Merge from emacs--rel--22
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "0e52b41c758c56831930100671c58f50")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
184
185 \(fn)" nil nil)
186
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
191
192 \(fn SEQ START &optional END)" nil nil)
193
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197 \(fn TYPE SEQUENCE...)" nil nil)
198
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
201
202 \(fn X Y)" nil nil)
203
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
206
207 \(fn X Y)" nil nil)
208
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
211
212 \(fn X)" nil nil)
213
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
216
217 \(fn SUBLIST LIST)" nil nil)
218
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (defalias 'remprop 'cl-remprop)
246
247 (defalias 'cl-gethash 'gethash)
248
249 (defalias 'cl-puthash 'puthash)
250
251 (defalias 'cl-remhash 'remhash)
252
253 (defalias 'cl-clrhash 'clrhash)
254
255 (defalias 'cl-maphash 'maphash)
256
257 (defalias 'cl-make-hash-table 'make-hash-table)
258
259 (defalias 'cl-hash-table-p 'hash-table-p)
260
261 (defalias 'cl-hash-table-count 'hash-table-count)
262
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
266
267 \(fn FORM &optional ENV)" nil nil)
268
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
271
272 \(fn FORM &optional FULL)" nil nil)
273
274 ;;;***
275 \f
276 ;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
277 ;;;;;; check-type typep cl-struct-setf-expander defstruct define-modify-macro
278 ;;;;;; callf2 callf letf* letf rotatef shiftf remf cl-do-pop psetf
279 ;;;;;; setf get-setf-method defsetf define-setf-method declare the
280 ;;;;;; locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym cl-compile-time-init) "cl-macs" "cl-macs.el" "cc0d6d8e5b0f777ec88f1098ecb85d59")
286 ;;; Generated autoloads from cl-macs.el
287
288 (autoload 'cl-compile-time-init "cl-macs" "\
289 Not documented
290
291 \(fn)" nil nil)
292
293 (autoload 'gensym "cl-macs" "\
294 Generate a new uninterned symbol.
295 The name is made by appending a number to PREFIX, default \"G\".
296
297 \(fn &optional PREFIX)" nil nil)
298
299 (autoload 'gentemp "cl-macs" "\
300 Generate a new interned symbol with a unique name.
301 The name is made by appending a number to PREFIX, default \"G\".
302
303 \(fn &optional PREFIX)" nil nil)
304
305 (autoload 'defun* "cl-macs" "\
306 Define NAME as a function.
307 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
308 and BODY is implicitly surrounded by (block NAME ...).
309
310 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
311
312 (autoload 'defmacro* "cl-macs" "\
313 Define NAME as a macro.
314 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
315 and BODY is implicitly surrounded by (block NAME ...).
316
317 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
318
319 (autoload 'function* "cl-macs" "\
320 Introduce a function.
321 Like normal `function', except that if argument is a lambda form,
322 its argument list allows full Common Lisp conventions.
323
324 \(fn FUNC)" nil (quote macro))
325
326 (autoload 'destructuring-bind "cl-macs" "\
327 Not documented
328
329 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
330
331 (autoload 'eval-when "cl-macs" "\
332 Control when BODY is evaluated.
333 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
334 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
335 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
336
337 \(fn (WHEN...) BODY...)" nil (quote macro))
338
339 (autoload 'load-time-value "cl-macs" "\
340 Like `progn', but evaluates the body at load time.
341 The result of the body appears to the compiler as a quoted constant.
342
343 \(fn FORM &optional READ-ONLY)" nil (quote macro))
344
345 (autoload 'case "cl-macs" "\
346 Eval EXPR and choose among clauses on that value.
347 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
348 against each key in each KEYLIST; the corresponding BODY is evaluated.
349 If no clause succeeds, case returns nil. A single atom may be used in
350 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
351 allowed only in the final clause, and matches if no other keys match.
352 Key values are compared by `eql'.
353
354 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
355
356 (autoload 'ecase "cl-macs" "\
357 Like `case', but error if no case fits.
358 `otherwise'-clauses are not allowed.
359
360 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
361
362 (autoload 'typecase "cl-macs" "\
363 Evals EXPR, chooses among clauses on that value.
364 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
365 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
366 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
367 final clause, and matches if no other keys match.
368
369 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
370
371 (autoload 'etypecase "cl-macs" "\
372 Like `typecase', but error if no case fits.
373 `otherwise'-clauses are not allowed.
374
375 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
376
377 (autoload 'block "cl-macs" "\
378 Define a lexically-scoped block named NAME.
379 NAME may be any symbol. Code inside the BODY forms can call `return-from'
380 to jump prematurely out of the block. This differs from `catch' and `throw'
381 in two respects: First, the NAME is an unevaluated symbol rather than a
382 quoted symbol or other form; and second, NAME is lexically rather than
383 dynamically scoped: Only references to it within BODY will work. These
384 references may appear inside macro expansions, but not inside functions
385 called from BODY.
386
387 \(fn NAME &rest BODY)" nil (quote macro))
388
389 (autoload 'return "cl-macs" "\
390 Return from the block named nil.
391 This is equivalent to `(return-from nil RESULT)'.
392
393 \(fn &optional RESULT)" nil (quote macro))
394
395 (autoload 'return-from "cl-macs" "\
396 Return from the block named NAME.
397 This jump out to the innermost enclosing `(block NAME ...)' form,
398 returning RESULT from that form (or nil if RESULT is omitted).
399 This is compatible with Common Lisp, but note that `defun' and
400 `defmacro' do not create implicit blocks as they do in Common Lisp.
401
402 \(fn NAME &optional RESULT)" nil (quote macro))
403
404 (autoload 'loop "cl-macs" "\
405 The Common Lisp `loop' macro.
406 Valid clauses are:
407 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
408 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
409 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
410 always COND, never COND, thereis COND, collect EXPR into VAR,
411 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
412 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
413 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
415 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
416 finally return EXPR, named NAME.
417
418 \(fn CLAUSE...)" nil (quote macro))
419
420 (autoload 'do "cl-macs" "\
421 The Common Lisp `do' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424
425 (autoload 'do* "cl-macs" "\
426 The Common Lisp `do*' loop.
427
428 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
429
430 (autoload 'dolist "cl-macs" "\
431 Loop over a list.
432 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
433 Then evaluate RESULT to get return value, default nil.
434
435 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
436
437 (autoload 'dotimes "cl-macs" "\
438 Loop a certain number of times.
439 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
440 to COUNT, exclusive. Then evaluate RESULT to get return value, default
441 nil.
442
443 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
444
445 (autoload 'do-symbols "cl-macs" "\
446 Loop over all symbols.
447 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
448 from OBARRAY.
449
450 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
451
452 (autoload 'do-all-symbols "cl-macs" "\
453 Not documented
454
455 \(fn SPEC &rest BODY)" nil (quote macro))
456
457 (autoload 'psetq "cl-macs" "\
458 Set SYMs to the values VALs in parallel.
459 This is like `setq', except that all VAL forms are evaluated (in order)
460 before assigning any symbols SYM to the corresponding values.
461
462 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
463
464 (autoload 'progv "cl-macs" "\
465 Bind SYMBOLS to VALUES dynamically in BODY.
466 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
467 Each symbol in the first list is bound to the corresponding value in the
468 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
469 BODY forms are executed and their result is returned. This is much like
470 a `let' form, except that the list of symbols can be computed at run-time.
471
472 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
473
474 (autoload 'flet "cl-macs" "\
475 Make temporary function definitions.
476 This is an analogue of `let' that operates on the function cell of FUNC
477 rather than its value cell. The FORMs are evaluated with the specified
478 function definitions in place, then the definitions are undone (the FUNCs
479 go back to their previous definitions, or lack thereof).
480
481 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
482
483 (autoload 'labels "cl-macs" "\
484 Make temporary function bindings.
485 This is like `flet', except the bindings are lexical instead of dynamic.
486 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
487
488 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
489
490 (autoload 'macrolet "cl-macs" "\
491 Make temporary macro definitions.
492 This is like `flet', but for macros instead of functions.
493
494 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
495
496 (autoload 'symbol-macrolet "cl-macs" "\
497 Make symbol macro definitions.
498 Within the body FORMs, references to the variable NAME will be replaced
499 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
500
501 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
502
503 (autoload 'lexical-let "cl-macs" "\
504 Like `let', but lexically scoped.
505 The main visible difference is that lambdas inside BODY will create
506 lexical closures as in Common Lisp.
507
508 \(fn VARLIST BODY)" nil (quote macro))
509
510 (autoload 'lexical-let* "cl-macs" "\
511 Like `let*', but lexically scoped.
512 The main visible difference is that lambdas inside BODY will create
513 lexical closures as in Common Lisp.
514
515 \(fn VARLIST BODY)" nil (quote macro))
516
517 (autoload 'multiple-value-bind "cl-macs" "\
518 Collect multiple return values.
519 FORM must return a list; the BODY is then executed with the first N elements
520 of this list bound (`let'-style) to each of the symbols SYM in turn. This
521 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
522 simulate true multiple return values. For compatibility, (values A B C) is
523 a synonym for (list A B C).
524
525 \(fn (SYM...) FORM BODY)" nil (quote macro))
526
527 (autoload 'multiple-value-setq "cl-macs" "\
528 Collect multiple return values.
529 FORM must return a list; the first N elements of this list are stored in
530 each of the symbols SYM in turn. This is analogous to the Common Lisp
531 `multiple-value-setq' macro, using lists to simulate true multiple return
532 values. For compatibility, (values A B C) is a synonym for (list A B C).
533
534 \(fn (SYM...) FORM)" nil (quote macro))
535
536 (autoload 'locally "cl-macs" "\
537 Not documented
538
539 \(fn &rest BODY)" nil (quote macro))
540
541 (autoload 'the "cl-macs" "\
542 Not documented
543
544 \(fn TYPE FORM)" nil (quote macro))
545
546 (autoload 'declare "cl-macs" "\
547 Not documented
548
549 \(fn &rest SPECS)" nil (quote macro))
550
551 (autoload 'define-setf-method "cl-macs" "\
552 Define a `setf' method.
553 This method shows how to handle `setf's to places of the form (NAME ARGS...).
554 The argument forms ARGS are bound according to ARGLIST, as if NAME were
555 going to be expanded as a macro, then the BODY forms are executed and must
556 return a list of five elements: a temporary-variables list, a value-forms
557 list, a store-variables list (of length one), a store-form, and an access-
558 form. See `defsetf' for a simpler way to define most setf-methods.
559
560 \(fn NAME ARGLIST BODY...)" nil (quote macro))
561
562 (autoload 'defsetf "cl-macs" "\
563 Define a `setf' method.
564 This macro is an easy-to-use substitute for `define-setf-method' that works
565 well for simple place forms. In the simple `defsetf' form, `setf's of
566 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
567 calls of the form (FUNC ARGS... VAL). Example:
568
569 (defsetf aref aset)
570
571 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
572 Here, the above `setf' call is expanded by binding the argument forms ARGS
573 according to ARGLIST, binding the value form VAL to STORE, then executing
574 BODY, which must return a Lisp form that does the necessary `setf' operation.
575 Actually, ARGLIST and STORE may be bound to temporary variables which are
576 introduced automatically to preserve proper execution order of the arguments.
577 Example:
578
579 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
580
581 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
582
583 (autoload 'get-setf-method "cl-macs" "\
584 Return a list of five values describing the setf-method for PLACE.
585 PLACE may be any Lisp form which can appear as the PLACE argument to
586 a macro like `setf' or `incf'.
587
588 \(fn PLACE &optional ENV)" nil nil)
589
590 (autoload 'setf "cl-macs" "\
591 Set each PLACE to the value of its VAL.
592 This is a generalized version of `setq'; the PLACEs may be symbolic
593 references such as (car x) or (aref x i), as well as plain symbols.
594 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
595 The return value is the last VAL in the list.
596
597 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
598
599 (autoload 'psetf "cl-macs" "\
600 Set PLACEs to the values VALs in parallel.
601 This is like `setf', except that all VAL forms are evaluated (in order)
602 before assigning any PLACEs to the corresponding values.
603
604 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
605
606 (autoload 'cl-do-pop "cl-macs" "\
607 Not documented
608
609 \(fn PLACE)" nil nil)
610
611 (autoload 'remf "cl-macs" "\
612 Remove TAG from property list PLACE.
613 PLACE may be a symbol, or any generalized variable allowed by `setf'.
614 The form returns true if TAG was found and removed, nil otherwise.
615
616 \(fn PLACE TAG)" nil (quote macro))
617
618 (autoload 'shiftf "cl-macs" "\
619 Shift left among PLACEs.
620 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
621 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
622
623 \(fn PLACE... VAL)" nil (quote macro))
624
625 (autoload 'rotatef "cl-macs" "\
626 Rotate left among PLACEs.
627 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
628 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
629
630 \(fn PLACE...)" nil (quote macro))
631
632 (autoload 'letf "cl-macs" "\
633 Temporarily bind to PLACEs.
634 This is the analogue of `let', but with generalized variables (in the
635 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
636 VALUE, then the BODY forms are executed. On exit, either normally or
637 because of a `throw' or error, the PLACEs are set back to their original
638 values. Note that this macro is *not* available in Common Lisp.
639 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
640 the PLACE is not modified before executing BODY.
641
642 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
643
644 (autoload 'letf* "cl-macs" "\
645 Temporarily bind to PLACEs.
646 This is the analogue of `let*', but with generalized variables (in the
647 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
648 VALUE, then the BODY forms are executed. On exit, either normally or
649 because of a `throw' or error, the PLACEs are set back to their original
650 values. Note that this macro is *not* available in Common Lisp.
651 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
652 the PLACE is not modified before executing BODY.
653
654 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
655
656 (autoload 'callf "cl-macs" "\
657 Set PLACE to (FUNC PLACE ARGS...).
658 FUNC should be an unquoted function name. PLACE may be a symbol,
659 or any generalized variable allowed by `setf'.
660
661 \(fn FUNC PLACE ARGS...)" nil (quote macro))
662
663 (autoload 'callf2 "cl-macs" "\
664 Set PLACE to (FUNC ARG1 PLACE ARGS...).
665 Like `callf', but PLACE is the second argument of FUNC, not the first.
666
667 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
668
669 (autoload 'define-modify-macro "cl-macs" "\
670 Define a `setf'-like modify macro.
671 If NAME is called, it combines its PLACE argument with the other arguments
672 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
673
674 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
675
676 (autoload 'defstruct "cl-macs" "\
677 Define a struct type.
678 This macro defines a new Lisp data type called NAME, which contains data
679 stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
680 copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
681
682 \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
683
684 (autoload 'cl-struct-setf-expander "cl-macs" "\
685 Not documented
686
687 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
688
689 (autoload 'typep "cl-macs" "\
690 Check that OBJECT is of type TYPE.
691 TYPE is a Common Lisp-style type specifier.
692
693 \(fn OBJECT TYPE)" nil nil)
694
695 (autoload 'check-type "cl-macs" "\
696 Verify that FORM is of type TYPE; signal an error if not.
697 STRING is an optional description of the desired type.
698
699 \(fn FORM TYPE &optional STRING)" nil (quote macro))
700
701 (autoload 'assert "cl-macs" "\
702 Verify that FORM returns non-nil; signal an error if not.
703 Second arg SHOW-ARGS means to include arguments of FORM in message.
704 Other args STRING and ARGS... are arguments to be passed to `error'.
705 They are not evaluated unless the assertion fails. If STRING is
706 omitted, a default message listing FORM itself is used.
707
708 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
709
710 (autoload 'define-compiler-macro "cl-macs" "\
711 Define a compiler-only macro.
712 This is like `defmacro', but macro expansion occurs only if the call to
713 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
714 for optimizing the way calls to FUNC are compiled; the form returned by
715 BODY should do the same thing as a call to the normal function called
716 FUNC, though possibly more efficiently. Note that, like regular macros,
717 compiler macros are expanded repeatedly until no further expansions are
718 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
719 original function call alone by declaring an initial `&whole foo' parameter
720 and then returning foo.
721
722 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
723
724 (autoload 'compiler-macroexpand "cl-macs" "\
725 Not documented
726
727 \(fn FORM)" nil nil)
728
729 ;;;***
730 \f
731 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
732 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
733 ;;;;;; nset-difference set-difference nintersection intersection
734 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
735 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
736 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
737 ;;;;;; count position-if-not position-if position find-if-not find-if
738 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
739 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
740 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
741 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "6a0563f6cb397543e7a42bd91372d8c2")
742 ;;; Generated autoloads from cl-seq.el
743
744 (autoload 'reduce "cl-seq" "\
745 Reduce two-argument FUNCTION across SEQ.
746
747 Keywords supported: :start :end :from-end :initial-value :key
748
749 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
750
751 (autoload 'fill "cl-seq" "\
752 Fill the elements of SEQ with ITEM.
753
754 Keywords supported: :start :end
755
756 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
757
758 (autoload 'replace "cl-seq" "\
759 Replace the elements of SEQ1 with the elements of SEQ2.
760 SEQ1 is destructively modified, then returned.
761
762 Keywords supported: :start1 :end1 :start2 :end2
763
764 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
765
766 (autoload 'remove* "cl-seq" "\
767 Remove all occurrences of ITEM in SEQ.
768 This is a non-destructive function; it makes a copy of SEQ if necessary
769 to avoid corrupting the original SEQ.
770
771 Keywords supported: :test :test-not :key :count :start :end :from-end
772
773 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
774
775 (autoload 'remove-if "cl-seq" "\
776 Remove all items satisfying PREDICATE in SEQ.
777 This is a non-destructive function; it makes a copy of SEQ if necessary
778 to avoid corrupting the original SEQ.
779
780 Keywords supported: :key :count :start :end :from-end
781
782 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
783
784 (autoload 'remove-if-not "cl-seq" "\
785 Remove all items not satisfying PREDICATE in SEQ.
786 This is a non-destructive function; it makes a copy of SEQ if necessary
787 to avoid corrupting the original SEQ.
788
789 Keywords supported: :key :count :start :end :from-end
790
791 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
792
793 (autoload 'delete* "cl-seq" "\
794 Remove all occurrences of ITEM in SEQ.
795 This is a destructive function; it reuses the storage of SEQ whenever possible.
796
797 Keywords supported: :test :test-not :key :count :start :end :from-end
798
799 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
800
801 (autoload 'delete-if "cl-seq" "\
802 Remove all items satisfying PREDICATE in SEQ.
803 This is a destructive function; it reuses the storage of SEQ whenever possible.
804
805 Keywords supported: :key :count :start :end :from-end
806
807 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
808
809 (autoload 'delete-if-not "cl-seq" "\
810 Remove all items not satisfying PREDICATE in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
812
813 Keywords supported: :key :count :start :end :from-end
814
815 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
816
817 (autoload 'remove-duplicates "cl-seq" "\
818 Return a copy of SEQ with all duplicate elements removed.
819
820 Keywords supported: :test :test-not :key :start :end :from-end
821
822 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
823
824 (autoload 'delete-duplicates "cl-seq" "\
825 Remove all duplicate elements from SEQ (destructively).
826
827 Keywords supported: :test :test-not :key :start :end :from-end
828
829 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
830
831 (autoload 'substitute "cl-seq" "\
832 Substitute NEW for OLD in SEQ.
833 This is a non-destructive function; it makes a copy of SEQ if necessary
834 to avoid corrupting the original SEQ.
835
836 Keywords supported: :test :test-not :key :count :start :end :from-end
837
838 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
839
840 (autoload 'substitute-if "cl-seq" "\
841 Substitute NEW for all items satisfying PREDICATE in SEQ.
842 This is a non-destructive function; it makes a copy of SEQ if necessary
843 to avoid corrupting the original SEQ.
844
845 Keywords supported: :key :count :start :end :from-end
846
847 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
848
849 (autoload 'substitute-if-not "cl-seq" "\
850 Substitute NEW for all items not satisfying PREDICATE in SEQ.
851 This is a non-destructive function; it makes a copy of SEQ if necessary
852 to avoid corrupting the original SEQ.
853
854 Keywords supported: :key :count :start :end :from-end
855
856 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
857
858 (autoload 'nsubstitute "cl-seq" "\
859 Substitute NEW for OLD in SEQ.
860 This is a destructive function; it reuses the storage of SEQ whenever possible.
861
862 Keywords supported: :test :test-not :key :count :start :end :from-end
863
864 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
865
866 (autoload 'nsubstitute-if "cl-seq" "\
867 Substitute NEW for all items satisfying PREDICATE in SEQ.
868 This is a destructive function; it reuses the storage of SEQ whenever possible.
869
870 Keywords supported: :key :count :start :end :from-end
871
872 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
873
874 (autoload 'nsubstitute-if-not "cl-seq" "\
875 Substitute NEW for all items not satisfying PREDICATE in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
877
878 Keywords supported: :key :count :start :end :from-end
879
880 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
881
882 (autoload 'find "cl-seq" "\
883 Find the first occurrence of ITEM in SEQ.
884 Return the matching ITEM, or nil if not found.
885
886 Keywords supported: :test :test-not :key :start :end :from-end
887
888 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
889
890 (autoload 'find-if "cl-seq" "\
891 Find the first item satisfying PREDICATE in SEQ.
892 Return the matching item, or nil if not found.
893
894 Keywords supported: :key :start :end :from-end
895
896 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
897
898 (autoload 'find-if-not "cl-seq" "\
899 Find the first item not satisfying PREDICATE in SEQ.
900 Return the matching item, or nil if not found.
901
902 Keywords supported: :key :start :end :from-end
903
904 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
905
906 (autoload 'position "cl-seq" "\
907 Find the first occurrence of ITEM in SEQ.
908 Return the index of the matching item, or nil if not found.
909
910 Keywords supported: :test :test-not :key :start :end :from-end
911
912 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
913
914 (autoload 'position-if "cl-seq" "\
915 Find the first item satisfying PREDICATE in SEQ.
916 Return the index of the matching item, or nil if not found.
917
918 Keywords supported: :key :start :end :from-end
919
920 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
921
922 (autoload 'position-if-not "cl-seq" "\
923 Find the first item not satisfying PREDICATE in SEQ.
924 Return the index of the matching item, or nil if not found.
925
926 Keywords supported: :key :start :end :from-end
927
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
929
930 (autoload 'count "cl-seq" "\
931 Count the number of occurrences of ITEM in SEQ.
932
933 Keywords supported: :test :test-not :key :start :end
934
935 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
936
937 (autoload 'count-if "cl-seq" "\
938 Count the number of items satisfying PREDICATE in SEQ.
939
940 Keywords supported: :key :start :end
941
942 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
943
944 (autoload 'count-if-not "cl-seq" "\
945 Count the number of items not satisfying PREDICATE in SEQ.
946
947 Keywords supported: :key :start :end
948
949 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950
951 (autoload 'mismatch "cl-seq" "\
952 Compare SEQ1 with SEQ2, return index of first mismatching element.
953 Return nil if the sequences match. If one sequence is a prefix of the
954 other, the return value indicates the end of the shorter sequence.
955
956 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
957
958 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
959
960 (autoload 'search "cl-seq" "\
961 Search for SEQ1 as a subsequence of SEQ2.
962 Return the index of the leftmost element of the first match found;
963 return nil if there are no matches.
964
965 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
966
967 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
968
969 (autoload 'sort* "cl-seq" "\
970 Sort the argument SEQ according to PREDICATE.
971 This is a destructive function; it reuses the storage of SEQ if possible.
972
973 Keywords supported: :key
974
975 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
976
977 (autoload 'stable-sort "cl-seq" "\
978 Sort the argument SEQ stably according to PREDICATE.
979 This is a destructive function; it reuses the storage of SEQ if possible.
980
981 Keywords supported: :key
982
983 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
984
985 (autoload 'merge "cl-seq" "\
986 Destructively merge the two sequences to produce a new sequence.
987 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
988 sequences, and PREDICATE is a `less-than' predicate on the elements.
989
990 Keywords supported: :key
991
992 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
993
994 (autoload 'member* "cl-seq" "\
995 Find the first occurrence of ITEM in LIST.
996 Return the sublist of LIST whose car is ITEM.
997
998 Keywords supported: :test :test-not :key
999
1000 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1001
1002 (autoload 'member-if "cl-seq" "\
1003 Find the first item satisfying PREDICATE in LIST.
1004 Return the sublist of LIST whose car matches.
1005
1006 Keywords supported: :key
1007
1008 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1009
1010 (autoload 'member-if-not "cl-seq" "\
1011 Find the first item not satisfying PREDICATE in LIST.
1012 Return the sublist of LIST whose car matches.
1013
1014 Keywords supported: :key
1015
1016 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1017
1018 (autoload 'cl-adjoin "cl-seq" "\
1019 Not documented
1020
1021 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1022
1023 (autoload 'assoc* "cl-seq" "\
1024 Find the first item whose car matches ITEM in LIST.
1025
1026 Keywords supported: :test :test-not :key
1027
1028 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1029
1030 (autoload 'assoc-if "cl-seq" "\
1031 Find the first item whose car satisfies PREDICATE in LIST.
1032
1033 Keywords supported: :key
1034
1035 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1036
1037 (autoload 'assoc-if-not "cl-seq" "\
1038 Find the first item whose car does not satisfy PREDICATE in LIST.
1039
1040 Keywords supported: :key
1041
1042 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1043
1044 (autoload 'rassoc* "cl-seq" "\
1045 Find the first item whose cdr matches ITEM in LIST.
1046
1047 Keywords supported: :test :test-not :key
1048
1049 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1050
1051 (autoload 'rassoc-if "cl-seq" "\
1052 Find the first item whose cdr satisfies PREDICATE in LIST.
1053
1054 Keywords supported: :key
1055
1056 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1057
1058 (autoload 'rassoc-if-not "cl-seq" "\
1059 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1060
1061 Keywords supported: :key
1062
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1064
1065 (autoload 'union "cl-seq" "\
1066 Combine LIST1 and LIST2 using a set-union operation.
1067 The result list contains all items that appear in either LIST1 or LIST2.
1068 This is a non-destructive function; it makes a copy of the data if necessary
1069 to avoid corrupting the original LIST1 and LIST2.
1070
1071 Keywords supported: :test :test-not :key
1072
1073 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1074
1075 (autoload 'nunion "cl-seq" "\
1076 Combine LIST1 and LIST2 using a set-union operation.
1077 The result list contains all items that appear in either LIST1 or LIST2.
1078 This is a destructive function; it reuses the storage of LIST1 and LIST2
1079 whenever possible.
1080
1081 Keywords supported: :test :test-not :key
1082
1083 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1084
1085 (autoload 'intersection "cl-seq" "\
1086 Combine LIST1 and LIST2 using a set-intersection operation.
1087 The result list contains all items that appear in both LIST1 and LIST2.
1088 This is a non-destructive function; it makes a copy of the data if necessary
1089 to avoid corrupting the original LIST1 and LIST2.
1090
1091 Keywords supported: :test :test-not :key
1092
1093 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1094
1095 (autoload 'nintersection "cl-seq" "\
1096 Combine LIST1 and LIST2 using a set-intersection operation.
1097 The result list contains all items that appear in both LIST1 and LIST2.
1098 This is a destructive function; it reuses the storage of LIST1 and LIST2
1099 whenever possible.
1100
1101 Keywords supported: :test :test-not :key
1102
1103 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1104
1105 (autoload 'set-difference "cl-seq" "\
1106 Combine LIST1 and LIST2 using a set-difference operation.
1107 The result list contains all items that appear in LIST1 but not LIST2.
1108 This is a non-destructive function; it makes a copy of the data if necessary
1109 to avoid corrupting the original LIST1 and LIST2.
1110
1111 Keywords supported: :test :test-not :key
1112
1113 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1114
1115 (autoload 'nset-difference "cl-seq" "\
1116 Combine LIST1 and LIST2 using a set-difference operation.
1117 The result list contains all items that appear in LIST1 but not LIST2.
1118 This is a destructive function; it reuses the storage of LIST1 and LIST2
1119 whenever possible.
1120
1121 Keywords supported: :test :test-not :key
1122
1123 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1124
1125 (autoload 'set-exclusive-or "cl-seq" "\
1126 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1127 The result list contains all items that appear in exactly one of LIST1, LIST2.
1128 This is a non-destructive function; it makes a copy of the data if necessary
1129 to avoid corrupting the original LIST1 and LIST2.
1130
1131 Keywords supported: :test :test-not :key
1132
1133 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1134
1135 (autoload 'nset-exclusive-or "cl-seq" "\
1136 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1137 The result list contains all items that appear in exactly one of LIST1, LIST2.
1138 This is a destructive function; it reuses the storage of LIST1 and LIST2
1139 whenever possible.
1140
1141 Keywords supported: :test :test-not :key
1142
1143 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1144
1145 (autoload 'subsetp "cl-seq" "\
1146 Return true if LIST1 is a subset of LIST2.
1147 I.e., if every element of LIST1 also appears in LIST2.
1148
1149 Keywords supported: :test :test-not :key
1150
1151 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1152
1153 (autoload 'subst-if "cl-seq" "\
1154 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1155 Return a copy of TREE with all matching elements replaced by NEW.
1156
1157 Keywords supported: :key
1158
1159 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1160
1161 (autoload 'subst-if-not "cl-seq" "\
1162 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1163 Return a copy of TREE with all non-matching elements replaced by NEW.
1164
1165 Keywords supported: :key
1166
1167 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1168
1169 (autoload 'nsubst "cl-seq" "\
1170 Substitute NEW for OLD everywhere in TREE (destructively).
1171 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1172 to `setcar').
1173
1174 Keywords supported: :test :test-not :key
1175
1176 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1177
1178 (autoload 'nsubst-if "cl-seq" "\
1179 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1180 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1181
1182 Keywords supported: :key
1183
1184 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1185
1186 (autoload 'nsubst-if-not "cl-seq" "\
1187 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1188 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1189
1190 Keywords supported: :key
1191
1192 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1193
1194 (autoload 'sublis "cl-seq" "\
1195 Perform substitutions indicated by ALIST in TREE (non-destructively).
1196 Return a copy of TREE with all matching elements replaced.
1197
1198 Keywords supported: :test :test-not :key
1199
1200 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1201
1202 (autoload 'nsublis "cl-seq" "\
1203 Perform substitutions indicated by ALIST in TREE (destructively).
1204 Any matching element of TREE is changed via a call to `setcar'.
1205
1206 Keywords supported: :test :test-not :key
1207
1208 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1209
1210 (autoload 'tree-equal "cl-seq" "\
1211 Return t if trees TREE1 and TREE2 have `eql' leaves.
1212 Atoms are compared by `eql'; cons cells are compared recursively.
1213
1214 Keywords supported: :test :test-not :key
1215
1216 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1217
1218 ;;;***
1219 \f
1220 ;; Local Variables:
1221 ;; version-control: never
1222 ;; no-byte-compile: t
1223 ;; no-update-autoloads: t
1224 ;; End:
1225
1226 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1227 ;;; cl-loaddefs.el ends here