Remove arbitrary limit of 2**31 entries in hash tables.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Random data-structure functions */
103
104 DEFUN ("length", Flength, Slength, 1, 1, 0,
105 doc: /* Return the length of vector, list or string SEQUENCE.
106 A byte-code function object is also allowed.
107 If the string contains multibyte characters, this is not necessarily
108 the number of bytes in the string; it is the number of characters.
109 To get the number of bytes, use `string-bytes'. */)
110 (register Lisp_Object sequence)
111 {
112 register Lisp_Object val;
113 register int i;
114
115 if (STRINGP (sequence))
116 XSETFASTINT (val, SCHARS (sequence));
117 else if (VECTORP (sequence))
118 XSETFASTINT (val, ASIZE (sequence));
119 else if (CHAR_TABLE_P (sequence))
120 XSETFASTINT (val, MAX_CHAR);
121 else if (BOOL_VECTOR_P (sequence))
122 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
123 else if (COMPILEDP (sequence))
124 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
125 else if (CONSP (sequence))
126 {
127 i = 0;
128 while (CONSP (sequence))
129 {
130 sequence = XCDR (sequence);
131 ++i;
132
133 if (!CONSP (sequence))
134 break;
135
136 sequence = XCDR (sequence);
137 ++i;
138 QUIT;
139 }
140
141 CHECK_LIST_END (sequence, sequence);
142
143 val = make_number (i);
144 }
145 else if (NILP (sequence))
146 XSETFASTINT (val, 0);
147 else
148 wrong_type_argument (Qsequencep, sequence);
149
150 return val;
151 }
152
153 /* This does not check for quits. That is safe since it must terminate. */
154
155 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157 This function never gets an error. If LIST is not really a list,
158 it returns 0. If LIST is circular, it returns a finite value
159 which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161 {
162 Lisp_Object tail, halftail, length;
163 int len = 0;
164
165 /* halftail is used to detect circular lists. */
166 halftail = list;
167 for (tail = list; CONSP (tail); tail = XCDR (tail))
168 {
169 if (EQ (tail, halftail) && len != 0)
170 break;
171 len++;
172 if ((len & 1) == 0)
173 halftail = XCDR (halftail);
174 }
175
176 XSETINT (length, len);
177 return length;
178 }
179
180 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
181 doc: /* Return the number of bytes in STRING.
182 If STRING is multibyte, this may be greater than the length of STRING. */)
183 (Lisp_Object string)
184 {
185 CHECK_STRING (string);
186 return make_number (SBYTES (string));
187 }
188
189 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
190 doc: /* Return t if two strings have identical contents.
191 Case is significant, but text properties are ignored.
192 Symbols are also allowed; their print names are used instead. */)
193 (register Lisp_Object s1, Lisp_Object s2)
194 {
195 if (SYMBOLP (s1))
196 s1 = SYMBOL_NAME (s1);
197 if (SYMBOLP (s2))
198 s2 = SYMBOL_NAME (s2);
199 CHECK_STRING (s1);
200 CHECK_STRING (s2);
201
202 if (SCHARS (s1) != SCHARS (s2)
203 || SBYTES (s1) != SBYTES (s2)
204 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
205 return Qnil;
206 return Qt;
207 }
208
209 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
210 doc: /* Compare the contents of two strings, converting to multibyte if needed.
211 In string STR1, skip the first START1 characters and stop at END1.
212 In string STR2, skip the first START2 characters and stop at END2.
213 END1 and END2 default to the full lengths of the respective strings.
214
215 Case is significant in this comparison if IGNORE-CASE is nil.
216 Unibyte strings are converted to multibyte for comparison.
217
218 The value is t if the strings (or specified portions) match.
219 If string STR1 is less, the value is a negative number N;
220 - 1 - N is the number of characters that match at the beginning.
221 If string STR1 is greater, the value is a positive number N;
222 N - 1 is the number of characters that match at the beginning. */)
223 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
224 {
225 register EMACS_INT end1_char, end2_char;
226 register EMACS_INT i1, i1_byte, i2, i2_byte;
227
228 CHECK_STRING (str1);
229 CHECK_STRING (str2);
230 if (NILP (start1))
231 start1 = make_number (0);
232 if (NILP (start2))
233 start2 = make_number (0);
234 CHECK_NATNUM (start1);
235 CHECK_NATNUM (start2);
236 if (! NILP (end1))
237 CHECK_NATNUM (end1);
238 if (! NILP (end2))
239 CHECK_NATNUM (end2);
240
241 i1 = XINT (start1);
242 i2 = XINT (start2);
243
244 i1_byte = string_char_to_byte (str1, i1);
245 i2_byte = string_char_to_byte (str2, i2);
246
247 end1_char = SCHARS (str1);
248 if (! NILP (end1) && end1_char > XINT (end1))
249 end1_char = XINT (end1);
250
251 end2_char = SCHARS (str2);
252 if (! NILP (end2) && end2_char > XINT (end2))
253 end2_char = XINT (end2);
254
255 while (i1 < end1_char && i2 < end2_char)
256 {
257 /* When we find a mismatch, we must compare the
258 characters, not just the bytes. */
259 int c1, c2;
260
261 if (STRING_MULTIBYTE (str1))
262 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
263 else
264 {
265 c1 = SREF (str1, i1++);
266 MAKE_CHAR_MULTIBYTE (c1);
267 }
268
269 if (STRING_MULTIBYTE (str2))
270 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
271 else
272 {
273 c2 = SREF (str2, i2++);
274 MAKE_CHAR_MULTIBYTE (c2);
275 }
276
277 if (c1 == c2)
278 continue;
279
280 if (! NILP (ignore_case))
281 {
282 Lisp_Object tem;
283
284 tem = Fupcase (make_number (c1));
285 c1 = XINT (tem);
286 tem = Fupcase (make_number (c2));
287 c2 = XINT (tem);
288 }
289
290 if (c1 == c2)
291 continue;
292
293 /* Note that I1 has already been incremented
294 past the character that we are comparing;
295 hence we don't add or subtract 1 here. */
296 if (c1 < c2)
297 return make_number (- i1 + XINT (start1));
298 else
299 return make_number (i1 - XINT (start1));
300 }
301
302 if (i1 < end1_char)
303 return make_number (i1 - XINT (start1) + 1);
304 if (i2 < end2_char)
305 return make_number (- i1 + XINT (start1) - 1);
306
307 return Qt;
308 }
309
310 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
311 doc: /* Return t if first arg string is less than second in lexicographic order.
312 Case is significant.
313 Symbols are also allowed; their print names are used instead. */)
314 (register Lisp_Object s1, Lisp_Object s2)
315 {
316 register EMACS_INT end;
317 register EMACS_INT i1, i1_byte, i2, i2_byte;
318
319 if (SYMBOLP (s1))
320 s1 = SYMBOL_NAME (s1);
321 if (SYMBOLP (s2))
322 s2 = SYMBOL_NAME (s2);
323 CHECK_STRING (s1);
324 CHECK_STRING (s2);
325
326 i1 = i1_byte = i2 = i2_byte = 0;
327
328 end = SCHARS (s1);
329 if (end > SCHARS (s2))
330 end = SCHARS (s2);
331
332 while (i1 < end)
333 {
334 /* When we find a mismatch, we must compare the
335 characters, not just the bytes. */
336 int c1, c2;
337
338 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
339 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
340
341 if (c1 != c2)
342 return c1 < c2 ? Qt : Qnil;
343 }
344 return i1 < SCHARS (s2) ? Qt : Qnil;
345 }
346 \f
347 static Lisp_Object concat (size_t nargs, Lisp_Object *args,
348 enum Lisp_Type target_type, int last_special);
349
350 /* ARGSUSED */
351 Lisp_Object
352 concat2 (Lisp_Object s1, Lisp_Object s2)
353 {
354 Lisp_Object args[2];
355 args[0] = s1;
356 args[1] = s2;
357 return concat (2, args, Lisp_String, 0);
358 }
359
360 /* ARGSUSED */
361 Lisp_Object
362 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
363 {
364 Lisp_Object args[3];
365 args[0] = s1;
366 args[1] = s2;
367 args[2] = s3;
368 return concat (3, args, Lisp_String, 0);
369 }
370
371 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
372 doc: /* Concatenate all the arguments and make the result a list.
373 The result is a list whose elements are the elements of all the arguments.
374 Each argument may be a list, vector or string.
375 The last argument is not copied, just used as the tail of the new list.
376 usage: (append &rest SEQUENCES) */)
377 (size_t nargs, Lisp_Object *args)
378 {
379 return concat (nargs, args, Lisp_Cons, 1);
380 }
381
382 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
383 doc: /* Concatenate all the arguments and make the result a string.
384 The result is a string whose elements are the elements of all the arguments.
385 Each argument may be a string or a list or vector of characters (integers).
386 usage: (concat &rest SEQUENCES) */)
387 (size_t nargs, Lisp_Object *args)
388 {
389 return concat (nargs, args, Lisp_String, 0);
390 }
391
392 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
393 doc: /* Concatenate all the arguments and make the result a vector.
394 The result is a vector whose elements are the elements of all the arguments.
395 Each argument may be a list, vector or string.
396 usage: (vconcat &rest SEQUENCES) */)
397 (size_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Vectorlike, 0);
400 }
401
402
403 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
404 doc: /* Return a copy of a list, vector, string or char-table.
405 The elements of a list or vector are not copied; they are shared
406 with the original. */)
407 (Lisp_Object arg)
408 {
409 if (NILP (arg)) return arg;
410
411 if (CHAR_TABLE_P (arg))
412 {
413 return copy_char_table (arg);
414 }
415
416 if (BOOL_VECTOR_P (arg))
417 {
418 Lisp_Object val;
419 int size_in_chars
420 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
421 / BOOL_VECTOR_BITS_PER_CHAR);
422
423 val = Fmake_bool_vector (Flength (arg), Qnil);
424 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
425 size_in_chars);
426 return val;
427 }
428
429 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
430 wrong_type_argument (Qsequencep, arg);
431
432 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
433 }
434
435 /* This structure holds information of an argument of `concat' that is
436 a string and has text properties to be copied. */
437 struct textprop_rec
438 {
439 int argnum; /* refer to ARGS (arguments of `concat') */
440 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
441 EMACS_INT to; /* refer to VAL (the target string) */
442 };
443
444 static Lisp_Object
445 concat (size_t nargs, Lisp_Object *args,
446 enum Lisp_Type target_type, int last_special)
447 {
448 Lisp_Object val;
449 register Lisp_Object tail;
450 register Lisp_Object this;
451 EMACS_INT toindex;
452 EMACS_INT toindex_byte = 0;
453 register EMACS_INT result_len;
454 register EMACS_INT result_len_byte;
455 register size_t argnum;
456 Lisp_Object last_tail;
457 Lisp_Object prev;
458 int some_multibyte;
459 /* When we make a multibyte string, we can't copy text properties
460 while concatenating each string because the length of resulting
461 string can't be decided until we finish the whole concatenation.
462 So, we record strings that have text properties to be copied
463 here, and copy the text properties after the concatenation. */
464 struct textprop_rec *textprops = NULL;
465 /* Number of elements in textprops. */
466 int num_textprops = 0;
467 USE_SAFE_ALLOCA;
468
469 tail = Qnil;
470
471 /* In append, the last arg isn't treated like the others */
472 if (last_special && nargs > 0)
473 {
474 nargs--;
475 last_tail = args[nargs];
476 }
477 else
478 last_tail = Qnil;
479
480 /* Check each argument. */
481 for (argnum = 0; argnum < nargs; argnum++)
482 {
483 this = args[argnum];
484 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
485 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
486 wrong_type_argument (Qsequencep, this);
487 }
488
489 /* Compute total length in chars of arguments in RESULT_LEN.
490 If desired output is a string, also compute length in bytes
491 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
492 whether the result should be a multibyte string. */
493 result_len_byte = 0;
494 result_len = 0;
495 some_multibyte = 0;
496 for (argnum = 0; argnum < nargs; argnum++)
497 {
498 EMACS_INT len;
499 this = args[argnum];
500 len = XFASTINT (Flength (this));
501 if (target_type == Lisp_String)
502 {
503 /* We must count the number of bytes needed in the string
504 as well as the number of characters. */
505 EMACS_INT i;
506 Lisp_Object ch;
507 EMACS_INT this_len_byte;
508
509 if (VECTORP (this) || COMPILEDP (this))
510 for (i = 0; i < len; i++)
511 {
512 ch = AREF (this, i);
513 CHECK_CHARACTER (ch);
514 this_len_byte = CHAR_BYTES (XINT (ch));
515 result_len_byte += this_len_byte;
516 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
517 some_multibyte = 1;
518 }
519 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
520 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
521 else if (CONSP (this))
522 for (; CONSP (this); this = XCDR (this))
523 {
524 ch = XCAR (this);
525 CHECK_CHARACTER (ch);
526 this_len_byte = CHAR_BYTES (XINT (ch));
527 result_len_byte += this_len_byte;
528 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
529 some_multibyte = 1;
530 }
531 else if (STRINGP (this))
532 {
533 if (STRING_MULTIBYTE (this))
534 {
535 some_multibyte = 1;
536 result_len_byte += SBYTES (this);
537 }
538 else
539 result_len_byte += count_size_as_multibyte (SDATA (this),
540 SCHARS (this));
541 }
542 }
543
544 result_len += len;
545 if (result_len < 0)
546 error ("String overflow");
547 }
548
549 if (! some_multibyte)
550 result_len_byte = result_len;
551
552 /* Create the output object. */
553 if (target_type == Lisp_Cons)
554 val = Fmake_list (make_number (result_len), Qnil);
555 else if (target_type == Lisp_Vectorlike)
556 val = Fmake_vector (make_number (result_len), Qnil);
557 else if (some_multibyte)
558 val = make_uninit_multibyte_string (result_len, result_len_byte);
559 else
560 val = make_uninit_string (result_len);
561
562 /* In `append', if all but last arg are nil, return last arg. */
563 if (target_type == Lisp_Cons && EQ (val, Qnil))
564 return last_tail;
565
566 /* Copy the contents of the args into the result. */
567 if (CONSP (val))
568 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
569 else
570 toindex = 0, toindex_byte = 0;
571
572 prev = Qnil;
573 if (STRINGP (val))
574 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
575
576 for (argnum = 0; argnum < nargs; argnum++)
577 {
578 Lisp_Object thislen;
579 EMACS_INT thisleni = 0;
580 register EMACS_INT thisindex = 0;
581 register EMACS_INT thisindex_byte = 0;
582
583 this = args[argnum];
584 if (!CONSP (this))
585 thislen = Flength (this), thisleni = XINT (thislen);
586
587 /* Between strings of the same kind, copy fast. */
588 if (STRINGP (this) && STRINGP (val)
589 && STRING_MULTIBYTE (this) == some_multibyte)
590 {
591 EMACS_INT thislen_byte = SBYTES (this);
592
593 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
594 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
595 {
596 textprops[num_textprops].argnum = argnum;
597 textprops[num_textprops].from = 0;
598 textprops[num_textprops++].to = toindex;
599 }
600 toindex_byte += thislen_byte;
601 toindex += thisleni;
602 }
603 /* Copy a single-byte string to a multibyte string. */
604 else if (STRINGP (this) && STRINGP (val))
605 {
606 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
607 {
608 textprops[num_textprops].argnum = argnum;
609 textprops[num_textprops].from = 0;
610 textprops[num_textprops++].to = toindex;
611 }
612 toindex_byte += copy_text (SDATA (this),
613 SDATA (val) + toindex_byte,
614 SCHARS (this), 0, 1);
615 toindex += thisleni;
616 }
617 else
618 /* Copy element by element. */
619 while (1)
620 {
621 register Lisp_Object elt;
622
623 /* Fetch next element of `this' arg into `elt', or break if
624 `this' is exhausted. */
625 if (NILP (this)) break;
626 if (CONSP (this))
627 elt = XCAR (this), this = XCDR (this);
628 else if (thisindex >= thisleni)
629 break;
630 else if (STRINGP (this))
631 {
632 int c;
633 if (STRING_MULTIBYTE (this))
634 {
635 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
636 thisindex,
637 thisindex_byte);
638 XSETFASTINT (elt, c);
639 }
640 else
641 {
642 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
643 if (some_multibyte
644 && !ASCII_CHAR_P (XINT (elt))
645 && XINT (elt) < 0400)
646 {
647 c = BYTE8_TO_CHAR (XINT (elt));
648 XSETINT (elt, c);
649 }
650 }
651 }
652 else if (BOOL_VECTOR_P (this))
653 {
654 int byte;
655 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
656 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
657 elt = Qt;
658 else
659 elt = Qnil;
660 thisindex++;
661 }
662 else
663 {
664 elt = AREF (this, thisindex);
665 thisindex++;
666 }
667
668 /* Store this element into the result. */
669 if (toindex < 0)
670 {
671 XSETCAR (tail, elt);
672 prev = tail;
673 tail = XCDR (tail);
674 }
675 else if (VECTORP (val))
676 {
677 ASET (val, toindex, elt);
678 toindex++;
679 }
680 else
681 {
682 CHECK_NUMBER (elt);
683 if (some_multibyte)
684 toindex_byte += CHAR_STRING (XINT (elt),
685 SDATA (val) + toindex_byte);
686 else
687 SSET (val, toindex_byte++, XINT (elt));
688 toindex++;
689 }
690 }
691 }
692 if (!NILP (prev))
693 XSETCDR (prev, last_tail);
694
695 if (num_textprops > 0)
696 {
697 Lisp_Object props;
698 EMACS_INT last_to_end = -1;
699
700 for (argnum = 0; argnum < num_textprops; argnum++)
701 {
702 this = args[textprops[argnum].argnum];
703 props = text_property_list (this,
704 make_number (0),
705 make_number (SCHARS (this)),
706 Qnil);
707 /* If successive arguments have properties, be sure that the
708 value of `composition' property be the copy. */
709 if (last_to_end == textprops[argnum].to)
710 make_composition_value_copy (props);
711 add_text_properties_from_list (val, props,
712 make_number (textprops[argnum].to));
713 last_to_end = textprops[argnum].to + SCHARS (this);
714 }
715 }
716
717 SAFE_FREE ();
718 return val;
719 }
720 \f
721 static Lisp_Object string_char_byte_cache_string;
722 static EMACS_INT string_char_byte_cache_charpos;
723 static EMACS_INT string_char_byte_cache_bytepos;
724
725 void
726 clear_string_char_byte_cache (void)
727 {
728 string_char_byte_cache_string = Qnil;
729 }
730
731 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
732
733 EMACS_INT
734 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
735 {
736 EMACS_INT i_byte;
737 EMACS_INT best_below, best_below_byte;
738 EMACS_INT best_above, best_above_byte;
739
740 best_below = best_below_byte = 0;
741 best_above = SCHARS (string);
742 best_above_byte = SBYTES (string);
743 if (best_above == best_above_byte)
744 return char_index;
745
746 if (EQ (string, string_char_byte_cache_string))
747 {
748 if (string_char_byte_cache_charpos < char_index)
749 {
750 best_below = string_char_byte_cache_charpos;
751 best_below_byte = string_char_byte_cache_bytepos;
752 }
753 else
754 {
755 best_above = string_char_byte_cache_charpos;
756 best_above_byte = string_char_byte_cache_bytepos;
757 }
758 }
759
760 if (char_index - best_below < best_above - char_index)
761 {
762 unsigned char *p = SDATA (string) + best_below_byte;
763
764 while (best_below < char_index)
765 {
766 p += BYTES_BY_CHAR_HEAD (*p);
767 best_below++;
768 }
769 i_byte = p - SDATA (string);
770 }
771 else
772 {
773 unsigned char *p = SDATA (string) + best_above_byte;
774
775 while (best_above > char_index)
776 {
777 p--;
778 while (!CHAR_HEAD_P (*p)) p--;
779 best_above--;
780 }
781 i_byte = p - SDATA (string);
782 }
783
784 string_char_byte_cache_bytepos = i_byte;
785 string_char_byte_cache_charpos = char_index;
786 string_char_byte_cache_string = string;
787
788 return i_byte;
789 }
790 \f
791 /* Return the character index corresponding to BYTE_INDEX in STRING. */
792
793 EMACS_INT
794 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
795 {
796 EMACS_INT i, i_byte;
797 EMACS_INT best_below, best_below_byte;
798 EMACS_INT best_above, best_above_byte;
799
800 best_below = best_below_byte = 0;
801 best_above = SCHARS (string);
802 best_above_byte = SBYTES (string);
803 if (best_above == best_above_byte)
804 return byte_index;
805
806 if (EQ (string, string_char_byte_cache_string))
807 {
808 if (string_char_byte_cache_bytepos < byte_index)
809 {
810 best_below = string_char_byte_cache_charpos;
811 best_below_byte = string_char_byte_cache_bytepos;
812 }
813 else
814 {
815 best_above = string_char_byte_cache_charpos;
816 best_above_byte = string_char_byte_cache_bytepos;
817 }
818 }
819
820 if (byte_index - best_below_byte < best_above_byte - byte_index)
821 {
822 unsigned char *p = SDATA (string) + best_below_byte;
823 unsigned char *pend = SDATA (string) + byte_index;
824
825 while (p < pend)
826 {
827 p += BYTES_BY_CHAR_HEAD (*p);
828 best_below++;
829 }
830 i = best_below;
831 i_byte = p - SDATA (string);
832 }
833 else
834 {
835 unsigned char *p = SDATA (string) + best_above_byte;
836 unsigned char *pbeg = SDATA (string) + byte_index;
837
838 while (p > pbeg)
839 {
840 p--;
841 while (!CHAR_HEAD_P (*p)) p--;
842 best_above--;
843 }
844 i = best_above;
845 i_byte = p - SDATA (string);
846 }
847
848 string_char_byte_cache_bytepos = i_byte;
849 string_char_byte_cache_charpos = i;
850 string_char_byte_cache_string = string;
851
852 return i;
853 }
854 \f
855 /* Convert STRING to a multibyte string. */
856
857 static Lisp_Object
858 string_make_multibyte (Lisp_Object string)
859 {
860 unsigned char *buf;
861 EMACS_INT nbytes;
862 Lisp_Object ret;
863 USE_SAFE_ALLOCA;
864
865 if (STRING_MULTIBYTE (string))
866 return string;
867
868 nbytes = count_size_as_multibyte (SDATA (string),
869 SCHARS (string));
870 /* If all the chars are ASCII, they won't need any more bytes
871 once converted. In that case, we can return STRING itself. */
872 if (nbytes == SBYTES (string))
873 return string;
874
875 SAFE_ALLOCA (buf, unsigned char *, nbytes);
876 copy_text (SDATA (string), buf, SBYTES (string),
877 0, 1);
878
879 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
880 SAFE_FREE ();
881
882 return ret;
883 }
884
885
886 /* Convert STRING (if unibyte) to a multibyte string without changing
887 the number of characters. Characters 0200 trough 0237 are
888 converted to eight-bit characters. */
889
890 Lisp_Object
891 string_to_multibyte (Lisp_Object string)
892 {
893 unsigned char *buf;
894 EMACS_INT nbytes;
895 Lisp_Object ret;
896 USE_SAFE_ALLOCA;
897
898 if (STRING_MULTIBYTE (string))
899 return string;
900
901 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
902 /* If all the chars are ASCII, they won't need any more bytes once
903 converted. */
904 if (nbytes == SBYTES (string))
905 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
906
907 SAFE_ALLOCA (buf, unsigned char *, nbytes);
908 memcpy (buf, SDATA (string), SBYTES (string));
909 str_to_multibyte (buf, nbytes, SBYTES (string));
910
911 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
912 SAFE_FREE ();
913
914 return ret;
915 }
916
917
918 /* Convert STRING to a single-byte string. */
919
920 Lisp_Object
921 string_make_unibyte (Lisp_Object string)
922 {
923 EMACS_INT nchars;
924 unsigned char *buf;
925 Lisp_Object ret;
926 USE_SAFE_ALLOCA;
927
928 if (! STRING_MULTIBYTE (string))
929 return string;
930
931 nchars = SCHARS (string);
932
933 SAFE_ALLOCA (buf, unsigned char *, nchars);
934 copy_text (SDATA (string), buf, SBYTES (string),
935 1, 0);
936
937 ret = make_unibyte_string ((char *) buf, nchars);
938 SAFE_FREE ();
939
940 return ret;
941 }
942
943 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
944 1, 1, 0,
945 doc: /* Return the multibyte equivalent of STRING.
946 If STRING is unibyte and contains non-ASCII characters, the function
947 `unibyte-char-to-multibyte' is used to convert each unibyte character
948 to a multibyte character. In this case, the returned string is a
949 newly created string with no text properties. If STRING is multibyte
950 or entirely ASCII, it is returned unchanged. In particular, when
951 STRING is unibyte and entirely ASCII, the returned string is unibyte.
952 \(When the characters are all ASCII, Emacs primitives will treat the
953 string the same way whether it is unibyte or multibyte.) */)
954 (Lisp_Object string)
955 {
956 CHECK_STRING (string);
957
958 return string_make_multibyte (string);
959 }
960
961 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
962 1, 1, 0,
963 doc: /* Return the unibyte equivalent of STRING.
964 Multibyte character codes are converted to unibyte according to
965 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
966 If the lookup in the translation table fails, this function takes just
967 the low 8 bits of each character. */)
968 (Lisp_Object string)
969 {
970 CHECK_STRING (string);
971
972 return string_make_unibyte (string);
973 }
974
975 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
976 1, 1, 0,
977 doc: /* Return a unibyte string with the same individual bytes as STRING.
978 If STRING is unibyte, the result is STRING itself.
979 Otherwise it is a newly created string, with no text properties.
980 If STRING is multibyte and contains a character of charset
981 `eight-bit', it is converted to the corresponding single byte. */)
982 (Lisp_Object string)
983 {
984 CHECK_STRING (string);
985
986 if (STRING_MULTIBYTE (string))
987 {
988 EMACS_INT bytes = SBYTES (string);
989 unsigned char *str = (unsigned char *) xmalloc (bytes);
990
991 memcpy (str, SDATA (string), bytes);
992 bytes = str_as_unibyte (str, bytes);
993 string = make_unibyte_string ((char *) str, bytes);
994 xfree (str);
995 }
996 return string;
997 }
998
999 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1000 1, 1, 0,
1001 doc: /* Return a multibyte string with the same individual bytes as STRING.
1002 If STRING is multibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004
1005 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1006 part of a correct utf-8 sequence), it is converted to the corresponding
1007 multibyte character of charset `eight-bit'.
1008 See also `string-to-multibyte'.
1009
1010 Beware, this often doesn't really do what you think it does.
1011 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1012 If you're not sure, whether to use `string-as-multibyte' or
1013 `string-to-multibyte', use `string-to-multibyte'. */)
1014 (Lisp_Object string)
1015 {
1016 CHECK_STRING (string);
1017
1018 if (! STRING_MULTIBYTE (string))
1019 {
1020 Lisp_Object new_string;
1021 EMACS_INT nchars, nbytes;
1022
1023 parse_str_as_multibyte (SDATA (string),
1024 SBYTES (string),
1025 &nchars, &nbytes);
1026 new_string = make_uninit_multibyte_string (nchars, nbytes);
1027 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1028 if (nbytes != SBYTES (string))
1029 str_as_multibyte (SDATA (new_string), nbytes,
1030 SBYTES (string), NULL);
1031 string = new_string;
1032 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1033 }
1034 return string;
1035 }
1036
1037 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1038 1, 1, 0,
1039 doc: /* Return a multibyte string with the same individual chars as STRING.
1040 If STRING is multibyte, the result is STRING itself.
1041 Otherwise it is a newly created string, with no text properties.
1042
1043 If STRING is unibyte and contains an 8-bit byte, it is converted to
1044 the corresponding multibyte character of charset `eight-bit'.
1045
1046 This differs from `string-as-multibyte' by converting each byte of a correct
1047 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1048 correct sequence. */)
1049 (Lisp_Object string)
1050 {
1051 CHECK_STRING (string);
1052
1053 return string_to_multibyte (string);
1054 }
1055
1056 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1057 1, 1, 0,
1058 doc: /* Return a unibyte string with the same individual chars as STRING.
1059 If STRING is unibyte, the result is STRING itself.
1060 Otherwise it is a newly created string, with no text properties,
1061 where each `eight-bit' character is converted to the corresponding byte.
1062 If STRING contains a non-ASCII, non-`eight-bit' character,
1063 an error is signaled. */)
1064 (Lisp_Object string)
1065 {
1066 CHECK_STRING (string);
1067
1068 if (STRING_MULTIBYTE (string))
1069 {
1070 EMACS_INT chars = SCHARS (string);
1071 unsigned char *str = (unsigned char *) xmalloc (chars);
1072 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1073
1074 if (converted < chars)
1075 error ("Can't convert the %"pI"dth character to unibyte", converted);
1076 string = make_unibyte_string ((char *) str, chars);
1077 xfree (str);
1078 }
1079 return string;
1080 }
1081
1082 \f
1083 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1084 doc: /* Return a copy of ALIST.
1085 This is an alist which represents the same mapping from objects to objects,
1086 but does not share the alist structure with ALIST.
1087 The objects mapped (cars and cdrs of elements of the alist)
1088 are shared, however.
1089 Elements of ALIST that are not conses are also shared. */)
1090 (Lisp_Object alist)
1091 {
1092 register Lisp_Object tem;
1093
1094 CHECK_LIST (alist);
1095 if (NILP (alist))
1096 return alist;
1097 alist = concat (1, &alist, Lisp_Cons, 0);
1098 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1099 {
1100 register Lisp_Object car;
1101 car = XCAR (tem);
1102
1103 if (CONSP (car))
1104 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1105 }
1106 return alist;
1107 }
1108
1109 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1110 doc: /* Return a new string whose contents are a substring of STRING.
1111 The returned string consists of the characters between index FROM
1112 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1113 zero-indexed: 0 means the first character of STRING. Negative values
1114 are counted from the end of STRING. If TO is nil, the substring runs
1115 to the end of STRING.
1116
1117 The STRING argument may also be a vector. In that case, the return
1118 value is a new vector that contains the elements between index FROM
1119 \(inclusive) and index TO (exclusive) of that vector argument. */)
1120 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1121 {
1122 Lisp_Object res;
1123 EMACS_INT size;
1124 EMACS_INT size_byte = 0;
1125 EMACS_INT from_char, to_char;
1126 EMACS_INT from_byte = 0, to_byte = 0;
1127
1128 CHECK_VECTOR_OR_STRING (string);
1129 CHECK_NUMBER (from);
1130
1131 if (STRINGP (string))
1132 {
1133 size = SCHARS (string);
1134 size_byte = SBYTES (string);
1135 }
1136 else
1137 size = ASIZE (string);
1138
1139 if (NILP (to))
1140 {
1141 to_char = size;
1142 to_byte = size_byte;
1143 }
1144 else
1145 {
1146 CHECK_NUMBER (to);
1147
1148 to_char = XINT (to);
1149 if (to_char < 0)
1150 to_char += size;
1151
1152 if (STRINGP (string))
1153 to_byte = string_char_to_byte (string, to_char);
1154 }
1155
1156 from_char = XINT (from);
1157 if (from_char < 0)
1158 from_char += size;
1159 if (STRINGP (string))
1160 from_byte = string_char_to_byte (string, from_char);
1161
1162 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1163 args_out_of_range_3 (string, make_number (from_char),
1164 make_number (to_char));
1165
1166 if (STRINGP (string))
1167 {
1168 res = make_specified_string (SSDATA (string) + from_byte,
1169 to_char - from_char, to_byte - from_byte,
1170 STRING_MULTIBYTE (string));
1171 copy_text_properties (make_number (from_char), make_number (to_char),
1172 string, make_number (0), res, Qnil);
1173 }
1174 else
1175 res = Fvector (to_char - from_char, &AREF (string, from_char));
1176
1177 return res;
1178 }
1179
1180
1181 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1182 doc: /* Return a substring of STRING, without text properties.
1183 It starts at index FROM and ends before TO.
1184 TO may be nil or omitted; then the substring runs to the end of STRING.
1185 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1186 If FROM or TO is negative, it counts from the end.
1187
1188 With one argument, just copy STRING without its properties. */)
1189 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1190 {
1191 EMACS_INT size, size_byte;
1192 EMACS_INT from_char, to_char;
1193 EMACS_INT from_byte, to_byte;
1194
1195 CHECK_STRING (string);
1196
1197 size = SCHARS (string);
1198 size_byte = SBYTES (string);
1199
1200 if (NILP (from))
1201 from_char = from_byte = 0;
1202 else
1203 {
1204 CHECK_NUMBER (from);
1205 from_char = XINT (from);
1206 if (from_char < 0)
1207 from_char += size;
1208
1209 from_byte = string_char_to_byte (string, from_char);
1210 }
1211
1212 if (NILP (to))
1213 {
1214 to_char = size;
1215 to_byte = size_byte;
1216 }
1217 else
1218 {
1219 CHECK_NUMBER (to);
1220
1221 to_char = XINT (to);
1222 if (to_char < 0)
1223 to_char += size;
1224
1225 to_byte = string_char_to_byte (string, to_char);
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 return make_specified_string (SSDATA (string) + from_byte,
1233 to_char - from_char, to_byte - from_byte,
1234 STRING_MULTIBYTE (string));
1235 }
1236
1237 /* Extract a substring of STRING, giving start and end positions
1238 both in characters and in bytes. */
1239
1240 Lisp_Object
1241 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1242 EMACS_INT to, EMACS_INT to_byte)
1243 {
1244 Lisp_Object res;
1245 EMACS_INT size;
1246
1247 CHECK_VECTOR_OR_STRING (string);
1248
1249 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1250
1251 if (!(0 <= from && from <= to && to <= size))
1252 args_out_of_range_3 (string, make_number (from), make_number (to));
1253
1254 if (STRINGP (string))
1255 {
1256 res = make_specified_string (SSDATA (string) + from_byte,
1257 to - from, to_byte - from_byte,
1258 STRING_MULTIBYTE (string));
1259 copy_text_properties (make_number (from), make_number (to),
1260 string, make_number (0), res, Qnil);
1261 }
1262 else
1263 res = Fvector (to - from, &AREF (string, from));
1264
1265 return res;
1266 }
1267 \f
1268 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1269 doc: /* Take cdr N times on LIST, return the result. */)
1270 (Lisp_Object n, Lisp_Object list)
1271 {
1272 register int i, num;
1273 CHECK_NUMBER (n);
1274 num = XINT (n);
1275 for (i = 0; i < num && !NILP (list); i++)
1276 {
1277 QUIT;
1278 CHECK_LIST_CONS (list, list);
1279 list = XCDR (list);
1280 }
1281 return list;
1282 }
1283
1284 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1285 doc: /* Return the Nth element of LIST.
1286 N counts from zero. If LIST is not that long, nil is returned. */)
1287 (Lisp_Object n, Lisp_Object list)
1288 {
1289 return Fcar (Fnthcdr (n, list));
1290 }
1291
1292 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1293 doc: /* Return element of SEQUENCE at index N. */)
1294 (register Lisp_Object sequence, Lisp_Object n)
1295 {
1296 CHECK_NUMBER (n);
1297 if (CONSP (sequence) || NILP (sequence))
1298 return Fcar (Fnthcdr (n, sequence));
1299
1300 /* Faref signals a "not array" error, so check here. */
1301 CHECK_ARRAY (sequence, Qsequencep);
1302 return Faref (sequence, n);
1303 }
1304
1305 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1306 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1307 The value is actually the tail of LIST whose car is ELT. */)
1308 (register Lisp_Object elt, Lisp_Object list)
1309 {
1310 register Lisp_Object tail;
1311 for (tail = list; CONSP (tail); tail = XCDR (tail))
1312 {
1313 register Lisp_Object tem;
1314 CHECK_LIST_CONS (tail, list);
1315 tem = XCAR (tail);
1316 if (! NILP (Fequal (elt, tem)))
1317 return tail;
1318 QUIT;
1319 }
1320 return Qnil;
1321 }
1322
1323 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1324 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1325 The value is actually the tail of LIST whose car is ELT. */)
1326 (register Lisp_Object elt, Lisp_Object list)
1327 {
1328 while (1)
1329 {
1330 if (!CONSP (list) || EQ (XCAR (list), elt))
1331 break;
1332
1333 list = XCDR (list);
1334 if (!CONSP (list) || EQ (XCAR (list), elt))
1335 break;
1336
1337 list = XCDR (list);
1338 if (!CONSP (list) || EQ (XCAR (list), elt))
1339 break;
1340
1341 list = XCDR (list);
1342 QUIT;
1343 }
1344
1345 CHECK_LIST (list);
1346 return list;
1347 }
1348
1349 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1350 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1351 The value is actually the tail of LIST whose car is ELT. */)
1352 (register Lisp_Object elt, Lisp_Object list)
1353 {
1354 register Lisp_Object tail;
1355
1356 if (!FLOATP (elt))
1357 return Fmemq (elt, list);
1358
1359 for (tail = list; CONSP (tail); tail = XCDR (tail))
1360 {
1361 register Lisp_Object tem;
1362 CHECK_LIST_CONS (tail, list);
1363 tem = XCAR (tail);
1364 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1365 return tail;
1366 QUIT;
1367 }
1368 return Qnil;
1369 }
1370
1371 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1372 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1373 The value is actually the first element of LIST whose car is KEY.
1374 Elements of LIST that are not conses are ignored. */)
1375 (Lisp_Object key, Lisp_Object list)
1376 {
1377 while (1)
1378 {
1379 if (!CONSP (list)
1380 || (CONSP (XCAR (list))
1381 && EQ (XCAR (XCAR (list)), key)))
1382 break;
1383
1384 list = XCDR (list);
1385 if (!CONSP (list)
1386 || (CONSP (XCAR (list))
1387 && EQ (XCAR (XCAR (list)), key)))
1388 break;
1389
1390 list = XCDR (list);
1391 if (!CONSP (list)
1392 || (CONSP (XCAR (list))
1393 && EQ (XCAR (XCAR (list)), key)))
1394 break;
1395
1396 list = XCDR (list);
1397 QUIT;
1398 }
1399
1400 return CAR (list);
1401 }
1402
1403 /* Like Fassq but never report an error and do not allow quits.
1404 Use only on lists known never to be circular. */
1405
1406 Lisp_Object
1407 assq_no_quit (Lisp_Object key, Lisp_Object list)
1408 {
1409 while (CONSP (list)
1410 && (!CONSP (XCAR (list))
1411 || !EQ (XCAR (XCAR (list)), key)))
1412 list = XCDR (list);
1413
1414 return CAR_SAFE (list);
1415 }
1416
1417 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1418 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1419 The value is actually the first element of LIST whose car equals KEY. */)
1420 (Lisp_Object key, Lisp_Object list)
1421 {
1422 Lisp_Object car;
1423
1424 while (1)
1425 {
1426 if (!CONSP (list)
1427 || (CONSP (XCAR (list))
1428 && (car = XCAR (XCAR (list)),
1429 EQ (car, key) || !NILP (Fequal (car, key)))))
1430 break;
1431
1432 list = XCDR (list);
1433 if (!CONSP (list)
1434 || (CONSP (XCAR (list))
1435 && (car = XCAR (XCAR (list)),
1436 EQ (car, key) || !NILP (Fequal (car, key)))))
1437 break;
1438
1439 list = XCDR (list);
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1445
1446 list = XCDR (list);
1447 QUIT;
1448 }
1449
1450 return CAR (list);
1451 }
1452
1453 /* Like Fassoc but never report an error and do not allow quits.
1454 Use only on lists known never to be circular. */
1455
1456 Lisp_Object
1457 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1458 {
1459 while (CONSP (list)
1460 && (!CONSP (XCAR (list))
1461 || (!EQ (XCAR (XCAR (list)), key)
1462 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1463 list = XCDR (list);
1464
1465 return CONSP (list) ? XCAR (list) : Qnil;
1466 }
1467
1468 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1469 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1470 The value is actually the first element of LIST whose cdr is KEY. */)
1471 (register Lisp_Object key, Lisp_Object list)
1472 {
1473 while (1)
1474 {
1475 if (!CONSP (list)
1476 || (CONSP (XCAR (list))
1477 && EQ (XCDR (XCAR (list)), key)))
1478 break;
1479
1480 list = XCDR (list);
1481 if (!CONSP (list)
1482 || (CONSP (XCAR (list))
1483 && EQ (XCDR (XCAR (list)), key)))
1484 break;
1485
1486 list = XCDR (list);
1487 if (!CONSP (list)
1488 || (CONSP (XCAR (list))
1489 && EQ (XCDR (XCAR (list)), key)))
1490 break;
1491
1492 list = XCDR (list);
1493 QUIT;
1494 }
1495
1496 return CAR (list);
1497 }
1498
1499 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1500 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1501 The value is actually the first element of LIST whose cdr equals KEY. */)
1502 (Lisp_Object key, Lisp_Object list)
1503 {
1504 Lisp_Object cdr;
1505
1506 while (1)
1507 {
1508 if (!CONSP (list)
1509 || (CONSP (XCAR (list))
1510 && (cdr = XCDR (XCAR (list)),
1511 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1512 break;
1513
1514 list = XCDR (list);
1515 if (!CONSP (list)
1516 || (CONSP (XCAR (list))
1517 && (cdr = XCDR (XCAR (list)),
1518 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1519 break;
1520
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1527
1528 list = XCDR (list);
1529 QUIT;
1530 }
1531
1532 return CAR (list);
1533 }
1534 \f
1535 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1536 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1537 The modified LIST is returned. Comparison is done with `eq'.
1538 If the first member of LIST is ELT, there is no way to remove it by side effect;
1539 therefore, write `(setq foo (delq element foo))'
1540 to be sure of changing the value of `foo'. */)
1541 (register Lisp_Object elt, Lisp_Object list)
1542 {
1543 register Lisp_Object tail, prev;
1544 register Lisp_Object tem;
1545
1546 tail = list;
1547 prev = Qnil;
1548 while (!NILP (tail))
1549 {
1550 CHECK_LIST_CONS (tail, list);
1551 tem = XCAR (tail);
1552 if (EQ (elt, tem))
1553 {
1554 if (NILP (prev))
1555 list = XCDR (tail);
1556 else
1557 Fsetcdr (prev, XCDR (tail));
1558 }
1559 else
1560 prev = tail;
1561 tail = XCDR (tail);
1562 QUIT;
1563 }
1564 return list;
1565 }
1566
1567 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1568 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1569 SEQ must be a list, a vector, or a string.
1570 The modified SEQ is returned. Comparison is done with `equal'.
1571 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1572 is not a side effect; it is simply using a different sequence.
1573 Therefore, write `(setq foo (delete element foo))'
1574 to be sure of changing the value of `foo'. */)
1575 (Lisp_Object elt, Lisp_Object seq)
1576 {
1577 if (VECTORP (seq))
1578 {
1579 EMACS_INT i, n;
1580
1581 for (i = n = 0; i < ASIZE (seq); ++i)
1582 if (NILP (Fequal (AREF (seq, i), elt)))
1583 ++n;
1584
1585 if (n != ASIZE (seq))
1586 {
1587 struct Lisp_Vector *p = allocate_vector (n);
1588
1589 for (i = n = 0; i < ASIZE (seq); ++i)
1590 if (NILP (Fequal (AREF (seq, i), elt)))
1591 p->contents[n++] = AREF (seq, i);
1592
1593 XSETVECTOR (seq, p);
1594 }
1595 }
1596 else if (STRINGP (seq))
1597 {
1598 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1599 int c;
1600
1601 for (i = nchars = nbytes = ibyte = 0;
1602 i < SCHARS (seq);
1603 ++i, ibyte += cbytes)
1604 {
1605 if (STRING_MULTIBYTE (seq))
1606 {
1607 c = STRING_CHAR (SDATA (seq) + ibyte);
1608 cbytes = CHAR_BYTES (c);
1609 }
1610 else
1611 {
1612 c = SREF (seq, i);
1613 cbytes = 1;
1614 }
1615
1616 if (!INTEGERP (elt) || c != XINT (elt))
1617 {
1618 ++nchars;
1619 nbytes += cbytes;
1620 }
1621 }
1622
1623 if (nchars != SCHARS (seq))
1624 {
1625 Lisp_Object tem;
1626
1627 tem = make_uninit_multibyte_string (nchars, nbytes);
1628 if (!STRING_MULTIBYTE (seq))
1629 STRING_SET_UNIBYTE (tem);
1630
1631 for (i = nchars = nbytes = ibyte = 0;
1632 i < SCHARS (seq);
1633 ++i, ibyte += cbytes)
1634 {
1635 if (STRING_MULTIBYTE (seq))
1636 {
1637 c = STRING_CHAR (SDATA (seq) + ibyte);
1638 cbytes = CHAR_BYTES (c);
1639 }
1640 else
1641 {
1642 c = SREF (seq, i);
1643 cbytes = 1;
1644 }
1645
1646 if (!INTEGERP (elt) || c != XINT (elt))
1647 {
1648 unsigned char *from = SDATA (seq) + ibyte;
1649 unsigned char *to = SDATA (tem) + nbytes;
1650 EMACS_INT n;
1651
1652 ++nchars;
1653 nbytes += cbytes;
1654
1655 for (n = cbytes; n--; )
1656 *to++ = *from++;
1657 }
1658 }
1659
1660 seq = tem;
1661 }
1662 }
1663 else
1664 {
1665 Lisp_Object tail, prev;
1666
1667 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1668 {
1669 CHECK_LIST_CONS (tail, seq);
1670
1671 if (!NILP (Fequal (elt, XCAR (tail))))
1672 {
1673 if (NILP (prev))
1674 seq = XCDR (tail);
1675 else
1676 Fsetcdr (prev, XCDR (tail));
1677 }
1678 else
1679 prev = tail;
1680 QUIT;
1681 }
1682 }
1683
1684 return seq;
1685 }
1686
1687 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1688 doc: /* Reverse LIST by modifying cdr pointers.
1689 Return the reversed list. */)
1690 (Lisp_Object list)
1691 {
1692 register Lisp_Object prev, tail, next;
1693
1694 if (NILP (list)) return list;
1695 prev = Qnil;
1696 tail = list;
1697 while (!NILP (tail))
1698 {
1699 QUIT;
1700 CHECK_LIST_CONS (tail, list);
1701 next = XCDR (tail);
1702 Fsetcdr (tail, prev);
1703 prev = tail;
1704 tail = next;
1705 }
1706 return prev;
1707 }
1708
1709 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1710 doc: /* Reverse LIST, copying. Return the reversed list.
1711 See also the function `nreverse', which is used more often. */)
1712 (Lisp_Object list)
1713 {
1714 Lisp_Object new;
1715
1716 for (new = Qnil; CONSP (list); list = XCDR (list))
1717 {
1718 QUIT;
1719 new = Fcons (XCAR (list), new);
1720 }
1721 CHECK_LIST_END (list, list);
1722 return new;
1723 }
1724 \f
1725 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1726
1727 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1728 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1729 Returns the sorted list. LIST is modified by side effects.
1730 PREDICATE is called with two elements of LIST, and should return non-nil
1731 if the first element should sort before the second. */)
1732 (Lisp_Object list, Lisp_Object predicate)
1733 {
1734 Lisp_Object front, back;
1735 register Lisp_Object len, tem;
1736 struct gcpro gcpro1, gcpro2;
1737 register int length;
1738
1739 front = list;
1740 len = Flength (list);
1741 length = XINT (len);
1742 if (length < 2)
1743 return list;
1744
1745 XSETINT (len, (length / 2) - 1);
1746 tem = Fnthcdr (len, list);
1747 back = Fcdr (tem);
1748 Fsetcdr (tem, Qnil);
1749
1750 GCPRO2 (front, back);
1751 front = Fsort (front, predicate);
1752 back = Fsort (back, predicate);
1753 UNGCPRO;
1754 return merge (front, back, predicate);
1755 }
1756
1757 Lisp_Object
1758 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1759 {
1760 Lisp_Object value;
1761 register Lisp_Object tail;
1762 Lisp_Object tem;
1763 register Lisp_Object l1, l2;
1764 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1765
1766 l1 = org_l1;
1767 l2 = org_l2;
1768 tail = Qnil;
1769 value = Qnil;
1770
1771 /* It is sufficient to protect org_l1 and org_l2.
1772 When l1 and l2 are updated, we copy the new values
1773 back into the org_ vars. */
1774 GCPRO4 (org_l1, org_l2, pred, value);
1775
1776 while (1)
1777 {
1778 if (NILP (l1))
1779 {
1780 UNGCPRO;
1781 if (NILP (tail))
1782 return l2;
1783 Fsetcdr (tail, l2);
1784 return value;
1785 }
1786 if (NILP (l2))
1787 {
1788 UNGCPRO;
1789 if (NILP (tail))
1790 return l1;
1791 Fsetcdr (tail, l1);
1792 return value;
1793 }
1794 tem = call2 (pred, Fcar (l2), Fcar (l1));
1795 if (NILP (tem))
1796 {
1797 tem = l1;
1798 l1 = Fcdr (l1);
1799 org_l1 = l1;
1800 }
1801 else
1802 {
1803 tem = l2;
1804 l2 = Fcdr (l2);
1805 org_l2 = l2;
1806 }
1807 if (NILP (tail))
1808 value = tem;
1809 else
1810 Fsetcdr (tail, tem);
1811 tail = tem;
1812 }
1813 }
1814
1815 \f
1816 /* This does not check for quits. That is safe since it must terminate. */
1817
1818 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1819 doc: /* Extract a value from a property list.
1820 PLIST is a property list, which is a list of the form
1821 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1822 corresponding to the given PROP, or nil if PROP is not one of the
1823 properties on the list. This function never signals an error. */)
1824 (Lisp_Object plist, Lisp_Object prop)
1825 {
1826 Lisp_Object tail, halftail;
1827
1828 /* halftail is used to detect circular lists. */
1829 tail = halftail = plist;
1830 while (CONSP (tail) && CONSP (XCDR (tail)))
1831 {
1832 if (EQ (prop, XCAR (tail)))
1833 return XCAR (XCDR (tail));
1834
1835 tail = XCDR (XCDR (tail));
1836 halftail = XCDR (halftail);
1837 if (EQ (tail, halftail))
1838 break;
1839
1840 #if 0 /* Unsafe version. */
1841 /* This function can be called asynchronously
1842 (setup_coding_system). Don't QUIT in that case. */
1843 if (!interrupt_input_blocked)
1844 QUIT;
1845 #endif
1846 }
1847
1848 return Qnil;
1849 }
1850
1851 DEFUN ("get", Fget, Sget, 2, 2, 0,
1852 doc: /* Return the value of SYMBOL's PROPNAME property.
1853 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1854 (Lisp_Object symbol, Lisp_Object propname)
1855 {
1856 CHECK_SYMBOL (symbol);
1857 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1858 }
1859
1860 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1861 doc: /* Change value in PLIST of PROP to VAL.
1862 PLIST is a property list, which is a list of the form
1863 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1864 If PROP is already a property on the list, its value is set to VAL,
1865 otherwise the new PROP VAL pair is added. The new plist is returned;
1866 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1867 The PLIST is modified by side effects. */)
1868 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1869 {
1870 register Lisp_Object tail, prev;
1871 Lisp_Object newcell;
1872 prev = Qnil;
1873 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1874 tail = XCDR (XCDR (tail)))
1875 {
1876 if (EQ (prop, XCAR (tail)))
1877 {
1878 Fsetcar (XCDR (tail), val);
1879 return plist;
1880 }
1881
1882 prev = tail;
1883 QUIT;
1884 }
1885 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1886 if (NILP (prev))
1887 return newcell;
1888 else
1889 Fsetcdr (XCDR (prev), newcell);
1890 return plist;
1891 }
1892
1893 DEFUN ("put", Fput, Sput, 3, 3, 0,
1894 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1895 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1896 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1897 {
1898 CHECK_SYMBOL (symbol);
1899 XSYMBOL (symbol)->plist
1900 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1901 return value;
1902 }
1903 \f
1904 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1905 doc: /* Extract a value from a property list, comparing with `equal'.
1906 PLIST is a property list, which is a list of the form
1907 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1908 corresponding to the given PROP, or nil if PROP is not
1909 one of the properties on the list. */)
1910 (Lisp_Object plist, Lisp_Object prop)
1911 {
1912 Lisp_Object tail;
1913
1914 for (tail = plist;
1915 CONSP (tail) && CONSP (XCDR (tail));
1916 tail = XCDR (XCDR (tail)))
1917 {
1918 if (! NILP (Fequal (prop, XCAR (tail))))
1919 return XCAR (XCDR (tail));
1920
1921 QUIT;
1922 }
1923
1924 CHECK_LIST_END (tail, prop);
1925
1926 return Qnil;
1927 }
1928
1929 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1930 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1931 PLIST is a property list, which is a list of the form
1932 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1933 If PROP is already a property on the list, its value is set to VAL,
1934 otherwise the new PROP VAL pair is added. The new plist is returned;
1935 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1936 The PLIST is modified by side effects. */)
1937 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1938 {
1939 register Lisp_Object tail, prev;
1940 Lisp_Object newcell;
1941 prev = Qnil;
1942 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1943 tail = XCDR (XCDR (tail)))
1944 {
1945 if (! NILP (Fequal (prop, XCAR (tail))))
1946 {
1947 Fsetcar (XCDR (tail), val);
1948 return plist;
1949 }
1950
1951 prev = tail;
1952 QUIT;
1953 }
1954 newcell = Fcons (prop, Fcons (val, Qnil));
1955 if (NILP (prev))
1956 return newcell;
1957 else
1958 Fsetcdr (XCDR (prev), newcell);
1959 return plist;
1960 }
1961 \f
1962 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1963 doc: /* Return t if the two args are the same Lisp object.
1964 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1965 (Lisp_Object obj1, Lisp_Object obj2)
1966 {
1967 if (FLOATP (obj1))
1968 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1969 else
1970 return EQ (obj1, obj2) ? Qt : Qnil;
1971 }
1972
1973 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1974 doc: /* Return t if two Lisp objects have similar structure and contents.
1975 They must have the same data type.
1976 Conses are compared by comparing the cars and the cdrs.
1977 Vectors and strings are compared element by element.
1978 Numbers are compared by value, but integers cannot equal floats.
1979 (Use `=' if you want integers and floats to be able to be equal.)
1980 Symbols must match exactly. */)
1981 (register Lisp_Object o1, Lisp_Object o2)
1982 {
1983 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1984 }
1985
1986 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1987 doc: /* Return t if two Lisp objects have similar structure and contents.
1988 This is like `equal' except that it compares the text properties
1989 of strings. (`equal' ignores text properties.) */)
1990 (register Lisp_Object o1, Lisp_Object o2)
1991 {
1992 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1993 }
1994
1995 /* DEPTH is current depth of recursion. Signal an error if it
1996 gets too deep.
1997 PROPS, if non-nil, means compare string text properties too. */
1998
1999 static int
2000 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2001 {
2002 if (depth > 200)
2003 error ("Stack overflow in equal");
2004
2005 tail_recurse:
2006 QUIT;
2007 if (EQ (o1, o2))
2008 return 1;
2009 if (XTYPE (o1) != XTYPE (o2))
2010 return 0;
2011
2012 switch (XTYPE (o1))
2013 {
2014 case Lisp_Float:
2015 {
2016 double d1, d2;
2017
2018 d1 = extract_float (o1);
2019 d2 = extract_float (o2);
2020 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2021 though they are not =. */
2022 return d1 == d2 || (d1 != d1 && d2 != d2);
2023 }
2024
2025 case Lisp_Cons:
2026 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2027 return 0;
2028 o1 = XCDR (o1);
2029 o2 = XCDR (o2);
2030 goto tail_recurse;
2031
2032 case Lisp_Misc:
2033 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2034 return 0;
2035 if (OVERLAYP (o1))
2036 {
2037 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2038 depth + 1, props)
2039 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2040 depth + 1, props))
2041 return 0;
2042 o1 = XOVERLAY (o1)->plist;
2043 o2 = XOVERLAY (o2)->plist;
2044 goto tail_recurse;
2045 }
2046 if (MARKERP (o1))
2047 {
2048 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2049 && (XMARKER (o1)->buffer == 0
2050 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2051 }
2052 break;
2053
2054 case Lisp_Vectorlike:
2055 {
2056 register int i;
2057 EMACS_INT size = ASIZE (o1);
2058 /* Pseudovectors have the type encoded in the size field, so this test
2059 actually checks that the objects have the same type as well as the
2060 same size. */
2061 if (ASIZE (o2) != size)
2062 return 0;
2063 /* Boolvectors are compared much like strings. */
2064 if (BOOL_VECTOR_P (o1))
2065 {
2066 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2067 return 0;
2068 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2069 ((XBOOL_VECTOR (o1)->size
2070 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2071 / BOOL_VECTOR_BITS_PER_CHAR)))
2072 return 0;
2073 return 1;
2074 }
2075 if (WINDOW_CONFIGURATIONP (o1))
2076 return compare_window_configurations (o1, o2, 0);
2077
2078 /* Aside from them, only true vectors, char-tables, compiled
2079 functions, and fonts (font-spec, font-entity, font-object)
2080 are sensible to compare, so eliminate the others now. */
2081 if (size & PSEUDOVECTOR_FLAG)
2082 {
2083 if (!(size & (PVEC_COMPILED
2084 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2085 return 0;
2086 size &= PSEUDOVECTOR_SIZE_MASK;
2087 }
2088 for (i = 0; i < size; i++)
2089 {
2090 Lisp_Object v1, v2;
2091 v1 = AREF (o1, i);
2092 v2 = AREF (o2, i);
2093 if (!internal_equal (v1, v2, depth + 1, props))
2094 return 0;
2095 }
2096 return 1;
2097 }
2098 break;
2099
2100 case Lisp_String:
2101 if (SCHARS (o1) != SCHARS (o2))
2102 return 0;
2103 if (SBYTES (o1) != SBYTES (o2))
2104 return 0;
2105 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2106 return 0;
2107 if (props && !compare_string_intervals (o1, o2))
2108 return 0;
2109 return 1;
2110
2111 default:
2112 break;
2113 }
2114
2115 return 0;
2116 }
2117 \f
2118
2119 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2120 doc: /* Store each element of ARRAY with ITEM.
2121 ARRAY is a vector, string, char-table, or bool-vector. */)
2122 (Lisp_Object array, Lisp_Object item)
2123 {
2124 register EMACS_INT size, idx;
2125 int charval;
2126
2127 if (VECTORP (array))
2128 {
2129 register Lisp_Object *p = XVECTOR (array)->contents;
2130 size = ASIZE (array);
2131 for (idx = 0; idx < size; idx++)
2132 p[idx] = item;
2133 }
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 XCHAR_TABLE (array)->contents[i] = item;
2140 XCHAR_TABLE (array)->defalt = item;
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 CHECK_NUMBER (item);
2146 charval = XINT (item);
2147 size = SCHARS (array);
2148 if (STRING_MULTIBYTE (array))
2149 {
2150 unsigned char str[MAX_MULTIBYTE_LENGTH];
2151 int len = CHAR_STRING (charval, str);
2152 EMACS_INT size_byte = SBYTES (array);
2153 unsigned char *p1 = p, *endp = p + size_byte;
2154 int i;
2155
2156 if (size != size_byte)
2157 while (p1 < endp)
2158 {
2159 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2160 if (len != this_len)
2161 error ("Attempt to change byte length of a string");
2162 p1 += this_len;
2163 }
2164 for (i = 0; i < size_byte; i++)
2165 *p++ = str[i % len];
2166 }
2167 else
2168 for (idx = 0; idx < size; idx++)
2169 p[idx] = charval;
2170 }
2171 else if (BOOL_VECTOR_P (array))
2172 {
2173 register unsigned char *p = XBOOL_VECTOR (array)->data;
2174 int size_in_chars
2175 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2176 / BOOL_VECTOR_BITS_PER_CHAR);
2177
2178 charval = (! NILP (item) ? -1 : 0);
2179 for (idx = 0; idx < size_in_chars - 1; idx++)
2180 p[idx] = charval;
2181 if (idx < size_in_chars)
2182 {
2183 /* Mask out bits beyond the vector size. */
2184 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2185 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2186 p[idx] = charval;
2187 }
2188 }
2189 else
2190 wrong_type_argument (Qarrayp, array);
2191 return array;
2192 }
2193
2194 DEFUN ("clear-string", Fclear_string, Sclear_string,
2195 1, 1, 0,
2196 doc: /* Clear the contents of STRING.
2197 This makes STRING unibyte and may change its length. */)
2198 (Lisp_Object string)
2199 {
2200 EMACS_INT len;
2201 CHECK_STRING (string);
2202 len = SBYTES (string);
2203 memset (SDATA (string), 0, len);
2204 STRING_SET_CHARS (string, len);
2205 STRING_SET_UNIBYTE (string);
2206 return Qnil;
2207 }
2208 \f
2209 /* ARGSUSED */
2210 Lisp_Object
2211 nconc2 (Lisp_Object s1, Lisp_Object s2)
2212 {
2213 Lisp_Object args[2];
2214 args[0] = s1;
2215 args[1] = s2;
2216 return Fnconc (2, args);
2217 }
2218
2219 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2220 doc: /* Concatenate any number of lists by altering them.
2221 Only the last argument is not altered, and need not be a list.
2222 usage: (nconc &rest LISTS) */)
2223 (size_t nargs, Lisp_Object *args)
2224 {
2225 register size_t argnum;
2226 register Lisp_Object tail, tem, val;
2227
2228 val = tail = Qnil;
2229
2230 for (argnum = 0; argnum < nargs; argnum++)
2231 {
2232 tem = args[argnum];
2233 if (NILP (tem)) continue;
2234
2235 if (NILP (val))
2236 val = tem;
2237
2238 if (argnum + 1 == nargs) break;
2239
2240 CHECK_LIST_CONS (tem, tem);
2241
2242 while (CONSP (tem))
2243 {
2244 tail = tem;
2245 tem = XCDR (tail);
2246 QUIT;
2247 }
2248
2249 tem = args[argnum + 1];
2250 Fsetcdr (tail, tem);
2251 if (NILP (tem))
2252 args[argnum + 1] = tail;
2253 }
2254
2255 return val;
2256 }
2257 \f
2258 /* This is the guts of all mapping functions.
2259 Apply FN to each element of SEQ, one by one,
2260 storing the results into elements of VALS, a C vector of Lisp_Objects.
2261 LENI is the length of VALS, which should also be the length of SEQ. */
2262
2263 static void
2264 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2265 {
2266 register Lisp_Object tail;
2267 Lisp_Object dummy;
2268 register EMACS_INT i;
2269 struct gcpro gcpro1, gcpro2, gcpro3;
2270
2271 if (vals)
2272 {
2273 /* Don't let vals contain any garbage when GC happens. */
2274 for (i = 0; i < leni; i++)
2275 vals[i] = Qnil;
2276
2277 GCPRO3 (dummy, fn, seq);
2278 gcpro1.var = vals;
2279 gcpro1.nvars = leni;
2280 }
2281 else
2282 GCPRO2 (fn, seq);
2283 /* We need not explicitly protect `tail' because it is used only on lists, and
2284 1) lists are not relocated and 2) the list is marked via `seq' so will not
2285 be freed */
2286
2287 if (VECTORP (seq) || COMPILEDP (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 dummy = call1 (fn, AREF (seq, i));
2292 if (vals)
2293 vals[i] = dummy;
2294 }
2295 }
2296 else if (BOOL_VECTOR_P (seq))
2297 {
2298 for (i = 0; i < leni; i++)
2299 {
2300 int byte;
2301 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2302 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2303 dummy = call1 (fn, dummy);
2304 if (vals)
2305 vals[i] = dummy;
2306 }
2307 }
2308 else if (STRINGP (seq))
2309 {
2310 EMACS_INT i_byte;
2311
2312 for (i = 0, i_byte = 0; i < leni;)
2313 {
2314 int c;
2315 EMACS_INT i_before = i;
2316
2317 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2318 XSETFASTINT (dummy, c);
2319 dummy = call1 (fn, dummy);
2320 if (vals)
2321 vals[i_before] = dummy;
2322 }
2323 }
2324 else /* Must be a list, since Flength did not get an error */
2325 {
2326 tail = seq;
2327 for (i = 0; i < leni && CONSP (tail); i++)
2328 {
2329 dummy = call1 (fn, XCAR (tail));
2330 if (vals)
2331 vals[i] = dummy;
2332 tail = XCDR (tail);
2333 }
2334 }
2335
2336 UNGCPRO;
2337 }
2338
2339 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2340 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2341 In between each pair of results, stick in SEPARATOR. Thus, " " as
2342 SEPARATOR results in spaces between the values returned by FUNCTION.
2343 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2344 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2345 {
2346 Lisp_Object len;
2347 register EMACS_INT leni;
2348 int nargs;
2349 register Lisp_Object *args;
2350 register EMACS_INT i;
2351 struct gcpro gcpro1;
2352 Lisp_Object ret;
2353 USE_SAFE_ALLOCA;
2354
2355 len = Flength (sequence);
2356 if (CHAR_TABLE_P (sequence))
2357 wrong_type_argument (Qlistp, sequence);
2358 leni = XINT (len);
2359 nargs = leni + leni - 1;
2360 if (nargs < 0) return empty_unibyte_string;
2361
2362 SAFE_ALLOCA_LISP (args, nargs);
2363
2364 GCPRO1 (separator);
2365 mapcar1 (leni, args, function, sequence);
2366 UNGCPRO;
2367
2368 for (i = leni - 1; i > 0; i--)
2369 args[i + i] = args[i];
2370
2371 for (i = 1; i < nargs; i += 2)
2372 args[i] = separator;
2373
2374 ret = Fconcat (nargs, args);
2375 SAFE_FREE ();
2376
2377 return ret;
2378 }
2379
2380 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2381 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2382 The result is a list just as long as SEQUENCE.
2383 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2384 (Lisp_Object function, Lisp_Object sequence)
2385 {
2386 register Lisp_Object len;
2387 register EMACS_INT leni;
2388 register Lisp_Object *args;
2389 Lisp_Object ret;
2390 USE_SAFE_ALLOCA;
2391
2392 len = Flength (sequence);
2393 if (CHAR_TABLE_P (sequence))
2394 wrong_type_argument (Qlistp, sequence);
2395 leni = XFASTINT (len);
2396
2397 SAFE_ALLOCA_LISP (args, leni);
2398
2399 mapcar1 (leni, args, function, sequence);
2400
2401 ret = Flist (leni, args);
2402 SAFE_FREE ();
2403
2404 return ret;
2405 }
2406
2407 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2408 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2409 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2410 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2411 (Lisp_Object function, Lisp_Object sequence)
2412 {
2413 register EMACS_INT leni;
2414
2415 leni = XFASTINT (Flength (sequence));
2416 if (CHAR_TABLE_P (sequence))
2417 wrong_type_argument (Qlistp, sequence);
2418 mapcar1 (leni, 0, function, sequence);
2419
2420 return sequence;
2421 }
2422 \f
2423 /* This is how C code calls `yes-or-no-p' and allows the user
2424 to redefined it.
2425
2426 Anything that calls this function must protect from GC! */
2427
2428 Lisp_Object
2429 do_yes_or_no_p (Lisp_Object prompt)
2430 {
2431 return call1 (intern ("yes-or-no-p"), prompt);
2432 }
2433
2434 /* Anything that calls this function must protect from GC! */
2435
2436 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2437 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2438 PROMPT is the string to display to ask the question. It should end in
2439 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2440
2441 The user must confirm the answer with RET, and can edit it until it
2442 has been confirmed.
2443
2444 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2445 is nil, and `use-dialog-box' is non-nil. */)
2446 (Lisp_Object prompt)
2447 {
2448 register Lisp_Object ans;
2449 Lisp_Object args[2];
2450 struct gcpro gcpro1;
2451
2452 CHECK_STRING (prompt);
2453
2454 #ifdef HAVE_MENUS
2455 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2456 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2457 && use_dialog_box
2458 && have_menus_p ())
2459 {
2460 Lisp_Object pane, menu, obj;
2461 redisplay_preserve_echo_area (4);
2462 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2463 Fcons (Fcons (build_string ("No"), Qnil),
2464 Qnil));
2465 GCPRO1 (pane);
2466 menu = Fcons (prompt, pane);
2467 obj = Fx_popup_dialog (Qt, menu, Qnil);
2468 UNGCPRO;
2469 return obj;
2470 }
2471 #endif /* HAVE_MENUS */
2472
2473 args[0] = prompt;
2474 args[1] = build_string ("(yes or no) ");
2475 prompt = Fconcat (2, args);
2476
2477 GCPRO1 (prompt);
2478
2479 while (1)
2480 {
2481 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2482 Qyes_or_no_p_history, Qnil,
2483 Qnil));
2484 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2485 {
2486 UNGCPRO;
2487 return Qt;
2488 }
2489 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2490 {
2491 UNGCPRO;
2492 return Qnil;
2493 }
2494
2495 Fding (Qnil);
2496 Fdiscard_input ();
2497 message ("Please answer yes or no.");
2498 Fsleep_for (make_number (2), Qnil);
2499 }
2500 }
2501 \f
2502 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2503 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2504
2505 Each of the three load averages is multiplied by 100, then converted
2506 to integer.
2507
2508 When USE-FLOATS is non-nil, floats will be used instead of integers.
2509 These floats are not multiplied by 100.
2510
2511 If the 5-minute or 15-minute load averages are not available, return a
2512 shortened list, containing only those averages which are available.
2513
2514 An error is thrown if the load average can't be obtained. In some
2515 cases making it work would require Emacs being installed setuid or
2516 setgid so that it can read kernel information, and that usually isn't
2517 advisable. */)
2518 (Lisp_Object use_floats)
2519 {
2520 double load_ave[3];
2521 int loads = getloadavg (load_ave, 3);
2522 Lisp_Object ret = Qnil;
2523
2524 if (loads < 0)
2525 error ("load-average not implemented for this operating system");
2526
2527 while (loads-- > 0)
2528 {
2529 Lisp_Object load = (NILP (use_floats) ?
2530 make_number ((int) (100.0 * load_ave[loads]))
2531 : make_float (load_ave[loads]));
2532 ret = Fcons (load, ret);
2533 }
2534
2535 return ret;
2536 }
2537 \f
2538 static Lisp_Object Qsubfeatures;
2539
2540 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2541 doc: /* Return t if FEATURE is present in this Emacs.
2542
2543 Use this to conditionalize execution of lisp code based on the
2544 presence or absence of Emacs or environment extensions.
2545 Use `provide' to declare that a feature is available. This function
2546 looks at the value of the variable `features'. The optional argument
2547 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2548 (Lisp_Object feature, Lisp_Object subfeature)
2549 {
2550 register Lisp_Object tem;
2551 CHECK_SYMBOL (feature);
2552 tem = Fmemq (feature, Vfeatures);
2553 if (!NILP (tem) && !NILP (subfeature))
2554 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2555 return (NILP (tem)) ? Qnil : Qt;
2556 }
2557
2558 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2559 doc: /* Announce that FEATURE is a feature of the current Emacs.
2560 The optional argument SUBFEATURES should be a list of symbols listing
2561 particular subfeatures supported in this version of FEATURE. */)
2562 (Lisp_Object feature, Lisp_Object subfeatures)
2563 {
2564 register Lisp_Object tem;
2565 CHECK_SYMBOL (feature);
2566 CHECK_LIST (subfeatures);
2567 if (!NILP (Vautoload_queue))
2568 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2569 Vautoload_queue);
2570 tem = Fmemq (feature, Vfeatures);
2571 if (NILP (tem))
2572 Vfeatures = Fcons (feature, Vfeatures);
2573 if (!NILP (subfeatures))
2574 Fput (feature, Qsubfeatures, subfeatures);
2575 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2576
2577 /* Run any load-hooks for this file. */
2578 tem = Fassq (feature, Vafter_load_alist);
2579 if (CONSP (tem))
2580 Fprogn (XCDR (tem));
2581
2582 return feature;
2583 }
2584 \f
2585 /* `require' and its subroutines. */
2586
2587 /* List of features currently being require'd, innermost first. */
2588
2589 static Lisp_Object require_nesting_list;
2590
2591 static Lisp_Object
2592 require_unwind (Lisp_Object old_value)
2593 {
2594 return require_nesting_list = old_value;
2595 }
2596
2597 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2598 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2599 If FEATURE is not a member of the list `features', then the feature
2600 is not loaded; so load the file FILENAME.
2601 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2602 and `load' will try to load this name appended with the suffix `.elc' or
2603 `.el', in that order. The name without appended suffix will not be used.
2604 If the optional third argument NOERROR is non-nil,
2605 then return nil if the file is not found instead of signaling an error.
2606 Normally the return value is FEATURE.
2607 The normal messages at start and end of loading FILENAME are suppressed. */)
2608 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2609 {
2610 register Lisp_Object tem;
2611 struct gcpro gcpro1, gcpro2;
2612 int from_file = load_in_progress;
2613
2614 CHECK_SYMBOL (feature);
2615
2616 /* Record the presence of `require' in this file
2617 even if the feature specified is already loaded.
2618 But not more than once in any file,
2619 and not when we aren't loading or reading from a file. */
2620 if (!from_file)
2621 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2622 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2623 from_file = 1;
2624
2625 if (from_file)
2626 {
2627 tem = Fcons (Qrequire, feature);
2628 if (NILP (Fmember (tem, Vcurrent_load_list)))
2629 LOADHIST_ATTACH (tem);
2630 }
2631 tem = Fmemq (feature, Vfeatures);
2632
2633 if (NILP (tem))
2634 {
2635 int count = SPECPDL_INDEX ();
2636 int nesting = 0;
2637
2638 /* This is to make sure that loadup.el gives a clear picture
2639 of what files are preloaded and when. */
2640 if (! NILP (Vpurify_flag))
2641 error ("(require %s) while preparing to dump",
2642 SDATA (SYMBOL_NAME (feature)));
2643
2644 /* A certain amount of recursive `require' is legitimate,
2645 but if we require the same feature recursively 3 times,
2646 signal an error. */
2647 tem = require_nesting_list;
2648 while (! NILP (tem))
2649 {
2650 if (! NILP (Fequal (feature, XCAR (tem))))
2651 nesting++;
2652 tem = XCDR (tem);
2653 }
2654 if (nesting > 3)
2655 error ("Recursive `require' for feature `%s'",
2656 SDATA (SYMBOL_NAME (feature)));
2657
2658 /* Update the list for any nested `require's that occur. */
2659 record_unwind_protect (require_unwind, require_nesting_list);
2660 require_nesting_list = Fcons (feature, require_nesting_list);
2661
2662 /* Value saved here is to be restored into Vautoload_queue */
2663 record_unwind_protect (un_autoload, Vautoload_queue);
2664 Vautoload_queue = Qt;
2665
2666 /* Load the file. */
2667 GCPRO2 (feature, filename);
2668 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2669 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2670 UNGCPRO;
2671
2672 /* If load failed entirely, return nil. */
2673 if (NILP (tem))
2674 return unbind_to (count, Qnil);
2675
2676 tem = Fmemq (feature, Vfeatures);
2677 if (NILP (tem))
2678 error ("Required feature `%s' was not provided",
2679 SDATA (SYMBOL_NAME (feature)));
2680
2681 /* Once loading finishes, don't undo it. */
2682 Vautoload_queue = Qt;
2683 feature = unbind_to (count, feature);
2684 }
2685
2686 return feature;
2687 }
2688 \f
2689 /* Primitives for work of the "widget" library.
2690 In an ideal world, this section would not have been necessary.
2691 However, lisp function calls being as slow as they are, it turns
2692 out that some functions in the widget library (wid-edit.el) are the
2693 bottleneck of Widget operation. Here is their translation to C,
2694 for the sole reason of efficiency. */
2695
2696 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2697 doc: /* Return non-nil if PLIST has the property PROP.
2698 PLIST is a property list, which is a list of the form
2699 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2700 Unlike `plist-get', this allows you to distinguish between a missing
2701 property and a property with the value nil.
2702 The value is actually the tail of PLIST whose car is PROP. */)
2703 (Lisp_Object plist, Lisp_Object prop)
2704 {
2705 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2706 {
2707 QUIT;
2708 plist = XCDR (plist);
2709 plist = CDR (plist);
2710 }
2711 return plist;
2712 }
2713
2714 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2715 doc: /* In WIDGET, set PROPERTY to VALUE.
2716 The value can later be retrieved with `widget-get'. */)
2717 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2718 {
2719 CHECK_CONS (widget);
2720 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2721 return value;
2722 }
2723
2724 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2725 doc: /* In WIDGET, get the value of PROPERTY.
2726 The value could either be specified when the widget was created, or
2727 later with `widget-put'. */)
2728 (Lisp_Object widget, Lisp_Object property)
2729 {
2730 Lisp_Object tmp;
2731
2732 while (1)
2733 {
2734 if (NILP (widget))
2735 return Qnil;
2736 CHECK_CONS (widget);
2737 tmp = Fplist_member (XCDR (widget), property);
2738 if (CONSP (tmp))
2739 {
2740 tmp = XCDR (tmp);
2741 return CAR (tmp);
2742 }
2743 tmp = XCAR (widget);
2744 if (NILP (tmp))
2745 return Qnil;
2746 widget = Fget (tmp, Qwidget_type);
2747 }
2748 }
2749
2750 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2751 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2752 ARGS are passed as extra arguments to the function.
2753 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2754 (size_t nargs, Lisp_Object *args)
2755 {
2756 /* This function can GC. */
2757 Lisp_Object newargs[3];
2758 struct gcpro gcpro1, gcpro2;
2759 Lisp_Object result;
2760
2761 newargs[0] = Fwidget_get (args[0], args[1]);
2762 newargs[1] = args[0];
2763 newargs[2] = Flist (nargs - 2, args + 2);
2764 GCPRO2 (newargs[0], newargs[2]);
2765 result = Fapply (3, newargs);
2766 UNGCPRO;
2767 return result;
2768 }
2769
2770 #ifdef HAVE_LANGINFO_CODESET
2771 #include <langinfo.h>
2772 #endif
2773
2774 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2775 doc: /* Access locale data ITEM for the current C locale, if available.
2776 ITEM should be one of the following:
2777
2778 `codeset', returning the character set as a string (locale item CODESET);
2779
2780 `days', returning a 7-element vector of day names (locale items DAY_n);
2781
2782 `months', returning a 12-element vector of month names (locale items MON_n);
2783
2784 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2785 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2786
2787 If the system can't provide such information through a call to
2788 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2789
2790 See also Info node `(libc)Locales'.
2791
2792 The data read from the system are decoded using `locale-coding-system'. */)
2793 (Lisp_Object item)
2794 {
2795 char *str = NULL;
2796 #ifdef HAVE_LANGINFO_CODESET
2797 Lisp_Object val;
2798 if (EQ (item, Qcodeset))
2799 {
2800 str = nl_langinfo (CODESET);
2801 return build_string (str);
2802 }
2803 #ifdef DAY_1
2804 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2805 {
2806 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2807 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2808 int i;
2809 struct gcpro gcpro1;
2810 GCPRO1 (v);
2811 synchronize_system_time_locale ();
2812 for (i = 0; i < 7; i++)
2813 {
2814 str = nl_langinfo (days[i]);
2815 val = make_unibyte_string (str, strlen (str));
2816 /* Fixme: Is this coding system necessarily right, even if
2817 it is consistent with CODESET? If not, what to do? */
2818 Faset (v, make_number (i),
2819 code_convert_string_norecord (val, Vlocale_coding_system,
2820 0));
2821 }
2822 UNGCPRO;
2823 return v;
2824 }
2825 #endif /* DAY_1 */
2826 #ifdef MON_1
2827 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2828 {
2829 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2830 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2831 MON_8, MON_9, MON_10, MON_11, MON_12};
2832 int i;
2833 struct gcpro gcpro1;
2834 GCPRO1 (v);
2835 synchronize_system_time_locale ();
2836 for (i = 0; i < 12; i++)
2837 {
2838 str = nl_langinfo (months[i]);
2839 val = make_unibyte_string (str, strlen (str));
2840 Faset (v, make_number (i),
2841 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2842 }
2843 UNGCPRO;
2844 return v;
2845 }
2846 #endif /* MON_1 */
2847 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2848 but is in the locale files. This could be used by ps-print. */
2849 #ifdef PAPER_WIDTH
2850 else if (EQ (item, Qpaper))
2851 {
2852 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2853 make_number (nl_langinfo (PAPER_HEIGHT)));
2854 }
2855 #endif /* PAPER_WIDTH */
2856 #endif /* HAVE_LANGINFO_CODESET*/
2857 return Qnil;
2858 }
2859 \f
2860 /* base64 encode/decode functions (RFC 2045).
2861 Based on code from GNU recode. */
2862
2863 #define MIME_LINE_LENGTH 76
2864
2865 #define IS_ASCII(Character) \
2866 ((Character) < 128)
2867 #define IS_BASE64(Character) \
2868 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2869 #define IS_BASE64_IGNORABLE(Character) \
2870 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2871 || (Character) == '\f' || (Character) == '\r')
2872
2873 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2874 character or return retval if there are no characters left to
2875 process. */
2876 #define READ_QUADRUPLET_BYTE(retval) \
2877 do \
2878 { \
2879 if (i == length) \
2880 { \
2881 if (nchars_return) \
2882 *nchars_return = nchars; \
2883 return (retval); \
2884 } \
2885 c = from[i++]; \
2886 } \
2887 while (IS_BASE64_IGNORABLE (c))
2888
2889 /* Table of characters coding the 64 values. */
2890 static const char base64_value_to_char[64] =
2891 {
2892 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2893 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2894 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2895 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2896 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2897 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2898 '8', '9', '+', '/' /* 60-63 */
2899 };
2900
2901 /* Table of base64 values for first 128 characters. */
2902 static const short base64_char_to_value[128] =
2903 {
2904 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2905 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2906 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2907 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2908 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2909 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2910 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2911 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2912 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2913 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2914 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2915 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2916 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2917 };
2918
2919 /* The following diagram shows the logical steps by which three octets
2920 get transformed into four base64 characters.
2921
2922 .--------. .--------. .--------.
2923 |aaaaaabb| |bbbbcccc| |ccdddddd|
2924 `--------' `--------' `--------'
2925 6 2 4 4 2 6
2926 .--------+--------+--------+--------.
2927 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2928 `--------+--------+--------+--------'
2929
2930 .--------+--------+--------+--------.
2931 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2932 `--------+--------+--------+--------'
2933
2934 The octets are divided into 6 bit chunks, which are then encoded into
2935 base64 characters. */
2936
2937
2938 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2939 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2940 EMACS_INT *);
2941
2942 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2943 2, 3, "r",
2944 doc: /* Base64-encode the region between BEG and END.
2945 Return the length of the encoded text.
2946 Optional third argument NO-LINE-BREAK means do not break long lines
2947 into shorter lines. */)
2948 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2949 {
2950 char *encoded;
2951 EMACS_INT allength, length;
2952 EMACS_INT ibeg, iend, encoded_length;
2953 EMACS_INT old_pos = PT;
2954 USE_SAFE_ALLOCA;
2955
2956 validate_region (&beg, &end);
2957
2958 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2959 iend = CHAR_TO_BYTE (XFASTINT (end));
2960 move_gap_both (XFASTINT (beg), ibeg);
2961
2962 /* We need to allocate enough room for encoding the text.
2963 We need 33 1/3% more space, plus a newline every 76
2964 characters, and then we round up. */
2965 length = iend - ibeg;
2966 allength = length + length/3 + 1;
2967 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2968
2969 SAFE_ALLOCA (encoded, char *, allength);
2970 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2971 encoded, length, NILP (no_line_break),
2972 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2973 if (encoded_length > allength)
2974 abort ();
2975
2976 if (encoded_length < 0)
2977 {
2978 /* The encoding wasn't possible. */
2979 SAFE_FREE ();
2980 error ("Multibyte character in data for base64 encoding");
2981 }
2982
2983 /* Now we have encoded the region, so we insert the new contents
2984 and delete the old. (Insert first in order to preserve markers.) */
2985 SET_PT_BOTH (XFASTINT (beg), ibeg);
2986 insert (encoded, encoded_length);
2987 SAFE_FREE ();
2988 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2989
2990 /* If point was outside of the region, restore it exactly; else just
2991 move to the beginning of the region. */
2992 if (old_pos >= XFASTINT (end))
2993 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2994 else if (old_pos > XFASTINT (beg))
2995 old_pos = XFASTINT (beg);
2996 SET_PT (old_pos);
2997
2998 /* We return the length of the encoded text. */
2999 return make_number (encoded_length);
3000 }
3001
3002 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3003 1, 2, 0,
3004 doc: /* Base64-encode STRING and return the result.
3005 Optional second argument NO-LINE-BREAK means do not break long lines
3006 into shorter lines. */)
3007 (Lisp_Object string, Lisp_Object no_line_break)
3008 {
3009 EMACS_INT allength, length, encoded_length;
3010 char *encoded;
3011 Lisp_Object encoded_string;
3012 USE_SAFE_ALLOCA;
3013
3014 CHECK_STRING (string);
3015
3016 /* We need to allocate enough room for encoding the text.
3017 We need 33 1/3% more space, plus a newline every 76
3018 characters, and then we round up. */
3019 length = SBYTES (string);
3020 allength = length + length/3 + 1;
3021 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3022
3023 /* We need to allocate enough room for decoding the text. */
3024 SAFE_ALLOCA (encoded, char *, allength);
3025
3026 encoded_length = base64_encode_1 (SSDATA (string),
3027 encoded, length, NILP (no_line_break),
3028 STRING_MULTIBYTE (string));
3029 if (encoded_length > allength)
3030 abort ();
3031
3032 if (encoded_length < 0)
3033 {
3034 /* The encoding wasn't possible. */
3035 SAFE_FREE ();
3036 error ("Multibyte character in data for base64 encoding");
3037 }
3038
3039 encoded_string = make_unibyte_string (encoded, encoded_length);
3040 SAFE_FREE ();
3041
3042 return encoded_string;
3043 }
3044
3045 static EMACS_INT
3046 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3047 int line_break, int multibyte)
3048 {
3049 int counter = 0;
3050 EMACS_INT i = 0;
3051 char *e = to;
3052 int c;
3053 unsigned int value;
3054 int bytes;
3055
3056 while (i < length)
3057 {
3058 if (multibyte)
3059 {
3060 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3061 if (CHAR_BYTE8_P (c))
3062 c = CHAR_TO_BYTE8 (c);
3063 else if (c >= 256)
3064 return -1;
3065 i += bytes;
3066 }
3067 else
3068 c = from[i++];
3069
3070 /* Wrap line every 76 characters. */
3071
3072 if (line_break)
3073 {
3074 if (counter < MIME_LINE_LENGTH / 4)
3075 counter++;
3076 else
3077 {
3078 *e++ = '\n';
3079 counter = 1;
3080 }
3081 }
3082
3083 /* Process first byte of a triplet. */
3084
3085 *e++ = base64_value_to_char[0x3f & c >> 2];
3086 value = (0x03 & c) << 4;
3087
3088 /* Process second byte of a triplet. */
3089
3090 if (i == length)
3091 {
3092 *e++ = base64_value_to_char[value];
3093 *e++ = '=';
3094 *e++ = '=';
3095 break;
3096 }
3097
3098 if (multibyte)
3099 {
3100 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3101 if (CHAR_BYTE8_P (c))
3102 c = CHAR_TO_BYTE8 (c);
3103 else if (c >= 256)
3104 return -1;
3105 i += bytes;
3106 }
3107 else
3108 c = from[i++];
3109
3110 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3111 value = (0x0f & c) << 2;
3112
3113 /* Process third byte of a triplet. */
3114
3115 if (i == length)
3116 {
3117 *e++ = base64_value_to_char[value];
3118 *e++ = '=';
3119 break;
3120 }
3121
3122 if (multibyte)
3123 {
3124 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3125 if (CHAR_BYTE8_P (c))
3126 c = CHAR_TO_BYTE8 (c);
3127 else if (c >= 256)
3128 return -1;
3129 i += bytes;
3130 }
3131 else
3132 c = from[i++];
3133
3134 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3135 *e++ = base64_value_to_char[0x3f & c];
3136 }
3137
3138 return e - to;
3139 }
3140
3141
3142 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3143 2, 2, "r",
3144 doc: /* Base64-decode the region between BEG and END.
3145 Return the length of the decoded text.
3146 If the region can't be decoded, signal an error and don't modify the buffer. */)
3147 (Lisp_Object beg, Lisp_Object end)
3148 {
3149 EMACS_INT ibeg, iend, length, allength;
3150 char *decoded;
3151 EMACS_INT old_pos = PT;
3152 EMACS_INT decoded_length;
3153 EMACS_INT inserted_chars;
3154 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3155 USE_SAFE_ALLOCA;
3156
3157 validate_region (&beg, &end);
3158
3159 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3160 iend = CHAR_TO_BYTE (XFASTINT (end));
3161
3162 length = iend - ibeg;
3163
3164 /* We need to allocate enough room for decoding the text. If we are
3165 working on a multibyte buffer, each decoded code may occupy at
3166 most two bytes. */
3167 allength = multibyte ? length * 2 : length;
3168 SAFE_ALLOCA (decoded, char *, allength);
3169
3170 move_gap_both (XFASTINT (beg), ibeg);
3171 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3172 decoded, length,
3173 multibyte, &inserted_chars);
3174 if (decoded_length > allength)
3175 abort ();
3176
3177 if (decoded_length < 0)
3178 {
3179 /* The decoding wasn't possible. */
3180 SAFE_FREE ();
3181 error ("Invalid base64 data");
3182 }
3183
3184 /* Now we have decoded the region, so we insert the new contents
3185 and delete the old. (Insert first in order to preserve markers.) */
3186 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3187 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3188 SAFE_FREE ();
3189
3190 /* Delete the original text. */
3191 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3192 iend + decoded_length, 1);
3193
3194 /* If point was outside of the region, restore it exactly; else just
3195 move to the beginning of the region. */
3196 if (old_pos >= XFASTINT (end))
3197 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3198 else if (old_pos > XFASTINT (beg))
3199 old_pos = XFASTINT (beg);
3200 SET_PT (old_pos > ZV ? ZV : old_pos);
3201
3202 return make_number (inserted_chars);
3203 }
3204
3205 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3206 1, 1, 0,
3207 doc: /* Base64-decode STRING and return the result. */)
3208 (Lisp_Object string)
3209 {
3210 char *decoded;
3211 EMACS_INT length, decoded_length;
3212 Lisp_Object decoded_string;
3213 USE_SAFE_ALLOCA;
3214
3215 CHECK_STRING (string);
3216
3217 length = SBYTES (string);
3218 /* We need to allocate enough room for decoding the text. */
3219 SAFE_ALLOCA (decoded, char *, length);
3220
3221 /* The decoded result should be unibyte. */
3222 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3223 0, NULL);
3224 if (decoded_length > length)
3225 abort ();
3226 else if (decoded_length >= 0)
3227 decoded_string = make_unibyte_string (decoded, decoded_length);
3228 else
3229 decoded_string = Qnil;
3230
3231 SAFE_FREE ();
3232 if (!STRINGP (decoded_string))
3233 error ("Invalid base64 data");
3234
3235 return decoded_string;
3236 }
3237
3238 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3239 MULTIBYTE is nonzero, the decoded result should be in multibyte
3240 form. If NCHARS_RETRUN is not NULL, store the number of produced
3241 characters in *NCHARS_RETURN. */
3242
3243 static EMACS_INT
3244 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3245 int multibyte, EMACS_INT *nchars_return)
3246 {
3247 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3248 char *e = to;
3249 unsigned char c;
3250 unsigned long value;
3251 EMACS_INT nchars = 0;
3252
3253 while (1)
3254 {
3255 /* Process first byte of a quadruplet. */
3256
3257 READ_QUADRUPLET_BYTE (e-to);
3258
3259 if (!IS_BASE64 (c))
3260 return -1;
3261 value = base64_char_to_value[c] << 18;
3262
3263 /* Process second byte of a quadruplet. */
3264
3265 READ_QUADRUPLET_BYTE (-1);
3266
3267 if (!IS_BASE64 (c))
3268 return -1;
3269 value |= base64_char_to_value[c] << 12;
3270
3271 c = (unsigned char) (value >> 16);
3272 if (multibyte && c >= 128)
3273 e += BYTE8_STRING (c, e);
3274 else
3275 *e++ = c;
3276 nchars++;
3277
3278 /* Process third byte of a quadruplet. */
3279
3280 READ_QUADRUPLET_BYTE (-1);
3281
3282 if (c == '=')
3283 {
3284 READ_QUADRUPLET_BYTE (-1);
3285
3286 if (c != '=')
3287 return -1;
3288 continue;
3289 }
3290
3291 if (!IS_BASE64 (c))
3292 return -1;
3293 value |= base64_char_to_value[c] << 6;
3294
3295 c = (unsigned char) (0xff & value >> 8);
3296 if (multibyte && c >= 128)
3297 e += BYTE8_STRING (c, e);
3298 else
3299 *e++ = c;
3300 nchars++;
3301
3302 /* Process fourth byte of a quadruplet. */
3303
3304 READ_QUADRUPLET_BYTE (-1);
3305
3306 if (c == '=')
3307 continue;
3308
3309 if (!IS_BASE64 (c))
3310 return -1;
3311 value |= base64_char_to_value[c];
3312
3313 c = (unsigned char) (0xff & value);
3314 if (multibyte && c >= 128)
3315 e += BYTE8_STRING (c, e);
3316 else
3317 *e++ = c;
3318 nchars++;
3319 }
3320 }
3321
3322
3323 \f
3324 /***********************************************************************
3325 ***** *****
3326 ***** Hash Tables *****
3327 ***** *****
3328 ***********************************************************************/
3329
3330 /* Implemented by gerd@gnu.org. This hash table implementation was
3331 inspired by CMUCL hash tables. */
3332
3333 /* Ideas:
3334
3335 1. For small tables, association lists are probably faster than
3336 hash tables because they have lower overhead.
3337
3338 For uses of hash tables where the O(1) behavior of table
3339 operations is not a requirement, it might therefore be a good idea
3340 not to hash. Instead, we could just do a linear search in the
3341 key_and_value vector of the hash table. This could be done
3342 if a `:linear-search t' argument is given to make-hash-table. */
3343
3344
3345 /* The list of all weak hash tables. Don't staticpro this one. */
3346
3347 static struct Lisp_Hash_Table *weak_hash_tables;
3348
3349 /* Various symbols. */
3350
3351 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3352 Lisp_Object Qeq, Qeql, Qequal;
3353 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3354 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3355
3356 /* Function prototypes. */
3357
3358 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3359 static size_t get_key_arg (Lisp_Object, size_t, Lisp_Object *, char *);
3360 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3361 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3362
3363
3364 \f
3365 /***********************************************************************
3366 Utilities
3367 ***********************************************************************/
3368
3369 /* If OBJ is a Lisp hash table, return a pointer to its struct
3370 Lisp_Hash_Table. Otherwise, signal an error. */
3371
3372 static struct Lisp_Hash_Table *
3373 check_hash_table (Lisp_Object obj)
3374 {
3375 CHECK_HASH_TABLE (obj);
3376 return XHASH_TABLE (obj);
3377 }
3378
3379
3380 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3381 number. */
3382
3383 EMACS_INT
3384 next_almost_prime (EMACS_INT n)
3385 {
3386 if (n % 2 == 0)
3387 n += 1;
3388 if (n % 3 == 0)
3389 n += 2;
3390 if (n % 7 == 0)
3391 n += 4;
3392 return n;
3393 }
3394
3395
3396 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3397 which USED[I] is non-zero. If found at index I in ARGS, set
3398 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3399 0. This function is used to extract a keyword/argument pair from
3400 a DEFUN parameter list. */
3401
3402 static size_t
3403 get_key_arg (Lisp_Object key, size_t nargs, Lisp_Object *args, char *used)
3404 {
3405 size_t i;
3406
3407 for (i = 1; i < nargs; i++)
3408 if (!used[i - 1] && EQ (args[i - 1], key))
3409 {
3410 used[i - 1] = 1;
3411 used[i] = 1;
3412 return i;
3413 }
3414
3415 return 0;
3416 }
3417
3418
3419 /* Return a Lisp vector which has the same contents as VEC but has
3420 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3421 vector that are not copied from VEC are set to INIT. */
3422
3423 Lisp_Object
3424 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3425 {
3426 struct Lisp_Vector *v;
3427 EMACS_INT i, old_size;
3428
3429 xassert (VECTORP (vec));
3430 old_size = ASIZE (vec);
3431 xassert (new_size >= old_size);
3432
3433 v = allocate_vector (new_size);
3434 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3435 for (i = old_size; i < new_size; ++i)
3436 v->contents[i] = init;
3437 XSETVECTOR (vec, v);
3438 return vec;
3439 }
3440
3441
3442 /***********************************************************************
3443 Low-level Functions
3444 ***********************************************************************/
3445
3446 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3447 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3448 KEY2 are the same. */
3449
3450 static int
3451 cmpfn_eql (struct Lisp_Hash_Table *h,
3452 Lisp_Object key1, EMACS_UINT hash1,
3453 Lisp_Object key2, EMACS_UINT hash2)
3454 {
3455 return (FLOATP (key1)
3456 && FLOATP (key2)
3457 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3458 }
3459
3460
3461 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3462 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3463 KEY2 are the same. */
3464
3465 static int
3466 cmpfn_equal (struct Lisp_Hash_Table *h,
3467 Lisp_Object key1, EMACS_UINT hash1,
3468 Lisp_Object key2, EMACS_UINT hash2)
3469 {
3470 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3471 }
3472
3473
3474 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3475 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3476 if KEY1 and KEY2 are the same. */
3477
3478 static int
3479 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3480 Lisp_Object key1, EMACS_UINT hash1,
3481 Lisp_Object key2, EMACS_UINT hash2)
3482 {
3483 if (hash1 == hash2)
3484 {
3485 Lisp_Object args[3];
3486
3487 args[0] = h->user_cmp_function;
3488 args[1] = key1;
3489 args[2] = key2;
3490 return !NILP (Ffuncall (3, args));
3491 }
3492 else
3493 return 0;
3494 }
3495
3496
3497 /* Value is a hash code for KEY for use in hash table H which uses
3498 `eq' to compare keys. The hash code returned is guaranteed to fit
3499 in a Lisp integer. */
3500
3501 static EMACS_UINT
3502 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3503 {
3504 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3505 xassert ((hash & ~INTMASK) == 0);
3506 return hash;
3507 }
3508
3509
3510 /* Value is a hash code for KEY for use in hash table H which uses
3511 `eql' to compare keys. The hash code returned is guaranteed to fit
3512 in a Lisp integer. */
3513
3514 static EMACS_UINT
3515 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3516 {
3517 EMACS_UINT hash;
3518 if (FLOATP (key))
3519 hash = sxhash (key, 0);
3520 else
3521 hash = XUINT (key) ^ XTYPE (key);
3522 xassert ((hash & ~INTMASK) == 0);
3523 return hash;
3524 }
3525
3526
3527 /* Value is a hash code for KEY for use in hash table H which uses
3528 `equal' to compare keys. The hash code returned is guaranteed to fit
3529 in a Lisp integer. */
3530
3531 static EMACS_UINT
3532 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3533 {
3534 EMACS_UINT hash = sxhash (key, 0);
3535 xassert ((hash & ~INTMASK) == 0);
3536 return hash;
3537 }
3538
3539
3540 /* Value is a hash code for KEY for use in hash table H which uses as
3541 user-defined function to compare keys. The hash code returned is
3542 guaranteed to fit in a Lisp integer. */
3543
3544 static EMACS_UINT
3545 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3546 {
3547 Lisp_Object args[2], hash;
3548
3549 args[0] = h->user_hash_function;
3550 args[1] = key;
3551 hash = Ffuncall (2, args);
3552 if (!INTEGERP (hash))
3553 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3554 return XUINT (hash);
3555 }
3556
3557
3558 /* Create and initialize a new hash table.
3559
3560 TEST specifies the test the hash table will use to compare keys.
3561 It must be either one of the predefined tests `eq', `eql' or
3562 `equal' or a symbol denoting a user-defined test named TEST with
3563 test and hash functions USER_TEST and USER_HASH.
3564
3565 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3566
3567 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3568 new size when it becomes full is computed by adding REHASH_SIZE to
3569 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3570 table's new size is computed by multiplying its old size with
3571 REHASH_SIZE.
3572
3573 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3574 be resized when the ratio of (number of entries in the table) /
3575 (table size) is >= REHASH_THRESHOLD.
3576
3577 WEAK specifies the weakness of the table. If non-nil, it must be
3578 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3579
3580 Lisp_Object
3581 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3582 Lisp_Object rehash_threshold, Lisp_Object weak,
3583 Lisp_Object user_test, Lisp_Object user_hash)
3584 {
3585 struct Lisp_Hash_Table *h;
3586 Lisp_Object table;
3587 EMACS_INT index_size, i, sz;
3588 double index_float;
3589
3590 /* Preconditions. */
3591 xassert (SYMBOLP (test));
3592 xassert (INTEGERP (size) && XINT (size) >= 0);
3593 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3594 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3595 xassert (FLOATP (rehash_threshold)
3596 && 0 < XFLOAT_DATA (rehash_threshold)
3597 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3598
3599 if (XFASTINT (size) == 0)
3600 size = make_number (1);
3601
3602 sz = XFASTINT (size);
3603 index_float = sz / XFLOAT_DATA (rehash_threshold);
3604 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3605 ? next_almost_prime (index_float)
3606 : MOST_POSITIVE_FIXNUM + 1);
3607 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3608 error ("Hash table too large");
3609
3610 /* Allocate a table and initialize it. */
3611 h = allocate_hash_table ();
3612
3613 /* Initialize hash table slots. */
3614 h->test = test;
3615 if (EQ (test, Qeql))
3616 {
3617 h->cmpfn = cmpfn_eql;
3618 h->hashfn = hashfn_eql;
3619 }
3620 else if (EQ (test, Qeq))
3621 {
3622 h->cmpfn = NULL;
3623 h->hashfn = hashfn_eq;
3624 }
3625 else if (EQ (test, Qequal))
3626 {
3627 h->cmpfn = cmpfn_equal;
3628 h->hashfn = hashfn_equal;
3629 }
3630 else
3631 {
3632 h->user_cmp_function = user_test;
3633 h->user_hash_function = user_hash;
3634 h->cmpfn = cmpfn_user_defined;
3635 h->hashfn = hashfn_user_defined;
3636 }
3637
3638 h->weak = weak;
3639 h->rehash_threshold = rehash_threshold;
3640 h->rehash_size = rehash_size;
3641 h->count = 0;
3642 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3643 h->hash = Fmake_vector (size, Qnil);
3644 h->next = Fmake_vector (size, Qnil);
3645 h->index = Fmake_vector (make_number (index_size), Qnil);
3646
3647 /* Set up the free list. */
3648 for (i = 0; i < sz - 1; ++i)
3649 HASH_NEXT (h, i) = make_number (i + 1);
3650 h->next_free = make_number (0);
3651
3652 XSET_HASH_TABLE (table, h);
3653 xassert (HASH_TABLE_P (table));
3654 xassert (XHASH_TABLE (table) == h);
3655
3656 /* Maybe add this hash table to the list of all weak hash tables. */
3657 if (NILP (h->weak))
3658 h->next_weak = NULL;
3659 else
3660 {
3661 h->next_weak = weak_hash_tables;
3662 weak_hash_tables = h;
3663 }
3664
3665 return table;
3666 }
3667
3668
3669 /* Return a copy of hash table H1. Keys and values are not copied,
3670 only the table itself is. */
3671
3672 static Lisp_Object
3673 copy_hash_table (struct Lisp_Hash_Table *h1)
3674 {
3675 Lisp_Object table;
3676 struct Lisp_Hash_Table *h2;
3677 struct Lisp_Vector *next;
3678
3679 h2 = allocate_hash_table ();
3680 next = h2->header.next.vector;
3681 memcpy (h2, h1, sizeof *h2);
3682 h2->header.next.vector = next;
3683 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3684 h2->hash = Fcopy_sequence (h1->hash);
3685 h2->next = Fcopy_sequence (h1->next);
3686 h2->index = Fcopy_sequence (h1->index);
3687 XSET_HASH_TABLE (table, h2);
3688
3689 /* Maybe add this hash table to the list of all weak hash tables. */
3690 if (!NILP (h2->weak))
3691 {
3692 h2->next_weak = weak_hash_tables;
3693 weak_hash_tables = h2;
3694 }
3695
3696 return table;
3697 }
3698
3699
3700 /* Resize hash table H if it's too full. If H cannot be resized
3701 because it's already too large, throw an error. */
3702
3703 static inline void
3704 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3705 {
3706 if (NILP (h->next_free))
3707 {
3708 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3709 EMACS_INT i, new_size, index_size;
3710 EMACS_INT nsize;
3711 double index_float;
3712
3713 if (INTEGERP (h->rehash_size))
3714 new_size = old_size + XFASTINT (h->rehash_size);
3715 else
3716 {
3717 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3718 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3719 {
3720 new_size = float_new_size;
3721 if (new_size <= old_size)
3722 new_size = old_size + 1;
3723 }
3724 else
3725 new_size = MOST_POSITIVE_FIXNUM + 1;
3726 }
3727 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3728 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3729 ? next_almost_prime (index_float)
3730 : MOST_POSITIVE_FIXNUM + 1);
3731 nsize = max (index_size, 2 * new_size);
3732 if (nsize > MOST_POSITIVE_FIXNUM)
3733 error ("Hash table too large to resize");
3734
3735 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3736 h->next = larger_vector (h->next, new_size, Qnil);
3737 h->hash = larger_vector (h->hash, new_size, Qnil);
3738 h->index = Fmake_vector (make_number (index_size), Qnil);
3739
3740 /* Update the free list. Do it so that new entries are added at
3741 the end of the free list. This makes some operations like
3742 maphash faster. */
3743 for (i = old_size; i < new_size - 1; ++i)
3744 HASH_NEXT (h, i) = make_number (i + 1);
3745
3746 if (!NILP (h->next_free))
3747 {
3748 Lisp_Object last, next;
3749
3750 last = h->next_free;
3751 while (next = HASH_NEXT (h, XFASTINT (last)),
3752 !NILP (next))
3753 last = next;
3754
3755 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3756 }
3757 else
3758 XSETFASTINT (h->next_free, old_size);
3759
3760 /* Rehash. */
3761 for (i = 0; i < old_size; ++i)
3762 if (!NILP (HASH_HASH (h, i)))
3763 {
3764 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3765 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3766 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3767 HASH_INDEX (h, start_of_bucket) = make_number (i);
3768 }
3769 }
3770 }
3771
3772
3773 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3774 the hash code of KEY. Value is the index of the entry in H
3775 matching KEY, or -1 if not found. */
3776
3777 EMACS_INT
3778 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3779 {
3780 EMACS_UINT hash_code;
3781 EMACS_INT start_of_bucket;
3782 Lisp_Object idx;
3783
3784 hash_code = h->hashfn (h, key);
3785 if (hash)
3786 *hash = hash_code;
3787
3788 start_of_bucket = hash_code % ASIZE (h->index);
3789 idx = HASH_INDEX (h, start_of_bucket);
3790
3791 /* We need not gcpro idx since it's either an integer or nil. */
3792 while (!NILP (idx))
3793 {
3794 EMACS_INT i = XFASTINT (idx);
3795 if (EQ (key, HASH_KEY (h, i))
3796 || (h->cmpfn
3797 && h->cmpfn (h, key, hash_code,
3798 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3799 break;
3800 idx = HASH_NEXT (h, i);
3801 }
3802
3803 return NILP (idx) ? -1 : XFASTINT (idx);
3804 }
3805
3806
3807 /* Put an entry into hash table H that associates KEY with VALUE.
3808 HASH is a previously computed hash code of KEY.
3809 Value is the index of the entry in H matching KEY. */
3810
3811 EMACS_INT
3812 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3813 EMACS_UINT hash)
3814 {
3815 EMACS_INT start_of_bucket, i;
3816
3817 xassert ((hash & ~INTMASK) == 0);
3818
3819 /* Increment count after resizing because resizing may fail. */
3820 maybe_resize_hash_table (h);
3821 h->count++;
3822
3823 /* Store key/value in the key_and_value vector. */
3824 i = XFASTINT (h->next_free);
3825 h->next_free = HASH_NEXT (h, i);
3826 HASH_KEY (h, i) = key;
3827 HASH_VALUE (h, i) = value;
3828
3829 /* Remember its hash code. */
3830 HASH_HASH (h, i) = make_number (hash);
3831
3832 /* Add new entry to its collision chain. */
3833 start_of_bucket = hash % ASIZE (h->index);
3834 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3835 HASH_INDEX (h, start_of_bucket) = make_number (i);
3836 return i;
3837 }
3838
3839
3840 /* Remove the entry matching KEY from hash table H, if there is one. */
3841
3842 static void
3843 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3844 {
3845 EMACS_UINT hash_code;
3846 EMACS_INT start_of_bucket;
3847 Lisp_Object idx, prev;
3848
3849 hash_code = h->hashfn (h, key);
3850 start_of_bucket = hash_code % ASIZE (h->index);
3851 idx = HASH_INDEX (h, start_of_bucket);
3852 prev = Qnil;
3853
3854 /* We need not gcpro idx, prev since they're either integers or nil. */
3855 while (!NILP (idx))
3856 {
3857 EMACS_INT i = XFASTINT (idx);
3858
3859 if (EQ (key, HASH_KEY (h, i))
3860 || (h->cmpfn
3861 && h->cmpfn (h, key, hash_code,
3862 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3863 {
3864 /* Take entry out of collision chain. */
3865 if (NILP (prev))
3866 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3867 else
3868 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3869
3870 /* Clear slots in key_and_value and add the slots to
3871 the free list. */
3872 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3873 HASH_NEXT (h, i) = h->next_free;
3874 h->next_free = make_number (i);
3875 h->count--;
3876 xassert (h->count >= 0);
3877 break;
3878 }
3879 else
3880 {
3881 prev = idx;
3882 idx = HASH_NEXT (h, i);
3883 }
3884 }
3885 }
3886
3887
3888 /* Clear hash table H. */
3889
3890 static void
3891 hash_clear (struct Lisp_Hash_Table *h)
3892 {
3893 if (h->count > 0)
3894 {
3895 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3896
3897 for (i = 0; i < size; ++i)
3898 {
3899 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3900 HASH_KEY (h, i) = Qnil;
3901 HASH_VALUE (h, i) = Qnil;
3902 HASH_HASH (h, i) = Qnil;
3903 }
3904
3905 for (i = 0; i < ASIZE (h->index); ++i)
3906 ASET (h->index, i, Qnil);
3907
3908 h->next_free = make_number (0);
3909 h->count = 0;
3910 }
3911 }
3912
3913
3914 \f
3915 /************************************************************************
3916 Weak Hash Tables
3917 ************************************************************************/
3918
3919 void
3920 init_weak_hash_tables (void)
3921 {
3922 weak_hash_tables = NULL;
3923 }
3924
3925 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3926 entries from the table that don't survive the current GC.
3927 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3928 non-zero if anything was marked. */
3929
3930 static int
3931 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3932 {
3933 EMACS_INT bucket, n;
3934 int marked;
3935
3936 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3937 marked = 0;
3938
3939 for (bucket = 0; bucket < n; ++bucket)
3940 {
3941 Lisp_Object idx, next, prev;
3942
3943 /* Follow collision chain, removing entries that
3944 don't survive this garbage collection. */
3945 prev = Qnil;
3946 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3947 {
3948 EMACS_INT i = XFASTINT (idx);
3949 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3950 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3951 int remove_p;
3952
3953 if (EQ (h->weak, Qkey))
3954 remove_p = !key_known_to_survive_p;
3955 else if (EQ (h->weak, Qvalue))
3956 remove_p = !value_known_to_survive_p;
3957 else if (EQ (h->weak, Qkey_or_value))
3958 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3959 else if (EQ (h->weak, Qkey_and_value))
3960 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3961 else
3962 abort ();
3963
3964 next = HASH_NEXT (h, i);
3965
3966 if (remove_entries_p)
3967 {
3968 if (remove_p)
3969 {
3970 /* Take out of collision chain. */
3971 if (NILP (prev))
3972 HASH_INDEX (h, bucket) = next;
3973 else
3974 HASH_NEXT (h, XFASTINT (prev)) = next;
3975
3976 /* Add to free list. */
3977 HASH_NEXT (h, i) = h->next_free;
3978 h->next_free = idx;
3979
3980 /* Clear key, value, and hash. */
3981 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3982 HASH_HASH (h, i) = Qnil;
3983
3984 h->count--;
3985 }
3986 else
3987 {
3988 prev = idx;
3989 }
3990 }
3991 else
3992 {
3993 if (!remove_p)
3994 {
3995 /* Make sure key and value survive. */
3996 if (!key_known_to_survive_p)
3997 {
3998 mark_object (HASH_KEY (h, i));
3999 marked = 1;
4000 }
4001
4002 if (!value_known_to_survive_p)
4003 {
4004 mark_object (HASH_VALUE (h, i));
4005 marked = 1;
4006 }
4007 }
4008 }
4009 }
4010 }
4011
4012 return marked;
4013 }
4014
4015 /* Remove elements from weak hash tables that don't survive the
4016 current garbage collection. Remove weak tables that don't survive
4017 from Vweak_hash_tables. Called from gc_sweep. */
4018
4019 void
4020 sweep_weak_hash_tables (void)
4021 {
4022 struct Lisp_Hash_Table *h, *used, *next;
4023 int marked;
4024
4025 /* Mark all keys and values that are in use. Keep on marking until
4026 there is no more change. This is necessary for cases like
4027 value-weak table A containing an entry X -> Y, where Y is used in a
4028 key-weak table B, Z -> Y. If B comes after A in the list of weak
4029 tables, X -> Y might be removed from A, although when looking at B
4030 one finds that it shouldn't. */
4031 do
4032 {
4033 marked = 0;
4034 for (h = weak_hash_tables; h; h = h->next_weak)
4035 {
4036 if (h->header.size & ARRAY_MARK_FLAG)
4037 marked |= sweep_weak_table (h, 0);
4038 }
4039 }
4040 while (marked);
4041
4042 /* Remove tables and entries that aren't used. */
4043 for (h = weak_hash_tables, used = NULL; h; h = next)
4044 {
4045 next = h->next_weak;
4046
4047 if (h->header.size & ARRAY_MARK_FLAG)
4048 {
4049 /* TABLE is marked as used. Sweep its contents. */
4050 if (h->count > 0)
4051 sweep_weak_table (h, 1);
4052
4053 /* Add table to the list of used weak hash tables. */
4054 h->next_weak = used;
4055 used = h;
4056 }
4057 }
4058
4059 weak_hash_tables = used;
4060 }
4061
4062
4063 \f
4064 /***********************************************************************
4065 Hash Code Computation
4066 ***********************************************************************/
4067
4068 /* Maximum depth up to which to dive into Lisp structures. */
4069
4070 #define SXHASH_MAX_DEPTH 3
4071
4072 /* Maximum length up to which to take list and vector elements into
4073 account. */
4074
4075 #define SXHASH_MAX_LEN 7
4076
4077 /* Combine two integers X and Y for hashing. The result might not fit
4078 into a Lisp integer. */
4079
4080 #define SXHASH_COMBINE(X, Y) \
4081 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4082 + (EMACS_UINT) (Y))
4083
4084 /* Hash X, returning a value that fits into a Lisp integer. */
4085 #define SXHASH_REDUCE(X) \
4086 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4087
4088 /* Return a hash for string PTR which has length LEN. The hash
4089 code returned is guaranteed to fit in a Lisp integer. */
4090
4091 static EMACS_UINT
4092 sxhash_string (unsigned char *ptr, EMACS_INT len)
4093 {
4094 unsigned char *p = ptr;
4095 unsigned char *end = p + len;
4096 unsigned char c;
4097 EMACS_UINT hash = 0;
4098
4099 while (p != end)
4100 {
4101 c = *p++;
4102 if (c >= 0140)
4103 c -= 40;
4104 hash = SXHASH_COMBINE (hash, c);
4105 }
4106
4107 return SXHASH_REDUCE (hash);
4108 }
4109
4110 /* Return a hash for the floating point value VAL. */
4111
4112 static EMACS_INT
4113 sxhash_float (double val)
4114 {
4115 EMACS_UINT hash = 0;
4116 enum {
4117 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4118 + (sizeof val % sizeof hash != 0))
4119 };
4120 union {
4121 double val;
4122 EMACS_UINT word[WORDS_PER_DOUBLE];
4123 } u;
4124 int i;
4125 u.val = val;
4126 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4127 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4128 hash = SXHASH_COMBINE (hash, u.word[i]);
4129 return SXHASH_REDUCE (hash);
4130 }
4131
4132 /* Return a hash for list LIST. DEPTH is the current depth in the
4133 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4134
4135 static EMACS_UINT
4136 sxhash_list (Lisp_Object list, int depth)
4137 {
4138 EMACS_UINT hash = 0;
4139 int i;
4140
4141 if (depth < SXHASH_MAX_DEPTH)
4142 for (i = 0;
4143 CONSP (list) && i < SXHASH_MAX_LEN;
4144 list = XCDR (list), ++i)
4145 {
4146 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4147 hash = SXHASH_COMBINE (hash, hash2);
4148 }
4149
4150 if (!NILP (list))
4151 {
4152 EMACS_UINT hash2 = sxhash (list, depth + 1);
4153 hash = SXHASH_COMBINE (hash, hash2);
4154 }
4155
4156 return SXHASH_REDUCE (hash);
4157 }
4158
4159
4160 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4161 the Lisp structure. */
4162
4163 static EMACS_UINT
4164 sxhash_vector (Lisp_Object vec, int depth)
4165 {
4166 EMACS_UINT hash = ASIZE (vec);
4167 int i, n;
4168
4169 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4170 for (i = 0; i < n; ++i)
4171 {
4172 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4173 hash = SXHASH_COMBINE (hash, hash2);
4174 }
4175
4176 return SXHASH_REDUCE (hash);
4177 }
4178
4179 /* Return a hash for bool-vector VECTOR. */
4180
4181 static EMACS_UINT
4182 sxhash_bool_vector (Lisp_Object vec)
4183 {
4184 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4185 int i, n;
4186
4187 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4188 for (i = 0; i < n; ++i)
4189 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4190
4191 return SXHASH_REDUCE (hash);
4192 }
4193
4194
4195 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4196 structure. Value is an unsigned integer clipped to INTMASK. */
4197
4198 EMACS_UINT
4199 sxhash (Lisp_Object obj, int depth)
4200 {
4201 EMACS_UINT hash;
4202
4203 if (depth > SXHASH_MAX_DEPTH)
4204 return 0;
4205
4206 switch (XTYPE (obj))
4207 {
4208 case_Lisp_Int:
4209 hash = XUINT (obj);
4210 break;
4211
4212 case Lisp_Misc:
4213 hash = XUINT (obj);
4214 break;
4215
4216 case Lisp_Symbol:
4217 obj = SYMBOL_NAME (obj);
4218 /* Fall through. */
4219
4220 case Lisp_String:
4221 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4222 break;
4223
4224 /* This can be everything from a vector to an overlay. */
4225 case Lisp_Vectorlike:
4226 if (VECTORP (obj))
4227 /* According to the CL HyperSpec, two arrays are equal only if
4228 they are `eq', except for strings and bit-vectors. In
4229 Emacs, this works differently. We have to compare element
4230 by element. */
4231 hash = sxhash_vector (obj, depth);
4232 else if (BOOL_VECTOR_P (obj))
4233 hash = sxhash_bool_vector (obj);
4234 else
4235 /* Others are `equal' if they are `eq', so let's take their
4236 address as hash. */
4237 hash = XUINT (obj);
4238 break;
4239
4240 case Lisp_Cons:
4241 hash = sxhash_list (obj, depth);
4242 break;
4243
4244 case Lisp_Float:
4245 hash = sxhash_float (XFLOAT_DATA (obj));
4246 break;
4247
4248 default:
4249 abort ();
4250 }
4251
4252 return hash;
4253 }
4254
4255
4256 \f
4257 /***********************************************************************
4258 Lisp Interface
4259 ***********************************************************************/
4260
4261
4262 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4263 doc: /* Compute a hash code for OBJ and return it as integer. */)
4264 (Lisp_Object obj)
4265 {
4266 EMACS_UINT hash = sxhash (obj, 0);
4267 return make_number (hash);
4268 }
4269
4270
4271 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4272 doc: /* Create and return a new hash table.
4273
4274 Arguments are specified as keyword/argument pairs. The following
4275 arguments are defined:
4276
4277 :test TEST -- TEST must be a symbol that specifies how to compare
4278 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4279 `equal'. User-supplied test and hash functions can be specified via
4280 `define-hash-table-test'.
4281
4282 :size SIZE -- A hint as to how many elements will be put in the table.
4283 Default is 65.
4284
4285 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4286 fills up. If REHASH-SIZE is an integer, increase the size by that
4287 amount. If it is a float, it must be > 1.0, and the new size is the
4288 old size multiplied by that factor. Default is 1.5.
4289
4290 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4291 Resize the hash table when the ratio (number of entries / table size)
4292 is greater than or equal to THRESHOLD. Default is 0.8.
4293
4294 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4295 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4296 returned is a weak table. Key/value pairs are removed from a weak
4297 hash table when there are no non-weak references pointing to their
4298 key, value, one of key or value, or both key and value, depending on
4299 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4300 is nil.
4301
4302 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4303 (size_t nargs, Lisp_Object *args)
4304 {
4305 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4306 Lisp_Object user_test, user_hash;
4307 char *used;
4308 size_t i;
4309
4310 /* The vector `used' is used to keep track of arguments that
4311 have been consumed. */
4312 used = (char *) alloca (nargs * sizeof *used);
4313 memset (used, 0, nargs * sizeof *used);
4314
4315 /* See if there's a `:test TEST' among the arguments. */
4316 i = get_key_arg (QCtest, nargs, args, used);
4317 test = i ? args[i] : Qeql;
4318 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4319 {
4320 /* See if it is a user-defined test. */
4321 Lisp_Object prop;
4322
4323 prop = Fget (test, Qhash_table_test);
4324 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4325 signal_error ("Invalid hash table test", test);
4326 user_test = XCAR (prop);
4327 user_hash = XCAR (XCDR (prop));
4328 }
4329 else
4330 user_test = user_hash = Qnil;
4331
4332 /* See if there's a `:size SIZE' argument. */
4333 i = get_key_arg (QCsize, nargs, args, used);
4334 size = i ? args[i] : Qnil;
4335 if (NILP (size))
4336 size = make_number (DEFAULT_HASH_SIZE);
4337 else if (!INTEGERP (size) || XINT (size) < 0)
4338 signal_error ("Invalid hash table size", size);
4339
4340 /* Look for `:rehash-size SIZE'. */
4341 i = get_key_arg (QCrehash_size, nargs, args, used);
4342 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4343 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4344 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4345 signal_error ("Invalid hash table rehash size", rehash_size);
4346
4347 /* Look for `:rehash-threshold THRESHOLD'. */
4348 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4349 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4350 if (! (FLOATP (rehash_threshold)
4351 && 0 < XFLOAT_DATA (rehash_threshold)
4352 && XFLOAT_DATA (rehash_threshold) <= 1))
4353 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4354
4355 /* Look for `:weakness WEAK'. */
4356 i = get_key_arg (QCweakness, nargs, args, used);
4357 weak = i ? args[i] : Qnil;
4358 if (EQ (weak, Qt))
4359 weak = Qkey_and_value;
4360 if (!NILP (weak)
4361 && !EQ (weak, Qkey)
4362 && !EQ (weak, Qvalue)
4363 && !EQ (weak, Qkey_or_value)
4364 && !EQ (weak, Qkey_and_value))
4365 signal_error ("Invalid hash table weakness", weak);
4366
4367 /* Now, all args should have been used up, or there's a problem. */
4368 for (i = 0; i < nargs; ++i)
4369 if (!used[i])
4370 signal_error ("Invalid argument list", args[i]);
4371
4372 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4373 user_test, user_hash);
4374 }
4375
4376
4377 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4378 doc: /* Return a copy of hash table TABLE. */)
4379 (Lisp_Object table)
4380 {
4381 return copy_hash_table (check_hash_table (table));
4382 }
4383
4384
4385 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4386 doc: /* Return the number of elements in TABLE. */)
4387 (Lisp_Object table)
4388 {
4389 return make_number (check_hash_table (table)->count);
4390 }
4391
4392
4393 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4394 Shash_table_rehash_size, 1, 1, 0,
4395 doc: /* Return the current rehash size of TABLE. */)
4396 (Lisp_Object table)
4397 {
4398 return check_hash_table (table)->rehash_size;
4399 }
4400
4401
4402 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4403 Shash_table_rehash_threshold, 1, 1, 0,
4404 doc: /* Return the current rehash threshold of TABLE. */)
4405 (Lisp_Object table)
4406 {
4407 return check_hash_table (table)->rehash_threshold;
4408 }
4409
4410
4411 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4412 doc: /* Return the size of TABLE.
4413 The size can be used as an argument to `make-hash-table' to create
4414 a hash table than can hold as many elements as TABLE holds
4415 without need for resizing. */)
4416 (Lisp_Object table)
4417 {
4418 struct Lisp_Hash_Table *h = check_hash_table (table);
4419 return make_number (HASH_TABLE_SIZE (h));
4420 }
4421
4422
4423 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4424 doc: /* Return the test TABLE uses. */)
4425 (Lisp_Object table)
4426 {
4427 return check_hash_table (table)->test;
4428 }
4429
4430
4431 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4432 1, 1, 0,
4433 doc: /* Return the weakness of TABLE. */)
4434 (Lisp_Object table)
4435 {
4436 return check_hash_table (table)->weak;
4437 }
4438
4439
4440 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4441 doc: /* Return t if OBJ is a Lisp hash table object. */)
4442 (Lisp_Object obj)
4443 {
4444 return HASH_TABLE_P (obj) ? Qt : Qnil;
4445 }
4446
4447
4448 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4449 doc: /* Clear hash table TABLE and return it. */)
4450 (Lisp_Object table)
4451 {
4452 hash_clear (check_hash_table (table));
4453 /* Be compatible with XEmacs. */
4454 return table;
4455 }
4456
4457
4458 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4459 doc: /* Look up KEY in TABLE and return its associated value.
4460 If KEY is not found, return DFLT which defaults to nil. */)
4461 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4462 {
4463 struct Lisp_Hash_Table *h = check_hash_table (table);
4464 EMACS_INT i = hash_lookup (h, key, NULL);
4465 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4466 }
4467
4468
4469 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4470 doc: /* Associate KEY with VALUE in hash table TABLE.
4471 If KEY is already present in table, replace its current value with
4472 VALUE. */)
4473 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4474 {
4475 struct Lisp_Hash_Table *h = check_hash_table (table);
4476 EMACS_INT i;
4477 EMACS_UINT hash;
4478
4479 i = hash_lookup (h, key, &hash);
4480 if (i >= 0)
4481 HASH_VALUE (h, i) = value;
4482 else
4483 hash_put (h, key, value, hash);
4484
4485 return value;
4486 }
4487
4488
4489 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4490 doc: /* Remove KEY from TABLE. */)
4491 (Lisp_Object key, Lisp_Object table)
4492 {
4493 struct Lisp_Hash_Table *h = check_hash_table (table);
4494 hash_remove_from_table (h, key);
4495 return Qnil;
4496 }
4497
4498
4499 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4500 doc: /* Call FUNCTION for all entries in hash table TABLE.
4501 FUNCTION is called with two arguments, KEY and VALUE. */)
4502 (Lisp_Object function, Lisp_Object table)
4503 {
4504 struct Lisp_Hash_Table *h = check_hash_table (table);
4505 Lisp_Object args[3];
4506 EMACS_INT i;
4507
4508 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4509 if (!NILP (HASH_HASH (h, i)))
4510 {
4511 args[0] = function;
4512 args[1] = HASH_KEY (h, i);
4513 args[2] = HASH_VALUE (h, i);
4514 Ffuncall (3, args);
4515 }
4516
4517 return Qnil;
4518 }
4519
4520
4521 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4522 Sdefine_hash_table_test, 3, 3, 0,
4523 doc: /* Define a new hash table test with name NAME, a symbol.
4524
4525 In hash tables created with NAME specified as test, use TEST to
4526 compare keys, and HASH for computing hash codes of keys.
4527
4528 TEST must be a function taking two arguments and returning non-nil if
4529 both arguments are the same. HASH must be a function taking one
4530 argument and return an integer that is the hash code of the argument.
4531 Hash code computation should use the whole value range of integers,
4532 including negative integers. */)
4533 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4534 {
4535 return Fput (name, Qhash_table_test, list2 (test, hash));
4536 }
4537
4538
4539 \f
4540 /************************************************************************
4541 MD5 and SHA1
4542 ************************************************************************/
4543
4544 #include "md5.h"
4545 #include "sha1.h"
4546
4547 /* Convert a possibly-signed character to an unsigned character. This is
4548 a bit safer than casting to unsigned char, since it catches some type
4549 errors that the cast doesn't. */
4550 static inline unsigned char to_uchar (char ch) { return ch; }
4551
4552 /* TYPE: 0 for md5, 1 for sha1. */
4553
4554 static Lisp_Object
4555 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4556 {
4557 int i;
4558 EMACS_INT size;
4559 EMACS_INT size_byte = 0;
4560 EMACS_INT start_char = 0, end_char = 0;
4561 EMACS_INT start_byte = 0, end_byte = 0;
4562 register EMACS_INT b, e;
4563 register struct buffer *bp;
4564 EMACS_INT temp;
4565 Lisp_Object res=Qnil;
4566
4567 if (STRINGP (object))
4568 {
4569 if (NILP (coding_system))
4570 {
4571 /* Decide the coding-system to encode the data with. */
4572
4573 if (STRING_MULTIBYTE (object))
4574 /* use default, we can't guess correct value */
4575 coding_system = preferred_coding_system ();
4576 else
4577 coding_system = Qraw_text;
4578 }
4579
4580 if (NILP (Fcoding_system_p (coding_system)))
4581 {
4582 /* Invalid coding system. */
4583
4584 if (!NILP (noerror))
4585 coding_system = Qraw_text;
4586 else
4587 xsignal1 (Qcoding_system_error, coding_system);
4588 }
4589
4590 if (STRING_MULTIBYTE (object))
4591 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4592
4593 size = SCHARS (object);
4594 size_byte = SBYTES (object);
4595
4596 if (!NILP (start))
4597 {
4598 CHECK_NUMBER (start);
4599
4600 start_char = XINT (start);
4601
4602 if (start_char < 0)
4603 start_char += size;
4604
4605 start_byte = string_char_to_byte (object, start_char);
4606 }
4607
4608 if (NILP (end))
4609 {
4610 end_char = size;
4611 end_byte = size_byte;
4612 }
4613 else
4614 {
4615 CHECK_NUMBER (end);
4616
4617 end_char = XINT (end);
4618
4619 if (end_char < 0)
4620 end_char += size;
4621
4622 end_byte = string_char_to_byte (object, end_char);
4623 }
4624
4625 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4626 args_out_of_range_3 (object, make_number (start_char),
4627 make_number (end_char));
4628 }
4629 else
4630 {
4631 struct buffer *prev = current_buffer;
4632
4633 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4634
4635 CHECK_BUFFER (object);
4636
4637 bp = XBUFFER (object);
4638 if (bp != current_buffer)
4639 set_buffer_internal (bp);
4640
4641 if (NILP (start))
4642 b = BEGV;
4643 else
4644 {
4645 CHECK_NUMBER_COERCE_MARKER (start);
4646 b = XINT (start);
4647 }
4648
4649 if (NILP (end))
4650 e = ZV;
4651 else
4652 {
4653 CHECK_NUMBER_COERCE_MARKER (end);
4654 e = XINT (end);
4655 }
4656
4657 if (b > e)
4658 temp = b, b = e, e = temp;
4659
4660 if (!(BEGV <= b && e <= ZV))
4661 args_out_of_range (start, end);
4662
4663 if (NILP (coding_system))
4664 {
4665 /* Decide the coding-system to encode the data with.
4666 See fileio.c:Fwrite-region */
4667
4668 if (!NILP (Vcoding_system_for_write))
4669 coding_system = Vcoding_system_for_write;
4670 else
4671 {
4672 int force_raw_text = 0;
4673
4674 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4675 if (NILP (coding_system)
4676 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4677 {
4678 coding_system = Qnil;
4679 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4680 force_raw_text = 1;
4681 }
4682
4683 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4684 {
4685 /* Check file-coding-system-alist. */
4686 Lisp_Object args[4], val;
4687
4688 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4689 args[3] = Fbuffer_file_name(object);
4690 val = Ffind_operation_coding_system (4, args);
4691 if (CONSP (val) && !NILP (XCDR (val)))
4692 coding_system = XCDR (val);
4693 }
4694
4695 if (NILP (coding_system)
4696 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4697 {
4698 /* If we still have not decided a coding system, use the
4699 default value of buffer-file-coding-system. */
4700 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4701 }
4702
4703 if (!force_raw_text
4704 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4705 /* Confirm that VAL can surely encode the current region. */
4706 coding_system = call4 (Vselect_safe_coding_system_function,
4707 make_number (b), make_number (e),
4708 coding_system, Qnil);
4709
4710 if (force_raw_text)
4711 coding_system = Qraw_text;
4712 }
4713
4714 if (NILP (Fcoding_system_p (coding_system)))
4715 {
4716 /* Invalid coding system. */
4717
4718 if (!NILP (noerror))
4719 coding_system = Qraw_text;
4720 else
4721 xsignal1 (Qcoding_system_error, coding_system);
4722 }
4723 }
4724
4725 object = make_buffer_string (b, e, 0);
4726 if (prev != current_buffer)
4727 set_buffer_internal (prev);
4728 /* Discard the unwind protect for recovering the current
4729 buffer. */
4730 specpdl_ptr--;
4731
4732 if (STRING_MULTIBYTE (object))
4733 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4734 }
4735
4736 switch (type)
4737 {
4738 case 0: /* MD5 */
4739 {
4740 char digest[16];
4741 md5_buffer (SSDATA (object) + start_byte,
4742 SBYTES (object) - (size_byte - end_byte),
4743 digest);
4744
4745 if (NILP (binary))
4746 {
4747 char value[33];
4748 for (i = 0; i < 16; i++)
4749 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4750 res = make_string (value, 32);
4751 }
4752 else
4753 res = make_string (digest, 16);
4754 break;
4755 }
4756
4757 case 1: /* SHA1 */
4758 {
4759 char digest[20];
4760 sha1_buffer (SSDATA (object) + start_byte,
4761 SBYTES (object) - (size_byte - end_byte),
4762 digest);
4763 if (NILP (binary))
4764 {
4765 char value[41];
4766 for (i = 0; i < 20; i++)
4767 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4768 res = make_string (value, 40);
4769 }
4770 else
4771 res = make_string (digest, 20);
4772 break;
4773 }
4774 }
4775
4776 return res;
4777 }
4778
4779 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4780 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4781
4782 A message digest is a cryptographic checksum of a document, and the
4783 algorithm to calculate it is defined in RFC 1321.
4784
4785 The two optional arguments START and END are character positions
4786 specifying for which part of OBJECT the message digest should be
4787 computed. If nil or omitted, the digest is computed for the whole
4788 OBJECT.
4789
4790 The MD5 message digest is computed from the result of encoding the
4791 text in a coding system, not directly from the internal Emacs form of
4792 the text. The optional fourth argument CODING-SYSTEM specifies which
4793 coding system to encode the text with. It should be the same coding
4794 system that you used or will use when actually writing the text into a
4795 file.
4796
4797 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4798 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4799 system would be chosen by default for writing this text into a file.
4800
4801 If OBJECT is a string, the most preferred coding system (see the
4802 command `prefer-coding-system') is used.
4803
4804 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4805 guesswork fails. Normally, an error is signaled in such case. */)
4806 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4807 {
4808 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4809 }
4810
4811 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4812 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4813
4814 OBJECT is either a string or a buffer. Optional arguments START and
4815 END are character positions specifying which portion of OBJECT for
4816 computing the hash. If BINARY is non-nil, return a string in binary
4817 form. */)
4818 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4819 {
4820 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4821 }
4822
4823 \f
4824 void
4825 syms_of_fns (void)
4826 {
4827 /* Hash table stuff. */
4828 Qhash_table_p = intern_c_string ("hash-table-p");
4829 staticpro (&Qhash_table_p);
4830 Qeq = intern_c_string ("eq");
4831 staticpro (&Qeq);
4832 Qeql = intern_c_string ("eql");
4833 staticpro (&Qeql);
4834 Qequal = intern_c_string ("equal");
4835 staticpro (&Qequal);
4836 QCtest = intern_c_string (":test");
4837 staticpro (&QCtest);
4838 QCsize = intern_c_string (":size");
4839 staticpro (&QCsize);
4840 QCrehash_size = intern_c_string (":rehash-size");
4841 staticpro (&QCrehash_size);
4842 QCrehash_threshold = intern_c_string (":rehash-threshold");
4843 staticpro (&QCrehash_threshold);
4844 QCweakness = intern_c_string (":weakness");
4845 staticpro (&QCweakness);
4846 Qkey = intern_c_string ("key");
4847 staticpro (&Qkey);
4848 Qvalue = intern_c_string ("value");
4849 staticpro (&Qvalue);
4850 Qhash_table_test = intern_c_string ("hash-table-test");
4851 staticpro (&Qhash_table_test);
4852 Qkey_or_value = intern_c_string ("key-or-value");
4853 staticpro (&Qkey_or_value);
4854 Qkey_and_value = intern_c_string ("key-and-value");
4855 staticpro (&Qkey_and_value);
4856
4857 defsubr (&Ssxhash);
4858 defsubr (&Smake_hash_table);
4859 defsubr (&Scopy_hash_table);
4860 defsubr (&Shash_table_count);
4861 defsubr (&Shash_table_rehash_size);
4862 defsubr (&Shash_table_rehash_threshold);
4863 defsubr (&Shash_table_size);
4864 defsubr (&Shash_table_test);
4865 defsubr (&Shash_table_weakness);
4866 defsubr (&Shash_table_p);
4867 defsubr (&Sclrhash);
4868 defsubr (&Sgethash);
4869 defsubr (&Sputhash);
4870 defsubr (&Sremhash);
4871 defsubr (&Smaphash);
4872 defsubr (&Sdefine_hash_table_test);
4873
4874 Qstring_lessp = intern_c_string ("string-lessp");
4875 staticpro (&Qstring_lessp);
4876 Qprovide = intern_c_string ("provide");
4877 staticpro (&Qprovide);
4878 Qrequire = intern_c_string ("require");
4879 staticpro (&Qrequire);
4880 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4881 staticpro (&Qyes_or_no_p_history);
4882 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4883 staticpro (&Qcursor_in_echo_area);
4884 Qwidget_type = intern_c_string ("widget-type");
4885 staticpro (&Qwidget_type);
4886
4887 staticpro (&string_char_byte_cache_string);
4888 string_char_byte_cache_string = Qnil;
4889
4890 require_nesting_list = Qnil;
4891 staticpro (&require_nesting_list);
4892
4893 Fset (Qyes_or_no_p_history, Qnil);
4894
4895 DEFVAR_LISP ("features", Vfeatures,
4896 doc: /* A list of symbols which are the features of the executing Emacs.
4897 Used by `featurep' and `require', and altered by `provide'. */);
4898 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4899 Qsubfeatures = intern_c_string ("subfeatures");
4900 staticpro (&Qsubfeatures);
4901
4902 #ifdef HAVE_LANGINFO_CODESET
4903 Qcodeset = intern_c_string ("codeset");
4904 staticpro (&Qcodeset);
4905 Qdays = intern_c_string ("days");
4906 staticpro (&Qdays);
4907 Qmonths = intern_c_string ("months");
4908 staticpro (&Qmonths);
4909 Qpaper = intern_c_string ("paper");
4910 staticpro (&Qpaper);
4911 #endif /* HAVE_LANGINFO_CODESET */
4912
4913 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4914 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4915 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4916 invoked by mouse clicks and mouse menu items.
4917
4918 On some platforms, file selection dialogs are also enabled if this is
4919 non-nil. */);
4920 use_dialog_box = 1;
4921
4922 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4923 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4924 This applies to commands from menus and tool bar buttons even when
4925 they are initiated from the keyboard. If `use-dialog-box' is nil,
4926 that disables the use of a file dialog, regardless of the value of
4927 this variable. */);
4928 use_file_dialog = 1;
4929
4930 defsubr (&Sidentity);
4931 defsubr (&Srandom);
4932 defsubr (&Slength);
4933 defsubr (&Ssafe_length);
4934 defsubr (&Sstring_bytes);
4935 defsubr (&Sstring_equal);
4936 defsubr (&Scompare_strings);
4937 defsubr (&Sstring_lessp);
4938 defsubr (&Sappend);
4939 defsubr (&Sconcat);
4940 defsubr (&Svconcat);
4941 defsubr (&Scopy_sequence);
4942 defsubr (&Sstring_make_multibyte);
4943 defsubr (&Sstring_make_unibyte);
4944 defsubr (&Sstring_as_multibyte);
4945 defsubr (&Sstring_as_unibyte);
4946 defsubr (&Sstring_to_multibyte);
4947 defsubr (&Sstring_to_unibyte);
4948 defsubr (&Scopy_alist);
4949 defsubr (&Ssubstring);
4950 defsubr (&Ssubstring_no_properties);
4951 defsubr (&Snthcdr);
4952 defsubr (&Snth);
4953 defsubr (&Selt);
4954 defsubr (&Smember);
4955 defsubr (&Smemq);
4956 defsubr (&Smemql);
4957 defsubr (&Sassq);
4958 defsubr (&Sassoc);
4959 defsubr (&Srassq);
4960 defsubr (&Srassoc);
4961 defsubr (&Sdelq);
4962 defsubr (&Sdelete);
4963 defsubr (&Snreverse);
4964 defsubr (&Sreverse);
4965 defsubr (&Ssort);
4966 defsubr (&Splist_get);
4967 defsubr (&Sget);
4968 defsubr (&Splist_put);
4969 defsubr (&Sput);
4970 defsubr (&Slax_plist_get);
4971 defsubr (&Slax_plist_put);
4972 defsubr (&Seql);
4973 defsubr (&Sequal);
4974 defsubr (&Sequal_including_properties);
4975 defsubr (&Sfillarray);
4976 defsubr (&Sclear_string);
4977 defsubr (&Snconc);
4978 defsubr (&Smapcar);
4979 defsubr (&Smapc);
4980 defsubr (&Smapconcat);
4981 defsubr (&Syes_or_no_p);
4982 defsubr (&Sload_average);
4983 defsubr (&Sfeaturep);
4984 defsubr (&Srequire);
4985 defsubr (&Sprovide);
4986 defsubr (&Splist_member);
4987 defsubr (&Swidget_put);
4988 defsubr (&Swidget_get);
4989 defsubr (&Swidget_apply);
4990 defsubr (&Sbase64_encode_region);
4991 defsubr (&Sbase64_decode_region);
4992 defsubr (&Sbase64_encode_string);
4993 defsubr (&Sbase64_decode_string);
4994 defsubr (&Smd5);
4995 defsubr (&Ssha1);
4996 defsubr (&Slocale_info);
4997 }
4998
4999
5000 void
5001 init_fns (void)
5002 {
5003 }