 2
347 log(N+1). Searches, insertions and deletions are done in O(log N).
348 Please see a text book about data structures for a detailed
349 description of red-black trees. Any book worth its salt should
350 describe them. */
351
352 struct mem_node
353 {
354 /* Children of this node. These pointers are never NULL. When there
355 is no child, the value is MEM_NIL, which points to a dummy node. */
356 struct mem_node *left, *right;
357
358 /* The parent of this node. In the root node, this is NULL. */
359 struct mem_node *parent;
360
361 /* Start and end of allocated region. */
362 void *start, *end;
363
364 /* Node color. */
365 enum {MEM_BLACK, MEM_RED} color;
366
367 /* Memory type. */
368 enum mem_type type;
369 };
370
371 /* Base address of stack. Set in main. */
372
373 Lisp_Object *stack_base;
374
375 /* Root of the tree describing allocated Lisp memory. */
376
377 static struct mem_node *mem_root;
378
379 /* Lowest and highest known address in the heap. */
380
381 static void *min_heap_address, *max_heap_address;
382
383 /* Sentinel node of the tree. */
384
385 static struct mem_node mem_z;
386 #define MEM_NIL &mem_z
387
388 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
389 static void lisp_free (POINTER_TYPE *);
390 static void mark_stack (void);
391 static int live_vector_p (struct mem_node *, void *);
392 static int live_buffer_p (struct mem_node *, void *);
393 static int live_string_p (struct mem_node *, void *);
394 static int live_cons_p (struct mem_node *, void *);
395 static int live_symbol_p (struct mem_node *, void *);
396 static int live_float_p (struct mem_node *, void *);
397 static int live_misc_p (struct mem_node *, void *);
398 static void mark_maybe_object (Lisp_Object);
399 static void mark_memory (void *, void *, int);
400 static void mem_init (void);
401 static struct mem_node *mem_insert (void *, void *, enum mem_type);
402 static void mem_insert_fixup (struct mem_node *);
403 static void mem_rotate_left (struct mem_node *);
404 static void mem_rotate_right (struct mem_node *);
405 static void mem_delete (struct mem_node *);
406 static void mem_delete_fixup (struct mem_node *);
407 static INLINE struct mem_node *mem_find (void *);
408
409
410 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
411 static void check_gcpros (void);
412 #endif
413
414 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
415
416 /* Recording what needs to be marked for gc. */
417
418 struct gcpro *gcprolist;
419
420 /* Addresses of staticpro'd variables. Initialize it to a nonzero
421 value; otherwise some compilers put it into BSS. */
422
423 #define NSTATICS 0x640
424 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
425
426 /* Index of next unused slot in staticvec. */
427
428 static int staticidx = 0;
429
430 static POINTER_TYPE *pure_alloc (size_t, int);
431
432
433 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
434 ALIGNMENT must be a power of 2. */
435
436 #define ALIGN(ptr, ALIGNMENT) \
437 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
438 & ~((ALIGNMENT) - 1)))
439
440
441 \f
442 /************************************************************************
443 Malloc
444 ************************************************************************/
445
446 /* Function malloc calls this if it finds we are near exhausting storage. */
447
448 void
449 malloc_warning (const char *str)
450 {
451 pending_malloc_warning = str;
452 }
453
454
455 /* Display an already-pending malloc warning. */
456
457 void
458 display_malloc_warning (void)
459 {
460 call3 (intern ("display-warning"),
461 intern ("alloc"),
462 build_string (pending_malloc_warning),
463 intern ("emergency"));
464 pending_malloc_warning = 0;
465 }
466
467
468 #ifdef DOUG_LEA_MALLOC
469 # define BYTES_USED (mallinfo ().uordblks)
470 #else
471 # define BYTES_USED _bytes_used
472 #endif
473 \f
474 /* Called if we can't allocate relocatable space for a buffer. */
475
476 void
477 buffer_memory_full (void)
478 {
479 /* If buffers use the relocating allocator, no need to free
480 spare_memory, because we may have plenty of malloc space left
481 that we could get, and if we don't, the malloc that fails will
482 itself cause spare_memory to be freed. If buffers don't use the
483 relocating allocator, treat this like any other failing
484 malloc. */
485
486 #ifndef REL_ALLOC
487 memory_full ();
488 #endif
489
490 /* This used to call error, but if we've run out of memory, we could
491 get infinite recursion trying to build the string. */
492 xsignal (Qnil, Vmemory_signal_data);
493 }
494
495
496 #ifdef XMALLOC_OVERRUN_CHECK
497
498 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
499 and a 16 byte trailer around each block.
500
501 The header consists of 12 fixed bytes + a 4 byte integer contaning the
502 original block size, while the trailer consists of 16 fixed bytes.
503
504 The header is used to detect whether this block has been allocated
505 through these functions -- as it seems that some low-level libc
506 functions may bypass the malloc hooks.
507 */
508
509
510 #define XMALLOC_OVERRUN_CHECK_SIZE 16
511
512 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
513 { 0x9a, 0x9b, 0xae, 0xaf,
514 0xbf, 0xbe, 0xce, 0xcf,
515 0xea, 0xeb, 0xec, 0xed };
516
517 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
518 { 0xaa, 0xab, 0xac, 0xad,
519 0xba, 0xbb, 0xbc, 0xbd,
520 0xca, 0xcb, 0xcc, 0xcd,
521 0xda, 0xdb, 0xdc, 0xdd };
522
523 /* Macros to insert and extract the block size in the header. */
524
525 #define XMALLOC_PUT_SIZE(ptr, size) \
526 (ptr[-1] = (size & 0xff), \
527 ptr[-2] = ((size >> 8) & 0xff), \
528 ptr[-3] = ((size >> 16) & 0xff), \
529 ptr[-4] = ((size >> 24) & 0xff))
530
531 #define XMALLOC_GET_SIZE(ptr) \
532 (size_t)((unsigned)(ptr[-1]) | \
533 ((unsigned)(ptr[-2]) << 8) | \
534 ((unsigned)(ptr[-3]) << 16) | \
535 ((unsigned)(ptr[-4]) << 24))
536
537
538 /* The call depth in overrun_check functions. For example, this might happen:
539 xmalloc()
540 overrun_check_malloc()
541 -> malloc -> (via hook)_-> emacs_blocked_malloc
542 -> overrun_check_malloc
543 call malloc (hooks are NULL, so real malloc is called).
544 malloc returns 10000.
545 add overhead, return 10016.
546 <- (back in overrun_check_malloc)
547 add overhead again, return 10032
548 xmalloc returns 10032.
549
550 (time passes).
551
552 xfree(10032)
553 overrun_check_free(10032)
554 decrease overhed
555 free(10016) <- crash, because 10000 is the original pointer. */
556
557 static int check_depth;
558
559 /* Like malloc, but wraps allocated block with header and trailer. */
560
561 POINTER_TYPE *
562 overrun_check_malloc (size)
563 size_t size;
564 {
565 register unsigned char *val;
566 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
567
568 val = (unsigned char *) malloc (size + overhead);
569 if (val && check_depth == 1)
570 {
571 memcpy (val, xmalloc_overrun_check_header,
572 XMALLOC_OVERRUN_CHECK_SIZE - 4);
573 val += XMALLOC_OVERRUN_CHECK_SIZE;
574 XMALLOC_PUT_SIZE(val, size);
575 memcpy (val + size, xmalloc_overrun_check_trailer,
576 XMALLOC_OVERRUN_CHECK_SIZE);
577 }
578 --check_depth;
579 return (POINTER_TYPE *)val;
580 }
581
582
583 /* Like realloc, but checks old block for overrun, and wraps new block
584 with header and trailer. */
585
586 POINTER_TYPE *
587 overrun_check_realloc (block, size)
588 POINTER_TYPE *block;
589 size_t size;
590 {
591 register unsigned char *val = (unsigned char *)block;
592 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
593
594 if (val
595 && check_depth == 1
596 && memcmp (xmalloc_overrun_check_header,
597 val - XMALLOC_OVERRUN_CHECK_SIZE,
598 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
599 {
600 size_t osize = XMALLOC_GET_SIZE (val);
601 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
602 XMALLOC_OVERRUN_CHECK_SIZE))
603 abort ();
604 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
605 val -= XMALLOC_OVERRUN_CHECK_SIZE;
606 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
607 }
608
609 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
610
611 if (val && check_depth == 1)
612 {
613 memcpy (val, xmalloc_overrun_check_header,
614 XMALLOC_OVERRUN_CHECK_SIZE - 4);
615 val += XMALLOC_OVERRUN_CHECK_SIZE;
616 XMALLOC_PUT_SIZE(val, size);
617 memcpy (val + size, xmalloc_overrun_check_trailer,
618 XMALLOC_OVERRUN_CHECK_SIZE);
619 }
620 --check_depth;
621 return (POINTER_TYPE *)val;
622 }
623
624 /* Like free, but checks block for overrun. */
625
626 void
627 overrun_check_free (block)
628 POINTER_TYPE *block;
629 {
630 unsigned char *val = (unsigned char *)block;
631
632 ++check_depth;
633 if (val
634 && check_depth == 1
635 && memcmp (xmalloc_overrun_check_header,
636 val - XMALLOC_OVERRUN_CHECK_SIZE,
637 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
638 {
639 size_t osize = XMALLOC_GET_SIZE (val);
640 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
641 XMALLOC_OVERRUN_CHECK_SIZE))
642 abort ();
643 #ifdef XMALLOC_CLEAR_FREE_MEMORY
644 val -= XMALLOC_OVERRUN_CHECK_SIZE;
645 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
646 #else
647 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
648 val -= XMALLOC_OVERRUN_CHECK_SIZE;
649 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
650 #endif
651 }
652
653 free (val);
654 --check_depth;
655 }
656
657 #undef malloc
658 #undef realloc
659 #undef free
660 #define malloc overrun_check_malloc
661 #define realloc overrun_check_realloc
662 #define free overrun_check_free
663 #endif
664
665 #ifdef SYNC_INPUT
666 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
667 there's no need to block input around malloc. */
668 #define MALLOC_BLOCK_INPUT ((void)0)
669 #define MALLOC_UNBLOCK_INPUT ((void)0)
670 #else
671 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
672 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
673 #endif
674
675 /* Like malloc but check for no memory and block interrupt input.. */
676
677 POINTER_TYPE *
678 xmalloc (size_t size)
679 {
680 register POINTER_TYPE *val;
681
682 MALLOC_BLOCK_INPUT;
683 val = (POINTER_TYPE *) malloc (size);
684 MALLOC_UNBLOCK_INPUT;
685
686 if (!val && size)
687 memory_full ();
688 return val;
689 }
690
691
692 /* Like realloc but check for no memory and block interrupt input.. */
693
694 POINTER_TYPE *
695 xrealloc (POINTER_TYPE *block, size_t size)
696 {
697 register POINTER_TYPE *val;
698
699 MALLOC_BLOCK_INPUT;
700 /* We must call malloc explicitly when BLOCK is 0, since some
701 reallocs don't do this. */
702 if (! block)
703 val = (POINTER_TYPE *) malloc (size);
704 else
705 val = (POINTER_TYPE *) realloc (block, size);
706 MALLOC_UNBLOCK_INPUT;
707
708 if (!val && size) memory_full ();
709 return val;
710 }
711
712
713 /* Like free but block interrupt input. */
714
715 void
716 xfree (POINTER_TYPE *block)
717 {
718 if (!block)
719 return;
720 MALLOC_BLOCK_INPUT;
721 free (block);
722 MALLOC_UNBLOCK_INPUT;
723 /* We don't call refill_memory_reserve here
724 because that duplicates doing so in emacs_blocked_free
725 and the criterion should go there. */
726 }
727
728
729 /* Like strdup, but uses xmalloc. */
730
731 char *
732 xstrdup (const char *s)
733 {
734 size_t len = strlen (s) + 1;
735 char *p = (char *) xmalloc (len);
736 memcpy (p, s, len);
737 return p;
738 }
739
740
741 /* Unwind for SAFE_ALLOCA */
742
743 Lisp_Object
744 safe_alloca_unwind (Lisp_Object arg)
745 {
746 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
747
748 p->dogc = 0;
749 xfree (p->pointer);
750 p->pointer = 0;
751 free_misc (arg);
752 return Qnil;
753 }
754
755
756 /* Like malloc but used for allocating Lisp data. NBYTES is the
757 number of bytes to allocate, TYPE describes the intended use of the
758 allcated memory block (for strings, for conses, ...). */
759
760 #ifndef USE_LSB_TAG
761 static void *lisp_malloc_loser;
762 #endif
763
764 static POINTER_TYPE *
765 lisp_malloc (size_t nbytes, enum mem_type type)
766 {
767 register void *val;
768
769 MALLOC_BLOCK_INPUT;
770
771 #ifdef GC_MALLOC_CHECK
772 allocated_mem_type = type;
773 #endif
774
775 val = (void *) malloc (nbytes);
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be,
780 that's equivalent to running out of memory. */
781 if (val && type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 XSETCONS (tem, (char *) val + nbytes - 1);
785 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
786 {
787 lisp_malloc_loser = val;
788 free (val);
789 val = 0;
790 }
791 }
792 #endif
793
794 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
795 if (val && type != MEM_TYPE_NON_LISP)
796 mem_insert (val, (char *) val + nbytes, type);
797 #endif
798
799 MALLOC_UNBLOCK_INPUT;
800 if (!val && nbytes)
801 memory_full ();
802 return val;
803 }
804
805 /* Free BLOCK. This must be called to free memory allocated with a
806 call to lisp_malloc. */
807
808 static void
809 lisp_free (POINTER_TYPE *block)
810 {
811 MALLOC_BLOCK_INPUT;
812 free (block);
813 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
814 mem_delete (mem_find (block));
815 #endif
816 MALLOC_UNBLOCK_INPUT;
817 }
818
819 /* Allocation of aligned blocks of memory to store Lisp data. */
820 /* The entry point is lisp_align_malloc which returns blocks of at most */
821 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
822
823 /* Use posix_memalloc if the system has it and we're using the system's
824 malloc (because our gmalloc.c routines don't have posix_memalign although
825 its memalloc could be used). */
826 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
827 #define USE_POSIX_MEMALIGN 1
828 #endif
829
830 /* BLOCK_ALIGN has to be a power of 2. */
831 #define BLOCK_ALIGN (1 << 10)
832
833 /* Padding to leave at the end of a malloc'd block. This is to give
834 malloc a chance to minimize the amount of memory wasted to alignment.
835 It should be tuned to the particular malloc library used.
836 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
837 posix_memalign on the other hand would ideally prefer a value of 4
838 because otherwise, there's 1020 bytes wasted between each ablocks.
839 In Emacs, testing shows that those 1020 can most of the time be
840 efficiently used by malloc to place other objects, so a value of 0 can
841 still preferable unless you have a lot of aligned blocks and virtually
842 nothing else. */
843 #define BLOCK_PADDING 0
844 #define BLOCK_BYTES \
845 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
846
847 /* Internal data structures and constants. */
848
849 #define ABLOCKS_SIZE 16
850
851 /* An aligned block of memory. */
852 struct ablock
853 {
854 union
855 {
856 char payload[BLOCK_BYTES];
857 struct ablock *next_free;
858 } x;
859 /* `abase' is the aligned base of the ablocks. */
860 /* It is overloaded to hold the virtual `busy' field that counts
861 the number of used ablock in the parent ablocks.
862 The first ablock has the `busy' field, the others have the `abase'
863 field. To tell the difference, we assume that pointers will have
864 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
865 is used to tell whether the real base of the parent ablocks is `abase'
866 (if not, the word before the first ablock holds a pointer to the
867 real base). */
868 struct ablocks *abase;
869 /* The padding of all but the last ablock is unused. The padding of
870 the last ablock in an ablocks is not allocated. */
871 #if BLOCK_PADDING
872 char padding[BLOCK_PADDING];
873 #endif
874 };
875
876 /* A bunch of consecutive aligned blocks. */
877 struct ablocks
878 {
879 struct ablock blocks[ABLOCKS_SIZE];
880 };
881
882 /* Size of the block requested from malloc or memalign. */
883 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
884
885 #define ABLOCK_ABASE(block) \
886 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
887 ? (struct ablocks *)(block) \
888 : (block)->abase)
889
890 /* Virtual `busy' field. */
891 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
892
893 /* Pointer to the (not necessarily aligned) malloc block. */
894 #ifdef USE_POSIX_MEMALIGN
895 #define ABLOCKS_BASE(abase) (abase)
896 #else
897 #define ABLOCKS_BASE(abase) \
898 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
899 #endif
900
901 /* The list of free ablock. */
902 static struct ablock *free_ablock;
903
904 /* Allocate an aligned block of nbytes.
905 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
906 smaller or equal to BLOCK_BYTES. */
907 static POINTER_TYPE *
908 lisp_align_malloc (size_t nbytes, enum mem_type type)
909 {
910 void *base, *val;
911 struct ablocks *abase;
912
913 eassert (nbytes <= BLOCK_BYTES);
914
915 MALLOC_BLOCK_INPUT;
916
917 #ifdef GC_MALLOC_CHECK
918 allocated_mem_type = type;
919 #endif
920
921 if (!free_ablock)
922 {
923 int i;
924 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
925
926 #ifdef DOUG_LEA_MALLOC
927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
928 because mapped region contents are not preserved in
929 a dumped Emacs. */
930 mallopt (M_MMAP_MAX, 0);
931 #endif
932
933 #ifdef USE_POSIX_MEMALIGN
934 {
935 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
936 if (err)
937 base = NULL;
938 abase = base;
939 }
940 #else
941 base = malloc (ABLOCKS_BYTES);
942 abase = ALIGN (base, BLOCK_ALIGN);
943 #endif
944
945 if (base == 0)
946 {
947 MALLOC_UNBLOCK_INPUT;
948 memory_full ();
949 }
950
951 aligned = (base == abase);
952 if (!aligned)
953 ((void**)abase)[-1] = base;
954
955 #ifdef DOUG_LEA_MALLOC
956 /* Back to a reasonable maximum of mmap'ed areas. */
957 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
958 #endif
959
960 #ifndef USE_LSB_TAG
961 /* If the memory just allocated cannot be addressed thru a Lisp
962 object's pointer, and it needs to be, that's equivalent to
963 running out of memory. */
964 if (type != MEM_TYPE_NON_LISP)
965 {
966 Lisp_Object tem;
967 char *end = (char *) base + ABLOCKS_BYTES - 1;
968 XSETCONS (tem, end);
969 if ((char *) XCONS (tem) != end)
970 {
971 lisp_malloc_loser = base;
972 free (base);
973 MALLOC_UNBLOCK_INPUT;
974 memory_full ();
975 }
976 }
977 #endif
978
979 /* Initialize the blocks and put them on the free list.
980 Is `base' was not properly aligned, we can't use the last block. */
981 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
982 {
983 abase->blocks[i].abase = abase;
984 abase->blocks[i].x.next_free = free_ablock;
985 free_ablock = &abase->blocks[i];
986 }
987 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
988
989 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
990 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
991 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
992 eassert (ABLOCKS_BASE (abase) == base);
993 eassert (aligned == (long) ABLOCKS_BUSY (abase));
994 }
995
996 abase = ABLOCK_ABASE (free_ablock);
997 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
998 val = free_ablock;
999 free_ablock = free_ablock->x.next_free;
1000
1001 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 if (val && type != MEM_TYPE_NON_LISP)
1003 mem_insert (val, (char *) val + nbytes, type);
1004 #endif
1005
1006 MALLOC_UNBLOCK_INPUT;
1007 if (!val && nbytes)
1008 memory_full ();
1009
1010 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1011 return val;
1012 }
1013
1014 static void
1015 lisp_align_free (POINTER_TYPE *block)
1016 {
1017 struct ablock *ablock = block;
1018 struct ablocks *abase = ABLOCK_ABASE (ablock);
1019
1020 MALLOC_BLOCK_INPUT;
1021 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1022 mem_delete (mem_find (block));
1023 #endif
1024 /* Put on free list. */
1025 ablock->x.next_free = free_ablock;
1026 free_ablock = ablock;
1027 /* Update busy count. */
1028 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1029
1030 if (2 > (long) ABLOCKS_BUSY (abase))
1031 { /* All the blocks are free. */
1032 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1033 struct ablock **tem = &free_ablock;
1034 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1035
1036 while (*tem)
1037 {
1038 if (*tem >= (struct ablock *) abase && *tem < atop)
1039 {
1040 i++;
1041 *tem = (*tem)->x.next_free;
1042 }
1043 else
1044 tem = &(*tem)->x.next_free;
1045 }
1046 eassert ((aligned & 1) == aligned);
1047 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1048 #ifdef USE_POSIX_MEMALIGN
1049 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1050 #endif
1051 free (ABLOCKS_BASE (abase));
1052 }
1053 MALLOC_UNBLOCK_INPUT;
1054 }
1055
1056 /* Return a new buffer structure allocated from the heap with
1057 a call to lisp_malloc. */
1058
1059 struct buffer *
1060 allocate_buffer (void)
1061 {
1062 struct buffer *b
1063 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1064 MEM_TYPE_BUFFER);
1065 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1066 XSETPVECTYPE (b, PVEC_BUFFER);
1067 return b;
1068 }
1069
1070 \f
1071 #ifndef SYSTEM_MALLOC
1072
1073 /* Arranging to disable input signals while we're in malloc.
1074
1075 This only works with GNU malloc. To help out systems which can't
1076 use GNU malloc, all the calls to malloc, realloc, and free
1077 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1078 pair; unfortunately, we have no idea what C library functions
1079 might call malloc, so we can't really protect them unless you're
1080 using GNU malloc. Fortunately, most of the major operating systems
1081 can use GNU malloc. */
1082
1083 #ifndef SYNC_INPUT
1084 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1085 there's no need to block input around malloc. */
1086
1087 #ifndef DOUG_LEA_MALLOC
1088 extern void * (*__malloc_hook) (size_t, const void *);
1089 extern void * (*__realloc_hook) (void *, size_t, const void *);
1090 extern void (*__free_hook) (void *, const void *);
1091 /* Else declared in malloc.h, perhaps with an extra arg. */
1092 #endif /* DOUG_LEA_MALLOC */
1093 static void * (*old_malloc_hook) (size_t, const void *);
1094 static void * (*old_realloc_hook) (void *, size_t, const void*);
1095 static void (*old_free_hook) (void*, const void*);
1096
1097 static __malloc_size_t bytes_used_when_reconsidered;
1098
1099 /* This function is used as the hook for free to call. */
1100
1101 static void
1102 emacs_blocked_free (void *ptr, const void *ptr2)
1103 {
1104 BLOCK_INPUT_ALLOC;
1105
1106 #ifdef GC_MALLOC_CHECK
1107 if (ptr)
1108 {
1109 struct mem_node *m;
1110
1111 m = mem_find (ptr);
1112 if (m == MEM_NIL || m->start != ptr)
1113 {
1114 fprintf (stderr,
1115 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1116 abort ();
1117 }
1118 else
1119 {
1120 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1121 mem_delete (m);
1122 }
1123 }
1124 #endif /* GC_MALLOC_CHECK */
1125
1126 __free_hook = old_free_hook;
1127 free (ptr);
1128
1129 /* If we released our reserve (due to running out of memory),
1130 and we have a fair amount free once again,
1131 try to set aside another reserve in case we run out once more. */
1132 if (! NILP (Vmemory_full)
1133 /* Verify there is enough space that even with the malloc
1134 hysteresis this call won't run out again.
1135 The code here is correct as long as SPARE_MEMORY
1136 is substantially larger than the block size malloc uses. */
1137 && (bytes_used_when_full
1138 > ((bytes_used_when_reconsidered = BYTES_USED)
1139 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1140 refill_memory_reserve ();
1141
1142 __free_hook = emacs_blocked_free;
1143 UNBLOCK_INPUT_ALLOC;
1144 }
1145
1146
1147 /* This function is the malloc hook that Emacs uses. */
1148
1149 static void *
1150 emacs_blocked_malloc (size_t size, const void *ptr)
1151 {
1152 void *value;
1153
1154 BLOCK_INPUT_ALLOC;
1155 __malloc_hook = old_malloc_hook;
1156 #ifdef DOUG_LEA_MALLOC
1157 /* Segfaults on my system. --lorentey */
1158 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1159 #else
1160 __malloc_extra_blocks = malloc_hysteresis;
1161 #endif
1162
1163 value = (void *) malloc (size);
1164
1165 #ifdef GC_MALLOC_CHECK
1166 {
1167 struct mem_node *m = mem_find (value);
1168 if (m != MEM_NIL)
1169 {
1170 fprintf (stderr, "Malloc returned %p which is already in use\n",
1171 value);
1172 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1173 m->start, m->end, (char *) m->end - (char *) m->start,
1174 m->type);
1175 abort ();
1176 }
1177
1178 if (!dont_register_blocks)
1179 {
1180 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1181 allocated_mem_type = MEM_TYPE_NON_LISP;
1182 }
1183 }
1184 #endif /* GC_MALLOC_CHECK */
1185
1186 __malloc_hook = emacs_blocked_malloc;
1187 UNBLOCK_INPUT_ALLOC;
1188
1189 /* fprintf (stderr, "%p malloc\n", value); */
1190 return value;
1191 }
1192
1193
1194 /* This function is the realloc hook that Emacs uses. */
1195
1196 static void *
1197 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1198 {
1199 void *value;
1200
1201 BLOCK_INPUT_ALLOC;
1202 __realloc_hook = old_realloc_hook;
1203
1204 #ifdef GC_MALLOC_CHECK
1205 if (ptr)
1206 {
1207 struct mem_node *m = mem_find (ptr);
1208 if (m == MEM_NIL || m->start != ptr)
1209 {
1210 fprintf (stderr,
1211 "Realloc of %p which wasn't allocated with malloc\n",
1212 ptr);
1213 abort ();
1214 }
1215
1216 mem_delete (m);
1217 }
1218
1219 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1220
1221 /* Prevent malloc from registering blocks. */
1222 dont_register_blocks = 1;
1223 #endif /* GC_MALLOC_CHECK */
1224
1225 value = (void *) realloc (ptr, size);
1226
1227 #ifdef GC_MALLOC_CHECK
1228 dont_register_blocks = 0;
1229
1230 {
1231 struct mem_node *m = mem_find (value);
1232 if (m != MEM_NIL)
1233 {
1234 fprintf (stderr, "Realloc returns memory that is already in use\n");
1235 abort ();
1236 }
1237
1238 /* Can't handle zero size regions in the red-black tree. */
1239 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1240 }
1241
1242 /* fprintf (stderr, "%p <- realloc\n", value); */
1243 #endif /* GC_MALLOC_CHECK */
1244
1245 __realloc_hook = emacs_blocked_realloc;
1246 UNBLOCK_INPUT_ALLOC;
1247
1248 return value;
1249 }
1250
1251
1252 #ifdef HAVE_GTK_AND_PTHREAD
1253 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1254 normal malloc. Some thread implementations need this as they call
1255 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1256 calls malloc because it is the first call, and we have an endless loop. */
1257
1258 void
1259 reset_malloc_hooks ()
1260 {
1261 __free_hook = old_free_hook;
1262 __malloc_hook = old_malloc_hook;
1263 __realloc_hook = old_realloc_hook;
1264 }
1265 #endif /* HAVE_GTK_AND_PTHREAD */
1266
1267
1268 /* Called from main to set up malloc to use our hooks. */
1269
1270 void
1271 uninterrupt_malloc (void)
1272 {
1273 #ifdef HAVE_GTK_AND_PTHREAD
1274 #ifdef DOUG_LEA_MALLOC
1275 pthread_mutexattr_t attr;
1276
1277 /* GLIBC has a faster way to do this, but lets keep it portable.
1278 This is according to the Single UNIX Specification. */
1279 pthread_mutexattr_init (&attr);
1280 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1281 pthread_mutex_init (&alloc_mutex, &attr);
1282 #else /* !DOUG_LEA_MALLOC */
1283 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1284 and the bundled gmalloc.c doesn't require it. */
1285 pthread_mutex_init (&alloc_mutex, NULL);
1286 #endif /* !DOUG_LEA_MALLOC */
1287 #endif /* HAVE_GTK_AND_PTHREAD */
1288
1289 if (__free_hook != emacs_blocked_free)
1290 old_free_hook = __free_hook;
1291 __free_hook = emacs_blocked_free;
1292
1293 if (__malloc_hook != emacs_blocked_malloc)
1294 old_malloc_hook = __malloc_hook;
1295 __malloc_hook = emacs_blocked_malloc;
1296
1297 if (__realloc_hook != emacs_blocked_realloc)
1298 old_realloc_hook = __realloc_hook;
1299 __realloc_hook = emacs_blocked_realloc;
1300 }
1301
1302 #endif /* not SYNC_INPUT */
1303 #endif /* not SYSTEM_MALLOC */
1304
1305
1306 \f
1307 /***********************************************************************
1308 Interval Allocation
1309 ***********************************************************************/
1310
1311 /* Number of intervals allocated in an interval_block structure.
1312 The 1020 is 1024 minus malloc overhead. */
1313
1314 #define INTERVAL_BLOCK_SIZE \
1315 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1316
1317 /* Intervals are allocated in chunks in form of an interval_block
1318 structure. */
1319
1320 struct interval_block
1321 {
1322 /* Place `intervals' first, to preserve alignment. */
1323 struct interval intervals[INTERVAL_BLOCK_SIZE];
1324 struct interval_block *next;
1325 };
1326
1327 /* Current interval block. Its `next' pointer points to older
1328 blocks. */
1329
1330 static struct interval_block *interval_block;
1331
1332 /* Index in interval_block above of the next unused interval
1333 structure. */
1334
1335 static int interval_block_index;
1336
1337 /* Number of free and live intervals. */
1338
1339 static int total_free_intervals, total_intervals;
1340
1341 /* List of free intervals. */
1342
1343 INTERVAL interval_free_list;
1344
1345 /* Total number of interval blocks now in use. */
1346
1347 static int n_interval_blocks;
1348
1349
1350 /* Initialize interval allocation. */
1351
1352 static void
1353 init_intervals (void)
1354 {
1355 interval_block = NULL;
1356 interval_block_index = INTERVAL_BLOCK_SIZE;
1357 interval_free_list = 0;
1358 n_interval_blocks = 0;
1359 }
1360
1361
1362 /* Return a new interval. */
1363
1364 INTERVAL
1365 make_interval (void)
1366 {
1367 INTERVAL val;
1368
1369 /* eassert (!handling_signal); */
1370
1371 MALLOC_BLOCK_INPUT;
1372
1373 if (interval_free_list)
1374 {
1375 val = interval_free_list;
1376 interval_free_list = INTERVAL_PARENT (interval_free_list);
1377 }
1378 else
1379 {
1380 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1381 {
1382 register struct interval_block *newi;
1383
1384 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1385 MEM_TYPE_NON_LISP);
1386
1387 newi->next = interval_block;
1388 interval_block = newi;
1389 interval_block_index = 0;
1390 n_interval_blocks++;
1391 }
1392 val = &interval_block->intervals[interval_block_index++];
1393 }
1394
1395 MALLOC_UNBLOCK_INPUT;
1396
1397 consing_since_gc += sizeof (struct interval);
1398 intervals_consed++;
1399 RESET_INTERVAL (val);
1400 val->gcmarkbit = 0;
1401 return val;
1402 }
1403
1404
1405 /* Mark Lisp objects in interval I. */
1406
1407 static void
1408 mark_interval (register INTERVAL i, Lisp_Object dummy)
1409 {
1410 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1411 i->gcmarkbit = 1;
1412 mark_object (i->plist);
1413 }
1414
1415
1416 /* Mark the interval tree rooted in TREE. Don't call this directly;
1417 use the macro MARK_INTERVAL_TREE instead. */
1418
1419 static void
1420 mark_interval_tree (register INTERVAL tree)
1421 {
1422 /* No need to test if this tree has been marked already; this
1423 function is always called through the MARK_INTERVAL_TREE macro,
1424 which takes care of that. */
1425
1426 traverse_intervals_noorder (tree, mark_interval, Qnil);
1427 }
1428
1429
1430 /* Mark the interval tree rooted in I. */
1431
1432 #define MARK_INTERVAL_TREE(i) \
1433 do { \
1434 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1435 mark_interval_tree (i); \
1436 } while (0)
1437
1438
1439 #define UNMARK_BALANCE_INTERVALS(i) \
1440 do { \
1441 if (! NULL_INTERVAL_P (i)) \
1442 (i) = balance_intervals (i); \
1443 } while (0)
1444
1445 \f
1446 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1447 can't create number objects in macros. */
1448 #ifndef make_number
1449 Lisp_Object
1450 make_number (EMACS_INT n)
1451 {
1452 Lisp_Object obj;
1453 obj.s.val = n;
1454 obj.s.type = Lisp_Int;
1455 return obj;
1456 }
1457 #endif
1458 \f
1459 /***********************************************************************
1460 String Allocation
1461 ***********************************************************************/
1462
1463 /* Lisp_Strings are allocated in string_block structures. When a new
1464 string_block is allocated, all the Lisp_Strings it contains are
1465 added to a free-list string_free_list. When a new Lisp_String is
1466 needed, it is taken from that list. During the sweep phase of GC,
1467 string_blocks that are entirely free are freed, except two which
1468 we keep.
1469
1470 String data is allocated from sblock structures. Strings larger
1471 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1472 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1473
1474 Sblocks consist internally of sdata structures, one for each
1475 Lisp_String. The sdata structure points to the Lisp_String it
1476 belongs to. The Lisp_String points back to the `u.data' member of
1477 its sdata structure.
1478
1479 When a Lisp_String is freed during GC, it is put back on
1480 string_free_list, and its `data' member and its sdata's `string'
1481 pointer is set to null. The size of the string is recorded in the
1482 `u.nbytes' member of the sdata. So, sdata structures that are no
1483 longer used, can be easily recognized, and it's easy to compact the
1484 sblocks of small strings which we do in compact_small_strings. */
1485
1486 /* Size in bytes of an sblock structure used for small strings. This
1487 is 8192 minus malloc overhead. */
1488
1489 #define SBLOCK_SIZE 8188
1490
1491 /* Strings larger than this are considered large strings. String data
1492 for large strings is allocated from individual sblocks. */
1493
1494 #define LARGE_STRING_BYTES 1024
1495
1496 /* Structure describing string memory sub-allocated from an sblock.
1497 This is where the contents of Lisp strings are stored. */
1498
1499 struct sdata
1500 {
1501 /* Back-pointer to the string this sdata belongs to. If null, this
1502 structure is free, and the NBYTES member of the union below
1503 contains the string's byte size (the same value that STRING_BYTES
1504 would return if STRING were non-null). If non-null, STRING_BYTES
1505 (STRING) is the size of the data, and DATA contains the string's
1506 contents. */
1507 struct Lisp_String *string;
1508
1509 #ifdef GC_CHECK_STRING_BYTES
1510
1511 EMACS_INT nbytes;
1512 unsigned char data[1];
1513
1514 #define SDATA_NBYTES(S) (S)->nbytes
1515 #define SDATA_DATA(S) (S)->data
1516
1517 #else /* not GC_CHECK_STRING_BYTES */
1518
1519 union
1520 {
1521 /* When STRING in non-null. */
1522 unsigned char data[1];
1523
1524 /* When STRING is null. */
1525 EMACS_INT nbytes;
1526 } u;
1527
1528
1529 #define SDATA_NBYTES(S) (S)->u.nbytes
1530 #define SDATA_DATA(S) (S)->u.data
1531
1532 #endif /* not GC_CHECK_STRING_BYTES */
1533 };
1534
1535
1536 /* Structure describing a block of memory which is sub-allocated to
1537 obtain string data memory for strings. Blocks for small strings
1538 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1539 as large as needed. */
1540
1541 struct sblock
1542 {
1543 /* Next in list. */
1544 struct sblock *next;
1545
1546 /* Pointer to the next free sdata block. This points past the end
1547 of the sblock if there isn't any space left in this block. */
1548 struct sdata *next_free;
1549
1550 /* Start of data. */
1551 struct sdata first_data;
1552 };
1553
1554 /* Number of Lisp strings in a string_block structure. The 1020 is
1555 1024 minus malloc overhead. */
1556
1557 #define STRING_BLOCK_SIZE \
1558 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559
1560 /* Structure describing a block from which Lisp_String structures
1561 are allocated. */
1562
1563 struct string_block
1564 {
1565 /* Place `strings' first, to preserve alignment. */
1566 struct Lisp_String strings[STRING_BLOCK_SIZE];
1567 struct string_block *next;
1568 };
1569
1570 /* Head and tail of the list of sblock structures holding Lisp string
1571 data. We always allocate from current_sblock. The NEXT pointers
1572 in the sblock structures go from oldest_sblock to current_sblock. */
1573
1574 static struct sblock *oldest_sblock, *current_sblock;
1575
1576 /* List of sblocks for large strings. */
1577
1578 static struct sblock *large_sblocks;
1579
1580 /* List of string_block structures, and how many there are. */
1581
1582 static struct string_block *string_blocks;
1583 static int n_string_blocks;
1584
1585 /* Free-list of Lisp_Strings. */
1586
1587 static struct Lisp_String *string_free_list;
1588
1589 /* Number of live and free Lisp_Strings. */
1590
1591 static int total_strings, total_free_strings;
1592
1593 /* Number of bytes used by live strings. */
1594
1595 static EMACS_INT total_string_size;
1596
1597 /* Given a pointer to a Lisp_String S which is on the free-list
1598 string_free_list, return a pointer to its successor in the
1599 free-list. */
1600
1601 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1602
1603 /* Return a pointer to the sdata structure belonging to Lisp string S.
1604 S must be live, i.e. S->data must not be null. S->data is actually
1605 a pointer to the `u.data' member of its sdata structure; the
1606 structure starts at a constant offset in front of that. */
1607
1608 #ifdef GC_CHECK_STRING_BYTES
1609
1610 #define SDATA_OF_STRING(S) \
1611 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1612 - sizeof (EMACS_INT)))
1613
1614 #else /* not GC_CHECK_STRING_BYTES */
1615
1616 #define SDATA_OF_STRING(S) \
1617 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1618
1619 #endif /* not GC_CHECK_STRING_BYTES */
1620
1621
1622 #ifdef GC_CHECK_STRING_OVERRUN
1623
1624 /* We check for overrun in string data blocks by appending a small
1625 "cookie" after each allocated string data block, and check for the
1626 presence of this cookie during GC. */
1627
1628 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1629 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1630 { 0xde, 0xad, 0xbe, 0xef };
1631
1632 #else
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1634 #endif
1635
1636 /* Value is the size of an sdata structure large enough to hold NBYTES
1637 bytes of string data. The value returned includes a terminating
1638 NUL byte, the size of the sdata structure, and padding. */
1639
1640 #ifdef GC_CHECK_STRING_BYTES
1641
1642 #define SDATA_SIZE(NBYTES) \
1643 ((sizeof (struct Lisp_String *) \
1644 + (NBYTES) + 1 \
1645 + sizeof (EMACS_INT) \
1646 + sizeof (EMACS_INT) - 1) \
1647 & ~(sizeof (EMACS_INT) - 1))
1648
1649 #else /* not GC_CHECK_STRING_BYTES */
1650
1651 #define SDATA_SIZE(NBYTES) \
1652 ((sizeof (struct Lisp_String *) \
1653 + (NBYTES) + 1 \
1654 + sizeof (EMACS_INT) - 1) \
1655 & ~(sizeof (EMACS_INT) - 1))
1656
1657 #endif /* not GC_CHECK_STRING_BYTES */
1658
1659 /* Extra bytes to allocate for each string. */
1660
1661 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1662
1663 /* Initialize string allocation. Called from init_alloc_once. */
1664
1665 static void
1666 init_strings (void)
1667 {
1668 total_strings = total_free_strings = total_string_size = 0;
1669 oldest_sblock = current_sblock = large_sblocks = NULL;
1670 string_blocks = NULL;
1671 n_string_blocks = 0;
1672 string_free_list = NULL;
1673 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1674 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1675 }
1676
1677
1678 #ifdef GC_CHECK_STRING_BYTES
1679
1680 static int check_string_bytes_count;
1681
1682 static void check_string_bytes (int);
1683 static void check_sblock (struct sblock *);
1684
1685 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1686
1687
1688 /* Like GC_STRING_BYTES, but with debugging check. */
1689
1690 EMACS_INT
1691 string_bytes (struct Lisp_String *s)
1692 {
1693 EMACS_INT nbytes =
1694 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1695
1696 if (!PURE_POINTER_P (s)
1697 && s->data
1698 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1699 abort ();
1700 return nbytes;
1701 }
1702
1703 /* Check validity of Lisp strings' string_bytes member in B. */
1704
1705 static void
1706 check_sblock (b)
1707 struct sblock *b;
1708 {
1709 struct sdata *from, *end, *from_end;
1710
1711 end = b->next_free;
1712
1713 for (from = &b->first_data; from < end; from = from_end)
1714 {
1715 /* Compute the next FROM here because copying below may
1716 overwrite data we need to compute it. */
1717 EMACS_INT nbytes;
1718
1719 /* Check that the string size recorded in the string is the
1720 same as the one recorded in the sdata structure. */
1721 if (from->string)
1722 CHECK_STRING_BYTES (from->string);
1723
1724 if (from->string)
1725 nbytes = GC_STRING_BYTES (from->string);
1726 else
1727 nbytes = SDATA_NBYTES (from);
1728
1729 nbytes = SDATA_SIZE (nbytes);
1730 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1731 }
1732 }
1733
1734
1735 /* Check validity of Lisp strings' string_bytes member. ALL_P
1736 non-zero means check all strings, otherwise check only most
1737 recently allocated strings. Used for hunting a bug. */
1738
1739 static void
1740 check_string_bytes (all_p)
1741 int all_p;
1742 {
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1752 }
1753
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1756 }
1757 else
1758 check_sblock (current_sblock);
1759 }
1760
1761 #endif /* GC_CHECK_STRING_BYTES */
1762
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1764
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
1768 static void
1769 check_string_free_list ()
1770 {
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
1777 if ((unsigned long)s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781 }
1782 #else
1783 #define check_string_free_list()
1784 #endif
1785
1786 /* Return a new Lisp_String. */
1787
1788 static struct Lisp_String *
1789 allocate_string (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* eassert (!handling_signal); */
1794
1795 MALLOC_BLOCK_INPUT;
1796
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1800 {
1801 struct string_block *b;
1802 int i;
1803
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1811 {
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
1815 }
1816
1817 total_free_strings += STRING_BLOCK_SIZE;
1818 }
1819
1820 check_string_free_list ();
1821
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
1825
1826 MALLOC_UNBLOCK_INPUT;
1827
1828 /* Probably not strictly necessary, but play it safe. */
1829 memset (s, 0, sizeof *s);
1830
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
1835
1836 #ifdef GC_CHECK_STRING_BYTES
1837 if (!noninteractive)
1838 {
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
1846 }
1847 #endif /* GC_CHECK_STRING_BYTES */
1848
1849 return s;
1850 }
1851
1852
1853 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
1858
1859 void
1860 allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
1862 {
1863 struct sdata *data, *old_data;
1864 struct sblock *b;
1865 EMACS_INT needed, old_nbytes;
1866
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
1873 MALLOC_BLOCK_INPUT;
1874
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
1877 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1878
1879 #ifdef DOUG_LEA_MALLOC
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
1889 mallopt (M_MMAP_MAX, 0);
1890 #endif
1891
1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1893
1894 #ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897 #endif
1898
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
1907 < (needed + GC_STRING_EXTRA)))
1908 {
1909 /* Not enough room in the current sblock. */
1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
1923
1924 data = b->next_free;
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
1927 MALLOC_UNBLOCK_INPUT;
1928
1929 data->string = s;
1930 s->data = SDATA_DATA (data);
1931 #ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933 #endif
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
1937 #ifdef GC_CHECK_STRING_OVERRUN
1938 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1939 #endif
1940
1941 /* If S had already data assigned, mark that as free by setting its
1942 string back-pointer to null, and recording the size of the data
1943 in it. */
1944 if (old_data)
1945 {
1946 SDATA_NBYTES (old_data) = old_nbytes;
1947 old_data->string = NULL;
1948 }
1949
1950 consing_since_gc += needed;
1951 }
1952
1953
1954 /* Sweep and compact strings. */
1955
1956 static void
1957 sweep_strings (void)
1958 {
1959 struct string_block *b, *next;
1960 struct string_block *live_blocks = NULL;
1961
1962 string_free_list = NULL;
1963 total_strings = total_free_strings = 0;
1964 total_string_size = 0;
1965
1966 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1967 for (b = string_blocks; b; b = next)
1968 {
1969 int i, nfree = 0;
1970 struct Lisp_String *free_list_before = string_free_list;
1971
1972 next = b->next;
1973
1974 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1975 {
1976 struct Lisp_String *s = b->strings + i;
1977
1978 if (s->data)
1979 {
1980 /* String was not on free-list before. */
1981 if (STRING_MARKED_P (s))
1982 {
1983 /* String is live; unmark it and its intervals. */
1984 UNMARK_STRING (s);
1985
1986 if (!NULL_INTERVAL_P (s->intervals))
1987 UNMARK_BALANCE_INTERVALS (s->intervals);
1988
1989 ++total_strings;
1990 total_string_size += STRING_BYTES (s);
1991 }
1992 else
1993 {
1994 /* String is dead. Put it on the free-list. */
1995 struct sdata *data = SDATA_OF_STRING (s);
1996
1997 /* Save the size of S in its sdata so that we know
1998 how large that is. Reset the sdata's string
1999 back-pointer so that we know it's free. */
2000 #ifdef GC_CHECK_STRING_BYTES
2001 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2002 abort ();
2003 #else
2004 data->u.nbytes = GC_STRING_BYTES (s);
2005 #endif
2006 data->string = NULL;
2007
2008 /* Reset the strings's `data' member so that we
2009 know it's free. */
2010 s->data = NULL;
2011
2012 /* Put the string on the free-list. */
2013 NEXT_FREE_LISP_STRING (s) = string_free_list;
2014 string_free_list = s;
2015 ++nfree;
2016 }
2017 }
2018 else
2019 {
2020 /* S was on the free-list before. Put it there again. */
2021 NEXT_FREE_LISP_STRING (s) = string_free_list;
2022 string_free_list = s;
2023 ++nfree;
2024 }
2025 }
2026
2027 /* Free blocks that contain free Lisp_Strings only, except
2028 the first two of them. */
2029 if (nfree == STRING_BLOCK_SIZE
2030 && total_free_strings > STRING_BLOCK_SIZE)
2031 {
2032 lisp_free (b);
2033 --n_string_blocks;
2034 string_free_list = free_list_before;
2035 }
2036 else
2037 {
2038 total_free_strings += nfree;
2039 b->next = live_blocks;
2040 live_blocks = b;
2041 }
2042 }
2043
2044 check_string_free_list ();
2045
2046 string_blocks = live_blocks;
2047 free_large_strings ();
2048 compact_small_strings ();
2049
2050 check_string_free_list ();
2051 }
2052
2053
2054 /* Free dead large strings. */
2055
2056 static void
2057 free_large_strings (void)
2058 {
2059 struct sblock *b, *next;
2060 struct sblock *live_blocks = NULL;
2061
2062 for (b = large_sblocks; b; b = next)
2063 {
2064 next = b->next;
2065
2066 if (b->first_data.string == NULL)
2067 lisp_free (b);
2068 else
2069 {
2070 b->next = live_blocks;
2071 live_blocks = b;
2072 }
2073 }
2074
2075 large_sblocks = live_blocks;
2076 }
2077
2078
2079 /* Compact data of small strings. Free sblocks that don't contain
2080 data of live strings after compaction. */
2081
2082 static void
2083 compact_small_strings (void)
2084 {
2085 struct sblock *b, *tb, *next;
2086 struct sdata *from, *to, *end, *tb_end;
2087 struct sdata *to_end, *from_end;
2088
2089 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2090 to, and TB_END is the end of TB. */
2091 tb = oldest_sblock;
2092 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2093 to = &tb->first_data;
2094
2095 /* Step through the blocks from the oldest to the youngest. We
2096 expect that old blocks will stabilize over time, so that less
2097 copying will happen this way. */
2098 for (b = oldest_sblock; b; b = b->next)
2099 {
2100 end = b->next_free;
2101 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2102
2103 for (from = &b->first_data; from < end; from = from_end)
2104 {
2105 /* Compute the next FROM here because copying below may
2106 overwrite data we need to compute it. */
2107 EMACS_INT nbytes;
2108
2109 #ifdef GC_CHECK_STRING_BYTES
2110 /* Check that the string size recorded in the string is the
2111 same as the one recorded in the sdata structure. */
2112 if (from->string
2113 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2114 abort ();
2115 #endif /* GC_CHECK_STRING_BYTES */
2116
2117 if (from->string)
2118 nbytes = GC_STRING_BYTES (from->string);
2119 else
2120 nbytes = SDATA_NBYTES (from);
2121
2122 if (nbytes > LARGE_STRING_BYTES)
2123 abort ();
2124
2125 nbytes = SDATA_SIZE (nbytes);
2126 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2127
2128 #ifdef GC_CHECK_STRING_OVERRUN
2129 if (memcmp (string_overrun_cookie,
2130 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2131 GC_STRING_OVERRUN_COOKIE_SIZE))
2132 abort ();
2133 #endif
2134
2135 /* FROM->string non-null means it's alive. Copy its data. */
2136 if (from->string)
2137 {
2138 /* If TB is full, proceed with the next sblock. */
2139 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2140 if (to_end > tb_end)
2141 {
2142 tb->next_free = to;
2143 tb = tb->next;
2144 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2145 to = &tb->first_data;
2146 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2147 }
2148
2149 /* Copy, and update the string's `data' pointer. */
2150 if (from != to)
2151 {
2152 xassert (tb != b || to <= from);
2153 memmove (to, from, nbytes + GC_STRING_EXTRA);
2154 to->string->data = SDATA_DATA (to);
2155 }
2156
2157 /* Advance past the sdata we copied to. */
2158 to = to_end;
2159 }
2160 }
2161 }
2162
2163 /* The rest of the sblocks following TB don't contain live data, so
2164 we can free them. */
2165 for (b = tb->next; b; b = next)
2166 {
2167 next = b->next;
2168 lisp_free (b);
2169 }
2170
2171 tb->next_free = to;
2172 tb->next = NULL;
2173 current_sblock = tb;
2174 }
2175
2176
2177 DEFUE ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2178 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2179 LENGTH must be an integer.
2180 INIT must be an integer that represents a character. */)
2181 (Lisp_Object length, Lisp_Object init)
2182 {
2183 register Lisp_Object val;
2184 register unsigned char *p, *end;
2185 int c;
2186 EMACS_INT nbytes;
2187
2188 CHECK_NATNUM (length);
2189 CHECK_NUMBER (init);
2190
2191 c = XINT (init);
2192 if (ASCII_CHAR_P (c))
2193 {
2194 nbytes = XINT (length);
2195 val = make_uninit_string (nbytes);
2196 p = SDATA (val);
2197 end = p + SCHARS (val);
2198 while (p != end)
2199 *p++ = c;
2200 }
2201 else
2202 {
2203 unsigned char str[MAX_MULTIBYTE_LENGTH];
2204 int len = CHAR_STRING (c, str);
2205 EMACS_INT string_len = XINT (length);
2206
2207 if (string_len > MOST_POSITIVE_FIXNUM / len)
2208 error ("Maximum string size exceeded");
2209 nbytes = len * string_len;
2210 val = make_uninit_multibyte_string (string_len, nbytes);
2211 p = SDATA (val);
2212 end = p + nbytes;
2213 while (p != end)
2214 {
2215 memcpy (p, str, len);
2216 p += len;
2217 }
2218 }
2219
2220 *p = 0;
2221 return val;
2222 }
2223
2224
2225 DEFUE ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2226 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2227 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2228 (Lisp_Object length, Lisp_Object init)
2229 {
2230 register Lisp_Object val;
2231 struct Lisp_Bool_Vector *p;
2232 int real_init, i;
2233 EMACS_INT length_in_chars, length_in_elts;
2234 int bits_per_value;
2235
2236 CHECK_NATNUM (length);
2237
2238 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2239
2240 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2241 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2242 / BOOL_VECTOR_BITS_PER_CHAR);
2243
2244 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2245 slot `size' of the struct Lisp_Bool_Vector. */
2246 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2247
2248 /* Get rid of any bits that would cause confusion. */
2249 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2250 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2251 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2252
2253 p = XBOOL_VECTOR (val);
2254 p->size = XFASTINT (length);
2255
2256 real_init = (NILP (init) ? 0 : -1);
2257 for (i = 0; i < length_in_chars ; i++)
2258 p->data[i] = real_init;
2259
2260 /* Clear the extraneous bits in the last byte. */
2261 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2262 p->data[length_in_chars - 1]
2263 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2264
2265 return val;
2266 }
2267
2268
2269 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2270 of characters from the contents. This string may be unibyte or
2271 multibyte, depending on the contents. */
2272
2273 Lisp_Object
2274 make_string (const char *contents, EMACS_INT nbytes)
2275 {
2276 register Lisp_Object val;
2277 EMACS_INT nchars, multibyte_nbytes;
2278
2279 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2280 &nchars, &multibyte_nbytes);
2281 if (nbytes == nchars || nbytes != multibyte_nbytes)
2282 /* CONTENTS contains no multibyte sequences or contains an invalid
2283 multibyte sequence. We must make unibyte string. */
2284 val = make_unibyte_string (contents, nbytes);
2285 else
2286 val = make_multibyte_string (contents, nchars, nbytes);
2287 return val;
2288 }
2289
2290
2291 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2292
2293 Lisp_Object
2294 make_unibyte_string (const char *contents, EMACS_INT length)
2295 {
2296 register Lisp_Object val;
2297 val = make_uninit_string (length);
2298 memcpy (SDATA (val), contents, length);
2299 return val;
2300 }
2301
2302
2303 /* Make a multibyte string from NCHARS characters occupying NBYTES
2304 bytes at CONTENTS. */
2305
2306 Lisp_Object
2307 make_multibyte_string (const char *contents,
2308 EMACS_INT nchars, EMACS_INT nbytes)
2309 {
2310 register Lisp_Object val;
2311 val = make_uninit_multibyte_string (nchars, nbytes);
2312 memcpy (SDATA (val), contents, nbytes);
2313 return val;
2314 }
2315
2316
2317 /* Make a string from NCHARS characters occupying NBYTES bytes at
2318 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2319
2320 Lisp_Object
2321 make_string_from_bytes (const char *contents,
2322 EMACS_INT nchars, EMACS_INT nbytes)
2323 {
2324 register Lisp_Object val;
2325 val = make_uninit_multibyte_string (nchars, nbytes);
2326 memcpy (SDATA (val), contents, nbytes);
2327 if (SBYTES (val) == SCHARS (val))
2328 STRING_SET_UNIBYTE (val);
2329 return val;
2330 }
2331
2332
2333 /* Make a string from NCHARS characters occupying NBYTES bytes at
2334 CONTENTS. The argument MULTIBYTE controls whether to label the
2335 string as multibyte. If NCHARS is negative, it counts the number of
2336 characters by itself. */
2337
2338 Lisp_Object
2339 make_specified_string (const char *contents,
2340 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2341 {
2342 register Lisp_Object val;
2343
2344 if (nchars < 0)
2345 {
2346 if (multibyte)
2347 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2348 nbytes);
2349 else
2350 nchars = nbytes;
2351 }
2352 val = make_uninit_multibyte_string (nchars, nbytes);
2353 memcpy (SDATA (val), contents, nbytes);
2354 if (!multibyte)
2355 STRING_SET_UNIBYTE (val);
2356 return val;
2357 }
2358
2359
2360 /* Make a string from the data at STR, treating it as multibyte if the
2361 data warrants. */
2362
2363 Lisp_Object
2364 build_string (const char *str)
2365 {
2366 return make_string (str, strlen (str));
2367 }
2368
2369
2370 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2371 occupying LENGTH bytes. */
2372
2373 Lisp_Object
2374 make_uninit_string (EMACS_INT length)
2375 {
2376 Lisp_Object val;
2377
2378 if (!length)
2379 return empty_unibyte_string;
2380 val = make_uninit_multibyte_string (length, length);
2381 STRING_SET_UNIBYTE (val);
2382 return val;
2383 }
2384
2385
2386 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2387 which occupy NBYTES bytes. */
2388
2389 Lisp_Object
2390 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2391 {
2392 Lisp_Object string;
2393 struct Lisp_String *s;
2394
2395 if (nchars < 0)
2396 abort ();
2397 if (!nbytes)
2398 return empty_multibyte_string;
2399
2400 s = allocate_string ();
2401 allocate_string_data (s, nchars, nbytes);
2402 XSETSTRING (string, s);
2403 string_chars_consed += nbytes;
2404 return string;
2405 }
2406
2407
2408 \f
2409 /***********************************************************************
2410 Float Allocation
2411 ***********************************************************************/
2412
2413 /* We store float cells inside of float_blocks, allocating a new
2414 float_block with malloc whenever necessary. Float cells reclaimed
2415 by GC are put on a free list to be reallocated before allocating
2416 any new float cells from the latest float_block. */
2417
2418 #define FLOAT_BLOCK_SIZE \
2419 (((BLOCK_BYTES - sizeof (struct float_block *) \
2420 /* The compiler might add padding at the end. */ \
2421 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2422 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2423
2424 #define GETMARKBIT(block,n) \
2425 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2426 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2427 & 1)
2428
2429 #define SETMARKBIT(block,n) \
2430 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2432
2433 #define UNSETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2436
2437 #define FLOAT_BLOCK(fptr) \
2438 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2439
2440 #define FLOAT_INDEX(fptr) \
2441 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2442
2443 struct float_block
2444 {
2445 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2446 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2447 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2448 struct float_block *next;
2449 };
2450
2451 #define FLOAT_MARKED_P(fptr) \
2452 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2453
2454 #define FLOAT_MARK(fptr) \
2455 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456
2457 #define FLOAT_UNMARK(fptr) \
2458 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
2460 /* Current float_block. */
2461
2462 struct float_block *float_block;
2463
2464 /* Index of first unused Lisp_Float in the current float_block. */
2465
2466 int float_block_index;
2467
2468 /* Total number of float blocks now in use. */
2469
2470 int n_float_blocks;
2471
2472 /* Free-list of Lisp_Floats. */
2473
2474 struct Lisp_Float *float_free_list;
2475
2476
2477 /* Initialize float allocation. */
2478
2479 static void
2480 init_float (void)
2481 {
2482 float_block = NULL;
2483 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2484 float_free_list = 0;
2485 n_float_blocks = 0;
2486 }
2487
2488
2489 /* Return a new float object with value FLOAT_VALUE. */
2490
2491 Lisp_Object
2492 make_float (double float_value)
2493 {
2494 register Lisp_Object val;
2495
2496 /* eassert (!handling_signal); */
2497
2498 MALLOC_BLOCK_INPUT;
2499
2500 if (float_free_list)
2501 {
2502 /* We use the data field for chaining the free list
2503 so that we won't use the same field that has the mark bit. */
2504 XSETFLOAT (val, float_free_list);
2505 float_free_list = float_free_list->u.chain;
2506 }
2507 else
2508 {
2509 if (float_block_index == FLOAT_BLOCK_SIZE)
2510 {
2511 register struct float_block *new;
2512
2513 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2514 MEM_TYPE_FLOAT);
2515 new->next = float_block;
2516 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2517 float_block = new;
2518 float_block_index = 0;
2519 n_float_blocks++;
2520 }
2521 XSETFLOAT (val, &float_block->floats[float_block_index]);
2522 float_block_index++;
2523 }
2524
2525 MALLOC_UNBLOCK_INPUT;
2526
2527 XFLOAT_INIT (val, float_value);
2528 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2529 consing_since_gc += sizeof (struct Lisp_Float);
2530 floats_consed++;
2531 return val;
2532 }
2533
2534
2535 \f
2536 /***********************************************************************
2537 Cons Allocation
2538 ***********************************************************************/
2539
2540 /* We store cons cells inside of cons_blocks, allocating a new
2541 cons_block with malloc whenever necessary. Cons cells reclaimed by
2542 GC are put on a free list to be reallocated before allocating
2543 any new cons cells from the latest cons_block. */
2544
2545 #define CONS_BLOCK_SIZE \
2546 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2547 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2548
2549 #define CONS_BLOCK(fptr) \
2550 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2551
2552 #define CONS_INDEX(fptr) \
2553 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2554
2555 struct cons_block
2556 {
2557 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2558 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2559 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2560 struct cons_block *next;
2561 };
2562
2563 #define CONS_MARKED_P(fptr) \
2564 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565
2566 #define CONS_MARK(fptr) \
2567 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568
2569 #define CONS_UNMARK(fptr) \
2570 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
2572 /* Current cons_block. */
2573
2574 struct cons_block *cons_block;
2575
2576 /* Index of first unused Lisp_Cons in the current block. */
2577
2578 int cons_block_index;
2579
2580 /* Free-list of Lisp_Cons structures. */
2581
2582 struct Lisp_Cons *cons_free_list;
2583
2584 /* Total number of cons blocks now in use. */
2585
2586 static int n_cons_blocks;
2587
2588
2589 /* Initialize cons allocation. */
2590
2591 static void
2592 init_cons (void)
2593 {
2594 cons_block = NULL;
2595 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2596 cons_free_list = 0;
2597 n_cons_blocks = 0;
2598 }
2599
2600
2601 /* Explicitly free a cons cell by putting it on the free-list. */
2602
2603 void
2604 free_cons (struct Lisp_Cons *ptr)
2605 {
2606 ptr->u.chain = cons_free_list;
2607 #if GC_MARK_STACK
2608 ptr->car = Vdead;
2609 #endif
2610 cons_free_list = ptr;
2611 }
2612
2613 DEFUE ("cons", Fcons, Scons, 2, 2, 0,
2614 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2615 (Lisp_Object car, Lisp_Object cdr)
2616 {
2617 register Lisp_Object val;
2618
2619 /* eassert (!handling_signal); */
2620
2621 MALLOC_BLOCK_INPUT;
2622
2623 if (cons_free_list)
2624 {
2625 /* We use the cdr for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETCONS (val, cons_free_list);
2628 cons_free_list = cons_free_list->u.chain;
2629 }
2630 else
2631 {
2632 if (cons_block_index == CONS_BLOCK_SIZE)
2633 {
2634 register struct cons_block *new;
2635 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2636 MEM_TYPE_CONS);
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 new->next = cons_block;
2639 cons_block = new;
2640 cons_block_index = 0;
2641 n_cons_blocks++;
2642 }
2643 XSETCONS (val, &cons_block->conses[cons_block_index]);
2644 cons_block_index++;
2645 }
2646
2647 MALLOC_UNBLOCK_INPUT;
2648
2649 XSETCAR (val, car);
2650 XSETCDR (val, cdr);
2651 eassert (!CONS_MARKED_P (XCONS (val)));
2652 consing_since_gc += sizeof (struct Lisp_Cons);
2653 cons_cells_consed++;
2654 return val;
2655 }
2656
2657 #ifdef GC_CHECK_CONS_LIST
2658 /* Get an error now if there's any junk in the cons free list. */
2659 void
2660 check_cons_list (void)
2661 {
2662 struct Lisp_Cons *tail = cons_free_list;
2663
2664 while (tail)
2665 tail = tail->u.chain;
2666 }
2667 #endif
2668
2669 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2670
2671 Lisp_Object
2672 list1 (Lisp_Object arg1)
2673 {
2674 return Fcons (arg1, Qnil);
2675 }
2676
2677 Lisp_Object
2678 list2 (Lisp_Object arg1, Lisp_Object arg2)
2679 {
2680 return Fcons (arg1, Fcons (arg2, Qnil));
2681 }
2682
2683
2684 Lisp_Object
2685 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2686 {
2687 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2688 }
2689
2690
2691 Lisp_Object
2692 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2693 {
2694 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2695 }
2696
2697
2698 Lisp_Object
2699 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2700 {
2701 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2702 Fcons (arg5, Qnil)))));
2703 }
2704
2705
2706 DEFUE ("list", Flist, Slist, 0, MANY, 0,
2707 doc: /* Return a newly created list with specified arguments as elements.
2708 Any number of arguments, even zero arguments, are allowed.
2709 usage: (list &rest OBJECTS) */)
2710 (size_t nargs, register Lisp_Object *args)
2711 {
2712 register Lisp_Object val;
2713 val = Qnil;
2714
2715 while (nargs > 0)
2716 {
2717 nargs--;
2718 val = Fcons (args[nargs], val);
2719 }
2720 return val;
2721 }
2722
2723
2724 DEFUE ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2725 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2726 (register Lisp_Object length, Lisp_Object init)
2727 {
2728 register Lisp_Object val;
2729 register EMACS_INT size;
2730
2731 CHECK_NATNUM (length);
2732 size = XFASTINT (length);
2733
2734 val = Qnil;
2735 while (size > 0)
2736 {
2737 val = Fcons (init, val);
2738 --size;
2739
2740 if (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
2754
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759 }
2760 }
2761 }
2762 }
2763
2764 QUIT;
2765 }
2766
2767 return val;
2768 }
2769
2770
2771 \f
2772 /***********************************************************************
2773 Vector Allocation
2774 ***********************************************************************/
2775
2776 /* Singly-linked list of all vectors. */
2777
2778 static struct Lisp_Vector *all_vectors;
2779
2780 /* Total number of vector-like objects now in use. */
2781
2782 static int n_vectors;
2783
2784
2785 /* Value is a pointer to a newly allocated Lisp_Vector structure
2786 with room for LEN Lisp_Objects. */
2787
2788 static struct Lisp_Vector *
2789 allocate_vectorlike (EMACS_INT len)
2790 {
2791 struct Lisp_Vector *p;
2792 size_t nbytes;
2793
2794 MALLOC_BLOCK_INPUT;
2795
2796 #ifdef DOUG_LEA_MALLOC
2797 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2798 because mapped region contents are not preserved in
2799 a dumped Emacs. */
2800 mallopt (M_MMAP_MAX, 0);
2801 #endif
2802
2803 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2804 /* eassert (!handling_signal); */
2805
2806 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2807 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2808
2809 #ifdef DOUG_LEA_MALLOC
2810 /* Back to a reasonable maximum of mmap'ed areas. */
2811 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2812 #endif
2813
2814 consing_since_gc += nbytes;
2815 vector_cells_consed += len;
2816
2817 p->next = all_vectors;
2818 all_vectors = p;
2819
2820 MALLOC_UNBLOCK_INPUT;
2821
2822 ++n_vectors;
2823 return p;
2824 }
2825
2826
2827 /* Allocate a vector with NSLOTS slots. */
2828
2829 struct Lisp_Vector *
2830 allocate_vector (EMACS_INT nslots)
2831 {
2832 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2833 v->size = nslots;
2834 return v;
2835 }
2836
2837
2838 /* Allocate other vector-like structures. */
2839
2840 struct Lisp_Vector *
2841 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2842 {
2843 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2844 EMACS_INT i;
2845
2846 /* Only the first lisplen slots will be traced normally by the GC. */
2847 v->size = lisplen;
2848 for (i = 0; i < lisplen; ++i)
2849 v->contents[i] = Qnil;
2850
2851 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2852 return v;
2853 }
2854
2855 struct Lisp_Hash_Table *
2856 allocate_hash_table (void)
2857 {
2858 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2859 }
2860
2861
2862 struct window *
2863 allocate_window (void)
2864 {
2865 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2866 }
2867
2868
2869 struct terminal *
2870 allocate_terminal (void)
2871 {
2872 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2873 next_terminal, PVEC_TERMINAL);
2874 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2875 memset (&t->next_terminal, 0,
2876 (char*) (t + 1) - (char*) &t->next_terminal);
2877
2878 return t;
2879 }
2880
2881 struct frame *
2882 allocate_frame (void)
2883 {
2884 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2885 face_cache, PVEC_FRAME);
2886 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2887 memset (&f->face_cache, 0,
2888 (char *) (f + 1) - (char *) &f->face_cache);
2889 return f;
2890 }
2891
2892
2893 struct Lisp_Process *
2894 allocate_process (void)
2895 {
2896 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2897 }
2898
2899
2900 DEFUE ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2901 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2902 See also the function `vector'. */)
2903 (register Lisp_Object length, Lisp_Object init)
2904 {
2905 Lisp_Object vector;
2906 register EMACS_INT sizei;
2907 register EMACS_INT i;
2908 register struct Lisp_Vector *p;
2909
2910 CHECK_NATNUM (length);
2911 sizei = XFASTINT (length);
2912
2913 p = allocate_vector (sizei);
2914 for (i = 0; i < sizei; i++)
2915 p->contents[i] = init;
2916
2917 XSETVECTOR (vector, p);
2918 return vector;
2919 }
2920
2921
2922 DEFUE ("vector", Fvector, Svector, 0, MANY, 0,
2923 doc: /* Return a newly created vector with specified arguments as elements.
2924 Any number of arguments, even zero arguments, are allowed.
2925 usage: (vector &rest OBJECTS) */)
2926 (register size_t nargs, Lisp_Object *args)
2927 {
2928 register Lisp_Object len, val;
2929 register size_t i;
2930 register struct Lisp_Vector *p;
2931
2932 XSETFASTINT (len, nargs);
2933 val = Fmake_vector (len, Qnil);
2934 p = XVECTOR (val);
2935 for (i = 0; i < nargs; i++)
2936 p->contents[i] = args[i];
2937 return val;
2938 }
2939
2940
2941 DEFUE ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2942 doc: /* Create a byte-code object with specified arguments as elements.
2943 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2944 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2945 and (optional) INTERACTIVE-SPEC.
2946 The first four arguments are required; at most six have any
2947 significance.
2948 The ARGLIST can be either like the one of `lambda', in which case the arguments
2949 will be dynamically bound before executing the byte code, or it can be an
2950 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2951 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2952 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2953 argument to catch the left-over arguments. If such an integer is used, the
2954 arguments will not be dynamically bound but will be instead pushed on the
2955 stack before executing the byte-code.
2956 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2957 (register size_t nargs, Lisp_Object *args)
2958 {
2959 register Lisp_Object len, val;
2960 register size_t i;
2961 register struct Lisp_Vector *p;
2962
2963 XSETFASTINT (len, nargs);
2964 if (!NILP (Vpurify_flag))
2965 val = make_pure_vector ((EMACS_INT) nargs);
2966 else
2967 val = Fmake_vector (len, Qnil);
2968
2969 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2970 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2971 earlier because they produced a raw 8-bit string for byte-code
2972 and now such a byte-code string is loaded as multibyte while
2973 raw 8-bit characters converted to multibyte form. Thus, now we
2974 must convert them back to the original unibyte form. */
2975 args[1] = Fstring_as_unibyte (args[1]);
2976
2977 p = XVECTOR (val);
2978 for (i = 0; i < nargs; i++)
2979 {
2980 if (!NILP (Vpurify_flag))
2981 args[i] = Fpurecopy (args[i]);
2982 p->contents[i] = args[i];
2983 }
2984 XSETPVECTYPE (p, PVEC_COMPILED);
2985 XSETCOMPILED (val, p);
2986 return val;
2987 }
2988
2989
2990 \f
2991 /***********************************************************************
2992 Symbol Allocation
2993 ***********************************************************************/
2994
2995 /* Each symbol_block is just under 1020 bytes long, since malloc
2996 really allocates in units of powers of two and uses 4 bytes for its
2997 own overhead. */
2998
2999 #define SYMBOL_BLOCK_SIZE \
3000 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3001
3002 struct symbol_block
3003 {
3004 /* Place `symbols' first, to preserve alignment. */
3005 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3006 struct symbol_block *next;
3007 };
3008
3009 /* Current symbol block and index of first unused Lisp_Symbol
3010 structure in it. */
3011
3012 static struct symbol_block *symbol_block;
3013 static int symbol_block_index;
3014
3015 /* List of free symbols. */
3016
3017 static struct Lisp_Symbol *symbol_free_list;
3018
3019 /* Total number of symbol blocks now in use. */
3020
3021 static int n_symbol_blocks;
3022
3023
3024 /* Initialize symbol allocation. */
3025
3026 static void
3027 init_symbol (void)
3028 {
3029 symbol_block = NULL;
3030 symbol_block_index = SYMBOL_BLOCK_SIZE;
3031 symbol_free_list = 0;
3032 n_symbol_blocks = 0;
3033 }
3034
3035
3036 DEFUE ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3037 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3038 Its value and function definition are void, and its property list is nil. */)
3039 (Lisp_Object name)
3040 {
3041 register Lisp_Object val;
3042 register struct Lisp_Symbol *p;
3043
3044 CHECK_STRING (name);
3045
3046 /* eassert (!handling_signal); */
3047
3048 MALLOC_BLOCK_INPUT;
3049
3050 if (symbol_free_list)
3051 {
3052 XSETSYMBOL (val, symbol_free_list);
3053 symbol_free_list = symbol_free_list->next;
3054 }
3055 else
3056 {
3057 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3058 {
3059 struct symbol_block *new;
3060 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3061 MEM_TYPE_SYMBOL);
3062 new->next = symbol_block;
3063 symbol_block = new;
3064 symbol_block_index = 0;
3065 n_symbol_blocks++;
3066 }
3067 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3068 symbol_block_index++;
3069 }
3070
3071 MALLOC_UNBLOCK_INPUT;
3072
3073 p = XSYMBOL (val);
3074 p->xname = name;
3075 p->plist = Qnil;
3076 p->redirect = SYMBOL_PLAINVAL;
3077 SET_SYMBOL_VAL (p, Qunbound);
3078 p->function = Qunbound;
3079 p->next = NULL;
3080 p->gcmarkbit = 0;
3081 p->interned = SYMBOL_UNINTERNED;
3082 p->constant = 0;
3083 p->declared_special = 0;
3084 consing_since_gc += sizeof (struct Lisp_Symbol);
3085 symbols_consed++;
3086 return val;
3087 }
3088
3089
3090 \f
3091 /***********************************************************************
3092 Marker (Misc) Allocation
3093 ***********************************************************************/
3094
3095 /* Allocation of markers and other objects that share that structure.
3096 Works like allocation of conses. */
3097
3098 #define MARKER_BLOCK_SIZE \
3099 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3100
3101 struct marker_block
3102 {
3103 /* Place `markers' first, to preserve alignment. */
3104 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3105 struct marker_block *next;
3106 };
3107
3108 static struct marker_block *marker_block;
3109 static int marker_block_index;
3110
3111 static union Lisp_Misc *marker_free_list;
3112
3113 /* Total number of marker blocks now in use. */
3114
3115 static int n_marker_blocks;
3116
3117 static void
3118 init_marker (void)
3119 {
3120 marker_block = NULL;
3121 marker_block_index = MARKER_BLOCK_SIZE;
3122 marker_free_list = 0;
3123 n_marker_blocks = 0;
3124 }
3125
3126 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3127
3128 Lisp_Object
3129 allocate_misc (void)
3130 {
3131 Lisp_Object val;
3132
3133 /* eassert (!handling_signal); */
3134
3135 MALLOC_BLOCK_INPUT;
3136
3137 if (marker_free_list)
3138 {
3139 XSETMISC (val, marker_free_list);
3140 marker_free_list = marker_free_list->u_free.chain;
3141 }
3142 else
3143 {
3144 if (marker_block_index == MARKER_BLOCK_SIZE)
3145 {
3146 struct marker_block *new;
3147 new = (struct marker_block *) lisp_malloc (sizeof *new,
3148 MEM_TYPE_MISC);
3149 new->next = marker_block;
3150 marker_block = new;
3151 marker_block_index = 0;
3152 n_marker_blocks++;
3153 total_free_markers += MARKER_BLOCK_SIZE;
3154 }
3155 XSETMISC (val, &marker_block->markers[marker_block_index]);
3156 marker_block_index++;
3157 }
3158
3159 MALLOC_UNBLOCK_INPUT;
3160
3161 --total_free_markers;
3162 consing_since_gc += sizeof (union Lisp_Misc);
3163 misc_objects_consed++;
3164 XMISCANY (val)->gcmarkbit = 0;
3165 return val;
3166 }
3167
3168 /* Free a Lisp_Misc object */
3169
3170 void
3171 free_misc (Lisp_Object misc)
3172 {
3173 XMISCTYPE (misc) = Lisp_Misc_Free;
3174 XMISC (misc)->u_free.chain = marker_free_list;
3175 marker_free_list = XMISC (misc);
3176
3177 total_free_markers++;
3178 }
3179
3180 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3181 INTEGER. This is used to package C values to call record_unwind_protect.
3182 The unwind function can get the C values back using XSAVE_VALUE. */
3183
3184 Lisp_Object
3185 make_save_value (void *pointer, int integer)
3186 {
3187 register Lisp_Object val;
3188 register struct Lisp_Save_Value *p;
3189
3190 val = allocate_misc ();
3191 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3192 p = XSAVE_VALUE (val);
3193 p->pointer = pointer;
3194 p->integer = integer;
3195 p->dogc = 0;
3196 return val;
3197 }
3198
3199 DEFUE ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3200 doc: /* Return a newly allocated marker which does not point at any place. */)
3201 (void)
3202 {
3203 register Lisp_Object val;
3204 register struct Lisp_Marker *p;
3205
3206 val = allocate_misc ();
3207 XMISCTYPE (val) = Lisp_Misc_Marker;
3208 p = XMARKER (val);
3209 p->buffer = 0;
3210 p->bytepos = 0;
3211 p->charpos = 0;
3212 p->next = NULL;
3213 p->insertion_type = 0;
3214 return val;
3215 }
3216
3217 /* Put MARKER back on the free list after using it temporarily. */
3218
3219 void
3220 free_marker (Lisp_Object marker)
3221 {
3222 unchain_marker (XMARKER (marker));
3223 free_misc (marker);
3224 }
3225
3226 \f
3227 /* Return a newly created vector or string with specified arguments as
3228 elements. If all the arguments are characters that can fit
3229 in a string of events, make a string; otherwise, make a vector.
3230
3231 Any number of arguments, even zero arguments, are allowed. */
3232
3233 Lisp_Object
3234 make_event_array (register int nargs, Lisp_Object *args)
3235 {
3236 int i;
3237
3238 for (i = 0; i < nargs; i++)
3239 /* The things that fit in a string
3240 are characters that are in 0...127,
3241 after discarding the meta bit and all the bits above it. */
3242 if (!INTEGERP (args[i])
3243 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3244 return Fvector (nargs, args);
3245
3246 /* Since the loop exited, we know that all the things in it are
3247 characters, so we can make a string. */
3248 {
3249 Lisp_Object result;
3250
3251 result = Fmake_string (make_number (nargs), make_number (0));
3252 for (i = 0; i < nargs; i++)
3253 {
3254 SSET (result, i, XINT (args[i]));
3255 /* Move the meta bit to the right place for a string char. */
3256 if (XINT (args[i]) & CHAR_META)
3257 SSET (result, i, SREF (result, i) | 0x80);
3258 }
3259
3260 return result;
3261 }
3262 }
3263
3264
3265 \f
3266 /************************************************************************
3267 Memory Full Handling
3268 ************************************************************************/
3269
3270
3271 /* Called if malloc returns zero. */
3272
3273 void
3274 memory_full (void)
3275 {
3276 int i;
3277
3278 Vmemory_full = Qt;
3279
3280 memory_full_cons_threshold = sizeof (struct cons_block);
3281
3282 /* The first time we get here, free the spare memory. */
3283 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3284 if (spare_memory[i])
3285 {
3286 if (i == 0)
3287 free (spare_memory[i]);
3288 else if (i >= 1 && i <= 4)
3289 lisp_align_free (spare_memory[i]);
3290 else
3291 lisp_free (spare_memory[i]);
3292 spare_memory[i] = 0;
3293 }
3294
3295 /* Record the space now used. When it decreases substantially,
3296 we can refill the memory reserve. */
3297 #ifndef SYSTEM_MALLOC
3298 bytes_used_when_full = BYTES_USED;
3299 #endif
3300
3301 /* This used to call error, but if we've run out of memory, we could
3302 get infinite recursion trying to build the string. */
3303 xsignal (Qnil, Vmemory_signal_data);
3304 }
3305
3306 /* If we released our reserve (due to running out of memory),
3307 and we have a fair amount free once again,
3308 try to set aside another reserve in case we run out once more.
3309
3310 This is called when a relocatable block is freed in ralloc.c,
3311 and also directly from this file, in case we're not using ralloc.c. */
3312
3313 void
3314 refill_memory_reserve (void)
3315 {
3316 #ifndef SYSTEM_MALLOC
3317 if (spare_memory[0] == 0)
3318 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3319 if (spare_memory[1] == 0)
3320 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3321 MEM_TYPE_CONS);
3322 if (spare_memory[2] == 0)
3323 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[3] == 0)
3326 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[4] == 0)
3329 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3330 MEM_TYPE_CONS);
3331 if (spare_memory[5] == 0)
3332 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3333 MEM_TYPE_STRING);
3334 if (spare_memory[6] == 0)
3335 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3336 MEM_TYPE_STRING);
3337 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3338 Vmemory_full = Qnil;
3339 #endif
3340 }
3341 \f
3342 /************************************************************************
3343 C Stack Marking
3344 ************************************************************************/
3345
3346 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3347
3348 /* Conservative C stack marking requires a method to identify possibly
3349 live Lisp objects given a pointer value. We do this by keeping
3350 track of blocks of Lisp data that are allocated in a red-black tree
3351 (see also the comment of mem_node which is the type of nodes in
3352 that tree). Function lisp_malloc adds information for an allocated
3353 block to the red-black tree with calls to mem_insert, and function
3354 lisp_free removes it with mem_delete. Functions live_string_p etc
3355 call mem_find to lookup information about a given pointer in the
3356 tree, and use that to determine if the pointer points to a Lisp
3357 object or not. */
3358
3359 /* Initialize this part of alloc.c. */
3360
3361 static void
3362 mem_init (void)
3363 {
3364 mem_z.left = mem_z.right = MEM_NIL;
3365 mem_z.parent = NULL;
3366 mem_z.color = MEM_BLACK;
3367 mem_z.start = mem_z.end = NULL;
3368 mem_root = MEM_NIL;
3369 }
3370
3371
3372 /* Value is a pointer to the mem_node containing START. Value is
3373 MEM_NIL if there is no node in the tree containing START. */
3374
3375 static INLINE struct mem_node *
3376 mem_find (void *start)
3377 {
3378 struct mem_node *p;
3379
3380 if (start < min_heap_address || start > max_heap_address)
3381 return MEM_NIL;
3382
3383 /* Make the search always successful to speed up the loop below. */
3384 mem_z.start = start;
3385 mem_z.end = (char *) start + 1;
3386
3387 p = mem_root;
3388 while (start < p->start || start >= p->end)
3389 p = start < p->start ? p->left : p->right;
3390 return p;
3391 }
3392
3393
3394 /* Insert a new node into the tree for a block of memory with start
3395 address START, end address END, and type TYPE. Value is a
3396 pointer to the node that was inserted. */
3397
3398 static struct mem_node *
3399 mem_insert (void *start, void *end, enum mem_type type)
3400 {
3401 struct mem_node *c, *parent, *x;
3402
3403 if (min_heap_address == NULL || start < min_heap_address)
3404 min_heap_address = start;
3405 if (max_heap_address == NULL || end > max_heap_address)
3406 max_heap_address = end;
3407
3408 /* See where in the tree a node for START belongs. In this
3409 particular application, it shouldn't happen that a node is already
3410 present. For debugging purposes, let's check that. */
3411 c = mem_root;
3412 parent = NULL;
3413
3414 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3415
3416 while (c != MEM_NIL)
3417 {
3418 if (start >= c->start && start < c->end)
3419 abort ();
3420 parent = c;
3421 c = start < c->start ? c->left : c->right;
3422 }
3423
3424 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3425
3426 while (c != MEM_NIL)
3427 {
3428 parent = c;
3429 c = start < c->start ? c->left : c->right;
3430 }
3431
3432 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3433
3434 /* Create a new node. */
3435 #ifdef GC_MALLOC_CHECK
3436 x = (struct mem_node *) _malloc_internal (sizeof *x);
3437 if (x == NULL)
3438 abort ();
3439 #else
3440 x = (struct mem_node *) xmalloc (sizeof *x);
3441 #endif
3442 x->start = start;
3443 x->end = end;
3444 x->type = type;
3445 x->parent = parent;
3446 x->left = x->right = MEM_NIL;
3447 x->color = MEM_RED;
3448
3449 /* Insert it as child of PARENT or install it as root. */
3450 if (parent)
3451 {
3452 if (start < parent->start)
3453 parent->left = x;
3454 else
3455 parent->right = x;
3456 }
3457 else
3458 mem_root = x;
3459
3460 /* Re-establish red-black tree properties. */
3461 mem_insert_fixup (x);
3462
3463 return x;
3464 }
3465
3466
3467 /* Re-establish the red-black properties of the tree, and thereby
3468 balance the tree, after node X has been inserted; X is always red. */
3469
3470 static void
3471 mem_insert_fixup (struct mem_node *x)
3472 {
3473 while (x != mem_root && x->parent->color == MEM_RED)
3474 {
3475 /* X is red and its parent is red. This is a violation of
3476 red-black tree property #3. */
3477
3478 if (x->parent == x->parent->parent->left)
3479 {
3480 /* We're on the left side of our grandparent, and Y is our
3481 "uncle". */
3482 struct mem_node *y = x->parent->parent->right;
3483
3484 if (y->color == MEM_RED)
3485 {
3486 /* Uncle and parent are red but should be black because
3487 X is red. Change the colors accordingly and proceed
3488 with the grandparent. */
3489 x->parent->color = MEM_BLACK;
3490 y->color = MEM_BLACK;
3491 x->parent->parent->color = MEM_RED;
3492 x = x->parent->parent;
3493 }
3494 else
3495 {
3496 /* Parent and uncle have different colors; parent is
3497 red, uncle is black. */
3498 if (x == x->parent->right)
3499 {
3500 x = x->parent;
3501 mem_rotate_left (x);
3502 }
3503
3504 x->parent->color = MEM_BLACK;
3505 x->parent->parent->color = MEM_RED;
3506 mem_rotate_right (x->parent->parent);
3507 }
3508 }
3509 else
3510 {
3511 /* This is the symmetrical case of above. */
3512 struct mem_node *y = x->parent->parent->left;
3513
3514 if (y->color == MEM_RED)
3515 {
3516 x->parent->color = MEM_BLACK;
3517 y->color = MEM_BLACK;
3518 x->parent->parent->color = MEM_RED;
3519 x = x->parent->parent;
3520 }
3521 else
3522 {
3523 if (x == x->parent->left)
3524 {
3525 x = x->parent;
3526 mem_rotate_right (x);
3527 }
3528
3529 x->parent->color = MEM_BLACK;
3530 x->parent->parent->color = MEM_RED;
3531 mem_rotate_left (x->parent->parent);
3532 }
3533 }
3534 }
3535
3536 /* The root may have been changed to red due to the algorithm. Set
3537 it to black so that property #5 is satisfied. */
3538 mem_root->color = MEM_BLACK;
3539 }
3540
3541
3542 /* (x) (y)
3543 / \ / \
3544 a (y) ===> (x) c
3545 / \ / \
3546 b c a b */
3547
3548 static void
3549 mem_rotate_left (struct mem_node *x)
3550 {
3551 struct mem_node *y;
3552
3553 /* Turn y's left sub-tree into x's right sub-tree. */
3554 y = x->right;
3555 x->right = y->left;
3556 if (y->left != MEM_NIL)
3557 y->left->parent = x;
3558
3559 /* Y's parent was x's parent. */
3560 if (y != MEM_NIL)
3561 y->parent = x->parent;
3562
3563 /* Get the parent to point to y instead of x. */
3564 if (x->parent)
3565 {
3566 if (x == x->parent->left)
3567 x->parent->left = y;
3568 else
3569 x->parent->right = y;
3570 }
3571 else
3572 mem_root = y;
3573
3574 /* Put x on y's left. */
3575 y->left = x;
3576 if (x != MEM_NIL)
3577 x->parent = y;
3578 }
3579
3580
3581 /* (x) (Y)
3582 / \ / \
3583 (y) c ===> a (x)
3584 / \ / \
3585 a b b c */
3586
3587 static void
3588 mem_rotate_right (struct mem_node *x)
3589 {
3590 struct mem_node *y = x->left;
3591
3592 x->left = y->right;
3593 if (y->right != MEM_NIL)
3594 y->right->parent = x;
3595
3596 if (y != MEM_NIL)
3597 y->parent = x->parent;
3598 if (x->parent)
3599 {
3600 if (x == x->parent->right)
3601 x->parent->right = y;
3602 else
3603 x->parent->left = y;
3604 }
3605 else
3606 mem_root = y;
3607
3608 y->right = x;
3609 if (x != MEM_NIL)
3610 x->parent = y;
3611 }
3612
3613
3614 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3615
3616 static void
3617 mem_delete (struct mem_node *z)
3618 {
3619 struct mem_node *x, *y;
3620
3621 if (!z || z == MEM_NIL)
3622 return;
3623
3624 if (z->left == MEM_NIL || z->right == MEM_NIL)
3625 y = z;
3626 else
3627 {
3628 y = z->right;
3629 while (y->left != MEM_NIL)
3630 y = y->left;
3631 }
3632
3633 if (y->left != MEM_NIL)
3634 x = y->left;
3635 else
3636 x = y->right;
3637
3638 x->parent = y->parent;
3639 if (y->parent)
3640 {
3641 if (y == y->parent->left)
3642 y->parent->left = x;
3643 else
3644 y->parent->right = x;
3645 }
3646 else
3647 mem_root = x;
3648
3649 if (y != z)
3650 {
3651 z->start = y->start;
3652 z->end = y->end;
3653 z->type = y->type;
3654 }
3655
3656 if (y->color == MEM_BLACK)
3657 mem_delete_fixup (x);
3658
3659 #ifdef GC_MALLOC_CHECK
3660 _free_internal (y);
3661 #else
3662 xfree (y);
3663 #endif
3664 }
3665
3666
3667 /* Re-establish the red-black properties of the tree, after a
3668 deletion. */
3669
3670 static void
3671 mem_delete_fixup (struct mem_node *x)
3672 {
3673 while (x != mem_root && x->color == MEM_BLACK)
3674 {
3675 if (x == x->parent->left)
3676 {
3677 struct mem_node *w = x->parent->right;
3678
3679 if (w->color == MEM_RED)
3680 {
3681 w->color = MEM_BLACK;
3682 x->parent->color = MEM_RED;
3683 mem_rotate_left (x->parent);
3684 w = x->parent->right;
3685 }
3686
3687 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3688 {
3689 w->color = MEM_RED;
3690 x = x->parent;
3691 }
3692 else
3693 {
3694 if (w->right->color == MEM_BLACK)
3695 {
3696 w->left->color = MEM_BLACK;
3697 w->color = MEM_RED;
3698 mem_rotate_right (w);
3699 w = x->parent->right;
3700 }
3701 w->color = x->parent->color;
3702 x->parent->color = MEM_BLACK;
3703 w->right->color = MEM_BLACK;
3704 mem_rotate_left (x->parent);
3705 x = mem_root;
3706 }
3707 }
3708 else
3709 {
3710 struct mem_node *w = x->parent->left;
3711
3712 if (w->color == MEM_RED)
3713 {
3714 w->color = MEM_BLACK;
3715 x->parent->color = MEM_RED;
3716 mem_rotate_right (x->parent);
3717 w = x->parent->left;
3718 }
3719
3720 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3721 {
3722 w->color = MEM_RED;
3723 x = x->parent;
3724 }
3725 else
3726 {
3727 if (w->left->color == MEM_BLACK)
3728 {
3729 w->right->color = MEM_BLACK;
3730 w->color = MEM_RED;
3731 mem_rotate_left (w);
3732 w = x->parent->left;
3733 }
3734
3735 w->color = x->parent->color;
3736 x->parent->color = MEM_BLACK;
3737 w->left->color = MEM_BLACK;
3738 mem_rotate_right (x->parent);
3739 x = mem_root;
3740 }
3741 }
3742 }
3743
3744 x->color = MEM_BLACK;
3745 }
3746
3747
3748 /* Value is non-zero if P is a pointer to a live Lisp string on
3749 the heap. M is a pointer to the mem_block for P. */
3750
3751 static INLINE int
3752 live_string_p (struct mem_node *m, void *p)
3753 {
3754 if (m->type == MEM_TYPE_STRING)
3755 {
3756 struct string_block *b = (struct string_block *) m->start;
3757 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3758
3759 /* P must point to the start of a Lisp_String structure, and it
3760 must not be on the free-list. */
3761 return (offset >= 0
3762 && offset % sizeof b->strings[0] == 0
3763 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3764 && ((struct Lisp_String *) p)->data != NULL);
3765 }
3766 else
3767 return 0;
3768 }
3769
3770
3771 /* Value is non-zero if P is a pointer to a live Lisp cons on
3772 the heap. M is a pointer to the mem_block for P. */
3773
3774 static INLINE int
3775 live_cons_p (struct mem_node *m, void *p)
3776 {
3777 if (m->type == MEM_TYPE_CONS)
3778 {
3779 struct cons_block *b = (struct cons_block *) m->start;
3780 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3781
3782 /* P must point to the start of a Lisp_Cons, not be
3783 one of the unused cells in the current cons block,
3784 and not be on the free-list. */
3785 return (offset >= 0
3786 && offset % sizeof b->conses[0] == 0
3787 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3788 && (b != cons_block
3789 || offset / sizeof b->conses[0] < cons_block_index)
3790 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3791 }
3792 else
3793 return 0;
3794 }
3795
3796
3797 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3798 the heap. M is a pointer to the mem_block for P. */
3799
3800 static INLINE int
3801 live_symbol_p (struct mem_node *m, void *p)
3802 {
3803 if (m->type == MEM_TYPE_SYMBOL)
3804 {
3805 struct symbol_block *b = (struct symbol_block *) m->start;
3806 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3807
3808 /* P must point to the start of a Lisp_Symbol, not be
3809 one of the unused cells in the current symbol block,
3810 and not be on the free-list. */
3811 return (offset >= 0
3812 && offset % sizeof b->symbols[0] == 0
3813 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3814 && (b != symbol_block
3815 || offset / sizeof b->symbols[0] < symbol_block_index)
3816 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3817 }
3818 else
3819 return 0;
3820 }
3821
3822
3823 /* Value is non-zero if P is a pointer to a live Lisp float on
3824 the heap. M is a pointer to the mem_block for P. */
3825
3826 static INLINE int
3827 live_float_p (struct mem_node *m, void *p)
3828 {
3829 if (m->type == MEM_TYPE_FLOAT)
3830 {
3831 struct float_block *b = (struct float_block *) m->start;
3832 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3833
3834 /* P must point to the start of a Lisp_Float and not be
3835 one of the unused cells in the current float block. */
3836 return (offset >= 0
3837 && offset % sizeof b->floats[0] == 0
3838 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3839 && (b != float_block
3840 || offset / sizeof b->floats[0] < float_block_index));
3841 }
3842 else
3843 return 0;
3844 }
3845
3846
3847 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3848 the heap. M is a pointer to the mem_block for P. */
3849
3850 static INLINE int
3851 live_misc_p (struct mem_node *m, void *p)
3852 {
3853 if (m->type == MEM_TYPE_MISC)
3854 {
3855 struct marker_block *b = (struct marker_block *) m->start;
3856 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3857
3858 /* P must point to the start of a Lisp_Misc, not be
3859 one of the unused cells in the current misc block,
3860 and not be on the free-list. */
3861 return (offset >= 0
3862 && offset % sizeof b->markers[0] == 0
3863 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3864 && (b != marker_block
3865 || offset / sizeof b->markers[0] < marker_block_index)
3866 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3867 }
3868 else
3869 return 0;
3870 }
3871
3872
3873 /* Value is non-zero if P is a pointer to a live vector-like object.
3874 M is a pointer to the mem_block for P. */
3875
3876 static INLINE int
3877 live_vector_p (struct mem_node *m, void *p)
3878 {
3879 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3880 }
3881
3882
3883 /* Value is non-zero if P is a pointer to a live buffer. M is a
3884 pointer to the mem_block for P. */
3885
3886 static INLINE int
3887 live_buffer_p (struct mem_node *m, void *p)
3888 {
3889 /* P must point to the start of the block, and the buffer
3890 must not have been killed. */
3891 return (m->type == MEM_TYPE_BUFFER
3892 && p == m->start
3893 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3894 }
3895
3896 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3897
3898 #if GC_MARK_STACK
3899
3900 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3901
3902 /* Array of objects that are kept alive because the C stack contains
3903 a pattern that looks like a reference to them . */
3904
3905 #define MAX_ZOMBIES 10
3906 static Lisp_Object zombies[MAX_ZOMBIES];
3907
3908 /* Number of zombie objects. */
3909
3910 static int nzombies;
3911
3912 /* Number of garbage collections. */
3913
3914 static int ngcs;
3915
3916 /* Average percentage of zombies per collection. */
3917
3918 static double avg_zombies;
3919
3920 /* Max. number of live and zombie objects. */
3921
3922 static int max_live, max_zombies;
3923
3924 /* Average number of live objects per GC. */
3925
3926 static double avg_live;
3927
3928 DEFUE ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3929 doc: /* Show information about live and zombie objects. */)
3930 (void)
3931 {
3932 Lisp_Object args[8], zombie_list = Qnil;
3933 int i;
3934 for (i = 0; i < nzombies; i++)
3935 zombie_list = Fcons (zombies[i], zombie_list);
3936 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3937 args[1] = make_number (ngcs);
3938 args[2] = make_float (avg_live);
3939 args[3] = make_float (avg_zombies);
3940 args[4] = make_float (avg_zombies / avg_live / 100);
3941 args[5] = make_number (max_live);
3942 args[6] = make_number (max_zombies);
3943 args[7] = zombie_list;
3944 return Fmessage (8, args);
3945 }
3946
3947 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3948
3949
3950 /* Mark OBJ if we can prove it's a Lisp_Object. */
3951
3952 static INLINE void
3953 mark_maybe_object (Lisp_Object obj)
3954 {
3955 void *po;
3956 struct mem_node *m;
3957
3958 if (INTEGERP (obj))
3959 return;
3960
3961 po = (void *) XPNTR (obj);
3962 m = mem_find (po);
3963
3964 if (m != MEM_NIL)
3965 {
3966 int mark_p = 0;
3967
3968 switch (XTYPE (obj))
3969 {
3970 case Lisp_String:
3971 mark_p = (live_string_p (m, po)
3972 && !STRING_MARKED_P ((struct Lisp_String *) po));
3973 break;
3974
3975 case Lisp_Cons:
3976 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3977 break;
3978
3979 case Lisp_Symbol:
3980 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3981 break;
3982
3983 case Lisp_Float:
3984 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3985 break;
3986
3987 case Lisp_Vectorlike:
3988 /* Note: can't check BUFFERP before we know it's a
3989 buffer because checking that dereferences the pointer
3990 PO which might point anywhere. */
3991 if (live_vector_p (m, po))
3992 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3993 else if (live_buffer_p (m, po))
3994 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3995 break;
3996
3997 case Lisp_Misc:
3998 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3999 break;
4000
4001 default:
4002 break;
4003 }
4004
4005 if (mark_p)
4006 {
4007 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4008 if (nzombies < MAX_ZOMBIES)
4009 zombies[nzombies] = obj;
4010 ++nzombies;
4011 #endif
4012 mark_object (obj);
4013 }
4014 }
4015 }
4016
4017
4018 /* If P points to Lisp data, mark that as live if it isn't already
4019 marked. */
4020
4021 static INLINE void
4022 mark_maybe_pointer (void *p)
4023 {
4024 struct mem_node *m;
4025
4026 /* Quickly rule out some values which can't point to Lisp data. */
4027 if ((EMACS_INT) p %
4028 #ifdef USE_LSB_TAG
4029 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4030 #else
4031 2 /* We assume that Lisp data is aligned on even addresses. */
4032 #endif
4033 )
4034 return;
4035
4036 m = mem_find (p);
4037 if (m != MEM_NIL)
4038 {
4039 Lisp_Object obj = Qnil;
4040
4041 switch (m->type)
4042 {
4043 case MEM_TYPE_NON_LISP:
4044 /* Nothing to do; not a pointer to Lisp memory. */
4045 break;
4046
4047 case MEM_TYPE_BUFFER:
4048 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4049 XSETVECTOR (obj, p);
4050 break;
4051
4052 case MEM_TYPE_CONS:
4053 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4054 XSETCONS (obj, p);
4055 break;
4056
4057 case MEM_TYPE_STRING:
4058 if (live_string_p (m, p)
4059 && !STRING_MARKED_P ((struct Lisp_String *) p))
4060 XSETSTRING (obj, p);
4061 break;
4062
4063 case MEM_TYPE_MISC:
4064 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4065 XSETMISC (obj, p);
4066 break;
4067
4068 case MEM_TYPE_SYMBOL:
4069 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4070 XSETSYMBOL (obj, p);
4071 break;
4072
4073 case MEM_TYPE_FLOAT:
4074 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4075 XSETFLOAT (obj, p);
4076 break;
4077
4078 case MEM_TYPE_VECTORLIKE:
4079 if (live_vector_p (m, p))
4080 {
4081 Lisp_Object tem;
4082 XSETVECTOR (tem, p);
4083 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4084 obj = tem;
4085 }
4086 break;
4087
4088 default:
4089 abort ();
4090 }
4091
4092 if (!NILP (obj))
4093 mark_object (obj);
4094 }
4095 }
4096
4097
4098 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4099 or END+OFFSET..START. */
4100
4101 static void
4102 mark_memory (void *start, void *end, int offset)
4103 {
4104 Lisp_Object *p;
4105 void **pp;
4106
4107 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4108 nzombies = 0;
4109 #endif
4110
4111 /* Make START the pointer to the start of the memory region,
4112 if it isn't already. */
4113 if (end < start)
4114 {
4115 void *tem = start;
4116 start = end;
4117 end = tem;
4118 }
4119
4120 /* Mark Lisp_Objects. */
4121 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4122 mark_maybe_object (*p);
4123
4124 /* Mark Lisp data pointed to. This is necessary because, in some
4125 situations, the C compiler optimizes Lisp objects away, so that
4126 only a pointer to them remains. Example:
4127
4128 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4129 ()
4130 {
4131 Lisp_Object obj = build_string ("test");
4132 struct Lisp_String *s = XSTRING (obj);
4133 Fgarbage_collect ();
4134 fprintf (stderr, "test `%s'\n", s->data);
4135 return Qnil;
4136 }
4137
4138 Here, `obj' isn't really used, and the compiler optimizes it
4139 away. The only reference to the life string is through the
4140 pointer `s'. */
4141
4142 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4143 mark_maybe_pointer (*pp);
4144 }
4145
4146 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4147 the GCC system configuration. In gcc 3.2, the only systems for
4148 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4149 by others?) and ns32k-pc532-min. */
4150
4151 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4152
4153 static int setjmp_tested_p, longjmps_done;
4154
4155 #define SETJMP_WILL_LIKELY_WORK "\
4156 \n\
4157 Emacs garbage collector has been changed to use conservative stack\n\
4158 marking. Emacs has determined that the method it uses to do the\n\
4159 marking will likely work on your system, but this isn't sure.\n\
4160 \n\
4161 If you are a system-programmer, or can get the help of a local wizard\n\
4162 who is, please take a look at the function mark_stack in alloc.c, and\n\
4163 verify that the methods used are appropriate for your system.\n\
4164 \n\
4165 Please mail the result to <emacs-devel@gnu.org>.\n\
4166 "
4167
4168 #define SETJMP_WILL_NOT_WORK "\
4169 \n\
4170 Emacs garbage collector has been changed to use conservative stack\n\
4171 marking. Emacs has determined that the default method it uses to do the\n\
4172 marking will not work on your system. We will need a system-dependent\n\
4173 solution for your system.\n\
4174 \n\
4175 Please take a look at the function mark_stack in alloc.c, and\n\
4176 try to find a way to make it work on your system.\n\
4177 \n\
4178 Note that you may get false negatives, depending on the compiler.\n\
4179 In particular, you need to use -O with GCC for this test.\n\
4180 \n\
4181 Please mail the result to <emacs-devel@gnu.org>.\n\
4182 "
4183
4184
4185 /* Perform a quick check if it looks like setjmp saves registers in a
4186 jmp_buf. Print a message to stderr saying so. When this test
4187 succeeds, this is _not_ a proof that setjmp is sufficient for
4188 conservative stack marking. Only the sources or a disassembly
4189 can prove that. */
4190
4191 static void
4192 test_setjmp (void)
4193 {
4194 char buf[10];
4195 register int x;
4196 jmp_buf jbuf;
4197 int result = 0;
4198
4199 /* Arrange for X to be put in a register. */
4200 sprintf (buf, "1");
4201 x = strlen (buf);
4202 x = 2 * x - 1;
4203
4204 setjmp (jbuf);
4205 if (longjmps_done == 1)
4206 {
4207 /* Came here after the longjmp at the end of the function.
4208
4209 If x == 1, the longjmp has restored the register to its
4210 value before the setjmp, and we can hope that setjmp
4211 saves all such registers in the jmp_buf, although that
4212 isn't sure.
4213
4214 For other values of X, either something really strange is
4215 taking place, or the setjmp just didn't save the register. */
4216
4217 if (x == 1)
4218 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4219 else
4220 {
4221 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4222 exit (1);
4223 }
4224 }
4225
4226 ++longjmps_done;
4227 x = 2;
4228 if (longjmps_done == 1)
4229 longjmp (jbuf, 1);
4230 }
4231
4232 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4233
4234
4235 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4236
4237 /* Abort if anything GCPRO'd doesn't survive the GC. */
4238
4239 static void
4240 check_gcpros (void)
4241 {
4242 struct gcpro *p;
4243 size_t i;
4244
4245 for (p = gcprolist; p; p = p->next)
4246 for (i = 0; i < p->nvars; ++i)
4247 if (!survives_gc_p (p->var[i]))
4248 /* FIXME: It's not necessarily a bug. It might just be that the
4249 GCPRO is unnecessary or should release the object sooner. */
4250 abort ();
4251 }
4252
4253 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4254
4255 static void
4256 dump_zombies (void)
4257 {
4258 int i;
4259
4260 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4261 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4262 {
4263 fprintf (stderr, " %d = ", i);
4264 debug_print (zombies[i]);
4265 }
4266 }
4267
4268 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4269
4270
4271 /* Mark live Lisp objects on the C stack.
4272
4273 There are several system-dependent problems to consider when
4274 porting this to new architectures:
4275
4276 Processor Registers
4277
4278 We have to mark Lisp objects in CPU registers that can hold local
4279 variables or are used to pass parameters.
4280
4281 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4282 something that either saves relevant registers on the stack, or
4283 calls mark_maybe_object passing it each register's contents.
4284
4285 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4286 implementation assumes that calling setjmp saves registers we need
4287 to see in a jmp_buf which itself lies on the stack. This doesn't
4288 have to be true! It must be verified for each system, possibly
4289 by taking a look at the source code of setjmp.
4290
4291 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4292 can use it as a machine independent method to store all registers
4293 to the stack. In this case the macros described in the previous
4294 two paragraphs are not used.
4295
4296 Stack Layout
4297
4298 Architectures differ in the way their processor stack is organized.
4299 For example, the stack might look like this
4300
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | something else | size = 2
4305 +----------------+
4306 | Lisp_Object | size = 4
4307 +----------------+
4308 | ... |
4309
4310 In such a case, not every Lisp_Object will be aligned equally. To
4311 find all Lisp_Object on the stack it won't be sufficient to walk
4312 the stack in steps of 4 bytes. Instead, two passes will be
4313 necessary, one starting at the start of the stack, and a second
4314 pass starting at the start of the stack + 2. Likewise, if the
4315 minimal alignment of Lisp_Objects on the stack is 1, four passes
4316 would be necessary, each one starting with one byte more offset
4317 from the stack start.
4318
4319 The current code assumes by default that Lisp_Objects are aligned
4320 equally on the stack. */
4321
4322 static void
4323 mark_stack (void)
4324 {
4325 int i;
4326 void *end;
4327
4328 #ifdef HAVE___BUILTIN_UNWIND_INIT
4329 /* Force callee-saved registers and register windows onto the stack.
4330 This is the preferred method if available, obviating the need for
4331 machine dependent methods. */
4332 __builtin_unwind_init ();
4333 end = &end;
4334 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4335 #ifndef GC_SAVE_REGISTERS_ON_STACK
4336 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4337 union aligned_jmpbuf {
4338 Lisp_Object o;
4339 jmp_buf j;
4340 } j;
4341 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4342 #endif
4343 /* This trick flushes the register windows so that all the state of
4344 the process is contained in the stack. */
4345 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4346 needed on ia64 too. See mach_dep.c, where it also says inline
4347 assembler doesn't work with relevant proprietary compilers. */
4348 #ifdef __sparc__
4349 #if defined (__sparc64__) && defined (__FreeBSD__)
4350 /* FreeBSD does not have a ta 3 handler. */
4351 asm ("flushw");
4352 #else
4353 asm ("ta 3");
4354 #endif
4355 #endif
4356
4357 /* Save registers that we need to see on the stack. We need to see
4358 registers used to hold register variables and registers used to
4359 pass parameters. */
4360 #ifdef GC_SAVE_REGISTERS_ON_STACK
4361 GC_SAVE_REGISTERS_ON_STACK (end);
4362 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4363
4364 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4365 setjmp will definitely work, test it
4366 and print a message with the result
4367 of the test. */
4368 if (!setjmp_tested_p)
4369 {
4370 setjmp_tested_p = 1;
4371 test_setjmp ();
4372 }
4373 #endif /* GC_SETJMP_WORKS */
4374
4375 setjmp (j.j);
4376 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4377 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4378 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4379
4380 /* This assumes that the stack is a contiguous region in memory. If
4381 that's not the case, something has to be done here to iterate
4382 over the stack segments. */
4383 #ifndef GC_LISP_OBJECT_ALIGNMENT
4384 #ifdef __GNUC__
4385 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4386 #else
4387 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4388 #endif
4389 #endif
4390 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4391 mark_memory (stack_base, end, i);
4392 /* Allow for marking a secondary stack, like the register stack on the
4393 ia64. */
4394 #ifdef GC_MARK_SECONDARY_STACK
4395 GC_MARK_SECONDARY_STACK ();
4396 #endif
4397
4398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4399 check_gcpros ();
4400 #endif
4401 }
4402
4403 #endif /* GC_MARK_STACK != 0 */
4404
4405
4406 /* Determine whether it is safe to access memory at address P. */
4407 static int
4408 valid_pointer_p (void *p)
4409 {
4410 #ifdef WINDOWSNT
4411 return w32_valid_pointer_p (p, 16);
4412 #else
4413 int fd;
4414
4415 /* Obviously, we cannot just access it (we would SEGV trying), so we
4416 trick the o/s to tell us whether p is a valid pointer.
4417 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4418 not validate p in that case. */
4419
4420 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4421 {
4422 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4423 emacs_close (fd);
4424 unlink ("__Valid__Lisp__Object__");
4425 return valid;
4426 }
4427
4428 return -1;
4429 #endif
4430 }
4431
4432 /* Return 1 if OBJ is a valid lisp object.
4433 Return 0 if OBJ is NOT a valid lisp object.
4434 Return -1 if we cannot validate OBJ.
4435 This function can be quite slow,
4436 so it should only be used in code for manual debugging. */
4437
4438 int
4439 valid_lisp_object_p (Lisp_Object obj)
4440 {
4441 void *p;
4442 #if GC_MARK_STACK
4443 struct mem_node *m;
4444 #endif
4445
4446 if (INTEGERP (obj))
4447 return 1;
4448
4449 p = (void *) XPNTR (obj);
4450 if (PURE_POINTER_P (p))
4451 return 1;
4452
4453 #if !GC_MARK_STACK
4454 return valid_pointer_p (p);
4455 #else
4456
4457 m = mem_find (p);
4458
4459 if (m == MEM_NIL)
4460 {
4461 int valid = valid_pointer_p (p);
4462 if (valid <= 0)
4463 return valid;
4464
4465 if (SUBRP (obj))
4466 return 1;
4467
4468 return 0;
4469 }
4470
4471 switch (m->type)
4472 {
4473 case MEM_TYPE_NON_LISP:
4474 return 0;
4475
4476 case MEM_TYPE_BUFFER:
4477 return live_buffer_p (m, p);
4478
4479 case MEM_TYPE_CONS:
4480 return live_cons_p (m, p);
4481
4482 case MEM_TYPE_STRING:
4483 return live_string_p (m, p);
4484
4485 case MEM_TYPE_MISC:
4486 return live_misc_p (m, p);
4487
4488 case MEM_TYPE_SYMBOL:
4489 return live_symbol_p (m, p);
4490
4491 case MEM_TYPE_FLOAT:
4492 return live_float_p (m, p);
4493
4494 case MEM_TYPE_VECTORLIKE:
4495 return live_vector_p (m, p);
4496
4497 default:
4498 break;
4499 }
4500
4501 return 0;
4502 #endif
4503 }
4504
4505
4506
4507 \f
4508 /***********************************************************************
4509 Pure Storage Management
4510 ***********************************************************************/
4511
4512 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4513 pointer to it. TYPE is the Lisp type for which the memory is
4514 allocated. TYPE < 0 means it's not used for a Lisp object. */
4515
4516 static POINTER_TYPE *
4517 pure_alloc (size_t size, int type)
4518 {
4519 POINTER_TYPE *result;
4520 #ifdef USE_LSB_TAG
4521 size_t alignment = (1 << GCTYPEBITS);
4522 #else
4523 size_t alignment = sizeof (EMACS_INT);
4524
4525 /* Give Lisp_Floats an extra alignment. */
4526 if (type == Lisp_Float)
4527 {
4528 #if defined __GNUC__ && __GNUC__ >= 2
4529 alignment = __alignof (struct Lisp_Float);
4530 #else
4531 alignment = sizeof (struct Lisp_Float);
4532 #endif
4533 }
4534 #endif
4535
4536 again:
4537 if (type >= 0)
4538 {
4539 /* Allocate space for a Lisp object from the beginning of the free
4540 space with taking account of alignment. */
4541 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4542 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4543 }
4544 else
4545 {
4546 /* Allocate space for a non-Lisp object from the end of the free
4547 space. */
4548 pure_bytes_used_non_lisp += size;
4549 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4550 }
4551 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4552
4553 if (pure_bytes_used <= pure_size)
4554 return result;
4555
4556 /* Don't allocate a large amount here,
4557 because it might get mmap'd and then its address
4558 might not be usable. */
4559 purebeg = (char *) xmalloc (10000);
4560 pure_size = 10000;
4561 pure_bytes_used_before_overflow += pure_bytes_used - size;
4562 pure_bytes_used = 0;
4563 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4564 goto again;
4565 }
4566
4567
4568 /* Print a warning if PURESIZE is too small. */
4569
4570 void
4571 check_pure_size (void)
4572 {
4573 if (pure_bytes_used_before_overflow)
4574 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4575 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4576 }
4577
4578
4579 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4580 the non-Lisp data pool of the pure storage, and return its start
4581 address. Return NULL if not found. */
4582
4583 static char *
4584 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4585 {
4586 int i;
4587 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4588 const unsigned char *p;
4589 char *non_lisp_beg;
4590
4591 if (pure_bytes_used_non_lisp < nbytes + 1)
4592 return NULL;
4593
4594 /* Set up the Boyer-Moore table. */
4595 skip = nbytes + 1;
4596 for (i = 0; i < 256; i++)
4597 bm_skip[i] = skip;
4598
4599 p = (const unsigned char *) data;
4600 while (--skip > 0)
4601 bm_skip[*p++] = skip;
4602
4603 last_char_skip = bm_skip['\0'];
4604
4605 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4606 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4607
4608 /* See the comments in the function `boyer_moore' (search.c) for the
4609 use of `infinity'. */
4610 infinity = pure_bytes_used_non_lisp + 1;
4611 bm_skip['\0'] = infinity;
4612
4613 p = (const unsigned char *) non_lisp_beg + nbytes;
4614 start = 0;
4615 do
4616 {
4617 /* Check the last character (== '\0'). */
4618 do
4619 {
4620 start += bm_skip[*(p + start)];
4621 }
4622 while (start <= start_max);
4623
4624 if (start < infinity)
4625 /* Couldn't find the last character. */
4626 return NULL;
4627
4628 /* No less than `infinity' means we could find the last
4629 character at `p[start - infinity]'. */
4630 start -= infinity;
4631
4632 /* Check the remaining characters. */
4633 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4634 /* Found. */
4635 return non_lisp_beg + start;
4636
4637 start += last_char_skip;
4638 }
4639 while (start <= start_max);
4640
4641 return NULL;
4642 }
4643
4644
4645 /* Return a string allocated in pure space. DATA is a buffer holding
4646 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4647 non-zero means make the result string multibyte.
4648
4649 Must get an error if pure storage is full, since if it cannot hold
4650 a large string it may be able to hold conses that point to that
4651 string; then the string is not protected from gc. */
4652
4653 Lisp_Object
4654 make_pure_string (const char *data,
4655 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4656 {
4657 Lisp_Object string;
4658 struct Lisp_String *s;
4659
4660 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4661 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4662 if (s->data == NULL)
4663 {
4664 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4665 memcpy (s->data, data, nbytes);
4666 s->data[nbytes] = '\0';
4667 }
4668 s->size = nchars;
4669 s->size_byte = multibyte ? nbytes : -1;
4670 s->intervals = NULL_INTERVAL;
4671 XSETSTRING (string, s);
4672 return string;
4673 }
4674
4675 /* Return a string a string allocated in pure space. Do not allocate
4676 the string data, just point to DATA. */
4677
4678 Lisp_Object
4679 make_pure_c_string (const char *data)
4680 {
4681 Lisp_Object string;
4682 struct Lisp_String *s;
4683 EMACS_INT nchars = strlen (data);
4684
4685 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4686 s->size = nchars;
4687 s->size_byte = -1;
4688 s->data = (unsigned char *) data;
4689 s->intervals = NULL_INTERVAL;
4690 XSETSTRING (string, s);
4691 return string;
4692 }
4693
4694 /* Return a cons allocated from pure space. Give it pure copies
4695 of CAR as car and CDR as cdr. */
4696
4697 Lisp_Object
4698 pure_cons (Lisp_Object car, Lisp_Object cdr)
4699 {
4700 register Lisp_Object new;
4701 struct Lisp_Cons *p;
4702
4703 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4704 XSETCONS (new, p);
4705 XSETCAR (new, Fpurecopy (car));
4706 XSETCDR (new, Fpurecopy (cdr));
4707 return new;
4708 }
4709
4710
4711 /* Value is a float object with value NUM allocated from pure space. */
4712
4713 static Lisp_Object
4714 make_pure_float (double num)
4715 {
4716 register Lisp_Object new;
4717 struct Lisp_Float *p;
4718
4719 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4720 XSETFLOAT (new, p);
4721 XFLOAT_INIT (new, num);
4722 return new;
4723 }
4724
4725
4726 /* Return a vector with room for LEN Lisp_Objects allocated from
4727 pure space. */
4728
4729 Lisp_Object
4730 make_pure_vector (EMACS_INT len)
4731 {
4732 Lisp_Object new;
4733 struct Lisp_Vector *p;
4734 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4735
4736 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4737 XSETVECTOR (new, p);
4738 XVECTOR (new)->size = len;
4739 return new;
4740 }
4741
4742
4743 DEFUE ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4744 doc: /* Make a copy of object OBJ in pure storage.
4745 Recursively copies contents of vectors and cons cells.
4746 Does not copy symbols. Copies strings without text properties. */)
4747 (register Lisp_Object obj)
4748 {
4749 if (NILP (Vpurify_flag))
4750 return obj;
4751
4752 if (PURE_POINTER_P (XPNTR (obj)))
4753 return obj;
4754
4755 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4756 {
4757 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4758 if (!NILP (tmp))
4759 return tmp;
4760 }
4761
4762 if (CONSP (obj))
4763 obj = pure_cons (XCAR (obj), XCDR (obj));
4764 else if (FLOATP (obj))
4765 obj = make_pure_float (XFLOAT_DATA (obj));
4766 else if (STRINGP (obj))
4767 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4768 SBYTES (obj),
4769 STRING_MULTIBYTE (obj));
4770 else if (COMPILEDP (obj) || VECTORP (obj))
4771 {
4772 register struct Lisp_Vector *vec;
4773 register EMACS_INT i;
4774 EMACS_INT size;
4775
4776 size = XVECTOR (obj)->size;
4777 if (size & PSEUDOVECTOR_FLAG)
4778 size &= PSEUDOVECTOR_SIZE_MASK;
4779 vec = XVECTOR (make_pure_vector (size));
4780 for (i = 0; i < size; i++)
4781 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4782 if (COMPILEDP (obj))
4783 {
4784 XSETPVECTYPE (vec, PVEC_COMPILED);
4785 XSETCOMPILED (obj, vec);
4786 }
4787 else
4788 XSETVECTOR (obj, vec);
4789 }
4790 else if (MARKERP (obj))
4791 error ("Attempt to copy a marker to pure storage");
4792 else
4793 /* Not purified, don't hash-cons. */
4794 return obj;
4795
4796 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4797 Fputhash (obj, obj, Vpurify_flag);
4798
4799 return obj;
4800 }
4801
4802
4803 \f
4804 /***********************************************************************
4805 Protection from GC
4806 ***********************************************************************/
4807
4808 /* Put an entry in staticvec, pointing at the variable with address
4809 VARADDRESS. */
4810
4811 void
4812 staticpro (Lisp_Object *varaddress)
4813 {
4814 staticvec[staticidx++] = varaddress;
4815 if (staticidx >= NSTATICS)
4816 abort ();
4817 }
4818
4819 \f
4820 /***********************************************************************
4821 Protection from GC
4822 ***********************************************************************/
4823
4824 /* Temporarily prevent garbage collection. */
4825
4826 int
4827 inhibit_garbage_collection (void)
4828 {
4829 int count = SPECPDL_INDEX ();
4830 int nbits = min (VALBITS, BITS_PER_INT);
4831
4832 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4833 return count;
4834 }
4835
4836
4837 DEFUE ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4838 doc: /* Reclaim storage for Lisp objects no longer needed.
4839 Garbage collection happens automatically if you cons more than
4840 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4841 `garbage-collect' normally returns a list with info on amount of space in use:
4842 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4843 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4844 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4845 (USED-STRINGS . FREE-STRINGS))
4846 However, if there was overflow in pure space, `garbage-collect'
4847 returns nil, because real GC can't be done. */)
4848 (void)
4849 {
4850 register struct specbinding *bind;
4851 char stack_top_variable;
4852 register size_t i;
4853 int message_p;
4854 Lisp_Object total[8];
4855 int count = SPECPDL_INDEX ();
4856 EMACS_TIME t1, t2, t3;
4857
4858 if (abort_on_gc)
4859 abort ();
4860
4861 /* Can't GC if pure storage overflowed because we can't determine
4862 if something is a pure object or not. */
4863 if (pure_bytes_used_before_overflow)
4864 return Qnil;
4865
4866 CHECK_CONS_LIST ();
4867
4868 /* Don't keep undo information around forever.
4869 Do this early on, so it is no problem if the user quits. */
4870 {
4871 register struct buffer *nextb = all_buffers;
4872
4873 while (nextb)
4874 {
4875 /* If a buffer's undo list is Qt, that means that undo is
4876 turned off in that buffer. Calling truncate_undo_list on
4877 Qt tends to return NULL, which effectively turns undo back on.
4878 So don't call truncate_undo_list if undo_list is Qt. */
4879 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4880 truncate_undo_list (nextb);
4881
4882 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4883 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4884 && ! nextb->text->inhibit_shrinking)
4885 {
4886 /* If a buffer's gap size is more than 10% of the buffer
4887 size, or larger than 2000 bytes, then shrink it
4888 accordingly. Keep a minimum size of 20 bytes. */
4889 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4890
4891 if (nextb->text->gap_size > size)
4892 {
4893 struct buffer *save_current = current_buffer;
4894 current_buffer = nextb;
4895 make_gap (-(nextb->text->gap_size - size));
4896 current_buffer = save_current;
4897 }
4898 }
4899
4900 nextb = nextb->next;
4901 }
4902 }
4903
4904 EMACS_GET_TIME (t1);
4905
4906 /* In case user calls debug_print during GC,
4907 don't let that cause a recursive GC. */
4908 consing_since_gc = 0;
4909
4910 /* Save what's currently displayed in the echo area. */
4911 message_p = push_message ();
4912 record_unwind_protect (pop_message_unwind, Qnil);
4913
4914 /* Save a copy of the contents of the stack, for debugging. */
4915 #if MAX_SAVE_STACK > 0
4916 if (NILP (Vpurify_flag))
4917 {
4918 char *stack;
4919 size_t stack_size;
4920 if (&stack_top_variable < stack_bottom)
4921 {
4922 stack = &stack_top_variable;
4923 stack_size = stack_bottom - &stack_top_variable;
4924 }
4925 else
4926 {
4927 stack = stack_bottom;
4928 stack_size = &stack_top_variable - stack_bottom;
4929 }
4930 if (stack_size <= MAX_SAVE_STACK)
4931 {
4932 if (stack_copy_size < stack_size)
4933 {
4934 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4935 stack_copy_size = stack_size;
4936 }
4937 memcpy (stack_copy, stack, stack_size);
4938 }
4939 }
4940 #endif /* MAX_SAVE_STACK > 0 */
4941
4942 if (garbage_collection_messages)
4943 message1_nolog ("Garbage collecting...");
4944
4945 BLOCK_INPUT;
4946
4947 shrink_regexp_cache ();
4948
4949 gc_in_progress = 1;
4950
4951 /* clear_marks (); */
4952
4953 /* Mark all the special slots that serve as the roots of accessibility. */
4954
4955 for (i = 0; i < staticidx; i++)
4956 mark_object (*staticvec[i]);
4957
4958 for (bind = specpdl; bind != specpdl_ptr; bind++)
4959 {
4960 mark_object (bind->symbol);
4961 mark_object (bind->old_value);
4962 }
4963 mark_terminals ();
4964 mark_kboards ();
4965 mark_ttys ();
4966
4967 #ifdef USE_GTK
4968 {
4969 extern void xg_mark_data (void);
4970 xg_mark_data ();
4971 }
4972 #endif
4973
4974 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4975 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4976 mark_stack ();
4977 #else
4978 {
4979 register struct gcpro *tail;
4980 for (tail = gcprolist; tail; tail = tail->next)
4981 for (i = 0; i < tail->nvars; i++)
4982 mark_object (tail->var[i]);
4983 }
4984 mark_byte_stack ();
4985 {
4986 struct catchtag *catch;
4987 struct handler *handler;
4988
4989 for (catch = catchlist; catch; catch = catch->next)
4990 {
4991 mark_object (catch->tag);
4992 mark_object (catch->val);
4993 }
4994 for (handler = handlerlist; handler; handler = handler->next)
4995 {
4996 mark_object (handler->handler);
4997 mark_object (handler->var);
4998 }
4999 }
5000 mark_backtrace ();
5001 #endif
5002
5003 #ifdef HAVE_WINDOW_SYSTEM
5004 mark_fringe_data ();
5005 #endif
5006
5007 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5008 mark_stack ();
5009 #endif
5010
5011 /* Everything is now marked, except for the things that require special
5012 finalization, i.e. the undo_list.
5013 Look thru every buffer's undo list
5014 for elements that update markers that were not marked,
5015 and delete them. */
5016 {
5017 register struct buffer *nextb = all_buffers;
5018
5019 while (nextb)
5020 {
5021 /* If a buffer's undo list is Qt, that means that undo is
5022 turned off in that buffer. Calling truncate_undo_list on
5023 Qt tends to return NULL, which effectively turns undo back on.
5024 So don't call truncate_undo_list if undo_list is Qt. */
5025 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5026 {
5027 Lisp_Object tail, prev;
5028 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5029 prev = Qnil;
5030 while (CONSP (tail))
5031 {
5032 if (CONSP (XCAR (tail))
5033 && MARKERP (XCAR (XCAR (tail)))
5034 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5035 {
5036 if (NILP (prev))
5037 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5038 else
5039 {
5040 tail = XCDR (tail);
5041 XSETCDR (prev, tail);
5042 }
5043 }
5044 else
5045 {
5046 prev = tail;
5047 tail = XCDR (tail);
5048 }
5049 }
5050 }
5051 /* Now that we have stripped the elements that need not be in the
5052 undo_list any more, we can finally mark the list. */
5053 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5054
5055 nextb = nextb->next;
5056 }
5057 }
5058
5059 gc_sweep ();
5060
5061 /* Clear the mark bits that we set in certain root slots. */
5062
5063 unmark_byte_stack ();
5064 VECTOR_UNMARK (&buffer_defaults);
5065 VECTOR_UNMARK (&buffer_local_symbols);
5066
5067 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5068 dump_zombies ();
5069 #endif
5070
5071 UNBLOCK_INPUT;
5072
5073 CHECK_CONS_LIST ();
5074
5075 /* clear_marks (); */
5076 gc_in_progress = 0;
5077
5078 consing_since_gc = 0;
5079 if (gc_cons_threshold < 10000)
5080 gc_cons_threshold = 10000;
5081
5082 if (FLOATP (Vgc_cons_percentage))
5083 { /* Set gc_cons_combined_threshold. */
5084 EMACS_INT tot = 0;
5085
5086 tot += total_conses * sizeof (struct Lisp_Cons);
5087 tot += total_symbols * sizeof (struct Lisp_Symbol);
5088 tot += total_markers * sizeof (union Lisp_Misc);
5089 tot += total_string_size;
5090 tot += total_vector_size * sizeof (Lisp_Object);
5091 tot += total_floats * sizeof (struct Lisp_Float);
5092 tot += total_intervals * sizeof (struct interval);
5093 tot += total_strings * sizeof (struct Lisp_String);
5094
5095 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5096 }
5097 else
5098 gc_relative_threshold = 0;
5099
5100 if (garbage_collection_messages)
5101 {
5102 if (message_p || minibuf_level > 0)
5103 restore_message ();
5104 else
5105 message1_nolog ("Garbage collecting...done");
5106 }
5107
5108 unbind_to (count, Qnil);
5109
5110 total[0] = Fcons (make_number (total_conses),
5111 make_number (total_free_conses));
5112 total[1] = Fcons (make_number (total_symbols),
5113 make_number (total_free_symbols));
5114 total[2] = Fcons (make_number (total_markers),
5115 make_number (total_free_markers));
5116 total[3] = make_number (total_string_size);
5117 total[4] = make_number (total_vector_size);
5118 total[5] = Fcons (make_number (total_floats),
5119 make_number (total_free_floats));
5120 total[6] = Fcons (make_number (total_intervals),
5121 make_number (total_free_intervals));
5122 total[7] = Fcons (make_number (total_strings),
5123 make_number (total_free_strings));
5124
5125 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5126 {
5127 /* Compute average percentage of zombies. */
5128 double nlive = 0;
5129
5130 for (i = 0; i < 7; ++i)
5131 if (CONSP (total[i]))
5132 nlive += XFASTINT (XCAR (total[i]));
5133
5134 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5135 max_live = max (nlive, max_live);
5136 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5137 max_zombies = max (nzombies, max_zombies);
5138 ++ngcs;
5139 }
5140 #endif
5141
5142 if (!NILP (Vpost_gc_hook))
5143 {
5144 int gc_count = inhibit_garbage_collection ();
5145 safe_run_hooks (Qpost_gc_hook);
5146 unbind_to (gc_count, Qnil);
5147 }
5148
5149 /* Accumulate statistics. */
5150 EMACS_GET_TIME (t2);
5151 EMACS_SUB_TIME (t3, t2, t1);
5152 if (FLOATP (Vgc_elapsed))
5153 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5154 EMACS_SECS (t3) +
5155 EMACS_USECS (t3) * 1.0e-6);
5156 gcs_done++;
5157
5158 return Flist (sizeof total / sizeof *total, total);
5159 }
5160
5161
5162 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5163 only interesting objects referenced from glyphs are strings. */
5164
5165 static void
5166 mark_glyph_matrix (struct glyph_matrix *matrix)
5167 {
5168 struct glyph_row *row = matrix->rows;
5169 struct glyph_row *end = row + matrix->nrows;
5170
5171 for (; row < end; ++row)
5172 if (row->enabled_p)
5173 {
5174 int area;
5175 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5176 {
5177 struct glyph *glyph = row->glyphs[area];
5178 struct glyph *end_glyph = glyph + row->used[area];
5179
5180 for (; glyph < end_glyph; ++glyph)
5181 if (STRINGP (glyph->object)
5182 && !STRING_MARKED_P (XSTRING (glyph->object)))
5183 mark_object (glyph->object);
5184 }
5185 }
5186 }
5187
5188
5189 /* Mark Lisp faces in the face cache C. */
5190
5191 static void
5192 mark_face_cache (struct face_cache *c)
5193 {
5194 if (c)
5195 {
5196 int i, j;
5197 for (i = 0; i < c->used; ++i)
5198 {
5199 struct face *face = FACE_FROM_ID (c->f, i);
5200
5201 if (face)
5202 {
5203 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5204 mark_object (face->lface[j]);
5205 }
5206 }
5207 }
5208 }
5209
5210
5211 \f
5212 /* Mark reference to a Lisp_Object.
5213 If the object referred to has not been seen yet, recursively mark
5214 all the references contained in it. */
5215
5216 #define LAST_MARKED_SIZE 500
5217 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5218 int last_marked_index;
5219
5220 /* For debugging--call abort when we cdr down this many
5221 links of a list, in mark_object. In debugging,
5222 the call to abort will hit a breakpoint.
5223 Normally this is zero and the check never goes off. */
5224 static size_t mark_object_loop_halt;
5225
5226 static void
5227 mark_vectorlike (struct Lisp_Vector *ptr)
5228 {
5229 register EMACS_UINT size = ptr->size;
5230 register EMACS_UINT i;
5231
5232 eassert (!VECTOR_MARKED_P (ptr));
5233 VECTOR_MARK (ptr); /* Else mark it */
5234 if (size & PSEUDOVECTOR_FLAG)
5235 size &= PSEUDOVECTOR_SIZE_MASK;
5236
5237 /* Note that this size is not the memory-footprint size, but only
5238 the number of Lisp_Object fields that we should trace.
5239 The distinction is used e.g. by Lisp_Process which places extra
5240 non-Lisp_Object fields at the end of the structure. */
5241 for (i = 0; i < size; i++) /* and then mark its elements */
5242 mark_object (ptr->contents[i]);
5243 }
5244
5245 /* Like mark_vectorlike but optimized for char-tables (and
5246 sub-char-tables) assuming that the contents are mostly integers or
5247 symbols. */
5248
5249 static void
5250 mark_char_table (struct Lisp_Vector *ptr)
5251 {
5252 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5253 register EMACS_UINT i;
5254
5255 eassert (!VECTOR_MARKED_P (ptr));
5256 VECTOR_MARK (ptr);
5257 for (i = 0; i < size; i++)
5258 {
5259 Lisp_Object val = ptr->contents[i];
5260
5261 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5262 continue;
5263 if (SUB_CHAR_TABLE_P (val))
5264 {
5265 if (! VECTOR_MARKED_P (XVECTOR (val)))
5266 mark_char_table (XVECTOR (val));
5267 }
5268 else
5269 mark_object (val);
5270 }
5271 }
5272
5273 void
5274 mark_object (Lisp_Object arg)
5275 {
5276 register Lisp_Object obj = arg;
5277 #ifdef GC_CHECK_MARKED_OBJECTS
5278 void *po;
5279 struct mem_node *m;
5280 #endif
5281 size_t cdr_count = 0;
5282
5283 loop:
5284
5285 if (PURE_POINTER_P (XPNTR (obj)))
5286 return;
5287
5288 last_marked[last_marked_index++] = obj;
5289 if (last_marked_index == LAST_MARKED_SIZE)
5290 last_marked_index = 0;
5291
5292 /* Perform some sanity checks on the objects marked here. Abort if
5293 we encounter an object we know is bogus. This increases GC time
5294 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5295 #ifdef GC_CHECK_MARKED_OBJECTS
5296
5297 po = (void *) XPNTR (obj);
5298
5299 /* Check that the object pointed to by PO is known to be a Lisp
5300 structure allocated from the heap. */
5301 #define CHECK_ALLOCATED() \
5302 do { \
5303 m = mem_find (po); \
5304 if (m == MEM_NIL) \
5305 abort (); \
5306 } while (0)
5307
5308 /* Check that the object pointed to by PO is live, using predicate
5309 function LIVEP. */
5310 #define CHECK_LIVE(LIVEP) \
5311 do { \
5312 if (!LIVEP (m, po)) \
5313 abort (); \
5314 } while (0)
5315
5316 /* Check both of the above conditions. */
5317 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5318 do { \
5319 CHECK_ALLOCATED (); \
5320 CHECK_LIVE (LIVEP); \
5321 } while (0) \
5322
5323 #else /* not GC_CHECK_MARKED_OBJECTS */
5324
5325 #define CHECK_LIVE(LIVEP) (void) 0
5326 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5327
5328 #endif /* not GC_CHECK_MARKED_OBJECTS */
5329
5330 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5331 {
5332 case Lisp_String:
5333 {
5334 register struct Lisp_String *ptr = XSTRING (obj);
5335 if (STRING_MARKED_P (ptr))
5336 break;
5337 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5338 MARK_INTERVAL_TREE (ptr->intervals);
5339 MARK_STRING (ptr);
5340 #ifdef GC_CHECK_STRING_BYTES
5341 /* Check that the string size recorded in the string is the
5342 same as the one recorded in the sdata structure. */
5343 CHECK_STRING_BYTES (ptr);
5344 #endif /* GC_CHECK_STRING_BYTES */
5345 }
5346 break;
5347
5348 case Lisp_Vectorlike:
5349 if (VECTOR_MARKED_P (XVECTOR (obj)))
5350 break;
5351 #ifdef GC_CHECK_MARKED_OBJECTS
5352 m = mem_find (po);
5353 if (m == MEM_NIL && !SUBRP (obj)
5354 && po != &buffer_defaults
5355 && po != &buffer_local_symbols)
5356 abort ();
5357 #endif /* GC_CHECK_MARKED_OBJECTS */
5358
5359 if (BUFFERP (obj))
5360 {
5361 #ifdef GC_CHECK_MARKED_OBJECTS
5362 if (po != &buffer_defaults && po != &buffer_local_symbols)
5363 {
5364 struct buffer *b;
5365 for (b = all_buffers; b && b != po; b = b->next)
5366 ;
5367 if (b == NULL)
5368 abort ();
5369 }
5370 #endif /* GC_CHECK_MARKED_OBJECTS */
5371 mark_buffer (obj);
5372 }
5373 else if (SUBRP (obj))
5374 break;
5375 else if (COMPILEDP (obj))
5376 /* We could treat this just like a vector, but it is better to
5377 save the COMPILED_CONSTANTS element for last and avoid
5378 recursion there. */
5379 {
5380 register struct Lisp_Vector *ptr = XVECTOR (obj);
5381 register EMACS_UINT size = ptr->size;
5382 register EMACS_UINT i;
5383
5384 CHECK_LIVE (live_vector_p);
5385 VECTOR_MARK (ptr); /* Else mark it */
5386 size &= PSEUDOVECTOR_SIZE_MASK;
5387 for (i = 0; i < size; i++) /* and then mark its elements */
5388 {
5389 if (i != COMPILED_CONSTANTS)
5390 mark_object (ptr->contents[i]);
5391 }
5392 obj = ptr->contents[COMPILED_CONSTANTS];
5393 goto loop;
5394 }
5395 else if (FRAMEP (obj))
5396 {
5397 register struct frame *ptr = XFRAME (obj);
5398 mark_vectorlike (XVECTOR (obj));
5399 mark_face_cache (ptr->face_cache);
5400 }
5401 else if (WINDOWP (obj))
5402 {
5403 register struct Lisp_Vector *ptr = XVECTOR (obj);
5404 struct window *w = XWINDOW (obj);
5405 mark_vectorlike (ptr);
5406 /* Mark glyphs for leaf windows. Marking window matrices is
5407 sufficient because frame matrices use the same glyph
5408 memory. */
5409 if (NILP (w->hchild)
5410 && NILP (w->vchild)
5411 && w->current_matrix)
5412 {
5413 mark_glyph_matrix (w->current_matrix);
5414 mark_glyph_matrix (w->desired_matrix);
5415 }
5416 }
5417 else if (HASH_TABLE_P (obj))
5418 {
5419 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5420 mark_vectorlike ((struct Lisp_Vector *)h);
5421 /* If hash table is not weak, mark all keys and values.
5422 For weak tables, mark only the vector. */
5423 if (NILP (h->weak))
5424 mark_object (h->key_and_value);
5425 else
5426 VECTOR_MARK (XVECTOR (h->key_and_value));
5427 }
5428 else if (CHAR_TABLE_P (obj))
5429 mark_char_table (XVECTOR (obj));
5430 else
5431 mark_vectorlike (XVECTOR (obj));
5432 break;
5433
5434 case Lisp_Symbol:
5435 {
5436 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5437 struct Lisp_Symbol *ptrx;
5438
5439 if (ptr->gcmarkbit)
5440 break;
5441 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5442 ptr->gcmarkbit = 1;
5443 mark_object (ptr->function);
5444 mark_object (ptr->plist);
5445 switch (ptr->redirect)
5446 {
5447 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5448 case SYMBOL_VARALIAS:
5449 {
5450 Lisp_Object tem;
5451 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5452 mark_object (tem);
5453 break;
5454 }
5455 case SYMBOL_LOCALIZED:
5456 {
5457 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5458 /* If the value is forwarded to a buffer or keyboard field,
5459 these are marked when we see the corresponding object.
5460 And if it's forwarded to a C variable, either it's not
5461 a Lisp_Object var, or it's staticpro'd already. */
5462 mark_object (blv->where);
5463 mark_object (blv->valcell);
5464 mark_object (blv->defcell);
5465 break;
5466 }
5467 case SYMBOL_FORWARDED:
5468 /* If the value is forwarded to a buffer or keyboard field,
5469 these are marked when we see the corresponding object.
5470 And if it's forwarded to a C variable, either it's not
5471 a Lisp_Object var, or it's staticpro'd already. */
5472 break;
5473 default: abort ();
5474 }
5475 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5476 MARK_STRING (XSTRING (ptr->xname));
5477 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5478
5479 ptr = ptr->next;
5480 if (ptr)
5481 {
5482 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5483 XSETSYMBOL (obj, ptrx);
5484 goto loop;
5485 }
5486 }
5487 break;
5488
5489 case Lisp_Misc:
5490 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5491 if (XMISCANY (obj)->gcmarkbit)
5492 break;
5493 XMISCANY (obj)->gcmarkbit = 1;
5494
5495 switch (XMISCTYPE (obj))
5496 {
5497
5498 case Lisp_Misc_Marker:
5499 /* DO NOT mark thru the marker's chain.
5500 The buffer's markers chain does not preserve markers from gc;
5501 instead, markers are removed from the chain when freed by gc. */
5502 break;
5503
5504 case Lisp_Misc_Save_Value:
5505 #if GC_MARK_STACK
5506 {
5507 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5508 /* If DOGC is set, POINTER is the address of a memory
5509 area containing INTEGER potential Lisp_Objects. */
5510 if (ptr->dogc)
5511 {
5512 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5513 int nelt;
5514 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5515 mark_maybe_object (*p);
5516 }
5517 }
5518 #endif
5519 break;
5520
5521 case Lisp_Misc_Overlay:
5522 {
5523 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5524 mark_object (ptr->start);
5525 mark_object (ptr->end);
5526 mark_object (ptr->plist);
5527 if (ptr->next)
5528 {
5529 XSETMISC (obj, ptr->next);
5530 goto loop;
5531 }
5532 }
5533 break;
5534
5535 default:
5536 abort ();
5537 }
5538 break;
5539
5540 case Lisp_Cons:
5541 {
5542 register struct Lisp_Cons *ptr = XCONS (obj);
5543 if (CONS_MARKED_P (ptr))
5544 break;
5545 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5546 CONS_MARK (ptr);
5547 /* If the cdr is nil, avoid recursion for the car. */
5548 if (EQ (ptr->u.cdr, Qnil))
5549 {
5550 obj = ptr->car;
5551 cdr_count = 0;
5552 goto loop;
5553 }
5554 mark_object (ptr->car);
5555 obj = ptr->u.cdr;
5556 cdr_count++;
5557 if (cdr_count == mark_object_loop_halt)
5558 abort ();
5559 goto loop;
5560 }
5561
5562 case Lisp_Float:
5563 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5564 FLOAT_MARK (XFLOAT (obj));
5565 break;
5566
5567 case_Lisp_Int:
5568 break;
5569
5570 default:
5571 abort ();
5572 }
5573
5574 #undef CHECK_LIVE
5575 #undef CHECK_ALLOCATED
5576 #undef CHECK_ALLOCATED_AND_LIVE
5577 }
5578
5579 /* Mark the pointers in a buffer structure. */
5580
5581 static void
5582 mark_buffer (Lisp_Object buf)
5583 {
5584 register struct buffer *buffer = XBUFFER (buf);
5585 register Lisp_Object *ptr, tmp;
5586 Lisp_Object base_buffer;
5587
5588 eassert (!VECTOR_MARKED_P (buffer));
5589 VECTOR_MARK (buffer);
5590
5591 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5592
5593 /* For now, we just don't mark the undo_list. It's done later in
5594 a special way just before the sweep phase, and after stripping
5595 some of its elements that are not needed any more. */
5596
5597 if (buffer->overlays_before)
5598 {
5599 XSETMISC (tmp, buffer->overlays_before);
5600 mark_object (tmp);
5601 }
5602 if (buffer->overlays_after)
5603 {
5604 XSETMISC (tmp, buffer->overlays_after);
5605 mark_object (tmp);
5606 }
5607
5608 /* buffer-local Lisp variables start at `undo_list',
5609 tho only the ones from `name' on are GC'd normally. */
5610 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5611 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5612 ptr++)
5613 mark_object (*ptr);
5614
5615 /* If this is an indirect buffer, mark its base buffer. */
5616 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5617 {
5618 XSETBUFFER (base_buffer, buffer->base_buffer);
5619 mark_buffer (base_buffer);
5620 }
5621 }
5622
5623 /* Mark the Lisp pointers in the terminal objects.
5624 Called by the Fgarbage_collector. */
5625
5626 static void
5627 mark_terminals (void)
5628 {
5629 struct terminal *t;
5630 for (t = terminal_list; t; t = t->next_terminal)
5631 {
5632 eassert (t->name != NULL);
5633 #ifdef HAVE_WINDOW_SYSTEM
5634 /* If a terminal object is reachable from a stacpro'ed object,
5635 it might have been marked already. Make sure the image cache
5636 gets marked. */
5637 mark_image_cache (t->image_cache);
5638 #endif /* HAVE_WINDOW_SYSTEM */
5639 if (!VECTOR_MARKED_P (t))
5640 mark_vectorlike ((struct Lisp_Vector *)t);
5641 }
5642 }
5643
5644
5645
5646 /* Value is non-zero if OBJ will survive the current GC because it's
5647 either marked or does not need to be marked to survive. */
5648
5649 int
5650 survives_gc_p (Lisp_Object obj)
5651 {
5652 int survives_p;
5653
5654 switch (XTYPE (obj))
5655 {
5656 case_Lisp_Int:
5657 survives_p = 1;
5658 break;
5659
5660 case Lisp_Symbol:
5661 survives_p = XSYMBOL (obj)->gcmarkbit;
5662 break;
5663
5664 case Lisp_Misc:
5665 survives_p = XMISCANY (obj)->gcmarkbit;
5666 break;
5667
5668 case Lisp_String:
5669 survives_p = STRING_MARKED_P (XSTRING (obj));
5670 break;
5671
5672 case Lisp_Vectorlike:
5673 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5674 break;
5675
5676 case Lisp_Cons:
5677 survives_p = CONS_MARKED_P (XCONS (obj));
5678 break;
5679
5680 case Lisp_Float:
5681 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5682 break;
5683
5684 default:
5685 abort ();
5686 }
5687
5688 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5689 }
5690
5691
5692 \f
5693 /* Sweep: find all structures not marked, and free them. */
5694
5695 static void
5696 gc_sweep (void)
5697 {
5698 /* Remove or mark entries in weak hash tables.
5699 This must be done before any object is unmarked. */
5700 sweep_weak_hash_tables ();
5701
5702 sweep_strings ();
5703 #ifdef GC_CHECK_STRING_BYTES
5704 if (!noninteractive)
5705 check_string_bytes (1);
5706 #endif
5707
5708 /* Put all unmarked conses on free list */
5709 {
5710 register struct cons_block *cblk;
5711 struct cons_block **cprev = &cons_block;
5712 register int lim = cons_block_index;
5713 register int num_free = 0, num_used = 0;
5714
5715 cons_free_list = 0;
5716
5717 for (cblk = cons_block; cblk; cblk = *cprev)
5718 {
5719 register int i = 0;
5720 int this_free = 0;
5721 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5722
5723 /* Scan the mark bits an int at a time. */
5724 for (i = 0; i <= ilim; i++)
5725 {
5726 if (cblk->gcmarkbits[i] == -1)
5727 {
5728 /* Fast path - all cons cells for this int are marked. */
5729 cblk->gcmarkbits[i] = 0;
5730 num_used += BITS_PER_INT;
5731 }
5732 else
5733 {
5734 /* Some cons cells for this int are not marked.
5735 Find which ones, and free them. */
5736 int start, pos, stop;
5737
5738 start = i * BITS_PER_INT;
5739 stop = lim - start;
5740 if (stop > BITS_PER_INT)
5741 stop = BITS_PER_INT;
5742 stop += start;
5743
5744 for (pos = start; pos < stop; pos++)
5745 {
5746 if (!CONS_MARKED_P (&cblk->conses[pos]))
5747 {
5748 this_free++;
5749 cblk->conses[pos].u.chain = cons_free_list;
5750 cons_free_list = &cblk->conses[pos];
5751 #if GC_MARK_STACK
5752 cons_free_list->car = Vdead;
5753 #endif
5754 }
5755 else
5756 {
5757 num_used++;
5758 CONS_UNMARK (&cblk->conses[pos]);
5759 }
5760 }
5761 }
5762 }
5763
5764 lim = CONS_BLOCK_SIZE;
5765 /* If this block contains only free conses and we have already
5766 seen more than two blocks worth of free conses then deallocate
5767 this block. */
5768 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5769 {
5770 *cprev = cblk->next;
5771 /* Unhook from the free list. */
5772 cons_free_list = cblk->conses[0].u.chain;
5773 lisp_align_free (cblk);
5774 n_cons_blocks--;
5775 }
5776 else
5777 {
5778 num_free += this_free;
5779 cprev = &cblk->next;
5780 }
5781 }
5782 total_conses = num_used;
5783 total_free_conses = num_free;
5784 }
5785
5786 /* Put all unmarked floats on free list */
5787 {
5788 register struct float_block *fblk;
5789 struct float_block **fprev = &float_block;
5790 register int lim = float_block_index;
5791 register int num_free = 0, num_used = 0;
5792
5793 float_free_list = 0;
5794
5795 for (fblk = float_block; fblk; fblk = *fprev)
5796 {
5797 register int i;
5798 int this_free = 0;
5799 for (i = 0; i < lim; i++)
5800 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5801 {
5802 this_free++;
5803 fblk->floats[i].u.chain = float_free_list;
5804 float_free_list = &fblk->floats[i];
5805 }
5806 else
5807 {
5808 num_used++;
5809 FLOAT_UNMARK (&fblk->floats[i]);
5810 }
5811 lim = FLOAT_BLOCK_SIZE;
5812 /* If this block contains only free floats and we have already
5813 seen more than two blocks worth of free floats then deallocate
5814 this block. */
5815 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5816 {
5817 *fprev = fblk->next;
5818 /* Unhook from the free list. */
5819 float_free_list = fblk->floats[0].u.chain;
5820 lisp_align_free (fblk);
5821 n_float_blocks--;
5822 }
5823 else
5824 {
5825 num_free += this_free;
5826 fprev = &fblk->next;
5827 }
5828 }
5829 total_floats = num_used;
5830 total_free_floats = num_free;
5831 }
5832
5833 /* Put all unmarked intervals on free list */
5834 {
5835 register struct interval_block *iblk;
5836 struct interval_block **iprev = &interval_block;
5837 register int lim = interval_block_index;
5838 register int num_free = 0, num_used = 0;
5839
5840 interval_free_list = 0;
5841
5842 for (iblk = interval_block; iblk; iblk = *iprev)
5843 {
5844 register int i;
5845 int this_free = 0;
5846
5847 for (i = 0; i < lim; i++)
5848 {
5849 if (!iblk->intervals[i].gcmarkbit)
5850 {
5851 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5852 interval_free_list = &iblk->intervals[i];
5853 this_free++;
5854 }
5855 else
5856 {
5857 num_used++;
5858 iblk->intervals[i].gcmarkbit = 0;
5859 }
5860 }
5861 lim = INTERVAL_BLOCK_SIZE;
5862 /* If this block contains only free intervals and we have already
5863 seen more than two blocks worth of free intervals then
5864 deallocate this block. */
5865 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5866 {
5867 *iprev = iblk->next;
5868 /* Unhook from the free list. */
5869 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5870 lisp_free (iblk);
5871 n_interval_blocks--;
5872 }
5873 else
5874 {
5875 num_free += this_free;
5876 iprev = &iblk->next;
5877 }
5878 }
5879 total_intervals = num_used;
5880 total_free_intervals = num_free;
5881 }
5882
5883 /* Put all unmarked symbols on free list */
5884 {
5885 register struct symbol_block *sblk;
5886 struct symbol_block **sprev = &symbol_block;
5887 register int lim = symbol_block_index;
5888 register int num_free = 0, num_used = 0;
5889
5890 symbol_free_list = NULL;
5891
5892 for (sblk = symbol_block; sblk; sblk = *sprev)
5893 {
5894 int this_free = 0;
5895 struct Lisp_Symbol *sym = sblk->symbols;
5896 struct Lisp_Symbol *end = sym + lim;
5897
5898 for (; sym < end; ++sym)
5899 {
5900 /* Check if the symbol was created during loadup. In such a case
5901 it might be pointed to by pure bytecode which we don't trace,
5902 so we conservatively assume that it is live. */
5903 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5904
5905 if (!sym->gcmarkbit && !pure_p)
5906 {
5907 if (sym->redirect == SYMBOL_LOCALIZED)
5908 xfree (SYMBOL_BLV (sym));
5909 sym->next = symbol_free_list;
5910 symbol_free_list = sym;
5911 #if GC_MARK_STACK
5912 symbol_free_list->function = Vdead;
5913 #endif
5914 ++this_free;
5915 }
5916 else
5917 {
5918 ++num_used;
5919 if (!pure_p)
5920 UNMARK_STRING (XSTRING (sym->xname));
5921 sym->gcmarkbit = 0;
5922 }
5923 }
5924
5925 lim = SYMBOL_BLOCK_SIZE;
5926 /* If this block contains only free symbols and we have already
5927 seen more than two blocks worth of free symbols then deallocate
5928 this block. */
5929 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5930 {
5931 *sprev = sblk->next;
5932 /* Unhook from the free list. */
5933 symbol_free_list = sblk->symbols[0].next;
5934 lisp_free (sblk);
5935 n_symbol_blocks--;
5936 }
5937 else
5938 {
5939 num_free += this_free;
5940 sprev = &sblk->next;
5941 }
5942 }
5943 total_symbols = num_used;
5944 total_free_symbols = num_free;
5945 }
5946
5947 /* Put all unmarked misc's on free list.
5948 For a marker, first unchain it from the buffer it points into. */
5949 {
5950 register struct marker_block *mblk;
5951 struct marker_block **mprev = &marker_block;
5952 register int lim = marker_block_index;
5953 register int num_free = 0, num_used = 0;
5954
5955 marker_free_list = 0;
5956
5957 for (mblk = marker_block; mblk; mblk = *mprev)
5958 {
5959 register int i;
5960 int this_free = 0;
5961
5962 for (i = 0; i < lim; i++)
5963 {
5964 if (!mblk->markers[i].u_any.gcmarkbit)
5965 {
5966 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5967 unchain_marker (&mblk->markers[i].u_marker);
5968 /* Set the type of the freed object to Lisp_Misc_Free.
5969 We could leave the type alone, since nobody checks it,
5970 but this might catch bugs faster. */
5971 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5972 mblk->markers[i].u_free.chain = marker_free_list;
5973 marker_free_list = &mblk->markers[i];
5974 this_free++;
5975 }
5976 else
5977 {
5978 num_used++;
5979 mblk->markers[i].u_any.gcmarkbit = 0;
5980 }
5981 }
5982 lim = MARKER_BLOCK_SIZE;
5983 /* If this block contains only free markers and we have already
5984 seen more than two blocks worth of free markers then deallocate
5985 this block. */
5986 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5987 {
5988 *mprev = mblk->next;
5989 /* Unhook from the free list. */
5990 marker_free_list = mblk->markers[0].u_free.chain;
5991 lisp_free (mblk);
5992 n_marker_blocks--;
5993 }
5994 else
5995 {
5996 num_free += this_free;
5997 mprev = &mblk->next;
5998 }
5999 }
6000
6001 total_markers = num_used;
6002 total_free_markers = num_free;
6003 }
6004
6005 /* Free all unmarked buffers */
6006 {
6007 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6008
6009 while (buffer)
6010 if (!VECTOR_MARKED_P (buffer))
6011 {
6012 if (prev)
6013 prev->next = buffer->next;
6014 else
6015 all_buffers = buffer->next;
6016 next = buffer->next;
6017 lisp_free (buffer);
6018 buffer = next;
6019 }
6020 else
6021 {
6022 VECTOR_UNMARK (buffer);
6023 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6024 prev = buffer, buffer = buffer->next;
6025 }
6026 }
6027
6028 /* Free all unmarked vectors */
6029 {
6030 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6031 total_vector_size = 0;
6032
6033 while (vector)
6034 if (!VECTOR_MARKED_P (vector))
6035 {
6036 if (prev)
6037 prev->next = vector->next;
6038 else
6039 all_vectors = vector->next;
6040 next = vector->next;
6041 lisp_free (vector);
6042 n_vectors--;
6043 vector = next;
6044
6045 }
6046 else
6047 {
6048 VECTOR_UNMARK (vector);
6049 if (vector->size & PSEUDOVECTOR_FLAG)
6050 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6051 else
6052 total_vector_size += vector->size;
6053 prev = vector, vector = vector->next;
6054 }
6055 }
6056
6057 #ifdef GC_CHECK_STRING_BYTES
6058 if (!noninteractive)
6059 check_string_bytes (1);
6060 #endif
6061 }
6062
6063
6064
6065 \f
6066 /* Debugging aids. */
6067
6068 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6069 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6070 This may be helpful in debugging Emacs's memory usage.
6071 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6072 (void)
6073 {
6074 Lisp_Object end;
6075
6076 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6077
6078 return end;
6079 }
6080
6081 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6082 doc: /* Return a list of counters that measure how much consing there has been.
6083 Each of these counters increments for a certain kind of object.
6084 The counters wrap around from the largest positive integer to zero.
6085 Garbage collection does not decrease them.
6086 The elements of the value are as follows:
6087 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6088 All are in units of 1 = one object consed
6089 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6090 objects consed.
6091 MISCS include overlays, markers, and some internal types.
6092 Frames, windows, buffers, and subprocesses count as vectors
6093 (but the contents of a buffer's text do not count here). */)
6094 (void)
6095 {
6096 Lisp_Object consed[8];
6097
6098 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6099 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6100 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6101 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6102 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6103 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6104 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6105 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6106
6107 return Flist (8, consed);
6108 }
6109
6110 int suppress_checking;
6111
6112 void
6113 die (const char *msg, const char *file, int line)
6114 {
6115 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6116 file, line, msg);
6117 abort ();
6118 }
6119 \f
6120 /* Initialization */
6121
6122 void
6123 init_alloc_once (void)
6124 {
6125 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6126 purebeg = PUREBEG;
6127 pure_size = PURESIZE;
6128 pure_bytes_used = 0;
6129 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6130 pure_bytes_used_before_overflow = 0;
6131
6132 /* Initialize the list of free aligned blocks. */
6133 free_ablock = NULL;
6134
6135 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6136 mem_init ();
6137 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6138 #endif
6139
6140 all_vectors = 0;
6141 ignore_warnings = 1;
6142 #ifdef DOUG_LEA_MALLOC
6143 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6144 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6145 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6146 #endif
6147 init_strings ();
6148 init_cons ();
6149 init_symbol ();
6150 init_marker ();
6151 init_float ();
6152 init_intervals ();
6153 init_weak_hash_tables ();
6154
6155 #ifdef REL_ALLOC
6156 malloc_hysteresis = 32;
6157 #else
6158 malloc_hysteresis = 0;
6159 #endif
6160
6161 refill_memory_reserve ();
6162
6163 ignore_warnings = 0;
6164 gcprolist = 0;
6165 byte_stack_list = 0;
6166 staticidx = 0;
6167 consing_since_gc = 0;
6168 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6169 gc_relative_threshold = 0;
6170 }
6171
6172 void
6173 init_alloc (void)
6174 {
6175 gcprolist = 0;
6176 byte_stack_list = 0;
6177 #if GC_MARK_STACK
6178 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6179 setjmp_tested_p = longjmps_done = 0;
6180 #endif
6181 #endif
6182 Vgc_elapsed = make_float (0.0);
6183 gcs_done = 0;
6184 }
6185
6186 void
6187 syms_of_alloc (void)
6188 {
6189 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6190 doc: /* *Number of bytes of consing between garbage collections.
6191 Garbage collection can happen automatically once this many bytes have been
6192 allocated since the last garbage collection. All data types count.
6193
6194 Garbage collection happens automatically only when `eval' is called.
6195
6196 By binding this temporarily to a large number, you can effectively
6197 prevent garbage collection during a part of the program.
6198 See also `gc-cons-percentage'. */);
6199
6200 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6201 doc: /* *Portion of the heap used for allocation.
6202 Garbage collection can happen automatically once this portion of the heap
6203 has been allocated since the last garbage collection.
6204 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6205 Vgc_cons_percentage = make_float (0.1);
6206
6207 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6208 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6209
6210 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6211 doc: /* Number of cons cells that have been consed so far. */);
6212
6213 DEFVAR_INT ("floats-consed", floats_consed,
6214 doc: /* Number of floats that have been consed so far. */);
6215
6216 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6217 doc: /* Number of vector cells that have been consed so far. */);
6218
6219 DEFVAR_INT ("symbols-consed", symbols_consed,
6220 doc: /* Number of symbols that have been consed so far. */);
6221
6222 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6223 doc: /* Number of string characters that have been consed so far. */);
6224
6225 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6226 doc: /* Number of miscellaneous objects that have been consed so far. */);
6227
6228 DEFVAR_INT ("intervals-consed", intervals_consed,
6229 doc: /* Number of intervals that have been consed so far. */);
6230
6231 DEFVAR_INT ("strings-consed", strings_consed,
6232 doc: /* Number of strings that have been consed so far. */);
6233
6234 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6235 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6236 This means that certain objects should be allocated in shared (pure) space.
6237 It can also be set to a hash-table, in which case this table is used to
6238 do hash-consing of the objects allocated to pure space. */);
6239
6240 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6241 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6242 garbage_collection_messages = 0;
6243
6244 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6245 doc: /* Hook run after garbage collection has finished. */);
6246 Vpost_gc_hook = Qnil;
6247 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6248 staticpro (&Qpost_gc_hook);
6249
6250 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6251 doc: /* Precomputed `signal' argument for memory-full error. */);
6252 /* We build this in advance because if we wait until we need it, we might
6253 not be able to allocate the memory to hold it. */
6254 Vmemory_signal_data
6255 = pure_cons (Qerror,
6256 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6257
6258 DEFVAR_LISP ("memory-full", Vmemory_full,
6259 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6260 Vmemory_full = Qnil;
6261
6262 staticpro (&Qgc_cons_threshold);
6263 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6264
6265 staticpro (&Qchar_table_extra_slots);
6266 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6267
6268 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6269 doc: /* Accumulated time elapsed in garbage collections.
6270 The time is in seconds as a floating point value. */);
6271 DEFVAR_INT ("gcs-done", gcs_done,
6272 doc: /* Accumulated number of garbage collections done. */);
6273
6274 defsubr (&Scons);
6275 defsubr (&Slist);
6276 defsubr (&Svector);
6277 defsubr (&Smake_byte_code);
6278 defsubr (&Smake_list);
6279 defsubr (&Smake_vector);
6280 defsubr (&Smake_string);
6281 defsubr (&Smake_bool_vector);
6282 defsubr (&Smake_symbol);
6283 defsubr (&Smake_marker);
6284 defsubr (&Spurecopy);
6285 defsubr (&Sgarbage_collect);
6286 defsubr (&Smemory_limit);
6287 defsubr (&Smemory_use_counts);
6288
6289 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6290 defsubr (&Sgc_status);
6291 #endif
6292 }