Update years in copyright notice; nfc.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995,97,1998,2002,2003 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 const unsigned char *source;
151 unsigned char *destination;
152 int src_bytes, dst_bytes;
153 {
154 ...
155 }
156 #endif
157
158 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
159
160 These functions encode SRC_BYTES length text at SOURCE from Emacs'
161 internal multibyte format to CODING. The resulting unibyte text
162 goes to a place pointed to by DESTINATION, the length of which
163 should not exceed DST_BYTES.
164
165 These functions set the information about original and encoded texts
166 in the members `produced', `produced_char', `consumed', and
167 `consumed_char' of the structure *CODING. They also set the member
168 `result' to one of CODING_FINISH_XXX indicating how the encoding
169 finished.
170
171 DST_BYTES zero means that the source area and destination area are
172 overlapped, which means that we can produce encoded text until it
173 reaches at the head of the not-yet-encoded source text.
174
175 Below is a template for these functions. */
176 #if 0
177 static void
178 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
179 struct coding_system *coding;
180 unsigned char *source, *destination;
181 int src_bytes, dst_bytes;
182 {
183 ...
184 }
185 #endif
186
187 /*** COMMONLY USED MACROS ***/
188
189 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
190 get one, two, and three bytes from the source text respectively.
191 If there are not enough bytes in the source, they jump to
192 `label_end_of_loop'. The caller should set variables `coding',
193 `src' and `src_end' to appropriate pointer in advance. These
194 macros are called from decoding routines `decode_coding_XXX', thus
195 it is assumed that the source text is unibyte. */
196
197 #define ONE_MORE_BYTE(c1) \
198 do { \
199 if (src >= src_end) \
200 { \
201 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
202 goto label_end_of_loop; \
203 } \
204 c1 = *src++; \
205 } while (0)
206
207 #define TWO_MORE_BYTES(c1, c2) \
208 do { \
209 if (src + 1 >= src_end) \
210 { \
211 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
212 goto label_end_of_loop; \
213 } \
214 c1 = *src++; \
215 c2 = *src++; \
216 } while (0)
217
218
219 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
220 form if MULTIBYTEP is nonzero. */
221
222 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
223 do { \
224 if (src >= src_end) \
225 { \
226 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
227 goto label_end_of_loop; \
228 } \
229 c1 = *src++; \
230 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
231 c1 = *src++ - 0x20; \
232 } while (0)
233
234 /* Set C to the next character at the source text pointed by `src'.
235 If there are not enough characters in the source, jump to
236 `label_end_of_loop'. The caller should set variables `coding'
237 `src', `src_end', and `translation_table' to appropriate pointers
238 in advance. This macro is used in encoding routines
239 `encode_coding_XXX', thus it assumes that the source text is in
240 multibyte form except for 8-bit characters. 8-bit characters are
241 in multibyte form if coding->src_multibyte is nonzero, else they
242 are represented by a single byte. */
243
244 #define ONE_MORE_CHAR(c) \
245 do { \
246 int len = src_end - src; \
247 int bytes; \
248 if (len <= 0) \
249 { \
250 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
251 goto label_end_of_loop; \
252 } \
253 if (coding->src_multibyte \
254 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
255 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
256 else \
257 c = *src, bytes = 1; \
258 if (!NILP (translation_table)) \
259 c = translate_char (translation_table, c, -1, 0, 0); \
260 src += bytes; \
261 } while (0)
262
263
264 /* Produce a multibyte form of character C to `dst'. Jump to
265 `label_end_of_loop' if there's not enough space at `dst'.
266
267 If we are now in the middle of a composition sequence, the decoded
268 character may be ALTCHAR (for the current composition). In that
269 case, the character goes to coding->cmp_data->data instead of
270 `dst'.
271
272 This macro is used in decoding routines. */
273
274 #define EMIT_CHAR(c) \
275 do { \
276 if (! COMPOSING_P (coding) \
277 || coding->composing == COMPOSITION_RELATIVE \
278 || coding->composing == COMPOSITION_WITH_RULE) \
279 { \
280 int bytes = CHAR_BYTES (c); \
281 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
282 { \
283 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
284 goto label_end_of_loop; \
285 } \
286 dst += CHAR_STRING (c, dst); \
287 coding->produced_char++; \
288 } \
289 \
290 if (COMPOSING_P (coding) \
291 && coding->composing != COMPOSITION_RELATIVE) \
292 { \
293 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
294 coding->composition_rule_follows \
295 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
296 } \
297 } while (0)
298
299
300 #define EMIT_ONE_BYTE(c) \
301 do { \
302 if (dst >= (dst_bytes ? dst_end : src)) \
303 { \
304 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
305 goto label_end_of_loop; \
306 } \
307 *dst++ = c; \
308 } while (0)
309
310 #define EMIT_TWO_BYTES(c1, c2) \
311 do { \
312 if (dst + 2 > (dst_bytes ? dst_end : src)) \
313 { \
314 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
315 goto label_end_of_loop; \
316 } \
317 *dst++ = c1, *dst++ = c2; \
318 } while (0)
319
320 #define EMIT_BYTES(from, to) \
321 do { \
322 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
323 { \
324 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
325 goto label_end_of_loop; \
326 } \
327 while (from < to) \
328 *dst++ = *from++; \
329 } while (0)
330
331 \f
332 /*** 1. Preamble ***/
333
334 #ifdef emacs
335 #include <config.h>
336 #endif
337
338 #include <stdio.h>
339
340 #ifdef emacs
341
342 #include "lisp.h"
343 #include "buffer.h"
344 #include "charset.h"
345 #include "composite.h"
346 #include "ccl.h"
347 #include "coding.h"
348 #include "window.h"
349 #include "intervals.h"
350
351 #else /* not emacs */
352
353 #include "mulelib.h"
354
355 #endif /* not emacs */
356
357 Lisp_Object Qcoding_system, Qeol_type;
358 Lisp_Object Qbuffer_file_coding_system;
359 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
360 Lisp_Object Qno_conversion, Qundecided;
361 Lisp_Object Qcoding_system_history;
362 Lisp_Object Qsafe_chars;
363 Lisp_Object Qvalid_codes;
364
365 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
366 Lisp_Object Qcall_process, Qcall_process_region;
367 Lisp_Object Qstart_process, Qopen_network_stream;
368 Lisp_Object Qtarget_idx;
369
370 /* If a symbol has this property, evaluate the value to define the
371 symbol as a coding system. */
372 Lisp_Object Qcoding_system_define_form;
373
374 Lisp_Object Vselect_safe_coding_system_function;
375
376 int coding_system_require_warning;
377
378 /* Mnemonic string for each format of end-of-line. */
379 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
380 /* Mnemonic string to indicate format of end-of-line is not yet
381 decided. */
382 Lisp_Object eol_mnemonic_undecided;
383
384 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
385 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
386 int system_eol_type;
387
388 #ifdef emacs
389
390 /* Information about which coding system is safe for which chars.
391 The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).
392
393 GENERIC-LIST is a list of generic coding systems which can encode
394 any characters.
395
396 NON-GENERIC-ALIST is an alist of non generic coding systems vs the
397 corresponding char table that contains safe chars. */
398 Lisp_Object Vcoding_system_safe_chars;
399
400 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
401
402 Lisp_Object Qcoding_system_p, Qcoding_system_error;
403
404 /* Coding system emacs-mule and raw-text are for converting only
405 end-of-line format. */
406 Lisp_Object Qemacs_mule, Qraw_text;
407
408 Lisp_Object Qutf_8;
409
410 /* Coding-systems are handed between Emacs Lisp programs and C internal
411 routines by the following three variables. */
412 /* Coding-system for reading files and receiving data from process. */
413 Lisp_Object Vcoding_system_for_read;
414 /* Coding-system for writing files and sending data to process. */
415 Lisp_Object Vcoding_system_for_write;
416 /* Coding-system actually used in the latest I/O. */
417 Lisp_Object Vlast_coding_system_used;
418
419 /* A vector of length 256 which contains information about special
420 Latin codes (especially for dealing with Microsoft codes). */
421 Lisp_Object Vlatin_extra_code_table;
422
423 /* Flag to inhibit code conversion of end-of-line format. */
424 int inhibit_eol_conversion;
425
426 /* Flag to inhibit ISO2022 escape sequence detection. */
427 int inhibit_iso_escape_detection;
428
429 /* Flag to make buffer-file-coding-system inherit from process-coding. */
430 int inherit_process_coding_system;
431
432 /* Coding system to be used to encode text for terminal display. */
433 struct coding_system terminal_coding;
434
435 /* Coding system to be used to encode text for terminal display when
436 terminal coding system is nil. */
437 struct coding_system safe_terminal_coding;
438
439 /* Coding system of what is sent from terminal keyboard. */
440 struct coding_system keyboard_coding;
441
442 /* Default coding system to be used to write a file. */
443 struct coding_system default_buffer_file_coding;
444
445 Lisp_Object Vfile_coding_system_alist;
446 Lisp_Object Vprocess_coding_system_alist;
447 Lisp_Object Vnetwork_coding_system_alist;
448
449 Lisp_Object Vlocale_coding_system;
450
451 #endif /* emacs */
452
453 Lisp_Object Qcoding_category, Qcoding_category_index;
454
455 /* List of symbols `coding-category-xxx' ordered by priority. */
456 Lisp_Object Vcoding_category_list;
457
458 /* Table of coding categories (Lisp symbols). */
459 Lisp_Object Vcoding_category_table;
460
461 /* Table of names of symbol for each coding-category. */
462 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
463 "coding-category-emacs-mule",
464 "coding-category-sjis",
465 "coding-category-iso-7",
466 "coding-category-iso-7-tight",
467 "coding-category-iso-8-1",
468 "coding-category-iso-8-2",
469 "coding-category-iso-7-else",
470 "coding-category-iso-8-else",
471 "coding-category-ccl",
472 "coding-category-big5",
473 "coding-category-utf-8",
474 "coding-category-utf-16-be",
475 "coding-category-utf-16-le",
476 "coding-category-raw-text",
477 "coding-category-binary"
478 };
479
480 /* Table of pointers to coding systems corresponding to each coding
481 categories. */
482 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
483
484 /* Table of coding category masks. Nth element is a mask for a coding
485 category of which priority is Nth. */
486 static
487 int coding_priorities[CODING_CATEGORY_IDX_MAX];
488
489 /* Flag to tell if we look up translation table on character code
490 conversion. */
491 Lisp_Object Venable_character_translation;
492 /* Standard translation table to look up on decoding (reading). */
493 Lisp_Object Vstandard_translation_table_for_decode;
494 /* Standard translation table to look up on encoding (writing). */
495 Lisp_Object Vstandard_translation_table_for_encode;
496
497 Lisp_Object Qtranslation_table;
498 Lisp_Object Qtranslation_table_id;
499 Lisp_Object Qtranslation_table_for_decode;
500 Lisp_Object Qtranslation_table_for_encode;
501
502 /* Alist of charsets vs revision number. */
503 Lisp_Object Vcharset_revision_alist;
504
505 /* Default coding systems used for process I/O. */
506 Lisp_Object Vdefault_process_coding_system;
507
508 /* Char table for translating Quail and self-inserting input. */
509 Lisp_Object Vtranslation_table_for_input;
510
511 /* Global flag to tell that we can't call post-read-conversion and
512 pre-write-conversion functions. Usually the value is zero, but it
513 is set to 1 temporarily while such functions are running. This is
514 to avoid infinite recursive call. */
515 static int inhibit_pre_post_conversion;
516
517 Lisp_Object Qchar_coding_system;
518
519 /* Return `safe-chars' property of CODING_SYSTEM (symbol). Don't check
520 its validity. */
521
522 Lisp_Object
523 coding_safe_chars (coding_system)
524 Lisp_Object coding_system;
525 {
526 Lisp_Object coding_spec, plist, safe_chars;
527
528 coding_spec = Fget (coding_system, Qcoding_system);
529 plist = XVECTOR (coding_spec)->contents[3];
530 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
531 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
532 }
533
534 #define CODING_SAFE_CHAR_P(safe_chars, c) \
535 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
536
537 \f
538 /*** 2. Emacs internal format (emacs-mule) handlers ***/
539
540 /* Emacs' internal format for representation of multiple character
541 sets is a kind of multi-byte encoding, i.e. characters are
542 represented by variable-length sequences of one-byte codes.
543
544 ASCII characters and control characters (e.g. `tab', `newline') are
545 represented by one-byte sequences which are their ASCII codes, in
546 the range 0x00 through 0x7F.
547
548 8-bit characters of the range 0x80..0x9F are represented by
549 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
550 code + 0x20).
551
552 8-bit characters of the range 0xA0..0xFF are represented by
553 one-byte sequences which are their 8-bit code.
554
555 The other characters are represented by a sequence of `base
556 leading-code', optional `extended leading-code', and one or two
557 `position-code's. The length of the sequence is determined by the
558 base leading-code. Leading-code takes the range 0x81 through 0x9D,
559 whereas extended leading-code and position-code take the range 0xA0
560 through 0xFF. See `charset.h' for more details about leading-code
561 and position-code.
562
563 --- CODE RANGE of Emacs' internal format ---
564 character set range
565 ------------- -----
566 ascii 0x00..0x7F
567 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
568 eight-bit-graphic 0xA0..0xBF
569 ELSE 0x81..0x9D + [0xA0..0xFF]+
570 ---------------------------------------------
571
572 As this is the internal character representation, the format is
573 usually not used externally (i.e. in a file or in a data sent to a
574 process). But, it is possible to have a text externally in this
575 format (i.e. by encoding by the coding system `emacs-mule').
576
577 In that case, a sequence of one-byte codes has a slightly different
578 form.
579
580 Firstly, all characters in eight-bit-control are represented by
581 one-byte sequences which are their 8-bit code.
582
583 Next, character composition data are represented by the byte
584 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
585 where,
586 METHOD is 0xF0 plus one of composition method (enum
587 composition_method),
588
589 BYTES is 0xA0 plus the byte length of these composition data,
590
591 CHARS is 0xA0 plus the number of characters composed by these
592 data,
593
594 COMPONENTs are characters of multibyte form or composition
595 rules encoded by two-byte of ASCII codes.
596
597 In addition, for backward compatibility, the following formats are
598 also recognized as composition data on decoding.
599
600 0x80 MSEQ ...
601 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
602
603 Here,
604 MSEQ is a multibyte form but in these special format:
605 ASCII: 0xA0 ASCII_CODE+0x80,
606 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
607 RULE is a one byte code of the range 0xA0..0xF0 that
608 represents a composition rule.
609 */
610
611 enum emacs_code_class_type emacs_code_class[256];
612
613 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
614 Check if a text is encoded in Emacs' internal format. If it is,
615 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
616
617 static int
618 detect_coding_emacs_mule (src, src_end, multibytep)
619 unsigned char *src, *src_end;
620 int multibytep;
621 {
622 unsigned char c;
623 int composing = 0;
624 /* Dummy for ONE_MORE_BYTE. */
625 struct coding_system dummy_coding;
626 struct coding_system *coding = &dummy_coding;
627
628 while (1)
629 {
630 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
631
632 if (composing)
633 {
634 if (c < 0xA0)
635 composing = 0;
636 else if (c == 0xA0)
637 {
638 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
639 c &= 0x7F;
640 }
641 else
642 c -= 0x20;
643 }
644
645 if (c < 0x20)
646 {
647 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
648 return 0;
649 }
650 else if (c >= 0x80 && c < 0xA0)
651 {
652 if (c == 0x80)
653 /* Old leading code for a composite character. */
654 composing = 1;
655 else
656 {
657 unsigned char *src_base = src - 1;
658 int bytes;
659
660 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
661 bytes))
662 return 0;
663 src = src_base + bytes;
664 }
665 }
666 }
667 label_end_of_loop:
668 return CODING_CATEGORY_MASK_EMACS_MULE;
669 }
670
671
672 /* Record the starting position START and METHOD of one composition. */
673
674 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
675 do { \
676 struct composition_data *cmp_data = coding->cmp_data; \
677 int *data = cmp_data->data + cmp_data->used; \
678 coding->cmp_data_start = cmp_data->used; \
679 data[0] = -1; \
680 data[1] = cmp_data->char_offset + start; \
681 data[3] = (int) method; \
682 cmp_data->used += 4; \
683 } while (0)
684
685 /* Record the ending position END of the current composition. */
686
687 #define CODING_ADD_COMPOSITION_END(coding, end) \
688 do { \
689 struct composition_data *cmp_data = coding->cmp_data; \
690 int *data = cmp_data->data + coding->cmp_data_start; \
691 data[0] = cmp_data->used - coding->cmp_data_start; \
692 data[2] = cmp_data->char_offset + end; \
693 } while (0)
694
695 /* Record one COMPONENT (alternate character or composition rule). */
696
697 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
698 do { \
699 coding->cmp_data->data[coding->cmp_data->used++] = component; \
700 if (coding->cmp_data->used - coding->cmp_data_start \
701 == COMPOSITION_DATA_MAX_BUNCH_LENGTH) \
702 { \
703 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
704 coding->composing = COMPOSITION_NO; \
705 } \
706 } while (0)
707
708
709 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
710 is not less than SRC_END, return -1 without incrementing Src. */
711
712 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
713
714
715 /* Decode a character represented as a component of composition
716 sequence of Emacs 20 style at SRC. Set C to that character, store
717 its multibyte form sequence at P, and set P to the end of that
718 sequence. If no valid character is found, set C to -1. */
719
720 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
721 do { \
722 int bytes; \
723 \
724 c = SAFE_ONE_MORE_BYTE (); \
725 if (c < 0) \
726 break; \
727 if (CHAR_HEAD_P (c)) \
728 c = -1; \
729 else if (c == 0xA0) \
730 { \
731 c = SAFE_ONE_MORE_BYTE (); \
732 if (c < 0xA0) \
733 c = -1; \
734 else \
735 { \
736 c -= 0xA0; \
737 *p++ = c; \
738 } \
739 } \
740 else if (BASE_LEADING_CODE_P (c - 0x20)) \
741 { \
742 unsigned char *p0 = p; \
743 \
744 c -= 0x20; \
745 *p++ = c; \
746 bytes = BYTES_BY_CHAR_HEAD (c); \
747 while (--bytes) \
748 { \
749 c = SAFE_ONE_MORE_BYTE (); \
750 if (c < 0) \
751 break; \
752 *p++ = c; \
753 } \
754 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes) \
755 || (coding->flags /* We are recovering a file. */ \
756 && p0[0] == LEADING_CODE_8_BIT_CONTROL \
757 && ! CHAR_HEAD_P (p0[1]))) \
758 c = STRING_CHAR (p0, bytes); \
759 else \
760 c = -1; \
761 } \
762 else \
763 c = -1; \
764 } while (0)
765
766
767 /* Decode a composition rule represented as a component of composition
768 sequence of Emacs 20 style at SRC. Set C to the rule. If not
769 valid rule is found, set C to -1. */
770
771 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
772 do { \
773 c = SAFE_ONE_MORE_BYTE (); \
774 c -= 0xA0; \
775 if (c < 0 || c >= 81) \
776 c = -1; \
777 else \
778 { \
779 gref = c / 9, nref = c % 9; \
780 c = COMPOSITION_ENCODE_RULE (gref, nref); \
781 } \
782 } while (0)
783
784
785 /* Decode composition sequence encoded by `emacs-mule' at the source
786 pointed by SRC. SRC_END is the end of source. Store information
787 of the composition in CODING->cmp_data.
788
789 For backward compatibility, decode also a composition sequence of
790 Emacs 20 style. In that case, the composition sequence contains
791 characters that should be extracted into a buffer or string. Store
792 those characters at *DESTINATION in multibyte form.
793
794 If we encounter an invalid byte sequence, return 0.
795 If we encounter an insufficient source or destination, or
796 insufficient space in CODING->cmp_data, return 1.
797 Otherwise, return consumed bytes in the source.
798
799 */
800 static INLINE int
801 decode_composition_emacs_mule (coding, src, src_end,
802 destination, dst_end, dst_bytes)
803 struct coding_system *coding;
804 const unsigned char *src, *src_end;
805 unsigned char **destination, *dst_end;
806 int dst_bytes;
807 {
808 unsigned char *dst = *destination;
809 int method, data_len, nchars;
810 const unsigned char *src_base = src++;
811 /* Store components of composition. */
812 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
813 int ncomponent;
814 /* Store multibyte form of characters to be composed. This is for
815 Emacs 20 style composition sequence. */
816 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
817 unsigned char *bufp = buf;
818 int c, i, gref, nref;
819
820 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
821 >= COMPOSITION_DATA_SIZE)
822 {
823 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
824 return -1;
825 }
826
827 ONE_MORE_BYTE (c);
828 if (c - 0xF0 >= COMPOSITION_RELATIVE
829 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
830 {
831 int with_rule;
832
833 method = c - 0xF0;
834 with_rule = (method == COMPOSITION_WITH_RULE
835 || method == COMPOSITION_WITH_RULE_ALTCHARS);
836 ONE_MORE_BYTE (c);
837 data_len = c - 0xA0;
838 if (data_len < 4
839 || src_base + data_len > src_end)
840 return 0;
841 ONE_MORE_BYTE (c);
842 nchars = c - 0xA0;
843 if (c < 1)
844 return 0;
845 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
846 {
847 /* If it is longer than this, it can't be valid. */
848 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
849 return 0;
850
851 if (ncomponent % 2 && with_rule)
852 {
853 ONE_MORE_BYTE (gref);
854 gref -= 32;
855 ONE_MORE_BYTE (nref);
856 nref -= 32;
857 c = COMPOSITION_ENCODE_RULE (gref, nref);
858 }
859 else
860 {
861 int bytes;
862 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
863 || (coding->flags /* We are recovering a file. */
864 && src[0] == LEADING_CODE_8_BIT_CONTROL
865 && ! CHAR_HEAD_P (src[1])))
866 c = STRING_CHAR (src, bytes);
867 else
868 c = *src, bytes = 1;
869 src += bytes;
870 }
871 component[ncomponent] = c;
872 }
873 }
874 else
875 {
876 /* This may be an old Emacs 20 style format. See the comment at
877 the section 2 of this file. */
878 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
879 if (src == src_end
880 && !(coding->mode & CODING_MODE_LAST_BLOCK))
881 goto label_end_of_loop;
882
883 src_end = src;
884 src = src_base + 1;
885 if (c < 0xC0)
886 {
887 method = COMPOSITION_RELATIVE;
888 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
889 {
890 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
891 if (c < 0)
892 break;
893 component[ncomponent++] = c;
894 }
895 if (ncomponent < 2)
896 return 0;
897 nchars = ncomponent;
898 }
899 else if (c == 0xFF)
900 {
901 method = COMPOSITION_WITH_RULE;
902 src++;
903 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
904 if (c < 0)
905 return 0;
906 component[0] = c;
907 for (ncomponent = 1;
908 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
909 {
910 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
911 if (c < 0)
912 break;
913 component[ncomponent++] = c;
914 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
915 if (c < 0)
916 break;
917 component[ncomponent++] = c;
918 }
919 if (ncomponent < 3)
920 return 0;
921 nchars = (ncomponent + 1) / 2;
922 }
923 else
924 return 0;
925 }
926
927 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
928 {
929 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
930 for (i = 0; i < ncomponent; i++)
931 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
932 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
933 if (buf < bufp)
934 {
935 unsigned char *p = buf;
936 EMIT_BYTES (p, bufp);
937 *destination += bufp - buf;
938 coding->produced_char += nchars;
939 }
940 return (src - src_base);
941 }
942 label_end_of_loop:
943 return -1;
944 }
945
946 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
947
948 static void
949 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
950 struct coding_system *coding;
951 const unsigned char *source;
952 unsigned char *destination;
953 int src_bytes, dst_bytes;
954 {
955 const unsigned char *src = source;
956 const unsigned char *src_end = source + src_bytes;
957 unsigned char *dst = destination;
958 unsigned char *dst_end = destination + dst_bytes;
959 /* SRC_BASE remembers the start position in source in each loop.
960 The loop will be exited when there's not enough source code, or
961 when there's not enough destination area to produce a
962 character. */
963 const unsigned char *src_base;
964
965 coding->produced_char = 0;
966 while ((src_base = src) < src_end)
967 {
968 unsigned char tmp[MAX_MULTIBYTE_LENGTH];
969 const unsigned char *p;
970 int bytes;
971
972 if (*src == '\r')
973 {
974 int c = *src++;
975
976 if (coding->eol_type == CODING_EOL_CR)
977 c = '\n';
978 else if (coding->eol_type == CODING_EOL_CRLF)
979 {
980 ONE_MORE_BYTE (c);
981 if (c != '\n')
982 {
983 src--;
984 c = '\r';
985 }
986 }
987 *dst++ = c;
988 coding->produced_char++;
989 continue;
990 }
991 else if (*src == '\n')
992 {
993 if ((coding->eol_type == CODING_EOL_CR
994 || coding->eol_type == CODING_EOL_CRLF)
995 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
996 {
997 coding->result = CODING_FINISH_INCONSISTENT_EOL;
998 goto label_end_of_loop;
999 }
1000 *dst++ = *src++;
1001 coding->produced_char++;
1002 continue;
1003 }
1004 else if (*src == 0x80 && coding->cmp_data)
1005 {
1006 /* Start of composition data. */
1007 int consumed = decode_composition_emacs_mule (coding, src, src_end,
1008 &dst, dst_end,
1009 dst_bytes);
1010 if (consumed < 0)
1011 goto label_end_of_loop;
1012 else if (consumed > 0)
1013 {
1014 src += consumed;
1015 continue;
1016 }
1017 bytes = CHAR_STRING (*src, tmp);
1018 p = tmp;
1019 src++;
1020 }
1021 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
1022 || (coding->flags /* We are recovering a file. */
1023 && src[0] == LEADING_CODE_8_BIT_CONTROL
1024 && ! CHAR_HEAD_P (src[1])))
1025 {
1026 p = src;
1027 src += bytes;
1028 }
1029 else
1030 {
1031 int i, c;
1032
1033 bytes = BYTES_BY_CHAR_HEAD (*src);
1034 src++;
1035 for (i = 1; i < bytes; i++)
1036 {
1037 ONE_MORE_BYTE (c);
1038 if (CHAR_HEAD_P (c))
1039 break;
1040 }
1041 if (i < bytes)
1042 {
1043 bytes = CHAR_STRING (*src_base, tmp);
1044 p = tmp;
1045 src = src_base + 1;
1046 }
1047 else
1048 {
1049 p = src_base;
1050 }
1051 }
1052 if (dst + bytes >= (dst_bytes ? dst_end : src))
1053 {
1054 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1055 break;
1056 }
1057 while (bytes--) *dst++ = *p++;
1058 coding->produced_char++;
1059 }
1060 label_end_of_loop:
1061 coding->consumed = coding->consumed_char = src_base - source;
1062 coding->produced = dst - destination;
1063 }
1064
1065
1066 /* Encode composition data stored at DATA into a special byte sequence
1067 starting by 0x80. Update CODING->cmp_data_start and maybe
1068 CODING->cmp_data for the next call. */
1069
1070 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1071 do { \
1072 unsigned char buf[1024], *p0 = buf, *p; \
1073 int len = data[0]; \
1074 int i; \
1075 \
1076 buf[0] = 0x80; \
1077 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1078 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1079 p = buf + 4; \
1080 if (data[3] == COMPOSITION_WITH_RULE \
1081 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1082 { \
1083 p += CHAR_STRING (data[4], p); \
1084 for (i = 5; i < len; i += 2) \
1085 { \
1086 int gref, nref; \
1087 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1088 *p++ = 0x20 + gref; \
1089 *p++ = 0x20 + nref; \
1090 p += CHAR_STRING (data[i + 1], p); \
1091 } \
1092 } \
1093 else \
1094 { \
1095 for (i = 4; i < len; i++) \
1096 p += CHAR_STRING (data[i], p); \
1097 } \
1098 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1099 \
1100 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1101 { \
1102 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1103 goto label_end_of_loop; \
1104 } \
1105 while (p0 < p) \
1106 *dst++ = *p0++; \
1107 coding->cmp_data_start += data[0]; \
1108 if (coding->cmp_data_start == coding->cmp_data->used \
1109 && coding->cmp_data->next) \
1110 { \
1111 coding->cmp_data = coding->cmp_data->next; \
1112 coding->cmp_data_start = 0; \
1113 } \
1114 } while (0)
1115
1116
1117 static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1118 unsigned char *, int, int));
1119
1120 static void
1121 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1122 struct coding_system *coding;
1123 const unsigned char *source;
1124 unsigned char *destination;
1125 int src_bytes, dst_bytes;
1126 {
1127 const unsigned char *src = source;
1128 const unsigned char *src_end = source + src_bytes;
1129 unsigned char *dst = destination;
1130 unsigned char *dst_end = destination + dst_bytes;
1131 const unsigned char *src_base;
1132 int c;
1133 int char_offset;
1134 int *data;
1135
1136 Lisp_Object translation_table;
1137
1138 translation_table = Qnil;
1139
1140 /* Optimization for the case that there's no composition. */
1141 if (!coding->cmp_data || coding->cmp_data->used == 0)
1142 {
1143 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1144 return;
1145 }
1146
1147 char_offset = coding->cmp_data->char_offset;
1148 data = coding->cmp_data->data + coding->cmp_data_start;
1149 while (1)
1150 {
1151 src_base = src;
1152
1153 /* If SRC starts a composition, encode the information about the
1154 composition in advance. */
1155 if (coding->cmp_data_start < coding->cmp_data->used
1156 && char_offset + coding->consumed_char == data[1])
1157 {
1158 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1159 char_offset = coding->cmp_data->char_offset;
1160 data = coding->cmp_data->data + coding->cmp_data_start;
1161 }
1162
1163 ONE_MORE_CHAR (c);
1164 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1165 || coding->eol_type == CODING_EOL_CR))
1166 {
1167 if (coding->eol_type == CODING_EOL_CRLF)
1168 EMIT_TWO_BYTES ('\r', c);
1169 else
1170 EMIT_ONE_BYTE ('\r');
1171 }
1172 else if (SINGLE_BYTE_CHAR_P (c))
1173 {
1174 if (coding->flags && ! ASCII_BYTE_P (c))
1175 {
1176 /* As we are auto saving, retain the multibyte form for
1177 8-bit chars. */
1178 unsigned char buf[MAX_MULTIBYTE_LENGTH];
1179 int bytes = CHAR_STRING (c, buf);
1180
1181 if (bytes == 1)
1182 EMIT_ONE_BYTE (buf[0]);
1183 else
1184 EMIT_TWO_BYTES (buf[0], buf[1]);
1185 }
1186 else
1187 EMIT_ONE_BYTE (c);
1188 }
1189 else
1190 EMIT_BYTES (src_base, src);
1191 coding->consumed_char++;
1192 }
1193 label_end_of_loop:
1194 coding->consumed = src_base - source;
1195 coding->produced = coding->produced_char = dst - destination;
1196 return;
1197 }
1198
1199 \f
1200 /*** 3. ISO2022 handlers ***/
1201
1202 /* The following note describes the coding system ISO2022 briefly.
1203 Since the intention of this note is to help understand the
1204 functions in this file, some parts are NOT ACCURATE or are OVERLY
1205 SIMPLIFIED. For thorough understanding, please refer to the
1206 original document of ISO2022. This is equivalent to the standard
1207 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1208
1209 ISO2022 provides many mechanisms to encode several character sets
1210 in 7-bit and 8-bit environments. For 7-bit environments, all text
1211 is encoded using bytes less than 128. This may make the encoded
1212 text a little bit longer, but the text passes more easily through
1213 several types of gateway, some of which strip off the MSB (Most
1214 Significant Bit).
1215
1216 There are two kinds of character sets: control character sets and
1217 graphic character sets. The former contain control characters such
1218 as `newline' and `escape' to provide control functions (control
1219 functions are also provided by escape sequences). The latter
1220 contain graphic characters such as 'A' and '-'. Emacs recognizes
1221 two control character sets and many graphic character sets.
1222
1223 Graphic character sets are classified into one of the following
1224 four classes, according to the number of bytes (DIMENSION) and
1225 number of characters in one dimension (CHARS) of the set:
1226 - DIMENSION1_CHARS94
1227 - DIMENSION1_CHARS96
1228 - DIMENSION2_CHARS94
1229 - DIMENSION2_CHARS96
1230
1231 In addition, each character set is assigned an identification tag,
1232 unique for each set, called the "final character" (denoted as <F>
1233 hereafter). The <F> of each character set is decided by ECMA(*)
1234 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1235 (0x30..0x3F are for private use only).
1236
1237 Note (*): ECMA = European Computer Manufacturers Association
1238
1239 Here are examples of graphic character sets [NAME(<F>)]:
1240 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1241 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1242 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1243 o DIMENSION2_CHARS96 -- none for the moment
1244
1245 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1246 C0 [0x00..0x1F] -- control character plane 0
1247 GL [0x20..0x7F] -- graphic character plane 0
1248 C1 [0x80..0x9F] -- control character plane 1
1249 GR [0xA0..0xFF] -- graphic character plane 1
1250
1251 A control character set is directly designated and invoked to C0 or
1252 C1 by an escape sequence. The most common case is that:
1253 - ISO646's control character set is designated/invoked to C0, and
1254 - ISO6429's control character set is designated/invoked to C1,
1255 and usually these designations/invocations are omitted in encoded
1256 text. In a 7-bit environment, only C0 can be used, and a control
1257 character for C1 is encoded by an appropriate escape sequence to
1258 fit into the environment. All control characters for C1 are
1259 defined to have corresponding escape sequences.
1260
1261 A graphic character set is at first designated to one of four
1262 graphic registers (G0 through G3), then these graphic registers are
1263 invoked to GL or GR. These designations and invocations can be
1264 done independently. The most common case is that G0 is invoked to
1265 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1266 these invocations and designations are omitted in encoded text.
1267 In a 7-bit environment, only GL can be used.
1268
1269 When a graphic character set of CHARS94 is invoked to GL, codes
1270 0x20 and 0x7F of the GL area work as control characters SPACE and
1271 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1272 be used.
1273
1274 There are two ways of invocation: locking-shift and single-shift.
1275 With locking-shift, the invocation lasts until the next different
1276 invocation, whereas with single-shift, the invocation affects the
1277 following character only and doesn't affect the locking-shift
1278 state. Invocations are done by the following control characters or
1279 escape sequences:
1280
1281 ----------------------------------------------------------------------
1282 abbrev function cntrl escape seq description
1283 ----------------------------------------------------------------------
1284 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1285 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1286 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1287 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1288 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1289 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1290 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1291 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1292 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1293 ----------------------------------------------------------------------
1294 (*) These are not used by any known coding system.
1295
1296 Control characters for these functions are defined by macros
1297 ISO_CODE_XXX in `coding.h'.
1298
1299 Designations are done by the following escape sequences:
1300 ----------------------------------------------------------------------
1301 escape sequence description
1302 ----------------------------------------------------------------------
1303 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1304 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1305 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1306 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1307 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1308 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1309 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1310 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1311 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1312 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1313 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1314 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1315 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1316 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1317 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1318 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1319 ----------------------------------------------------------------------
1320
1321 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1322 of dimension 1, chars 94, and final character <F>, etc...
1323
1324 Note (*): Although these designations are not allowed in ISO2022,
1325 Emacs accepts them on decoding, and produces them on encoding
1326 CHARS96 character sets in a coding system which is characterized as
1327 7-bit environment, non-locking-shift, and non-single-shift.
1328
1329 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1330 '(' can be omitted. We refer to this as "short-form" hereafter.
1331
1332 Now you may notice that there are a lot of ways of encoding the
1333 same multilingual text in ISO2022. Actually, there exist many
1334 coding systems such as Compound Text (used in X11's inter client
1335 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1336 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1337 localized platforms), and all of these are variants of ISO2022.
1338
1339 In addition to the above, Emacs handles two more kinds of escape
1340 sequences: ISO6429's direction specification and Emacs' private
1341 sequence for specifying character composition.
1342
1343 ISO6429's direction specification takes the following form:
1344 o CSI ']' -- end of the current direction
1345 o CSI '0' ']' -- end of the current direction
1346 o CSI '1' ']' -- start of left-to-right text
1347 o CSI '2' ']' -- start of right-to-left text
1348 The control character CSI (0x9B: control sequence introducer) is
1349 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1350
1351 Character composition specification takes the following form:
1352 o ESC '0' -- start relative composition
1353 o ESC '1' -- end composition
1354 o ESC '2' -- start rule-base composition (*)
1355 o ESC '3' -- start relative composition with alternate chars (**)
1356 o ESC '4' -- start rule-base composition with alternate chars (**)
1357 Since these are not standard escape sequences of any ISO standard,
1358 the use of them with these meanings is restricted to Emacs only.
1359
1360 (*) This form is used only in Emacs 20.5 and older versions,
1361 but the newer versions can safely decode it.
1362 (**) This form is used only in Emacs 21.1 and newer versions,
1363 and the older versions can't decode it.
1364
1365 Here's a list of example usages of these composition escape
1366 sequences (categorized by `enum composition_method').
1367
1368 COMPOSITION_RELATIVE:
1369 ESC 0 CHAR [ CHAR ] ESC 1
1370 COMPOSITION_WITH_RULE:
1371 ESC 2 CHAR [ RULE CHAR ] ESC 1
1372 COMPOSITION_WITH_ALTCHARS:
1373 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1374 COMPOSITION_WITH_RULE_ALTCHARS:
1375 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1376
1377 enum iso_code_class_type iso_code_class[256];
1378
1379 #define CHARSET_OK(idx, charset, c) \
1380 (coding_system_table[idx] \
1381 && (charset == CHARSET_ASCII \
1382 || (safe_chars = coding_safe_chars (coding_system_table[idx]->symbol), \
1383 CODING_SAFE_CHAR_P (safe_chars, c))) \
1384 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1385 charset) \
1386 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1387
1388 #define SHIFT_OUT_OK(idx) \
1389 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1390
1391 #define COMPOSITION_OK(idx) \
1392 (coding_system_table[idx]->composing != COMPOSITION_DISABLED)
1393
1394 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1395 Check if a text is encoded in ISO2022. If it is, return an
1396 integer in which appropriate flag bits any of:
1397 CODING_CATEGORY_MASK_ISO_7
1398 CODING_CATEGORY_MASK_ISO_7_TIGHT
1399 CODING_CATEGORY_MASK_ISO_8_1
1400 CODING_CATEGORY_MASK_ISO_8_2
1401 CODING_CATEGORY_MASK_ISO_7_ELSE
1402 CODING_CATEGORY_MASK_ISO_8_ELSE
1403 are set. If a code which should never appear in ISO2022 is found,
1404 returns 0. */
1405
1406 static int
1407 detect_coding_iso2022 (src, src_end, multibytep)
1408 unsigned char *src, *src_end;
1409 int multibytep;
1410 {
1411 int mask = CODING_CATEGORY_MASK_ISO;
1412 int mask_found = 0;
1413 int reg[4], shift_out = 0, single_shifting = 0;
1414 int c, c1, charset;
1415 /* Dummy for ONE_MORE_BYTE. */
1416 struct coding_system dummy_coding;
1417 struct coding_system *coding = &dummy_coding;
1418 Lisp_Object safe_chars;
1419
1420 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1421 while (mask && src < src_end)
1422 {
1423 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1424 retry:
1425 switch (c)
1426 {
1427 case ISO_CODE_ESC:
1428 if (inhibit_iso_escape_detection)
1429 break;
1430 single_shifting = 0;
1431 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1432 if (c >= '(' && c <= '/')
1433 {
1434 /* Designation sequence for a charset of dimension 1. */
1435 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1436 if (c1 < ' ' || c1 >= 0x80
1437 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1438 /* Invalid designation sequence. Just ignore. */
1439 break;
1440 reg[(c - '(') % 4] = charset;
1441 }
1442 else if (c == '$')
1443 {
1444 /* Designation sequence for a charset of dimension 2. */
1445 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1446 if (c >= '@' && c <= 'B')
1447 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1448 reg[0] = charset = iso_charset_table[1][0][c];
1449 else if (c >= '(' && c <= '/')
1450 {
1451 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1452 if (c1 < ' ' || c1 >= 0x80
1453 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1454 /* Invalid designation sequence. Just ignore. */
1455 break;
1456 reg[(c - '(') % 4] = charset;
1457 }
1458 else
1459 /* Invalid designation sequence. Just ignore. */
1460 break;
1461 }
1462 else if (c == 'N' || c == 'O')
1463 {
1464 /* ESC <Fe> for SS2 or SS3. */
1465 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1466 break;
1467 }
1468 else if (c >= '0' && c <= '4')
1469 {
1470 /* ESC <Fp> for start/end composition. */
1471 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7))
1472 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1473 else
1474 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1475 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT))
1476 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1477 else
1478 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1479 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_1))
1480 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1481 else
1482 mask &= ~CODING_CATEGORY_MASK_ISO_8_1;
1483 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_2))
1484 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1485 else
1486 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1487 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_ELSE))
1488 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1489 else
1490 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1491 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_ELSE))
1492 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1493 else
1494 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1495 break;
1496 }
1497 else
1498 /* Invalid escape sequence. Just ignore. */
1499 break;
1500
1501 /* We found a valid designation sequence for CHARSET. */
1502 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1503 c = MAKE_CHAR (charset, 0, 0);
1504 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1505 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1506 else
1507 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1508 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1509 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1510 else
1511 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1512 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1513 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1514 else
1515 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1516 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1517 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1518 else
1519 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1520 break;
1521
1522 case ISO_CODE_SO:
1523 if (inhibit_iso_escape_detection)
1524 break;
1525 single_shifting = 0;
1526 if (shift_out == 0
1527 && (reg[1] >= 0
1528 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1529 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1530 {
1531 /* Locking shift out. */
1532 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1533 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1534 }
1535 break;
1536
1537 case ISO_CODE_SI:
1538 if (inhibit_iso_escape_detection)
1539 break;
1540 single_shifting = 0;
1541 if (shift_out == 1)
1542 {
1543 /* Locking shift in. */
1544 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1545 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1546 }
1547 break;
1548
1549 case ISO_CODE_CSI:
1550 single_shifting = 0;
1551 case ISO_CODE_SS2:
1552 case ISO_CODE_SS3:
1553 {
1554 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1555
1556 if (inhibit_iso_escape_detection)
1557 break;
1558 if (c != ISO_CODE_CSI)
1559 {
1560 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1561 & CODING_FLAG_ISO_SINGLE_SHIFT)
1562 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1563 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1564 & CODING_FLAG_ISO_SINGLE_SHIFT)
1565 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1566 single_shifting = 1;
1567 }
1568 if (VECTORP (Vlatin_extra_code_table)
1569 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1570 {
1571 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1572 & CODING_FLAG_ISO_LATIN_EXTRA)
1573 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1574 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1575 & CODING_FLAG_ISO_LATIN_EXTRA)
1576 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1577 }
1578 mask &= newmask;
1579 mask_found |= newmask;
1580 }
1581 break;
1582
1583 default:
1584 if (c < 0x80)
1585 {
1586 single_shifting = 0;
1587 break;
1588 }
1589 else if (c < 0xA0)
1590 {
1591 single_shifting = 0;
1592 if (VECTORP (Vlatin_extra_code_table)
1593 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1594 {
1595 int newmask = 0;
1596
1597 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1598 & CODING_FLAG_ISO_LATIN_EXTRA)
1599 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1600 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1601 & CODING_FLAG_ISO_LATIN_EXTRA)
1602 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1603 mask &= newmask;
1604 mask_found |= newmask;
1605 }
1606 else
1607 return 0;
1608 }
1609 else
1610 {
1611 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1612 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1613 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1614 /* Check the length of succeeding codes of the range
1615 0xA0..0FF. If the byte length is odd, we exclude
1616 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1617 when we are not single shifting. */
1618 if (!single_shifting
1619 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1620 {
1621 int i = 1;
1622
1623 c = -1;
1624 while (src < src_end)
1625 {
1626 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1627 if (c < 0xA0)
1628 break;
1629 i++;
1630 }
1631
1632 if (i & 1 && src < src_end)
1633 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1634 else
1635 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1636 if (c >= 0)
1637 /* This means that we have read one extra byte. */
1638 goto retry;
1639 }
1640 }
1641 break;
1642 }
1643 }
1644 label_end_of_loop:
1645 return (mask & mask_found);
1646 }
1647
1648 /* Decode a character of which charset is CHARSET, the 1st position
1649 code is C1, the 2nd position code is C2, and return the decoded
1650 character code. If the variable `translation_table' is non-nil,
1651 returned the translated code. */
1652
1653 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1654 (NILP (translation_table) \
1655 ? MAKE_CHAR (charset, c1, c2) \
1656 : translate_char (translation_table, -1, charset, c1, c2))
1657
1658 /* Set designation state into CODING. */
1659 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1660 do { \
1661 int charset, c; \
1662 \
1663 if (final_char < '0' || final_char >= 128) \
1664 goto label_invalid_code; \
1665 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1666 make_number (chars), \
1667 make_number (final_char)); \
1668 c = MAKE_CHAR (charset, 0, 0); \
1669 if (charset >= 0 \
1670 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1671 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1672 { \
1673 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1674 && reg == 0 \
1675 && charset == CHARSET_ASCII) \
1676 { \
1677 /* We should insert this designation sequence as is so \
1678 that it is surely written back to a file. */ \
1679 coding->spec.iso2022.last_invalid_designation_register = -1; \
1680 goto label_invalid_code; \
1681 } \
1682 coding->spec.iso2022.last_invalid_designation_register = -1; \
1683 if ((coding->mode & CODING_MODE_DIRECTION) \
1684 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1685 charset = CHARSET_REVERSE_CHARSET (charset); \
1686 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1687 } \
1688 else \
1689 { \
1690 coding->spec.iso2022.last_invalid_designation_register = reg; \
1691 goto label_invalid_code; \
1692 } \
1693 } while (0)
1694
1695 /* Allocate a memory block for storing information about compositions.
1696 The block is chained to the already allocated blocks. */
1697
1698 void
1699 coding_allocate_composition_data (coding, char_offset)
1700 struct coding_system *coding;
1701 int char_offset;
1702 {
1703 struct composition_data *cmp_data
1704 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1705
1706 cmp_data->char_offset = char_offset;
1707 cmp_data->used = 0;
1708 cmp_data->prev = coding->cmp_data;
1709 cmp_data->next = NULL;
1710 if (coding->cmp_data)
1711 coding->cmp_data->next = cmp_data;
1712 coding->cmp_data = cmp_data;
1713 coding->cmp_data_start = 0;
1714 coding->composing = COMPOSITION_NO;
1715 }
1716
1717 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1718 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1719 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1720 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1721 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1722 */
1723
1724 #define DECODE_COMPOSITION_START(c1) \
1725 do { \
1726 if (coding->composing == COMPOSITION_DISABLED) \
1727 { \
1728 *dst++ = ISO_CODE_ESC; \
1729 *dst++ = c1 & 0x7f; \
1730 coding->produced_char += 2; \
1731 } \
1732 else if (!COMPOSING_P (coding)) \
1733 { \
1734 /* This is surely the start of a composition. We must be sure \
1735 that coding->cmp_data has enough space to store the \
1736 information about the composition. If not, terminate the \
1737 current decoding loop, allocate one more memory block for \
1738 coding->cmp_data in the caller, then start the decoding \
1739 loop again. We can't allocate memory here directly because \
1740 it may cause buffer/string relocation. */ \
1741 if (!coding->cmp_data \
1742 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1743 >= COMPOSITION_DATA_SIZE)) \
1744 { \
1745 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1746 goto label_end_of_loop; \
1747 } \
1748 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1749 : c1 == '2' ? COMPOSITION_WITH_RULE \
1750 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1751 : COMPOSITION_WITH_RULE_ALTCHARS); \
1752 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1753 coding->composing); \
1754 coding->composition_rule_follows = 0; \
1755 } \
1756 else \
1757 { \
1758 /* We are already handling a composition. If the method is \
1759 the following two, the codes following the current escape \
1760 sequence are actual characters stored in a buffer. */ \
1761 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1762 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1763 { \
1764 coding->composing = COMPOSITION_RELATIVE; \
1765 coding->composition_rule_follows = 0; \
1766 } \
1767 } \
1768 } while (0)
1769
1770 /* Handle composition end sequence ESC 1. */
1771
1772 #define DECODE_COMPOSITION_END(c1) \
1773 do { \
1774 if (! COMPOSING_P (coding)) \
1775 { \
1776 *dst++ = ISO_CODE_ESC; \
1777 *dst++ = c1; \
1778 coding->produced_char += 2; \
1779 } \
1780 else \
1781 { \
1782 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1783 coding->composing = COMPOSITION_NO; \
1784 } \
1785 } while (0)
1786
1787 /* Decode a composition rule from the byte C1 (and maybe one more byte
1788 from SRC) and store one encoded composition rule in
1789 coding->cmp_data. */
1790
1791 #define DECODE_COMPOSITION_RULE(c1) \
1792 do { \
1793 int rule = 0; \
1794 (c1) -= 32; \
1795 if (c1 < 81) /* old format (before ver.21) */ \
1796 { \
1797 int gref = (c1) / 9; \
1798 int nref = (c1) % 9; \
1799 if (gref == 4) gref = 10; \
1800 if (nref == 4) nref = 10; \
1801 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1802 } \
1803 else if (c1 < 93) /* new format (after ver.21) */ \
1804 { \
1805 ONE_MORE_BYTE (c2); \
1806 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1807 } \
1808 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1809 coding->composition_rule_follows = 0; \
1810 } while (0)
1811
1812
1813 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1814
1815 static void
1816 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1817 struct coding_system *coding;
1818 const unsigned char *source;
1819 unsigned char *destination;
1820 int src_bytes, dst_bytes;
1821 {
1822 const unsigned char *src = source;
1823 const unsigned char *src_end = source + src_bytes;
1824 unsigned char *dst = destination;
1825 unsigned char *dst_end = destination + dst_bytes;
1826 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1827 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1828 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1829 /* SRC_BASE remembers the start position in source in each loop.
1830 The loop will be exited when there's not enough source code
1831 (within macro ONE_MORE_BYTE), or when there's not enough
1832 destination area to produce a character (within macro
1833 EMIT_CHAR). */
1834 const unsigned char *src_base;
1835 int c, charset;
1836 Lisp_Object translation_table;
1837 Lisp_Object safe_chars;
1838
1839 safe_chars = coding_safe_chars (coding->symbol);
1840
1841 if (NILP (Venable_character_translation))
1842 translation_table = Qnil;
1843 else
1844 {
1845 translation_table = coding->translation_table_for_decode;
1846 if (NILP (translation_table))
1847 translation_table = Vstandard_translation_table_for_decode;
1848 }
1849
1850 coding->result = CODING_FINISH_NORMAL;
1851
1852 while (1)
1853 {
1854 int c1, c2 = 0;
1855
1856 src_base = src;
1857 ONE_MORE_BYTE (c1);
1858
1859 /* We produce no character or one character. */
1860 switch (iso_code_class [c1])
1861 {
1862 case ISO_0x20_or_0x7F:
1863 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1864 {
1865 DECODE_COMPOSITION_RULE (c1);
1866 continue;
1867 }
1868 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1869 {
1870 /* This is SPACE or DEL. */
1871 charset = CHARSET_ASCII;
1872 break;
1873 }
1874 /* This is a graphic character, we fall down ... */
1875
1876 case ISO_graphic_plane_0:
1877 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1878 {
1879 DECODE_COMPOSITION_RULE (c1);
1880 continue;
1881 }
1882 charset = charset0;
1883 break;
1884
1885 case ISO_0xA0_or_0xFF:
1886 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1887 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1888 goto label_invalid_code;
1889 /* This is a graphic character, we fall down ... */
1890
1891 case ISO_graphic_plane_1:
1892 if (charset1 < 0)
1893 goto label_invalid_code;
1894 charset = charset1;
1895 break;
1896
1897 case ISO_control_0:
1898 if (COMPOSING_P (coding))
1899 DECODE_COMPOSITION_END ('1');
1900
1901 /* All ISO2022 control characters in this class have the
1902 same representation in Emacs internal format. */
1903 if (c1 == '\n'
1904 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1905 && (coding->eol_type == CODING_EOL_CR
1906 || coding->eol_type == CODING_EOL_CRLF))
1907 {
1908 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1909 goto label_end_of_loop;
1910 }
1911 charset = CHARSET_ASCII;
1912 break;
1913
1914 case ISO_control_1:
1915 if (COMPOSING_P (coding))
1916 DECODE_COMPOSITION_END ('1');
1917 goto label_invalid_code;
1918
1919 case ISO_carriage_return:
1920 if (COMPOSING_P (coding))
1921 DECODE_COMPOSITION_END ('1');
1922
1923 if (coding->eol_type == CODING_EOL_CR)
1924 c1 = '\n';
1925 else if (coding->eol_type == CODING_EOL_CRLF)
1926 {
1927 ONE_MORE_BYTE (c1);
1928 if (c1 != ISO_CODE_LF)
1929 {
1930 src--;
1931 c1 = '\r';
1932 }
1933 }
1934 charset = CHARSET_ASCII;
1935 break;
1936
1937 case ISO_shift_out:
1938 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1939 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1940 goto label_invalid_code;
1941 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1942 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1943 continue;
1944
1945 case ISO_shift_in:
1946 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1947 goto label_invalid_code;
1948 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1949 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1950 continue;
1951
1952 case ISO_single_shift_2_7:
1953 case ISO_single_shift_2:
1954 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1955 goto label_invalid_code;
1956 /* SS2 is handled as an escape sequence of ESC 'N' */
1957 c1 = 'N';
1958 goto label_escape_sequence;
1959
1960 case ISO_single_shift_3:
1961 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1962 goto label_invalid_code;
1963 /* SS2 is handled as an escape sequence of ESC 'O' */
1964 c1 = 'O';
1965 goto label_escape_sequence;
1966
1967 case ISO_control_sequence_introducer:
1968 /* CSI is handled as an escape sequence of ESC '[' ... */
1969 c1 = '[';
1970 goto label_escape_sequence;
1971
1972 case ISO_escape:
1973 ONE_MORE_BYTE (c1);
1974 label_escape_sequence:
1975 /* Escape sequences handled by Emacs are invocation,
1976 designation, direction specification, and character
1977 composition specification. */
1978 switch (c1)
1979 {
1980 case '&': /* revision of following character set */
1981 ONE_MORE_BYTE (c1);
1982 if (!(c1 >= '@' && c1 <= '~'))
1983 goto label_invalid_code;
1984 ONE_MORE_BYTE (c1);
1985 if (c1 != ISO_CODE_ESC)
1986 goto label_invalid_code;
1987 ONE_MORE_BYTE (c1);
1988 goto label_escape_sequence;
1989
1990 case '$': /* designation of 2-byte character set */
1991 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1992 goto label_invalid_code;
1993 ONE_MORE_BYTE (c1);
1994 if (c1 >= '@' && c1 <= 'B')
1995 { /* designation of JISX0208.1978, GB2312.1980,
1996 or JISX0208.1980 */
1997 DECODE_DESIGNATION (0, 2, 94, c1);
1998 }
1999 else if (c1 >= 0x28 && c1 <= 0x2B)
2000 { /* designation of DIMENSION2_CHARS94 character set */
2001 ONE_MORE_BYTE (c2);
2002 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
2003 }
2004 else if (c1 >= 0x2C && c1 <= 0x2F)
2005 { /* designation of DIMENSION2_CHARS96 character set */
2006 ONE_MORE_BYTE (c2);
2007 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
2008 }
2009 else
2010 goto label_invalid_code;
2011 /* We must update these variables now. */
2012 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2013 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2014 continue;
2015
2016 case 'n': /* invocation of locking-shift-2 */
2017 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2018 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2019 goto label_invalid_code;
2020 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
2021 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2022 continue;
2023
2024 case 'o': /* invocation of locking-shift-3 */
2025 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2026 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2027 goto label_invalid_code;
2028 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
2029 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2030 continue;
2031
2032 case 'N': /* invocation of single-shift-2 */
2033 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2034 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2035 goto label_invalid_code;
2036 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
2037 ONE_MORE_BYTE (c1);
2038 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2039 goto label_invalid_code;
2040 break;
2041
2042 case 'O': /* invocation of single-shift-3 */
2043 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2044 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2045 goto label_invalid_code;
2046 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
2047 ONE_MORE_BYTE (c1);
2048 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2049 goto label_invalid_code;
2050 break;
2051
2052 case '0': case '2': case '3': case '4': /* start composition */
2053 DECODE_COMPOSITION_START (c1);
2054 continue;
2055
2056 case '1': /* end composition */
2057 DECODE_COMPOSITION_END (c1);
2058 continue;
2059
2060 case '[': /* specification of direction */
2061 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
2062 goto label_invalid_code;
2063 /* For the moment, nested direction is not supported.
2064 So, `coding->mode & CODING_MODE_DIRECTION' zero means
2065 left-to-right, and nonzero means right-to-left. */
2066 ONE_MORE_BYTE (c1);
2067 switch (c1)
2068 {
2069 case ']': /* end of the current direction */
2070 coding->mode &= ~CODING_MODE_DIRECTION;
2071
2072 case '0': /* end of the current direction */
2073 case '1': /* start of left-to-right direction */
2074 ONE_MORE_BYTE (c1);
2075 if (c1 == ']')
2076 coding->mode &= ~CODING_MODE_DIRECTION;
2077 else
2078 goto label_invalid_code;
2079 break;
2080
2081 case '2': /* start of right-to-left direction */
2082 ONE_MORE_BYTE (c1);
2083 if (c1 == ']')
2084 coding->mode |= CODING_MODE_DIRECTION;
2085 else
2086 goto label_invalid_code;
2087 break;
2088
2089 default:
2090 goto label_invalid_code;
2091 }
2092 continue;
2093
2094 case '%':
2095 if (COMPOSING_P (coding))
2096 DECODE_COMPOSITION_END ('1');
2097 ONE_MORE_BYTE (c1);
2098 if (c1 == '/')
2099 {
2100 /* CTEXT extended segment:
2101 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
2102 We keep these bytes as is for the moment.
2103 They may be decoded by post-read-conversion. */
2104 int dim, M, L;
2105 int size, required;
2106 int produced_chars;
2107
2108 ONE_MORE_BYTE (dim);
2109 ONE_MORE_BYTE (M);
2110 ONE_MORE_BYTE (L);
2111 size = ((M - 128) * 128) + (L - 128);
2112 required = 8 + size * 2;
2113 if (dst + required > (dst_bytes ? dst_end : src))
2114 goto label_end_of_loop;
2115 *dst++ = ISO_CODE_ESC;
2116 *dst++ = '%';
2117 *dst++ = '/';
2118 *dst++ = dim;
2119 produced_chars = 4;
2120 dst += CHAR_STRING (M, dst), produced_chars++;
2121 dst += CHAR_STRING (L, dst), produced_chars++;
2122 while (size-- > 0)
2123 {
2124 ONE_MORE_BYTE (c1);
2125 dst += CHAR_STRING (c1, dst), produced_chars++;
2126 }
2127 coding->produced_char += produced_chars;
2128 }
2129 else if (c1 == 'G')
2130 {
2131 unsigned char *d = dst;
2132 int produced_chars;
2133
2134 /* XFree86 extension for embedding UTF-8 in CTEXT:
2135 ESC % G --UTF-8-BYTES-- ESC % @
2136 We keep these bytes as is for the moment.
2137 They may be decoded by post-read-conversion. */
2138 if (d + 6 > (dst_bytes ? dst_end : src))
2139 goto label_end_of_loop;
2140 *d++ = ISO_CODE_ESC;
2141 *d++ = '%';
2142 *d++ = 'G';
2143 produced_chars = 3;
2144 while (d + 1 < (dst_bytes ? dst_end : src))
2145 {
2146 ONE_MORE_BYTE (c1);
2147 if (c1 == ISO_CODE_ESC
2148 && src + 1 < src_end
2149 && src[0] == '%'
2150 && src[1] == '@')
2151 {
2152 src += 2;
2153 break;
2154 }
2155 d += CHAR_STRING (c1, d), produced_chars++;
2156 }
2157 if (d + 3 > (dst_bytes ? dst_end : src))
2158 goto label_end_of_loop;
2159 *d++ = ISO_CODE_ESC;
2160 *d++ = '%';
2161 *d++ = '@';
2162 dst = d;
2163 coding->produced_char += produced_chars + 3;
2164 }
2165 else
2166 goto label_invalid_code;
2167 continue;
2168
2169 default:
2170 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
2171 goto label_invalid_code;
2172 if (c1 >= 0x28 && c1 <= 0x2B)
2173 { /* designation of DIMENSION1_CHARS94 character set */
2174 ONE_MORE_BYTE (c2);
2175 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2176 }
2177 else if (c1 >= 0x2C && c1 <= 0x2F)
2178 { /* designation of DIMENSION1_CHARS96 character set */
2179 ONE_MORE_BYTE (c2);
2180 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2181 }
2182 else
2183 goto label_invalid_code;
2184 /* We must update these variables now. */
2185 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2186 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2187 continue;
2188 }
2189 }
2190
2191 /* Now we know CHARSET and 1st position code C1 of a character.
2192 Produce a multibyte sequence for that character while getting
2193 2nd position code C2 if necessary. */
2194 if (CHARSET_DIMENSION (charset) == 2)
2195 {
2196 ONE_MORE_BYTE (c2);
2197 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2198 /* C2 is not in a valid range. */
2199 goto label_invalid_code;
2200 }
2201 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2202 EMIT_CHAR (c);
2203 continue;
2204
2205 label_invalid_code:
2206 coding->errors++;
2207 if (COMPOSING_P (coding))
2208 DECODE_COMPOSITION_END ('1');
2209 src = src_base;
2210 c = *src++;
2211 if (! NILP (translation_table))
2212 c = translate_char (translation_table, c, 0, 0, 0);
2213 EMIT_CHAR (c);
2214 }
2215
2216 label_end_of_loop:
2217 coding->consumed = coding->consumed_char = src_base - source;
2218 coding->produced = dst - destination;
2219 return;
2220 }
2221
2222
2223 /* ISO2022 encoding stuff. */
2224
2225 /*
2226 It is not enough to say just "ISO2022" on encoding, we have to
2227 specify more details. In Emacs, each ISO2022 coding system
2228 variant has the following specifications:
2229 1. Initial designation to G0 through G3.
2230 2. Allows short-form designation?
2231 3. ASCII should be designated to G0 before control characters?
2232 4. ASCII should be designated to G0 at end of line?
2233 5. 7-bit environment or 8-bit environment?
2234 6. Use locking-shift?
2235 7. Use Single-shift?
2236 And the following two are only for Japanese:
2237 8. Use ASCII in place of JIS0201-1976-Roman?
2238 9. Use JISX0208-1983 in place of JISX0208-1978?
2239 These specifications are encoded in `coding->flags' as flag bits
2240 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2241 details.
2242 */
2243
2244 /* Produce codes (escape sequence) for designating CHARSET to graphic
2245 register REG at DST, and increment DST. If <final-char> of CHARSET is
2246 '@', 'A', or 'B' and the coding system CODING allows, produce
2247 designation sequence of short-form. */
2248
2249 #define ENCODE_DESIGNATION(charset, reg, coding) \
2250 do { \
2251 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2252 char *intermediate_char_94 = "()*+"; \
2253 char *intermediate_char_96 = ",-./"; \
2254 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2255 \
2256 if (revision < 255) \
2257 { \
2258 *dst++ = ISO_CODE_ESC; \
2259 *dst++ = '&'; \
2260 *dst++ = '@' + revision; \
2261 } \
2262 *dst++ = ISO_CODE_ESC; \
2263 if (CHARSET_DIMENSION (charset) == 1) \
2264 { \
2265 if (CHARSET_CHARS (charset) == 94) \
2266 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2267 else \
2268 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2269 } \
2270 else \
2271 { \
2272 *dst++ = '$'; \
2273 if (CHARSET_CHARS (charset) == 94) \
2274 { \
2275 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2276 || reg != 0 \
2277 || final_char < '@' || final_char > 'B') \
2278 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2279 } \
2280 else \
2281 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2282 } \
2283 *dst++ = final_char; \
2284 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2285 } while (0)
2286
2287 /* The following two macros produce codes (control character or escape
2288 sequence) for ISO2022 single-shift functions (single-shift-2 and
2289 single-shift-3). */
2290
2291 #define ENCODE_SINGLE_SHIFT_2 \
2292 do { \
2293 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2294 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2295 else \
2296 *dst++ = ISO_CODE_SS2; \
2297 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2298 } while (0)
2299
2300 #define ENCODE_SINGLE_SHIFT_3 \
2301 do { \
2302 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2303 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2304 else \
2305 *dst++ = ISO_CODE_SS3; \
2306 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2307 } while (0)
2308
2309 /* The following four macros produce codes (control character or
2310 escape sequence) for ISO2022 locking-shift functions (shift-in,
2311 shift-out, locking-shift-2, and locking-shift-3). */
2312
2313 #define ENCODE_SHIFT_IN \
2314 do { \
2315 *dst++ = ISO_CODE_SI; \
2316 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2317 } while (0)
2318
2319 #define ENCODE_SHIFT_OUT \
2320 do { \
2321 *dst++ = ISO_CODE_SO; \
2322 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2323 } while (0)
2324
2325 #define ENCODE_LOCKING_SHIFT_2 \
2326 do { \
2327 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2328 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2329 } while (0)
2330
2331 #define ENCODE_LOCKING_SHIFT_3 \
2332 do { \
2333 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2334 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2335 } while (0)
2336
2337 /* Produce codes for a DIMENSION1 character whose character set is
2338 CHARSET and whose position-code is C1. Designation and invocation
2339 sequences are also produced in advance if necessary. */
2340
2341 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2342 do { \
2343 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2344 { \
2345 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2346 *dst++ = c1 & 0x7F; \
2347 else \
2348 *dst++ = c1 | 0x80; \
2349 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2350 break; \
2351 } \
2352 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2353 { \
2354 *dst++ = c1 & 0x7F; \
2355 break; \
2356 } \
2357 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2358 { \
2359 *dst++ = c1 | 0x80; \
2360 break; \
2361 } \
2362 else \
2363 /* Since CHARSET is not yet invoked to any graphic planes, we \
2364 must invoke it, or, at first, designate it to some graphic \
2365 register. Then repeat the loop to actually produce the \
2366 character. */ \
2367 dst = encode_invocation_designation (charset, coding, dst); \
2368 } while (1)
2369
2370 /* Produce codes for a DIMENSION2 character whose character set is
2371 CHARSET and whose position-codes are C1 and C2. Designation and
2372 invocation codes are also produced in advance if necessary. */
2373
2374 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2375 do { \
2376 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2377 { \
2378 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2379 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2380 else \
2381 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2382 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2383 break; \
2384 } \
2385 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2386 { \
2387 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2388 break; \
2389 } \
2390 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2391 { \
2392 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2393 break; \
2394 } \
2395 else \
2396 /* Since CHARSET is not yet invoked to any graphic planes, we \
2397 must invoke it, or, at first, designate it to some graphic \
2398 register. Then repeat the loop to actually produce the \
2399 character. */ \
2400 dst = encode_invocation_designation (charset, coding, dst); \
2401 } while (1)
2402
2403 #define ENCODE_ISO_CHARACTER(c) \
2404 do { \
2405 int charset, c1, c2; \
2406 \
2407 SPLIT_CHAR (c, charset, c1, c2); \
2408 if (CHARSET_DEFINED_P (charset)) \
2409 { \
2410 if (CHARSET_DIMENSION (charset) == 1) \
2411 { \
2412 if (charset == CHARSET_ASCII \
2413 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2414 charset = charset_latin_jisx0201; \
2415 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2416 } \
2417 else \
2418 { \
2419 if (charset == charset_jisx0208 \
2420 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2421 charset = charset_jisx0208_1978; \
2422 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2423 } \
2424 } \
2425 else \
2426 { \
2427 *dst++ = c1; \
2428 if (c2 >= 0) \
2429 *dst++ = c2; \
2430 } \
2431 } while (0)
2432
2433
2434 /* Instead of encoding character C, produce one or two `?'s. */
2435
2436 #define ENCODE_UNSAFE_CHARACTER(c) \
2437 do { \
2438 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2439 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2440 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2441 } while (0)
2442
2443
2444 /* Produce designation and invocation codes at a place pointed by DST
2445 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2446 Return new DST. */
2447
2448 unsigned char *
2449 encode_invocation_designation (charset, coding, dst)
2450 int charset;
2451 struct coding_system *coding;
2452 unsigned char *dst;
2453 {
2454 int reg; /* graphic register number */
2455
2456 /* At first, check designations. */
2457 for (reg = 0; reg < 4; reg++)
2458 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2459 break;
2460
2461 if (reg >= 4)
2462 {
2463 /* CHARSET is not yet designated to any graphic registers. */
2464 /* At first check the requested designation. */
2465 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2466 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2467 /* Since CHARSET requests no special designation, designate it
2468 to graphic register 0. */
2469 reg = 0;
2470
2471 ENCODE_DESIGNATION (charset, reg, coding);
2472 }
2473
2474 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2475 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2476 {
2477 /* Since the graphic register REG is not invoked to any graphic
2478 planes, invoke it to graphic plane 0. */
2479 switch (reg)
2480 {
2481 case 0: /* graphic register 0 */
2482 ENCODE_SHIFT_IN;
2483 break;
2484
2485 case 1: /* graphic register 1 */
2486 ENCODE_SHIFT_OUT;
2487 break;
2488
2489 case 2: /* graphic register 2 */
2490 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2491 ENCODE_SINGLE_SHIFT_2;
2492 else
2493 ENCODE_LOCKING_SHIFT_2;
2494 break;
2495
2496 case 3: /* graphic register 3 */
2497 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2498 ENCODE_SINGLE_SHIFT_3;
2499 else
2500 ENCODE_LOCKING_SHIFT_3;
2501 break;
2502 }
2503 }
2504
2505 return dst;
2506 }
2507
2508 /* Produce 2-byte codes for encoded composition rule RULE. */
2509
2510 #define ENCODE_COMPOSITION_RULE(rule) \
2511 do { \
2512 int gref, nref; \
2513 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2514 *dst++ = 32 + 81 + gref; \
2515 *dst++ = 32 + nref; \
2516 } while (0)
2517
2518 /* Produce codes for indicating the start of a composition sequence
2519 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2520 which specify information about the composition. See the comment
2521 in coding.h for the format of DATA. */
2522
2523 #define ENCODE_COMPOSITION_START(coding, data) \
2524 do { \
2525 coding->composing = data[3]; \
2526 *dst++ = ISO_CODE_ESC; \
2527 if (coding->composing == COMPOSITION_RELATIVE) \
2528 *dst++ = '0'; \
2529 else \
2530 { \
2531 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2532 ? '3' : '4'); \
2533 coding->cmp_data_index = coding->cmp_data_start + 4; \
2534 coding->composition_rule_follows = 0; \
2535 } \
2536 } while (0)
2537
2538 /* Produce codes for indicating the end of the current composition. */
2539
2540 #define ENCODE_COMPOSITION_END(coding, data) \
2541 do { \
2542 *dst++ = ISO_CODE_ESC; \
2543 *dst++ = '1'; \
2544 coding->cmp_data_start += data[0]; \
2545 coding->composing = COMPOSITION_NO; \
2546 if (coding->cmp_data_start == coding->cmp_data->used \
2547 && coding->cmp_data->next) \
2548 { \
2549 coding->cmp_data = coding->cmp_data->next; \
2550 coding->cmp_data_start = 0; \
2551 } \
2552 } while (0)
2553
2554 /* Produce composition start sequence ESC 0. Here, this sequence
2555 doesn't mean the start of a new composition but means that we have
2556 just produced components (alternate chars and composition rules) of
2557 the composition and the actual text follows in SRC. */
2558
2559 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2560 do { \
2561 *dst++ = ISO_CODE_ESC; \
2562 *dst++ = '0'; \
2563 coding->composing = COMPOSITION_RELATIVE; \
2564 } while (0)
2565
2566 /* The following three macros produce codes for indicating direction
2567 of text. */
2568 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2569 do { \
2570 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2571 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2572 else \
2573 *dst++ = ISO_CODE_CSI; \
2574 } while (0)
2575
2576 #define ENCODE_DIRECTION_R2L \
2577 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2578
2579 #define ENCODE_DIRECTION_L2R \
2580 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2581
2582 /* Produce codes for designation and invocation to reset the graphic
2583 planes and registers to initial state. */
2584 #define ENCODE_RESET_PLANE_AND_REGISTER \
2585 do { \
2586 int reg; \
2587 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2588 ENCODE_SHIFT_IN; \
2589 for (reg = 0; reg < 4; reg++) \
2590 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2591 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2592 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2593 ENCODE_DESIGNATION \
2594 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2595 } while (0)
2596
2597 /* Produce designation sequences of charsets in the line started from
2598 SRC to a place pointed by DST, and return updated DST.
2599
2600 If the current block ends before any end-of-line, we may fail to
2601 find all the necessary designations. */
2602
2603 static unsigned char *
2604 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2605 struct coding_system *coding;
2606 Lisp_Object translation_table;
2607 const unsigned char *src, *src_end;
2608 unsigned char *dst;
2609 {
2610 int charset, c, found = 0, reg;
2611 /* Table of charsets to be designated to each graphic register. */
2612 int r[4];
2613
2614 for (reg = 0; reg < 4; reg++)
2615 r[reg] = -1;
2616
2617 while (found < 4)
2618 {
2619 ONE_MORE_CHAR (c);
2620 if (c == '\n')
2621 break;
2622
2623 charset = CHAR_CHARSET (c);
2624 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2625 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2626 {
2627 found++;
2628 r[reg] = charset;
2629 }
2630 }
2631
2632 label_end_of_loop:
2633 if (found)
2634 {
2635 for (reg = 0; reg < 4; reg++)
2636 if (r[reg] >= 0
2637 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2638 ENCODE_DESIGNATION (r[reg], reg, coding);
2639 }
2640
2641 return dst;
2642 }
2643
2644 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2645
2646 static void
2647 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2648 struct coding_system *coding;
2649 const unsigned char *source;
2650 unsigned char *destination;
2651 int src_bytes, dst_bytes;
2652 {
2653 const unsigned char *src = source;
2654 const unsigned char *src_end = source + src_bytes;
2655 unsigned char *dst = destination;
2656 unsigned char *dst_end = destination + dst_bytes;
2657 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2658 from DST_END to assure overflow checking is necessary only at the
2659 head of loop. */
2660 unsigned char *adjusted_dst_end = dst_end - 19;
2661 /* SRC_BASE remembers the start position in source in each loop.
2662 The loop will be exited when there's not enough source text to
2663 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2664 there's not enough destination area to produce encoded codes
2665 (within macro EMIT_BYTES). */
2666 const unsigned char *src_base;
2667 int c;
2668 Lisp_Object translation_table;
2669 Lisp_Object safe_chars;
2670
2671 if (coding->flags & CODING_FLAG_ISO_SAFE)
2672 coding->mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
2673
2674 safe_chars = coding_safe_chars (coding->symbol);
2675
2676 if (NILP (Venable_character_translation))
2677 translation_table = Qnil;
2678 else
2679 {
2680 translation_table = coding->translation_table_for_encode;
2681 if (NILP (translation_table))
2682 translation_table = Vstandard_translation_table_for_encode;
2683 }
2684
2685 coding->consumed_char = 0;
2686 coding->errors = 0;
2687 while (1)
2688 {
2689 src_base = src;
2690
2691 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2692 {
2693 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2694 break;
2695 }
2696
2697 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2698 && CODING_SPEC_ISO_BOL (coding))
2699 {
2700 /* We have to produce designation sequences if any now. */
2701 dst = encode_designation_at_bol (coding, translation_table,
2702 src, src_end, dst);
2703 CODING_SPEC_ISO_BOL (coding) = 0;
2704 }
2705
2706 /* Check composition start and end. */
2707 if (coding->composing != COMPOSITION_DISABLED
2708 && coding->cmp_data_start < coding->cmp_data->used)
2709 {
2710 struct composition_data *cmp_data = coding->cmp_data;
2711 int *data = cmp_data->data + coding->cmp_data_start;
2712 int this_pos = cmp_data->char_offset + coding->consumed_char;
2713
2714 if (coding->composing == COMPOSITION_RELATIVE)
2715 {
2716 if (this_pos == data[2])
2717 {
2718 ENCODE_COMPOSITION_END (coding, data);
2719 cmp_data = coding->cmp_data;
2720 data = cmp_data->data + coding->cmp_data_start;
2721 }
2722 }
2723 else if (COMPOSING_P (coding))
2724 {
2725 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2726 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2727 /* We have consumed components of the composition.
2728 What follows in SRC is the composition's base
2729 text. */
2730 ENCODE_COMPOSITION_FAKE_START (coding);
2731 else
2732 {
2733 int c = cmp_data->data[coding->cmp_data_index++];
2734 if (coding->composition_rule_follows)
2735 {
2736 ENCODE_COMPOSITION_RULE (c);
2737 coding->composition_rule_follows = 0;
2738 }
2739 else
2740 {
2741 if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2742 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2743 ENCODE_UNSAFE_CHARACTER (c);
2744 else
2745 ENCODE_ISO_CHARACTER (c);
2746 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2747 coding->composition_rule_follows = 1;
2748 }
2749 continue;
2750 }
2751 }
2752 if (!COMPOSING_P (coding))
2753 {
2754 if (this_pos == data[1])
2755 {
2756 ENCODE_COMPOSITION_START (coding, data);
2757 continue;
2758 }
2759 }
2760 }
2761
2762 ONE_MORE_CHAR (c);
2763
2764 /* Now encode the character C. */
2765 if (c < 0x20 || c == 0x7F)
2766 {
2767 if (c == '\r')
2768 {
2769 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2770 {
2771 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2772 ENCODE_RESET_PLANE_AND_REGISTER;
2773 *dst++ = c;
2774 continue;
2775 }
2776 /* fall down to treat '\r' as '\n' ... */
2777 c = '\n';
2778 }
2779 if (c == '\n')
2780 {
2781 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2782 ENCODE_RESET_PLANE_AND_REGISTER;
2783 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2784 bcopy (coding->spec.iso2022.initial_designation,
2785 coding->spec.iso2022.current_designation,
2786 sizeof coding->spec.iso2022.initial_designation);
2787 if (coding->eol_type == CODING_EOL_LF
2788 || coding->eol_type == CODING_EOL_UNDECIDED)
2789 *dst++ = ISO_CODE_LF;
2790 else if (coding->eol_type == CODING_EOL_CRLF)
2791 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2792 else
2793 *dst++ = ISO_CODE_CR;
2794 CODING_SPEC_ISO_BOL (coding) = 1;
2795 }
2796 else
2797 {
2798 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2799 ENCODE_RESET_PLANE_AND_REGISTER;
2800 *dst++ = c;
2801 }
2802 }
2803 else if (ASCII_BYTE_P (c))
2804 ENCODE_ISO_CHARACTER (c);
2805 else if (SINGLE_BYTE_CHAR_P (c))
2806 {
2807 *dst++ = c;
2808 coding->errors++;
2809 }
2810 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2811 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2812 ENCODE_UNSAFE_CHARACTER (c);
2813 else
2814 ENCODE_ISO_CHARACTER (c);
2815
2816 coding->consumed_char++;
2817 }
2818
2819 label_end_of_loop:
2820 coding->consumed = src_base - source;
2821 coding->produced = coding->produced_char = dst - destination;
2822 }
2823
2824 \f
2825 /*** 4. SJIS and BIG5 handlers ***/
2826
2827 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2828 quite widely. So, for the moment, Emacs supports them in the bare
2829 C code. But, in the future, they may be supported only by CCL. */
2830
2831 /* SJIS is a coding system encoding three character sets: ASCII, right
2832 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2833 as is. A character of charset katakana-jisx0201 is encoded by
2834 "position-code + 0x80". A character of charset japanese-jisx0208
2835 is encoded in 2-byte but two position-codes are divided and shifted
2836 so that it fits in the range below.
2837
2838 --- CODE RANGE of SJIS ---
2839 (character set) (range)
2840 ASCII 0x00 .. 0x7F
2841 KATAKANA-JISX0201 0xA1 .. 0xDF
2842 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2843 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2844 -------------------------------
2845
2846 */
2847
2848 /* BIG5 is a coding system encoding two character sets: ASCII and
2849 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2850 character set and is encoded in two bytes.
2851
2852 --- CODE RANGE of BIG5 ---
2853 (character set) (range)
2854 ASCII 0x00 .. 0x7F
2855 Big5 (1st byte) 0xA1 .. 0xFE
2856 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2857 --------------------------
2858
2859 Since the number of characters in Big5 is larger than maximum
2860 characters in Emacs' charset (96x96), it can't be handled as one
2861 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2862 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2863 contains frequently used characters and the latter contains less
2864 frequently used characters. */
2865
2866 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2867 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2868 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2869 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2870
2871 /* Number of Big5 characters which have the same code in 1st byte. */
2872 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2873
2874 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2875 do { \
2876 unsigned int temp \
2877 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2878 if (b1 < 0xC9) \
2879 charset = charset_big5_1; \
2880 else \
2881 { \
2882 charset = charset_big5_2; \
2883 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2884 } \
2885 c1 = temp / (0xFF - 0xA1) + 0x21; \
2886 c2 = temp % (0xFF - 0xA1) + 0x21; \
2887 } while (0)
2888
2889 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2890 do { \
2891 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2892 if (charset == charset_big5_2) \
2893 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2894 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2895 b2 = temp % BIG5_SAME_ROW; \
2896 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2897 } while (0)
2898
2899 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2900 Check if a text is encoded in SJIS. If it is, return
2901 CODING_CATEGORY_MASK_SJIS, else return 0. */
2902
2903 static int
2904 detect_coding_sjis (src, src_end, multibytep)
2905 unsigned char *src, *src_end;
2906 int multibytep;
2907 {
2908 int c;
2909 /* Dummy for ONE_MORE_BYTE. */
2910 struct coding_system dummy_coding;
2911 struct coding_system *coding = &dummy_coding;
2912
2913 while (1)
2914 {
2915 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2916 if (c < 0x80)
2917 continue;
2918 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2919 return 0;
2920 if (c <= 0x9F || c >= 0xE0)
2921 {
2922 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2923 if (c < 0x40 || c == 0x7F || c > 0xFC)
2924 return 0;
2925 }
2926 }
2927 label_end_of_loop:
2928 return CODING_CATEGORY_MASK_SJIS;
2929 }
2930
2931 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2932 Check if a text is encoded in BIG5. If it is, return
2933 CODING_CATEGORY_MASK_BIG5, else return 0. */
2934
2935 static int
2936 detect_coding_big5 (src, src_end, multibytep)
2937 unsigned char *src, *src_end;
2938 int multibytep;
2939 {
2940 int c;
2941 /* Dummy for ONE_MORE_BYTE. */
2942 struct coding_system dummy_coding;
2943 struct coding_system *coding = &dummy_coding;
2944
2945 while (1)
2946 {
2947 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2948 if (c < 0x80)
2949 continue;
2950 if (c < 0xA1 || c > 0xFE)
2951 return 0;
2952 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2953 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2954 return 0;
2955 }
2956 label_end_of_loop:
2957 return CODING_CATEGORY_MASK_BIG5;
2958 }
2959
2960 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2961 Check if a text is encoded in UTF-8. If it is, return
2962 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2963
2964 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2965 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2966 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2967 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2968 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2969 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2970 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2971
2972 static int
2973 detect_coding_utf_8 (src, src_end, multibytep)
2974 unsigned char *src, *src_end;
2975 int multibytep;
2976 {
2977 unsigned char c;
2978 int seq_maybe_bytes;
2979 /* Dummy for ONE_MORE_BYTE. */
2980 struct coding_system dummy_coding;
2981 struct coding_system *coding = &dummy_coding;
2982
2983 while (1)
2984 {
2985 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2986 if (UTF_8_1_OCTET_P (c))
2987 continue;
2988 else if (UTF_8_2_OCTET_LEADING_P (c))
2989 seq_maybe_bytes = 1;
2990 else if (UTF_8_3_OCTET_LEADING_P (c))
2991 seq_maybe_bytes = 2;
2992 else if (UTF_8_4_OCTET_LEADING_P (c))
2993 seq_maybe_bytes = 3;
2994 else if (UTF_8_5_OCTET_LEADING_P (c))
2995 seq_maybe_bytes = 4;
2996 else if (UTF_8_6_OCTET_LEADING_P (c))
2997 seq_maybe_bytes = 5;
2998 else
2999 return 0;
3000
3001 do
3002 {
3003 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3004 if (!UTF_8_EXTRA_OCTET_P (c))
3005 return 0;
3006 seq_maybe_bytes--;
3007 }
3008 while (seq_maybe_bytes > 0);
3009 }
3010
3011 label_end_of_loop:
3012 return CODING_CATEGORY_MASK_UTF_8;
3013 }
3014
3015 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3016 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
3017 Little Endian (otherwise). If it is, return
3018 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
3019 else return 0. */
3020
3021 #define UTF_16_INVALID_P(val) \
3022 (((val) == 0xFFFE) \
3023 || ((val) == 0xFFFF))
3024
3025 #define UTF_16_HIGH_SURROGATE_P(val) \
3026 (((val) & 0xD800) == 0xD800)
3027
3028 #define UTF_16_LOW_SURROGATE_P(val) \
3029 (((val) & 0xDC00) == 0xDC00)
3030
3031 static int
3032 detect_coding_utf_16 (src, src_end, multibytep)
3033 unsigned char *src, *src_end;
3034 int multibytep;
3035 {
3036 unsigned char c1, c2;
3037 /* Dummy for ONE_MORE_BYTE_CHECK_MULTIBYTE. */
3038 struct coding_system dummy_coding;
3039 struct coding_system *coding = &dummy_coding;
3040
3041 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
3042 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
3043
3044 if ((c1 == 0xFF) && (c2 == 0xFE))
3045 return CODING_CATEGORY_MASK_UTF_16_LE;
3046 else if ((c1 == 0xFE) && (c2 == 0xFF))
3047 return CODING_CATEGORY_MASK_UTF_16_BE;
3048
3049 label_end_of_loop:
3050 return 0;
3051 }
3052
3053 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
3054 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
3055
3056 static void
3057 decode_coding_sjis_big5 (coding, source, destination,
3058 src_bytes, dst_bytes, sjis_p)
3059 struct coding_system *coding;
3060 const unsigned char *source;
3061 unsigned char *destination;
3062 int src_bytes, dst_bytes;
3063 int sjis_p;
3064 {
3065 const unsigned char *src = source;
3066 const unsigned char *src_end = source + src_bytes;
3067 unsigned char *dst = destination;
3068 unsigned char *dst_end = destination + dst_bytes;
3069 /* SRC_BASE remembers the start position in source in each loop.
3070 The loop will be exited when there's not enough source code
3071 (within macro ONE_MORE_BYTE), or when there's not enough
3072 destination area to produce a character (within macro
3073 EMIT_CHAR). */
3074 const unsigned char *src_base;
3075 Lisp_Object translation_table;
3076
3077 if (NILP (Venable_character_translation))
3078 translation_table = Qnil;
3079 else
3080 {
3081 translation_table = coding->translation_table_for_decode;
3082 if (NILP (translation_table))
3083 translation_table = Vstandard_translation_table_for_decode;
3084 }
3085
3086 coding->produced_char = 0;
3087 while (1)
3088 {
3089 int c, charset, c1, c2 = 0;
3090
3091 src_base = src;
3092 ONE_MORE_BYTE (c1);
3093
3094 if (c1 < 0x80)
3095 {
3096 charset = CHARSET_ASCII;
3097 if (c1 < 0x20)
3098 {
3099 if (c1 == '\r')
3100 {
3101 if (coding->eol_type == CODING_EOL_CRLF)
3102 {
3103 ONE_MORE_BYTE (c2);
3104 if (c2 == '\n')
3105 c1 = c2;
3106 else
3107 /* To process C2 again, SRC is subtracted by 1. */
3108 src--;
3109 }
3110 else if (coding->eol_type == CODING_EOL_CR)
3111 c1 = '\n';
3112 }
3113 else if (c1 == '\n'
3114 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3115 && (coding->eol_type == CODING_EOL_CR
3116 || coding->eol_type == CODING_EOL_CRLF))
3117 {
3118 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3119 goto label_end_of_loop;
3120 }
3121 }
3122 }
3123 else
3124 {
3125 if (sjis_p)
3126 {
3127 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
3128 goto label_invalid_code;
3129 if (c1 <= 0x9F || c1 >= 0xE0)
3130 {
3131 /* SJIS -> JISX0208 */
3132 ONE_MORE_BYTE (c2);
3133 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
3134 goto label_invalid_code;
3135 DECODE_SJIS (c1, c2, c1, c2);
3136 charset = charset_jisx0208;
3137 }
3138 else
3139 /* SJIS -> JISX0201-Kana */
3140 charset = charset_katakana_jisx0201;
3141 }
3142 else
3143 {
3144 /* BIG5 -> Big5 */
3145 if (c1 < 0xA0 || c1 > 0xFE)
3146 goto label_invalid_code;
3147 ONE_MORE_BYTE (c2);
3148 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
3149 goto label_invalid_code;
3150 DECODE_BIG5 (c1, c2, charset, c1, c2);
3151 }
3152 }
3153
3154 c = DECODE_ISO_CHARACTER (charset, c1, c2);
3155 EMIT_CHAR (c);
3156 continue;
3157
3158 label_invalid_code:
3159 coding->errors++;
3160 src = src_base;
3161 c = *src++;
3162 EMIT_CHAR (c);
3163 }
3164
3165 label_end_of_loop:
3166 coding->consumed = coding->consumed_char = src_base - source;
3167 coding->produced = dst - destination;
3168 return;
3169 }
3170
3171 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
3172 This function can encode charsets `ascii', `katakana-jisx0201',
3173 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
3174 are sure that all these charsets are registered as official charset
3175 (i.e. do not have extended leading-codes). Characters of other
3176 charsets are produced without any encoding. If SJIS_P is 1, encode
3177 SJIS text, else encode BIG5 text. */
3178
3179 static void
3180 encode_coding_sjis_big5 (coding, source, destination,
3181 src_bytes, dst_bytes, sjis_p)
3182 struct coding_system *coding;
3183 unsigned char *source, *destination;
3184 int src_bytes, dst_bytes;
3185 int sjis_p;
3186 {
3187 unsigned char *src = source;
3188 unsigned char *src_end = source + src_bytes;
3189 unsigned char *dst = destination;
3190 unsigned char *dst_end = destination + dst_bytes;
3191 /* SRC_BASE remembers the start position in source in each loop.
3192 The loop will be exited when there's not enough source text to
3193 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3194 there's not enough destination area to produce encoded codes
3195 (within macro EMIT_BYTES). */
3196 unsigned char *src_base;
3197 Lisp_Object translation_table;
3198
3199 if (NILP (Venable_character_translation))
3200 translation_table = Qnil;
3201 else
3202 {
3203 translation_table = coding->translation_table_for_encode;
3204 if (NILP (translation_table))
3205 translation_table = Vstandard_translation_table_for_encode;
3206 }
3207
3208 while (1)
3209 {
3210 int c, charset, c1, c2;
3211
3212 src_base = src;
3213 ONE_MORE_CHAR (c);
3214
3215 /* Now encode the character C. */
3216 if (SINGLE_BYTE_CHAR_P (c))
3217 {
3218 switch (c)
3219 {
3220 case '\r':
3221 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3222 {
3223 EMIT_ONE_BYTE (c);
3224 break;
3225 }
3226 c = '\n';
3227 case '\n':
3228 if (coding->eol_type == CODING_EOL_CRLF)
3229 {
3230 EMIT_TWO_BYTES ('\r', c);
3231 break;
3232 }
3233 else if (coding->eol_type == CODING_EOL_CR)
3234 c = '\r';
3235 default:
3236 EMIT_ONE_BYTE (c);
3237 }
3238 }
3239 else
3240 {
3241 SPLIT_CHAR (c, charset, c1, c2);
3242 if (sjis_p)
3243 {
3244 if (charset == charset_jisx0208
3245 || charset == charset_jisx0208_1978)
3246 {
3247 ENCODE_SJIS (c1, c2, c1, c2);
3248 EMIT_TWO_BYTES (c1, c2);
3249 }
3250 else if (charset == charset_katakana_jisx0201)
3251 EMIT_ONE_BYTE (c1 | 0x80);
3252 else if (charset == charset_latin_jisx0201)
3253 EMIT_ONE_BYTE (c1);
3254 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3255 {
3256 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3257 if (CHARSET_WIDTH (charset) > 1)
3258 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3259 }
3260 else
3261 /* There's no way other than producing the internal
3262 codes as is. */
3263 EMIT_BYTES (src_base, src);
3264 }
3265 else
3266 {
3267 if (charset == charset_big5_1 || charset == charset_big5_2)
3268 {
3269 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3270 EMIT_TWO_BYTES (c1, c2);
3271 }
3272 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3273 {
3274 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3275 if (CHARSET_WIDTH (charset) > 1)
3276 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3277 }
3278 else
3279 /* There's no way other than producing the internal
3280 codes as is. */
3281 EMIT_BYTES (src_base, src);
3282 }
3283 }
3284 coding->consumed_char++;
3285 }
3286
3287 label_end_of_loop:
3288 coding->consumed = src_base - source;
3289 coding->produced = coding->produced_char = dst - destination;
3290 }
3291
3292 \f
3293 /*** 5. CCL handlers ***/
3294
3295 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3296 Check if a text is encoded in a coding system of which
3297 encoder/decoder are written in CCL program. If it is, return
3298 CODING_CATEGORY_MASK_CCL, else return 0. */
3299
3300 static int
3301 detect_coding_ccl (src, src_end, multibytep)
3302 unsigned char *src, *src_end;
3303 int multibytep;
3304 {
3305 unsigned char *valid;
3306 int c;
3307 /* Dummy for ONE_MORE_BYTE. */
3308 struct coding_system dummy_coding;
3309 struct coding_system *coding = &dummy_coding;
3310
3311 /* No coding system is assigned to coding-category-ccl. */
3312 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3313 return 0;
3314
3315 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3316 while (1)
3317 {
3318 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3319 if (! valid[c])
3320 return 0;
3321 }
3322 label_end_of_loop:
3323 return CODING_CATEGORY_MASK_CCL;
3324 }
3325
3326 \f
3327 /*** 6. End-of-line handlers ***/
3328
3329 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3330
3331 static void
3332 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3333 struct coding_system *coding;
3334 const unsigned char *source;
3335 unsigned char *destination;
3336 int src_bytes, dst_bytes;
3337 {
3338 const unsigned char *src = source;
3339 unsigned char *dst = destination;
3340 const unsigned char *src_end = src + src_bytes;
3341 unsigned char *dst_end = dst + dst_bytes;
3342 Lisp_Object translation_table;
3343 /* SRC_BASE remembers the start position in source in each loop.
3344 The loop will be exited when there's not enough source code
3345 (within macro ONE_MORE_BYTE), or when there's not enough
3346 destination area to produce a character (within macro
3347 EMIT_CHAR). */
3348 const unsigned char *src_base;
3349 int c;
3350
3351 translation_table = Qnil;
3352 switch (coding->eol_type)
3353 {
3354 case CODING_EOL_CRLF:
3355 while (1)
3356 {
3357 src_base = src;
3358 ONE_MORE_BYTE (c);
3359 if (c == '\r')
3360 {
3361 ONE_MORE_BYTE (c);
3362 if (c != '\n')
3363 {
3364 src--;
3365 c = '\r';
3366 }
3367 }
3368 else if (c == '\n'
3369 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3370 {
3371 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3372 goto label_end_of_loop;
3373 }
3374 EMIT_CHAR (c);
3375 }
3376 break;
3377
3378 case CODING_EOL_CR:
3379 while (1)
3380 {
3381 src_base = src;
3382 ONE_MORE_BYTE (c);
3383 if (c == '\n')
3384 {
3385 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3386 {
3387 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3388 goto label_end_of_loop;
3389 }
3390 }
3391 else if (c == '\r')
3392 c = '\n';
3393 EMIT_CHAR (c);
3394 }
3395 break;
3396
3397 default: /* no need for EOL handling */
3398 while (1)
3399 {
3400 src_base = src;
3401 ONE_MORE_BYTE (c);
3402 EMIT_CHAR (c);
3403 }
3404 }
3405
3406 label_end_of_loop:
3407 coding->consumed = coding->consumed_char = src_base - source;
3408 coding->produced = dst - destination;
3409 return;
3410 }
3411
3412 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3413 format of end-of-line according to `coding->eol_type'. It also
3414 convert multibyte form 8-bit characters to unibyte if
3415 CODING->src_multibyte is nonzero. If `coding->mode &
3416 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3417 also means end-of-line. */
3418
3419 static void
3420 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3421 struct coding_system *coding;
3422 const unsigned char *source;
3423 unsigned char *destination;
3424 int src_bytes, dst_bytes;
3425 {
3426 const unsigned char *src = source;
3427 unsigned char *dst = destination;
3428 const unsigned char *src_end = src + src_bytes;
3429 unsigned char *dst_end = dst + dst_bytes;
3430 Lisp_Object translation_table;
3431 /* SRC_BASE remembers the start position in source in each loop.
3432 The loop will be exited when there's not enough source text to
3433 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3434 there's not enough destination area to produce encoded codes
3435 (within macro EMIT_BYTES). */
3436 const unsigned char *src_base;
3437 unsigned char *tmp;
3438 int c;
3439 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3440
3441 translation_table = Qnil;
3442 if (coding->src_multibyte
3443 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3444 {
3445 src_end--;
3446 src_bytes--;
3447 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3448 }
3449
3450 if (coding->eol_type == CODING_EOL_CRLF)
3451 {
3452 while (src < src_end)
3453 {
3454 src_base = src;
3455 c = *src++;
3456 if (c >= 0x20)
3457 EMIT_ONE_BYTE (c);
3458 else if (c == '\n' || (c == '\r' && selective_display))
3459 EMIT_TWO_BYTES ('\r', '\n');
3460 else
3461 EMIT_ONE_BYTE (c);
3462 }
3463 src_base = src;
3464 label_end_of_loop:
3465 ;
3466 }
3467 else
3468 {
3469 if (!dst_bytes || src_bytes <= dst_bytes)
3470 {
3471 safe_bcopy (src, dst, src_bytes);
3472 src_base = src_end;
3473 dst += src_bytes;
3474 }
3475 else
3476 {
3477 if (coding->src_multibyte
3478 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3479 dst_bytes--;
3480 safe_bcopy (src, dst, dst_bytes);
3481 src_base = src + dst_bytes;
3482 dst = destination + dst_bytes;
3483 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3484 }
3485 if (coding->eol_type == CODING_EOL_CR)
3486 {
3487 for (tmp = destination; tmp < dst; tmp++)
3488 if (*tmp == '\n') *tmp = '\r';
3489 }
3490 else if (selective_display)
3491 {
3492 for (tmp = destination; tmp < dst; tmp++)
3493 if (*tmp == '\r') *tmp = '\n';
3494 }
3495 }
3496 if (coding->src_multibyte)
3497 dst = destination + str_as_unibyte (destination, dst - destination);
3498
3499 coding->consumed = src_base - source;
3500 coding->produced = dst - destination;
3501 coding->produced_char = coding->produced;
3502 }
3503
3504 \f
3505 /*** 7. C library functions ***/
3506
3507 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3508 has a property `coding-system'. The value of this property is a
3509 vector of length 5 (called the coding-vector). Among elements of
3510 this vector, the first (element[0]) and the fifth (element[4])
3511 carry important information for decoding/encoding. Before
3512 decoding/encoding, this information should be set in fields of a
3513 structure of type `coding_system'.
3514
3515 The value of the property `coding-system' can be a symbol of another
3516 subsidiary coding-system. In that case, Emacs gets coding-vector
3517 from that symbol.
3518
3519 `element[0]' contains information to be set in `coding->type'. The
3520 value and its meaning is as follows:
3521
3522 0 -- coding_type_emacs_mule
3523 1 -- coding_type_sjis
3524 2 -- coding_type_iso2022
3525 3 -- coding_type_big5
3526 4 -- coding_type_ccl encoder/decoder written in CCL
3527 nil -- coding_type_no_conversion
3528 t -- coding_type_undecided (automatic conversion on decoding,
3529 no-conversion on encoding)
3530
3531 `element[4]' contains information to be set in `coding->flags' and
3532 `coding->spec'. The meaning varies by `coding->type'.
3533
3534 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3535 of length 32 (of which the first 13 sub-elements are used now).
3536 Meanings of these sub-elements are:
3537
3538 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3539 If the value is an integer of valid charset, the charset is
3540 assumed to be designated to graphic register N initially.
3541
3542 If the value is minus, it is a minus value of charset which
3543 reserves graphic register N, which means that the charset is
3544 not designated initially but should be designated to graphic
3545 register N just before encoding a character in that charset.
3546
3547 If the value is nil, graphic register N is never used on
3548 encoding.
3549
3550 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3551 Each value takes t or nil. See the section ISO2022 of
3552 `coding.h' for more information.
3553
3554 If `coding->type' is `coding_type_big5', element[4] is t to denote
3555 BIG5-ETen or nil to denote BIG5-HKU.
3556
3557 If `coding->type' takes the other value, element[4] is ignored.
3558
3559 Emacs Lisp's coding systems also carry information about format of
3560 end-of-line in a value of property `eol-type'. If the value is
3561 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3562 means CODING_EOL_CR. If it is not integer, it should be a vector
3563 of subsidiary coding systems of which property `eol-type' has one
3564 of the above values.
3565
3566 */
3567
3568 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3569 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3570 is setup so that no conversion is necessary and return -1, else
3571 return 0. */
3572
3573 int
3574 setup_coding_system (coding_system, coding)
3575 Lisp_Object coding_system;
3576 struct coding_system *coding;
3577 {
3578 Lisp_Object coding_spec, coding_type, eol_type, plist;
3579 Lisp_Object val;
3580
3581 /* At first, zero clear all members. */
3582 bzero (coding, sizeof (struct coding_system));
3583
3584 /* Initialize some fields required for all kinds of coding systems. */
3585 coding->symbol = coding_system;
3586 coding->heading_ascii = -1;
3587 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3588 coding->composing = COMPOSITION_DISABLED;
3589 coding->cmp_data = NULL;
3590
3591 if (NILP (coding_system))
3592 goto label_invalid_coding_system;
3593
3594 coding_spec = Fget (coding_system, Qcoding_system);
3595
3596 if (!VECTORP (coding_spec)
3597 || XVECTOR (coding_spec)->size != 5
3598 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3599 goto label_invalid_coding_system;
3600
3601 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3602 if (VECTORP (eol_type))
3603 {
3604 coding->eol_type = CODING_EOL_UNDECIDED;
3605 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3606 }
3607 else if (XFASTINT (eol_type) == 1)
3608 {
3609 coding->eol_type = CODING_EOL_CRLF;
3610 coding->common_flags
3611 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3612 }
3613 else if (XFASTINT (eol_type) == 2)
3614 {
3615 coding->eol_type = CODING_EOL_CR;
3616 coding->common_flags
3617 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3618 }
3619 else
3620 coding->eol_type = CODING_EOL_LF;
3621
3622 coding_type = XVECTOR (coding_spec)->contents[0];
3623 /* Try short cut. */
3624 if (SYMBOLP (coding_type))
3625 {
3626 if (EQ (coding_type, Qt))
3627 {
3628 coding->type = coding_type_undecided;
3629 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3630 }
3631 else
3632 coding->type = coding_type_no_conversion;
3633 /* Initialize this member. Any thing other than
3634 CODING_CATEGORY_IDX_UTF_16_BE and
3635 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3636 special treatment in detect_eol. */
3637 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3638
3639 return 0;
3640 }
3641
3642 /* Get values of coding system properties:
3643 `post-read-conversion', `pre-write-conversion',
3644 `translation-table-for-decode', `translation-table-for-encode'. */
3645 plist = XVECTOR (coding_spec)->contents[3];
3646 /* Pre & post conversion functions should be disabled if
3647 inhibit_eol_conversion is nonzero. This is the case that a code
3648 conversion function is called while those functions are running. */
3649 if (! inhibit_pre_post_conversion)
3650 {
3651 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3652 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3653 }
3654 val = Fplist_get (plist, Qtranslation_table_for_decode);
3655 if (SYMBOLP (val))
3656 val = Fget (val, Qtranslation_table_for_decode);
3657 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3658 val = Fplist_get (plist, Qtranslation_table_for_encode);
3659 if (SYMBOLP (val))
3660 val = Fget (val, Qtranslation_table_for_encode);
3661 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3662 val = Fplist_get (plist, Qcoding_category);
3663 if (!NILP (val))
3664 {
3665 val = Fget (val, Qcoding_category_index);
3666 if (INTEGERP (val))
3667 coding->category_idx = XINT (val);
3668 else
3669 goto label_invalid_coding_system;
3670 }
3671 else
3672 goto label_invalid_coding_system;
3673
3674 /* If the coding system has non-nil `composition' property, enable
3675 composition handling. */
3676 val = Fplist_get (plist, Qcomposition);
3677 if (!NILP (val))
3678 coding->composing = COMPOSITION_NO;
3679
3680 switch (XFASTINT (coding_type))
3681 {
3682 case 0:
3683 coding->type = coding_type_emacs_mule;
3684 coding->common_flags
3685 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3686 if (!NILP (coding->post_read_conversion))
3687 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3688 if (!NILP (coding->pre_write_conversion))
3689 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3690 break;
3691
3692 case 1:
3693 coding->type = coding_type_sjis;
3694 coding->common_flags
3695 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3696 break;
3697
3698 case 2:
3699 coding->type = coding_type_iso2022;
3700 coding->common_flags
3701 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3702 {
3703 Lisp_Object val, temp;
3704 Lisp_Object *flags;
3705 int i, charset, reg_bits = 0;
3706
3707 val = XVECTOR (coding_spec)->contents[4];
3708
3709 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3710 goto label_invalid_coding_system;
3711
3712 flags = XVECTOR (val)->contents;
3713 coding->flags
3714 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3715 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3716 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3717 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3718 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3719 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3720 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3721 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3722 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3723 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3724 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3725 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3726 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3727 );
3728
3729 /* Invoke graphic register 0 to plane 0. */
3730 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3731 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3732 CODING_SPEC_ISO_INVOCATION (coding, 1)
3733 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3734 /* Not single shifting at first. */
3735 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3736 /* Beginning of buffer should also be regarded as bol. */
3737 CODING_SPEC_ISO_BOL (coding) = 1;
3738
3739 for (charset = 0; charset <= MAX_CHARSET; charset++)
3740 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3741 val = Vcharset_revision_alist;
3742 while (CONSP (val))
3743 {
3744 charset = get_charset_id (Fcar_safe (XCAR (val)));
3745 if (charset >= 0
3746 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3747 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3748 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3749 val = XCDR (val);
3750 }
3751
3752 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3753 FLAGS[REG] can be one of below:
3754 integer CHARSET: CHARSET occupies register I,
3755 t: designate nothing to REG initially, but can be used
3756 by any charsets,
3757 list of integer, nil, or t: designate the first
3758 element (if integer) to REG initially, the remaining
3759 elements (if integer) is designated to REG on request,
3760 if an element is t, REG can be used by any charsets,
3761 nil: REG is never used. */
3762 for (charset = 0; charset <= MAX_CHARSET; charset++)
3763 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3764 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3765 for (i = 0; i < 4; i++)
3766 {
3767 if ((INTEGERP (flags[i])
3768 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3769 || (charset = get_charset_id (flags[i])) >= 0)
3770 {
3771 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3772 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3773 }
3774 else if (EQ (flags[i], Qt))
3775 {
3776 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3777 reg_bits |= 1 << i;
3778 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3779 }
3780 else if (CONSP (flags[i]))
3781 {
3782 Lisp_Object tail;
3783 tail = flags[i];
3784
3785 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3786 if ((INTEGERP (XCAR (tail))
3787 && (charset = XINT (XCAR (tail)),
3788 CHARSET_VALID_P (charset)))
3789 || (charset = get_charset_id (XCAR (tail))) >= 0)
3790 {
3791 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3792 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3793 }
3794 else
3795 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3796 tail = XCDR (tail);
3797 while (CONSP (tail))
3798 {
3799 if ((INTEGERP (XCAR (tail))
3800 && (charset = XINT (XCAR (tail)),
3801 CHARSET_VALID_P (charset)))
3802 || (charset = get_charset_id (XCAR (tail))) >= 0)
3803 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3804 = i;
3805 else if (EQ (XCAR (tail), Qt))
3806 reg_bits |= 1 << i;
3807 tail = XCDR (tail);
3808 }
3809 }
3810 else
3811 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3812
3813 CODING_SPEC_ISO_DESIGNATION (coding, i)
3814 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3815 }
3816
3817 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3818 {
3819 /* REG 1 can be used only by locking shift in 7-bit env. */
3820 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3821 reg_bits &= ~2;
3822 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3823 /* Without any shifting, only REG 0 and 1 can be used. */
3824 reg_bits &= 3;
3825 }
3826
3827 if (reg_bits)
3828 for (charset = 0; charset <= MAX_CHARSET; charset++)
3829 {
3830 if (CHARSET_DEFINED_P (charset)
3831 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3832 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3833 {
3834 /* There exist some default graphic registers to be
3835 used by CHARSET. */
3836
3837 /* We had better avoid designating a charset of
3838 CHARS96 to REG 0 as far as possible. */
3839 if (CHARSET_CHARS (charset) == 96)
3840 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3841 = (reg_bits & 2
3842 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3843 else
3844 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3845 = (reg_bits & 1
3846 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3847 }
3848 }
3849 }
3850 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3851 coding->spec.iso2022.last_invalid_designation_register = -1;
3852 break;
3853
3854 case 3:
3855 coding->type = coding_type_big5;
3856 coding->common_flags
3857 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3858 coding->flags
3859 = (NILP (XVECTOR (coding_spec)->contents[4])
3860 ? CODING_FLAG_BIG5_HKU
3861 : CODING_FLAG_BIG5_ETEN);
3862 break;
3863
3864 case 4:
3865 coding->type = coding_type_ccl;
3866 coding->common_flags
3867 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3868 {
3869 val = XVECTOR (coding_spec)->contents[4];
3870 if (! CONSP (val)
3871 || setup_ccl_program (&(coding->spec.ccl.decoder),
3872 XCAR (val)) < 0
3873 || setup_ccl_program (&(coding->spec.ccl.encoder),
3874 XCDR (val)) < 0)
3875 goto label_invalid_coding_system;
3876
3877 bzero (coding->spec.ccl.valid_codes, 256);
3878 val = Fplist_get (plist, Qvalid_codes);
3879 if (CONSP (val))
3880 {
3881 Lisp_Object this;
3882
3883 for (; CONSP (val); val = XCDR (val))
3884 {
3885 this = XCAR (val);
3886 if (INTEGERP (this)
3887 && XINT (this) >= 0 && XINT (this) < 256)
3888 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3889 else if (CONSP (this)
3890 && INTEGERP (XCAR (this))
3891 && INTEGERP (XCDR (this)))
3892 {
3893 int start = XINT (XCAR (this));
3894 int end = XINT (XCDR (this));
3895
3896 if (start >= 0 && start <= end && end < 256)
3897 while (start <= end)
3898 coding->spec.ccl.valid_codes[start++] = 1;
3899 }
3900 }
3901 }
3902 }
3903 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3904 coding->spec.ccl.cr_carryover = 0;
3905 coding->spec.ccl.eight_bit_carryover[0] = 0;
3906 break;
3907
3908 case 5:
3909 coding->type = coding_type_raw_text;
3910 break;
3911
3912 default:
3913 goto label_invalid_coding_system;
3914 }
3915 return 0;
3916
3917 label_invalid_coding_system:
3918 coding->type = coding_type_no_conversion;
3919 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3920 coding->common_flags = 0;
3921 coding->eol_type = CODING_EOL_LF;
3922 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3923 return -1;
3924 }
3925
3926 /* Free memory blocks allocated for storing composition information. */
3927
3928 void
3929 coding_free_composition_data (coding)
3930 struct coding_system *coding;
3931 {
3932 struct composition_data *cmp_data = coding->cmp_data, *next;
3933
3934 if (!cmp_data)
3935 return;
3936 /* Memory blocks are chained. At first, rewind to the first, then,
3937 free blocks one by one. */
3938 while (cmp_data->prev)
3939 cmp_data = cmp_data->prev;
3940 while (cmp_data)
3941 {
3942 next = cmp_data->next;
3943 xfree (cmp_data);
3944 cmp_data = next;
3945 }
3946 coding->cmp_data = NULL;
3947 }
3948
3949 /* Set `char_offset' member of all memory blocks pointed by
3950 coding->cmp_data to POS. */
3951
3952 void
3953 coding_adjust_composition_offset (coding, pos)
3954 struct coding_system *coding;
3955 int pos;
3956 {
3957 struct composition_data *cmp_data;
3958
3959 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3960 cmp_data->char_offset = pos;
3961 }
3962
3963 /* Setup raw-text or one of its subsidiaries in the structure
3964 coding_system CODING according to the already setup value eol_type
3965 in CODING. CODING should be setup for some coding system in
3966 advance. */
3967
3968 void
3969 setup_raw_text_coding_system (coding)
3970 struct coding_system *coding;
3971 {
3972 if (coding->type != coding_type_raw_text)
3973 {
3974 coding->symbol = Qraw_text;
3975 coding->type = coding_type_raw_text;
3976 if (coding->eol_type != CODING_EOL_UNDECIDED)
3977 {
3978 Lisp_Object subsidiaries;
3979 subsidiaries = Fget (Qraw_text, Qeol_type);
3980
3981 if (VECTORP (subsidiaries)
3982 && XVECTOR (subsidiaries)->size == 3)
3983 coding->symbol
3984 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3985 }
3986 setup_coding_system (coding->symbol, coding);
3987 }
3988 return;
3989 }
3990
3991 /* Emacs has a mechanism to automatically detect a coding system if it
3992 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3993 it's impossible to distinguish some coding systems accurately
3994 because they use the same range of codes. So, at first, coding
3995 systems are categorized into 7, those are:
3996
3997 o coding-category-emacs-mule
3998
3999 The category for a coding system which has the same code range
4000 as Emacs' internal format. Assigned the coding-system (Lisp
4001 symbol) `emacs-mule' by default.
4002
4003 o coding-category-sjis
4004
4005 The category for a coding system which has the same code range
4006 as SJIS. Assigned the coding-system (Lisp
4007 symbol) `japanese-shift-jis' by default.
4008
4009 o coding-category-iso-7
4010
4011 The category for a coding system which has the same code range
4012 as ISO2022 of 7-bit environment. This doesn't use any locking
4013 shift and single shift functions. This can encode/decode all
4014 charsets. Assigned the coding-system (Lisp symbol)
4015 `iso-2022-7bit' by default.
4016
4017 o coding-category-iso-7-tight
4018
4019 Same as coding-category-iso-7 except that this can
4020 encode/decode only the specified charsets.
4021
4022 o coding-category-iso-8-1
4023
4024 The category for a coding system which has the same code range
4025 as ISO2022 of 8-bit environment and graphic plane 1 used only
4026 for DIMENSION1 charset. This doesn't use any locking shift
4027 and single shift functions. Assigned the coding-system (Lisp
4028 symbol) `iso-latin-1' by default.
4029
4030 o coding-category-iso-8-2
4031
4032 The category for a coding system which has the same code range
4033 as ISO2022 of 8-bit environment and graphic plane 1 used only
4034 for DIMENSION2 charset. This doesn't use any locking shift
4035 and single shift functions. Assigned the coding-system (Lisp
4036 symbol) `japanese-iso-8bit' by default.
4037
4038 o coding-category-iso-7-else
4039
4040 The category for a coding system which has the same code range
4041 as ISO2022 of 7-bit environment but uses locking shift or
4042 single shift functions. Assigned the coding-system (Lisp
4043 symbol) `iso-2022-7bit-lock' by default.
4044
4045 o coding-category-iso-8-else
4046
4047 The category for a coding system which has the same code range
4048 as ISO2022 of 8-bit environment but uses locking shift or
4049 single shift functions. Assigned the coding-system (Lisp
4050 symbol) `iso-2022-8bit-ss2' by default.
4051
4052 o coding-category-big5
4053
4054 The category for a coding system which has the same code range
4055 as BIG5. Assigned the coding-system (Lisp symbol)
4056 `cn-big5' by default.
4057
4058 o coding-category-utf-8
4059
4060 The category for a coding system which has the same code range
4061 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
4062 symbol) `utf-8' by default.
4063
4064 o coding-category-utf-16-be
4065
4066 The category for a coding system in which a text has an
4067 Unicode signature (cf. Unicode Standard) in the order of BIG
4068 endian at the head. Assigned the coding-system (Lisp symbol)
4069 `utf-16-be' by default.
4070
4071 o coding-category-utf-16-le
4072
4073 The category for a coding system in which a text has an
4074 Unicode signature (cf. Unicode Standard) in the order of
4075 LITTLE endian at the head. Assigned the coding-system (Lisp
4076 symbol) `utf-16-le' by default.
4077
4078 o coding-category-ccl
4079
4080 The category for a coding system of which encoder/decoder is
4081 written in CCL programs. The default value is nil, i.e., no
4082 coding system is assigned.
4083
4084 o coding-category-binary
4085
4086 The category for a coding system not categorized in any of the
4087 above. Assigned the coding-system (Lisp symbol)
4088 `no-conversion' by default.
4089
4090 Each of them is a Lisp symbol and the value is an actual
4091 `coding-system' (this is also a Lisp symbol) assigned by a user.
4092 What Emacs does actually is to detect a category of coding system.
4093 Then, it uses a `coding-system' assigned to it. If Emacs can't
4094 decide a single possible category, it selects a category of the
4095 highest priority. Priorities of categories are also specified by a
4096 user in a Lisp variable `coding-category-list'.
4097
4098 */
4099
4100 static
4101 int ascii_skip_code[256];
4102
4103 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
4104 If it detects possible coding systems, return an integer in which
4105 appropriate flag bits are set. Flag bits are defined by macros
4106 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
4107 it should point the table `coding_priorities'. In that case, only
4108 the flag bit for a coding system of the highest priority is set in
4109 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
4110 range 0x80..0x9F are in multibyte form.
4111
4112 How many ASCII characters are at the head is returned as *SKIP. */
4113
4114 static int
4115 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
4116 unsigned char *source;
4117 int src_bytes, *priorities, *skip;
4118 int multibytep;
4119 {
4120 register unsigned char c;
4121 unsigned char *src = source, *src_end = source + src_bytes;
4122 unsigned int mask, utf16_examined_p, iso2022_examined_p;
4123 int i;
4124
4125 /* At first, skip all ASCII characters and control characters except
4126 for three ISO2022 specific control characters. */
4127 ascii_skip_code[ISO_CODE_SO] = 0;
4128 ascii_skip_code[ISO_CODE_SI] = 0;
4129 ascii_skip_code[ISO_CODE_ESC] = 0;
4130
4131 label_loop_detect_coding:
4132 while (src < src_end && ascii_skip_code[*src]) src++;
4133 *skip = src - source;
4134
4135 if (src >= src_end)
4136 /* We found nothing other than ASCII. There's nothing to do. */
4137 return 0;
4138
4139 c = *src;
4140 /* The text seems to be encoded in some multilingual coding system.
4141 Now, try to find in which coding system the text is encoded. */
4142 if (c < 0x80)
4143 {
4144 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
4145 /* C is an ISO2022 specific control code of C0. */
4146 mask = detect_coding_iso2022 (src, src_end, multibytep);
4147 if (mask == 0)
4148 {
4149 /* No valid ISO2022 code follows C. Try again. */
4150 src++;
4151 if (c == ISO_CODE_ESC)
4152 ascii_skip_code[ISO_CODE_ESC] = 1;
4153 else
4154 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
4155 goto label_loop_detect_coding;
4156 }
4157 if (priorities)
4158 {
4159 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4160 {
4161 if (mask & priorities[i])
4162 return priorities[i];
4163 }
4164 return CODING_CATEGORY_MASK_RAW_TEXT;
4165 }
4166 }
4167 else
4168 {
4169 int try;
4170
4171 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
4172 c = src[1] - 0x20;
4173
4174 if (c < 0xA0)
4175 {
4176 /* C is the first byte of SJIS character code,
4177 or a leading-code of Emacs' internal format (emacs-mule),
4178 or the first byte of UTF-16. */
4179 try = (CODING_CATEGORY_MASK_SJIS
4180 | CODING_CATEGORY_MASK_EMACS_MULE
4181 | CODING_CATEGORY_MASK_UTF_16_BE
4182 | CODING_CATEGORY_MASK_UTF_16_LE);
4183
4184 /* Or, if C is a special latin extra code,
4185 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4186 or is an ISO2022 control-sequence-introducer (CSI),
4187 we should also consider the possibility of ISO2022 codings. */
4188 if ((VECTORP (Vlatin_extra_code_table)
4189 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4190 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4191 || (c == ISO_CODE_CSI
4192 && (src < src_end
4193 && (*src == ']'
4194 || ((*src == '0' || *src == '1' || *src == '2')
4195 && src + 1 < src_end
4196 && src[1] == ']')))))
4197 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4198 | CODING_CATEGORY_MASK_ISO_8BIT);
4199 }
4200 else
4201 /* C is a character of ISO2022 in graphic plane right,
4202 or a SJIS's 1-byte character code (i.e. JISX0201),
4203 or the first byte of BIG5's 2-byte code,
4204 or the first byte of UTF-8/16. */
4205 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4206 | CODING_CATEGORY_MASK_ISO_8BIT
4207 | CODING_CATEGORY_MASK_SJIS
4208 | CODING_CATEGORY_MASK_BIG5
4209 | CODING_CATEGORY_MASK_UTF_8
4210 | CODING_CATEGORY_MASK_UTF_16_BE
4211 | CODING_CATEGORY_MASK_UTF_16_LE);
4212
4213 /* Or, we may have to consider the possibility of CCL. */
4214 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4215 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4216 ->spec.ccl.valid_codes)[c])
4217 try |= CODING_CATEGORY_MASK_CCL;
4218
4219 mask = 0;
4220 utf16_examined_p = iso2022_examined_p = 0;
4221 if (priorities)
4222 {
4223 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4224 {
4225 if (!iso2022_examined_p
4226 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4227 {
4228 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4229 iso2022_examined_p = 1;
4230 }
4231 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4232 mask |= detect_coding_sjis (src, src_end, multibytep);
4233 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4234 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4235 else if (!utf16_examined_p
4236 && (priorities[i] & try &
4237 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4238 {
4239 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4240 utf16_examined_p = 1;
4241 }
4242 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4243 mask |= detect_coding_big5 (src, src_end, multibytep);
4244 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4245 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4246 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4247 mask |= detect_coding_ccl (src, src_end, multibytep);
4248 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4249 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4250 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4251 mask |= CODING_CATEGORY_MASK_BINARY;
4252 if (mask & priorities[i])
4253 return priorities[i];
4254 }
4255 return CODING_CATEGORY_MASK_RAW_TEXT;
4256 }
4257 if (try & CODING_CATEGORY_MASK_ISO)
4258 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4259 if (try & CODING_CATEGORY_MASK_SJIS)
4260 mask |= detect_coding_sjis (src, src_end, multibytep);
4261 if (try & CODING_CATEGORY_MASK_BIG5)
4262 mask |= detect_coding_big5 (src, src_end, multibytep);
4263 if (try & CODING_CATEGORY_MASK_UTF_8)
4264 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4265 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4266 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4267 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4268 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4269 if (try & CODING_CATEGORY_MASK_CCL)
4270 mask |= detect_coding_ccl (src, src_end, multibytep);
4271 }
4272 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4273 }
4274
4275 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4276 The information of the detected coding system is set in CODING. */
4277
4278 void
4279 detect_coding (coding, src, src_bytes)
4280 struct coding_system *coding;
4281 const unsigned char *src;
4282 int src_bytes;
4283 {
4284 unsigned int idx;
4285 int skip, mask;
4286 Lisp_Object val;
4287
4288 val = Vcoding_category_list;
4289 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4290 coding->src_multibyte);
4291 coding->heading_ascii = skip;
4292
4293 if (!mask) return;
4294
4295 /* We found a single coding system of the highest priority in MASK. */
4296 idx = 0;
4297 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4298 if (! mask)
4299 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4300
4301 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4302
4303 if (coding->eol_type != CODING_EOL_UNDECIDED)
4304 {
4305 Lisp_Object tmp;
4306
4307 tmp = Fget (val, Qeol_type);
4308 if (VECTORP (tmp))
4309 val = XVECTOR (tmp)->contents[coding->eol_type];
4310 }
4311
4312 /* Setup this new coding system while preserving some slots. */
4313 {
4314 int src_multibyte = coding->src_multibyte;
4315 int dst_multibyte = coding->dst_multibyte;
4316
4317 setup_coding_system (val, coding);
4318 coding->src_multibyte = src_multibyte;
4319 coding->dst_multibyte = dst_multibyte;
4320 coding->heading_ascii = skip;
4321 }
4322 }
4323
4324 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4325 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4326 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4327
4328 How many non-eol characters are at the head is returned as *SKIP. */
4329
4330 #define MAX_EOL_CHECK_COUNT 3
4331
4332 static int
4333 detect_eol_type (source, src_bytes, skip)
4334 unsigned char *source;
4335 int src_bytes, *skip;
4336 {
4337 unsigned char *src = source, *src_end = src + src_bytes;
4338 unsigned char c;
4339 int total = 0; /* How many end-of-lines are found so far. */
4340 int eol_type = CODING_EOL_UNDECIDED;
4341 int this_eol_type;
4342
4343 *skip = 0;
4344
4345 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4346 {
4347 c = *src++;
4348 if (c == '\n' || c == '\r')
4349 {
4350 if (*skip == 0)
4351 *skip = src - 1 - source;
4352 total++;
4353 if (c == '\n')
4354 this_eol_type = CODING_EOL_LF;
4355 else if (src >= src_end || *src != '\n')
4356 this_eol_type = CODING_EOL_CR;
4357 else
4358 this_eol_type = CODING_EOL_CRLF, src++;
4359
4360 if (eol_type == CODING_EOL_UNDECIDED)
4361 /* This is the first end-of-line. */
4362 eol_type = this_eol_type;
4363 else if (eol_type != this_eol_type)
4364 {
4365 /* The found type is different from what found before. */
4366 eol_type = CODING_EOL_INCONSISTENT;
4367 break;
4368 }
4369 }
4370 }
4371
4372 if (*skip == 0)
4373 *skip = src_end - source;
4374 return eol_type;
4375 }
4376
4377 /* Like detect_eol_type, but detect EOL type in 2-octet
4378 big-endian/little-endian format for coding systems utf-16-be and
4379 utf-16-le. */
4380
4381 static int
4382 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4383 unsigned char *source;
4384 int src_bytes, *skip, big_endian_p;
4385 {
4386 unsigned char *src = source, *src_end = src + src_bytes;
4387 unsigned int c1, c2;
4388 int total = 0; /* How many end-of-lines are found so far. */
4389 int eol_type = CODING_EOL_UNDECIDED;
4390 int this_eol_type;
4391 int msb, lsb;
4392
4393 if (big_endian_p)
4394 msb = 0, lsb = 1;
4395 else
4396 msb = 1, lsb = 0;
4397
4398 *skip = 0;
4399
4400 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4401 {
4402 c1 = (src[msb] << 8) | (src[lsb]);
4403 src += 2;
4404
4405 if (c1 == '\n' || c1 == '\r')
4406 {
4407 if (*skip == 0)
4408 *skip = src - 2 - source;
4409 total++;
4410 if (c1 == '\n')
4411 {
4412 this_eol_type = CODING_EOL_LF;
4413 }
4414 else
4415 {
4416 if ((src + 1) >= src_end)
4417 {
4418 this_eol_type = CODING_EOL_CR;
4419 }
4420 else
4421 {
4422 c2 = (src[msb] << 8) | (src[lsb]);
4423 if (c2 == '\n')
4424 this_eol_type = CODING_EOL_CRLF, src += 2;
4425 else
4426 this_eol_type = CODING_EOL_CR;
4427 }
4428 }
4429
4430 if (eol_type == CODING_EOL_UNDECIDED)
4431 /* This is the first end-of-line. */
4432 eol_type = this_eol_type;
4433 else if (eol_type != this_eol_type)
4434 {
4435 /* The found type is different from what found before. */
4436 eol_type = CODING_EOL_INCONSISTENT;
4437 break;
4438 }
4439 }
4440 }
4441
4442 if (*skip == 0)
4443 *skip = src_end - source;
4444 return eol_type;
4445 }
4446
4447 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4448 is encoded. If it detects an appropriate format of end-of-line, it
4449 sets the information in *CODING. */
4450
4451 void
4452 detect_eol (coding, src, src_bytes)
4453 struct coding_system *coding;
4454 const unsigned char *src;
4455 int src_bytes;
4456 {
4457 Lisp_Object val;
4458 int skip;
4459 int eol_type;
4460
4461 switch (coding->category_idx)
4462 {
4463 case CODING_CATEGORY_IDX_UTF_16_BE:
4464 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4465 break;
4466 case CODING_CATEGORY_IDX_UTF_16_LE:
4467 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4468 break;
4469 default:
4470 eol_type = detect_eol_type (src, src_bytes, &skip);
4471 break;
4472 }
4473
4474 if (coding->heading_ascii > skip)
4475 coding->heading_ascii = skip;
4476 else
4477 skip = coding->heading_ascii;
4478
4479 if (eol_type == CODING_EOL_UNDECIDED)
4480 return;
4481 if (eol_type == CODING_EOL_INCONSISTENT)
4482 {
4483 #if 0
4484 /* This code is suppressed until we find a better way to
4485 distinguish raw text file and binary file. */
4486
4487 /* If we have already detected that the coding is raw-text, the
4488 coding should actually be no-conversion. */
4489 if (coding->type == coding_type_raw_text)
4490 {
4491 setup_coding_system (Qno_conversion, coding);
4492 return;
4493 }
4494 /* Else, let's decode only text code anyway. */
4495 #endif /* 0 */
4496 eol_type = CODING_EOL_LF;
4497 }
4498
4499 val = Fget (coding->symbol, Qeol_type);
4500 if (VECTORP (val) && XVECTOR (val)->size == 3)
4501 {
4502 int src_multibyte = coding->src_multibyte;
4503 int dst_multibyte = coding->dst_multibyte;
4504 struct composition_data *cmp_data = coding->cmp_data;
4505
4506 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4507 coding->src_multibyte = src_multibyte;
4508 coding->dst_multibyte = dst_multibyte;
4509 coding->heading_ascii = skip;
4510 coding->cmp_data = cmp_data;
4511 }
4512 }
4513
4514 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4515
4516 #define DECODING_BUFFER_MAG(coding) \
4517 (coding->type == coding_type_iso2022 \
4518 ? 3 \
4519 : (coding->type == coding_type_ccl \
4520 ? coding->spec.ccl.decoder.buf_magnification \
4521 : 2))
4522
4523 /* Return maximum size (bytes) of a buffer enough for decoding
4524 SRC_BYTES of text encoded in CODING. */
4525
4526 int
4527 decoding_buffer_size (coding, src_bytes)
4528 struct coding_system *coding;
4529 int src_bytes;
4530 {
4531 return (src_bytes * DECODING_BUFFER_MAG (coding)
4532 + CONVERSION_BUFFER_EXTRA_ROOM);
4533 }
4534
4535 /* Return maximum size (bytes) of a buffer enough for encoding
4536 SRC_BYTES of text to CODING. */
4537
4538 int
4539 encoding_buffer_size (coding, src_bytes)
4540 struct coding_system *coding;
4541 int src_bytes;
4542 {
4543 int magnification;
4544
4545 if (coding->type == coding_type_ccl)
4546 {
4547 magnification = coding->spec.ccl.encoder.buf_magnification;
4548 if (coding->eol_type == CODING_EOL_CRLF)
4549 magnification *= 2;
4550 }
4551 else if (CODING_REQUIRE_ENCODING (coding))
4552 magnification = 3;
4553 else
4554 magnification = 1;
4555
4556 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4557 }
4558
4559 /* Working buffer for code conversion. */
4560 struct conversion_buffer
4561 {
4562 int size; /* size of data. */
4563 int on_stack; /* 1 if allocated by alloca. */
4564 unsigned char *data;
4565 };
4566
4567 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4568 #define allocate_conversion_buffer(buf, len) \
4569 do { \
4570 if (len < MAX_ALLOCA) \
4571 { \
4572 buf.data = (unsigned char *) alloca (len); \
4573 buf.on_stack = 1; \
4574 } \
4575 else \
4576 { \
4577 buf.data = (unsigned char *) xmalloc (len); \
4578 buf.on_stack = 0; \
4579 } \
4580 buf.size = len; \
4581 } while (0)
4582
4583 /* Double the allocated memory for *BUF. */
4584 static void
4585 extend_conversion_buffer (buf)
4586 struct conversion_buffer *buf;
4587 {
4588 if (buf->on_stack)
4589 {
4590 unsigned char *save = buf->data;
4591 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4592 bcopy (save, buf->data, buf->size);
4593 buf->on_stack = 0;
4594 }
4595 else
4596 {
4597 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4598 }
4599 buf->size *= 2;
4600 }
4601
4602 /* Free the allocated memory for BUF if it is not on stack. */
4603 static void
4604 free_conversion_buffer (buf)
4605 struct conversion_buffer *buf;
4606 {
4607 if (!buf->on_stack)
4608 xfree (buf->data);
4609 }
4610
4611 int
4612 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4613 struct coding_system *coding;
4614 unsigned char *source, *destination;
4615 int src_bytes, dst_bytes, encodep;
4616 {
4617 struct ccl_program *ccl
4618 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4619 unsigned char *dst = destination;
4620
4621 ccl->suppress_error = coding->suppress_error;
4622 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4623 if (encodep)
4624 {
4625 /* On encoding, EOL format is converted within ccl_driver. For
4626 that, setup proper information in the structure CCL. */
4627 ccl->eol_type = coding->eol_type;
4628 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4629 ccl->eol_type = CODING_EOL_LF;
4630 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4631 ccl->eight_bit_control = coding->dst_multibyte;
4632 }
4633 else
4634 ccl->eight_bit_control = 1;
4635 ccl->multibyte = coding->src_multibyte;
4636 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4637 {
4638 /* Move carryover bytes to DESTINATION. */
4639 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4640 while (*p)
4641 *dst++ = *p++;
4642 coding->spec.ccl.eight_bit_carryover[0] = 0;
4643 if (dst_bytes)
4644 dst_bytes -= dst - destination;
4645 }
4646
4647 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4648 &(coding->consumed))
4649 + dst - destination);
4650
4651 if (encodep)
4652 {
4653 coding->produced_char = coding->produced;
4654 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4655 }
4656 else if (!ccl->eight_bit_control)
4657 {
4658 /* The produced bytes forms a valid multibyte sequence. */
4659 coding->produced_char
4660 = multibyte_chars_in_text (destination, coding->produced);
4661 coding->spec.ccl.eight_bit_carryover[0] = 0;
4662 }
4663 else
4664 {
4665 /* On decoding, the destination should always multibyte. But,
4666 CCL program might have been generated an invalid multibyte
4667 sequence. Here we make such a sequence valid as
4668 multibyte. */
4669 int bytes
4670 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4671
4672 if ((coding->consumed < src_bytes
4673 || !ccl->last_block)
4674 && coding->produced >= 1
4675 && destination[coding->produced - 1] >= 0x80)
4676 {
4677 /* We should not convert the tailing 8-bit codes to
4678 multibyte form even if they doesn't form a valid
4679 multibyte sequence. They may form a valid sequence in
4680 the next call. */
4681 int carryover = 0;
4682
4683 if (destination[coding->produced - 1] < 0xA0)
4684 carryover = 1;
4685 else if (coding->produced >= 2)
4686 {
4687 if (destination[coding->produced - 2] >= 0x80)
4688 {
4689 if (destination[coding->produced - 2] < 0xA0)
4690 carryover = 2;
4691 else if (coding->produced >= 3
4692 && destination[coding->produced - 3] >= 0x80
4693 && destination[coding->produced - 3] < 0xA0)
4694 carryover = 3;
4695 }
4696 }
4697 if (carryover > 0)
4698 {
4699 BCOPY_SHORT (destination + coding->produced - carryover,
4700 coding->spec.ccl.eight_bit_carryover,
4701 carryover);
4702 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4703 coding->produced -= carryover;
4704 }
4705 }
4706 coding->produced = str_as_multibyte (destination, bytes,
4707 coding->produced,
4708 &(coding->produced_char));
4709 }
4710
4711 switch (ccl->status)
4712 {
4713 case CCL_STAT_SUSPEND_BY_SRC:
4714 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4715 break;
4716 case CCL_STAT_SUSPEND_BY_DST:
4717 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4718 break;
4719 case CCL_STAT_QUIT:
4720 case CCL_STAT_INVALID_CMD:
4721 coding->result = CODING_FINISH_INTERRUPT;
4722 break;
4723 default:
4724 coding->result = CODING_FINISH_NORMAL;
4725 break;
4726 }
4727 return coding->result;
4728 }
4729
4730 /* Decode EOL format of the text at PTR of BYTES length destructively
4731 according to CODING->eol_type. This is called after the CCL
4732 program produced a decoded text at PTR. If we do CRLF->LF
4733 conversion, update CODING->produced and CODING->produced_char. */
4734
4735 static void
4736 decode_eol_post_ccl (coding, ptr, bytes)
4737 struct coding_system *coding;
4738 unsigned char *ptr;
4739 int bytes;
4740 {
4741 Lisp_Object val, saved_coding_symbol;
4742 unsigned char *pend = ptr + bytes;
4743 int dummy;
4744
4745 /* Remember the current coding system symbol. We set it back when
4746 an inconsistent EOL is found so that `last-coding-system-used' is
4747 set to the coding system that doesn't specify EOL conversion. */
4748 saved_coding_symbol = coding->symbol;
4749
4750 coding->spec.ccl.cr_carryover = 0;
4751 if (coding->eol_type == CODING_EOL_UNDECIDED)
4752 {
4753 /* Here, to avoid the call of setup_coding_system, we directly
4754 call detect_eol_type. */
4755 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4756 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4757 coding->eol_type = CODING_EOL_LF;
4758 if (coding->eol_type != CODING_EOL_UNDECIDED)
4759 {
4760 val = Fget (coding->symbol, Qeol_type);
4761 if (VECTORP (val) && XVECTOR (val)->size == 3)
4762 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4763 }
4764 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4765 }
4766
4767 if (coding->eol_type == CODING_EOL_LF
4768 || coding->eol_type == CODING_EOL_UNDECIDED)
4769 {
4770 /* We have nothing to do. */
4771 ptr = pend;
4772 }
4773 else if (coding->eol_type == CODING_EOL_CRLF)
4774 {
4775 unsigned char *pstart = ptr, *p = ptr;
4776
4777 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4778 && *(pend - 1) == '\r')
4779 {
4780 /* If the last character is CR, we can't handle it here
4781 because LF will be in the not-yet-decoded source text.
4782 Record that the CR is not yet processed. */
4783 coding->spec.ccl.cr_carryover = 1;
4784 coding->produced--;
4785 coding->produced_char--;
4786 pend--;
4787 }
4788 while (ptr < pend)
4789 {
4790 if (*ptr == '\r')
4791 {
4792 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4793 {
4794 *p++ = '\n';
4795 ptr += 2;
4796 }
4797 else
4798 {
4799 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4800 goto undo_eol_conversion;
4801 *p++ = *ptr++;
4802 }
4803 }
4804 else if (*ptr == '\n'
4805 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4806 goto undo_eol_conversion;
4807 else
4808 *p++ = *ptr++;
4809 continue;
4810
4811 undo_eol_conversion:
4812 /* We have faced with inconsistent EOL format at PTR.
4813 Convert all LFs before PTR back to CRLFs. */
4814 for (p--, ptr--; p >= pstart; p--)
4815 {
4816 if (*p == '\n')
4817 *ptr-- = '\n', *ptr-- = '\r';
4818 else
4819 *ptr-- = *p;
4820 }
4821 /* If carryover is recorded, cancel it because we don't
4822 convert CRLF anymore. */
4823 if (coding->spec.ccl.cr_carryover)
4824 {
4825 coding->spec.ccl.cr_carryover = 0;
4826 coding->produced++;
4827 coding->produced_char++;
4828 pend++;
4829 }
4830 p = ptr = pend;
4831 coding->eol_type = CODING_EOL_LF;
4832 coding->symbol = saved_coding_symbol;
4833 }
4834 if (p < pend)
4835 {
4836 /* As each two-byte sequence CRLF was converted to LF, (PEND
4837 - P) is the number of deleted characters. */
4838 coding->produced -= pend - p;
4839 coding->produced_char -= pend - p;
4840 }
4841 }
4842 else /* i.e. coding->eol_type == CODING_EOL_CR */
4843 {
4844 unsigned char *p = ptr;
4845
4846 for (; ptr < pend; ptr++)
4847 {
4848 if (*ptr == '\r')
4849 *ptr = '\n';
4850 else if (*ptr == '\n'
4851 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4852 {
4853 for (; p < ptr; p++)
4854 {
4855 if (*p == '\n')
4856 *p = '\r';
4857 }
4858 ptr = pend;
4859 coding->eol_type = CODING_EOL_LF;
4860 coding->symbol = saved_coding_symbol;
4861 }
4862 }
4863 }
4864 }
4865
4866 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4867 decoding, it may detect coding system and format of end-of-line if
4868 those are not yet decided. The source should be unibyte, the
4869 result is multibyte if CODING->dst_multibyte is nonzero, else
4870 unibyte. */
4871
4872 int
4873 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4874 struct coding_system *coding;
4875 const unsigned char *source;
4876 unsigned char *destination;
4877 int src_bytes, dst_bytes;
4878 {
4879 int extra = 0;
4880
4881 if (coding->type == coding_type_undecided)
4882 detect_coding (coding, source, src_bytes);
4883
4884 if (coding->eol_type == CODING_EOL_UNDECIDED
4885 && coding->type != coding_type_ccl)
4886 {
4887 detect_eol (coding, source, src_bytes);
4888 /* We had better recover the original eol format if we
4889 encounter an inconsistent eol format while decoding. */
4890 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4891 }
4892
4893 coding->produced = coding->produced_char = 0;
4894 coding->consumed = coding->consumed_char = 0;
4895 coding->errors = 0;
4896 coding->result = CODING_FINISH_NORMAL;
4897
4898 switch (coding->type)
4899 {
4900 case coding_type_sjis:
4901 decode_coding_sjis_big5 (coding, source, destination,
4902 src_bytes, dst_bytes, 1);
4903 break;
4904
4905 case coding_type_iso2022:
4906 decode_coding_iso2022 (coding, source, destination,
4907 src_bytes, dst_bytes);
4908 break;
4909
4910 case coding_type_big5:
4911 decode_coding_sjis_big5 (coding, source, destination,
4912 src_bytes, dst_bytes, 0);
4913 break;
4914
4915 case coding_type_emacs_mule:
4916 decode_coding_emacs_mule (coding, source, destination,
4917 src_bytes, dst_bytes);
4918 break;
4919
4920 case coding_type_ccl:
4921 if (coding->spec.ccl.cr_carryover)
4922 {
4923 /* Put the CR which was not processed by the previous call
4924 of decode_eol_post_ccl in DESTINATION. It will be
4925 decoded together with the following LF by the call to
4926 decode_eol_post_ccl below. */
4927 *destination = '\r';
4928 coding->produced++;
4929 coding->produced_char++;
4930 dst_bytes--;
4931 extra = coding->spec.ccl.cr_carryover;
4932 }
4933 ccl_coding_driver (coding, source, destination + extra,
4934 src_bytes, dst_bytes, 0);
4935 if (coding->eol_type != CODING_EOL_LF)
4936 {
4937 coding->produced += extra;
4938 coding->produced_char += extra;
4939 decode_eol_post_ccl (coding, destination, coding->produced);
4940 }
4941 break;
4942
4943 default:
4944 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4945 }
4946
4947 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4948 && coding->mode & CODING_MODE_LAST_BLOCK
4949 && coding->consumed == src_bytes)
4950 coding->result = CODING_FINISH_NORMAL;
4951
4952 if (coding->mode & CODING_MODE_LAST_BLOCK
4953 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4954 {
4955 const unsigned char *src = source + coding->consumed;
4956 unsigned char *dst = destination + coding->produced;
4957
4958 src_bytes -= coding->consumed;
4959 coding->errors++;
4960 if (COMPOSING_P (coding))
4961 DECODE_COMPOSITION_END ('1');
4962 while (src_bytes--)
4963 {
4964 int c = *src++;
4965 dst += CHAR_STRING (c, dst);
4966 coding->produced_char++;
4967 }
4968 coding->consumed = coding->consumed_char = src - source;
4969 coding->produced = dst - destination;
4970 coding->result = CODING_FINISH_NORMAL;
4971 }
4972
4973 if (!coding->dst_multibyte)
4974 {
4975 coding->produced = str_as_unibyte (destination, coding->produced);
4976 coding->produced_char = coding->produced;
4977 }
4978
4979 return coding->result;
4980 }
4981
4982 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4983 multibyteness of the source is CODING->src_multibyte, the
4984 multibyteness of the result is always unibyte. */
4985
4986 int
4987 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4988 struct coding_system *coding;
4989 const unsigned char *source;
4990 unsigned char *destination;
4991 int src_bytes, dst_bytes;
4992 {
4993 coding->produced = coding->produced_char = 0;
4994 coding->consumed = coding->consumed_char = 0;
4995 coding->errors = 0;
4996 coding->result = CODING_FINISH_NORMAL;
4997
4998 switch (coding->type)
4999 {
5000 case coding_type_sjis:
5001 encode_coding_sjis_big5 (coding, source, destination,
5002 src_bytes, dst_bytes, 1);
5003 break;
5004
5005 case coding_type_iso2022:
5006 encode_coding_iso2022 (coding, source, destination,
5007 src_bytes, dst_bytes);
5008 break;
5009
5010 case coding_type_big5:
5011 encode_coding_sjis_big5 (coding, source, destination,
5012 src_bytes, dst_bytes, 0);
5013 break;
5014
5015 case coding_type_emacs_mule:
5016 encode_coding_emacs_mule (coding, source, destination,
5017 src_bytes, dst_bytes);
5018 break;
5019
5020 case coding_type_ccl:
5021 ccl_coding_driver (coding, source, destination,
5022 src_bytes, dst_bytes, 1);
5023 break;
5024
5025 default:
5026 encode_eol (coding, source, destination, src_bytes, dst_bytes);
5027 }
5028
5029 if (coding->mode & CODING_MODE_LAST_BLOCK
5030 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
5031 {
5032 const unsigned char *src = source + coding->consumed;
5033 unsigned char *dst = destination + coding->produced;
5034
5035 if (coding->type == coding_type_iso2022)
5036 ENCODE_RESET_PLANE_AND_REGISTER;
5037 if (COMPOSING_P (coding))
5038 *dst++ = ISO_CODE_ESC, *dst++ = '1';
5039 if (coding->consumed < src_bytes)
5040 {
5041 int len = src_bytes - coding->consumed;
5042
5043 BCOPY_SHORT (src, dst, len);
5044 if (coding->src_multibyte)
5045 len = str_as_unibyte (dst, len);
5046 dst += len;
5047 coding->consumed = src_bytes;
5048 }
5049 coding->produced = coding->produced_char = dst - destination;
5050 coding->result = CODING_FINISH_NORMAL;
5051 }
5052
5053 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
5054 && coding->consumed == src_bytes)
5055 coding->result = CODING_FINISH_NORMAL;
5056
5057 return coding->result;
5058 }
5059
5060 /* Scan text in the region between *BEG and *END (byte positions),
5061 skip characters which we don't have to decode by coding system
5062 CODING at the head and tail, then set *BEG and *END to the region
5063 of the text we actually have to convert. The caller should move
5064 the gap out of the region in advance if the region is from a
5065 buffer.
5066
5067 If STR is not NULL, *BEG and *END are indices into STR. */
5068
5069 static void
5070 shrink_decoding_region (beg, end, coding, str)
5071 int *beg, *end;
5072 struct coding_system *coding;
5073 unsigned char *str;
5074 {
5075 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
5076 int eol_conversion;
5077 Lisp_Object translation_table;
5078
5079 if (coding->type == coding_type_ccl
5080 || coding->type == coding_type_undecided
5081 || coding->eol_type != CODING_EOL_LF
5082 || !NILP (coding->post_read_conversion)
5083 || coding->composing != COMPOSITION_DISABLED)
5084 {
5085 /* We can't skip any data. */
5086 return;
5087 }
5088 if (coding->type == coding_type_no_conversion
5089 || coding->type == coding_type_raw_text
5090 || coding->type == coding_type_emacs_mule)
5091 {
5092 /* We need no conversion, but don't have to skip any data here.
5093 Decoding routine handles them effectively anyway. */
5094 return;
5095 }
5096
5097 translation_table = coding->translation_table_for_decode;
5098 if (NILP (translation_table) && !NILP (Venable_character_translation))
5099 translation_table = Vstandard_translation_table_for_decode;
5100 if (CHAR_TABLE_P (translation_table))
5101 {
5102 int i;
5103 for (i = 0; i < 128; i++)
5104 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5105 break;
5106 if (i < 128)
5107 /* Some ASCII character should be translated. We give up
5108 shrinking. */
5109 return;
5110 }
5111
5112 if (coding->heading_ascii >= 0)
5113 /* Detection routine has already found how much we can skip at the
5114 head. */
5115 *beg += coding->heading_ascii;
5116
5117 if (str)
5118 {
5119 begp_orig = begp = str + *beg;
5120 endp_orig = endp = str + *end;
5121 }
5122 else
5123 {
5124 begp_orig = begp = BYTE_POS_ADDR (*beg);
5125 endp_orig = endp = begp + *end - *beg;
5126 }
5127
5128 eol_conversion = (coding->eol_type == CODING_EOL_CR
5129 || coding->eol_type == CODING_EOL_CRLF);
5130
5131 switch (coding->type)
5132 {
5133 case coding_type_sjis:
5134 case coding_type_big5:
5135 /* We can skip all ASCII characters at the head. */
5136 if (coding->heading_ascii < 0)
5137 {
5138 if (eol_conversion)
5139 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
5140 else
5141 while (begp < endp && *begp < 0x80) begp++;
5142 }
5143 /* We can skip all ASCII characters at the tail except for the
5144 second byte of SJIS or BIG5 code. */
5145 if (eol_conversion)
5146 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
5147 else
5148 while (begp < endp && endp[-1] < 0x80) endp--;
5149 /* Do not consider LF as ascii if preceded by CR, since that
5150 confuses eol decoding. */
5151 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5152 endp++;
5153 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
5154 endp++;
5155 break;
5156
5157 case coding_type_iso2022:
5158 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5159 /* We can't skip any data. */
5160 break;
5161 if (coding->heading_ascii < 0)
5162 {
5163 /* We can skip all ASCII characters at the head except for a
5164 few control codes. */
5165 while (begp < endp && (c = *begp) < 0x80
5166 && c != ISO_CODE_CR && c != ISO_CODE_SO
5167 && c != ISO_CODE_SI && c != ISO_CODE_ESC
5168 && (!eol_conversion || c != ISO_CODE_LF))
5169 begp++;
5170 }
5171 switch (coding->category_idx)
5172 {
5173 case CODING_CATEGORY_IDX_ISO_8_1:
5174 case CODING_CATEGORY_IDX_ISO_8_2:
5175 /* We can skip all ASCII characters at the tail. */
5176 if (eol_conversion)
5177 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
5178 else
5179 while (begp < endp && endp[-1] < 0x80) endp--;
5180 /* Do not consider LF as ascii if preceded by CR, since that
5181 confuses eol decoding. */
5182 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5183 endp++;
5184 break;
5185
5186 case CODING_CATEGORY_IDX_ISO_7:
5187 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
5188 {
5189 /* We can skip all characters at the tail except for 8-bit
5190 codes and ESC and the following 2-byte at the tail. */
5191 unsigned char *eight_bit = NULL;
5192
5193 if (eol_conversion)
5194 while (begp < endp
5195 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5196 {
5197 if (!eight_bit && c & 0x80) eight_bit = endp;
5198 endp--;
5199 }
5200 else
5201 while (begp < endp
5202 && (c = endp[-1]) != ISO_CODE_ESC)
5203 {
5204 if (!eight_bit && c & 0x80) eight_bit = endp;
5205 endp--;
5206 }
5207 /* Do not consider LF as ascii if preceded by CR, since that
5208 confuses eol decoding. */
5209 if (begp < endp && endp < endp_orig
5210 && endp[-1] == '\r' && endp[0] == '\n')
5211 endp++;
5212 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5213 {
5214 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5215 /* This is an ASCII designation sequence. We can
5216 surely skip the tail. But, if we have
5217 encountered an 8-bit code, skip only the codes
5218 after that. */
5219 endp = eight_bit ? eight_bit : endp + 2;
5220 else
5221 /* Hmmm, we can't skip the tail. */
5222 endp = endp_orig;
5223 }
5224 else if (eight_bit)
5225 endp = eight_bit;
5226 }
5227 }
5228 break;
5229
5230 default:
5231 abort ();
5232 }
5233 *beg += begp - begp_orig;
5234 *end += endp - endp_orig;
5235 return;
5236 }
5237
5238 /* Like shrink_decoding_region but for encoding. */
5239
5240 static void
5241 shrink_encoding_region (beg, end, coding, str)
5242 int *beg, *end;
5243 struct coding_system *coding;
5244 unsigned char *str;
5245 {
5246 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5247 int eol_conversion;
5248 Lisp_Object translation_table;
5249
5250 if (coding->type == coding_type_ccl
5251 || coding->eol_type == CODING_EOL_CRLF
5252 || coding->eol_type == CODING_EOL_CR
5253 || (coding->cmp_data && coding->cmp_data->used > 0))
5254 {
5255 /* We can't skip any data. */
5256 return;
5257 }
5258 if (coding->type == coding_type_no_conversion
5259 || coding->type == coding_type_raw_text
5260 || coding->type == coding_type_emacs_mule
5261 || coding->type == coding_type_undecided)
5262 {
5263 /* We need no conversion, but don't have to skip any data here.
5264 Encoding routine handles them effectively anyway. */
5265 return;
5266 }
5267
5268 translation_table = coding->translation_table_for_encode;
5269 if (NILP (translation_table) && !NILP (Venable_character_translation))
5270 translation_table = Vstandard_translation_table_for_encode;
5271 if (CHAR_TABLE_P (translation_table))
5272 {
5273 int i;
5274 for (i = 0; i < 128; i++)
5275 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5276 break;
5277 if (i < 128)
5278 /* Some ASCII character should be translated. We give up
5279 shrinking. */
5280 return;
5281 }
5282
5283 if (str)
5284 {
5285 begp_orig = begp = str + *beg;
5286 endp_orig = endp = str + *end;
5287 }
5288 else
5289 {
5290 begp_orig = begp = BYTE_POS_ADDR (*beg);
5291 endp_orig = endp = begp + *end - *beg;
5292 }
5293
5294 eol_conversion = (coding->eol_type == CODING_EOL_CR
5295 || coding->eol_type == CODING_EOL_CRLF);
5296
5297 /* Here, we don't have to check coding->pre_write_conversion because
5298 the caller is expected to have handled it already. */
5299 switch (coding->type)
5300 {
5301 case coding_type_iso2022:
5302 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5303 /* We can't skip any data. */
5304 break;
5305 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5306 {
5307 unsigned char *bol = begp;
5308 while (begp < endp && *begp < 0x80)
5309 {
5310 begp++;
5311 if (begp[-1] == '\n')
5312 bol = begp;
5313 }
5314 begp = bol;
5315 goto label_skip_tail;
5316 }
5317 /* fall down ... */
5318
5319 case coding_type_sjis:
5320 case coding_type_big5:
5321 /* We can skip all ASCII characters at the head and tail. */
5322 if (eol_conversion)
5323 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5324 else
5325 while (begp < endp && *begp < 0x80) begp++;
5326 label_skip_tail:
5327 if (eol_conversion)
5328 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5329 else
5330 while (begp < endp && *(endp - 1) < 0x80) endp--;
5331 break;
5332
5333 default:
5334 abort ();
5335 }
5336
5337 *beg += begp - begp_orig;
5338 *end += endp - endp_orig;
5339 return;
5340 }
5341
5342 /* As shrinking conversion region requires some overhead, we don't try
5343 shrinking if the length of conversion region is less than this
5344 value. */
5345 static int shrink_conversion_region_threshhold = 1024;
5346
5347 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5348 do { \
5349 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5350 { \
5351 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5352 else shrink_decoding_region (beg, end, coding, str); \
5353 } \
5354 } while (0)
5355
5356 /* ARG is (CODING . BUFFER) where CODING is what to be set in
5357 Vlast_coding_system_used and BUFFER if non-nil is a buffer to
5358 kill. */
5359 static Lisp_Object
5360 code_convert_region_unwind (arg)
5361 Lisp_Object arg;
5362 {
5363 inhibit_pre_post_conversion = 0;
5364 Vlast_coding_system_used = XCAR (arg);
5365 if (! NILP (XCDR (arg)))
5366 Fkill_buffer (XCDR (arg));
5367 return Qnil;
5368 }
5369
5370 /* Store information about all compositions in the range FROM and TO
5371 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5372 buffer or a string, defaults to the current buffer. */
5373
5374 void
5375 coding_save_composition (coding, from, to, obj)
5376 struct coding_system *coding;
5377 int from, to;
5378 Lisp_Object obj;
5379 {
5380 Lisp_Object prop;
5381 int start, end;
5382
5383 if (coding->composing == COMPOSITION_DISABLED)
5384 return;
5385 if (!coding->cmp_data)
5386 coding_allocate_composition_data (coding, from);
5387 if (!find_composition (from, to, &start, &end, &prop, obj)
5388 || end > to)
5389 return;
5390 if (start < from
5391 && (!find_composition (end, to, &start, &end, &prop, obj)
5392 || end > to))
5393 return;
5394 coding->composing = COMPOSITION_NO;
5395 do
5396 {
5397 if (COMPOSITION_VALID_P (start, end, prop))
5398 {
5399 enum composition_method method = COMPOSITION_METHOD (prop);
5400 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5401 >= COMPOSITION_DATA_SIZE)
5402 coding_allocate_composition_data (coding, from);
5403 /* For relative composition, we remember start and end
5404 positions, for the other compositions, we also remember
5405 components. */
5406 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5407 if (method != COMPOSITION_RELATIVE)
5408 {
5409 /* We must store a*/
5410 Lisp_Object val, ch;
5411
5412 val = COMPOSITION_COMPONENTS (prop);
5413 if (CONSP (val))
5414 while (CONSP (val))
5415 {
5416 ch = XCAR (val), val = XCDR (val);
5417 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5418 }
5419 else if (VECTORP (val) || STRINGP (val))
5420 {
5421 int len = (VECTORP (val)
5422 ? XVECTOR (val)->size : SCHARS (val));
5423 int i;
5424 for (i = 0; i < len; i++)
5425 {
5426 ch = (STRINGP (val)
5427 ? Faref (val, make_number (i))
5428 : XVECTOR (val)->contents[i]);
5429 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5430 }
5431 }
5432 else /* INTEGERP (val) */
5433 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5434 }
5435 CODING_ADD_COMPOSITION_END (coding, end - from);
5436 }
5437 start = end;
5438 }
5439 while (start < to
5440 && find_composition (start, to, &start, &end, &prop, obj)
5441 && end <= to);
5442
5443 /* Make coding->cmp_data point to the first memory block. */
5444 while (coding->cmp_data->prev)
5445 coding->cmp_data = coding->cmp_data->prev;
5446 coding->cmp_data_start = 0;
5447 }
5448
5449 /* Reflect the saved information about compositions to OBJ.
5450 CODING->cmp_data points to a memory block for the information. OBJ
5451 is a buffer or a string, defaults to the current buffer. */
5452
5453 void
5454 coding_restore_composition (coding, obj)
5455 struct coding_system *coding;
5456 Lisp_Object obj;
5457 {
5458 struct composition_data *cmp_data = coding->cmp_data;
5459
5460 if (!cmp_data)
5461 return;
5462
5463 while (cmp_data->prev)
5464 cmp_data = cmp_data->prev;
5465
5466 while (cmp_data)
5467 {
5468 int i;
5469
5470 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5471 i += cmp_data->data[i])
5472 {
5473 int *data = cmp_data->data + i;
5474 enum composition_method method = (enum composition_method) data[3];
5475 Lisp_Object components;
5476
5477 if (data[0] < 0 || i + data[0] > cmp_data->used)
5478 /* Invalid composition data. */
5479 break;
5480
5481 if (method == COMPOSITION_RELATIVE)
5482 components = Qnil;
5483 else
5484 {
5485 int len = data[0] - 4, j;
5486 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5487
5488 if (method == COMPOSITION_WITH_RULE_ALTCHARS
5489 && len % 2 == 0)
5490 len --;
5491 if (len < 1)
5492 /* Invalid composition data. */
5493 break;
5494 for (j = 0; j < len; j++)
5495 args[j] = make_number (data[4 + j]);
5496 components = (method == COMPOSITION_WITH_ALTCHARS
5497 ? Fstring (len, args)
5498 : Fvector (len, args));
5499 }
5500 compose_text (data[1], data[2], components, Qnil, obj);
5501 }
5502 cmp_data = cmp_data->next;
5503 }
5504 }
5505
5506 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5507 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5508 coding system CODING, and return the status code of code conversion
5509 (currently, this value has no meaning).
5510
5511 How many characters (and bytes) are converted to how many
5512 characters (and bytes) are recorded in members of the structure
5513 CODING.
5514
5515 If REPLACE is nonzero, we do various things as if the original text
5516 is deleted and a new text is inserted. See the comments in
5517 replace_range (insdel.c) to know what we are doing.
5518
5519 If REPLACE is zero, it is assumed that the source text is unibyte.
5520 Otherwise, it is assumed that the source text is multibyte. */
5521
5522 int
5523 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5524 int from, from_byte, to, to_byte, encodep, replace;
5525 struct coding_system *coding;
5526 {
5527 int len = to - from, len_byte = to_byte - from_byte;
5528 int nchars_del = 0, nbytes_del = 0;
5529 int require, inserted, inserted_byte;
5530 int head_skip, tail_skip, total_skip = 0;
5531 Lisp_Object saved_coding_symbol;
5532 int first = 1;
5533 unsigned char *src, *dst;
5534 Lisp_Object deletion;
5535 int orig_point = PT, orig_len = len;
5536 int prev_Z;
5537 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5538
5539 deletion = Qnil;
5540 saved_coding_symbol = coding->symbol;
5541
5542 if (from < PT && PT < to)
5543 {
5544 TEMP_SET_PT_BOTH (from, from_byte);
5545 orig_point = from;
5546 }
5547
5548 if (replace)
5549 {
5550 int saved_from = from;
5551 int saved_inhibit_modification_hooks;
5552
5553 prepare_to_modify_buffer (from, to, &from);
5554 if (saved_from != from)
5555 {
5556 to = from + len;
5557 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5558 len_byte = to_byte - from_byte;
5559 }
5560
5561 /* The code conversion routine can not preserve text properties
5562 for now. So, we must remove all text properties in the
5563 region. Here, we must suppress all modification hooks. */
5564 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5565 inhibit_modification_hooks = 1;
5566 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5567 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5568 }
5569
5570 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5571 {
5572 /* We must detect encoding of text and eol format. */
5573
5574 if (from < GPT && to > GPT)
5575 move_gap_both (from, from_byte);
5576 if (coding->type == coding_type_undecided)
5577 {
5578 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5579 if (coding->type == coding_type_undecided)
5580 {
5581 /* It seems that the text contains only ASCII, but we
5582 should not leave it undecided because the deeper
5583 decoding routine (decode_coding) tries to detect the
5584 encodings again in vain. */
5585 coding->type = coding_type_emacs_mule;
5586 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5587 /* As emacs-mule decoder will handle composition, we
5588 need this setting to allocate coding->cmp_data
5589 later. */
5590 coding->composing = COMPOSITION_NO;
5591 }
5592 }
5593 if (coding->eol_type == CODING_EOL_UNDECIDED
5594 && coding->type != coding_type_ccl)
5595 {
5596 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5597 if (coding->eol_type == CODING_EOL_UNDECIDED)
5598 coding->eol_type = CODING_EOL_LF;
5599 /* We had better recover the original eol format if we
5600 encounter an inconsistent eol format while decoding. */
5601 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5602 }
5603 }
5604
5605 /* Now we convert the text. */
5606
5607 /* For encoding, we must process pre-write-conversion in advance. */
5608 if (! inhibit_pre_post_conversion
5609 && encodep
5610 && SYMBOLP (coding->pre_write_conversion)
5611 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5612 {
5613 /* The function in pre-write-conversion may put a new text in a
5614 new buffer. */
5615 struct buffer *prev = current_buffer;
5616 Lisp_Object new;
5617
5618 record_unwind_protect (code_convert_region_unwind,
5619 Fcons (Vlast_coding_system_used, Qnil));
5620 /* We should not call any more pre-write/post-read-conversion
5621 functions while this pre-write-conversion is running. */
5622 inhibit_pre_post_conversion = 1;
5623 call2 (coding->pre_write_conversion,
5624 make_number (from), make_number (to));
5625 inhibit_pre_post_conversion = 0;
5626 /* Discard the unwind protect. */
5627 specpdl_ptr--;
5628
5629 if (current_buffer != prev)
5630 {
5631 len = ZV - BEGV;
5632 new = Fcurrent_buffer ();
5633 set_buffer_internal_1 (prev);
5634 del_range_2 (from, from_byte, to, to_byte, 0);
5635 TEMP_SET_PT_BOTH (from, from_byte);
5636 insert_from_buffer (XBUFFER (new), 1, len, 0);
5637 Fkill_buffer (new);
5638 if (orig_point >= to)
5639 orig_point += len - orig_len;
5640 else if (orig_point > from)
5641 orig_point = from;
5642 orig_len = len;
5643 to = from + len;
5644 from_byte = CHAR_TO_BYTE (from);
5645 to_byte = CHAR_TO_BYTE (to);
5646 len_byte = to_byte - from_byte;
5647 TEMP_SET_PT_BOTH (from, from_byte);
5648 }
5649 }
5650
5651 if (replace)
5652 {
5653 if (! EQ (current_buffer->undo_list, Qt))
5654 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5655 else
5656 {
5657 nchars_del = to - from;
5658 nbytes_del = to_byte - from_byte;
5659 }
5660 }
5661
5662 if (coding->composing != COMPOSITION_DISABLED)
5663 {
5664 if (encodep)
5665 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5666 else
5667 coding_allocate_composition_data (coding, from);
5668 }
5669
5670 /* Try to skip the heading and tailing ASCIIs. We can't skip them
5671 if we must run CCL program or there are compositions to
5672 encode. */
5673 if (coding->type != coding_type_ccl
5674 && (! coding->cmp_data || coding->cmp_data->used == 0))
5675 {
5676 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5677
5678 if (from < GPT && GPT < to)
5679 move_gap_both (from, from_byte);
5680 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5681 if (from_byte == to_byte
5682 && (encodep || NILP (coding->post_read_conversion))
5683 && ! CODING_REQUIRE_FLUSHING (coding))
5684 {
5685 coding->produced = len_byte;
5686 coding->produced_char = len;
5687 if (!replace)
5688 /* We must record and adjust for this new text now. */
5689 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5690 coding_free_composition_data (coding);
5691 return 0;
5692 }
5693
5694 head_skip = from_byte - from_byte_orig;
5695 tail_skip = to_byte_orig - to_byte;
5696 total_skip = head_skip + tail_skip;
5697 from += head_skip;
5698 to -= tail_skip;
5699 len -= total_skip; len_byte -= total_skip;
5700 }
5701
5702 /* For conversion, we must put the gap before the text in addition to
5703 making the gap larger for efficient decoding. The required gap
5704 size starts from 2000 which is the magic number used in make_gap.
5705 But, after one batch of conversion, it will be incremented if we
5706 find that it is not enough . */
5707 require = 2000;
5708
5709 if (GAP_SIZE < require)
5710 make_gap (require - GAP_SIZE);
5711 move_gap_both (from, from_byte);
5712
5713 inserted = inserted_byte = 0;
5714
5715 GAP_SIZE += len_byte;
5716 ZV -= len;
5717 Z -= len;
5718 ZV_BYTE -= len_byte;
5719 Z_BYTE -= len_byte;
5720
5721 if (GPT - BEG < BEG_UNCHANGED)
5722 BEG_UNCHANGED = GPT - BEG;
5723 if (Z - GPT < END_UNCHANGED)
5724 END_UNCHANGED = Z - GPT;
5725
5726 if (!encodep && coding->src_multibyte)
5727 {
5728 /* Decoding routines expects that the source text is unibyte.
5729 We must convert 8-bit characters of multibyte form to
5730 unibyte. */
5731 int len_byte_orig = len_byte;
5732 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5733 if (len_byte < len_byte_orig)
5734 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5735 len_byte);
5736 coding->src_multibyte = 0;
5737 }
5738
5739 for (;;)
5740 {
5741 int result;
5742
5743 /* The buffer memory is now:
5744 +--------+converted-text+---------+-------original-text-------+---+
5745 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5746 |<---------------------- GAP ----------------------->| */
5747 src = GAP_END_ADDR - len_byte;
5748 dst = GPT_ADDR + inserted_byte;
5749
5750 if (encodep)
5751 result = encode_coding (coding, src, dst, len_byte, 0);
5752 else
5753 {
5754 if (coding->composing != COMPOSITION_DISABLED)
5755 coding->cmp_data->char_offset = from + inserted;
5756 result = decode_coding (coding, src, dst, len_byte, 0);
5757 }
5758
5759 /* The buffer memory is now:
5760 +--------+-------converted-text----+--+------original-text----+---+
5761 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5762 |<---------------------- GAP ----------------------->| */
5763
5764 inserted += coding->produced_char;
5765 inserted_byte += coding->produced;
5766 len_byte -= coding->consumed;
5767
5768 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5769 {
5770 coding_allocate_composition_data (coding, from + inserted);
5771 continue;
5772 }
5773
5774 src += coding->consumed;
5775 dst += coding->produced;
5776
5777 if (result == CODING_FINISH_NORMAL)
5778 {
5779 src += len_byte;
5780 break;
5781 }
5782 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5783 {
5784 unsigned char *pend = dst, *p = pend - inserted_byte;
5785 Lisp_Object eol_type;
5786
5787 /* Encode LFs back to the original eol format (CR or CRLF). */
5788 if (coding->eol_type == CODING_EOL_CR)
5789 {
5790 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5791 }
5792 else
5793 {
5794 int count = 0;
5795
5796 while (p < pend) if (*p++ == '\n') count++;
5797 if (src - dst < count)
5798 {
5799 /* We don't have sufficient room for encoding LFs
5800 back to CRLF. We must record converted and
5801 not-yet-converted text back to the buffer
5802 content, enlarge the gap, then record them out of
5803 the buffer contents again. */
5804 int add = len_byte + inserted_byte;
5805
5806 GAP_SIZE -= add;
5807 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5808 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5809 make_gap (count - GAP_SIZE);
5810 GAP_SIZE += add;
5811 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5812 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5813 /* Don't forget to update SRC, DST, and PEND. */
5814 src = GAP_END_ADDR - len_byte;
5815 dst = GPT_ADDR + inserted_byte;
5816 pend = dst;
5817 }
5818 inserted += count;
5819 inserted_byte += count;
5820 coding->produced += count;
5821 p = dst = pend + count;
5822 while (count)
5823 {
5824 *--p = *--pend;
5825 if (*p == '\n') count--, *--p = '\r';
5826 }
5827 }
5828
5829 /* Suppress eol-format conversion in the further conversion. */
5830 coding->eol_type = CODING_EOL_LF;
5831
5832 /* Set the coding system symbol to that for Unix-like EOL. */
5833 eol_type = Fget (saved_coding_symbol, Qeol_type);
5834 if (VECTORP (eol_type)
5835 && XVECTOR (eol_type)->size == 3
5836 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5837 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5838 else
5839 coding->symbol = saved_coding_symbol;
5840
5841 continue;
5842 }
5843 if (len_byte <= 0)
5844 {
5845 if (coding->type != coding_type_ccl
5846 || coding->mode & CODING_MODE_LAST_BLOCK)
5847 break;
5848 coding->mode |= CODING_MODE_LAST_BLOCK;
5849 continue;
5850 }
5851 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5852 {
5853 /* The source text ends in invalid codes. Let's just
5854 make them valid buffer contents, and finish conversion. */
5855 if (multibyte_p)
5856 {
5857 unsigned char *start = dst;
5858
5859 inserted += len_byte;
5860 while (len_byte--)
5861 {
5862 int c = *src++;
5863 dst += CHAR_STRING (c, dst);
5864 }
5865
5866 inserted_byte += dst - start;
5867 }
5868 else
5869 {
5870 inserted += len_byte;
5871 inserted_byte += len_byte;
5872 while (len_byte--)
5873 *dst++ = *src++;
5874 }
5875 break;
5876 }
5877 if (result == CODING_FINISH_INTERRUPT)
5878 {
5879 /* The conversion procedure was interrupted by a user. */
5880 break;
5881 }
5882 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5883 if (coding->consumed < 1)
5884 {
5885 /* It's quite strange to require more memory without
5886 consuming any bytes. Perhaps CCL program bug. */
5887 break;
5888 }
5889 if (first)
5890 {
5891 /* We have just done the first batch of conversion which was
5892 stopped because of insufficient gap. Let's reconsider the
5893 required gap size (i.e. SRT - DST) now.
5894
5895 We have converted ORIG bytes (== coding->consumed) into
5896 NEW bytes (coding->produced). To convert the remaining
5897 LEN bytes, we may need REQUIRE bytes of gap, where:
5898 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5899 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5900 Here, we are sure that NEW >= ORIG. */
5901
5902 if (coding->produced <= coding->consumed)
5903 {
5904 /* This happens because of CCL-based coding system with
5905 eol-type CRLF. */
5906 require = 0;
5907 }
5908 else
5909 {
5910 float ratio = coding->produced - coding->consumed;
5911 ratio /= coding->consumed;
5912 require = len_byte * ratio;
5913 }
5914 first = 0;
5915 }
5916 if ((src - dst) < (require + 2000))
5917 {
5918 /* See the comment above the previous call of make_gap. */
5919 int add = len_byte + inserted_byte;
5920
5921 GAP_SIZE -= add;
5922 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5923 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5924 make_gap (require + 2000);
5925 GAP_SIZE += add;
5926 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5927 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5928 }
5929 }
5930 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5931
5932 if (encodep && coding->dst_multibyte)
5933 {
5934 /* The output is unibyte. We must convert 8-bit characters to
5935 multibyte form. */
5936 if (inserted_byte * 2 > GAP_SIZE)
5937 {
5938 GAP_SIZE -= inserted_byte;
5939 ZV += inserted_byte; Z += inserted_byte;
5940 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5941 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5942 make_gap (inserted_byte - GAP_SIZE);
5943 GAP_SIZE += inserted_byte;
5944 ZV -= inserted_byte; Z -= inserted_byte;
5945 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5946 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5947 }
5948 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5949 }
5950
5951 /* If we shrank the conversion area, adjust it now. */
5952 if (total_skip > 0)
5953 {
5954 if (tail_skip > 0)
5955 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5956 inserted += total_skip; inserted_byte += total_skip;
5957 GAP_SIZE += total_skip;
5958 GPT -= head_skip; GPT_BYTE -= head_skip;
5959 ZV -= total_skip; ZV_BYTE -= total_skip;
5960 Z -= total_skip; Z_BYTE -= total_skip;
5961 from -= head_skip; from_byte -= head_skip;
5962 to += tail_skip; to_byte += tail_skip;
5963 }
5964
5965 prev_Z = Z;
5966 if (! EQ (current_buffer->undo_list, Qt))
5967 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5968 else
5969 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5970 inserted, inserted_byte);
5971 inserted = Z - prev_Z;
5972
5973 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5974 coding_restore_composition (coding, Fcurrent_buffer ());
5975 coding_free_composition_data (coding);
5976
5977 if (! inhibit_pre_post_conversion
5978 && ! encodep && ! NILP (coding->post_read_conversion))
5979 {
5980 Lisp_Object val;
5981 Lisp_Object saved_coding_system;
5982
5983 if (from != PT)
5984 TEMP_SET_PT_BOTH (from, from_byte);
5985 prev_Z = Z;
5986 record_unwind_protect (code_convert_region_unwind,
5987 Fcons (Vlast_coding_system_used, Qnil));
5988 saved_coding_system = Vlast_coding_system_used;
5989 Vlast_coding_system_used = coding->symbol;
5990 /* We should not call any more pre-write/post-read-conversion
5991 functions while this post-read-conversion is running. */
5992 inhibit_pre_post_conversion = 1;
5993 val = call1 (coding->post_read_conversion, make_number (inserted));
5994 inhibit_pre_post_conversion = 0;
5995 coding->symbol = Vlast_coding_system_used;
5996 Vlast_coding_system_used = saved_coding_system;
5997 /* Discard the unwind protect. */
5998 specpdl_ptr--;
5999 CHECK_NUMBER (val);
6000 inserted += Z - prev_Z;
6001 }
6002
6003 if (orig_point >= from)
6004 {
6005 if (orig_point >= from + orig_len)
6006 orig_point += inserted - orig_len;
6007 else
6008 orig_point = from;
6009 TEMP_SET_PT (orig_point);
6010 }
6011
6012 if (replace)
6013 {
6014 signal_after_change (from, to - from, inserted);
6015 update_compositions (from, from + inserted, CHECK_BORDER);
6016 }
6017
6018 {
6019 coding->consumed = to_byte - from_byte;
6020 coding->consumed_char = to - from;
6021 coding->produced = inserted_byte;
6022 coding->produced_char = inserted;
6023 }
6024
6025 return 0;
6026 }
6027
6028 /* Name (or base name) of work buffer for code conversion. */
6029 static Lisp_Object Vcode_conversion_workbuf_name;
6030
6031 /* Set the current buffer to the working buffer prepared for
6032 code-conversion. MULTIBYTE specifies the multibyteness of the
6033 buffer. Return the buffer we set if it must be killed after use.
6034 Otherwise return Qnil. */
6035
6036 static Lisp_Object
6037 set_conversion_work_buffer (multibyte)
6038 int multibyte;
6039 {
6040 Lisp_Object buffer, buffer_to_kill;
6041 struct buffer *buf;
6042
6043 buffer = Fget_buffer_create (Vcode_conversion_workbuf_name);
6044 buf = XBUFFER (buffer);
6045 if (buf == current_buffer)
6046 {
6047 /* As we are already in the work buffer, we must generate a new
6048 buffer for the work. */
6049 Lisp_Object name;
6050
6051 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
6052 buffer = buffer_to_kill = Fget_buffer_create (name);
6053 buf = XBUFFER (buffer);
6054 }
6055 else
6056 buffer_to_kill = Qnil;
6057
6058 delete_all_overlays (buf);
6059 buf->directory = current_buffer->directory;
6060 buf->read_only = Qnil;
6061 buf->filename = Qnil;
6062 buf->undo_list = Qt;
6063 eassert (buf->overlays_before == NULL);
6064 eassert (buf->overlays_after == NULL);
6065 set_buffer_internal (buf);
6066 if (BEG != BEGV || Z != ZV)
6067 Fwiden ();
6068 del_range_2 (BEG, BEG_BYTE, Z, Z_BYTE, 0);
6069 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
6070 return buffer_to_kill;
6071 }
6072
6073 Lisp_Object
6074 run_pre_post_conversion_on_str (str, coding, encodep)
6075 Lisp_Object str;
6076 struct coding_system *coding;
6077 int encodep;
6078 {
6079 int count = SPECPDL_INDEX ();
6080 struct gcpro gcpro1, gcpro2;
6081 int multibyte = STRING_MULTIBYTE (str);
6082 Lisp_Object old_deactivate_mark;
6083 Lisp_Object buffer_to_kill;
6084
6085 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
6086 /* It is not crucial to specbind this. */
6087 old_deactivate_mark = Vdeactivate_mark;
6088 GCPRO2 (str, old_deactivate_mark);
6089
6090 /* We must insert the contents of STR as is without
6091 unibyte<->multibyte conversion. For that, we adjust the
6092 multibyteness of the working buffer to that of STR. */
6093 buffer_to_kill = set_conversion_work_buffer (multibyte);
6094 record_unwind_protect (code_convert_region_unwind,
6095 Fcons (Vlast_coding_system_used, buffer_to_kill));
6096
6097 insert_from_string (str, 0, 0,
6098 SCHARS (str), SBYTES (str), 0);
6099 UNGCPRO;
6100 inhibit_pre_post_conversion = 1;
6101 if (encodep)
6102 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
6103 else
6104 {
6105 Vlast_coding_system_used = coding->symbol;
6106 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
6107 call1 (coding->post_read_conversion, make_number (Z - BEG));
6108 coding->symbol = Vlast_coding_system_used;
6109 }
6110 inhibit_pre_post_conversion = 0;
6111 Vdeactivate_mark = old_deactivate_mark;
6112 str = make_buffer_string (BEG, Z, 1);
6113 return unbind_to (count, str);
6114 }
6115
6116
6117 /* Run pre-write-conversion function of CODING on NCHARS/NBYTES
6118 text in *STR. *SIZE is the allocated bytes for STR. As it
6119 is intended that this function is called from encode_terminal_code,
6120 the pre-write-conversion function is run by safe_call and thus
6121 "Error during redisplay: ..." is logged when an error occurs.
6122
6123 Store the resulting text in *STR and set CODING->produced_char and
6124 CODING->produced to the number of characters and bytes
6125 respectively. If the size of *STR is too small, enlarge it by
6126 xrealloc and update *STR and *SIZE. */
6127
6128 void
6129 run_pre_write_conversin_on_c_str (str, size, nchars, nbytes, coding)
6130 unsigned char **str;
6131 int *size, nchars, nbytes;
6132 struct coding_system *coding;
6133 {
6134 struct gcpro gcpro1, gcpro2;
6135 struct buffer *cur = current_buffer;
6136 Lisp_Object old_deactivate_mark, old_last_coding_system_used;
6137 Lisp_Object args[3];
6138 Lisp_Object buffer_to_kill;
6139
6140 /* It is not crucial to specbind this. */
6141 old_deactivate_mark = Vdeactivate_mark;
6142 old_last_coding_system_used = Vlast_coding_system_used;
6143 GCPRO2 (old_deactivate_mark, old_last_coding_system_used);
6144
6145 /* We must insert the contents of STR as is without
6146 unibyte<->multibyte conversion. For that, we adjust the
6147 multibyteness of the working buffer to that of STR. */
6148 buffer_to_kill = set_conversion_work_buffer (coding->src_multibyte);
6149 insert_1_both (*str, nchars, nbytes, 0, 0, 0);
6150 UNGCPRO;
6151 inhibit_pre_post_conversion = 1;
6152 args[0] = coding->pre_write_conversion;
6153 args[1] = make_number (BEG);
6154 args[2] = make_number (Z);
6155 safe_call (3, args);
6156 inhibit_pre_post_conversion = 0;
6157 Vdeactivate_mark = old_deactivate_mark;
6158 Vlast_coding_system_used = old_last_coding_system_used;
6159 coding->produced_char = Z - BEG;
6160 coding->produced = Z_BYTE - BEG_BYTE;
6161 if (coding->produced > *size)
6162 {
6163 *size = coding->produced;
6164 *str = xrealloc (*str, *size);
6165 }
6166 if (BEG < GPT && GPT < Z)
6167 move_gap (BEG);
6168 bcopy (BEG_ADDR, *str, coding->produced);
6169 coding->src_multibyte
6170 = ! NILP (current_buffer->enable_multibyte_characters);
6171 set_buffer_internal (cur);
6172 if (! NILP (buffer_to_kill))
6173 Fkill_buffer (buffer_to_kill);
6174 }
6175
6176
6177 Lisp_Object
6178 decode_coding_string (str, coding, nocopy)
6179 Lisp_Object str;
6180 struct coding_system *coding;
6181 int nocopy;
6182 {
6183 int len;
6184 struct conversion_buffer buf;
6185 int from, to_byte;
6186 Lisp_Object saved_coding_symbol;
6187 int result;
6188 int require_decoding;
6189 int shrinked_bytes = 0;
6190 Lisp_Object newstr;
6191 int consumed, consumed_char, produced, produced_char;
6192
6193 from = 0;
6194 to_byte = SBYTES (str);
6195
6196 saved_coding_symbol = coding->symbol;
6197 coding->src_multibyte = STRING_MULTIBYTE (str);
6198 coding->dst_multibyte = 1;
6199 if (CODING_REQUIRE_DETECTION (coding))
6200 {
6201 /* See the comments in code_convert_region. */
6202 if (coding->type == coding_type_undecided)
6203 {
6204 detect_coding (coding, SDATA (str), to_byte);
6205 if (coding->type == coding_type_undecided)
6206 {
6207 coding->type = coding_type_emacs_mule;
6208 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
6209 /* As emacs-mule decoder will handle composition, we
6210 need this setting to allocate coding->cmp_data
6211 later. */
6212 coding->composing = COMPOSITION_NO;
6213 }
6214 }
6215 if (coding->eol_type == CODING_EOL_UNDECIDED
6216 && coding->type != coding_type_ccl)
6217 {
6218 saved_coding_symbol = coding->symbol;
6219 detect_eol (coding, SDATA (str), to_byte);
6220 if (coding->eol_type == CODING_EOL_UNDECIDED)
6221 coding->eol_type = CODING_EOL_LF;
6222 /* We had better recover the original eol format if we
6223 encounter an inconsistent eol format while decoding. */
6224 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
6225 }
6226 }
6227
6228 if (coding->type == coding_type_no_conversion
6229 || coding->type == coding_type_raw_text)
6230 coding->dst_multibyte = 0;
6231
6232 require_decoding = CODING_REQUIRE_DECODING (coding);
6233
6234 if (STRING_MULTIBYTE (str))
6235 {
6236 /* Decoding routines expect the source text to be unibyte. */
6237 str = Fstring_as_unibyte (str);
6238 to_byte = SBYTES (str);
6239 nocopy = 1;
6240 coding->src_multibyte = 0;
6241 }
6242
6243 /* Try to skip the heading and tailing ASCIIs. */
6244 if (require_decoding && coding->type != coding_type_ccl)
6245 {
6246 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6247 0);
6248 if (from == to_byte)
6249 require_decoding = 0;
6250 shrinked_bytes = from + (SBYTES (str) - to_byte);
6251 }
6252
6253 if (!require_decoding
6254 && !(SYMBOLP (coding->post_read_conversion)
6255 && !NILP (Ffboundp (coding->post_read_conversion))))
6256 {
6257 coding->consumed = SBYTES (str);
6258 coding->consumed_char = SCHARS (str);
6259 if (coding->dst_multibyte)
6260 {
6261 str = Fstring_as_multibyte (str);
6262 nocopy = 1;
6263 }
6264 coding->produced = SBYTES (str);
6265 coding->produced_char = SCHARS (str);
6266 return (nocopy ? str : Fcopy_sequence (str));
6267 }
6268
6269 if (coding->composing != COMPOSITION_DISABLED)
6270 coding_allocate_composition_data (coding, from);
6271 len = decoding_buffer_size (coding, to_byte - from);
6272 allocate_conversion_buffer (buf, len);
6273
6274 consumed = consumed_char = produced = produced_char = 0;
6275 while (1)
6276 {
6277 result = decode_coding (coding, SDATA (str) + from + consumed,
6278 buf.data + produced, to_byte - from - consumed,
6279 buf.size - produced);
6280 consumed += coding->consumed;
6281 consumed_char += coding->consumed_char;
6282 produced += coding->produced;
6283 produced_char += coding->produced_char;
6284 if (result == CODING_FINISH_NORMAL
6285 || result == CODING_FINISH_INTERRUPT
6286 || (result == CODING_FINISH_INSUFFICIENT_SRC
6287 && coding->consumed == 0))
6288 break;
6289 if (result == CODING_FINISH_INSUFFICIENT_CMP)
6290 coding_allocate_composition_data (coding, from + produced_char);
6291 else if (result == CODING_FINISH_INSUFFICIENT_DST)
6292 extend_conversion_buffer (&buf);
6293 else if (result == CODING_FINISH_INCONSISTENT_EOL)
6294 {
6295 Lisp_Object eol_type;
6296
6297 /* Recover the original EOL format. */
6298 if (coding->eol_type == CODING_EOL_CR)
6299 {
6300 unsigned char *p;
6301 for (p = buf.data; p < buf.data + produced; p++)
6302 if (*p == '\n') *p = '\r';
6303 }
6304 else if (coding->eol_type == CODING_EOL_CRLF)
6305 {
6306 int num_eol = 0;
6307 unsigned char *p0, *p1;
6308 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
6309 if (*p0 == '\n') num_eol++;
6310 if (produced + num_eol >= buf.size)
6311 extend_conversion_buffer (&buf);
6312 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
6313 {
6314 *--p1 = *--p0;
6315 if (*p0 == '\n') *--p1 = '\r';
6316 }
6317 produced += num_eol;
6318 produced_char += num_eol;
6319 }
6320 /* Suppress eol-format conversion in the further conversion. */
6321 coding->eol_type = CODING_EOL_LF;
6322
6323 /* Set the coding system symbol to that for Unix-like EOL. */
6324 eol_type = Fget (saved_coding_symbol, Qeol_type);
6325 if (VECTORP (eol_type)
6326 && XVECTOR (eol_type)->size == 3
6327 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
6328 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
6329 else
6330 coding->symbol = saved_coding_symbol;
6331
6332
6333 }
6334 }
6335
6336 coding->consumed = consumed;
6337 coding->consumed_char = consumed_char;
6338 coding->produced = produced;
6339 coding->produced_char = produced_char;
6340
6341 if (coding->dst_multibyte)
6342 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6343 produced + shrinked_bytes);
6344 else
6345 newstr = make_uninit_string (produced + shrinked_bytes);
6346 if (from > 0)
6347 STRING_COPYIN (newstr, 0, SDATA (str), from);
6348 STRING_COPYIN (newstr, from, buf.data, produced);
6349 if (shrinked_bytes > from)
6350 STRING_COPYIN (newstr, from + produced,
6351 SDATA (str) + to_byte,
6352 shrinked_bytes - from);
6353 free_conversion_buffer (&buf);
6354
6355 coding->consumed += shrinked_bytes;
6356 coding->consumed_char += shrinked_bytes;
6357 coding->produced += shrinked_bytes;
6358 coding->produced_char += shrinked_bytes;
6359
6360 if (coding->cmp_data && coding->cmp_data->used)
6361 coding_restore_composition (coding, newstr);
6362 coding_free_composition_data (coding);
6363
6364 if (SYMBOLP (coding->post_read_conversion)
6365 && !NILP (Ffboundp (coding->post_read_conversion)))
6366 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6367
6368 return newstr;
6369 }
6370
6371 Lisp_Object
6372 encode_coding_string (str, coding, nocopy)
6373 Lisp_Object str;
6374 struct coding_system *coding;
6375 int nocopy;
6376 {
6377 int len;
6378 struct conversion_buffer buf;
6379 int from, to, to_byte;
6380 int result;
6381 int shrinked_bytes = 0;
6382 Lisp_Object newstr;
6383 int consumed, consumed_char, produced, produced_char;
6384
6385 if (SYMBOLP (coding->pre_write_conversion)
6386 && !NILP (Ffboundp (coding->pre_write_conversion)))
6387 {
6388 str = run_pre_post_conversion_on_str (str, coding, 1);
6389 /* As STR is just newly generated, we don't have to copy it
6390 anymore. */
6391 nocopy = 1;
6392 }
6393
6394 from = 0;
6395 to = SCHARS (str);
6396 to_byte = SBYTES (str);
6397
6398 /* Encoding routines determine the multibyteness of the source text
6399 by coding->src_multibyte. */
6400 coding->src_multibyte = SCHARS (str) < SBYTES (str);
6401 coding->dst_multibyte = 0;
6402 if (! CODING_REQUIRE_ENCODING (coding))
6403 goto no_need_of_encoding;
6404
6405 if (coding->composing != COMPOSITION_DISABLED)
6406 coding_save_composition (coding, from, to, str);
6407
6408 /* Try to skip the heading and tailing ASCIIs. We can't skip them
6409 if we must run CCL program or there are compositions to
6410 encode. */
6411 if (coding->type != coding_type_ccl
6412 && (! coding->cmp_data || coding->cmp_data->used == 0))
6413 {
6414 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6415 1);
6416 if (from == to_byte)
6417 {
6418 coding_free_composition_data (coding);
6419 goto no_need_of_encoding;
6420 }
6421 shrinked_bytes = from + (SBYTES (str) - to_byte);
6422 }
6423
6424 len = encoding_buffer_size (coding, to_byte - from);
6425 allocate_conversion_buffer (buf, len);
6426
6427 consumed = consumed_char = produced = produced_char = 0;
6428 while (1)
6429 {
6430 result = encode_coding (coding, SDATA (str) + from + consumed,
6431 buf.data + produced, to_byte - from - consumed,
6432 buf.size - produced);
6433 consumed += coding->consumed;
6434 consumed_char += coding->consumed_char;
6435 produced += coding->produced;
6436 produced_char += coding->produced_char;
6437 if (result == CODING_FINISH_NORMAL
6438 || result == CODING_FINISH_INTERRUPT
6439 || (result == CODING_FINISH_INSUFFICIENT_SRC
6440 && coding->consumed == 0))
6441 break;
6442 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6443 extend_conversion_buffer (&buf);
6444 }
6445
6446 coding->consumed = consumed;
6447 coding->consumed_char = consumed_char;
6448 coding->produced = produced;
6449 coding->produced_char = produced_char;
6450
6451 newstr = make_uninit_string (produced + shrinked_bytes);
6452 if (from > 0)
6453 STRING_COPYIN (newstr, 0, SDATA (str), from);
6454 STRING_COPYIN (newstr, from, buf.data, produced);
6455 if (shrinked_bytes > from)
6456 STRING_COPYIN (newstr, from + produced,
6457 SDATA (str) + to_byte,
6458 shrinked_bytes - from);
6459
6460 free_conversion_buffer (&buf);
6461 coding_free_composition_data (coding);
6462
6463 return newstr;
6464
6465 no_need_of_encoding:
6466 coding->consumed = SBYTES (str);
6467 coding->consumed_char = SCHARS (str);
6468 if (STRING_MULTIBYTE (str))
6469 {
6470 if (nocopy)
6471 /* We are sure that STR doesn't contain a multibyte
6472 character. */
6473 STRING_SET_UNIBYTE (str);
6474 else
6475 {
6476 str = Fstring_as_unibyte (str);
6477 nocopy = 1;
6478 }
6479 }
6480 coding->produced = SBYTES (str);
6481 coding->produced_char = SCHARS (str);
6482 return (nocopy ? str : Fcopy_sequence (str));
6483 }
6484
6485 \f
6486 #ifdef emacs
6487 /*** 8. Emacs Lisp library functions ***/
6488
6489 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6490 doc: /* Return t if OBJECT is nil or a coding-system.
6491 See the documentation of `make-coding-system' for information
6492 about coding-system objects. */)
6493 (obj)
6494 Lisp_Object obj;
6495 {
6496 if (NILP (obj))
6497 return Qt;
6498 if (!SYMBOLP (obj))
6499 return Qnil;
6500 if (! NILP (Fget (obj, Qcoding_system_define_form)))
6501 return Qt;
6502 /* Get coding-spec vector for OBJ. */
6503 obj = Fget (obj, Qcoding_system);
6504 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6505 ? Qt : Qnil);
6506 }
6507
6508 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6509 Sread_non_nil_coding_system, 1, 1, 0,
6510 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6511 (prompt)
6512 Lisp_Object prompt;
6513 {
6514 Lisp_Object val;
6515 do
6516 {
6517 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6518 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6519 }
6520 while (SCHARS (val) == 0);
6521 return (Fintern (val, Qnil));
6522 }
6523
6524 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6525 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6526 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6527 (prompt, default_coding_system)
6528 Lisp_Object prompt, default_coding_system;
6529 {
6530 Lisp_Object val;
6531 if (SYMBOLP (default_coding_system))
6532 default_coding_system = SYMBOL_NAME (default_coding_system);
6533 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6534 Qt, Qnil, Qcoding_system_history,
6535 default_coding_system, Qnil);
6536 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
6537 }
6538
6539 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6540 1, 1, 0,
6541 doc: /* Check validity of CODING-SYSTEM.
6542 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6543 It is valid if it is nil or a symbol with a non-nil `coding-system' property.
6544 The value of this property should be a vector of length 5. */)
6545 (coding_system)
6546 Lisp_Object coding_system;
6547 {
6548 Lisp_Object define_form;
6549
6550 define_form = Fget (coding_system, Qcoding_system_define_form);
6551 if (! NILP (define_form))
6552 {
6553 Fput (coding_system, Qcoding_system_define_form, Qnil);
6554 safe_eval (define_form);
6555 }
6556 if (!NILP (Fcoding_system_p (coding_system)))
6557 return coding_system;
6558 while (1)
6559 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6560 }
6561 \f
6562 Lisp_Object
6563 detect_coding_system (src, src_bytes, highest, multibytep)
6564 const unsigned char *src;
6565 int src_bytes, highest;
6566 int multibytep;
6567 {
6568 int coding_mask, eol_type;
6569 Lisp_Object val, tmp;
6570 int dummy;
6571
6572 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6573 eol_type = detect_eol_type (src, src_bytes, &dummy);
6574 if (eol_type == CODING_EOL_INCONSISTENT)
6575 eol_type = CODING_EOL_UNDECIDED;
6576
6577 if (!coding_mask)
6578 {
6579 val = Qundecided;
6580 if (eol_type != CODING_EOL_UNDECIDED)
6581 {
6582 Lisp_Object val2;
6583 val2 = Fget (Qundecided, Qeol_type);
6584 if (VECTORP (val2))
6585 val = XVECTOR (val2)->contents[eol_type];
6586 }
6587 return (highest ? val : Fcons (val, Qnil));
6588 }
6589
6590 /* At first, gather possible coding systems in VAL. */
6591 val = Qnil;
6592 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6593 {
6594 Lisp_Object category_val, category_index;
6595
6596 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6597 category_val = Fsymbol_value (XCAR (tmp));
6598 if (!NILP (category_val)
6599 && NATNUMP (category_index)
6600 && (coding_mask & (1 << XFASTINT (category_index))))
6601 {
6602 val = Fcons (category_val, val);
6603 if (highest)
6604 break;
6605 }
6606 }
6607 if (!highest)
6608 val = Fnreverse (val);
6609
6610 /* Then, replace the elements with subsidiary coding systems. */
6611 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6612 {
6613 if (eol_type != CODING_EOL_UNDECIDED
6614 && eol_type != CODING_EOL_INCONSISTENT)
6615 {
6616 Lisp_Object eol;
6617 eol = Fget (XCAR (tmp), Qeol_type);
6618 if (VECTORP (eol))
6619 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6620 }
6621 }
6622 return (highest ? XCAR (val) : val);
6623 }
6624
6625 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6626 2, 3, 0,
6627 doc: /* Detect how the byte sequence in the region is encoded.
6628 Return a list of possible coding systems used on decoding a byte
6629 sequence containing the bytes in the region between START and END when
6630 the coding system `undecided' is specified. The list is ordered by
6631 priority decided in the current language environment.
6632
6633 If only ASCII characters are found, it returns a list of single element
6634 `undecided' or its subsidiary coding system according to a detected
6635 end-of-line format.
6636
6637 If optional argument HIGHEST is non-nil, return the coding system of
6638 highest priority. */)
6639 (start, end, highest)
6640 Lisp_Object start, end, highest;
6641 {
6642 int from, to;
6643 int from_byte, to_byte;
6644 int include_anchor_byte = 0;
6645
6646 CHECK_NUMBER_COERCE_MARKER (start);
6647 CHECK_NUMBER_COERCE_MARKER (end);
6648
6649 validate_region (&start, &end);
6650 from = XINT (start), to = XINT (end);
6651 from_byte = CHAR_TO_BYTE (from);
6652 to_byte = CHAR_TO_BYTE (to);
6653
6654 if (from < GPT && to >= GPT)
6655 move_gap_both (to, to_byte);
6656 /* If we an anchor byte `\0' follows the region, we include it in
6657 the detecting source. Then code detectors can handle the tailing
6658 byte sequence more accurately.
6659
6660 Fix me: This is not a perfect solution. It is better that we
6661 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6662 */
6663 if (to == Z || (to == GPT && GAP_SIZE > 0))
6664 include_anchor_byte = 1;
6665 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6666 to_byte - from_byte + include_anchor_byte,
6667 !NILP (highest),
6668 !NILP (current_buffer
6669 ->enable_multibyte_characters));
6670 }
6671
6672 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6673 1, 2, 0,
6674 doc: /* Detect how the byte sequence in STRING is encoded.
6675 Return a list of possible coding systems used on decoding a byte
6676 sequence containing the bytes in STRING when the coding system
6677 `undecided' is specified. The list is ordered by priority decided in
6678 the current language environment.
6679
6680 If only ASCII characters are found, it returns a list of single element
6681 `undecided' or its subsidiary coding system according to a detected
6682 end-of-line format.
6683
6684 If optional argument HIGHEST is non-nil, return the coding system of
6685 highest priority. */)
6686 (string, highest)
6687 Lisp_Object string, highest;
6688 {
6689 CHECK_STRING (string);
6690
6691 return detect_coding_system (SDATA (string),
6692 /* "+ 1" is to include the anchor byte
6693 `\0'. With this, code detectors can
6694 handle the tailing bytes more
6695 accurately. */
6696 SBYTES (string) + 1,
6697 !NILP (highest),
6698 STRING_MULTIBYTE (string));
6699 }
6700
6701 /* Subroutine for Ffind_coding_systems_region_internal.
6702
6703 Return a list of coding systems that safely encode the multibyte
6704 text between P and PEND. SAFE_CODINGS, if non-nil, is an alist of
6705 possible coding systems. If it is nil, it means that we have not
6706 yet found any coding systems.
6707
6708 WORK_TABLE a char-table of which element is set to t once the
6709 element is looked up.
6710
6711 If a non-ASCII single byte char is found, set
6712 *single_byte_char_found to 1. */
6713
6714 static Lisp_Object
6715 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6716 unsigned char *p, *pend;
6717 Lisp_Object safe_codings, work_table;
6718 int *single_byte_char_found;
6719 {
6720 int c, len;
6721 Lisp_Object val, ch;
6722 Lisp_Object prev, tail;
6723
6724 if (NILP (safe_codings))
6725 goto done_safe_codings;
6726 while (p < pend)
6727 {
6728 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6729 p += len;
6730 if (ASCII_BYTE_P (c))
6731 /* We can ignore ASCII characters here. */
6732 continue;
6733 if (SINGLE_BYTE_CHAR_P (c))
6734 *single_byte_char_found = 1;
6735 /* Check the safe coding systems for C. */
6736 ch = make_number (c);
6737 val = Faref (work_table, ch);
6738 if (EQ (val, Qt))
6739 /* This element was already checked. Ignore it. */
6740 continue;
6741 /* Remember that we checked this element. */
6742 Faset (work_table, ch, Qt);
6743
6744 for (prev = tail = safe_codings; CONSP (tail); tail = XCDR (tail))
6745 {
6746 Lisp_Object elt, translation_table, hash_table, accept_latin_extra;
6747 int encodable;
6748
6749 elt = XCAR (tail);
6750 if (CONSP (XCDR (elt)))
6751 {
6752 /* This entry has this format now:
6753 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6754 ACCEPT-LATIN-EXTRA ) */
6755 val = XCDR (elt);
6756 encodable = ! NILP (Faref (XCAR (val), ch));
6757 if (! encodable)
6758 {
6759 val = XCDR (val);
6760 translation_table = XCAR (val);
6761 hash_table = XCAR (XCDR (val));
6762 accept_latin_extra = XCAR (XCDR (XCDR (val)));
6763 }
6764 }
6765 else
6766 {
6767 /* This entry has this format now: ( CODING . SAFE-CHARS) */
6768 encodable = ! NILP (Faref (XCDR (elt), ch));
6769 if (! encodable)
6770 {
6771 /* Transform the format to:
6772 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6773 ACCEPT-LATIN-EXTRA ) */
6774 val = Fget (XCAR (elt), Qcoding_system);
6775 translation_table
6776 = Fplist_get (AREF (val, 3),
6777 Qtranslation_table_for_encode);
6778 if (SYMBOLP (translation_table))
6779 translation_table = Fget (translation_table,
6780 Qtranslation_table);
6781 hash_table
6782 = (CHAR_TABLE_P (translation_table)
6783 ? XCHAR_TABLE (translation_table)->extras[1]
6784 : Qnil);
6785 accept_latin_extra
6786 = ((EQ (AREF (val, 0), make_number (2))
6787 && VECTORP (AREF (val, 4)))
6788 ? AREF (AREF (val, 4), 16)
6789 : Qnil);
6790 XSETCAR (tail, list5 (XCAR (elt), XCDR (elt),
6791 translation_table, hash_table,
6792 accept_latin_extra));
6793 }
6794 }
6795
6796 if (! encodable
6797 && ((CHAR_TABLE_P (translation_table)
6798 && ! NILP (Faref (translation_table, ch)))
6799 || (HASH_TABLE_P (hash_table)
6800 && ! NILP (Fgethash (ch, hash_table, Qnil)))
6801 || (SINGLE_BYTE_CHAR_P (c)
6802 && ! NILP (accept_latin_extra)
6803 && VECTORP (Vlatin_extra_code_table)
6804 && ! NILP (AREF (Vlatin_extra_code_table, c)))))
6805 encodable = 1;
6806 if (encodable)
6807 prev = tail;
6808 else
6809 {
6810 /* Exclude this coding system from SAFE_CODINGS. */
6811 if (EQ (tail, safe_codings))
6812 {
6813 safe_codings = XCDR (safe_codings);
6814 if (NILP (safe_codings))
6815 goto done_safe_codings;
6816 }
6817 else
6818 XSETCDR (prev, XCDR (tail));
6819 }
6820 }
6821 }
6822
6823 done_safe_codings:
6824 /* If the above loop was terminated before P reaches PEND, it means
6825 SAFE_CODINGS was set to nil. If we have not yet found an
6826 non-ASCII single-byte char, check it now. */
6827 if (! *single_byte_char_found)
6828 while (p < pend)
6829 {
6830 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6831 p += len;
6832 if (! ASCII_BYTE_P (c)
6833 && SINGLE_BYTE_CHAR_P (c))
6834 {
6835 *single_byte_char_found = 1;
6836 break;
6837 }
6838 }
6839 return safe_codings;
6840 }
6841
6842 DEFUN ("find-coding-systems-region-internal",
6843 Ffind_coding_systems_region_internal,
6844 Sfind_coding_systems_region_internal, 2, 2, 0,
6845 doc: /* Internal use only. */)
6846 (start, end)
6847 Lisp_Object start, end;
6848 {
6849 Lisp_Object work_table, safe_codings;
6850 int non_ascii_p = 0;
6851 int single_byte_char_found = 0;
6852 const unsigned char *p1, *p1end, *p2, *p2end, *p;
6853
6854 if (STRINGP (start))
6855 {
6856 if (!STRING_MULTIBYTE (start))
6857 return Qt;
6858 p1 = SDATA (start), p1end = p1 + SBYTES (start);
6859 p2 = p2end = p1end;
6860 if (SCHARS (start) != SBYTES (start))
6861 non_ascii_p = 1;
6862 }
6863 else
6864 {
6865 int from, to, stop;
6866
6867 CHECK_NUMBER_COERCE_MARKER (start);
6868 CHECK_NUMBER_COERCE_MARKER (end);
6869 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6870 args_out_of_range (start, end);
6871 if (NILP (current_buffer->enable_multibyte_characters))
6872 return Qt;
6873 from = CHAR_TO_BYTE (XINT (start));
6874 to = CHAR_TO_BYTE (XINT (end));
6875 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6876 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6877 if (stop == to)
6878 p2 = p2end = p1end;
6879 else
6880 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6881 if (XINT (end) - XINT (start) != to - from)
6882 non_ascii_p = 1;
6883 }
6884
6885 if (!non_ascii_p)
6886 {
6887 /* We are sure that the text contains no multibyte character.
6888 Check if it contains eight-bit-graphic. */
6889 p = p1;
6890 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6891 if (p == p1end)
6892 {
6893 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6894 if (p == p2end)
6895 return Qt;
6896 }
6897 }
6898
6899 /* The text contains non-ASCII characters. */
6900
6901 work_table = Fmake_char_table (Qchar_coding_system, Qnil);
6902 safe_codings = Fcopy_sequence (XCDR (Vcoding_system_safe_chars));
6903
6904 safe_codings = find_safe_codings (p1, p1end, safe_codings, work_table,
6905 &single_byte_char_found);
6906 if (p2 < p2end)
6907 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6908 &single_byte_char_found);
6909 if (EQ (safe_codings, XCDR (Vcoding_system_safe_chars)))
6910 safe_codings = Qt;
6911 else
6912 {
6913 /* Turn safe_codings to a list of coding systems... */
6914 Lisp_Object val;
6915
6916 if (single_byte_char_found)
6917 /* ... and append these for eight-bit chars. */
6918 val = Fcons (Qraw_text,
6919 Fcons (Qemacs_mule, Fcons (Qno_conversion, Qnil)));
6920 else
6921 /* ... and append generic coding systems. */
6922 val = Fcopy_sequence (XCAR (Vcoding_system_safe_chars));
6923
6924 for (; CONSP (safe_codings); safe_codings = XCDR (safe_codings))
6925 val = Fcons (XCAR (XCAR (safe_codings)), val);
6926 safe_codings = val;
6927 }
6928
6929 return safe_codings;
6930 }
6931
6932
6933 /* Search from position POS for such characters that are unencodable
6934 accoding to SAFE_CHARS, and return a list of their positions. P
6935 points where in the memory the character at POS exists. Limit the
6936 search at PEND or when Nth unencodable characters are found.
6937
6938 If SAFE_CHARS is a char table, an element for an unencodable
6939 character is nil.
6940
6941 If SAFE_CHARS is nil, all non-ASCII characters are unencodable.
6942
6943 Otherwise, SAFE_CHARS is t, and only eight-bit-contrl and
6944 eight-bit-graphic characters are unencodable. */
6945
6946 static Lisp_Object
6947 unencodable_char_position (safe_chars, pos, p, pend, n)
6948 Lisp_Object safe_chars;
6949 int pos;
6950 unsigned char *p, *pend;
6951 int n;
6952 {
6953 Lisp_Object pos_list;
6954
6955 pos_list = Qnil;
6956 while (p < pend)
6957 {
6958 int len;
6959 int c = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
6960
6961 if (c >= 128
6962 && (CHAR_TABLE_P (safe_chars)
6963 ? NILP (CHAR_TABLE_REF (safe_chars, c))
6964 : (NILP (safe_chars) || c < 256)))
6965 {
6966 pos_list = Fcons (make_number (pos), pos_list);
6967 if (--n <= 0)
6968 break;
6969 }
6970 pos++;
6971 p += len;
6972 }
6973 return Fnreverse (pos_list);
6974 }
6975
6976
6977 DEFUN ("unencodable-char-position", Funencodable_char_position,
6978 Sunencodable_char_position, 3, 5, 0,
6979 doc: /*
6980 Return position of first un-encodable character in a region.
6981 START and END specfiy the region and CODING-SYSTEM specifies the
6982 encoding to check. Return nil if CODING-SYSTEM does encode the region.
6983
6984 If optional 4th argument COUNT is non-nil, it specifies at most how
6985 many un-encodable characters to search. In this case, the value is a
6986 list of positions.
6987
6988 If optional 5th argument STRING is non-nil, it is a string to search
6989 for un-encodable characters. In that case, START and END are indexes
6990 to the string. */)
6991 (start, end, coding_system, count, string)
6992 Lisp_Object start, end, coding_system, count, string;
6993 {
6994 int n;
6995 Lisp_Object safe_chars;
6996 struct coding_system coding;
6997 Lisp_Object positions;
6998 int from, to;
6999 unsigned char *p, *pend;
7000
7001 if (NILP (string))
7002 {
7003 validate_region (&start, &end);
7004 from = XINT (start);
7005 to = XINT (end);
7006 if (NILP (current_buffer->enable_multibyte_characters))
7007 return Qnil;
7008 p = CHAR_POS_ADDR (from);
7009 if (to == GPT)
7010 pend = GPT_ADDR;
7011 else
7012 pend = CHAR_POS_ADDR (to);
7013 }
7014 else
7015 {
7016 CHECK_STRING (string);
7017 CHECK_NATNUM (start);
7018 CHECK_NATNUM (end);
7019 from = XINT (start);
7020 to = XINT (end);
7021 if (from > to
7022 || to > SCHARS (string))
7023 args_out_of_range_3 (string, start, end);
7024 if (! STRING_MULTIBYTE (string))
7025 return Qnil;
7026 p = SDATA (string) + string_char_to_byte (string, from);
7027 pend = SDATA (string) + string_char_to_byte (string, to);
7028 }
7029
7030 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
7031
7032 if (NILP (count))
7033 n = 1;
7034 else
7035 {
7036 CHECK_NATNUM (count);
7037 n = XINT (count);
7038 }
7039
7040 if (coding.type == coding_type_no_conversion
7041 || coding.type == coding_type_raw_text)
7042 return Qnil;
7043
7044 if (coding.type == coding_type_undecided)
7045 safe_chars = Qnil;
7046 else
7047 safe_chars = coding_safe_chars (coding_system);
7048
7049 if (STRINGP (string)
7050 || from >= GPT || to <= GPT)
7051 positions = unencodable_char_position (safe_chars, from, p, pend, n);
7052 else
7053 {
7054 Lisp_Object args[2];
7055
7056 args[0] = unencodable_char_position (safe_chars, from, p, GPT_ADDR, n);
7057 n -= XINT (Flength (args[0]));
7058 if (n <= 0)
7059 positions = args[0];
7060 else
7061 {
7062 args[1] = unencodable_char_position (safe_chars, GPT, GAP_END_ADDR,
7063 pend, n);
7064 positions = Fappend (2, args);
7065 }
7066 }
7067
7068 return (NILP (count) ? Fcar (positions) : positions);
7069 }
7070
7071
7072 Lisp_Object
7073 code_convert_region1 (start, end, coding_system, encodep)
7074 Lisp_Object start, end, coding_system;
7075 int encodep;
7076 {
7077 struct coding_system coding;
7078 int from, to;
7079
7080 CHECK_NUMBER_COERCE_MARKER (start);
7081 CHECK_NUMBER_COERCE_MARKER (end);
7082 CHECK_SYMBOL (coding_system);
7083
7084 validate_region (&start, &end);
7085 from = XFASTINT (start);
7086 to = XFASTINT (end);
7087
7088 if (NILP (coding_system))
7089 return make_number (to - from);
7090
7091 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7092 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7093
7094 coding.mode |= CODING_MODE_LAST_BLOCK;
7095 coding.src_multibyte = coding.dst_multibyte
7096 = !NILP (current_buffer->enable_multibyte_characters);
7097 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
7098 &coding, encodep, 1);
7099 Vlast_coding_system_used = coding.symbol;
7100 return make_number (coding.produced_char);
7101 }
7102
7103 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
7104 3, 3, "r\nzCoding system: ",
7105 doc: /* Decode the current region from the specified coding system.
7106 When called from a program, takes three arguments:
7107 START, END, and CODING-SYSTEM. START and END are buffer positions.
7108 This function sets `last-coding-system-used' to the precise coding system
7109 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7110 not fully specified.)
7111 It returns the length of the decoded text. */)
7112 (start, end, coding_system)
7113 Lisp_Object start, end, coding_system;
7114 {
7115 return code_convert_region1 (start, end, coding_system, 0);
7116 }
7117
7118 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
7119 3, 3, "r\nzCoding system: ",
7120 doc: /* Encode the current region into the specified coding system.
7121 When called from a program, takes three arguments:
7122 START, END, and CODING-SYSTEM. START and END are buffer positions.
7123 This function sets `last-coding-system-used' to the precise coding system
7124 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7125 not fully specified.)
7126 It returns the length of the encoded text. */)
7127 (start, end, coding_system)
7128 Lisp_Object start, end, coding_system;
7129 {
7130 return code_convert_region1 (start, end, coding_system, 1);
7131 }
7132
7133 Lisp_Object
7134 code_convert_string1 (string, coding_system, nocopy, encodep)
7135 Lisp_Object string, coding_system, nocopy;
7136 int encodep;
7137 {
7138 struct coding_system coding;
7139
7140 CHECK_STRING (string);
7141 CHECK_SYMBOL (coding_system);
7142
7143 if (NILP (coding_system))
7144 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
7145
7146 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7147 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7148
7149 coding.mode |= CODING_MODE_LAST_BLOCK;
7150 string = (encodep
7151 ? encode_coding_string (string, &coding, !NILP (nocopy))
7152 : decode_coding_string (string, &coding, !NILP (nocopy)));
7153 Vlast_coding_system_used = coding.symbol;
7154
7155 return string;
7156 }
7157
7158 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
7159 2, 3, 0,
7160 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
7161 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7162 if the decoding operation is trivial.
7163 This function sets `last-coding-system-used' to the precise coding system
7164 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7165 not fully specified.) */)
7166 (string, coding_system, nocopy)
7167 Lisp_Object string, coding_system, nocopy;
7168 {
7169 return code_convert_string1 (string, coding_system, nocopy, 0);
7170 }
7171
7172 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
7173 2, 3, 0,
7174 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
7175 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7176 if the encoding operation is trivial.
7177 This function sets `last-coding-system-used' to the precise coding system
7178 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7179 not fully specified.) */)
7180 (string, coding_system, nocopy)
7181 Lisp_Object string, coding_system, nocopy;
7182 {
7183 return code_convert_string1 (string, coding_system, nocopy, 1);
7184 }
7185
7186 /* Encode or decode STRING according to CODING_SYSTEM.
7187 Do not set Vlast_coding_system_used.
7188
7189 This function is called only from macros DECODE_FILE and
7190 ENCODE_FILE, thus we ignore character composition. */
7191
7192 Lisp_Object
7193 code_convert_string_norecord (string, coding_system, encodep)
7194 Lisp_Object string, coding_system;
7195 int encodep;
7196 {
7197 struct coding_system coding;
7198
7199 CHECK_STRING (string);
7200 CHECK_SYMBOL (coding_system);
7201
7202 if (NILP (coding_system))
7203 return string;
7204
7205 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7206 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7207
7208 coding.composing = COMPOSITION_DISABLED;
7209 coding.mode |= CODING_MODE_LAST_BLOCK;
7210 return (encodep
7211 ? encode_coding_string (string, &coding, 1)
7212 : decode_coding_string (string, &coding, 1));
7213 }
7214 \f
7215 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
7216 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
7217 Return the corresponding character. */)
7218 (code)
7219 Lisp_Object code;
7220 {
7221 unsigned char c1, c2, s1, s2;
7222 Lisp_Object val;
7223
7224 CHECK_NUMBER (code);
7225 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
7226 if (s1 == 0)
7227 {
7228 if (s2 < 0x80)
7229 XSETFASTINT (val, s2);
7230 else if (s2 >= 0xA0 || s2 <= 0xDF)
7231 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
7232 else
7233 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7234 }
7235 else
7236 {
7237 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
7238 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
7239 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7240 DECODE_SJIS (s1, s2, c1, c2);
7241 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
7242 }
7243 return val;
7244 }
7245
7246 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
7247 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
7248 Return the corresponding code in SJIS. */)
7249 (ch)
7250 Lisp_Object ch;
7251 {
7252 int charset, c1, c2, s1, s2;
7253 Lisp_Object val;
7254
7255 CHECK_NUMBER (ch);
7256 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7257 if (charset == CHARSET_ASCII)
7258 {
7259 val = ch;
7260 }
7261 else if (charset == charset_jisx0208
7262 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
7263 {
7264 ENCODE_SJIS (c1, c2, s1, s2);
7265 XSETFASTINT (val, (s1 << 8) | s2);
7266 }
7267 else if (charset == charset_katakana_jisx0201
7268 && c1 > 0x20 && c2 < 0xE0)
7269 {
7270 XSETFASTINT (val, c1 | 0x80);
7271 }
7272 else
7273 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
7274 return val;
7275 }
7276
7277 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
7278 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
7279 Return the corresponding character. */)
7280 (code)
7281 Lisp_Object code;
7282 {
7283 int charset;
7284 unsigned char b1, b2, c1, c2;
7285 Lisp_Object val;
7286
7287 CHECK_NUMBER (code);
7288 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
7289 if (b1 == 0)
7290 {
7291 if (b2 >= 0x80)
7292 error ("Invalid BIG5 code: %x", XFASTINT (code));
7293 val = code;
7294 }
7295 else
7296 {
7297 if ((b1 < 0xA1 || b1 > 0xFE)
7298 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
7299 error ("Invalid BIG5 code: %x", XFASTINT (code));
7300 DECODE_BIG5 (b1, b2, charset, c1, c2);
7301 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
7302 }
7303 return val;
7304 }
7305
7306 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
7307 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
7308 Return the corresponding character code in Big5. */)
7309 (ch)
7310 Lisp_Object ch;
7311 {
7312 int charset, c1, c2, b1, b2;
7313 Lisp_Object val;
7314
7315 CHECK_NUMBER (ch);
7316 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7317 if (charset == CHARSET_ASCII)
7318 {
7319 val = ch;
7320 }
7321 else if ((charset == charset_big5_1
7322 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
7323 || (charset == charset_big5_2
7324 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
7325 {
7326 ENCODE_BIG5 (charset, c1, c2, b1, b2);
7327 XSETFASTINT (val, (b1 << 8) | b2);
7328 }
7329 else
7330 error ("Can't encode to Big5: %d", XFASTINT (ch));
7331 return val;
7332 }
7333 \f
7334 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
7335 Sset_terminal_coding_system_internal, 1, 1, 0,
7336 doc: /* Internal use only. */)
7337 (coding_system)
7338 Lisp_Object coding_system;
7339 {
7340 CHECK_SYMBOL (coding_system);
7341 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
7342 /* We had better not send unsafe characters to terminal. */
7343 terminal_coding.mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
7344 /* Character composition should be disabled. */
7345 terminal_coding.composing = COMPOSITION_DISABLED;
7346 /* Error notification should be suppressed. */
7347 terminal_coding.suppress_error = 1;
7348 terminal_coding.src_multibyte = 1;
7349 terminal_coding.dst_multibyte = 0;
7350 return Qnil;
7351 }
7352
7353 DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal,
7354 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
7355 doc: /* Internal use only. */)
7356 (coding_system)
7357 Lisp_Object coding_system;
7358 {
7359 CHECK_SYMBOL (coding_system);
7360 setup_coding_system (Fcheck_coding_system (coding_system),
7361 &safe_terminal_coding);
7362 /* Character composition should be disabled. */
7363 safe_terminal_coding.composing = COMPOSITION_DISABLED;
7364 /* Error notification should be suppressed. */
7365 safe_terminal_coding.suppress_error = 1;
7366 safe_terminal_coding.src_multibyte = 1;
7367 safe_terminal_coding.dst_multibyte = 0;
7368 return Qnil;
7369 }
7370
7371 DEFUN ("terminal-coding-system", Fterminal_coding_system,
7372 Sterminal_coding_system, 0, 0, 0,
7373 doc: /* Return coding system specified for terminal output. */)
7374 ()
7375 {
7376 return terminal_coding.symbol;
7377 }
7378
7379 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
7380 Sset_keyboard_coding_system_internal, 1, 1, 0,
7381 doc: /* Internal use only. */)
7382 (coding_system)
7383 Lisp_Object coding_system;
7384 {
7385 CHECK_SYMBOL (coding_system);
7386 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
7387 /* Character composition should be disabled. */
7388 keyboard_coding.composing = COMPOSITION_DISABLED;
7389 return Qnil;
7390 }
7391
7392 DEFUN ("keyboard-coding-system", Fkeyboard_coding_system,
7393 Skeyboard_coding_system, 0, 0, 0,
7394 doc: /* Return coding system specified for decoding keyboard input. */)
7395 ()
7396 {
7397 return keyboard_coding.symbol;
7398 }
7399
7400 \f
7401 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
7402 Sfind_operation_coding_system, 1, MANY, 0,
7403 doc: /* Choose a coding system for an operation based on the target name.
7404 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
7405 DECODING-SYSTEM is the coding system to use for decoding
7406 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
7407 for encoding (in case OPERATION does encoding).
7408
7409 The first argument OPERATION specifies an I/O primitive:
7410 For file I/O, `insert-file-contents' or `write-region'.
7411 For process I/O, `call-process', `call-process-region', or `start-process'.
7412 For network I/O, `open-network-stream'.
7413
7414 The remaining arguments should be the same arguments that were passed
7415 to the primitive. Depending on which primitive, one of those arguments
7416 is selected as the TARGET. For example, if OPERATION does file I/O,
7417 whichever argument specifies the file name is TARGET.
7418
7419 TARGET has a meaning which depends on OPERATION:
7420 For file I/O, TARGET is a file name.
7421 For process I/O, TARGET is a process name.
7422 For network I/O, TARGET is a service name or a port number
7423
7424 This function looks up what specified for TARGET in,
7425 `file-coding-system-alist', `process-coding-system-alist',
7426 or `network-coding-system-alist' depending on OPERATION.
7427 They may specify a coding system, a cons of coding systems,
7428 or a function symbol to call.
7429 In the last case, we call the function with one argument,
7430 which is a list of all the arguments given to this function.
7431
7432 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
7433 (nargs, args)
7434 int nargs;
7435 Lisp_Object *args;
7436 {
7437 Lisp_Object operation, target_idx, target, val;
7438 register Lisp_Object chain;
7439
7440 if (nargs < 2)
7441 error ("Too few arguments");
7442 operation = args[0];
7443 if (!SYMBOLP (operation)
7444 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
7445 error ("Invalid first argument");
7446 if (nargs < 1 + XINT (target_idx))
7447 error ("Too few arguments for operation: %s",
7448 SDATA (SYMBOL_NAME (operation)));
7449 /* For write-region, if the 6th argument (i.e. VISIT, the 5th
7450 argument to write-region) is string, it must be treated as a
7451 target file name. */
7452 if (EQ (operation, Qwrite_region)
7453 && nargs > 5
7454 && STRINGP (args[5]))
7455 target_idx = make_number (4);
7456 target = args[XINT (target_idx) + 1];
7457 if (!(STRINGP (target)
7458 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
7459 error ("Invalid argument %d", XINT (target_idx) + 1);
7460
7461 chain = ((EQ (operation, Qinsert_file_contents)
7462 || EQ (operation, Qwrite_region))
7463 ? Vfile_coding_system_alist
7464 : (EQ (operation, Qopen_network_stream)
7465 ? Vnetwork_coding_system_alist
7466 : Vprocess_coding_system_alist));
7467 if (NILP (chain))
7468 return Qnil;
7469
7470 for (; CONSP (chain); chain = XCDR (chain))
7471 {
7472 Lisp_Object elt;
7473 elt = XCAR (chain);
7474
7475 if (CONSP (elt)
7476 && ((STRINGP (target)
7477 && STRINGP (XCAR (elt))
7478 && fast_string_match (XCAR (elt), target) >= 0)
7479 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
7480 {
7481 val = XCDR (elt);
7482 /* Here, if VAL is both a valid coding system and a valid
7483 function symbol, we return VAL as a coding system. */
7484 if (CONSP (val))
7485 return val;
7486 if (! SYMBOLP (val))
7487 return Qnil;
7488 if (! NILP (Fcoding_system_p (val)))
7489 return Fcons (val, val);
7490 if (! NILP (Ffboundp (val)))
7491 {
7492 val = call1 (val, Flist (nargs, args));
7493 if (CONSP (val))
7494 return val;
7495 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
7496 return Fcons (val, val);
7497 }
7498 return Qnil;
7499 }
7500 }
7501 return Qnil;
7502 }
7503
7504 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
7505 Supdate_coding_systems_internal, 0, 0, 0,
7506 doc: /* Update internal database for ISO2022 and CCL based coding systems.
7507 When values of any coding categories are changed, you must
7508 call this function. */)
7509 ()
7510 {
7511 int i;
7512
7513 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
7514 {
7515 Lisp_Object val;
7516
7517 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
7518 if (!NILP (val))
7519 {
7520 if (! coding_system_table[i])
7521 coding_system_table[i] = ((struct coding_system *)
7522 xmalloc (sizeof (struct coding_system)));
7523 setup_coding_system (val, coding_system_table[i]);
7524 }
7525 else if (coding_system_table[i])
7526 {
7527 xfree (coding_system_table[i]);
7528 coding_system_table[i] = NULL;
7529 }
7530 }
7531
7532 return Qnil;
7533 }
7534
7535 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
7536 Sset_coding_priority_internal, 0, 0, 0,
7537 doc: /* Update internal database for the current value of `coding-category-list'.
7538 This function is internal use only. */)
7539 ()
7540 {
7541 int i = 0, idx;
7542 Lisp_Object val;
7543
7544 val = Vcoding_category_list;
7545
7546 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
7547 {
7548 if (! SYMBOLP (XCAR (val)))
7549 break;
7550 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
7551 if (idx >= CODING_CATEGORY_IDX_MAX)
7552 break;
7553 coding_priorities[i++] = (1 << idx);
7554 val = XCDR (val);
7555 }
7556 /* If coding-category-list is valid and contains all coding
7557 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
7558 the following code saves Emacs from crashing. */
7559 while (i < CODING_CATEGORY_IDX_MAX)
7560 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
7561
7562 return Qnil;
7563 }
7564
7565 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
7566 Sdefine_coding_system_internal, 1, 1, 0,
7567 doc: /* Register CODING-SYSTEM as a base coding system.
7568 This function is internal use only. */)
7569 (coding_system)
7570 Lisp_Object coding_system;
7571 {
7572 Lisp_Object safe_chars, slot;
7573
7574 if (NILP (Fcheck_coding_system (coding_system)))
7575 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
7576 safe_chars = coding_safe_chars (coding_system);
7577 if (! EQ (safe_chars, Qt) && ! CHAR_TABLE_P (safe_chars))
7578 error ("No valid safe-chars property for %s",
7579 SDATA (SYMBOL_NAME (coding_system)));
7580 if (EQ (safe_chars, Qt))
7581 {
7582 if (NILP (Fmemq (coding_system, XCAR (Vcoding_system_safe_chars))))
7583 XSETCAR (Vcoding_system_safe_chars,
7584 Fcons (coding_system, XCAR (Vcoding_system_safe_chars)));
7585 }
7586 else
7587 {
7588 slot = Fassq (coding_system, XCDR (Vcoding_system_safe_chars));
7589 if (NILP (slot))
7590 XSETCDR (Vcoding_system_safe_chars,
7591 nconc2 (XCDR (Vcoding_system_safe_chars),
7592 Fcons (Fcons (coding_system, safe_chars), Qnil)));
7593 else
7594 XSETCDR (slot, safe_chars);
7595 }
7596 return Qnil;
7597 }
7598
7599 #endif /* emacs */
7600
7601 \f
7602 /*** 9. Post-amble ***/
7603
7604 void
7605 init_coding_once ()
7606 {
7607 int i;
7608
7609 /* Emacs' internal format specific initialize routine. */
7610 for (i = 0; i <= 0x20; i++)
7611 emacs_code_class[i] = EMACS_control_code;
7612 emacs_code_class[0x0A] = EMACS_linefeed_code;
7613 emacs_code_class[0x0D] = EMACS_carriage_return_code;
7614 for (i = 0x21 ; i < 0x7F; i++)
7615 emacs_code_class[i] = EMACS_ascii_code;
7616 emacs_code_class[0x7F] = EMACS_control_code;
7617 for (i = 0x80; i < 0xFF; i++)
7618 emacs_code_class[i] = EMACS_invalid_code;
7619 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7620 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7621 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7622 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7623
7624 /* ISO2022 specific initialize routine. */
7625 for (i = 0; i < 0x20; i++)
7626 iso_code_class[i] = ISO_control_0;
7627 for (i = 0x21; i < 0x7F; i++)
7628 iso_code_class[i] = ISO_graphic_plane_0;
7629 for (i = 0x80; i < 0xA0; i++)
7630 iso_code_class[i] = ISO_control_1;
7631 for (i = 0xA1; i < 0xFF; i++)
7632 iso_code_class[i] = ISO_graphic_plane_1;
7633 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7634 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7635 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7636 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7637 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7638 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7639 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7640 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7641 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7642 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7643
7644 setup_coding_system (Qnil, &keyboard_coding);
7645 setup_coding_system (Qnil, &terminal_coding);
7646 setup_coding_system (Qnil, &safe_terminal_coding);
7647 setup_coding_system (Qnil, &default_buffer_file_coding);
7648
7649 bzero (coding_system_table, sizeof coding_system_table);
7650
7651 bzero (ascii_skip_code, sizeof ascii_skip_code);
7652 for (i = 0; i < 128; i++)
7653 ascii_skip_code[i] = 1;
7654
7655 #if defined (MSDOS) || defined (WINDOWSNT)
7656 system_eol_type = CODING_EOL_CRLF;
7657 #else
7658 system_eol_type = CODING_EOL_LF;
7659 #endif
7660
7661 inhibit_pre_post_conversion = 0;
7662 }
7663
7664 #ifdef emacs
7665
7666 void
7667 syms_of_coding ()
7668 {
7669 staticpro (&Vcode_conversion_workbuf_name);
7670 Vcode_conversion_workbuf_name = build_string (" *code-conversion-work*");
7671
7672 Qtarget_idx = intern ("target-idx");
7673 staticpro (&Qtarget_idx);
7674
7675 Qcoding_system_history = intern ("coding-system-history");
7676 staticpro (&Qcoding_system_history);
7677 Fset (Qcoding_system_history, Qnil);
7678
7679 /* Target FILENAME is the first argument. */
7680 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7681 /* Target FILENAME is the third argument. */
7682 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7683
7684 Qcall_process = intern ("call-process");
7685 staticpro (&Qcall_process);
7686 /* Target PROGRAM is the first argument. */
7687 Fput (Qcall_process, Qtarget_idx, make_number (0));
7688
7689 Qcall_process_region = intern ("call-process-region");
7690 staticpro (&Qcall_process_region);
7691 /* Target PROGRAM is the third argument. */
7692 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7693
7694 Qstart_process = intern ("start-process");
7695 staticpro (&Qstart_process);
7696 /* Target PROGRAM is the third argument. */
7697 Fput (Qstart_process, Qtarget_idx, make_number (2));
7698
7699 Qopen_network_stream = intern ("open-network-stream");
7700 staticpro (&Qopen_network_stream);
7701 /* Target SERVICE is the fourth argument. */
7702 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7703
7704 Qcoding_system = intern ("coding-system");
7705 staticpro (&Qcoding_system);
7706
7707 Qeol_type = intern ("eol-type");
7708 staticpro (&Qeol_type);
7709
7710 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7711 staticpro (&Qbuffer_file_coding_system);
7712
7713 Qpost_read_conversion = intern ("post-read-conversion");
7714 staticpro (&Qpost_read_conversion);
7715
7716 Qpre_write_conversion = intern ("pre-write-conversion");
7717 staticpro (&Qpre_write_conversion);
7718
7719 Qno_conversion = intern ("no-conversion");
7720 staticpro (&Qno_conversion);
7721
7722 Qundecided = intern ("undecided");
7723 staticpro (&Qundecided);
7724
7725 Qcoding_system_p = intern ("coding-system-p");
7726 staticpro (&Qcoding_system_p);
7727
7728 Qcoding_system_error = intern ("coding-system-error");
7729 staticpro (&Qcoding_system_error);
7730
7731 Fput (Qcoding_system_error, Qerror_conditions,
7732 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7733 Fput (Qcoding_system_error, Qerror_message,
7734 build_string ("Invalid coding system"));
7735
7736 Qcoding_category = intern ("coding-category");
7737 staticpro (&Qcoding_category);
7738 Qcoding_category_index = intern ("coding-category-index");
7739 staticpro (&Qcoding_category_index);
7740
7741 Vcoding_category_table
7742 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7743 staticpro (&Vcoding_category_table);
7744 {
7745 int i;
7746 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7747 {
7748 XVECTOR (Vcoding_category_table)->contents[i]
7749 = intern (coding_category_name[i]);
7750 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7751 Qcoding_category_index, make_number (i));
7752 }
7753 }
7754
7755 Vcoding_system_safe_chars = Fcons (Qnil, Qnil);
7756 staticpro (&Vcoding_system_safe_chars);
7757
7758 Qtranslation_table = intern ("translation-table");
7759 staticpro (&Qtranslation_table);
7760 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
7761
7762 Qtranslation_table_id = intern ("translation-table-id");
7763 staticpro (&Qtranslation_table_id);
7764
7765 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7766 staticpro (&Qtranslation_table_for_decode);
7767
7768 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7769 staticpro (&Qtranslation_table_for_encode);
7770
7771 Qsafe_chars = intern ("safe-chars");
7772 staticpro (&Qsafe_chars);
7773
7774 Qchar_coding_system = intern ("char-coding-system");
7775 staticpro (&Qchar_coding_system);
7776
7777 /* Intern this now in case it isn't already done.
7778 Setting this variable twice is harmless.
7779 But don't staticpro it here--that is done in alloc.c. */
7780 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7781 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7782 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (0));
7783
7784 Qvalid_codes = intern ("valid-codes");
7785 staticpro (&Qvalid_codes);
7786
7787 Qemacs_mule = intern ("emacs-mule");
7788 staticpro (&Qemacs_mule);
7789
7790 Qraw_text = intern ("raw-text");
7791 staticpro (&Qraw_text);
7792
7793 Qutf_8 = intern ("utf-8");
7794 staticpro (&Qutf_8);
7795
7796 Qcoding_system_define_form = intern ("coding-system-define-form");
7797 staticpro (&Qcoding_system_define_form);
7798
7799 defsubr (&Scoding_system_p);
7800 defsubr (&Sread_coding_system);
7801 defsubr (&Sread_non_nil_coding_system);
7802 defsubr (&Scheck_coding_system);
7803 defsubr (&Sdetect_coding_region);
7804 defsubr (&Sdetect_coding_string);
7805 defsubr (&Sfind_coding_systems_region_internal);
7806 defsubr (&Sunencodable_char_position);
7807 defsubr (&Sdecode_coding_region);
7808 defsubr (&Sencode_coding_region);
7809 defsubr (&Sdecode_coding_string);
7810 defsubr (&Sencode_coding_string);
7811 defsubr (&Sdecode_sjis_char);
7812 defsubr (&Sencode_sjis_char);
7813 defsubr (&Sdecode_big5_char);
7814 defsubr (&Sencode_big5_char);
7815 defsubr (&Sset_terminal_coding_system_internal);
7816 defsubr (&Sset_safe_terminal_coding_system_internal);
7817 defsubr (&Sterminal_coding_system);
7818 defsubr (&Sset_keyboard_coding_system_internal);
7819 defsubr (&Skeyboard_coding_system);
7820 defsubr (&Sfind_operation_coding_system);
7821 defsubr (&Supdate_coding_systems_internal);
7822 defsubr (&Sset_coding_priority_internal);
7823 defsubr (&Sdefine_coding_system_internal);
7824
7825 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7826 doc: /* List of coding systems.
7827
7828 Do not alter the value of this variable manually. This variable should be
7829 updated by the functions `make-coding-system' and
7830 `define-coding-system-alias'. */);
7831 Vcoding_system_list = Qnil;
7832
7833 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7834 doc: /* Alist of coding system names.
7835 Each element is one element list of coding system name.
7836 This variable is given to `completing-read' as TABLE argument.
7837
7838 Do not alter the value of this variable manually. This variable should be
7839 updated by the functions `make-coding-system' and
7840 `define-coding-system-alias'. */);
7841 Vcoding_system_alist = Qnil;
7842
7843 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7844 doc: /* List of coding-categories (symbols) ordered by priority.
7845
7846 On detecting a coding system, Emacs tries code detection algorithms
7847 associated with each coding-category one by one in this order. When
7848 one algorithm agrees with a byte sequence of source text, the coding
7849 system bound to the corresponding coding-category is selected.
7850
7851 Don't modify this variable directly, but use `set-coding-priority'. */);
7852 {
7853 int i;
7854
7855 Vcoding_category_list = Qnil;
7856 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7857 Vcoding_category_list
7858 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7859 Vcoding_category_list);
7860 }
7861
7862 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7863 doc: /* Specify the coding system for read operations.
7864 It is useful to bind this variable with `let', but do not set it globally.
7865 If the value is a coding system, it is used for decoding on read operation.
7866 If not, an appropriate element is used from one of the coding system alists:
7867 There are three such tables, `file-coding-system-alist',
7868 `process-coding-system-alist', and `network-coding-system-alist'. */);
7869 Vcoding_system_for_read = Qnil;
7870
7871 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7872 doc: /* Specify the coding system for write operations.
7873 Programs bind this variable with `let', but you should not set it globally.
7874 If the value is a coding system, it is used for encoding of output,
7875 when writing it to a file and when sending it to a file or subprocess.
7876
7877 If this does not specify a coding system, an appropriate element
7878 is used from one of the coding system alists:
7879 There are three such tables, `file-coding-system-alist',
7880 `process-coding-system-alist', and `network-coding-system-alist'.
7881 For output to files, if the above procedure does not specify a coding system,
7882 the value of `buffer-file-coding-system' is used. */);
7883 Vcoding_system_for_write = Qnil;
7884
7885 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7886 doc: /* Coding system used in the latest file or process I/O.
7887 Also set by `encode-coding-region', `decode-coding-region',
7888 `encode-coding-string' and `decode-coding-string'. */);
7889 Vlast_coding_system_used = Qnil;
7890
7891 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7892 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7893 See info node `Coding Systems' and info node `Text and Binary' concerning
7894 such conversion. */);
7895 inhibit_eol_conversion = 0;
7896
7897 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7898 doc: /* Non-nil means process buffer inherits coding system of process output.
7899 Bind it to t if the process output is to be treated as if it were a file
7900 read from some filesystem. */);
7901 inherit_process_coding_system = 0;
7902
7903 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7904 doc: /* Alist to decide a coding system to use for a file I/O operation.
7905 The format is ((PATTERN . VAL) ...),
7906 where PATTERN is a regular expression matching a file name,
7907 VAL is a coding system, a cons of coding systems, or a function symbol.
7908 If VAL is a coding system, it is used for both decoding and encoding
7909 the file contents.
7910 If VAL is a cons of coding systems, the car part is used for decoding,
7911 and the cdr part is used for encoding.
7912 If VAL is a function symbol, the function must return a coding system
7913 or a cons of coding systems which are used as above. The function gets
7914 the arguments with which `find-operation-coding-system' was called.
7915
7916 See also the function `find-operation-coding-system'
7917 and the variable `auto-coding-alist'. */);
7918 Vfile_coding_system_alist = Qnil;
7919
7920 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7921 doc: /* Alist to decide a coding system to use for a process I/O operation.
7922 The format is ((PATTERN . VAL) ...),
7923 where PATTERN is a regular expression matching a program name,
7924 VAL is a coding system, a cons of coding systems, or a function symbol.
7925 If VAL is a coding system, it is used for both decoding what received
7926 from the program and encoding what sent to the program.
7927 If VAL is a cons of coding systems, the car part is used for decoding,
7928 and the cdr part is used for encoding.
7929 If VAL is a function symbol, the function must return a coding system
7930 or a cons of coding systems which are used as above.
7931
7932 See also the function `find-operation-coding-system'. */);
7933 Vprocess_coding_system_alist = Qnil;
7934
7935 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7936 doc: /* Alist to decide a coding system to use for a network I/O operation.
7937 The format is ((PATTERN . VAL) ...),
7938 where PATTERN is a regular expression matching a network service name
7939 or is a port number to connect to,
7940 VAL is a coding system, a cons of coding systems, or a function symbol.
7941 If VAL is a coding system, it is used for both decoding what received
7942 from the network stream and encoding what sent to the network stream.
7943 If VAL is a cons of coding systems, the car part is used for decoding,
7944 and the cdr part is used for encoding.
7945 If VAL is a function symbol, the function must return a coding system
7946 or a cons of coding systems which are used as above.
7947
7948 See also the function `find-operation-coding-system'. */);
7949 Vnetwork_coding_system_alist = Qnil;
7950
7951 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7952 doc: /* Coding system to use with system messages.
7953 Also used for decoding keyboard input on X Window system. */);
7954 Vlocale_coding_system = Qnil;
7955
7956 /* The eol mnemonics are reset in startup.el system-dependently. */
7957 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7958 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7959 eol_mnemonic_unix = build_string (":");
7960
7961 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7962 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7963 eol_mnemonic_dos = build_string ("\\");
7964
7965 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7966 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7967 eol_mnemonic_mac = build_string ("/");
7968
7969 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7970 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7971 eol_mnemonic_undecided = build_string (":");
7972
7973 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7974 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7975 Venable_character_translation = Qt;
7976
7977 DEFVAR_LISP ("standard-translation-table-for-decode",
7978 &Vstandard_translation_table_for_decode,
7979 doc: /* Table for translating characters while decoding. */);
7980 Vstandard_translation_table_for_decode = Qnil;
7981
7982 DEFVAR_LISP ("standard-translation-table-for-encode",
7983 &Vstandard_translation_table_for_encode,
7984 doc: /* Table for translating characters while encoding. */);
7985 Vstandard_translation_table_for_encode = Qnil;
7986
7987 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7988 doc: /* Alist of charsets vs revision numbers.
7989 While encoding, if a charset (car part of an element) is found,
7990 designate it with the escape sequence identifying revision (cdr part of the element). */);
7991 Vcharset_revision_alist = Qnil;
7992
7993 DEFVAR_LISP ("default-process-coding-system",
7994 &Vdefault_process_coding_system,
7995 doc: /* Cons of coding systems used for process I/O by default.
7996 The car part is used for decoding a process output,
7997 the cdr part is used for encoding a text to be sent to a process. */);
7998 Vdefault_process_coding_system = Qnil;
7999
8000 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
8001 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
8002 This is a vector of length 256.
8003 If Nth element is non-nil, the existence of code N in a file
8004 \(or output of subprocess) doesn't prevent it to be detected as
8005 a coding system of ISO 2022 variant which has a flag
8006 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
8007 or reading output of a subprocess.
8008 Only 128th through 159th elements has a meaning. */);
8009 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
8010
8011 DEFVAR_LISP ("select-safe-coding-system-function",
8012 &Vselect_safe_coding_system_function,
8013 doc: /* Function to call to select safe coding system for encoding a text.
8014
8015 If set, this function is called to force a user to select a proper
8016 coding system which can encode the text in the case that a default
8017 coding system used in each operation can't encode the text.
8018
8019 The default value is `select-safe-coding-system' (which see). */);
8020 Vselect_safe_coding_system_function = Qnil;
8021
8022 DEFVAR_BOOL ("coding-system-require-warning",
8023 &coding_system_require_warning,
8024 doc: /* Internal use only.
8025 If non-nil, on writing a file, `select-safe-coding-system-function' is
8026 called even if `coding-system-for-write' is non-nil. The command
8027 `universal-coding-system-argument' binds this variable to t temporarily. */);
8028 coding_system_require_warning = 0;
8029
8030
8031 DEFVAR_BOOL ("inhibit-iso-escape-detection",
8032 &inhibit_iso_escape_detection,
8033 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
8034
8035 By default, on reading a file, Emacs tries to detect how the text is
8036 encoded. This code detection is sensitive to escape sequences. If
8037 the sequence is valid as ISO2022, the code is determined as one of
8038 the ISO2022 encodings, and the file is decoded by the corresponding
8039 coding system (e.g. `iso-2022-7bit').
8040
8041 However, there may be a case that you want to read escape sequences in
8042 a file as is. In such a case, you can set this variable to non-nil.
8043 Then, as the code detection ignores any escape sequences, no file is
8044 detected as encoded in some ISO2022 encoding. The result is that all
8045 escape sequences become visible in a buffer.
8046
8047 The default value is nil, and it is strongly recommended not to change
8048 it. That is because many Emacs Lisp source files that contain
8049 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
8050 in Emacs's distribution, and they won't be decoded correctly on
8051 reading if you suppress escape sequence detection.
8052
8053 The other way to read escape sequences in a file without decoding is
8054 to explicitly specify some coding system that doesn't use ISO2022's
8055 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
8056 inhibit_iso_escape_detection = 0;
8057
8058 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
8059 doc: /* Char table for translating self-inserting characters.
8060 This is applied to the result of input methods, not their input. See also
8061 `keyboard-translate-table'. */);
8062 Vtranslation_table_for_input = Qnil;
8063 }
8064
8065 char *
8066 emacs_strerror (error_number)
8067 int error_number;
8068 {
8069 char *str;
8070
8071 synchronize_system_messages_locale ();
8072 str = strerror (error_number);
8073
8074 if (! NILP (Vlocale_coding_system))
8075 {
8076 Lisp_Object dec = code_convert_string_norecord (build_string (str),
8077 Vlocale_coding_system,
8078 0);
8079 str = (char *) SDATA (dec);
8080 }
8081
8082 return str;
8083 }
8084
8085 #endif /* emacs */
8086
8087 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
8088 (do not change this comment) */