A simpler, centralized INLINE.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2013 Free Software
3 Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42
43 #include <intprops.h>
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "character.h"
47 #include "buffer.h"
48 #include "puresize.h"
49 #include "keyboard.h"
50 #include "keymap.h"
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
58 static INTERVAL merge_interval_right (INTERVAL);
59 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
60 \f
61 /* Utility functions for intervals. */
62
63 /* Use these functions to set Lisp_Object
64 or pointer slots of struct interval. */
65
66 static void
67 set_interval_object (INTERVAL i, Lisp_Object obj)
68 {
69 eassert (BUFFERP (obj) || STRINGP (obj));
70 i->up_obj = 1;
71 i->up.obj = obj;
72 }
73
74 static void
75 set_interval_left (INTERVAL i, INTERVAL left)
76 {
77 i->left = left;
78 }
79
80 static void
81 set_interval_right (INTERVAL i, INTERVAL right)
82 {
83 i->right = right;
84 }
85
86 /* Make the parent of D be whatever the parent of S is, regardless
87 of the type. This is used when balancing an interval tree. */
88
89 static void
90 copy_interval_parent (INTERVAL d, INTERVAL s)
91 {
92 d->up = s->up;
93 d->up_obj = s->up_obj;
94 }
95
96 /* Create the root interval of some object, a buffer or string. */
97
98 INTERVAL
99 create_root_interval (Lisp_Object parent)
100 {
101 INTERVAL new;
102
103 CHECK_IMPURE (parent);
104
105 new = make_interval ();
106
107 if (BUFFERP (parent))
108 {
109 new->total_length = (BUF_Z (XBUFFER (parent))
110 - BUF_BEG (XBUFFER (parent)));
111 eassert (TOTAL_LENGTH (new) >= 0);
112 set_buffer_intervals (XBUFFER (parent), new);
113 new->position = BEG;
114 }
115 else if (STRINGP (parent))
116 {
117 new->total_length = SCHARS (parent);
118 eassert (TOTAL_LENGTH (new) >= 0);
119 set_string_intervals (parent, new);
120 new->position = 0;
121 }
122
123 set_interval_object (new, parent);
124
125 return new;
126 }
127
128 /* Make the interval TARGET have exactly the properties of SOURCE */
129
130 void
131 copy_properties (register INTERVAL source, register INTERVAL target)
132 {
133 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
134 return;
135
136 COPY_INTERVAL_CACHE (source, target);
137 set_interval_plist (target, Fcopy_sequence (source->plist));
138 }
139
140 /* Merge the properties of interval SOURCE into the properties
141 of interval TARGET. That is to say, each property in SOURCE
142 is added to TARGET if TARGET has no such property as yet. */
143
144 static void
145 merge_properties (register INTERVAL source, register INTERVAL target)
146 {
147 register Lisp_Object o, sym, val;
148
149 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
150 return;
151
152 MERGE_INTERVAL_CACHE (source, target);
153
154 o = source->plist;
155 while (CONSP (o))
156 {
157 sym = XCAR (o);
158 o = XCDR (o);
159 CHECK_CONS (o);
160
161 val = target->plist;
162 while (CONSP (val) && !EQ (XCAR (val), sym))
163 {
164 val = XCDR (val);
165 if (!CONSP (val))
166 break;
167 val = XCDR (val);
168 }
169
170 if (NILP (val))
171 {
172 val = XCAR (o);
173 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
174 }
175 o = XCDR (o);
176 }
177 }
178
179 /* Return true if the two intervals have the same properties. */
180
181 bool
182 intervals_equal (INTERVAL i0, INTERVAL i1)
183 {
184 Lisp_Object i0_cdr, i0_sym;
185 Lisp_Object i1_cdr, i1_val;
186
187 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
188 return 1;
189
190 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
191 return 0;
192
193 i0_cdr = i0->plist;
194 i1_cdr = i1->plist;
195 while (CONSP (i0_cdr) && CONSP (i1_cdr))
196 {
197 i0_sym = XCAR (i0_cdr);
198 i0_cdr = XCDR (i0_cdr);
199 if (!CONSP (i0_cdr))
200 return 0;
201 i1_val = i1->plist;
202 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
203 {
204 i1_val = XCDR (i1_val);
205 if (!CONSP (i1_val))
206 return 0;
207 i1_val = XCDR (i1_val);
208 }
209
210 /* i0 has something i1 doesn't. */
211 if (EQ (i1_val, Qnil))
212 return 0;
213
214 /* i0 and i1 both have sym, but it has different values in each. */
215 if (!CONSP (i1_val)
216 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
217 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
218 return 0;
219
220 i0_cdr = XCDR (i0_cdr);
221
222 i1_cdr = XCDR (i1_cdr);
223 if (!CONSP (i1_cdr))
224 return 0;
225 i1_cdr = XCDR (i1_cdr);
226 }
227
228 /* Lengths of the two plists were equal. */
229 return (NILP (i0_cdr) && NILP (i1_cdr));
230 }
231 \f
232
233 /* Traverse an interval tree TREE, performing FUNCTION on each node.
234 No guarantee is made about the order of traversal.
235 Pass FUNCTION two args: an interval, and ARG. */
236
237 void
238 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
239 {
240 /* Minimize stack usage. */
241 while (tree)
242 {
243 (*function) (tree, arg);
244 if (!tree->right)
245 tree = tree->left;
246 else
247 {
248 traverse_intervals_noorder (tree->left, function, arg);
249 tree = tree->right;
250 }
251 }
252 }
253
254 /* Traverse an interval tree TREE, performing FUNCTION on each node.
255 Pass FUNCTION two args: an interval, and ARG. */
256
257 void
258 traverse_intervals (INTERVAL tree, ptrdiff_t position,
259 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
260 {
261 while (tree)
262 {
263 traverse_intervals (tree->left, position, function, arg);
264 position += LEFT_TOTAL_LENGTH (tree);
265 tree->position = position;
266 (*function) (tree, arg);
267 position += LENGTH (tree); tree = tree->right;
268 }
269 }
270 \f
271 #if 0
272
273 static int icount;
274 static int idepth;
275 static int zero_length;
276
277 /* These functions are temporary, for debugging purposes only. */
278
279 INTERVAL search_interval, found_interval;
280
281 void
282 check_for_interval (INTERVAL i)
283 {
284 if (i == search_interval)
285 {
286 found_interval = i;
287 icount++;
288 }
289 }
290
291 INTERVAL
292 search_for_interval (INTERVAL i, INTERVAL tree)
293 {
294 icount = 0;
295 search_interval = i;
296 found_interval = NULL;
297 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
298 return found_interval;
299 }
300
301 static void
302 inc_interval_count (INTERVAL i)
303 {
304 icount++;
305 if (LENGTH (i) == 0)
306 zero_length++;
307 if (depth > idepth)
308 idepth = depth;
309 }
310
311 int
312 count_intervals (INTERVAL i)
313 {
314 icount = 0;
315 idepth = 0;
316 zero_length = 0;
317 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
318
319 return icount;
320 }
321
322 static INTERVAL
323 root_interval (INTERVAL interval)
324 {
325 register INTERVAL i = interval;
326
327 while (! ROOT_INTERVAL_P (i))
328 i = INTERVAL_PARENT (i);
329
330 return i;
331 }
332 #endif
333 \f
334 /* Assuming that a left child exists, perform the following operation:
335
336 A B
337 / \ / \
338 B => A
339 / \ / \
340 c c
341 */
342
343 static INTERVAL
344 rotate_right (INTERVAL interval)
345 {
346 INTERVAL i;
347 INTERVAL B = interval->left;
348 ptrdiff_t old_total = interval->total_length;
349
350 /* Deal with any Parent of A; make it point to B. */
351 if (! ROOT_INTERVAL_P (interval))
352 {
353 if (AM_LEFT_CHILD (interval))
354 set_interval_left (INTERVAL_PARENT (interval), B);
355 else
356 set_interval_right (INTERVAL_PARENT (interval), B);
357 }
358 copy_interval_parent (B, interval);
359
360 /* Make B the parent of A */
361 i = B->right;
362 set_interval_right (B, interval);
363 set_interval_parent (interval, B);
364
365 /* Make A point to c */
366 set_interval_left (interval, i);
367 if (i)
368 set_interval_parent (i, interval);
369
370 /* A's total length is decreased by the length of B and its left child. */
371 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
372 eassert (TOTAL_LENGTH (interval) >= 0);
373
374 /* B must have the same total length of A. */
375 B->total_length = old_total;
376 eassert (TOTAL_LENGTH (B) >= 0);
377
378 return B;
379 }
380
381 /* Assuming that a right child exists, perform the following operation:
382
383 A B
384 / \ / \
385 B => A
386 / \ / \
387 c c
388 */
389
390 static INTERVAL
391 rotate_left (INTERVAL interval)
392 {
393 INTERVAL i;
394 INTERVAL B = interval->right;
395 ptrdiff_t old_total = interval->total_length;
396
397 /* Deal with any parent of A; make it point to B. */
398 if (! ROOT_INTERVAL_P (interval))
399 {
400 if (AM_LEFT_CHILD (interval))
401 set_interval_left (INTERVAL_PARENT (interval), B);
402 else
403 set_interval_right (INTERVAL_PARENT (interval), B);
404 }
405 copy_interval_parent (B, interval);
406
407 /* Make B the parent of A */
408 i = B->left;
409 set_interval_left (B, interval);
410 set_interval_parent (interval, B);
411
412 /* Make A point to c */
413 set_interval_right (interval, i);
414 if (i)
415 set_interval_parent (i, interval);
416
417 /* A's total length is decreased by the length of B and its right child. */
418 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
419 eassert (TOTAL_LENGTH (interval) >= 0);
420
421 /* B must have the same total length of A. */
422 B->total_length = old_total;
423 eassert (TOTAL_LENGTH (B) >= 0);
424
425 return B;
426 }
427 \f
428 /* Balance an interval tree with the assumption that the subtrees
429 themselves are already balanced. */
430
431 static INTERVAL
432 balance_an_interval (INTERVAL i)
433 {
434 register ptrdiff_t old_diff, new_diff;
435
436 while (1)
437 {
438 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
439 if (old_diff > 0)
440 {
441 /* Since the left child is longer, there must be one. */
442 new_diff = i->total_length - i->left->total_length
443 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
444 if (eabs (new_diff) >= old_diff)
445 break;
446 i = rotate_right (i);
447 balance_an_interval (i->right);
448 }
449 else if (old_diff < 0)
450 {
451 /* Since the right child is longer, there must be one. */
452 new_diff = i->total_length - i->right->total_length
453 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
454 if (eabs (new_diff) >= -old_diff)
455 break;
456 i = rotate_left (i);
457 balance_an_interval (i->left);
458 }
459 else
460 break;
461 }
462 return i;
463 }
464
465 /* Balance INTERVAL, potentially stuffing it back into its parent
466 Lisp Object. */
467
468 static INTERVAL
469 balance_possible_root_interval (INTERVAL interval)
470 {
471 Lisp_Object parent;
472 bool have_parent = 0;
473
474 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
475 return interval;
476
477 if (INTERVAL_HAS_OBJECT (interval))
478 {
479 have_parent = 1;
480 GET_INTERVAL_OBJECT (parent, interval);
481 }
482 interval = balance_an_interval (interval);
483
484 if (have_parent)
485 {
486 if (BUFFERP (parent))
487 set_buffer_intervals (XBUFFER (parent), interval);
488 else if (STRINGP (parent))
489 set_string_intervals (parent, interval);
490 }
491
492 return interval;
493 }
494
495 /* Balance the interval tree TREE. Balancing is by weight
496 (the amount of text). */
497
498 static INTERVAL
499 balance_intervals_internal (register INTERVAL tree)
500 {
501 /* Balance within each side. */
502 if (tree->left)
503 balance_intervals_internal (tree->left);
504 if (tree->right)
505 balance_intervals_internal (tree->right);
506 return balance_an_interval (tree);
507 }
508
509 /* Advertised interface to balance intervals. */
510
511 INTERVAL
512 balance_intervals (INTERVAL tree)
513 {
514 return tree ? balance_intervals_internal (tree) : NULL;
515 }
516
517 /* Rebalance text properties of B. */
518
519 static void
520 buffer_balance_intervals (struct buffer *b)
521 {
522 INTERVAL i;
523
524 eassert (b != NULL);
525 i = buffer_intervals (b);
526 if (i)
527 set_buffer_intervals (b, balance_an_interval (i));
528 }
529
530 /* Split INTERVAL into two pieces, starting the second piece at
531 character position OFFSET (counting from 0), relative to INTERVAL.
532 INTERVAL becomes the left-hand piece, and the right-hand piece
533 (second, lexicographically) is returned.
534
535 The size and position fields of the two intervals are set based upon
536 those of the original interval. The property list of the new interval
537 is reset, thus it is up to the caller to do the right thing with the
538 result.
539
540 Note that this does not change the position of INTERVAL; if it is a root,
541 it is still a root after this operation. */
542
543 INTERVAL
544 split_interval_right (INTERVAL interval, ptrdiff_t offset)
545 {
546 INTERVAL new = make_interval ();
547 ptrdiff_t position = interval->position;
548 ptrdiff_t new_length = LENGTH (interval) - offset;
549
550 new->position = position + offset;
551 set_interval_parent (new, interval);
552
553 if (NULL_RIGHT_CHILD (interval))
554 {
555 set_interval_right (interval, new);
556 new->total_length = new_length;
557 eassert (TOTAL_LENGTH (new) >= 0);
558 }
559 else
560 {
561 /* Insert the new node between INTERVAL and its right child. */
562 set_interval_right (new, interval->right);
563 set_interval_parent (interval->right, new);
564 set_interval_right (interval, new);
565 new->total_length = new_length + new->right->total_length;
566 eassert (TOTAL_LENGTH (new) >= 0);
567 balance_an_interval (new);
568 }
569
570 balance_possible_root_interval (interval);
571
572 return new;
573 }
574
575 /* Split INTERVAL into two pieces, starting the second piece at
576 character position OFFSET (counting from 0), relative to INTERVAL.
577 INTERVAL becomes the right-hand piece, and the left-hand piece
578 (first, lexicographically) is returned.
579
580 The size and position fields of the two intervals are set based upon
581 those of the original interval. The property list of the new interval
582 is reset, thus it is up to the caller to do the right thing with the
583 result.
584
585 Note that this does not change the position of INTERVAL; if it is a root,
586 it is still a root after this operation. */
587
588 INTERVAL
589 split_interval_left (INTERVAL interval, ptrdiff_t offset)
590 {
591 INTERVAL new = make_interval ();
592 ptrdiff_t new_length = offset;
593
594 new->position = interval->position;
595 interval->position = interval->position + offset;
596 set_interval_parent (new, interval);
597
598 if (NULL_LEFT_CHILD (interval))
599 {
600 set_interval_left (interval, new);
601 new->total_length = new_length;
602 eassert (TOTAL_LENGTH (new) >= 0);
603 }
604 else
605 {
606 /* Insert the new node between INTERVAL and its left child. */
607 set_interval_left (new, interval->left);
608 set_interval_parent (new->left, new);
609 set_interval_left (interval, new);
610 new->total_length = new_length + new->left->total_length;
611 eassert (TOTAL_LENGTH (new) >= 0);
612 balance_an_interval (new);
613 }
614
615 balance_possible_root_interval (interval);
616
617 return new;
618 }
619 \f
620 /* Return the proper position for the first character
621 described by the interval tree SOURCE.
622 This is 1 if the parent is a buffer,
623 0 if the parent is a string or if there is no parent.
624
625 Don't use this function on an interval which is the child
626 of another interval! */
627
628 static int
629 interval_start_pos (INTERVAL source)
630 {
631 Lisp_Object parent;
632
633 if (!source)
634 return 0;
635
636 if (! INTERVAL_HAS_OBJECT (source))
637 return 0;
638 GET_INTERVAL_OBJECT (parent, source);
639 if (BUFFERP (parent))
640 return BUF_BEG (XBUFFER (parent));
641 return 0;
642 }
643
644 /* Find the interval containing text position POSITION in the text
645 represented by the interval tree TREE. POSITION is a buffer
646 position (starting from 1) or a string index (starting from 0).
647 If POSITION is at the end of the buffer or string,
648 return the interval containing the last character.
649
650 The `position' field, which is a cache of an interval's position,
651 is updated in the interval found. Other functions (e.g., next_interval)
652 will update this cache based on the result of find_interval. */
653
654 INTERVAL
655 find_interval (register INTERVAL tree, register ptrdiff_t position)
656 {
657 /* The distance from the left edge of the subtree at TREE
658 to POSITION. */
659 register ptrdiff_t relative_position;
660
661 if (!tree)
662 return NULL;
663
664 relative_position = position;
665 if (INTERVAL_HAS_OBJECT (tree))
666 {
667 Lisp_Object parent;
668 GET_INTERVAL_OBJECT (parent, tree);
669 if (BUFFERP (parent))
670 relative_position -= BUF_BEG (XBUFFER (parent));
671 }
672
673 eassert (relative_position <= TOTAL_LENGTH (tree));
674
675 tree = balance_possible_root_interval (tree);
676
677 while (1)
678 {
679 if (relative_position < LEFT_TOTAL_LENGTH (tree))
680 {
681 tree = tree->left;
682 }
683 else if (! NULL_RIGHT_CHILD (tree)
684 && relative_position >= (TOTAL_LENGTH (tree)
685 - RIGHT_TOTAL_LENGTH (tree)))
686 {
687 relative_position -= (TOTAL_LENGTH (tree)
688 - RIGHT_TOTAL_LENGTH (tree));
689 tree = tree->right;
690 }
691 else
692 {
693 tree->position
694 = (position - relative_position /* left edge of *tree. */
695 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
696
697 return tree;
698 }
699 }
700 }
701 \f
702 /* Find the succeeding interval (lexicographically) to INTERVAL.
703 Sets the `position' field based on that of INTERVAL (see
704 find_interval). */
705
706 INTERVAL
707 next_interval (register INTERVAL interval)
708 {
709 register INTERVAL i = interval;
710 register ptrdiff_t next_position;
711
712 if (!i)
713 return NULL;
714 next_position = interval->position + LENGTH (interval);
715
716 if (! NULL_RIGHT_CHILD (i))
717 {
718 i = i->right;
719 while (! NULL_LEFT_CHILD (i))
720 i = i->left;
721
722 i->position = next_position;
723 return i;
724 }
725
726 while (! NULL_PARENT (i))
727 {
728 if (AM_LEFT_CHILD (i))
729 {
730 i = INTERVAL_PARENT (i);
731 i->position = next_position;
732 return i;
733 }
734
735 i = INTERVAL_PARENT (i);
736 }
737
738 return NULL;
739 }
740
741 /* Find the preceding interval (lexicographically) to INTERVAL.
742 Sets the `position' field based on that of INTERVAL (see
743 find_interval). */
744
745 INTERVAL
746 previous_interval (register INTERVAL interval)
747 {
748 register INTERVAL i;
749
750 if (!interval)
751 return NULL;
752
753 if (! NULL_LEFT_CHILD (interval))
754 {
755 i = interval->left;
756 while (! NULL_RIGHT_CHILD (i))
757 i = i->right;
758
759 i->position = interval->position - LENGTH (i);
760 return i;
761 }
762
763 i = interval;
764 while (! NULL_PARENT (i))
765 {
766 if (AM_RIGHT_CHILD (i))
767 {
768 i = INTERVAL_PARENT (i);
769
770 i->position = interval->position - LENGTH (i);
771 return i;
772 }
773 i = INTERVAL_PARENT (i);
774 }
775
776 return NULL;
777 }
778
779 /* Find the interval containing POS given some non-NULL INTERVAL
780 in the same tree. Note that we need to update interval->position
781 if we go down the tree.
782 To speed up the process, we assume that the ->position of
783 I and all its parents is already uptodate. */
784 INTERVAL
785 update_interval (register INTERVAL i, ptrdiff_t pos)
786 {
787 if (!i)
788 return NULL;
789
790 while (1)
791 {
792 if (pos < i->position)
793 {
794 /* Move left. */
795 if (pos >= i->position - TOTAL_LENGTH (i->left))
796 {
797 i->left->position = i->position - TOTAL_LENGTH (i->left)
798 + LEFT_TOTAL_LENGTH (i->left);
799 i = i->left; /* Move to the left child */
800 }
801 else if (NULL_PARENT (i))
802 error ("Point before start of properties");
803 else
804 i = INTERVAL_PARENT (i);
805 continue;
806 }
807 else if (pos >= INTERVAL_LAST_POS (i))
808 {
809 /* Move right. */
810 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
811 {
812 i->right->position = INTERVAL_LAST_POS (i)
813 + LEFT_TOTAL_LENGTH (i->right);
814 i = i->right; /* Move to the right child */
815 }
816 else if (NULL_PARENT (i))
817 error ("Point %"pD"d after end of properties", pos);
818 else
819 i = INTERVAL_PARENT (i);
820 continue;
821 }
822 else
823 return i;
824 }
825 }
826
827 /* Effect an adjustment corresponding to the addition of LENGTH characters
828 of text. Do this by finding the interval containing POSITION in the
829 interval tree TREE, and then adjusting all of its ancestors by adding
830 LENGTH to them.
831
832 If POSITION is the first character of an interval, meaning that point
833 is actually between the two intervals, make the new text belong to
834 the interval which is "sticky".
835
836 If both intervals are "sticky", then make them belong to the left-most
837 interval. Another possibility would be to create a new interval for
838 this text, and make it have the merged properties of both ends. */
839
840 static INTERVAL
841 adjust_intervals_for_insertion (INTERVAL tree,
842 ptrdiff_t position, ptrdiff_t length)
843 {
844 INTERVAL i;
845 INTERVAL temp;
846 bool eobp = 0;
847 Lisp_Object parent;
848 ptrdiff_t offset;
849
850 eassert (TOTAL_LENGTH (tree) > 0);
851
852 GET_INTERVAL_OBJECT (parent, tree);
853 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
854
855 /* If inserting at point-max of a buffer, that position will be out
856 of range. Remember that buffer positions are 1-based. */
857 if (position >= TOTAL_LENGTH (tree) + offset)
858 {
859 position = TOTAL_LENGTH (tree) + offset;
860 eobp = 1;
861 }
862
863 i = find_interval (tree, position);
864
865 /* If in middle of an interval which is not sticky either way,
866 we must not just give its properties to the insertion.
867 So split this interval at the insertion point.
868
869 Originally, the if condition here was this:
870 (! (position == i->position || eobp)
871 && END_NONSTICKY_P (i)
872 && FRONT_NONSTICKY_P (i))
873 But, these macros are now unreliable because of introduction of
874 Vtext_property_default_nonsticky. So, we always check properties
875 one by one if POSITION is in middle of an interval. */
876 if (! (position == i->position || eobp))
877 {
878 Lisp_Object tail;
879 Lisp_Object front, rear;
880
881 tail = i->plist;
882
883 /* Properties font-sticky and rear-nonsticky override
884 Vtext_property_default_nonsticky. So, if they are t, we can
885 skip one by one checking of properties. */
886 rear = textget (i->plist, Qrear_nonsticky);
887 if (! CONSP (rear) && ! NILP (rear))
888 {
889 /* All properties are nonsticky. We split the interval. */
890 goto check_done;
891 }
892 front = textget (i->plist, Qfront_sticky);
893 if (! CONSP (front) && ! NILP (front))
894 {
895 /* All properties are sticky. We don't split the interval. */
896 tail = Qnil;
897 goto check_done;
898 }
899
900 /* Does any actual property pose an actual problem? We break
901 the loop if we find a nonsticky property. */
902 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
903 {
904 Lisp_Object prop, tmp;
905 prop = XCAR (tail);
906
907 /* Is this particular property front-sticky? */
908 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
909 continue;
910
911 /* Is this particular property rear-nonsticky? */
912 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
913 break;
914
915 /* Is this particular property recorded as sticky or
916 nonsticky in Vtext_property_default_nonsticky? */
917 tmp = Fassq (prop, Vtext_property_default_nonsticky);
918 if (CONSP (tmp))
919 {
920 if (NILP (tmp))
921 continue;
922 break;
923 }
924
925 /* By default, a text property is rear-sticky, thus we
926 continue the loop. */
927 }
928
929 check_done:
930 /* If any property is a real problem, split the interval. */
931 if (! NILP (tail))
932 {
933 temp = split_interval_right (i, position - i->position);
934 copy_properties (i, temp);
935 i = temp;
936 }
937 }
938
939 /* If we are positioned between intervals, check the stickiness of
940 both of them. We have to do this too, if we are at BEG or Z. */
941 if (position == i->position || eobp)
942 {
943 register INTERVAL prev;
944
945 if (position == BEG)
946 prev = 0;
947 else if (eobp)
948 {
949 prev = i;
950 i = 0;
951 }
952 else
953 prev = previous_interval (i);
954
955 /* Even if we are positioned between intervals, we default
956 to the left one if it exists. We extend it now and split
957 off a part later, if stickiness demands it. */
958 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
959 {
960 temp->total_length += length;
961 eassert (TOTAL_LENGTH (temp) >= 0);
962 temp = balance_possible_root_interval (temp);
963 }
964
965 /* If at least one interval has sticky properties,
966 we check the stickiness property by property.
967
968 Originally, the if condition here was this:
969 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
970 But, these macros are now unreliable because of introduction
971 of Vtext_property_default_nonsticky. So, we always have to
972 check stickiness of properties one by one. If cache of
973 stickiness is implemented in the future, we may be able to
974 use those macros again. */
975 if (1)
976 {
977 Lisp_Object pleft, pright;
978 struct interval newi;
979
980 RESET_INTERVAL (&newi);
981 pleft = prev ? prev->plist : Qnil;
982 pright = i ? i->plist : Qnil;
983 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
984
985 if (! prev) /* i.e. position == BEG */
986 {
987 if (! intervals_equal (i, &newi))
988 {
989 i = split_interval_left (i, length);
990 set_interval_plist (i, newi.plist);
991 }
992 }
993 else if (! intervals_equal (prev, &newi))
994 {
995 prev = split_interval_right (prev, position - prev->position);
996 set_interval_plist (prev, newi.plist);
997 if (i && intervals_equal (prev, i))
998 merge_interval_right (prev);
999 }
1000
1001 /* We will need to update the cache here later. */
1002 }
1003 else if (! prev && ! NILP (i->plist))
1004 {
1005 /* Just split off a new interval at the left.
1006 Since I wasn't front-sticky, the empty plist is ok. */
1007 i = split_interval_left (i, length);
1008 }
1009 }
1010
1011 /* Otherwise just extend the interval. */
1012 else
1013 {
1014 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1015 {
1016 temp->total_length += length;
1017 eassert (TOTAL_LENGTH (temp) >= 0);
1018 temp = balance_possible_root_interval (temp);
1019 }
1020 }
1021
1022 return tree;
1023 }
1024
1025 /* Any property might be front-sticky on the left, rear-sticky on the left,
1026 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1027 can be arranged in a matrix with rows denoting the left conditions and
1028 columns denoting the right conditions:
1029 _ __ _
1030 _ FR FR FR FR
1031 FR__ 0 1 2 3
1032 _FR 4 5 6 7
1033 FR 8 9 A B
1034 FR C D E F
1035
1036 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1037 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1038 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1039 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1040 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1041 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1042 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1043 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1044
1045 We inherit from whoever has a sticky side facing us. If both sides
1046 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1047 non-nil value for the current property. If both sides do, then we take
1048 from the left.
1049
1050 When we inherit a property, we get its stickiness as well as its value.
1051 So, when we merge the above two lists, we expect to get this:
1052
1053 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1054 rear-nonsticky (p6 pa)
1055 p0 L p1 L p2 L p3 L p6 R p7 R
1056 pa R pb R pc L pd L pe L pf L)
1057
1058 The optimizable special cases are:
1059 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1060 left rear-nonsticky = t, right front-sticky = t (inherit right)
1061 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1062 */
1063
1064 static Lisp_Object
1065 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1066 {
1067 Lisp_Object props, front, rear;
1068 Lisp_Object lfront, lrear, rfront, rrear;
1069 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1070 bool use_left, use_right, lpresent;
1071
1072 props = Qnil;
1073 front = Qnil;
1074 rear = Qnil;
1075 lfront = textget (pleft, Qfront_sticky);
1076 lrear = textget (pleft, Qrear_nonsticky);
1077 rfront = textget (pright, Qfront_sticky);
1078 rrear = textget (pright, Qrear_nonsticky);
1079
1080 /* Go through each element of PRIGHT. */
1081 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1082 {
1083 Lisp_Object tmp;
1084
1085 sym = XCAR (tail1);
1086
1087 /* Sticky properties get special treatment. */
1088 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1089 continue;
1090
1091 rval = Fcar (XCDR (tail1));
1092 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1093 if (EQ (sym, XCAR (tail2)))
1094 break;
1095
1096 /* Indicate whether the property is explicitly defined on the left.
1097 (We know it is defined explicitly on the right
1098 because otherwise we don't get here.) */
1099 lpresent = ! NILP (tail2);
1100 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1101
1102 /* Even if lrear or rfront say nothing about the stickiness of
1103 SYM, Vtext_property_default_nonsticky may give default
1104 stickiness to SYM. */
1105 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1106 use_left = (lpresent
1107 && ! (TMEM (sym, lrear)
1108 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1109 use_right = (TMEM (sym, rfront)
1110 || (CONSP (tmp) && NILP (XCDR (tmp))));
1111 if (use_left && use_right)
1112 {
1113 if (NILP (lval))
1114 use_left = 0;
1115 else if (NILP (rval))
1116 use_right = 0;
1117 }
1118 if (use_left)
1119 {
1120 /* We build props as (value sym ...) rather than (sym value ...)
1121 because we plan to nreverse it when we're done. */
1122 props = Fcons (lval, Fcons (sym, props));
1123 if (TMEM (sym, lfront))
1124 front = Fcons (sym, front);
1125 if (TMEM (sym, lrear))
1126 rear = Fcons (sym, rear);
1127 }
1128 else if (use_right)
1129 {
1130 props = Fcons (rval, Fcons (sym, props));
1131 if (TMEM (sym, rfront))
1132 front = Fcons (sym, front);
1133 if (TMEM (sym, rrear))
1134 rear = Fcons (sym, rear);
1135 }
1136 }
1137
1138 /* Now go through each element of PLEFT. */
1139 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1140 {
1141 Lisp_Object tmp;
1142
1143 sym = XCAR (tail2);
1144
1145 /* Sticky properties get special treatment. */
1146 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1147 continue;
1148
1149 /* If sym is in PRIGHT, we've already considered it. */
1150 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1151 if (EQ (sym, XCAR (tail1)))
1152 break;
1153 if (! NILP (tail1))
1154 continue;
1155
1156 lval = Fcar (XCDR (tail2));
1157
1158 /* Even if lrear or rfront say nothing about the stickiness of
1159 SYM, Vtext_property_default_nonsticky may give default
1160 stickiness to SYM. */
1161 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1162
1163 /* Since rval is known to be nil in this loop, the test simplifies. */
1164 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1165 {
1166 props = Fcons (lval, Fcons (sym, props));
1167 if (TMEM (sym, lfront))
1168 front = Fcons (sym, front);
1169 }
1170 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1171 {
1172 /* The value is nil, but we still inherit the stickiness
1173 from the right. */
1174 front = Fcons (sym, front);
1175 if (TMEM (sym, rrear))
1176 rear = Fcons (sym, rear);
1177 }
1178 }
1179 props = Fnreverse (props);
1180 if (! NILP (rear))
1181 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1182
1183 cat = textget (props, Qcategory);
1184 if (! NILP (front)
1185 &&
1186 /* If we have inherited a front-stick category property that is t,
1187 we don't need to set up a detailed one. */
1188 ! (! NILP (cat) && SYMBOLP (cat)
1189 && EQ (Fget (cat, Qfront_sticky), Qt)))
1190 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1191 return props;
1192 }
1193
1194 \f
1195 /* Delete a node I from its interval tree by merging its subtrees
1196 into one subtree which is then returned. Caller is responsible for
1197 storing the resulting subtree into its parent. */
1198
1199 static INTERVAL
1200 delete_node (register INTERVAL i)
1201 {
1202 register INTERVAL migrate, this;
1203 register ptrdiff_t migrate_amt;
1204
1205 if (!i->left)
1206 return i->right;
1207 if (!i->right)
1208 return i->left;
1209
1210 migrate = i->left;
1211 migrate_amt = i->left->total_length;
1212 this = i->right;
1213 this->total_length += migrate_amt;
1214 while (this->left)
1215 {
1216 this = this->left;
1217 this->total_length += migrate_amt;
1218 }
1219 eassert (TOTAL_LENGTH (this) >= 0);
1220 set_interval_left (this, migrate);
1221 set_interval_parent (migrate, this);
1222
1223 return i->right;
1224 }
1225
1226 /* Delete interval I from its tree by calling `delete_node'
1227 and properly connecting the resultant subtree.
1228
1229 I is presumed to be empty; that is, no adjustments are made
1230 for the length of I. */
1231
1232 static void
1233 delete_interval (register INTERVAL i)
1234 {
1235 register INTERVAL parent;
1236 ptrdiff_t amt = LENGTH (i);
1237
1238 eassert (amt == 0); /* Only used on zero-length intervals now. */
1239
1240 if (ROOT_INTERVAL_P (i))
1241 {
1242 Lisp_Object owner;
1243 GET_INTERVAL_OBJECT (owner, i);
1244 parent = delete_node (i);
1245 if (parent)
1246 set_interval_object (parent, owner);
1247
1248 if (BUFFERP (owner))
1249 set_buffer_intervals (XBUFFER (owner), parent);
1250 else if (STRINGP (owner))
1251 set_string_intervals (owner, parent);
1252 else
1253 emacs_abort ();
1254
1255 return;
1256 }
1257
1258 parent = INTERVAL_PARENT (i);
1259 if (AM_LEFT_CHILD (i))
1260 {
1261 set_interval_left (parent, delete_node (i));
1262 if (parent->left)
1263 set_interval_parent (parent->left, parent);
1264 }
1265 else
1266 {
1267 set_interval_right (parent, delete_node (i));
1268 if (parent->right)
1269 set_interval_parent (parent->right, parent);
1270 }
1271 }
1272 \f
1273 /* Find the interval in TREE corresponding to the relative position
1274 FROM and delete as much as possible of AMOUNT from that interval.
1275 Return the amount actually deleted, and if the interval was
1276 zeroed-out, delete that interval node from the tree.
1277
1278 Note that FROM is actually origin zero, aka relative to the
1279 leftmost edge of tree. This is appropriate since we call ourselves
1280 recursively on subtrees.
1281
1282 Do this by recursing down TREE to the interval in question, and
1283 deleting the appropriate amount of text. */
1284
1285 static ptrdiff_t
1286 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1287 register ptrdiff_t amount)
1288 {
1289 register ptrdiff_t relative_position = from;
1290
1291 if (!tree)
1292 return 0;
1293
1294 /* Left branch. */
1295 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1296 {
1297 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1298 relative_position,
1299 amount);
1300 tree->total_length -= subtract;
1301 eassert (TOTAL_LENGTH (tree) >= 0);
1302 return subtract;
1303 }
1304 /* Right branch. */
1305 else if (relative_position >= (TOTAL_LENGTH (tree)
1306 - RIGHT_TOTAL_LENGTH (tree)))
1307 {
1308 ptrdiff_t subtract;
1309
1310 relative_position -= (tree->total_length
1311 - RIGHT_TOTAL_LENGTH (tree));
1312 subtract = interval_deletion_adjustment (tree->right,
1313 relative_position,
1314 amount);
1315 tree->total_length -= subtract;
1316 eassert (TOTAL_LENGTH (tree) >= 0);
1317 return subtract;
1318 }
1319 /* Here -- this node. */
1320 else
1321 {
1322 /* How much can we delete from this interval? */
1323 ptrdiff_t my_amount = ((tree->total_length
1324 - RIGHT_TOTAL_LENGTH (tree))
1325 - relative_position);
1326
1327 if (amount > my_amount)
1328 amount = my_amount;
1329
1330 tree->total_length -= amount;
1331 eassert (TOTAL_LENGTH (tree) >= 0);
1332 if (LENGTH (tree) == 0)
1333 delete_interval (tree);
1334
1335 return amount;
1336 }
1337
1338 /* Never reach here. */
1339 }
1340
1341 /* Effect the adjustments necessary to the interval tree of BUFFER to
1342 correspond to the deletion of LENGTH characters from that buffer
1343 text. The deletion is effected at position START (which is a
1344 buffer position, i.e. origin 1). */
1345
1346 static void
1347 adjust_intervals_for_deletion (struct buffer *buffer,
1348 ptrdiff_t start, ptrdiff_t length)
1349 {
1350 ptrdiff_t left_to_delete = length;
1351 INTERVAL tree = buffer_intervals (buffer);
1352 Lisp_Object parent;
1353 ptrdiff_t offset;
1354
1355 GET_INTERVAL_OBJECT (parent, tree);
1356 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1357
1358 if (!tree)
1359 return;
1360
1361 eassert (start <= offset + TOTAL_LENGTH (tree)
1362 && start + length <= offset + TOTAL_LENGTH (tree));
1363
1364 if (length == TOTAL_LENGTH (tree))
1365 {
1366 set_buffer_intervals (buffer, NULL);
1367 return;
1368 }
1369
1370 if (ONLY_INTERVAL_P (tree))
1371 {
1372 tree->total_length -= length;
1373 eassert (TOTAL_LENGTH (tree) >= 0);
1374 return;
1375 }
1376
1377 if (start > offset + TOTAL_LENGTH (tree))
1378 start = offset + TOTAL_LENGTH (tree);
1379 while (left_to_delete > 0)
1380 {
1381 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1382 left_to_delete);
1383 tree = buffer_intervals (buffer);
1384 if (left_to_delete == tree->total_length)
1385 {
1386 set_buffer_intervals (buffer, NULL);
1387 return;
1388 }
1389 }
1390 }
1391 \f
1392 /* Make the adjustments necessary to the interval tree of BUFFER to
1393 represent an addition or deletion of LENGTH characters starting
1394 at position START. Addition or deletion is indicated by the sign
1395 of LENGTH. */
1396
1397 void
1398 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1399 {
1400 if (!buffer_intervals (buffer) || length == 0)
1401 return;
1402
1403 if (length > 0)
1404 adjust_intervals_for_insertion (buffer_intervals (buffer),
1405 start, length);
1406 else
1407 {
1408 lint_assume (- TYPE_MAXIMUM (ptrdiff_t) <= length);
1409 adjust_intervals_for_deletion (buffer, start, -length);
1410 }
1411 }
1412 \f
1413 /* Merge interval I with its lexicographic successor. The resulting
1414 interval is returned, and has the properties of the original
1415 successor. The properties of I are lost. I is removed from the
1416 interval tree.
1417
1418 IMPORTANT:
1419 The caller must verify that this is not the last (rightmost)
1420 interval. */
1421
1422 static INTERVAL
1423 merge_interval_right (register INTERVAL i)
1424 {
1425 register ptrdiff_t absorb = LENGTH (i);
1426 register INTERVAL successor;
1427
1428 /* Find the succeeding interval. */
1429 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1430 as we descend. */
1431 {
1432 successor = i->right;
1433 while (! NULL_LEFT_CHILD (successor))
1434 {
1435 successor->total_length += absorb;
1436 eassert (TOTAL_LENGTH (successor) >= 0);
1437 successor = successor->left;
1438 }
1439
1440 successor->total_length += absorb;
1441 eassert (TOTAL_LENGTH (successor) >= 0);
1442 delete_interval (i);
1443 return successor;
1444 }
1445
1446 /* Zero out this interval. */
1447 i->total_length -= absorb;
1448 eassert (TOTAL_LENGTH (i) >= 0);
1449
1450 successor = i;
1451 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1452 we ascend. */
1453 {
1454 if (AM_LEFT_CHILD (successor))
1455 {
1456 successor = INTERVAL_PARENT (successor);
1457 delete_interval (i);
1458 return successor;
1459 }
1460
1461 successor = INTERVAL_PARENT (successor);
1462 successor->total_length -= absorb;
1463 eassert (TOTAL_LENGTH (successor) >= 0);
1464 }
1465
1466 /* This must be the rightmost or last interval and cannot
1467 be merged right. The caller should have known. */
1468 emacs_abort ();
1469 }
1470 \f
1471 /* Merge interval I with its lexicographic predecessor. The resulting
1472 interval is returned, and has the properties of the original predecessor.
1473 The properties of I are lost. Interval node I is removed from the tree.
1474
1475 IMPORTANT:
1476 The caller must verify that this is not the first (leftmost) interval. */
1477
1478 INTERVAL
1479 merge_interval_left (register INTERVAL i)
1480 {
1481 register ptrdiff_t absorb = LENGTH (i);
1482 register INTERVAL predecessor;
1483
1484 /* Find the preceding interval. */
1485 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1486 adding ABSORB as we go. */
1487 {
1488 predecessor = i->left;
1489 while (! NULL_RIGHT_CHILD (predecessor))
1490 {
1491 predecessor->total_length += absorb;
1492 eassert (TOTAL_LENGTH (predecessor) >= 0);
1493 predecessor = predecessor->right;
1494 }
1495
1496 predecessor->total_length += absorb;
1497 eassert (TOTAL_LENGTH (predecessor) >= 0);
1498 delete_interval (i);
1499 return predecessor;
1500 }
1501
1502 /* Zero out this interval. */
1503 i->total_length -= absorb;
1504 eassert (TOTAL_LENGTH (i) >= 0);
1505
1506 predecessor = i;
1507 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1508 subtracting ABSORB. */
1509 {
1510 if (AM_RIGHT_CHILD (predecessor))
1511 {
1512 predecessor = INTERVAL_PARENT (predecessor);
1513 delete_interval (i);
1514 return predecessor;
1515 }
1516
1517 predecessor = INTERVAL_PARENT (predecessor);
1518 predecessor->total_length -= absorb;
1519 eassert (TOTAL_LENGTH (predecessor) >= 0);
1520 }
1521
1522 /* This must be the leftmost or first interval and cannot
1523 be merged left. The caller should have known. */
1524 emacs_abort ();
1525 }
1526 \f
1527 /* Create a copy of SOURCE but with the default value of UP. */
1528
1529 static INTERVAL
1530 reproduce_interval (INTERVAL source)
1531 {
1532 register INTERVAL target = make_interval ();
1533
1534 target->total_length = source->total_length;
1535 target->position = source->position;
1536
1537 copy_properties (source, target);
1538
1539 if (! NULL_LEFT_CHILD (source))
1540 set_interval_left (target, reproduce_tree (source->left, target));
1541 if (! NULL_RIGHT_CHILD (source))
1542 set_interval_right (target, reproduce_tree (source->right, target));
1543
1544 return target;
1545 }
1546
1547 /* Make an exact copy of interval tree SOURCE which descends from
1548 PARENT. This is done by recursing through SOURCE, copying
1549 the current interval and its properties, and then adjusting
1550 the pointers of the copy. */
1551
1552 static INTERVAL
1553 reproduce_tree (INTERVAL source, INTERVAL parent)
1554 {
1555 INTERVAL target = reproduce_interval (source);
1556 set_interval_parent (target, parent);
1557 return target;
1558 }
1559
1560 static INTERVAL
1561 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1562 {
1563 INTERVAL target = reproduce_interval (source);
1564 set_interval_object (target, parent);
1565 return target;
1566 }
1567 \f
1568 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1569 LENGTH is the length of the text in SOURCE.
1570
1571 The `position' field of the SOURCE intervals is assumed to be
1572 consistent with its parent; therefore, SOURCE must be an
1573 interval tree made with copy_interval or must be the whole
1574 tree of a buffer or a string.
1575
1576 This is used in insdel.c when inserting Lisp_Strings into the
1577 buffer. The text corresponding to SOURCE is already in the buffer
1578 when this is called. The intervals of new tree are a copy of those
1579 belonging to the string being inserted; intervals are never
1580 shared.
1581
1582 If the inserted text had no intervals associated, and we don't
1583 want to inherit the surrounding text's properties, this function
1584 simply returns -- offset_intervals should handle placing the
1585 text in the correct interval, depending on the sticky bits.
1586
1587 If the inserted text had properties (intervals), then there are two
1588 cases -- either insertion happened in the middle of some interval,
1589 or between two intervals.
1590
1591 If the text goes into the middle of an interval, then new intervals
1592 are created in the middle, and new text has the union of its properties
1593 and those of the text into which it was inserted.
1594
1595 If the text goes between two intervals, then if neither interval
1596 had its appropriate sticky property set (front_sticky, rear_sticky),
1597 the new text has only its properties. If one of the sticky properties
1598 is set, then the new text "sticks" to that region and its properties
1599 depend on merging as above. If both the preceding and succeeding
1600 intervals to the new text are "sticky", then the new text retains
1601 only its properties, as if neither sticky property were set. Perhaps
1602 we should consider merging all three sets of properties onto the new
1603 text... */
1604
1605 void
1606 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1607 ptrdiff_t length, struct buffer *buffer,
1608 bool inherit)
1609 {
1610 INTERVAL tree = buffer_intervals (buffer);
1611 INTERVAL under, over, this;
1612 ptrdiff_t over_used;
1613
1614 /* If the new text has no properties, then with inheritance it
1615 becomes part of whatever interval it was inserted into.
1616 To prevent inheritance, we must clear out the properties
1617 of the newly inserted text. */
1618 if (!source)
1619 {
1620 Lisp_Object buf;
1621 if (!inherit && tree && length > 0)
1622 {
1623 XSETBUFFER (buf, buffer);
1624 set_text_properties_1 (make_number (position),
1625 make_number (position + length),
1626 Qnil, buf,
1627 find_interval (tree, position));
1628 }
1629 /* Shouldn't be necessary. --Stef */
1630 buffer_balance_intervals (buffer);
1631 return;
1632 }
1633
1634 eassert (length == TOTAL_LENGTH (source));
1635
1636 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1637 {
1638 /* The inserted text constitutes the whole buffer, so
1639 simply copy over the interval structure. */
1640 Lisp_Object buf;
1641
1642 XSETBUFFER (buf, buffer);
1643 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1644 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1645 eassert (buffer_intervals (buffer)->up_obj == 1);
1646 return;
1647 }
1648 else if (!tree)
1649 {
1650 /* Create an interval tree in which to place a copy
1651 of the intervals of the inserted string. */
1652 Lisp_Object buf;
1653
1654 XSETBUFFER (buf, buffer);
1655 tree = create_root_interval (buf);
1656 }
1657 /* Paranoia -- the text has already been added, so
1658 this buffer should be of non-zero length. */
1659 eassert (TOTAL_LENGTH (tree) > 0);
1660
1661 this = under = find_interval (tree, position);
1662 eassert (under);
1663 over = find_interval (source, interval_start_pos (source));
1664
1665 /* Here for insertion in the middle of an interval.
1666 Split off an equivalent interval to the right,
1667 then don't bother with it any more. */
1668
1669 if (position > under->position)
1670 {
1671 INTERVAL end_unchanged
1672 = split_interval_left (this, position - under->position);
1673 copy_properties (under, end_unchanged);
1674 under->position = position;
1675 }
1676 else
1677 {
1678 /* This call may have some effect because previous_interval may
1679 update `position' fields of intervals. Thus, don't ignore it
1680 for the moment. Someone please tell me the truth (K.Handa). */
1681 INTERVAL prev = previous_interval (under);
1682 (void) prev;
1683 #if 0
1684 /* But, this code surely has no effect. And, anyway,
1685 END_NONSTICKY_P is unreliable now. */
1686 if (prev && !END_NONSTICKY_P (prev))
1687 prev = 0;
1688 #endif /* 0 */
1689 }
1690
1691 /* Insertion is now at beginning of UNDER. */
1692
1693 /* The inserted text "sticks" to the interval `under',
1694 which means it gets those properties.
1695 The properties of under are the result of
1696 adjust_intervals_for_insertion, so stickiness has
1697 already been taken care of. */
1698
1699 /* OVER is the interval we are copying from next.
1700 OVER_USED says how many characters' worth of OVER
1701 have already been copied into target intervals.
1702 UNDER is the next interval in the target. */
1703 over_used = 0;
1704 while (over)
1705 {
1706 /* If UNDER is longer than OVER, split it. */
1707 if (LENGTH (over) - over_used < LENGTH (under))
1708 {
1709 this = split_interval_left (under, LENGTH (over) - over_used);
1710 copy_properties (under, this);
1711 }
1712 else
1713 this = under;
1714
1715 /* THIS is now the interval to copy or merge into.
1716 OVER covers all of it. */
1717 if (inherit)
1718 merge_properties (over, this);
1719 else
1720 copy_properties (over, this);
1721
1722 /* If THIS and OVER end at the same place,
1723 advance OVER to a new source interval. */
1724 if (LENGTH (this) == LENGTH (over) - over_used)
1725 {
1726 over = next_interval (over);
1727 over_used = 0;
1728 }
1729 else
1730 /* Otherwise just record that more of OVER has been used. */
1731 over_used += LENGTH (this);
1732
1733 /* Always advance to a new target interval. */
1734 under = next_interval (this);
1735 }
1736
1737 buffer_balance_intervals (buffer);
1738 }
1739
1740 /* Get the value of property PROP from PLIST,
1741 which is the plist of an interval.
1742 We check for direct properties, for categories with property PROP,
1743 and for PROP appearing on the default-text-properties list. */
1744
1745 Lisp_Object
1746 textget (Lisp_Object plist, register Lisp_Object prop)
1747 {
1748 return lookup_char_property (plist, prop, 1);
1749 }
1750
1751 Lisp_Object
1752 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1753 {
1754 Lisp_Object tail, fallback = Qnil;
1755
1756 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1757 {
1758 register Lisp_Object tem;
1759 tem = XCAR (tail);
1760 if (EQ (prop, tem))
1761 return Fcar (XCDR (tail));
1762 if (EQ (tem, Qcategory))
1763 {
1764 tem = Fcar (XCDR (tail));
1765 if (SYMBOLP (tem))
1766 fallback = Fget (tem, prop);
1767 }
1768 }
1769
1770 if (! NILP (fallback))
1771 return fallback;
1772 /* Check for alternative properties */
1773 tail = Fassq (prop, Vchar_property_alias_alist);
1774 if (! NILP (tail))
1775 {
1776 tail = XCDR (tail);
1777 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1778 fallback = Fplist_get (plist, XCAR (tail));
1779 }
1780
1781 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1782 fallback = Fplist_get (Vdefault_text_properties, prop);
1783 return fallback;
1784 }
1785
1786 \f
1787 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1788 byte position BYTEPOS. */
1789
1790 void
1791 temp_set_point_both (struct buffer *buffer,
1792 ptrdiff_t charpos, ptrdiff_t bytepos)
1793 {
1794 /* In a single-byte buffer, the two positions must be equal. */
1795 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer))
1796 eassert (charpos == bytepos);
1797
1798 eassert (charpos <= bytepos);
1799 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1800
1801 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1802 }
1803
1804 /* Set point "temporarily", without checking any text properties. */
1805
1806 void
1807 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1808 {
1809 temp_set_point_both (buffer, charpos,
1810 buf_charpos_to_bytepos (buffer, charpos));
1811 }
1812
1813 /* Set point in BUFFER to CHARPOS. If the target position is
1814 before an intangible character, move to an ok place. */
1815
1816 void
1817 set_point (ptrdiff_t charpos)
1818 {
1819 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1820 }
1821
1822 /* Set PT from MARKER's clipped position. */
1823
1824 void
1825 set_point_from_marker (Lisp_Object marker)
1826 {
1827 if (XMARKER (marker)->buffer != current_buffer)
1828 signal_error ("Marker points into wrong buffer", marker);
1829 set_point_both
1830 (clip_to_bounds (BEGV, marker_position (marker), ZV),
1831 clip_to_bounds (BEGV_BYTE, marker_byte_position (marker), ZV_BYTE));
1832 }
1833
1834 /* If there's an invisible character at position POS + TEST_OFFS in the
1835 current buffer, and the invisible property has a `stickiness' such that
1836 inserting a character at position POS would inherit the property it,
1837 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1838 is required as well as invisibility.
1839
1840 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1841
1842 Note that `stickiness' is determined by overlay marker insertion types,
1843 if the invisible property comes from an overlay. */
1844
1845 static ptrdiff_t
1846 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1847 bool test_intang)
1848 {
1849 Lisp_Object invis_propval, invis_overlay;
1850 Lisp_Object test_pos;
1851
1852 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1853 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1854 return pos;
1855
1856 test_pos = make_number (pos + test_offs);
1857
1858 invis_propval
1859 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1860 &invis_overlay);
1861
1862 if ((!test_intang
1863 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1864 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1865 /* This next test is true if the invisible property has a stickiness
1866 such that an insertion at POS would inherit it. */
1867 && (NILP (invis_overlay)
1868 /* Invisible property is from a text-property. */
1869 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1870 == (test_offs == 0 ? 1 : -1))
1871 /* Invisible property is from an overlay. */
1872 : (test_offs == 0
1873 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1874 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1875 pos += adj;
1876
1877 return pos;
1878 }
1879
1880 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1881 position BYTEPOS. If the target position is
1882 before an intangible character, move to an ok place. */
1883
1884 void
1885 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1886 {
1887 register INTERVAL to, from, toprev, fromprev;
1888 ptrdiff_t buffer_point;
1889 ptrdiff_t old_position = PT;
1890 /* This ensures that we move forward past intangible text when the
1891 initial position is the same as the destination, in the rare
1892 instances where this is important, e.g. in line-move-finish
1893 (simple.el). */
1894 bool backwards = charpos < old_position;
1895 bool have_overlays;
1896 ptrdiff_t original_position;
1897
1898 bset_point_before_scroll (current_buffer, Qnil);
1899
1900 if (charpos == PT)
1901 return;
1902
1903 /* In a single-byte buffer, the two positions must be equal. */
1904 eassert (ZV != ZV_BYTE || charpos == bytepos);
1905
1906 /* Check this now, before checking if the buffer has any intervals.
1907 That way, we can catch conditions which break this sanity check
1908 whether or not there are intervals in the buffer. */
1909 eassert (charpos <= ZV && charpos >= BEGV);
1910
1911 have_overlays = buffer_has_overlays ();
1912
1913 /* If we have no text properties and overlays,
1914 then we can do it quickly. */
1915 if (!buffer_intervals (current_buffer) && ! have_overlays)
1916 {
1917 temp_set_point_both (current_buffer, charpos, bytepos);
1918 return;
1919 }
1920
1921 /* Set TO to the interval containing the char after CHARPOS,
1922 and TOPREV to the interval containing the char before CHARPOS.
1923 Either one may be null. They may be equal. */
1924 to = find_interval (buffer_intervals (current_buffer), charpos);
1925 if (charpos == BEGV)
1926 toprev = 0;
1927 else if (to && to->position == charpos)
1928 toprev = previous_interval (to);
1929 else
1930 toprev = to;
1931
1932 buffer_point = (PT == ZV ? ZV - 1 : PT);
1933
1934 /* Set FROM to the interval containing the char after PT,
1935 and FROMPREV to the interval containing the char before PT.
1936 Either one may be null. They may be equal. */
1937 /* We could cache this and save time. */
1938 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1939 if (buffer_point == BEGV)
1940 fromprev = 0;
1941 else if (from && from->position == PT)
1942 fromprev = previous_interval (from);
1943 else if (buffer_point != PT)
1944 fromprev = from, from = 0;
1945 else
1946 fromprev = from;
1947
1948 /* Moving within an interval. */
1949 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1950 && ! have_overlays)
1951 {
1952 temp_set_point_both (current_buffer, charpos, bytepos);
1953 return;
1954 }
1955
1956 original_position = charpos;
1957
1958 /* If the new position is between two intangible characters
1959 with the same intangible property value,
1960 move forward or backward until a change in that property. */
1961 if (NILP (Vinhibit_point_motion_hooks)
1962 && ((to && toprev)
1963 || have_overlays)
1964 /* Intangibility never stops us from positioning at the beginning
1965 or end of the buffer, so don't bother checking in that case. */
1966 && charpos != BEGV && charpos != ZV)
1967 {
1968 Lisp_Object pos;
1969 Lisp_Object intangible_propval;
1970
1971 if (backwards)
1972 {
1973 /* If the preceding character is both intangible and invisible,
1974 and the invisible property is `rear-sticky', perturb it so
1975 that the search starts one character earlier -- this ensures
1976 that point can never move to the end of an invisible/
1977 intangible/rear-sticky region. */
1978 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1979
1980 XSETINT (pos, charpos);
1981
1982 /* If following char is intangible,
1983 skip back over all chars with matching intangible property. */
1984
1985 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1986
1987 if (! NILP (intangible_propval))
1988 {
1989 while (XINT (pos) > BEGV
1990 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1991 Qintangible, Qnil),
1992 intangible_propval))
1993 pos = Fprevious_char_property_change (pos, Qnil);
1994
1995 /* Set CHARPOS from POS, and if the final intangible character
1996 that we skipped over is also invisible, and the invisible
1997 property is `front-sticky', perturb it to be one character
1998 earlier -- this ensures that point can never move to the
1999 beginning of an invisible/intangible/front-sticky region. */
2000 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
2001 }
2002 }
2003 else
2004 {
2005 /* If the following character is both intangible and invisible,
2006 and the invisible property is `front-sticky', perturb it so
2007 that the search starts one character later -- this ensures
2008 that point can never move to the beginning of an
2009 invisible/intangible/front-sticky region. */
2010 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2011
2012 XSETINT (pos, charpos);
2013
2014 /* If preceding char is intangible,
2015 skip forward over all chars with matching intangible property. */
2016
2017 intangible_propval = Fget_char_property (make_number (charpos - 1),
2018 Qintangible, Qnil);
2019
2020 if (! NILP (intangible_propval))
2021 {
2022 while (XINT (pos) < ZV
2023 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2024 intangible_propval))
2025 pos = Fnext_char_property_change (pos, Qnil);
2026
2027 /* Set CHARPOS from POS, and if the final intangible character
2028 that we skipped over is also invisible, and the invisible
2029 property is `rear-sticky', perturb it to be one character
2030 later -- this ensures that point can never move to the
2031 end of an invisible/intangible/rear-sticky region. */
2032 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2033 }
2034 }
2035
2036 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2037 }
2038
2039 if (charpos != original_position)
2040 {
2041 /* Set TO to the interval containing the char after CHARPOS,
2042 and TOPREV to the interval containing the char before CHARPOS.
2043 Either one may be null. They may be equal. */
2044 to = find_interval (buffer_intervals (current_buffer), charpos);
2045 if (charpos == BEGV)
2046 toprev = 0;
2047 else if (to && to->position == charpos)
2048 toprev = previous_interval (to);
2049 else
2050 toprev = to;
2051 }
2052
2053 /* Here TO is the interval after the stopping point
2054 and TOPREV is the interval before the stopping point.
2055 One or the other may be null. */
2056
2057 temp_set_point_both (current_buffer, charpos, bytepos);
2058
2059 /* We run point-left and point-entered hooks here, if the
2060 two intervals are not equivalent. These hooks take
2061 (old_point, new_point) as arguments. */
2062 if (NILP (Vinhibit_point_motion_hooks)
2063 && (! intervals_equal (from, to)
2064 || ! intervals_equal (fromprev, toprev)))
2065 {
2066 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2067
2068 if (fromprev)
2069 leave_before = textget (fromprev->plist, Qpoint_left);
2070 else
2071 leave_before = Qnil;
2072
2073 if (from)
2074 leave_after = textget (from->plist, Qpoint_left);
2075 else
2076 leave_after = Qnil;
2077
2078 if (toprev)
2079 enter_before = textget (toprev->plist, Qpoint_entered);
2080 else
2081 enter_before = Qnil;
2082
2083 if (to)
2084 enter_after = textget (to->plist, Qpoint_entered);
2085 else
2086 enter_after = Qnil;
2087
2088 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2089 call2 (leave_before, make_number (old_position),
2090 make_number (charpos));
2091 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2092 call2 (leave_after, make_number (old_position),
2093 make_number (charpos));
2094
2095 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2096 call2 (enter_before, make_number (old_position),
2097 make_number (charpos));
2098 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2099 call2 (enter_after, make_number (old_position),
2100 make_number (charpos));
2101 }
2102 }
2103 \f
2104 /* Move point to POSITION, unless POSITION is inside an intangible
2105 segment that reaches all the way to point. */
2106
2107 void
2108 move_if_not_intangible (ptrdiff_t position)
2109 {
2110 Lisp_Object pos;
2111 Lisp_Object intangible_propval;
2112
2113 XSETINT (pos, position);
2114
2115 if (! NILP (Vinhibit_point_motion_hooks))
2116 /* If intangible is inhibited, always move point to POSITION. */
2117 ;
2118 else if (PT < position && XINT (pos) < ZV)
2119 {
2120 /* We want to move forward, so check the text before POSITION. */
2121
2122 intangible_propval = Fget_char_property (pos,
2123 Qintangible, Qnil);
2124
2125 /* If following char is intangible,
2126 skip back over all chars with matching intangible property. */
2127 if (! NILP (intangible_propval))
2128 while (XINT (pos) > BEGV
2129 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2130 Qintangible, Qnil),
2131 intangible_propval))
2132 pos = Fprevious_char_property_change (pos, Qnil);
2133 }
2134 else if (XINT (pos) > BEGV)
2135 {
2136 /* We want to move backward, so check the text after POSITION. */
2137
2138 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2139 Qintangible, Qnil);
2140
2141 /* If following char is intangible,
2142 skip forward over all chars with matching intangible property. */
2143 if (! NILP (intangible_propval))
2144 while (XINT (pos) < ZV
2145 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2146 intangible_propval))
2147 pos = Fnext_char_property_change (pos, Qnil);
2148
2149 }
2150 else if (position < BEGV)
2151 position = BEGV;
2152 else if (position > ZV)
2153 position = ZV;
2154
2155 /* If the whole stretch between PT and POSITION isn't intangible,
2156 try moving to POSITION (which means we actually move farther
2157 if POSITION is inside of intangible text). */
2158
2159 if (XINT (pos) != PT)
2160 SET_PT (position);
2161 }
2162 \f
2163 /* If text at position POS has property PROP, set *VAL to the property
2164 value, *START and *END to the beginning and end of a region that
2165 has the same property, and return true. Otherwise return false.
2166
2167 OBJECT is the string or buffer to look for the property in;
2168 nil means the current buffer. */
2169
2170 bool
2171 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2172 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2173 {
2174 INTERVAL i, prev, next;
2175
2176 if (NILP (object))
2177 i = find_interval (buffer_intervals (current_buffer), pos);
2178 else if (BUFFERP (object))
2179 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2180 else if (STRINGP (object))
2181 i = find_interval (string_intervals (object), pos);
2182 else
2183 emacs_abort ();
2184
2185 if (!i || (i->position + LENGTH (i) <= pos))
2186 return 0;
2187 *val = textget (i->plist, prop);
2188 if (NILP (*val))
2189 return 0;
2190
2191 next = i; /* remember it in advance */
2192 prev = previous_interval (i);
2193 while (prev
2194 && EQ (*val, textget (prev->plist, prop)))
2195 i = prev, prev = previous_interval (prev);
2196 *start = i->position;
2197
2198 next = next_interval (i);
2199 while (next && EQ (*val, textget (next->plist, prop)))
2200 i = next, next = next_interval (next);
2201 *end = i->position + LENGTH (i);
2202
2203 return 1;
2204 }
2205 \f
2206 /* Return the proper local keymap TYPE for position POSITION in
2207 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2208 specified by the PROP property, if any. Otherwise, if TYPE is
2209 `local-map' use BUFFER's local map. */
2210
2211 Lisp_Object
2212 get_local_map (ptrdiff_t position, struct buffer *buffer, Lisp_Object type)
2213 {
2214 Lisp_Object prop, lispy_position, lispy_buffer;
2215 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2216
2217 position = clip_to_bounds (BUF_BEGV (buffer), position, BUF_ZV (buffer));
2218
2219 /* Ignore narrowing, so that a local map continues to be valid even if
2220 the visible region contains no characters and hence no properties. */
2221 old_begv = BUF_BEGV (buffer);
2222 old_zv = BUF_ZV (buffer);
2223 old_begv_byte = BUF_BEGV_BYTE (buffer);
2224 old_zv_byte = BUF_ZV_BYTE (buffer);
2225
2226 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2227 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2228
2229 XSETFASTINT (lispy_position, position);
2230 XSETBUFFER (lispy_buffer, buffer);
2231 /* First check if the CHAR has any property. This is because when
2232 we click with the mouse, the mouse pointer is really pointing
2233 to the CHAR after POS. */
2234 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2235 /* If not, look at the POS's properties. This is necessary because when
2236 editing a field with a `local-map' property, we want insertion at the end
2237 to obey the `local-map' property. */
2238 if (NILP (prop))
2239 prop = get_pos_property (lispy_position, type, lispy_buffer);
2240
2241 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2242 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2243
2244 /* Use the local map only if it is valid. */
2245 prop = get_keymap (prop, 0, 0);
2246 if (CONSP (prop))
2247 return prop;
2248
2249 if (EQ (type, Qkeymap))
2250 return Qnil;
2251 else
2252 return BVAR (buffer, keymap);
2253 }
2254 \f
2255 /* Produce an interval tree reflecting the intervals in
2256 TREE from START to START + LENGTH.
2257 The new interval tree has no parent and has a starting-position of 0. */
2258
2259 INTERVAL
2260 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2261 {
2262 register INTERVAL i, new, t;
2263 register ptrdiff_t got, prevlen;
2264
2265 if (!tree || length <= 0)
2266 return NULL;
2267
2268 i = find_interval (tree, start);
2269 eassert (i && LENGTH (i) > 0);
2270
2271 /* If there is only one interval and it's the default, return nil. */
2272 if ((start - i->position + 1 + length) < LENGTH (i)
2273 && DEFAULT_INTERVAL_P (i))
2274 return NULL;
2275
2276 new = make_interval ();
2277 new->position = 0;
2278 got = (LENGTH (i) - (start - i->position));
2279 new->total_length = length;
2280 eassert (TOTAL_LENGTH (new) >= 0);
2281 copy_properties (i, new);
2282
2283 t = new;
2284 prevlen = got;
2285 while (got < length)
2286 {
2287 i = next_interval (i);
2288 t = split_interval_right (t, prevlen);
2289 copy_properties (i, t);
2290 prevlen = LENGTH (i);
2291 got += prevlen;
2292 }
2293
2294 return balance_an_interval (new);
2295 }
2296
2297 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2298
2299 void
2300 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2301 ptrdiff_t position, ptrdiff_t length)
2302 {
2303 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2304 position, length);
2305 if (!interval_copy)
2306 return;
2307
2308 set_interval_object (interval_copy, string);
2309 set_string_intervals (string, interval_copy);
2310 }
2311 \f
2312 /* Return true if strings S1 and S2 have identical properties.
2313 Assume they have identical characters. */
2314
2315 bool
2316 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2317 {
2318 INTERVAL i1, i2;
2319 ptrdiff_t pos = 0;
2320 ptrdiff_t end = SCHARS (s1);
2321
2322 i1 = find_interval (string_intervals (s1), 0);
2323 i2 = find_interval (string_intervals (s2), 0);
2324
2325 while (pos < end)
2326 {
2327 /* Determine how far we can go before we reach the end of I1 or I2. */
2328 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2329 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2330 ptrdiff_t distance = min (len1, len2);
2331
2332 /* If we ever find a mismatch between the strings,
2333 they differ. */
2334 if (! intervals_equal (i1, i2))
2335 return 0;
2336
2337 /* Advance POS till the end of the shorter interval,
2338 and advance one or both interval pointers for the new position. */
2339 pos += distance;
2340 if (len1 == distance)
2341 i1 = next_interval (i1);
2342 if (len2 == distance)
2343 i2 = next_interval (i2);
2344 }
2345 return 1;
2346 }
2347 \f
2348 /* Recursively adjust interval I in the current buffer
2349 for setting enable_multibyte_characters to MULTI_FLAG.
2350 The range of interval I is START ... END in characters,
2351 START_BYTE ... END_BYTE in bytes. */
2352
2353 static void
2354 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2355 ptrdiff_t start, ptrdiff_t start_byte,
2356 ptrdiff_t end, ptrdiff_t end_byte)
2357 {
2358 /* Fix the length of this interval. */
2359 if (multi_flag)
2360 i->total_length = end - start;
2361 else
2362 i->total_length = end_byte - start_byte;
2363 eassert (TOTAL_LENGTH (i) >= 0);
2364
2365 if (TOTAL_LENGTH (i) == 0)
2366 {
2367 delete_interval (i);
2368 return;
2369 }
2370
2371 /* Recursively fix the length of the subintervals. */
2372 if (i->left)
2373 {
2374 ptrdiff_t left_end, left_end_byte;
2375
2376 if (multi_flag)
2377 {
2378 ptrdiff_t temp;
2379 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2380 left_end = BYTE_TO_CHAR (left_end_byte);
2381
2382 temp = CHAR_TO_BYTE (left_end);
2383
2384 /* If LEFT_END_BYTE is in the middle of a character,
2385 adjust it and LEFT_END to a char boundary. */
2386 if (left_end_byte > temp)
2387 {
2388 left_end_byte = temp;
2389 }
2390 if (left_end_byte < temp)
2391 {
2392 left_end--;
2393 left_end_byte = CHAR_TO_BYTE (left_end);
2394 }
2395 }
2396 else
2397 {
2398 left_end = start + LEFT_TOTAL_LENGTH (i);
2399 left_end_byte = CHAR_TO_BYTE (left_end);
2400 }
2401
2402 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2403 left_end, left_end_byte);
2404 }
2405 if (i->right)
2406 {
2407 ptrdiff_t right_start_byte, right_start;
2408
2409 if (multi_flag)
2410 {
2411 ptrdiff_t temp;
2412
2413 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2414 right_start = BYTE_TO_CHAR (right_start_byte);
2415
2416 /* If RIGHT_START_BYTE is in the middle of a character,
2417 adjust it and RIGHT_START to a char boundary. */
2418 temp = CHAR_TO_BYTE (right_start);
2419
2420 if (right_start_byte < temp)
2421 {
2422 right_start_byte = temp;
2423 }
2424 if (right_start_byte > temp)
2425 {
2426 right_start++;
2427 right_start_byte = CHAR_TO_BYTE (right_start);
2428 }
2429 }
2430 else
2431 {
2432 right_start = end - RIGHT_TOTAL_LENGTH (i);
2433 right_start_byte = CHAR_TO_BYTE (right_start);
2434 }
2435
2436 set_intervals_multibyte_1 (i->right, multi_flag,
2437 right_start, right_start_byte,
2438 end, end_byte);
2439 }
2440
2441 /* Rounding to char boundaries can theoretically ake this interval
2442 spurious. If so, delete one child, and copy its property list
2443 to this interval. */
2444 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2445 {
2446 if ((i)->left)
2447 {
2448 set_interval_plist (i, i->left->plist);
2449 (i)->left->total_length = 0;
2450 delete_interval ((i)->left);
2451 }
2452 else
2453 {
2454 set_interval_plist (i, i->right->plist);
2455 (i)->right->total_length = 0;
2456 delete_interval ((i)->right);
2457 }
2458 }
2459 }
2460
2461 /* Update the intervals of the current buffer
2462 to fit the contents as multibyte (if MULTI_FLAG)
2463 or to fit them as non-multibyte (if not MULTI_FLAG). */
2464
2465 void
2466 set_intervals_multibyte (bool multi_flag)
2467 {
2468 INTERVAL i = buffer_intervals (current_buffer);
2469
2470 if (i)
2471 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);
2472 }