Avoid calls to CHAR_TO_BYTE if byte position is known.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* unblock_input (); */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
179 }
180 }
181
182 /* Clear the regexp cache w.r.t. a particular syntax table,
183 because it was changed.
184 There is no danger of memory leak here because re_compile_pattern
185 automagically manages the memory in each re_pattern_buffer struct,
186 based on its `allocated' and `buffer' values. */
187 void
188 clear_regexp_cache (void)
189 {
190 int i;
191
192 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
193 /* It's tempting to compare with the syntax-table we've actually changed,
194 but it's not sufficient because char-table inheritance means that
195 modifying one syntax-table can change others at the same time. */
196 if (!EQ (searchbufs[i].syntax_table, Qt))
197 searchbufs[i].regexp = Qnil;
198 }
199
200 /* Compile a regexp if necessary, but first check to see if there's one in
201 the cache.
202 PATTERN is the pattern to compile.
203 TRANSLATE is a translation table for ignoring case, or nil for none.
204 REGP is the structure that says where to store the "register"
205 values that will result from matching this pattern.
206 If it is 0, we should compile the pattern not to record any
207 subexpression bounds.
208 POSIX is nonzero if we want full backtracking (POSIX style)
209 for this pattern. 0 means backtrack only enough to get a valid match. */
210
211 struct re_pattern_buffer *
212 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
213 {
214 struct regexp_cache *cp, **cpp;
215
216 for (cpp = &searchbuf_head; ; cpp = &cp->next)
217 {
218 cp = *cpp;
219 /* Entries are initialized to nil, and may be set to nil by
220 compile_pattern_1 if the pattern isn't valid. Don't apply
221 string accessors in those cases. However, compile_pattern_1
222 is only applied to the cache entry we pick here to reuse. So
223 nil should never appear before a non-nil entry. */
224 if (NILP (cp->regexp))
225 goto compile_it;
226 if (SCHARS (cp->regexp) == SCHARS (pattern)
227 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
228 && !NILP (Fstring_equal (cp->regexp, pattern))
229 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
230 && cp->posix == posix
231 && (EQ (cp->syntax_table, Qt)
232 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
233 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
234 && cp->buf.charset_unibyte == charset_unibyte)
235 break;
236
237 /* If we're at the end of the cache, compile into the nil cell
238 we found, or the last (least recently used) cell with a
239 string value. */
240 if (cp->next == 0)
241 {
242 compile_it:
243 compile_pattern_1 (cp, pattern, translate, posix);
244 break;
245 }
246 }
247
248 /* When we get here, cp (aka *cpp) contains the compiled pattern,
249 either because we found it in the cache or because we just compiled it.
250 Move it to the front of the queue to mark it as most recently used. */
251 *cpp = cp->next;
252 cp->next = searchbuf_head;
253 searchbuf_head = cp;
254
255 /* Advise the searching functions about the space we have allocated
256 for register data. */
257 if (regp)
258 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
259
260 /* The compiled pattern can be used both for multibyte and unibyte
261 target. But, we have to tell which the pattern is used for. */
262 cp->buf.target_multibyte = multibyte;
263
264 return &cp->buf;
265 }
266
267 \f
268 static Lisp_Object
269 looking_at_1 (Lisp_Object string, int posix)
270 {
271 Lisp_Object val;
272 unsigned char *p1, *p2;
273 ptrdiff_t s1, s2;
274 register ptrdiff_t i;
275 struct re_pattern_buffer *bufp;
276
277 if (running_asynch_code)
278 save_search_regs ();
279
280 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
281 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
282 BVAR (current_buffer, case_eqv_table));
283
284 CHECK_STRING (string);
285 bufp = compile_pattern (string,
286 (NILP (Vinhibit_changing_match_data)
287 ? &search_regs : NULL),
288 (!NILP (BVAR (current_buffer, case_fold_search))
289 ? BVAR (current_buffer, case_canon_table) : Qnil),
290 posix,
291 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
292
293 immediate_quit = 1;
294 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
295
296 /* Get pointers and sizes of the two strings
297 that make up the visible portion of the buffer. */
298
299 p1 = BEGV_ADDR;
300 s1 = GPT_BYTE - BEGV_BYTE;
301 p2 = GAP_END_ADDR;
302 s2 = ZV_BYTE - GPT_BYTE;
303 if (s1 < 0)
304 {
305 p2 = p1;
306 s2 = ZV_BYTE - BEGV_BYTE;
307 s1 = 0;
308 }
309 if (s2 < 0)
310 {
311 s1 = ZV_BYTE - BEGV_BYTE;
312 s2 = 0;
313 }
314
315 re_match_object = Qnil;
316
317 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
318 PT_BYTE - BEGV_BYTE,
319 (NILP (Vinhibit_changing_match_data)
320 ? &search_regs : NULL),
321 ZV_BYTE - BEGV_BYTE);
322 immediate_quit = 0;
323
324 if (i == -2)
325 matcher_overflow ();
326
327 val = (0 <= i ? Qt : Qnil);
328 if (NILP (Vinhibit_changing_match_data) && i >= 0)
329 for (i = 0; i < search_regs.num_regs; i++)
330 if (search_regs.start[i] >= 0)
331 {
332 search_regs.start[i]
333 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
334 search_regs.end[i]
335 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
336 }
337
338 /* Set last_thing_searched only when match data is changed. */
339 if (NILP (Vinhibit_changing_match_data))
340 XSETBUFFER (last_thing_searched, current_buffer);
341
342 return val;
343 }
344
345 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
346 doc: /* Return t if text after point matches regular expression REGEXP.
347 This function modifies the match data that `match-beginning',
348 `match-end' and `match-data' access; save and restore the match
349 data if you want to preserve them. */)
350 (Lisp_Object regexp)
351 {
352 return looking_at_1 (regexp, 0);
353 }
354
355 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
356 doc: /* Return t if text after point matches regular expression REGEXP.
357 Find the longest match, in accord with Posix regular expression rules.
358 This function modifies the match data that `match-beginning',
359 `match-end' and `match-data' access; save and restore the match
360 data if you want to preserve them. */)
361 (Lisp_Object regexp)
362 {
363 return looking_at_1 (regexp, 1);
364 }
365 \f
366 static Lisp_Object
367 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
368 {
369 ptrdiff_t val;
370 struct re_pattern_buffer *bufp;
371 EMACS_INT pos;
372 ptrdiff_t pos_byte, i;
373
374 if (running_asynch_code)
375 save_search_regs ();
376
377 CHECK_STRING (regexp);
378 CHECK_STRING (string);
379
380 if (NILP (start))
381 pos = 0, pos_byte = 0;
382 else
383 {
384 ptrdiff_t len = SCHARS (string);
385
386 CHECK_NUMBER (start);
387 pos = XINT (start);
388 if (pos < 0 && -pos <= len)
389 pos = len + pos;
390 else if (0 > pos || pos > len)
391 args_out_of_range (string, start);
392 pos_byte = string_char_to_byte (string, pos);
393 }
394
395 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
396 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
397 BVAR (current_buffer, case_eqv_table));
398
399 bufp = compile_pattern (regexp,
400 (NILP (Vinhibit_changing_match_data)
401 ? &search_regs : NULL),
402 (!NILP (BVAR (current_buffer, case_fold_search))
403 ? BVAR (current_buffer, case_canon_table) : Qnil),
404 posix,
405 STRING_MULTIBYTE (string));
406 immediate_quit = 1;
407 re_match_object = string;
408
409 val = re_search (bufp, SSDATA (string),
410 SBYTES (string), pos_byte,
411 SBYTES (string) - pos_byte,
412 (NILP (Vinhibit_changing_match_data)
413 ? &search_regs : NULL));
414 immediate_quit = 0;
415
416 /* Set last_thing_searched only when match data is changed. */
417 if (NILP (Vinhibit_changing_match_data))
418 last_thing_searched = Qt;
419
420 if (val == -2)
421 matcher_overflow ();
422 if (val < 0) return Qnil;
423
424 if (NILP (Vinhibit_changing_match_data))
425 for (i = 0; i < search_regs.num_regs; i++)
426 if (search_regs.start[i] >= 0)
427 {
428 search_regs.start[i]
429 = string_byte_to_char (string, search_regs.start[i]);
430 search_regs.end[i]
431 = string_byte_to_char (string, search_regs.end[i]);
432 }
433
434 return make_number (string_byte_to_char (string, val));
435 }
436
437 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
438 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
439 Matching ignores case if `case-fold-search' is non-nil.
440 If third arg START is non-nil, start search at that index in STRING.
441 For index of first char beyond the match, do (match-end 0).
442 `match-end' and `match-beginning' also give indices of substrings
443 matched by parenthesis constructs in the pattern.
444
445 You can use the function `match-string' to extract the substrings
446 matched by the parenthesis constructions in REGEXP. */)
447 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
448 {
449 return string_match_1 (regexp, string, start, 0);
450 }
451
452 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
453 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
454 Find the longest match, in accord with Posix regular expression rules.
455 Case is ignored if `case-fold-search' is non-nil in the current buffer.
456 If third arg START is non-nil, start search at that index in STRING.
457 For index of first char beyond the match, do (match-end 0).
458 `match-end' and `match-beginning' also give indices of substrings
459 matched by parenthesis constructs in the pattern. */)
460 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
461 {
462 return string_match_1 (regexp, string, start, 1);
463 }
464
465 /* Match REGEXP against STRING, searching all of STRING,
466 and return the index of the match, or negative on failure.
467 This does not clobber the match data. */
468
469 ptrdiff_t
470 fast_string_match (Lisp_Object regexp, Lisp_Object string)
471 {
472 ptrdiff_t val;
473 struct re_pattern_buffer *bufp;
474
475 bufp = compile_pattern (regexp, 0, Qnil,
476 0, STRING_MULTIBYTE (string));
477 immediate_quit = 1;
478 re_match_object = string;
479
480 val = re_search (bufp, SSDATA (string),
481 SBYTES (string), 0,
482 SBYTES (string), 0);
483 immediate_quit = 0;
484 return val;
485 }
486
487 /* Match REGEXP against STRING, searching all of STRING ignoring case,
488 and return the index of the match, or negative on failure.
489 This does not clobber the match data.
490 We assume that STRING contains single-byte characters. */
491
492 ptrdiff_t
493 fast_c_string_match_ignore_case (Lisp_Object regexp,
494 const char *string, ptrdiff_t len)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498
499 regexp = string_make_unibyte (regexp);
500 re_match_object = Qt;
501 bufp = compile_pattern (regexp, 0,
502 Vascii_canon_table, 0,
503 0);
504 immediate_quit = 1;
505 val = re_search (bufp, string, len, 0, len, 0);
506 immediate_quit = 0;
507 return val;
508 }
509
510 /* Like fast_string_match but ignore case. */
511
512 ptrdiff_t
513 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
514 {
515 ptrdiff_t val;
516 struct re_pattern_buffer *bufp;
517
518 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
519 0, STRING_MULTIBYTE (string));
520 immediate_quit = 1;
521 re_match_object = string;
522
523 val = re_search (bufp, SSDATA (string),
524 SBYTES (string), 0,
525 SBYTES (string), 0);
526 immediate_quit = 0;
527 return val;
528 }
529 \f
530 /* Match REGEXP against the characters after POS to LIMIT, and return
531 the number of matched characters. If STRING is non-nil, match
532 against the characters in it. In that case, POS and LIMIT are
533 indices into the string. This function doesn't modify the match
534 data. */
535
536 ptrdiff_t
537 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
538 {
539 int multibyte;
540 struct re_pattern_buffer *buf;
541 unsigned char *p1, *p2;
542 ptrdiff_t s1, s2;
543 ptrdiff_t len;
544
545 if (STRINGP (string))
546 {
547 if (pos_byte < 0)
548 pos_byte = string_char_to_byte (string, pos);
549 if (limit_byte < 0)
550 limit_byte = string_char_to_byte (string, limit);
551 p1 = NULL;
552 s1 = 0;
553 p2 = SDATA (string);
554 s2 = SBYTES (string);
555 re_match_object = string;
556 multibyte = STRING_MULTIBYTE (string);
557 }
558 else
559 {
560 if (pos_byte < 0)
561 pos_byte = CHAR_TO_BYTE (pos);
562 if (limit_byte < 0)
563 limit_byte = CHAR_TO_BYTE (limit);
564 pos_byte -= BEGV_BYTE;
565 limit_byte -= BEGV_BYTE;
566 p1 = BEGV_ADDR;
567 s1 = GPT_BYTE - BEGV_BYTE;
568 p2 = GAP_END_ADDR;
569 s2 = ZV_BYTE - GPT_BYTE;
570 if (s1 < 0)
571 {
572 p2 = p1;
573 s2 = ZV_BYTE - BEGV_BYTE;
574 s1 = 0;
575 }
576 if (s2 < 0)
577 {
578 s1 = ZV_BYTE - BEGV_BYTE;
579 s2 = 0;
580 }
581 re_match_object = Qnil;
582 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
583 }
584
585 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
586 immediate_quit = 1;
587 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
588 pos_byte, NULL, limit_byte);
589 immediate_quit = 0;
590
591 return len;
592 }
593
594 \f
595 /* The newline cache: remembering which sections of text have no newlines. */
596
597 /* If the user has requested newline caching, make sure it's on.
598 Otherwise, make sure it's off.
599 This is our cheezy way of associating an action with the change of
600 state of a buffer-local variable. */
601 static void
602 newline_cache_on_off (struct buffer *buf)
603 {
604 if (NILP (BVAR (buf, cache_long_line_scans)))
605 {
606 /* It should be off. */
607 if (buf->newline_cache)
608 {
609 free_region_cache (buf->newline_cache);
610 buf->newline_cache = 0;
611 }
612 }
613 else
614 {
615 /* It should be on. */
616 if (buf->newline_cache == 0)
617 buf->newline_cache = new_region_cache ();
618 }
619 }
620
621 \f
622 /* Search for COUNT instances of the character TARGET between START and END.
623
624 If COUNT is positive, search forwards; END must be >= START.
625 If COUNT is negative, search backwards for the -COUNTth instance;
626 END must be <= START.
627 If COUNT is zero, do anything you please; run rogue, for all I care.
628
629 If END is zero, use BEGV or ZV instead, as appropriate for the
630 direction indicated by COUNT.
631
632 If we find COUNT instances, set *SHORTAGE to zero, and return the
633 position past the COUNTth match. Note that for reverse motion
634 this is not the same as the usual convention for Emacs motion commands.
635
636 If we don't find COUNT instances before reaching END, set *SHORTAGE
637 to the number of TARGETs left unfound, and return END.
638
639 If ALLOW_QUIT, set immediate_quit. That's good to do
640 except when inside redisplay. */
641
642 ptrdiff_t
643 scan_buffer (int target, ptrdiff_t start, ptrdiff_t end,
644 ptrdiff_t count, ptrdiff_t *shortage, bool allow_quit)
645 {
646 struct region_cache *newline_cache;
647 int direction;
648
649 if (count > 0)
650 {
651 direction = 1;
652 if (! end) end = ZV;
653 }
654 else
655 {
656 direction = -1;
657 if (! end) end = BEGV;
658 }
659
660 newline_cache_on_off (current_buffer);
661 newline_cache = current_buffer->newline_cache;
662
663 if (shortage != 0)
664 *shortage = 0;
665
666 immediate_quit = allow_quit;
667
668 if (count > 0)
669 while (start != end)
670 {
671 /* Our innermost scanning loop is very simple; it doesn't know
672 about gaps, buffer ends, or the newline cache. ceiling is
673 the position of the last character before the next such
674 obstacle --- the last character the dumb search loop should
675 examine. */
676 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
677 ptrdiff_t start_byte;
678 ptrdiff_t tem;
679
680 /* If we're looking for a newline, consult the newline cache
681 to see where we can avoid some scanning. */
682 if (target == '\n' && newline_cache)
683 {
684 ptrdiff_t next_change;
685 immediate_quit = 0;
686 while (region_cache_forward
687 (current_buffer, newline_cache, start, &next_change))
688 start = next_change;
689 immediate_quit = allow_quit;
690
691 start_byte = CHAR_TO_BYTE (start);
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
700 }
701 else
702 start_byte = CHAR_TO_BYTE (start);
703
704 /* The dumb loop can only scan text stored in contiguous
705 bytes. BUFFER_CEILING_OF returns the last character
706 position that is contiguous, so the ceiling is the
707 position after that. */
708 tem = BUFFER_CEILING_OF (start_byte);
709 ceiling_byte = min (tem, ceiling_byte);
710
711 {
712 /* The termination address of the dumb loop. */
713 register unsigned char *ceiling_addr
714 = BYTE_POS_ADDR (ceiling_byte) + 1;
715 register unsigned char *cursor
716 = BYTE_POS_ADDR (start_byte);
717 unsigned char *base = cursor;
718
719 while (cursor < ceiling_addr)
720 {
721 unsigned char *scan_start = cursor;
722
723 /* The dumb loop. */
724 while (*cursor != target && ++cursor < ceiling_addr)
725 ;
726
727 /* If we're looking for newlines, cache the fact that
728 the region from start to cursor is free of them. */
729 if (target == '\n' && newline_cache)
730 know_region_cache (current_buffer, newline_cache,
731 BYTE_TO_CHAR (start_byte + scan_start - base),
732 BYTE_TO_CHAR (start_byte + cursor - base));
733
734 /* Did we find the target character? */
735 if (cursor < ceiling_addr)
736 {
737 if (--count == 0)
738 {
739 immediate_quit = 0;
740 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
741 }
742 cursor++;
743 }
744 }
745
746 start = BYTE_TO_CHAR (start_byte + cursor - base);
747 }
748 }
749 else
750 while (start > end)
751 {
752 /* The last character to check before the next obstacle. */
753 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
754 ptrdiff_t start_byte;
755 ptrdiff_t tem;
756
757 /* Consult the newline cache, if appropriate. */
758 if (target == '\n' && newline_cache)
759 {
760 ptrdiff_t next_change;
761 immediate_quit = 0;
762 while (region_cache_backward
763 (current_buffer, newline_cache, start, &next_change))
764 start = next_change;
765 immediate_quit = allow_quit;
766
767 start_byte = CHAR_TO_BYTE (start);
768
769 /* Start should never be at or before end. */
770 if (start_byte <= ceiling_byte)
771 start_byte = ceiling_byte + 1;
772
773 /* Now the text before start is an unknown region, and
774 next_change is the position of the next known region. */
775 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
776 }
777 else
778 start_byte = CHAR_TO_BYTE (start);
779
780 /* Stop scanning before the gap. */
781 tem = BUFFER_FLOOR_OF (start_byte - 1);
782 ceiling_byte = max (tem, ceiling_byte);
783
784 {
785 /* The termination address of the dumb loop. */
786 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
787 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
788 unsigned char *base = cursor;
789
790 while (cursor >= ceiling_addr)
791 {
792 unsigned char *scan_start = cursor;
793
794 while (*cursor != target && --cursor >= ceiling_addr)
795 ;
796
797 /* If we're looking for newlines, cache the fact that
798 the region from after the cursor to start is free of them. */
799 if (target == '\n' && newline_cache)
800 know_region_cache (current_buffer, newline_cache,
801 BYTE_TO_CHAR (start_byte + cursor - base),
802 BYTE_TO_CHAR (start_byte + scan_start - base));
803
804 /* Did we find the target character? */
805 if (cursor >= ceiling_addr)
806 {
807 if (++count >= 0)
808 {
809 immediate_quit = 0;
810 return BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 cursor--;
813 }
814 }
815
816 start = BYTE_TO_CHAR (start_byte + cursor - base);
817 }
818 }
819
820 immediate_quit = 0;
821 if (shortage != 0)
822 *shortage = count * direction;
823 return start;
824 }
825 \f
826 /* Search for COUNT instances of a line boundary, which means either a
827 newline or (if selective display enabled) a carriage return.
828 Start at START. If COUNT is negative, search backwards.
829
830 We report the resulting position by calling TEMP_SET_PT_BOTH.
831
832 If we find COUNT instances. we position after (always after,
833 even if scanning backwards) the COUNTth match, and return 0.
834
835 If we don't find COUNT instances before reaching the end of the
836 buffer (or the beginning, if scanning backwards), we return
837 the number of line boundaries left unfound, and position at
838 the limit we bumped up against.
839
840 If ALLOW_QUIT, set immediate_quit. That's good to do
841 except in special cases. */
842
843 EMACS_INT
844 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
845 ptrdiff_t limit, ptrdiff_t limit_byte,
846 EMACS_INT count, bool allow_quit)
847 {
848 int direction = ((count > 0) ? 1 : -1);
849
850 unsigned char *cursor;
851 unsigned char *base;
852
853 ptrdiff_t ceiling;
854 unsigned char *ceiling_addr;
855
856 bool old_immediate_quit = immediate_quit;
857
858 /* The code that follows is like scan_buffer
859 but checks for either newline or carriage return. */
860
861 if (allow_quit)
862 immediate_quit++;
863
864 start_byte = CHAR_TO_BYTE (start);
865
866 if (count > 0)
867 {
868 while (start_byte < limit_byte)
869 {
870 ceiling = BUFFER_CEILING_OF (start_byte);
871 ceiling = min (limit_byte - 1, ceiling);
872 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
873 base = (cursor = BYTE_POS_ADDR (start_byte));
874 while (1)
875 {
876 while (*cursor != '\n' && ++cursor != ceiling_addr)
877 ;
878
879 if (cursor != ceiling_addr)
880 {
881 if (--count == 0)
882 {
883 immediate_quit = old_immediate_quit;
884 start_byte = start_byte + cursor - base + 1;
885 start = BYTE_TO_CHAR (start_byte);
886 TEMP_SET_PT_BOTH (start, start_byte);
887 return 0;
888 }
889 else
890 if (++cursor == ceiling_addr)
891 break;
892 }
893 else
894 break;
895 }
896 start_byte += cursor - base;
897 }
898 }
899 else
900 {
901 while (start_byte > limit_byte)
902 {
903 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
904 ceiling = max (limit_byte, ceiling);
905 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
906 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
907 while (1)
908 {
909 while (--cursor != ceiling_addr && *cursor != '\n')
910 ;
911
912 if (cursor != ceiling_addr)
913 {
914 if (++count == 0)
915 {
916 immediate_quit = old_immediate_quit;
917 /* Return the position AFTER the match we found. */
918 start_byte = start_byte + cursor - base + 1;
919 start = BYTE_TO_CHAR (start_byte);
920 TEMP_SET_PT_BOTH (start, start_byte);
921 return 0;
922 }
923 }
924 else
925 break;
926 }
927 /* Here we add 1 to compensate for the last decrement
928 of CURSOR, which took it past the valid range. */
929 start_byte += cursor - base + 1;
930 }
931 }
932
933 TEMP_SET_PT_BOTH (limit, limit_byte);
934 immediate_quit = old_immediate_quit;
935
936 return count * direction;
937 }
938
939 ptrdiff_t
940 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
941 {
942 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
943 }
944
945 /* Like find_next_newline, but returns position before the newline,
946 not after, and only search up to TO. This isn't just
947 find_next_newline (...)-1, because you might hit TO. */
948
949 ptrdiff_t
950 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
951 {
952 ptrdiff_t shortage;
953 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
954
955 if (shortage == 0)
956 pos--;
957
958 return pos;
959 }
960 \f
961 /* Subroutines of Lisp buffer search functions. */
962
963 static Lisp_Object
964 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
965 Lisp_Object count, int direction, int RE, int posix)
966 {
967 register EMACS_INT np;
968 EMACS_INT lim;
969 ptrdiff_t lim_byte;
970 EMACS_INT n = direction;
971
972 if (!NILP (count))
973 {
974 CHECK_NUMBER (count);
975 n *= XINT (count);
976 }
977
978 CHECK_STRING (string);
979 if (NILP (bound))
980 {
981 if (n > 0)
982 lim = ZV, lim_byte = ZV_BYTE;
983 else
984 lim = BEGV, lim_byte = BEGV_BYTE;
985 }
986 else
987 {
988 CHECK_NUMBER_COERCE_MARKER (bound);
989 lim = XINT (bound);
990 if (n > 0 ? lim < PT : lim > PT)
991 error ("Invalid search bound (wrong side of point)");
992 if (lim > ZV)
993 lim = ZV, lim_byte = ZV_BYTE;
994 else if (lim < BEGV)
995 lim = BEGV, lim_byte = BEGV_BYTE;
996 else
997 lim_byte = CHAR_TO_BYTE (lim);
998 }
999
1000 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1001 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1002 BVAR (current_buffer, case_eqv_table));
1003
1004 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1005 (!NILP (BVAR (current_buffer, case_fold_search))
1006 ? BVAR (current_buffer, case_canon_table)
1007 : Qnil),
1008 (!NILP (BVAR (current_buffer, case_fold_search))
1009 ? BVAR (current_buffer, case_eqv_table)
1010 : Qnil),
1011 posix);
1012 if (np <= 0)
1013 {
1014 if (NILP (noerror))
1015 xsignal1 (Qsearch_failed, string);
1016
1017 if (!EQ (noerror, Qt))
1018 {
1019 if (lim < BEGV || lim > ZV)
1020 emacs_abort ();
1021 SET_PT_BOTH (lim, lim_byte);
1022 return Qnil;
1023 #if 0 /* This would be clean, but maybe programs depend on
1024 a value of nil here. */
1025 np = lim;
1026 #endif
1027 }
1028 else
1029 return Qnil;
1030 }
1031
1032 if (np < BEGV || np > ZV)
1033 emacs_abort ();
1034
1035 SET_PT (np);
1036
1037 return make_number (np);
1038 }
1039 \f
1040 /* Return 1 if REGEXP it matches just one constant string. */
1041
1042 static int
1043 trivial_regexp_p (Lisp_Object regexp)
1044 {
1045 ptrdiff_t len = SBYTES (regexp);
1046 unsigned char *s = SDATA (regexp);
1047 while (--len >= 0)
1048 {
1049 switch (*s++)
1050 {
1051 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1052 return 0;
1053 case '\\':
1054 if (--len < 0)
1055 return 0;
1056 switch (*s++)
1057 {
1058 case '|': case '(': case ')': case '`': case '\'': case 'b':
1059 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1060 case 'S': case '=': case '{': case '}': case '_':
1061 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1062 case '1': case '2': case '3': case '4': case '5':
1063 case '6': case '7': case '8': case '9':
1064 return 0;
1065 }
1066 }
1067 }
1068 return 1;
1069 }
1070
1071 /* Search for the n'th occurrence of STRING in the current buffer,
1072 starting at position POS and stopping at position LIM,
1073 treating STRING as a literal string if RE is false or as
1074 a regular expression if RE is true.
1075
1076 If N is positive, searching is forward and LIM must be greater than POS.
1077 If N is negative, searching is backward and LIM must be less than POS.
1078
1079 Returns -x if x occurrences remain to be found (x > 0),
1080 or else the position at the beginning of the Nth occurrence
1081 (if searching backward) or the end (if searching forward).
1082
1083 POSIX is nonzero if we want full backtracking (POSIX style)
1084 for this pattern. 0 means backtrack only enough to get a valid match. */
1085
1086 #define TRANSLATE(out, trt, d) \
1087 do \
1088 { \
1089 if (! NILP (trt)) \
1090 { \
1091 Lisp_Object temp; \
1092 temp = Faref (trt, make_number (d)); \
1093 if (INTEGERP (temp)) \
1094 out = XINT (temp); \
1095 else \
1096 out = d; \
1097 } \
1098 else \
1099 out = d; \
1100 } \
1101 while (0)
1102
1103 /* Only used in search_buffer, to record the end position of the match
1104 when searching regexps and SEARCH_REGS should not be changed
1105 (i.e. Vinhibit_changing_match_data is non-nil). */
1106 static struct re_registers search_regs_1;
1107
1108 static EMACS_INT
1109 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1110 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1111 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1112 {
1113 ptrdiff_t len = SCHARS (string);
1114 ptrdiff_t len_byte = SBYTES (string);
1115 register ptrdiff_t i;
1116
1117 if (running_asynch_code)
1118 save_search_regs ();
1119
1120 /* Searching 0 times means don't move. */
1121 /* Null string is found at starting position. */
1122 if (len == 0 || n == 0)
1123 {
1124 set_search_regs (pos_byte, 0);
1125 return pos;
1126 }
1127
1128 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1129 {
1130 unsigned char *p1, *p2;
1131 ptrdiff_t s1, s2;
1132 struct re_pattern_buffer *bufp;
1133
1134 bufp = compile_pattern (string,
1135 (NILP (Vinhibit_changing_match_data)
1136 ? &search_regs : &search_regs_1),
1137 trt, posix,
1138 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1139
1140 immediate_quit = 1; /* Quit immediately if user types ^G,
1141 because letting this function finish
1142 can take too long. */
1143 QUIT; /* Do a pending quit right away,
1144 to avoid paradoxical behavior */
1145 /* Get pointers and sizes of the two strings
1146 that make up the visible portion of the buffer. */
1147
1148 p1 = BEGV_ADDR;
1149 s1 = GPT_BYTE - BEGV_BYTE;
1150 p2 = GAP_END_ADDR;
1151 s2 = ZV_BYTE - GPT_BYTE;
1152 if (s1 < 0)
1153 {
1154 p2 = p1;
1155 s2 = ZV_BYTE - BEGV_BYTE;
1156 s1 = 0;
1157 }
1158 if (s2 < 0)
1159 {
1160 s1 = ZV_BYTE - BEGV_BYTE;
1161 s2 = 0;
1162 }
1163 re_match_object = Qnil;
1164
1165 while (n < 0)
1166 {
1167 ptrdiff_t val;
1168
1169 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1170 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1171 (NILP (Vinhibit_changing_match_data)
1172 ? &search_regs : &search_regs_1),
1173 /* Don't allow match past current point */
1174 pos_byte - BEGV_BYTE);
1175 if (val == -2)
1176 {
1177 matcher_overflow ();
1178 }
1179 if (val >= 0)
1180 {
1181 if (NILP (Vinhibit_changing_match_data))
1182 {
1183 pos_byte = search_regs.start[0] + BEGV_BYTE;
1184 for (i = 0; i < search_regs.num_regs; i++)
1185 if (search_regs.start[i] >= 0)
1186 {
1187 search_regs.start[i]
1188 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1189 search_regs.end[i]
1190 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1191 }
1192 XSETBUFFER (last_thing_searched, current_buffer);
1193 /* Set pos to the new position. */
1194 pos = search_regs.start[0];
1195 }
1196 else
1197 {
1198 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1199 /* Set pos to the new position. */
1200 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1201 }
1202 }
1203 else
1204 {
1205 immediate_quit = 0;
1206 return (n);
1207 }
1208 n++;
1209 }
1210 while (n > 0)
1211 {
1212 ptrdiff_t val;
1213
1214 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1215 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1216 (NILP (Vinhibit_changing_match_data)
1217 ? &search_regs : &search_regs_1),
1218 lim_byte - BEGV_BYTE);
1219 if (val == -2)
1220 {
1221 matcher_overflow ();
1222 }
1223 if (val >= 0)
1224 {
1225 if (NILP (Vinhibit_changing_match_data))
1226 {
1227 pos_byte = search_regs.end[0] + BEGV_BYTE;
1228 for (i = 0; i < search_regs.num_regs; i++)
1229 if (search_regs.start[i] >= 0)
1230 {
1231 search_regs.start[i]
1232 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1233 search_regs.end[i]
1234 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1235 }
1236 XSETBUFFER (last_thing_searched, current_buffer);
1237 pos = search_regs.end[0];
1238 }
1239 else
1240 {
1241 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1242 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1243 }
1244 }
1245 else
1246 {
1247 immediate_quit = 0;
1248 return (0 - n);
1249 }
1250 n--;
1251 }
1252 immediate_quit = 0;
1253 return (pos);
1254 }
1255 else /* non-RE case */
1256 {
1257 unsigned char *raw_pattern, *pat;
1258 ptrdiff_t raw_pattern_size;
1259 ptrdiff_t raw_pattern_size_byte;
1260 unsigned char *patbuf;
1261 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1262 unsigned char *base_pat;
1263 /* Set to positive if we find a non-ASCII char that need
1264 translation. Otherwise set to zero later. */
1265 int char_base = -1;
1266 int boyer_moore_ok = 1;
1267
1268 /* MULTIBYTE says whether the text to be searched is multibyte.
1269 We must convert PATTERN to match that, or we will not really
1270 find things right. */
1271
1272 if (multibyte == STRING_MULTIBYTE (string))
1273 {
1274 raw_pattern = SDATA (string);
1275 raw_pattern_size = SCHARS (string);
1276 raw_pattern_size_byte = SBYTES (string);
1277 }
1278 else if (multibyte)
1279 {
1280 raw_pattern_size = SCHARS (string);
1281 raw_pattern_size_byte
1282 = count_size_as_multibyte (SDATA (string),
1283 raw_pattern_size);
1284 raw_pattern = alloca (raw_pattern_size_byte + 1);
1285 copy_text (SDATA (string), raw_pattern,
1286 SCHARS (string), 0, 1);
1287 }
1288 else
1289 {
1290 /* Converting multibyte to single-byte.
1291
1292 ??? Perhaps this conversion should be done in a special way
1293 by subtracting nonascii-insert-offset from each non-ASCII char,
1294 so that only the multibyte chars which really correspond to
1295 the chosen single-byte character set can possibly match. */
1296 raw_pattern_size = SCHARS (string);
1297 raw_pattern_size_byte = SCHARS (string);
1298 raw_pattern = alloca (raw_pattern_size + 1);
1299 copy_text (SDATA (string), raw_pattern,
1300 SBYTES (string), 1, 0);
1301 }
1302
1303 /* Copy and optionally translate the pattern. */
1304 len = raw_pattern_size;
1305 len_byte = raw_pattern_size_byte;
1306 patbuf = alloca (len * MAX_MULTIBYTE_LENGTH);
1307 pat = patbuf;
1308 base_pat = raw_pattern;
1309 if (multibyte)
1310 {
1311 /* Fill patbuf by translated characters in STRING while
1312 checking if we can use boyer-moore search. If TRT is
1313 non-nil, we can use boyer-moore search only if TRT can be
1314 represented by the byte array of 256 elements. For that,
1315 all non-ASCII case-equivalents of all case-sensitive
1316 characters in STRING must belong to the same charset and
1317 row. */
1318
1319 while (--len >= 0)
1320 {
1321 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1322 int c, translated, inverse;
1323 int in_charlen, charlen;
1324
1325 /* If we got here and the RE flag is set, it's because we're
1326 dealing with a regexp known to be trivial, so the backslash
1327 just quotes the next character. */
1328 if (RE && *base_pat == '\\')
1329 {
1330 len--;
1331 raw_pattern_size--;
1332 len_byte--;
1333 base_pat++;
1334 }
1335
1336 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1337
1338 if (NILP (trt))
1339 {
1340 str = base_pat;
1341 charlen = in_charlen;
1342 }
1343 else
1344 {
1345 /* Translate the character. */
1346 TRANSLATE (translated, trt, c);
1347 charlen = CHAR_STRING (translated, str_base);
1348 str = str_base;
1349
1350 /* Check if C has any other case-equivalents. */
1351 TRANSLATE (inverse, inverse_trt, c);
1352 /* If so, check if we can use boyer-moore. */
1353 if (c != inverse && boyer_moore_ok)
1354 {
1355 /* Check if all equivalents belong to the same
1356 group of characters. Note that the check of C
1357 itself is done by the last iteration. */
1358 int this_char_base = -1;
1359
1360 while (boyer_moore_ok)
1361 {
1362 if (ASCII_BYTE_P (inverse))
1363 {
1364 if (this_char_base > 0)
1365 boyer_moore_ok = 0;
1366 else
1367 this_char_base = 0;
1368 }
1369 else if (CHAR_BYTE8_P (inverse))
1370 /* Boyer-moore search can't handle a
1371 translation of an eight-bit
1372 character. */
1373 boyer_moore_ok = 0;
1374 else if (this_char_base < 0)
1375 {
1376 this_char_base = inverse & ~0x3F;
1377 if (char_base < 0)
1378 char_base = this_char_base;
1379 else if (this_char_base != char_base)
1380 boyer_moore_ok = 0;
1381 }
1382 else if ((inverse & ~0x3F) != this_char_base)
1383 boyer_moore_ok = 0;
1384 if (c == inverse)
1385 break;
1386 TRANSLATE (inverse, inverse_trt, inverse);
1387 }
1388 }
1389 }
1390
1391 /* Store this character into the translated pattern. */
1392 memcpy (pat, str, charlen);
1393 pat += charlen;
1394 base_pat += in_charlen;
1395 len_byte -= in_charlen;
1396 }
1397
1398 /* If char_base is still negative we didn't find any translated
1399 non-ASCII characters. */
1400 if (char_base < 0)
1401 char_base = 0;
1402 }
1403 else
1404 {
1405 /* Unibyte buffer. */
1406 char_base = 0;
1407 while (--len >= 0)
1408 {
1409 int c, translated, inverse;
1410
1411 /* If we got here and the RE flag is set, it's because we're
1412 dealing with a regexp known to be trivial, so the backslash
1413 just quotes the next character. */
1414 if (RE && *base_pat == '\\')
1415 {
1416 len--;
1417 raw_pattern_size--;
1418 base_pat++;
1419 }
1420 c = *base_pat++;
1421 TRANSLATE (translated, trt, c);
1422 *pat++ = translated;
1423 /* Check that none of C's equivalents violates the
1424 assumptions of boyer_moore. */
1425 TRANSLATE (inverse, inverse_trt, c);
1426 while (1)
1427 {
1428 if (inverse >= 0200)
1429 {
1430 boyer_moore_ok = 0;
1431 break;
1432 }
1433 if (c == inverse)
1434 break;
1435 TRANSLATE (inverse, inverse_trt, inverse);
1436 }
1437 }
1438 }
1439
1440 len_byte = pat - patbuf;
1441 pat = base_pat = patbuf;
1442
1443 if (boyer_moore_ok)
1444 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1445 pos_byte, lim_byte,
1446 char_base);
1447 else
1448 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1449 pos, pos_byte, lim, lim_byte);
1450 }
1451 }
1452 \f
1453 /* Do a simple string search N times for the string PAT,
1454 whose length is LEN/LEN_BYTE,
1455 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1456 TRT is the translation table.
1457
1458 Return the character position where the match is found.
1459 Otherwise, if M matches remained to be found, return -M.
1460
1461 This kind of search works regardless of what is in PAT and
1462 regardless of what is in TRT. It is used in cases where
1463 boyer_moore cannot work. */
1464
1465 static EMACS_INT
1466 simple_search (EMACS_INT n, unsigned char *pat,
1467 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1468 ptrdiff_t pos, ptrdiff_t pos_byte,
1469 ptrdiff_t lim, ptrdiff_t lim_byte)
1470 {
1471 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1472 int forward = n > 0;
1473 /* Number of buffer bytes matched. Note that this may be different
1474 from len_byte in a multibyte buffer. */
1475 ptrdiff_t match_byte = PTRDIFF_MIN;
1476
1477 if (lim > pos && multibyte)
1478 while (n > 0)
1479 {
1480 while (1)
1481 {
1482 /* Try matching at position POS. */
1483 ptrdiff_t this_pos = pos;
1484 ptrdiff_t this_pos_byte = pos_byte;
1485 ptrdiff_t this_len = len;
1486 unsigned char *p = pat;
1487 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1488 goto stop;
1489
1490 while (this_len > 0)
1491 {
1492 int charlen, buf_charlen;
1493 int pat_ch, buf_ch;
1494
1495 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1496 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1497 buf_charlen);
1498 TRANSLATE (buf_ch, trt, buf_ch);
1499
1500 if (buf_ch != pat_ch)
1501 break;
1502
1503 this_len--;
1504 p += charlen;
1505
1506 this_pos_byte += buf_charlen;
1507 this_pos++;
1508 }
1509
1510 if (this_len == 0)
1511 {
1512 match_byte = this_pos_byte - pos_byte;
1513 pos += len;
1514 pos_byte += match_byte;
1515 break;
1516 }
1517
1518 INC_BOTH (pos, pos_byte);
1519 }
1520
1521 n--;
1522 }
1523 else if (lim > pos)
1524 while (n > 0)
1525 {
1526 while (1)
1527 {
1528 /* Try matching at position POS. */
1529 ptrdiff_t this_pos = pos;
1530 ptrdiff_t this_len = len;
1531 unsigned char *p = pat;
1532
1533 if (pos + len > lim)
1534 goto stop;
1535
1536 while (this_len > 0)
1537 {
1538 int pat_ch = *p++;
1539 int buf_ch = FETCH_BYTE (this_pos);
1540 TRANSLATE (buf_ch, trt, buf_ch);
1541
1542 if (buf_ch != pat_ch)
1543 break;
1544
1545 this_len--;
1546 this_pos++;
1547 }
1548
1549 if (this_len == 0)
1550 {
1551 match_byte = len;
1552 pos += len;
1553 break;
1554 }
1555
1556 pos++;
1557 }
1558
1559 n--;
1560 }
1561 /* Backwards search. */
1562 else if (lim < pos && multibyte)
1563 while (n < 0)
1564 {
1565 while (1)
1566 {
1567 /* Try matching at position POS. */
1568 ptrdiff_t this_pos = pos;
1569 ptrdiff_t this_pos_byte = pos_byte;
1570 ptrdiff_t this_len = len;
1571 const unsigned char *p = pat + len_byte;
1572
1573 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1574 goto stop;
1575
1576 while (this_len > 0)
1577 {
1578 int pat_ch, buf_ch;
1579
1580 DEC_BOTH (this_pos, this_pos_byte);
1581 PREV_CHAR_BOUNDARY (p, pat);
1582 pat_ch = STRING_CHAR (p);
1583 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1584 TRANSLATE (buf_ch, trt, buf_ch);
1585
1586 if (buf_ch != pat_ch)
1587 break;
1588
1589 this_len--;
1590 }
1591
1592 if (this_len == 0)
1593 {
1594 match_byte = pos_byte - this_pos_byte;
1595 pos = this_pos;
1596 pos_byte = this_pos_byte;
1597 break;
1598 }
1599
1600 DEC_BOTH (pos, pos_byte);
1601 }
1602
1603 n++;
1604 }
1605 else if (lim < pos)
1606 while (n < 0)
1607 {
1608 while (1)
1609 {
1610 /* Try matching at position POS. */
1611 ptrdiff_t this_pos = pos - len;
1612 ptrdiff_t this_len = len;
1613 unsigned char *p = pat;
1614
1615 if (this_pos < lim)
1616 goto stop;
1617
1618 while (this_len > 0)
1619 {
1620 int pat_ch = *p++;
1621 int buf_ch = FETCH_BYTE (this_pos);
1622 TRANSLATE (buf_ch, trt, buf_ch);
1623
1624 if (buf_ch != pat_ch)
1625 break;
1626 this_len--;
1627 this_pos++;
1628 }
1629
1630 if (this_len == 0)
1631 {
1632 match_byte = len;
1633 pos -= len;
1634 break;
1635 }
1636
1637 pos--;
1638 }
1639
1640 n++;
1641 }
1642
1643 stop:
1644 if (n == 0)
1645 {
1646 eassert (match_byte != PTRDIFF_MIN);
1647 if (forward)
1648 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1649 else
1650 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1651
1652 return pos;
1653 }
1654 else if (n > 0)
1655 return -n;
1656 else
1657 return n;
1658 }
1659 \f
1660 /* Do Boyer-Moore search N times for the string BASE_PAT,
1661 whose length is LEN_BYTE,
1662 from buffer position POS_BYTE until LIM_BYTE.
1663 DIRECTION says which direction we search in.
1664 TRT and INVERSE_TRT are translation tables.
1665 Characters in PAT are already translated by TRT.
1666
1667 This kind of search works if all the characters in BASE_PAT that
1668 have nontrivial translation are the same aside from the last byte.
1669 This makes it possible to translate just the last byte of a
1670 character, and do so after just a simple test of the context.
1671 CHAR_BASE is nonzero if there is such a non-ASCII character.
1672
1673 If that criterion is not satisfied, do not call this function. */
1674
1675 static EMACS_INT
1676 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1677 ptrdiff_t len_byte,
1678 Lisp_Object trt, Lisp_Object inverse_trt,
1679 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1680 int char_base)
1681 {
1682 int direction = ((n > 0) ? 1 : -1);
1683 register ptrdiff_t dirlen;
1684 ptrdiff_t limit;
1685 int stride_for_teases = 0;
1686 int BM_tab[0400];
1687 register unsigned char *cursor, *p_limit;
1688 register ptrdiff_t i;
1689 register int j;
1690 unsigned char *pat, *pat_end;
1691 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1692
1693 unsigned char simple_translate[0400];
1694 /* These are set to the preceding bytes of a byte to be translated
1695 if char_base is nonzero. As the maximum byte length of a
1696 multibyte character is 5, we have to check at most four previous
1697 bytes. */
1698 int translate_prev_byte1 = 0;
1699 int translate_prev_byte2 = 0;
1700 int translate_prev_byte3 = 0;
1701
1702 /* The general approach is that we are going to maintain that we know
1703 the first (closest to the present position, in whatever direction
1704 we're searching) character that could possibly be the last
1705 (furthest from present position) character of a valid match. We
1706 advance the state of our knowledge by looking at that character
1707 and seeing whether it indeed matches the last character of the
1708 pattern. If it does, we take a closer look. If it does not, we
1709 move our pointer (to putative last characters) as far as is
1710 logically possible. This amount of movement, which I call a
1711 stride, will be the length of the pattern if the actual character
1712 appears nowhere in the pattern, otherwise it will be the distance
1713 from the last occurrence of that character to the end of the
1714 pattern. If the amount is zero we have a possible match. */
1715
1716 /* Here we make a "mickey mouse" BM table. The stride of the search
1717 is determined only by the last character of the putative match.
1718 If that character does not match, we will stride the proper
1719 distance to propose a match that superimposes it on the last
1720 instance of a character that matches it (per trt), or misses
1721 it entirely if there is none. */
1722
1723 dirlen = len_byte * direction;
1724
1725 /* Record position after the end of the pattern. */
1726 pat_end = base_pat + len_byte;
1727 /* BASE_PAT points to a character that we start scanning from.
1728 It is the first character in a forward search,
1729 the last character in a backward search. */
1730 if (direction < 0)
1731 base_pat = pat_end - 1;
1732
1733 /* A character that does not appear in the pattern induces a
1734 stride equal to the pattern length. */
1735 for (i = 0; i < 0400; i++)
1736 BM_tab[i] = dirlen;
1737
1738 /* We use this for translation, instead of TRT itself.
1739 We fill this in to handle the characters that actually
1740 occur in the pattern. Others don't matter anyway! */
1741 for (i = 0; i < 0400; i++)
1742 simple_translate[i] = i;
1743
1744 if (char_base)
1745 {
1746 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1747 byte following them are the target of translation. */
1748 unsigned char str[MAX_MULTIBYTE_LENGTH];
1749 int cblen = CHAR_STRING (char_base, str);
1750
1751 translate_prev_byte1 = str[cblen - 2];
1752 if (cblen > 2)
1753 {
1754 translate_prev_byte2 = str[cblen - 3];
1755 if (cblen > 3)
1756 translate_prev_byte3 = str[cblen - 4];
1757 }
1758 }
1759
1760 i = 0;
1761 while (i != dirlen)
1762 {
1763 unsigned char *ptr = base_pat + i;
1764 i += direction;
1765 if (! NILP (trt))
1766 {
1767 /* If the byte currently looking at is the last of a
1768 character to check case-equivalents, set CH to that
1769 character. An ASCII character and a non-ASCII character
1770 matching with CHAR_BASE are to be checked. */
1771 int ch = -1;
1772
1773 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1774 ch = *ptr;
1775 else if (char_base
1776 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1777 {
1778 unsigned char *charstart = ptr - 1;
1779
1780 while (! (CHAR_HEAD_P (*charstart)))
1781 charstart--;
1782 ch = STRING_CHAR (charstart);
1783 if (char_base != (ch & ~0x3F))
1784 ch = -1;
1785 }
1786
1787 if (ch >= 0200 && multibyte)
1788 j = (ch & 0x3F) | 0200;
1789 else
1790 j = *ptr;
1791
1792 if (i == dirlen)
1793 stride_for_teases = BM_tab[j];
1794
1795 BM_tab[j] = dirlen - i;
1796 /* A translation table is accompanied by its inverse -- see
1797 comment following downcase_table for details. */
1798 if (ch >= 0)
1799 {
1800 int starting_ch = ch;
1801 int starting_j = j;
1802
1803 while (1)
1804 {
1805 TRANSLATE (ch, inverse_trt, ch);
1806 if (ch >= 0200 && multibyte)
1807 j = (ch & 0x3F) | 0200;
1808 else
1809 j = ch;
1810
1811 /* For all the characters that map into CH,
1812 set up simple_translate to map the last byte
1813 into STARTING_J. */
1814 simple_translate[j] = starting_j;
1815 if (ch == starting_ch)
1816 break;
1817 BM_tab[j] = dirlen - i;
1818 }
1819 }
1820 }
1821 else
1822 {
1823 j = *ptr;
1824
1825 if (i == dirlen)
1826 stride_for_teases = BM_tab[j];
1827 BM_tab[j] = dirlen - i;
1828 }
1829 /* stride_for_teases tells how much to stride if we get a
1830 match on the far character but are subsequently
1831 disappointed, by recording what the stride would have been
1832 for that character if the last character had been
1833 different. */
1834 }
1835 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1836 /* loop invariant - POS_BYTE points at where last char (first
1837 char if reverse) of pattern would align in a possible match. */
1838 while (n != 0)
1839 {
1840 ptrdiff_t tail_end;
1841 unsigned char *tail_end_ptr;
1842
1843 /* It's been reported that some (broken) compiler thinks that
1844 Boolean expressions in an arithmetic context are unsigned.
1845 Using an explicit ?1:0 prevents this. */
1846 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1847 < 0)
1848 return (n * (0 - direction));
1849 /* First we do the part we can by pointers (maybe nothing) */
1850 QUIT;
1851 pat = base_pat;
1852 limit = pos_byte - dirlen + direction;
1853 if (direction > 0)
1854 {
1855 limit = BUFFER_CEILING_OF (limit);
1856 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1857 can take on without hitting edge of buffer or the gap. */
1858 limit = min (limit, pos_byte + 20000);
1859 limit = min (limit, lim_byte - 1);
1860 }
1861 else
1862 {
1863 limit = BUFFER_FLOOR_OF (limit);
1864 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1865 can take on without hitting edge of buffer or the gap. */
1866 limit = max (limit, pos_byte - 20000);
1867 limit = max (limit, lim_byte);
1868 }
1869 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1870 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1871
1872 if ((limit - pos_byte) * direction > 20)
1873 {
1874 unsigned char *p2;
1875
1876 p_limit = BYTE_POS_ADDR (limit);
1877 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1878 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1879 while (1) /* use one cursor setting as long as i can */
1880 {
1881 if (direction > 0) /* worth duplicating */
1882 {
1883 while (cursor <= p_limit)
1884 {
1885 if (BM_tab[*cursor] == 0)
1886 goto hit;
1887 cursor += BM_tab[*cursor];
1888 }
1889 }
1890 else
1891 {
1892 while (cursor >= p_limit)
1893 {
1894 if (BM_tab[*cursor] == 0)
1895 goto hit;
1896 cursor += BM_tab[*cursor];
1897 }
1898 }
1899 /* If you are here, cursor is beyond the end of the
1900 searched region. You fail to match within the
1901 permitted region and would otherwise try a character
1902 beyond that region. */
1903 break;
1904
1905 hit:
1906 i = dirlen - direction;
1907 if (! NILP (trt))
1908 {
1909 while ((i -= direction) + direction != 0)
1910 {
1911 int ch;
1912 cursor -= direction;
1913 /* Translate only the last byte of a character. */
1914 if (! multibyte
1915 || ((cursor == tail_end_ptr
1916 || CHAR_HEAD_P (cursor[1]))
1917 && (CHAR_HEAD_P (cursor[0])
1918 /* Check if this is the last byte of
1919 a translatable character. */
1920 || (translate_prev_byte1 == cursor[-1]
1921 && (CHAR_HEAD_P (translate_prev_byte1)
1922 || (translate_prev_byte2 == cursor[-2]
1923 && (CHAR_HEAD_P (translate_prev_byte2)
1924 || (translate_prev_byte3 == cursor[-3]))))))))
1925 ch = simple_translate[*cursor];
1926 else
1927 ch = *cursor;
1928 if (pat[i] != ch)
1929 break;
1930 }
1931 }
1932 else
1933 {
1934 while ((i -= direction) + direction != 0)
1935 {
1936 cursor -= direction;
1937 if (pat[i] != *cursor)
1938 break;
1939 }
1940 }
1941 cursor += dirlen - i - direction; /* fix cursor */
1942 if (i + direction == 0)
1943 {
1944 ptrdiff_t position, start, end;
1945
1946 cursor -= direction;
1947
1948 position = pos_byte + cursor - p2 + ((direction > 0)
1949 ? 1 - len_byte : 0);
1950 set_search_regs (position, len_byte);
1951
1952 if (NILP (Vinhibit_changing_match_data))
1953 {
1954 start = search_regs.start[0];
1955 end = search_regs.end[0];
1956 }
1957 else
1958 /* If Vinhibit_changing_match_data is non-nil,
1959 search_regs will not be changed. So let's
1960 compute start and end here. */
1961 {
1962 start = BYTE_TO_CHAR (position);
1963 end = BYTE_TO_CHAR (position + len_byte);
1964 }
1965
1966 if ((n -= direction) != 0)
1967 cursor += dirlen; /* to resume search */
1968 else
1969 return direction > 0 ? end : start;
1970 }
1971 else
1972 cursor += stride_for_teases; /* <sigh> we lose - */
1973 }
1974 pos_byte += cursor - p2;
1975 }
1976 else
1977 /* Now we'll pick up a clump that has to be done the hard
1978 way because it covers a discontinuity. */
1979 {
1980 limit = ((direction > 0)
1981 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1982 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1983 limit = ((direction > 0)
1984 ? min (limit + len_byte, lim_byte - 1)
1985 : max (limit - len_byte, lim_byte));
1986 /* LIMIT is now the last value POS_BYTE can have
1987 and still be valid for a possible match. */
1988 while (1)
1989 {
1990 /* This loop can be coded for space rather than
1991 speed because it will usually run only once.
1992 (the reach is at most len + 21, and typically
1993 does not exceed len). */
1994 while ((limit - pos_byte) * direction >= 0)
1995 {
1996 int ch = FETCH_BYTE (pos_byte);
1997 if (BM_tab[ch] == 0)
1998 goto hit2;
1999 pos_byte += BM_tab[ch];
2000 }
2001 break; /* ran off the end */
2002
2003 hit2:
2004 /* Found what might be a match. */
2005 i = dirlen - direction;
2006 while ((i -= direction) + direction != 0)
2007 {
2008 int ch;
2009 unsigned char *ptr;
2010 pos_byte -= direction;
2011 ptr = BYTE_POS_ADDR (pos_byte);
2012 /* Translate only the last byte of a character. */
2013 if (! multibyte
2014 || ((ptr == tail_end_ptr
2015 || CHAR_HEAD_P (ptr[1]))
2016 && (CHAR_HEAD_P (ptr[0])
2017 /* Check if this is the last byte of a
2018 translatable character. */
2019 || (translate_prev_byte1 == ptr[-1]
2020 && (CHAR_HEAD_P (translate_prev_byte1)
2021 || (translate_prev_byte2 == ptr[-2]
2022 && (CHAR_HEAD_P (translate_prev_byte2)
2023 || translate_prev_byte3 == ptr[-3])))))))
2024 ch = simple_translate[*ptr];
2025 else
2026 ch = *ptr;
2027 if (pat[i] != ch)
2028 break;
2029 }
2030 /* Above loop has moved POS_BYTE part or all the way
2031 back to the first pos (last pos if reverse).
2032 Set it once again at the last (first if reverse) char. */
2033 pos_byte += dirlen - i - direction;
2034 if (i + direction == 0)
2035 {
2036 ptrdiff_t position, start, end;
2037 pos_byte -= direction;
2038
2039 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2040 set_search_regs (position, len_byte);
2041
2042 if (NILP (Vinhibit_changing_match_data))
2043 {
2044 start = search_regs.start[0];
2045 end = search_regs.end[0];
2046 }
2047 else
2048 /* If Vinhibit_changing_match_data is non-nil,
2049 search_regs will not be changed. So let's
2050 compute start and end here. */
2051 {
2052 start = BYTE_TO_CHAR (position);
2053 end = BYTE_TO_CHAR (position + len_byte);
2054 }
2055
2056 if ((n -= direction) != 0)
2057 pos_byte += dirlen; /* to resume search */
2058 else
2059 return direction > 0 ? end : start;
2060 }
2061 else
2062 pos_byte += stride_for_teases;
2063 }
2064 }
2065 /* We have done one clump. Can we continue? */
2066 if ((lim_byte - pos_byte) * direction < 0)
2067 return ((0 - n) * direction);
2068 }
2069 return BYTE_TO_CHAR (pos_byte);
2070 }
2071
2072 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2073 for the overall match just found in the current buffer.
2074 Also clear out the match data for registers 1 and up. */
2075
2076 static void
2077 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2078 {
2079 ptrdiff_t i;
2080
2081 if (!NILP (Vinhibit_changing_match_data))
2082 return;
2083
2084 /* Make sure we have registers in which to store
2085 the match position. */
2086 if (search_regs.num_regs == 0)
2087 {
2088 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2089 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2090 search_regs.num_regs = 2;
2091 }
2092
2093 /* Clear out the other registers. */
2094 for (i = 1; i < search_regs.num_regs; i++)
2095 {
2096 search_regs.start[i] = -1;
2097 search_regs.end[i] = -1;
2098 }
2099
2100 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2101 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2102 XSETBUFFER (last_thing_searched, current_buffer);
2103 }
2104 \f
2105 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2106 "MSearch backward: ",
2107 doc: /* Search backward from point for STRING.
2108 Set point to the beginning of the occurrence found, and return point.
2109 An optional second argument bounds the search; it is a buffer position.
2110 The match found must not extend before that position.
2111 Optional third argument, if t, means if fail just return nil (no error).
2112 If not nil and not t, position at limit of search and return nil.
2113 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2114 successive occurrences. If COUNT is negative, search forward,
2115 instead of backward, for -COUNT occurrences.
2116
2117 Search case-sensitivity is determined by the value of the variable
2118 `case-fold-search', which see.
2119
2120 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2121 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2122 {
2123 return search_command (string, bound, noerror, count, -1, 0, 0);
2124 }
2125
2126 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2127 doc: /* Search forward from point for STRING.
2128 Set point to the end of the occurrence found, and return point.
2129 An optional second argument bounds the search; it is a buffer position.
2130 The match found must not extend after that position. A value of nil is
2131 equivalent to (point-max).
2132 Optional third argument, if t, means if fail just return nil (no error).
2133 If not nil and not t, move to limit of search and return nil.
2134 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2135 successive occurrences. If COUNT is negative, search backward,
2136 instead of forward, for -COUNT occurrences.
2137
2138 Search case-sensitivity is determined by the value of the variable
2139 `case-fold-search', which see.
2140
2141 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2142 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2143 {
2144 return search_command (string, bound, noerror, count, 1, 0, 0);
2145 }
2146
2147 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2148 "sRE search backward: ",
2149 doc: /* Search backward from point for match for regular expression REGEXP.
2150 Set point to the beginning of the match, and return point.
2151 The match found is the one starting last in the buffer
2152 and yet ending before the origin of the search.
2153 An optional second argument bounds the search; it is a buffer position.
2154 The match found must start at or after that position.
2155 Optional third argument, if t, means if fail just return nil (no error).
2156 If not nil and not t, move to limit of search and return nil.
2157 Optional fourth argument is repeat count--search for successive occurrences.
2158
2159 Search case-sensitivity is determined by the value of the variable
2160 `case-fold-search', which see.
2161
2162 See also the functions `match-beginning', `match-end', `match-string',
2163 and `replace-match'. */)
2164 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2165 {
2166 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2167 }
2168
2169 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2170 "sRE search: ",
2171 doc: /* Search forward from point for regular expression REGEXP.
2172 Set point to the end of the occurrence found, and return point.
2173 An optional second argument bounds the search; it is a buffer position.
2174 The match found must not extend after that position.
2175 Optional third argument, if t, means if fail just return nil (no error).
2176 If not nil and not t, move to limit of search and return nil.
2177 Optional fourth argument is repeat count--search for successive occurrences.
2178
2179 Search case-sensitivity is determined by the value of the variable
2180 `case-fold-search', which see.
2181
2182 See also the functions `match-beginning', `match-end', `match-string',
2183 and `replace-match'. */)
2184 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2185 {
2186 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2187 }
2188
2189 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2190 "sPosix search backward: ",
2191 doc: /* Search backward from point for match for regular expression REGEXP.
2192 Find the longest match in accord with Posix regular expression rules.
2193 Set point to the beginning of the match, and return point.
2194 The match found is the one starting last in the buffer
2195 and yet ending before the origin of the search.
2196 An optional second argument bounds the search; it is a buffer position.
2197 The match found must start at or after that position.
2198 Optional third argument, if t, means if fail just return nil (no error).
2199 If not nil and not t, move to limit of search and return nil.
2200 Optional fourth argument is repeat count--search for successive occurrences.
2201
2202 Search case-sensitivity is determined by the value of the variable
2203 `case-fold-search', which see.
2204
2205 See also the functions `match-beginning', `match-end', `match-string',
2206 and `replace-match'. */)
2207 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2208 {
2209 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2210 }
2211
2212 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2213 "sPosix search: ",
2214 doc: /* Search forward from point for regular expression REGEXP.
2215 Find the longest match in accord with Posix regular expression rules.
2216 Set point to the end of the occurrence found, and return point.
2217 An optional second argument bounds the search; it is a buffer position.
2218 The match found must not extend after that position.
2219 Optional third argument, if t, means if fail just return nil (no error).
2220 If not nil and not t, move to limit of search and return nil.
2221 Optional fourth argument is repeat count--search for successive occurrences.
2222
2223 Search case-sensitivity is determined by the value of the variable
2224 `case-fold-search', which see.
2225
2226 See also the functions `match-beginning', `match-end', `match-string',
2227 and `replace-match'. */)
2228 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2229 {
2230 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2231 }
2232 \f
2233 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2234 doc: /* Replace text matched by last search with NEWTEXT.
2235 Leave point at the end of the replacement text.
2236
2237 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2238 the replacement text. Otherwise, maybe capitalize the whole text, or
2239 maybe just word initials, based on the replaced text. If the replaced
2240 text has only capital letters and has at least one multiletter word,
2241 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2242 in the replaced text, capitalize each word in NEWTEXT.
2243
2244 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2245 Otherwise treat `\\' as special:
2246 `\\&' in NEWTEXT means substitute original matched text.
2247 `\\N' means substitute what matched the Nth `\\(...\\)'.
2248 If Nth parens didn't match, substitute nothing.
2249 `\\\\' means insert one `\\'.
2250 `\\?' is treated literally
2251 (for compatibility with `query-replace-regexp').
2252 Any other character following `\\' signals an error.
2253 Case conversion does not apply to these substitutions.
2254
2255 If optional fourth argument STRING is non-nil, it should be a string
2256 to act on; this should be the string on which the previous match was
2257 done via `string-match'. In this case, `replace-match' creates and
2258 returns a new string, made by copying STRING and replacing the part of
2259 STRING that was matched (the original STRING itself is not altered).
2260
2261 The optional fifth argument SUBEXP specifies a subexpression;
2262 it says to replace just that subexpression with NEWTEXT,
2263 rather than replacing the entire matched text.
2264 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2265 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2266 NEWTEXT in place of subexp N.
2267 This is useful only after a regular expression search or match,
2268 since only regular expressions have distinguished subexpressions. */)
2269 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2270 {
2271 enum { nochange, all_caps, cap_initial } case_action;
2272 register ptrdiff_t pos, pos_byte;
2273 int some_multiletter_word;
2274 int some_lowercase;
2275 int some_uppercase;
2276 int some_nonuppercase_initial;
2277 register int c, prevc;
2278 ptrdiff_t sub;
2279 ptrdiff_t opoint, newpoint;
2280
2281 CHECK_STRING (newtext);
2282
2283 if (! NILP (string))
2284 CHECK_STRING (string);
2285
2286 case_action = nochange; /* We tried an initialization */
2287 /* but some C compilers blew it */
2288
2289 if (search_regs.num_regs <= 0)
2290 error ("`replace-match' called before any match found");
2291
2292 if (NILP (subexp))
2293 sub = 0;
2294 else
2295 {
2296 CHECK_NUMBER (subexp);
2297 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2298 args_out_of_range (subexp, make_number (search_regs.num_regs));
2299 sub = XINT (subexp);
2300 }
2301
2302 if (NILP (string))
2303 {
2304 if (search_regs.start[sub] < BEGV
2305 || search_regs.start[sub] > search_regs.end[sub]
2306 || search_regs.end[sub] > ZV)
2307 args_out_of_range (make_number (search_regs.start[sub]),
2308 make_number (search_regs.end[sub]));
2309 }
2310 else
2311 {
2312 if (search_regs.start[sub] < 0
2313 || search_regs.start[sub] > search_regs.end[sub]
2314 || search_regs.end[sub] > SCHARS (string))
2315 args_out_of_range (make_number (search_regs.start[sub]),
2316 make_number (search_regs.end[sub]));
2317 }
2318
2319 if (NILP (fixedcase))
2320 {
2321 /* Decide how to casify by examining the matched text. */
2322 ptrdiff_t last;
2323
2324 pos = search_regs.start[sub];
2325 last = search_regs.end[sub];
2326
2327 if (NILP (string))
2328 pos_byte = CHAR_TO_BYTE (pos);
2329 else
2330 pos_byte = string_char_to_byte (string, pos);
2331
2332 prevc = '\n';
2333 case_action = all_caps;
2334
2335 /* some_multiletter_word is set nonzero if any original word
2336 is more than one letter long. */
2337 some_multiletter_word = 0;
2338 some_lowercase = 0;
2339 some_nonuppercase_initial = 0;
2340 some_uppercase = 0;
2341
2342 while (pos < last)
2343 {
2344 if (NILP (string))
2345 {
2346 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2347 INC_BOTH (pos, pos_byte);
2348 }
2349 else
2350 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2351
2352 if (lowercasep (c))
2353 {
2354 /* Cannot be all caps if any original char is lower case */
2355
2356 some_lowercase = 1;
2357 if (SYNTAX (prevc) != Sword)
2358 some_nonuppercase_initial = 1;
2359 else
2360 some_multiletter_word = 1;
2361 }
2362 else if (uppercasep (c))
2363 {
2364 some_uppercase = 1;
2365 if (SYNTAX (prevc) != Sword)
2366 ;
2367 else
2368 some_multiletter_word = 1;
2369 }
2370 else
2371 {
2372 /* If the initial is a caseless word constituent,
2373 treat that like a lowercase initial. */
2374 if (SYNTAX (prevc) != Sword)
2375 some_nonuppercase_initial = 1;
2376 }
2377
2378 prevc = c;
2379 }
2380
2381 /* Convert to all caps if the old text is all caps
2382 and has at least one multiletter word. */
2383 if (! some_lowercase && some_multiletter_word)
2384 case_action = all_caps;
2385 /* Capitalize each word, if the old text has all capitalized words. */
2386 else if (!some_nonuppercase_initial && some_multiletter_word)
2387 case_action = cap_initial;
2388 else if (!some_nonuppercase_initial && some_uppercase)
2389 /* Should x -> yz, operating on X, give Yz or YZ?
2390 We'll assume the latter. */
2391 case_action = all_caps;
2392 else
2393 case_action = nochange;
2394 }
2395
2396 /* Do replacement in a string. */
2397 if (!NILP (string))
2398 {
2399 Lisp_Object before, after;
2400
2401 before = Fsubstring (string, make_number (0),
2402 make_number (search_regs.start[sub]));
2403 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2404
2405 /* Substitute parts of the match into NEWTEXT
2406 if desired. */
2407 if (NILP (literal))
2408 {
2409 ptrdiff_t lastpos = 0;
2410 ptrdiff_t lastpos_byte = 0;
2411 /* We build up the substituted string in ACCUM. */
2412 Lisp_Object accum;
2413 Lisp_Object middle;
2414 ptrdiff_t length = SBYTES (newtext);
2415
2416 accum = Qnil;
2417
2418 for (pos_byte = 0, pos = 0; pos_byte < length;)
2419 {
2420 ptrdiff_t substart = -1;
2421 ptrdiff_t subend = 0;
2422 int delbackslash = 0;
2423
2424 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2425
2426 if (c == '\\')
2427 {
2428 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2429
2430 if (c == '&')
2431 {
2432 substart = search_regs.start[sub];
2433 subend = search_regs.end[sub];
2434 }
2435 else if (c >= '1' && c <= '9')
2436 {
2437 if (c - '0' < search_regs.num_regs
2438 && 0 <= search_regs.start[c - '0'])
2439 {
2440 substart = search_regs.start[c - '0'];
2441 subend = search_regs.end[c - '0'];
2442 }
2443 else
2444 {
2445 /* If that subexp did not match,
2446 replace \\N with nothing. */
2447 substart = 0;
2448 subend = 0;
2449 }
2450 }
2451 else if (c == '\\')
2452 delbackslash = 1;
2453 else if (c != '?')
2454 error ("Invalid use of `\\' in replacement text");
2455 }
2456 if (substart >= 0)
2457 {
2458 if (pos - 2 != lastpos)
2459 middle = substring_both (newtext, lastpos,
2460 lastpos_byte,
2461 pos - 2, pos_byte - 2);
2462 else
2463 middle = Qnil;
2464 accum = concat3 (accum, middle,
2465 Fsubstring (string,
2466 make_number (substart),
2467 make_number (subend)));
2468 lastpos = pos;
2469 lastpos_byte = pos_byte;
2470 }
2471 else if (delbackslash)
2472 {
2473 middle = substring_both (newtext, lastpos,
2474 lastpos_byte,
2475 pos - 1, pos_byte - 1);
2476
2477 accum = concat2 (accum, middle);
2478 lastpos = pos;
2479 lastpos_byte = pos_byte;
2480 }
2481 }
2482
2483 if (pos != lastpos)
2484 middle = substring_both (newtext, lastpos,
2485 lastpos_byte,
2486 pos, pos_byte);
2487 else
2488 middle = Qnil;
2489
2490 newtext = concat2 (accum, middle);
2491 }
2492
2493 /* Do case substitution in NEWTEXT if desired. */
2494 if (case_action == all_caps)
2495 newtext = Fupcase (newtext);
2496 else if (case_action == cap_initial)
2497 newtext = Fupcase_initials (newtext);
2498
2499 return concat3 (before, newtext, after);
2500 }
2501
2502 /* Record point, then move (quietly) to the start of the match. */
2503 if (PT >= search_regs.end[sub])
2504 opoint = PT - ZV;
2505 else if (PT > search_regs.start[sub])
2506 opoint = search_regs.end[sub] - ZV;
2507 else
2508 opoint = PT;
2509
2510 /* If we want non-literal replacement,
2511 perform substitution on the replacement string. */
2512 if (NILP (literal))
2513 {
2514 ptrdiff_t length = SBYTES (newtext);
2515 unsigned char *substed;
2516 ptrdiff_t substed_alloc_size, substed_len;
2517 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2518 int str_multibyte = STRING_MULTIBYTE (newtext);
2519 int really_changed = 0;
2520
2521 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2522 ? STRING_BYTES_BOUND
2523 : length * 2 + 100);
2524 substed = xmalloc (substed_alloc_size);
2525 substed_len = 0;
2526
2527 /* Go thru NEWTEXT, producing the actual text to insert in
2528 SUBSTED while adjusting multibyteness to that of the current
2529 buffer. */
2530
2531 for (pos_byte = 0, pos = 0; pos_byte < length;)
2532 {
2533 unsigned char str[MAX_MULTIBYTE_LENGTH];
2534 const unsigned char *add_stuff = NULL;
2535 ptrdiff_t add_len = 0;
2536 ptrdiff_t idx = -1;
2537
2538 if (str_multibyte)
2539 {
2540 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2541 if (!buf_multibyte)
2542 c = multibyte_char_to_unibyte (c);
2543 }
2544 else
2545 {
2546 /* Note that we don't have to increment POS. */
2547 c = SREF (newtext, pos_byte++);
2548 if (buf_multibyte)
2549 MAKE_CHAR_MULTIBYTE (c);
2550 }
2551
2552 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2553 or set IDX to a match index, which means put that part
2554 of the buffer text into SUBSTED. */
2555
2556 if (c == '\\')
2557 {
2558 really_changed = 1;
2559
2560 if (str_multibyte)
2561 {
2562 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2563 pos, pos_byte);
2564 if (!buf_multibyte && !ASCII_CHAR_P (c))
2565 c = multibyte_char_to_unibyte (c);
2566 }
2567 else
2568 {
2569 c = SREF (newtext, pos_byte++);
2570 if (buf_multibyte)
2571 MAKE_CHAR_MULTIBYTE (c);
2572 }
2573
2574 if (c == '&')
2575 idx = sub;
2576 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2577 {
2578 if (search_regs.start[c - '0'] >= 1)
2579 idx = c - '0';
2580 }
2581 else if (c == '\\')
2582 add_len = 1, add_stuff = (unsigned char *) "\\";
2583 else
2584 {
2585 xfree (substed);
2586 error ("Invalid use of `\\' in replacement text");
2587 }
2588 }
2589 else
2590 {
2591 add_len = CHAR_STRING (c, str);
2592 add_stuff = str;
2593 }
2594
2595 /* If we want to copy part of a previous match,
2596 set up ADD_STUFF and ADD_LEN to point to it. */
2597 if (idx >= 0)
2598 {
2599 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2600 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2601 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2602 move_gap_both (search_regs.start[idx], begbyte);
2603 add_stuff = BYTE_POS_ADDR (begbyte);
2604 }
2605
2606 /* Now the stuff we want to add to SUBSTED
2607 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2608
2609 /* Make sure SUBSTED is big enough. */
2610 if (substed_alloc_size - substed_len < add_len)
2611 substed =
2612 xpalloc (substed, &substed_alloc_size,
2613 add_len - (substed_alloc_size - substed_len),
2614 STRING_BYTES_BOUND, 1);
2615
2616 /* Now add to the end of SUBSTED. */
2617 if (add_stuff)
2618 {
2619 memcpy (substed + substed_len, add_stuff, add_len);
2620 substed_len += add_len;
2621 }
2622 }
2623
2624 if (really_changed)
2625 {
2626 if (buf_multibyte)
2627 {
2628 ptrdiff_t nchars =
2629 multibyte_chars_in_text (substed, substed_len);
2630
2631 newtext = make_multibyte_string ((char *) substed, nchars,
2632 substed_len);
2633 }
2634 else
2635 newtext = make_unibyte_string ((char *) substed, substed_len);
2636 }
2637 xfree (substed);
2638 }
2639
2640 /* Replace the old text with the new in the cleanest possible way. */
2641 replace_range (search_regs.start[sub], search_regs.end[sub],
2642 newtext, 1, 0, 1);
2643 newpoint = search_regs.start[sub] + SCHARS (newtext);
2644
2645 if (case_action == all_caps)
2646 Fupcase_region (make_number (search_regs.start[sub]),
2647 make_number (newpoint));
2648 else if (case_action == cap_initial)
2649 Fupcase_initials_region (make_number (search_regs.start[sub]),
2650 make_number (newpoint));
2651
2652 /* Adjust search data for this change. */
2653 {
2654 ptrdiff_t oldend = search_regs.end[sub];
2655 ptrdiff_t oldstart = search_regs.start[sub];
2656 ptrdiff_t change = newpoint - search_regs.end[sub];
2657 ptrdiff_t i;
2658
2659 for (i = 0; i < search_regs.num_regs; i++)
2660 {
2661 if (search_regs.start[i] >= oldend)
2662 search_regs.start[i] += change;
2663 else if (search_regs.start[i] > oldstart)
2664 search_regs.start[i] = oldstart;
2665 if (search_regs.end[i] >= oldend)
2666 search_regs.end[i] += change;
2667 else if (search_regs.end[i] > oldstart)
2668 search_regs.end[i] = oldstart;
2669 }
2670 }
2671
2672 /* Put point back where it was in the text. */
2673 if (opoint <= 0)
2674 TEMP_SET_PT (opoint + ZV);
2675 else
2676 TEMP_SET_PT (opoint);
2677
2678 /* Now move point "officially" to the start of the inserted replacement. */
2679 move_if_not_intangible (newpoint);
2680
2681 return Qnil;
2682 }
2683 \f
2684 static Lisp_Object
2685 match_limit (Lisp_Object num, int beginningp)
2686 {
2687 EMACS_INT n;
2688
2689 CHECK_NUMBER (num);
2690 n = XINT (num);
2691 if (n < 0)
2692 args_out_of_range (num, make_number (0));
2693 if (search_regs.num_regs <= 0)
2694 error ("No match data, because no search succeeded");
2695 if (n >= search_regs.num_regs
2696 || search_regs.start[n] < 0)
2697 return Qnil;
2698 return (make_number ((beginningp) ? search_regs.start[n]
2699 : search_regs.end[n]));
2700 }
2701
2702 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2703 doc: /* Return position of start of text matched by last search.
2704 SUBEXP, a number, specifies which parenthesized expression in the last
2705 regexp.
2706 Value is nil if SUBEXPth pair didn't match, or there were less than
2707 SUBEXP pairs.
2708 Zero means the entire text matched by the whole regexp or whole string. */)
2709 (Lisp_Object subexp)
2710 {
2711 return match_limit (subexp, 1);
2712 }
2713
2714 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2715 doc: /* Return position of end of text matched by last search.
2716 SUBEXP, a number, specifies which parenthesized expression in the last
2717 regexp.
2718 Value is nil if SUBEXPth pair didn't match, or there were less than
2719 SUBEXP pairs.
2720 Zero means the entire text matched by the whole regexp or whole string. */)
2721 (Lisp_Object subexp)
2722 {
2723 return match_limit (subexp, 0);
2724 }
2725
2726 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2727 doc: /* Return a list containing all info on what the last search matched.
2728 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2729 All the elements are markers or nil (nil if the Nth pair didn't match)
2730 if the last match was on a buffer; integers or nil if a string was matched.
2731 Use `set-match-data' to reinstate the data in this list.
2732
2733 If INTEGERS (the optional first argument) is non-nil, always use
2734 integers \(rather than markers) to represent buffer positions. In
2735 this case, and if the last match was in a buffer, the buffer will get
2736 stored as one additional element at the end of the list.
2737
2738 If REUSE is a list, reuse it as part of the value. If REUSE is long
2739 enough to hold all the values, and if INTEGERS is non-nil, no consing
2740 is done.
2741
2742 If optional third arg RESEAT is non-nil, any previous markers on the
2743 REUSE list will be modified to point to nowhere.
2744
2745 Return value is undefined if the last search failed. */)
2746 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2747 {
2748 Lisp_Object tail, prev;
2749 Lisp_Object *data;
2750 ptrdiff_t i, len;
2751
2752 if (!NILP (reseat))
2753 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2754 if (MARKERP (XCAR (tail)))
2755 {
2756 unchain_marker (XMARKER (XCAR (tail)));
2757 XSETCAR (tail, Qnil);
2758 }
2759
2760 if (NILP (last_thing_searched))
2761 return Qnil;
2762
2763 prev = Qnil;
2764
2765 data = alloca ((2 * search_regs.num_regs + 1) * sizeof *data);
2766
2767 len = 0;
2768 for (i = 0; i < search_regs.num_regs; i++)
2769 {
2770 ptrdiff_t start = search_regs.start[i];
2771 if (start >= 0)
2772 {
2773 if (EQ (last_thing_searched, Qt)
2774 || ! NILP (integers))
2775 {
2776 XSETFASTINT (data[2 * i], start);
2777 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2778 }
2779 else if (BUFFERP (last_thing_searched))
2780 {
2781 data[2 * i] = Fmake_marker ();
2782 Fset_marker (data[2 * i],
2783 make_number (start),
2784 last_thing_searched);
2785 data[2 * i + 1] = Fmake_marker ();
2786 Fset_marker (data[2 * i + 1],
2787 make_number (search_regs.end[i]),
2788 last_thing_searched);
2789 }
2790 else
2791 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2792 emacs_abort ();
2793
2794 len = 2 * i + 2;
2795 }
2796 else
2797 data[2 * i] = data[2 * i + 1] = Qnil;
2798 }
2799
2800 if (BUFFERP (last_thing_searched) && !NILP (integers))
2801 {
2802 data[len] = last_thing_searched;
2803 len++;
2804 }
2805
2806 /* If REUSE is not usable, cons up the values and return them. */
2807 if (! CONSP (reuse))
2808 return Flist (len, data);
2809
2810 /* If REUSE is a list, store as many value elements as will fit
2811 into the elements of REUSE. */
2812 for (i = 0, tail = reuse; CONSP (tail);
2813 i++, tail = XCDR (tail))
2814 {
2815 if (i < len)
2816 XSETCAR (tail, data[i]);
2817 else
2818 XSETCAR (tail, Qnil);
2819 prev = tail;
2820 }
2821
2822 /* If we couldn't fit all value elements into REUSE,
2823 cons up the rest of them and add them to the end of REUSE. */
2824 if (i < len)
2825 XSETCDR (prev, Flist (len - i, data + i));
2826
2827 return reuse;
2828 }
2829
2830 /* We used to have an internal use variant of `reseat' described as:
2831
2832 If RESEAT is `evaporate', put the markers back on the free list
2833 immediately. No other references to the markers must exist in this
2834 case, so it is used only internally on the unwind stack and
2835 save-match-data from Lisp.
2836
2837 But it was ill-conceived: those supposedly-internal markers get exposed via
2838 the undo-list, so freeing them here is unsafe. */
2839
2840 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2841 doc: /* Set internal data on last search match from elements of LIST.
2842 LIST should have been created by calling `match-data' previously.
2843
2844 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2845 (register Lisp_Object list, Lisp_Object reseat)
2846 {
2847 ptrdiff_t i;
2848 register Lisp_Object marker;
2849
2850 if (running_asynch_code)
2851 save_search_regs ();
2852
2853 CHECK_LIST (list);
2854
2855 /* Unless we find a marker with a buffer or an explicit buffer
2856 in LIST, assume that this match data came from a string. */
2857 last_thing_searched = Qt;
2858
2859 /* Allocate registers if they don't already exist. */
2860 {
2861 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2862
2863 if (length > search_regs.num_regs)
2864 {
2865 ptrdiff_t num_regs = search_regs.num_regs;
2866 if (PTRDIFF_MAX < length)
2867 memory_full (SIZE_MAX);
2868 search_regs.start =
2869 xpalloc (search_regs.start, &num_regs, length - num_regs,
2870 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2871 search_regs.end =
2872 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2873
2874 for (i = search_regs.num_regs; i < num_regs; i++)
2875 search_regs.start[i] = -1;
2876
2877 search_regs.num_regs = num_regs;
2878 }
2879
2880 for (i = 0; CONSP (list); i++)
2881 {
2882 marker = XCAR (list);
2883 if (BUFFERP (marker))
2884 {
2885 last_thing_searched = marker;
2886 break;
2887 }
2888 if (i >= length)
2889 break;
2890 if (NILP (marker))
2891 {
2892 search_regs.start[i] = -1;
2893 list = XCDR (list);
2894 }
2895 else
2896 {
2897 Lisp_Object from;
2898 Lisp_Object m;
2899
2900 m = marker;
2901 if (MARKERP (marker))
2902 {
2903 if (XMARKER (marker)->buffer == 0)
2904 XSETFASTINT (marker, 0);
2905 else
2906 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2907 }
2908
2909 CHECK_NUMBER_COERCE_MARKER (marker);
2910 from = marker;
2911
2912 if (!NILP (reseat) && MARKERP (m))
2913 {
2914 unchain_marker (XMARKER (m));
2915 XSETCAR (list, Qnil);
2916 }
2917
2918 if ((list = XCDR (list), !CONSP (list)))
2919 break;
2920
2921 m = marker = XCAR (list);
2922
2923 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2924 XSETFASTINT (marker, 0);
2925
2926 CHECK_NUMBER_COERCE_MARKER (marker);
2927 if ((XINT (from) < 0
2928 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2929 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2930 && (XINT (marker) < 0
2931 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2932 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2933 {
2934 search_regs.start[i] = XINT (from);
2935 search_regs.end[i] = XINT (marker);
2936 }
2937 else
2938 {
2939 search_regs.start[i] = -1;
2940 }
2941
2942 if (!NILP (reseat) && MARKERP (m))
2943 {
2944 unchain_marker (XMARKER (m));
2945 XSETCAR (list, Qnil);
2946 }
2947 }
2948 list = XCDR (list);
2949 }
2950
2951 for (; i < search_regs.num_regs; i++)
2952 search_regs.start[i] = -1;
2953 }
2954
2955 return Qnil;
2956 }
2957
2958 /* If non-zero the match data have been saved in saved_search_regs
2959 during the execution of a sentinel or filter. */
2960 static int search_regs_saved;
2961 static struct re_registers saved_search_regs;
2962 static Lisp_Object saved_last_thing_searched;
2963
2964 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2965 if asynchronous code (filter or sentinel) is running. */
2966 static void
2967 save_search_regs (void)
2968 {
2969 if (!search_regs_saved)
2970 {
2971 saved_search_regs.num_regs = search_regs.num_regs;
2972 saved_search_regs.start = search_regs.start;
2973 saved_search_regs.end = search_regs.end;
2974 saved_last_thing_searched = last_thing_searched;
2975 last_thing_searched = Qnil;
2976 search_regs.num_regs = 0;
2977 search_regs.start = 0;
2978 search_regs.end = 0;
2979
2980 search_regs_saved = 1;
2981 }
2982 }
2983
2984 /* Called upon exit from filters and sentinels. */
2985 void
2986 restore_search_regs (void)
2987 {
2988 if (search_regs_saved)
2989 {
2990 if (search_regs.num_regs > 0)
2991 {
2992 xfree (search_regs.start);
2993 xfree (search_regs.end);
2994 }
2995 search_regs.num_regs = saved_search_regs.num_regs;
2996 search_regs.start = saved_search_regs.start;
2997 search_regs.end = saved_search_regs.end;
2998 last_thing_searched = saved_last_thing_searched;
2999 saved_last_thing_searched = Qnil;
3000 search_regs_saved = 0;
3001 }
3002 }
3003
3004 static Lisp_Object
3005 unwind_set_match_data (Lisp_Object list)
3006 {
3007 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3008 return Fset_match_data (list, Qt);
3009 }
3010
3011 /* Called to unwind protect the match data. */
3012 void
3013 record_unwind_save_match_data (void)
3014 {
3015 record_unwind_protect (unwind_set_match_data,
3016 Fmatch_data (Qnil, Qnil, Qnil));
3017 }
3018
3019 /* Quote a string to deactivate reg-expr chars */
3020
3021 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3022 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3023 (Lisp_Object string)
3024 {
3025 register char *in, *out, *end;
3026 register char *temp;
3027 int backslashes_added = 0;
3028
3029 CHECK_STRING (string);
3030
3031 temp = alloca (SBYTES (string) * 2);
3032
3033 /* Now copy the data into the new string, inserting escapes. */
3034
3035 in = SSDATA (string);
3036 end = in + SBYTES (string);
3037 out = temp;
3038
3039 for (; in != end; in++)
3040 {
3041 if (*in == '['
3042 || *in == '*' || *in == '.' || *in == '\\'
3043 || *in == '?' || *in == '+'
3044 || *in == '^' || *in == '$')
3045 *out++ = '\\', backslashes_added++;
3046 *out++ = *in;
3047 }
3048
3049 return make_specified_string (temp,
3050 SCHARS (string) + backslashes_added,
3051 out - temp,
3052 STRING_MULTIBYTE (string));
3053 }
3054 \f
3055 void
3056 syms_of_search (void)
3057 {
3058 register int i;
3059
3060 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3061 {
3062 searchbufs[i].buf.allocated = 100;
3063 searchbufs[i].buf.buffer = xmalloc (100);
3064 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3065 searchbufs[i].regexp = Qnil;
3066 searchbufs[i].whitespace_regexp = Qnil;
3067 searchbufs[i].syntax_table = Qnil;
3068 staticpro (&searchbufs[i].regexp);
3069 staticpro (&searchbufs[i].whitespace_regexp);
3070 staticpro (&searchbufs[i].syntax_table);
3071 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3072 }
3073 searchbuf_head = &searchbufs[0];
3074
3075 DEFSYM (Qsearch_failed, "search-failed");
3076 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3077
3078 Fput (Qsearch_failed, Qerror_conditions,
3079 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3080 Fput (Qsearch_failed, Qerror_message,
3081 build_pure_c_string ("Search failed"));
3082
3083 Fput (Qinvalid_regexp, Qerror_conditions,
3084 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3085 Fput (Qinvalid_regexp, Qerror_message,
3086 build_pure_c_string ("Invalid regexp"));
3087
3088 last_thing_searched = Qnil;
3089 staticpro (&last_thing_searched);
3090
3091 saved_last_thing_searched = Qnil;
3092 staticpro (&saved_last_thing_searched);
3093
3094 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3095 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3096 Some commands use this for user-specified regexps.
3097 Spaces that occur inside character classes or repetition operators
3098 or other such regexp constructs are not replaced with this.
3099 A value of nil (which is the normal value) means treat spaces literally. */);
3100 Vsearch_spaces_regexp = Qnil;
3101
3102 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3103 doc: /* Internal use only.
3104 If non-nil, the primitive searching and matching functions
3105 such as `looking-at', `string-match', `re-search-forward', etc.,
3106 do not set the match data. The proper way to use this variable
3107 is to bind it with `let' around a small expression. */);
3108 Vinhibit_changing_match_data = Qnil;
3109
3110 defsubr (&Slooking_at);
3111 defsubr (&Sposix_looking_at);
3112 defsubr (&Sstring_match);
3113 defsubr (&Sposix_string_match);
3114 defsubr (&Ssearch_forward);
3115 defsubr (&Ssearch_backward);
3116 defsubr (&Sre_search_forward);
3117 defsubr (&Sre_search_backward);
3118 defsubr (&Sposix_search_forward);
3119 defsubr (&Sposix_search_backward);
3120 defsubr (&Sreplace_match);
3121 defsubr (&Smatch_beginning);
3122 defsubr (&Smatch_end);
3123 defsubr (&Smatch_data);
3124 defsubr (&Sset_match_data);
3125 defsubr (&Sregexp_quote);
3126 }