A simpler, centralized INLINE.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
49 Doable only if GC_MARK_STACK. */
50 #if ! GC_MARK_STACK
51 # undef GC_CHECK_MARKED_OBJECTS
52 #endif
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c and if not checking
56 marked objects. */
57
58 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
59 || defined GC_CHECK_MARKED_OBJECTS)
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #include <unistd.h>
64 #include <fcntl.h>
65
66 #ifdef USE_GTK
67 # include "gtkutil.h"
68 #endif
69 #ifdef WINDOWSNT
70 #include "w32.h"
71 #include "w32heap.h" /* for sbrk */
72 #endif
73
74 #ifdef DOUG_LEA_MALLOC
75
76 #include <malloc.h>
77
78 /* Specify maximum number of areas to mmap. It would be nice to use a
79 value that explicitly means "no limit". */
80
81 #define MMAP_MAX_AREAS 100000000
82
83 #endif /* not DOUG_LEA_MALLOC */
84
85 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
86 to a struct Lisp_String. */
87
88 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
89 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
90 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
91
92 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
93 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
94 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
95
96 /* Default value of gc_cons_threshold (see below). */
97
98 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
99
100 /* Global variables. */
101 struct emacs_globals globals;
102
103 /* Number of bytes of consing done since the last gc. */
104
105 EMACS_INT consing_since_gc;
106
107 /* Similar minimum, computed from Vgc_cons_percentage. */
108
109 EMACS_INT gc_relative_threshold;
110
111 /* Minimum number of bytes of consing since GC before next GC,
112 when memory is full. */
113
114 EMACS_INT memory_full_cons_threshold;
115
116 /* True during GC. */
117
118 bool gc_in_progress;
119
120 /* True means abort if try to GC.
121 This is for code which is written on the assumption that
122 no GC will happen, so as to verify that assumption. */
123
124 bool abort_on_gc;
125
126 /* Number of live and free conses etc. */
127
128 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
129 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
130 static EMACS_INT total_free_floats, total_floats;
131
132 /* Points to memory space allocated as "spare", to be freed if we run
133 out of memory. We keep one large block, four cons-blocks, and
134 two string blocks. */
135
136 static char *spare_memory[7];
137
138 /* Amount of spare memory to keep in large reserve block, or to see
139 whether this much is available when malloc fails on a larger request. */
140
141 #define SPARE_MEMORY (1 << 14)
142
143 /* Initialize it to a nonzero value to force it into data space
144 (rather than bss space). That way unexec will remap it into text
145 space (pure), on some systems. We have not implemented the
146 remapping on more recent systems because this is less important
147 nowadays than in the days of small memories and timesharing. */
148
149 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
150 #define PUREBEG (char *) pure
151
152 /* Pointer to the pure area, and its size. */
153
154 static char *purebeg;
155 static ptrdiff_t pure_size;
156
157 /* Number of bytes of pure storage used before pure storage overflowed.
158 If this is non-zero, this implies that an overflow occurred. */
159
160 static ptrdiff_t pure_bytes_used_before_overflow;
161
162 /* True if P points into pure space. */
163
164 #define PURE_POINTER_P(P) \
165 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
166
167 /* Index in pure at which next pure Lisp object will be allocated.. */
168
169 static ptrdiff_t pure_bytes_used_lisp;
170
171 /* Number of bytes allocated for non-Lisp objects in pure storage. */
172
173 static ptrdiff_t pure_bytes_used_non_lisp;
174
175 /* If nonzero, this is a warning delivered by malloc and not yet
176 displayed. */
177
178 const char *pending_malloc_warning;
179
180 /* Maximum amount of C stack to save when a GC happens. */
181
182 #ifndef MAX_SAVE_STACK
183 #define MAX_SAVE_STACK 16000
184 #endif
185
186 /* Buffer in which we save a copy of the C stack at each GC. */
187
188 #if MAX_SAVE_STACK > 0
189 static char *stack_copy;
190 static ptrdiff_t stack_copy_size;
191 #endif
192
193 static Lisp_Object Qconses;
194 static Lisp_Object Qsymbols;
195 static Lisp_Object Qmiscs;
196 static Lisp_Object Qstrings;
197 static Lisp_Object Qvectors;
198 static Lisp_Object Qfloats;
199 static Lisp_Object Qintervals;
200 static Lisp_Object Qbuffers;
201 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
202 static Lisp_Object Qgc_cons_threshold;
203 Lisp_Object Qautomatic_gc;
204 Lisp_Object Qchar_table_extra_slots;
205
206 /* Hook run after GC has finished. */
207
208 static Lisp_Object Qpost_gc_hook;
209
210 static void mark_terminals (void);
211 static void gc_sweep (void);
212 static Lisp_Object make_pure_vector (ptrdiff_t);
213 static void mark_buffer (struct buffer *);
214
215 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
216 static void refill_memory_reserve (void);
217 #endif
218 static void compact_small_strings (void);
219 static void free_large_strings (void);
220 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
221
222 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
223 what memory allocated via lisp_malloc and lisp_align_malloc is intended
224 for what purpose. This enumeration specifies the type of memory. */
225
226 enum mem_type
227 {
228 MEM_TYPE_NON_LISP,
229 MEM_TYPE_BUFFER,
230 MEM_TYPE_CONS,
231 MEM_TYPE_STRING,
232 MEM_TYPE_MISC,
233 MEM_TYPE_SYMBOL,
234 MEM_TYPE_FLOAT,
235 /* Since all non-bool pseudovectors are small enough to be
236 allocated from vector blocks, this memory type denotes
237 large regular vectors and large bool pseudovectors. */
238 MEM_TYPE_VECTORLIKE,
239 /* Special type to denote vector blocks. */
240 MEM_TYPE_VECTOR_BLOCK,
241 /* Special type to denote reserved memory. */
242 MEM_TYPE_SPARE
243 };
244
245 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
246
247 /* A unique object in pure space used to make some Lisp objects
248 on free lists recognizable in O(1). */
249
250 static Lisp_Object Vdead;
251 #define DEADP(x) EQ (x, Vdead)
252
253 #ifdef GC_MALLOC_CHECK
254
255 enum mem_type allocated_mem_type;
256
257 #endif /* GC_MALLOC_CHECK */
258
259 /* A node in the red-black tree describing allocated memory containing
260 Lisp data. Each such block is recorded with its start and end
261 address when it is allocated, and removed from the tree when it
262 is freed.
263
264 A red-black tree is a balanced binary tree with the following
265 properties:
266
267 1. Every node is either red or black.
268 2. Every leaf is black.
269 3. If a node is red, then both of its children are black.
270 4. Every simple path from a node to a descendant leaf contains
271 the same number of black nodes.
272 5. The root is always black.
273
274 When nodes are inserted into the tree, or deleted from the tree,
275 the tree is "fixed" so that these properties are always true.
276
277 A red-black tree with N internal nodes has height at most 2
278 log(N+1). Searches, insertions and deletions are done in O(log N).
279 Please see a text book about data structures for a detailed
280 description of red-black trees. Any book worth its salt should
281 describe them. */
282
283 struct mem_node
284 {
285 /* Children of this node. These pointers are never NULL. When there
286 is no child, the value is MEM_NIL, which points to a dummy node. */
287 struct mem_node *left, *right;
288
289 /* The parent of this node. In the root node, this is NULL. */
290 struct mem_node *parent;
291
292 /* Start and end of allocated region. */
293 void *start, *end;
294
295 /* Node color. */
296 enum {MEM_BLACK, MEM_RED} color;
297
298 /* Memory type. */
299 enum mem_type type;
300 };
301
302 /* Base address of stack. Set in main. */
303
304 Lisp_Object *stack_base;
305
306 /* Root of the tree describing allocated Lisp memory. */
307
308 static struct mem_node *mem_root;
309
310 /* Lowest and highest known address in the heap. */
311
312 static void *min_heap_address, *max_heap_address;
313
314 /* Sentinel node of the tree. */
315
316 static struct mem_node mem_z;
317 #define MEM_NIL &mem_z
318
319 static struct mem_node *mem_insert (void *, void *, enum mem_type);
320 static void mem_insert_fixup (struct mem_node *);
321 static void mem_rotate_left (struct mem_node *);
322 static void mem_rotate_right (struct mem_node *);
323 static void mem_delete (struct mem_node *);
324 static void mem_delete_fixup (struct mem_node *);
325 static struct mem_node *mem_find (void *);
326
327 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
328
329 #ifndef DEADP
330 # define DEADP(x) 0
331 #endif
332
333 /* Recording what needs to be marked for gc. */
334
335 struct gcpro *gcprolist;
336
337 /* Addresses of staticpro'd variables. Initialize it to a nonzero
338 value; otherwise some compilers put it into BSS. */
339
340 enum { NSTATICS = 2048 };
341 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
342
343 /* Index of next unused slot in staticvec. */
344
345 static int staticidx;
346
347 static void *pure_alloc (size_t, int);
348
349
350 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
351 ALIGNMENT must be a power of 2. */
352
353 #define ALIGN(ptr, ALIGNMENT) \
354 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
355 & ~ ((ALIGNMENT) - 1)))
356
357 static void
358 XFLOAT_INIT (Lisp_Object f, double n)
359 {
360 XFLOAT (f)->u.data = n;
361 }
362
363 \f
364 /************************************************************************
365 Malloc
366 ************************************************************************/
367
368 /* Function malloc calls this if it finds we are near exhausting storage. */
369
370 void
371 malloc_warning (const char *str)
372 {
373 pending_malloc_warning = str;
374 }
375
376
377 /* Display an already-pending malloc warning. */
378
379 void
380 display_malloc_warning (void)
381 {
382 call3 (intern ("display-warning"),
383 intern ("alloc"),
384 build_string (pending_malloc_warning),
385 intern ("emergency"));
386 pending_malloc_warning = 0;
387 }
388 \f
389 /* Called if we can't allocate relocatable space for a buffer. */
390
391 void
392 buffer_memory_full (ptrdiff_t nbytes)
393 {
394 /* If buffers use the relocating allocator, no need to free
395 spare_memory, because we may have plenty of malloc space left
396 that we could get, and if we don't, the malloc that fails will
397 itself cause spare_memory to be freed. If buffers don't use the
398 relocating allocator, treat this like any other failing
399 malloc. */
400
401 #ifndef REL_ALLOC
402 memory_full (nbytes);
403 #else
404 /* This used to call error, but if we've run out of memory, we could
405 get infinite recursion trying to build the string. */
406 xsignal (Qnil, Vmemory_signal_data);
407 #endif
408 }
409
410 /* A common multiple of the positive integers A and B. Ideally this
411 would be the least common multiple, but there's no way to do that
412 as a constant expression in C, so do the best that we can easily do. */
413 #define COMMON_MULTIPLE(a, b) \
414 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
415
416 #ifndef XMALLOC_OVERRUN_CHECK
417 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
418 #else
419
420 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
421 around each block.
422
423 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
424 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
425 block size in little-endian order. The trailer consists of
426 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
427
428 The header is used to detect whether this block has been allocated
429 through these functions, as some low-level libc functions may
430 bypass the malloc hooks. */
431
432 #define XMALLOC_OVERRUN_CHECK_SIZE 16
433 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
434 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
435
436 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
437 hold a size_t value and (2) the header size is a multiple of the
438 alignment that Emacs needs for C types and for USE_LSB_TAG. */
439 #define XMALLOC_BASE_ALIGNMENT \
440 alignof (union { long double d; intmax_t i; void *p; })
441
442 #if USE_LSB_TAG
443 # define XMALLOC_HEADER_ALIGNMENT \
444 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
445 #else
446 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
447 #endif
448 #define XMALLOC_OVERRUN_SIZE_SIZE \
449 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
450 + XMALLOC_HEADER_ALIGNMENT - 1) \
451 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
452 - XMALLOC_OVERRUN_CHECK_SIZE)
453
454 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
455 { '\x9a', '\x9b', '\xae', '\xaf',
456 '\xbf', '\xbe', '\xce', '\xcf',
457 '\xea', '\xeb', '\xec', '\xed',
458 '\xdf', '\xde', '\x9c', '\x9d' };
459
460 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
461 { '\xaa', '\xab', '\xac', '\xad',
462 '\xba', '\xbb', '\xbc', '\xbd',
463 '\xca', '\xcb', '\xcc', '\xcd',
464 '\xda', '\xdb', '\xdc', '\xdd' };
465
466 /* Insert and extract the block size in the header. */
467
468 static void
469 xmalloc_put_size (unsigned char *ptr, size_t size)
470 {
471 int i;
472 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
473 {
474 *--ptr = size & ((1 << CHAR_BIT) - 1);
475 size >>= CHAR_BIT;
476 }
477 }
478
479 static size_t
480 xmalloc_get_size (unsigned char *ptr)
481 {
482 size_t size = 0;
483 int i;
484 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
485 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
486 {
487 size <<= CHAR_BIT;
488 size += *ptr++;
489 }
490 return size;
491 }
492
493
494 /* Like malloc, but wraps allocated block with header and trailer. */
495
496 static void *
497 overrun_check_malloc (size_t size)
498 {
499 register unsigned char *val;
500 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
501 emacs_abort ();
502
503 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
504 if (val)
505 {
506 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
507 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
508 xmalloc_put_size (val, size);
509 memcpy (val + size, xmalloc_overrun_check_trailer,
510 XMALLOC_OVERRUN_CHECK_SIZE);
511 }
512 return val;
513 }
514
515
516 /* Like realloc, but checks old block for overrun, and wraps new block
517 with header and trailer. */
518
519 static void *
520 overrun_check_realloc (void *block, size_t size)
521 {
522 register unsigned char *val = (unsigned char *) block;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
525
526 if (val
527 && memcmp (xmalloc_overrun_check_header,
528 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
529 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
530 {
531 size_t osize = xmalloc_get_size (val);
532 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
533 XMALLOC_OVERRUN_CHECK_SIZE))
534 emacs_abort ();
535 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
536 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
537 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
538 }
539
540 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
541
542 if (val)
543 {
544 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
545 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
546 xmalloc_put_size (val, size);
547 memcpy (val + size, xmalloc_overrun_check_trailer,
548 XMALLOC_OVERRUN_CHECK_SIZE);
549 }
550 return val;
551 }
552
553 /* Like free, but checks block for overrun. */
554
555 static void
556 overrun_check_free (void *block)
557 {
558 unsigned char *val = (unsigned char *) block;
559
560 if (val
561 && memcmp (xmalloc_overrun_check_header,
562 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
563 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
564 {
565 size_t osize = xmalloc_get_size (val);
566 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
567 XMALLOC_OVERRUN_CHECK_SIZE))
568 emacs_abort ();
569 #ifdef XMALLOC_CLEAR_FREE_MEMORY
570 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
571 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
572 #else
573 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
576 #endif
577 }
578
579 free (val);
580 }
581
582 #undef malloc
583 #undef realloc
584 #undef free
585 #define malloc overrun_check_malloc
586 #define realloc overrun_check_realloc
587 #define free overrun_check_free
588 #endif
589
590 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
591 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
592 If that variable is set, block input while in one of Emacs's memory
593 allocation functions. There should be no need for this debugging
594 option, since signal handlers do not allocate memory, but Emacs
595 formerly allocated memory in signal handlers and this compile-time
596 option remains as a way to help debug the issue should it rear its
597 ugly head again. */
598 #ifdef XMALLOC_BLOCK_INPUT_CHECK
599 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
600 static void
601 malloc_block_input (void)
602 {
603 if (block_input_in_memory_allocators)
604 block_input ();
605 }
606 static void
607 malloc_unblock_input (void)
608 {
609 if (block_input_in_memory_allocators)
610 unblock_input ();
611 }
612 # define MALLOC_BLOCK_INPUT malloc_block_input ()
613 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
614 #else
615 # define MALLOC_BLOCK_INPUT ((void) 0)
616 # define MALLOC_UNBLOCK_INPUT ((void) 0)
617 #endif
618
619 #define MALLOC_PROBE(size) \
620 do { \
621 if (profiler_memory_running) \
622 malloc_probe (size); \
623 } while (0)
624
625
626 /* Like malloc but check for no memory and block interrupt input.. */
627
628 void *
629 xmalloc (size_t size)
630 {
631 void *val;
632
633 MALLOC_BLOCK_INPUT;
634 val = malloc (size);
635 MALLOC_UNBLOCK_INPUT;
636
637 if (!val && size)
638 memory_full (size);
639 MALLOC_PROBE (size);
640 return val;
641 }
642
643 /* Like the above, but zeroes out the memory just allocated. */
644
645 void *
646 xzalloc (size_t size)
647 {
648 void *val;
649
650 MALLOC_BLOCK_INPUT;
651 val = malloc (size);
652 MALLOC_UNBLOCK_INPUT;
653
654 if (!val && size)
655 memory_full (size);
656 memset (val, 0, size);
657 MALLOC_PROBE (size);
658 return val;
659 }
660
661 /* Like realloc but check for no memory and block interrupt input.. */
662
663 void *
664 xrealloc (void *block, size_t size)
665 {
666 void *val;
667
668 MALLOC_BLOCK_INPUT;
669 /* We must call malloc explicitly when BLOCK is 0, since some
670 reallocs don't do this. */
671 if (! block)
672 val = malloc (size);
673 else
674 val = realloc (block, size);
675 MALLOC_UNBLOCK_INPUT;
676
677 if (!val && size)
678 memory_full (size);
679 MALLOC_PROBE (size);
680 return val;
681 }
682
683
684 /* Like free but block interrupt input. */
685
686 void
687 xfree (void *block)
688 {
689 if (!block)
690 return;
691 MALLOC_BLOCK_INPUT;
692 free (block);
693 MALLOC_UNBLOCK_INPUT;
694 /* We don't call refill_memory_reserve here
695 because in practice the call in r_alloc_free seems to suffice. */
696 }
697
698
699 /* Other parts of Emacs pass large int values to allocator functions
700 expecting ptrdiff_t. This is portable in practice, but check it to
701 be safe. */
702 verify (INT_MAX <= PTRDIFF_MAX);
703
704
705 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
706 Signal an error on memory exhaustion, and block interrupt input. */
707
708 void *
709 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
710 {
711 eassert (0 <= nitems && 0 < item_size);
712 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
713 memory_full (SIZE_MAX);
714 return xmalloc (nitems * item_size);
715 }
716
717
718 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
719 Signal an error on memory exhaustion, and block interrupt input. */
720
721 void *
722 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
723 {
724 eassert (0 <= nitems && 0 < item_size);
725 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
726 memory_full (SIZE_MAX);
727 return xrealloc (pa, nitems * item_size);
728 }
729
730
731 /* Grow PA, which points to an array of *NITEMS items, and return the
732 location of the reallocated array, updating *NITEMS to reflect its
733 new size. The new array will contain at least NITEMS_INCR_MIN more
734 items, but will not contain more than NITEMS_MAX items total.
735 ITEM_SIZE is the size of each item, in bytes.
736
737 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
738 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
739 infinity.
740
741 If PA is null, then allocate a new array instead of reallocating
742 the old one.
743
744 Block interrupt input as needed. If memory exhaustion occurs, set
745 *NITEMS to zero if PA is null, and signal an error (i.e., do not
746 return).
747
748 Thus, to grow an array A without saving its old contents, do
749 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
750 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
751 and signals an error, and later this code is reexecuted and
752 attempts to free A. */
753
754 void *
755 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
756 ptrdiff_t nitems_max, ptrdiff_t item_size)
757 {
758 /* The approximate size to use for initial small allocation
759 requests. This is the largest "small" request for the GNU C
760 library malloc. */
761 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
762
763 /* If the array is tiny, grow it to about (but no greater than)
764 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
765 ptrdiff_t n = *nitems;
766 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
767 ptrdiff_t half_again = n >> 1;
768 ptrdiff_t incr_estimate = max (tiny_max, half_again);
769
770 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
771 NITEMS_MAX, and what the C language can represent safely. */
772 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
773 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
774 ? nitems_max : C_language_max);
775 ptrdiff_t nitems_incr_max = n_max - n;
776 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
777
778 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
779 if (! pa)
780 *nitems = 0;
781 if (nitems_incr_max < incr)
782 memory_full (SIZE_MAX);
783 n += incr;
784 pa = xrealloc (pa, n * item_size);
785 *nitems = n;
786 return pa;
787 }
788
789
790 /* Like strdup, but uses xmalloc. */
791
792 char *
793 xstrdup (const char *s)
794 {
795 ptrdiff_t size;
796 eassert (s);
797 size = strlen (s) + 1;
798 return memcpy (xmalloc (size), s, size);
799 }
800
801 /* Like above, but duplicates Lisp string to C string. */
802
803 char *
804 xlispstrdup (Lisp_Object string)
805 {
806 ptrdiff_t size = SBYTES (string) + 1;
807 return memcpy (xmalloc (size), SSDATA (string), size);
808 }
809
810 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
811 argument is a const pointer. */
812
813 void
814 xputenv (char const *string)
815 {
816 if (putenv ((char *) string) != 0)
817 memory_full (0);
818 }
819
820 /* Return a newly allocated memory block of SIZE bytes, remembering
821 to free it when unwinding. */
822 void *
823 record_xmalloc (size_t size)
824 {
825 void *p = xmalloc (size);
826 record_unwind_protect_ptr (xfree, p);
827 return p;
828 }
829
830
831 /* Like malloc but used for allocating Lisp data. NBYTES is the
832 number of bytes to allocate, TYPE describes the intended use of the
833 allocated memory block (for strings, for conses, ...). */
834
835 #if ! USE_LSB_TAG
836 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
837 #endif
838
839 static void *
840 lisp_malloc (size_t nbytes, enum mem_type type)
841 {
842 register void *val;
843
844 MALLOC_BLOCK_INPUT;
845
846 #ifdef GC_MALLOC_CHECK
847 allocated_mem_type = type;
848 #endif
849
850 val = malloc (nbytes);
851
852 #if ! USE_LSB_TAG
853 /* If the memory just allocated cannot be addressed thru a Lisp
854 object's pointer, and it needs to be,
855 that's equivalent to running out of memory. */
856 if (val && type != MEM_TYPE_NON_LISP)
857 {
858 Lisp_Object tem;
859 XSETCONS (tem, (char *) val + nbytes - 1);
860 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
861 {
862 lisp_malloc_loser = val;
863 free (val);
864 val = 0;
865 }
866 }
867 #endif
868
869 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
870 if (val && type != MEM_TYPE_NON_LISP)
871 mem_insert (val, (char *) val + nbytes, type);
872 #endif
873
874 MALLOC_UNBLOCK_INPUT;
875 if (!val && nbytes)
876 memory_full (nbytes);
877 MALLOC_PROBE (nbytes);
878 return val;
879 }
880
881 /* Free BLOCK. This must be called to free memory allocated with a
882 call to lisp_malloc. */
883
884 static void
885 lisp_free (void *block)
886 {
887 MALLOC_BLOCK_INPUT;
888 free (block);
889 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
890 mem_delete (mem_find (block));
891 #endif
892 MALLOC_UNBLOCK_INPUT;
893 }
894
895 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
896
897 /* The entry point is lisp_align_malloc which returns blocks of at most
898 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
899
900 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
901 #define USE_POSIX_MEMALIGN 1
902 #endif
903
904 /* BLOCK_ALIGN has to be a power of 2. */
905 #define BLOCK_ALIGN (1 << 10)
906
907 /* Padding to leave at the end of a malloc'd block. This is to give
908 malloc a chance to minimize the amount of memory wasted to alignment.
909 It should be tuned to the particular malloc library used.
910 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
911 posix_memalign on the other hand would ideally prefer a value of 4
912 because otherwise, there's 1020 bytes wasted between each ablocks.
913 In Emacs, testing shows that those 1020 can most of the time be
914 efficiently used by malloc to place other objects, so a value of 0 can
915 still preferable unless you have a lot of aligned blocks and virtually
916 nothing else. */
917 #define BLOCK_PADDING 0
918 #define BLOCK_BYTES \
919 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
920
921 /* Internal data structures and constants. */
922
923 #define ABLOCKS_SIZE 16
924
925 /* An aligned block of memory. */
926 struct ablock
927 {
928 union
929 {
930 char payload[BLOCK_BYTES];
931 struct ablock *next_free;
932 } x;
933 /* `abase' is the aligned base of the ablocks. */
934 /* It is overloaded to hold the virtual `busy' field that counts
935 the number of used ablock in the parent ablocks.
936 The first ablock has the `busy' field, the others have the `abase'
937 field. To tell the difference, we assume that pointers will have
938 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
939 is used to tell whether the real base of the parent ablocks is `abase'
940 (if not, the word before the first ablock holds a pointer to the
941 real base). */
942 struct ablocks *abase;
943 /* The padding of all but the last ablock is unused. The padding of
944 the last ablock in an ablocks is not allocated. */
945 #if BLOCK_PADDING
946 char padding[BLOCK_PADDING];
947 #endif
948 };
949
950 /* A bunch of consecutive aligned blocks. */
951 struct ablocks
952 {
953 struct ablock blocks[ABLOCKS_SIZE];
954 };
955
956 /* Size of the block requested from malloc or posix_memalign. */
957 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
958
959 #define ABLOCK_ABASE(block) \
960 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
961 ? (struct ablocks *)(block) \
962 : (block)->abase)
963
964 /* Virtual `busy' field. */
965 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
966
967 /* Pointer to the (not necessarily aligned) malloc block. */
968 #ifdef USE_POSIX_MEMALIGN
969 #define ABLOCKS_BASE(abase) (abase)
970 #else
971 #define ABLOCKS_BASE(abase) \
972 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
973 #endif
974
975 /* The list of free ablock. */
976 static struct ablock *free_ablock;
977
978 /* Allocate an aligned block of nbytes.
979 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
980 smaller or equal to BLOCK_BYTES. */
981 static void *
982 lisp_align_malloc (size_t nbytes, enum mem_type type)
983 {
984 void *base, *val;
985 struct ablocks *abase;
986
987 eassert (nbytes <= BLOCK_BYTES);
988
989 MALLOC_BLOCK_INPUT;
990
991 #ifdef GC_MALLOC_CHECK
992 allocated_mem_type = type;
993 #endif
994
995 if (!free_ablock)
996 {
997 int i;
998 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
999
1000 #ifdef DOUG_LEA_MALLOC
1001 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1002 because mapped region contents are not preserved in
1003 a dumped Emacs. */
1004 mallopt (M_MMAP_MAX, 0);
1005 #endif
1006
1007 #ifdef USE_POSIX_MEMALIGN
1008 {
1009 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1010 if (err)
1011 base = NULL;
1012 abase = base;
1013 }
1014 #else
1015 base = malloc (ABLOCKS_BYTES);
1016 abase = ALIGN (base, BLOCK_ALIGN);
1017 #endif
1018
1019 if (base == 0)
1020 {
1021 MALLOC_UNBLOCK_INPUT;
1022 memory_full (ABLOCKS_BYTES);
1023 }
1024
1025 aligned = (base == abase);
1026 if (!aligned)
1027 ((void**)abase)[-1] = base;
1028
1029 #ifdef DOUG_LEA_MALLOC
1030 /* Back to a reasonable maximum of mmap'ed areas. */
1031 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1032 #endif
1033
1034 #if ! USE_LSB_TAG
1035 /* If the memory just allocated cannot be addressed thru a Lisp
1036 object's pointer, and it needs to be, that's equivalent to
1037 running out of memory. */
1038 if (type != MEM_TYPE_NON_LISP)
1039 {
1040 Lisp_Object tem;
1041 char *end = (char *) base + ABLOCKS_BYTES - 1;
1042 XSETCONS (tem, end);
1043 if ((char *) XCONS (tem) != end)
1044 {
1045 lisp_malloc_loser = base;
1046 free (base);
1047 MALLOC_UNBLOCK_INPUT;
1048 memory_full (SIZE_MAX);
1049 }
1050 }
1051 #endif
1052
1053 /* Initialize the blocks and put them on the free list.
1054 If `base' was not properly aligned, we can't use the last block. */
1055 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1056 {
1057 abase->blocks[i].abase = abase;
1058 abase->blocks[i].x.next_free = free_ablock;
1059 free_ablock = &abase->blocks[i];
1060 }
1061 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1062
1063 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1064 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1065 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1066 eassert (ABLOCKS_BASE (abase) == base);
1067 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1068 }
1069
1070 abase = ABLOCK_ABASE (free_ablock);
1071 ABLOCKS_BUSY (abase) =
1072 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1073 val = free_ablock;
1074 free_ablock = free_ablock->x.next_free;
1075
1076 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1077 if (type != MEM_TYPE_NON_LISP)
1078 mem_insert (val, (char *) val + nbytes, type);
1079 #endif
1080
1081 MALLOC_UNBLOCK_INPUT;
1082
1083 MALLOC_PROBE (nbytes);
1084
1085 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1086 return val;
1087 }
1088
1089 static void
1090 lisp_align_free (void *block)
1091 {
1092 struct ablock *ablock = block;
1093 struct ablocks *abase = ABLOCK_ABASE (ablock);
1094
1095 MALLOC_BLOCK_INPUT;
1096 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1097 mem_delete (mem_find (block));
1098 #endif
1099 /* Put on free list. */
1100 ablock->x.next_free = free_ablock;
1101 free_ablock = ablock;
1102 /* Update busy count. */
1103 ABLOCKS_BUSY (abase)
1104 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1105
1106 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1107 { /* All the blocks are free. */
1108 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1109 struct ablock **tem = &free_ablock;
1110 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1111
1112 while (*tem)
1113 {
1114 if (*tem >= (struct ablock *) abase && *tem < atop)
1115 {
1116 i++;
1117 *tem = (*tem)->x.next_free;
1118 }
1119 else
1120 tem = &(*tem)->x.next_free;
1121 }
1122 eassert ((aligned & 1) == aligned);
1123 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1124 #ifdef USE_POSIX_MEMALIGN
1125 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1126 #endif
1127 free (ABLOCKS_BASE (abase));
1128 }
1129 MALLOC_UNBLOCK_INPUT;
1130 }
1131
1132 \f
1133 /***********************************************************************
1134 Interval Allocation
1135 ***********************************************************************/
1136
1137 /* Number of intervals allocated in an interval_block structure.
1138 The 1020 is 1024 minus malloc overhead. */
1139
1140 #define INTERVAL_BLOCK_SIZE \
1141 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1142
1143 /* Intervals are allocated in chunks in the form of an interval_block
1144 structure. */
1145
1146 struct interval_block
1147 {
1148 /* Place `intervals' first, to preserve alignment. */
1149 struct interval intervals[INTERVAL_BLOCK_SIZE];
1150 struct interval_block *next;
1151 };
1152
1153 /* Current interval block. Its `next' pointer points to older
1154 blocks. */
1155
1156 static struct interval_block *interval_block;
1157
1158 /* Index in interval_block above of the next unused interval
1159 structure. */
1160
1161 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1162
1163 /* Number of free and live intervals. */
1164
1165 static EMACS_INT total_free_intervals, total_intervals;
1166
1167 /* List of free intervals. */
1168
1169 static INTERVAL interval_free_list;
1170
1171 /* Return a new interval. */
1172
1173 INTERVAL
1174 make_interval (void)
1175 {
1176 INTERVAL val;
1177
1178 MALLOC_BLOCK_INPUT;
1179
1180 if (interval_free_list)
1181 {
1182 val = interval_free_list;
1183 interval_free_list = INTERVAL_PARENT (interval_free_list);
1184 }
1185 else
1186 {
1187 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1188 {
1189 struct interval_block *newi
1190 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1191
1192 newi->next = interval_block;
1193 interval_block = newi;
1194 interval_block_index = 0;
1195 total_free_intervals += INTERVAL_BLOCK_SIZE;
1196 }
1197 val = &interval_block->intervals[interval_block_index++];
1198 }
1199
1200 MALLOC_UNBLOCK_INPUT;
1201
1202 consing_since_gc += sizeof (struct interval);
1203 intervals_consed++;
1204 total_free_intervals--;
1205 RESET_INTERVAL (val);
1206 val->gcmarkbit = 0;
1207 return val;
1208 }
1209
1210
1211 /* Mark Lisp objects in interval I. */
1212
1213 static void
1214 mark_interval (register INTERVAL i, Lisp_Object dummy)
1215 {
1216 /* Intervals should never be shared. So, if extra internal checking is
1217 enabled, GC aborts if it seems to have visited an interval twice. */
1218 eassert (!i->gcmarkbit);
1219 i->gcmarkbit = 1;
1220 mark_object (i->plist);
1221 }
1222
1223 /* Mark the interval tree rooted in I. */
1224
1225 #define MARK_INTERVAL_TREE(i) \
1226 do { \
1227 if (i && !i->gcmarkbit) \
1228 traverse_intervals_noorder (i, mark_interval, Qnil); \
1229 } while (0)
1230
1231 /***********************************************************************
1232 String Allocation
1233 ***********************************************************************/
1234
1235 /* Lisp_Strings are allocated in string_block structures. When a new
1236 string_block is allocated, all the Lisp_Strings it contains are
1237 added to a free-list string_free_list. When a new Lisp_String is
1238 needed, it is taken from that list. During the sweep phase of GC,
1239 string_blocks that are entirely free are freed, except two which
1240 we keep.
1241
1242 String data is allocated from sblock structures. Strings larger
1243 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1244 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1245
1246 Sblocks consist internally of sdata structures, one for each
1247 Lisp_String. The sdata structure points to the Lisp_String it
1248 belongs to. The Lisp_String points back to the `u.data' member of
1249 its sdata structure.
1250
1251 When a Lisp_String is freed during GC, it is put back on
1252 string_free_list, and its `data' member and its sdata's `string'
1253 pointer is set to null. The size of the string is recorded in the
1254 `n.nbytes' member of the sdata. So, sdata structures that are no
1255 longer used, can be easily recognized, and it's easy to compact the
1256 sblocks of small strings which we do in compact_small_strings. */
1257
1258 /* Size in bytes of an sblock structure used for small strings. This
1259 is 8192 minus malloc overhead. */
1260
1261 #define SBLOCK_SIZE 8188
1262
1263 /* Strings larger than this are considered large strings. String data
1264 for large strings is allocated from individual sblocks. */
1265
1266 #define LARGE_STRING_BYTES 1024
1267
1268 /* Struct or union describing string memory sub-allocated from an sblock.
1269 This is where the contents of Lisp strings are stored. */
1270
1271 #ifdef GC_CHECK_STRING_BYTES
1272
1273 typedef struct
1274 {
1275 /* Back-pointer to the string this sdata belongs to. If null, this
1276 structure is free, and the NBYTES member of the union below
1277 contains the string's byte size (the same value that STRING_BYTES
1278 would return if STRING were non-null). If non-null, STRING_BYTES
1279 (STRING) is the size of the data, and DATA contains the string's
1280 contents. */
1281 struct Lisp_String *string;
1282
1283 ptrdiff_t nbytes;
1284 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1285 } sdata;
1286
1287 #define SDATA_NBYTES(S) (S)->nbytes
1288 #define SDATA_DATA(S) (S)->data
1289 #define SDATA_SELECTOR(member) member
1290
1291 #else
1292
1293 typedef union
1294 {
1295 struct Lisp_String *string;
1296
1297 /* When STRING is non-null. */
1298 struct
1299 {
1300 struct Lisp_String *string;
1301 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1302 } u;
1303
1304 /* When STRING is null. */
1305 struct
1306 {
1307 struct Lisp_String *string;
1308 ptrdiff_t nbytes;
1309 } n;
1310 } sdata;
1311
1312 #define SDATA_NBYTES(S) (S)->n.nbytes
1313 #define SDATA_DATA(S) (S)->u.data
1314 #define SDATA_SELECTOR(member) u.member
1315
1316 #endif /* not GC_CHECK_STRING_BYTES */
1317
1318 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1319
1320
1321 /* Structure describing a block of memory which is sub-allocated to
1322 obtain string data memory for strings. Blocks for small strings
1323 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1324 as large as needed. */
1325
1326 struct sblock
1327 {
1328 /* Next in list. */
1329 struct sblock *next;
1330
1331 /* Pointer to the next free sdata block. This points past the end
1332 of the sblock if there isn't any space left in this block. */
1333 sdata *next_free;
1334
1335 /* Start of data. */
1336 sdata first_data;
1337 };
1338
1339 /* Number of Lisp strings in a string_block structure. The 1020 is
1340 1024 minus malloc overhead. */
1341
1342 #define STRING_BLOCK_SIZE \
1343 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1344
1345 /* Structure describing a block from which Lisp_String structures
1346 are allocated. */
1347
1348 struct string_block
1349 {
1350 /* Place `strings' first, to preserve alignment. */
1351 struct Lisp_String strings[STRING_BLOCK_SIZE];
1352 struct string_block *next;
1353 };
1354
1355 /* Head and tail of the list of sblock structures holding Lisp string
1356 data. We always allocate from current_sblock. The NEXT pointers
1357 in the sblock structures go from oldest_sblock to current_sblock. */
1358
1359 static struct sblock *oldest_sblock, *current_sblock;
1360
1361 /* List of sblocks for large strings. */
1362
1363 static struct sblock *large_sblocks;
1364
1365 /* List of string_block structures. */
1366
1367 static struct string_block *string_blocks;
1368
1369 /* Free-list of Lisp_Strings. */
1370
1371 static struct Lisp_String *string_free_list;
1372
1373 /* Number of live and free Lisp_Strings. */
1374
1375 static EMACS_INT total_strings, total_free_strings;
1376
1377 /* Number of bytes used by live strings. */
1378
1379 static EMACS_INT total_string_bytes;
1380
1381 /* Given a pointer to a Lisp_String S which is on the free-list
1382 string_free_list, return a pointer to its successor in the
1383 free-list. */
1384
1385 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1386
1387 /* Return a pointer to the sdata structure belonging to Lisp string S.
1388 S must be live, i.e. S->data must not be null. S->data is actually
1389 a pointer to the `u.data' member of its sdata structure; the
1390 structure starts at a constant offset in front of that. */
1391
1392 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1393
1394
1395 #ifdef GC_CHECK_STRING_OVERRUN
1396
1397 /* We check for overrun in string data blocks by appending a small
1398 "cookie" after each allocated string data block, and check for the
1399 presence of this cookie during GC. */
1400
1401 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1402 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1403 { '\xde', '\xad', '\xbe', '\xef' };
1404
1405 #else
1406 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1407 #endif
1408
1409 /* Value is the size of an sdata structure large enough to hold NBYTES
1410 bytes of string data. The value returned includes a terminating
1411 NUL byte, the size of the sdata structure, and padding. */
1412
1413 #ifdef GC_CHECK_STRING_BYTES
1414
1415 #define SDATA_SIZE(NBYTES) \
1416 ((SDATA_DATA_OFFSET \
1417 + (NBYTES) + 1 \
1418 + sizeof (ptrdiff_t) - 1) \
1419 & ~(sizeof (ptrdiff_t) - 1))
1420
1421 #else /* not GC_CHECK_STRING_BYTES */
1422
1423 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1424 less than the size of that member. The 'max' is not needed when
1425 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1426 alignment code reserves enough space. */
1427
1428 #define SDATA_SIZE(NBYTES) \
1429 ((SDATA_DATA_OFFSET \
1430 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1431 ? NBYTES \
1432 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1433 + 1 \
1434 + sizeof (ptrdiff_t) - 1) \
1435 & ~(sizeof (ptrdiff_t) - 1))
1436
1437 #endif /* not GC_CHECK_STRING_BYTES */
1438
1439 /* Extra bytes to allocate for each string. */
1440
1441 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1442
1443 /* Exact bound on the number of bytes in a string, not counting the
1444 terminating null. A string cannot contain more bytes than
1445 STRING_BYTES_BOUND, nor can it be so long that the size_t
1446 arithmetic in allocate_string_data would overflow while it is
1447 calculating a value to be passed to malloc. */
1448 static ptrdiff_t const STRING_BYTES_MAX =
1449 min (STRING_BYTES_BOUND,
1450 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1451 - GC_STRING_EXTRA
1452 - offsetof (struct sblock, first_data)
1453 - SDATA_DATA_OFFSET)
1454 & ~(sizeof (EMACS_INT) - 1)));
1455
1456 /* Initialize string allocation. Called from init_alloc_once. */
1457
1458 static void
1459 init_strings (void)
1460 {
1461 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1462 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1463 }
1464
1465
1466 #ifdef GC_CHECK_STRING_BYTES
1467
1468 static int check_string_bytes_count;
1469
1470 /* Like STRING_BYTES, but with debugging check. Can be
1471 called during GC, so pay attention to the mark bit. */
1472
1473 ptrdiff_t
1474 string_bytes (struct Lisp_String *s)
1475 {
1476 ptrdiff_t nbytes =
1477 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1478
1479 if (!PURE_POINTER_P (s)
1480 && s->data
1481 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1482 emacs_abort ();
1483 return nbytes;
1484 }
1485
1486 /* Check validity of Lisp strings' string_bytes member in B. */
1487
1488 static void
1489 check_sblock (struct sblock *b)
1490 {
1491 sdata *from, *end, *from_end;
1492
1493 end = b->next_free;
1494
1495 for (from = &b->first_data; from < end; from = from_end)
1496 {
1497 /* Compute the next FROM here because copying below may
1498 overwrite data we need to compute it. */
1499 ptrdiff_t nbytes;
1500
1501 /* Check that the string size recorded in the string is the
1502 same as the one recorded in the sdata structure. */
1503 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1504 : SDATA_NBYTES (from));
1505 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1506 }
1507 }
1508
1509
1510 /* Check validity of Lisp strings' string_bytes member. ALL_P
1511 means check all strings, otherwise check only most
1512 recently allocated strings. Used for hunting a bug. */
1513
1514 static void
1515 check_string_bytes (bool all_p)
1516 {
1517 if (all_p)
1518 {
1519 struct sblock *b;
1520
1521 for (b = large_sblocks; b; b = b->next)
1522 {
1523 struct Lisp_String *s = b->first_data.string;
1524 if (s)
1525 string_bytes (s);
1526 }
1527
1528 for (b = oldest_sblock; b; b = b->next)
1529 check_sblock (b);
1530 }
1531 else if (current_sblock)
1532 check_sblock (current_sblock);
1533 }
1534
1535 #else /* not GC_CHECK_STRING_BYTES */
1536
1537 #define check_string_bytes(all) ((void) 0)
1538
1539 #endif /* GC_CHECK_STRING_BYTES */
1540
1541 #ifdef GC_CHECK_STRING_FREE_LIST
1542
1543 /* Walk through the string free list looking for bogus next pointers.
1544 This may catch buffer overrun from a previous string. */
1545
1546 static void
1547 check_string_free_list (void)
1548 {
1549 struct Lisp_String *s;
1550
1551 /* Pop a Lisp_String off the free-list. */
1552 s = string_free_list;
1553 while (s != NULL)
1554 {
1555 if ((uintptr_t) s < 1024)
1556 emacs_abort ();
1557 s = NEXT_FREE_LISP_STRING (s);
1558 }
1559 }
1560 #else
1561 #define check_string_free_list()
1562 #endif
1563
1564 /* Return a new Lisp_String. */
1565
1566 static struct Lisp_String *
1567 allocate_string (void)
1568 {
1569 struct Lisp_String *s;
1570
1571 MALLOC_BLOCK_INPUT;
1572
1573 /* If the free-list is empty, allocate a new string_block, and
1574 add all the Lisp_Strings in it to the free-list. */
1575 if (string_free_list == NULL)
1576 {
1577 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1578 int i;
1579
1580 b->next = string_blocks;
1581 string_blocks = b;
1582
1583 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1584 {
1585 s = b->strings + i;
1586 /* Every string on a free list should have NULL data pointer. */
1587 s->data = NULL;
1588 NEXT_FREE_LISP_STRING (s) = string_free_list;
1589 string_free_list = s;
1590 }
1591
1592 total_free_strings += STRING_BLOCK_SIZE;
1593 }
1594
1595 check_string_free_list ();
1596
1597 /* Pop a Lisp_String off the free-list. */
1598 s = string_free_list;
1599 string_free_list = NEXT_FREE_LISP_STRING (s);
1600
1601 MALLOC_UNBLOCK_INPUT;
1602
1603 --total_free_strings;
1604 ++total_strings;
1605 ++strings_consed;
1606 consing_since_gc += sizeof *s;
1607
1608 #ifdef GC_CHECK_STRING_BYTES
1609 if (!noninteractive)
1610 {
1611 if (++check_string_bytes_count == 200)
1612 {
1613 check_string_bytes_count = 0;
1614 check_string_bytes (1);
1615 }
1616 else
1617 check_string_bytes (0);
1618 }
1619 #endif /* GC_CHECK_STRING_BYTES */
1620
1621 return s;
1622 }
1623
1624
1625 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1626 plus a NUL byte at the end. Allocate an sdata structure for S, and
1627 set S->data to its `u.data' member. Store a NUL byte at the end of
1628 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1629 S->data if it was initially non-null. */
1630
1631 void
1632 allocate_string_data (struct Lisp_String *s,
1633 EMACS_INT nchars, EMACS_INT nbytes)
1634 {
1635 sdata *data, *old_data;
1636 struct sblock *b;
1637 ptrdiff_t needed, old_nbytes;
1638
1639 if (STRING_BYTES_MAX < nbytes)
1640 string_overflow ();
1641
1642 /* Determine the number of bytes needed to store NBYTES bytes
1643 of string data. */
1644 needed = SDATA_SIZE (nbytes);
1645 if (s->data)
1646 {
1647 old_data = SDATA_OF_STRING (s);
1648 old_nbytes = STRING_BYTES (s);
1649 }
1650 else
1651 old_data = NULL;
1652
1653 MALLOC_BLOCK_INPUT;
1654
1655 if (nbytes > LARGE_STRING_BYTES)
1656 {
1657 size_t size = offsetof (struct sblock, first_data) + needed;
1658
1659 #ifdef DOUG_LEA_MALLOC
1660 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1661 because mapped region contents are not preserved in
1662 a dumped Emacs.
1663
1664 In case you think of allowing it in a dumped Emacs at the
1665 cost of not being able to re-dump, there's another reason:
1666 mmap'ed data typically have an address towards the top of the
1667 address space, which won't fit into an EMACS_INT (at least on
1668 32-bit systems with the current tagging scheme). --fx */
1669 mallopt (M_MMAP_MAX, 0);
1670 #endif
1671
1672 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1673
1674 #ifdef DOUG_LEA_MALLOC
1675 /* Back to a reasonable maximum of mmap'ed areas. */
1676 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1677 #endif
1678
1679 b->next_free = &b->first_data;
1680 b->first_data.string = NULL;
1681 b->next = large_sblocks;
1682 large_sblocks = b;
1683 }
1684 else if (current_sblock == NULL
1685 || (((char *) current_sblock + SBLOCK_SIZE
1686 - (char *) current_sblock->next_free)
1687 < (needed + GC_STRING_EXTRA)))
1688 {
1689 /* Not enough room in the current sblock. */
1690 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = NULL;
1694
1695 if (current_sblock)
1696 current_sblock->next = b;
1697 else
1698 oldest_sblock = b;
1699 current_sblock = b;
1700 }
1701 else
1702 b = current_sblock;
1703
1704 data = b->next_free;
1705 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1706
1707 MALLOC_UNBLOCK_INPUT;
1708
1709 data->string = s;
1710 s->data = SDATA_DATA (data);
1711 #ifdef GC_CHECK_STRING_BYTES
1712 SDATA_NBYTES (data) = nbytes;
1713 #endif
1714 s->size = nchars;
1715 s->size_byte = nbytes;
1716 s->data[nbytes] = '\0';
1717 #ifdef GC_CHECK_STRING_OVERRUN
1718 memcpy ((char *) data + needed, string_overrun_cookie,
1719 GC_STRING_OVERRUN_COOKIE_SIZE);
1720 #endif
1721
1722 /* Note that Faset may call to this function when S has already data
1723 assigned. In this case, mark data as free by setting it's string
1724 back-pointer to null, and record the size of the data in it. */
1725 if (old_data)
1726 {
1727 SDATA_NBYTES (old_data) = old_nbytes;
1728 old_data->string = NULL;
1729 }
1730
1731 consing_since_gc += needed;
1732 }
1733
1734
1735 /* Sweep and compact strings. */
1736
1737 static void
1738 sweep_strings (void)
1739 {
1740 struct string_block *b, *next;
1741 struct string_block *live_blocks = NULL;
1742
1743 string_free_list = NULL;
1744 total_strings = total_free_strings = 0;
1745 total_string_bytes = 0;
1746
1747 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1748 for (b = string_blocks; b; b = next)
1749 {
1750 int i, nfree = 0;
1751 struct Lisp_String *free_list_before = string_free_list;
1752
1753 next = b->next;
1754
1755 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1756 {
1757 struct Lisp_String *s = b->strings + i;
1758
1759 if (s->data)
1760 {
1761 /* String was not on free-list before. */
1762 if (STRING_MARKED_P (s))
1763 {
1764 /* String is live; unmark it and its intervals. */
1765 UNMARK_STRING (s);
1766
1767 /* Do not use string_(set|get)_intervals here. */
1768 s->intervals = balance_intervals (s->intervals);
1769
1770 ++total_strings;
1771 total_string_bytes += STRING_BYTES (s);
1772 }
1773 else
1774 {
1775 /* String is dead. Put it on the free-list. */
1776 sdata *data = SDATA_OF_STRING (s);
1777
1778 /* Save the size of S in its sdata so that we know
1779 how large that is. Reset the sdata's string
1780 back-pointer so that we know it's free. */
1781 #ifdef GC_CHECK_STRING_BYTES
1782 if (string_bytes (s) != SDATA_NBYTES (data))
1783 emacs_abort ();
1784 #else
1785 data->n.nbytes = STRING_BYTES (s);
1786 #endif
1787 data->string = NULL;
1788
1789 /* Reset the strings's `data' member so that we
1790 know it's free. */
1791 s->data = NULL;
1792
1793 /* Put the string on the free-list. */
1794 NEXT_FREE_LISP_STRING (s) = string_free_list;
1795 string_free_list = s;
1796 ++nfree;
1797 }
1798 }
1799 else
1800 {
1801 /* S was on the free-list before. Put it there again. */
1802 NEXT_FREE_LISP_STRING (s) = string_free_list;
1803 string_free_list = s;
1804 ++nfree;
1805 }
1806 }
1807
1808 /* Free blocks that contain free Lisp_Strings only, except
1809 the first two of them. */
1810 if (nfree == STRING_BLOCK_SIZE
1811 && total_free_strings > STRING_BLOCK_SIZE)
1812 {
1813 lisp_free (b);
1814 string_free_list = free_list_before;
1815 }
1816 else
1817 {
1818 total_free_strings += nfree;
1819 b->next = live_blocks;
1820 live_blocks = b;
1821 }
1822 }
1823
1824 check_string_free_list ();
1825
1826 string_blocks = live_blocks;
1827 free_large_strings ();
1828 compact_small_strings ();
1829
1830 check_string_free_list ();
1831 }
1832
1833
1834 /* Free dead large strings. */
1835
1836 static void
1837 free_large_strings (void)
1838 {
1839 struct sblock *b, *next;
1840 struct sblock *live_blocks = NULL;
1841
1842 for (b = large_sblocks; b; b = next)
1843 {
1844 next = b->next;
1845
1846 if (b->first_data.string == NULL)
1847 lisp_free (b);
1848 else
1849 {
1850 b->next = live_blocks;
1851 live_blocks = b;
1852 }
1853 }
1854
1855 large_sblocks = live_blocks;
1856 }
1857
1858
1859 /* Compact data of small strings. Free sblocks that don't contain
1860 data of live strings after compaction. */
1861
1862 static void
1863 compact_small_strings (void)
1864 {
1865 struct sblock *b, *tb, *next;
1866 sdata *from, *to, *end, *tb_end;
1867 sdata *to_end, *from_end;
1868
1869 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1870 to, and TB_END is the end of TB. */
1871 tb = oldest_sblock;
1872 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1873 to = &tb->first_data;
1874
1875 /* Step through the blocks from the oldest to the youngest. We
1876 expect that old blocks will stabilize over time, so that less
1877 copying will happen this way. */
1878 for (b = oldest_sblock; b; b = b->next)
1879 {
1880 end = b->next_free;
1881 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1882
1883 for (from = &b->first_data; from < end; from = from_end)
1884 {
1885 /* Compute the next FROM here because copying below may
1886 overwrite data we need to compute it. */
1887 ptrdiff_t nbytes;
1888 struct Lisp_String *s = from->string;
1889
1890 #ifdef GC_CHECK_STRING_BYTES
1891 /* Check that the string size recorded in the string is the
1892 same as the one recorded in the sdata structure. */
1893 if (s && string_bytes (s) != SDATA_NBYTES (from))
1894 emacs_abort ();
1895 #endif /* GC_CHECK_STRING_BYTES */
1896
1897 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1898 eassert (nbytes <= LARGE_STRING_BYTES);
1899
1900 nbytes = SDATA_SIZE (nbytes);
1901 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1902
1903 #ifdef GC_CHECK_STRING_OVERRUN
1904 if (memcmp (string_overrun_cookie,
1905 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1906 GC_STRING_OVERRUN_COOKIE_SIZE))
1907 emacs_abort ();
1908 #endif
1909
1910 /* Non-NULL S means it's alive. Copy its data. */
1911 if (s)
1912 {
1913 /* If TB is full, proceed with the next sblock. */
1914 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1915 if (to_end > tb_end)
1916 {
1917 tb->next_free = to;
1918 tb = tb->next;
1919 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1920 to = &tb->first_data;
1921 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1922 }
1923
1924 /* Copy, and update the string's `data' pointer. */
1925 if (from != to)
1926 {
1927 eassert (tb != b || to < from);
1928 memmove (to, from, nbytes + GC_STRING_EXTRA);
1929 to->string->data = SDATA_DATA (to);
1930 }
1931
1932 /* Advance past the sdata we copied to. */
1933 to = to_end;
1934 }
1935 }
1936 }
1937
1938 /* The rest of the sblocks following TB don't contain live data, so
1939 we can free them. */
1940 for (b = tb->next; b; b = next)
1941 {
1942 next = b->next;
1943 lisp_free (b);
1944 }
1945
1946 tb->next_free = to;
1947 tb->next = NULL;
1948 current_sblock = tb;
1949 }
1950
1951 void
1952 string_overflow (void)
1953 {
1954 error ("Maximum string size exceeded");
1955 }
1956
1957 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1958 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1959 LENGTH must be an integer.
1960 INIT must be an integer that represents a character. */)
1961 (Lisp_Object length, Lisp_Object init)
1962 {
1963 register Lisp_Object val;
1964 register unsigned char *p, *end;
1965 int c;
1966 EMACS_INT nbytes;
1967
1968 CHECK_NATNUM (length);
1969 CHECK_CHARACTER (init);
1970
1971 c = XFASTINT (init);
1972 if (ASCII_CHAR_P (c))
1973 {
1974 nbytes = XINT (length);
1975 val = make_uninit_string (nbytes);
1976 p = SDATA (val);
1977 end = p + SCHARS (val);
1978 while (p != end)
1979 *p++ = c;
1980 }
1981 else
1982 {
1983 unsigned char str[MAX_MULTIBYTE_LENGTH];
1984 int len = CHAR_STRING (c, str);
1985 EMACS_INT string_len = XINT (length);
1986
1987 if (string_len > STRING_BYTES_MAX / len)
1988 string_overflow ();
1989 nbytes = len * string_len;
1990 val = make_uninit_multibyte_string (string_len, nbytes);
1991 p = SDATA (val);
1992 end = p + nbytes;
1993 while (p != end)
1994 {
1995 memcpy (p, str, len);
1996 p += len;
1997 }
1998 }
1999
2000 *p = 0;
2001 return val;
2002 }
2003
2004
2005 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2006 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2007 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2008 (Lisp_Object length, Lisp_Object init)
2009 {
2010 register Lisp_Object val;
2011 struct Lisp_Bool_Vector *p;
2012 ptrdiff_t length_in_chars;
2013 EMACS_INT length_in_elts;
2014 int bits_per_value;
2015 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2016 / word_size);
2017
2018 CHECK_NATNUM (length);
2019
2020 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2021
2022 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2023
2024 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2025
2026 /* No Lisp_Object to trace in there. */
2027 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2028
2029 p = XBOOL_VECTOR (val);
2030 p->size = XFASTINT (length);
2031
2032 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2033 / BOOL_VECTOR_BITS_PER_CHAR);
2034 if (length_in_chars)
2035 {
2036 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2037
2038 /* Clear any extraneous bits in the last byte. */
2039 p->data[length_in_chars - 1]
2040 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2041 }
2042
2043 return val;
2044 }
2045
2046
2047 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2048 of characters from the contents. This string may be unibyte or
2049 multibyte, depending on the contents. */
2050
2051 Lisp_Object
2052 make_string (const char *contents, ptrdiff_t nbytes)
2053 {
2054 register Lisp_Object val;
2055 ptrdiff_t nchars, multibyte_nbytes;
2056
2057 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2058 &nchars, &multibyte_nbytes);
2059 if (nbytes == nchars || nbytes != multibyte_nbytes)
2060 /* CONTENTS contains no multibyte sequences or contains an invalid
2061 multibyte sequence. We must make unibyte string. */
2062 val = make_unibyte_string (contents, nbytes);
2063 else
2064 val = make_multibyte_string (contents, nchars, nbytes);
2065 return val;
2066 }
2067
2068
2069 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2070
2071 Lisp_Object
2072 make_unibyte_string (const char *contents, ptrdiff_t length)
2073 {
2074 register Lisp_Object val;
2075 val = make_uninit_string (length);
2076 memcpy (SDATA (val), contents, length);
2077 return val;
2078 }
2079
2080
2081 /* Make a multibyte string from NCHARS characters occupying NBYTES
2082 bytes at CONTENTS. */
2083
2084 Lisp_Object
2085 make_multibyte_string (const char *contents,
2086 ptrdiff_t nchars, ptrdiff_t nbytes)
2087 {
2088 register Lisp_Object val;
2089 val = make_uninit_multibyte_string (nchars, nbytes);
2090 memcpy (SDATA (val), contents, nbytes);
2091 return val;
2092 }
2093
2094
2095 /* Make a string from NCHARS characters occupying NBYTES bytes at
2096 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2097
2098 Lisp_Object
2099 make_string_from_bytes (const char *contents,
2100 ptrdiff_t nchars, ptrdiff_t nbytes)
2101 {
2102 register Lisp_Object val;
2103 val = make_uninit_multibyte_string (nchars, nbytes);
2104 memcpy (SDATA (val), contents, nbytes);
2105 if (SBYTES (val) == SCHARS (val))
2106 STRING_SET_UNIBYTE (val);
2107 return val;
2108 }
2109
2110
2111 /* Make a string from NCHARS characters occupying NBYTES bytes at
2112 CONTENTS. The argument MULTIBYTE controls whether to label the
2113 string as multibyte. If NCHARS is negative, it counts the number of
2114 characters by itself. */
2115
2116 Lisp_Object
2117 make_specified_string (const char *contents,
2118 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2119 {
2120 Lisp_Object val;
2121
2122 if (nchars < 0)
2123 {
2124 if (multibyte)
2125 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2126 nbytes);
2127 else
2128 nchars = nbytes;
2129 }
2130 val = make_uninit_multibyte_string (nchars, nbytes);
2131 memcpy (SDATA (val), contents, nbytes);
2132 if (!multibyte)
2133 STRING_SET_UNIBYTE (val);
2134 return val;
2135 }
2136
2137
2138 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2139 occupying LENGTH bytes. */
2140
2141 Lisp_Object
2142 make_uninit_string (EMACS_INT length)
2143 {
2144 Lisp_Object val;
2145
2146 if (!length)
2147 return empty_unibyte_string;
2148 val = make_uninit_multibyte_string (length, length);
2149 STRING_SET_UNIBYTE (val);
2150 return val;
2151 }
2152
2153
2154 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2155 which occupy NBYTES bytes. */
2156
2157 Lisp_Object
2158 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2159 {
2160 Lisp_Object string;
2161 struct Lisp_String *s;
2162
2163 if (nchars < 0)
2164 emacs_abort ();
2165 if (!nbytes)
2166 return empty_multibyte_string;
2167
2168 s = allocate_string ();
2169 s->intervals = NULL;
2170 allocate_string_data (s, nchars, nbytes);
2171 XSETSTRING (string, s);
2172 string_chars_consed += nbytes;
2173 return string;
2174 }
2175
2176 /* Print arguments to BUF according to a FORMAT, then return
2177 a Lisp_String initialized with the data from BUF. */
2178
2179 Lisp_Object
2180 make_formatted_string (char *buf, const char *format, ...)
2181 {
2182 va_list ap;
2183 int length;
2184
2185 va_start (ap, format);
2186 length = vsprintf (buf, format, ap);
2187 va_end (ap);
2188 return make_string (buf, length);
2189 }
2190
2191 \f
2192 /***********************************************************************
2193 Float Allocation
2194 ***********************************************************************/
2195
2196 /* We store float cells inside of float_blocks, allocating a new
2197 float_block with malloc whenever necessary. Float cells reclaimed
2198 by GC are put on a free list to be reallocated before allocating
2199 any new float cells from the latest float_block. */
2200
2201 #define FLOAT_BLOCK_SIZE \
2202 (((BLOCK_BYTES - sizeof (struct float_block *) \
2203 /* The compiler might add padding at the end. */ \
2204 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2205 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2206
2207 #define GETMARKBIT(block,n) \
2208 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2209 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2210 & 1)
2211
2212 #define SETMARKBIT(block,n) \
2213 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2214 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2215
2216 #define UNSETMARKBIT(block,n) \
2217 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2218 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2219
2220 #define FLOAT_BLOCK(fptr) \
2221 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2222
2223 #define FLOAT_INDEX(fptr) \
2224 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2225
2226 struct float_block
2227 {
2228 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2229 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2230 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2231 struct float_block *next;
2232 };
2233
2234 #define FLOAT_MARKED_P(fptr) \
2235 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2236
2237 #define FLOAT_MARK(fptr) \
2238 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2239
2240 #define FLOAT_UNMARK(fptr) \
2241 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2242
2243 /* Current float_block. */
2244
2245 static struct float_block *float_block;
2246
2247 /* Index of first unused Lisp_Float in the current float_block. */
2248
2249 static int float_block_index = FLOAT_BLOCK_SIZE;
2250
2251 /* Free-list of Lisp_Floats. */
2252
2253 static struct Lisp_Float *float_free_list;
2254
2255 /* Return a new float object with value FLOAT_VALUE. */
2256
2257 Lisp_Object
2258 make_float (double float_value)
2259 {
2260 register Lisp_Object val;
2261
2262 MALLOC_BLOCK_INPUT;
2263
2264 if (float_free_list)
2265 {
2266 /* We use the data field for chaining the free list
2267 so that we won't use the same field that has the mark bit. */
2268 XSETFLOAT (val, float_free_list);
2269 float_free_list = float_free_list->u.chain;
2270 }
2271 else
2272 {
2273 if (float_block_index == FLOAT_BLOCK_SIZE)
2274 {
2275 struct float_block *new
2276 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2277 new->next = float_block;
2278 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2279 float_block = new;
2280 float_block_index = 0;
2281 total_free_floats += FLOAT_BLOCK_SIZE;
2282 }
2283 XSETFLOAT (val, &float_block->floats[float_block_index]);
2284 float_block_index++;
2285 }
2286
2287 MALLOC_UNBLOCK_INPUT;
2288
2289 XFLOAT_INIT (val, float_value);
2290 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2291 consing_since_gc += sizeof (struct Lisp_Float);
2292 floats_consed++;
2293 total_free_floats--;
2294 return val;
2295 }
2296
2297
2298 \f
2299 /***********************************************************************
2300 Cons Allocation
2301 ***********************************************************************/
2302
2303 /* We store cons cells inside of cons_blocks, allocating a new
2304 cons_block with malloc whenever necessary. Cons cells reclaimed by
2305 GC are put on a free list to be reallocated before allocating
2306 any new cons cells from the latest cons_block. */
2307
2308 #define CONS_BLOCK_SIZE \
2309 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2310 /* The compiler might add padding at the end. */ \
2311 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2312 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2313
2314 #define CONS_BLOCK(fptr) \
2315 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2316
2317 #define CONS_INDEX(fptr) \
2318 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2319
2320 struct cons_block
2321 {
2322 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2323 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2324 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2325 struct cons_block *next;
2326 };
2327
2328 #define CONS_MARKED_P(fptr) \
2329 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2330
2331 #define CONS_MARK(fptr) \
2332 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2333
2334 #define CONS_UNMARK(fptr) \
2335 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2336
2337 /* Current cons_block. */
2338
2339 static struct cons_block *cons_block;
2340
2341 /* Index of first unused Lisp_Cons in the current block. */
2342
2343 static int cons_block_index = CONS_BLOCK_SIZE;
2344
2345 /* Free-list of Lisp_Cons structures. */
2346
2347 static struct Lisp_Cons *cons_free_list;
2348
2349 /* Explicitly free a cons cell by putting it on the free-list. */
2350
2351 void
2352 free_cons (struct Lisp_Cons *ptr)
2353 {
2354 ptr->u.chain = cons_free_list;
2355 #if GC_MARK_STACK
2356 ptr->car = Vdead;
2357 #endif
2358 cons_free_list = ptr;
2359 consing_since_gc -= sizeof *ptr;
2360 total_free_conses++;
2361 }
2362
2363 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2364 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2365 (Lisp_Object car, Lisp_Object cdr)
2366 {
2367 register Lisp_Object val;
2368
2369 MALLOC_BLOCK_INPUT;
2370
2371 if (cons_free_list)
2372 {
2373 /* We use the cdr for chaining the free list
2374 so that we won't use the same field that has the mark bit. */
2375 XSETCONS (val, cons_free_list);
2376 cons_free_list = cons_free_list->u.chain;
2377 }
2378 else
2379 {
2380 if (cons_block_index == CONS_BLOCK_SIZE)
2381 {
2382 struct cons_block *new
2383 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2384 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2385 new->next = cons_block;
2386 cons_block = new;
2387 cons_block_index = 0;
2388 total_free_conses += CONS_BLOCK_SIZE;
2389 }
2390 XSETCONS (val, &cons_block->conses[cons_block_index]);
2391 cons_block_index++;
2392 }
2393
2394 MALLOC_UNBLOCK_INPUT;
2395
2396 XSETCAR (val, car);
2397 XSETCDR (val, cdr);
2398 eassert (!CONS_MARKED_P (XCONS (val)));
2399 consing_since_gc += sizeof (struct Lisp_Cons);
2400 total_free_conses--;
2401 cons_cells_consed++;
2402 return val;
2403 }
2404
2405 #ifdef GC_CHECK_CONS_LIST
2406 /* Get an error now if there's any junk in the cons free list. */
2407 void
2408 check_cons_list (void)
2409 {
2410 struct Lisp_Cons *tail = cons_free_list;
2411
2412 while (tail)
2413 tail = tail->u.chain;
2414 }
2415 #endif
2416
2417 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2418
2419 Lisp_Object
2420 list1 (Lisp_Object arg1)
2421 {
2422 return Fcons (arg1, Qnil);
2423 }
2424
2425 Lisp_Object
2426 list2 (Lisp_Object arg1, Lisp_Object arg2)
2427 {
2428 return Fcons (arg1, Fcons (arg2, Qnil));
2429 }
2430
2431
2432 Lisp_Object
2433 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2434 {
2435 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2436 }
2437
2438
2439 Lisp_Object
2440 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2441 {
2442 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2443 }
2444
2445
2446 Lisp_Object
2447 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2448 {
2449 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2450 Fcons (arg5, Qnil)))));
2451 }
2452
2453 /* Make a list of COUNT Lisp_Objects, where ARG is the
2454 first one. Allocate conses from pure space if TYPE
2455 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2456
2457 Lisp_Object
2458 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2459 {
2460 va_list ap;
2461 ptrdiff_t i;
2462 Lisp_Object val, *objp;
2463
2464 /* Change to SAFE_ALLOCA if you hit this eassert. */
2465 eassert (count <= MAX_ALLOCA / word_size);
2466
2467 objp = alloca (count * word_size);
2468 objp[0] = arg;
2469 va_start (ap, arg);
2470 for (i = 1; i < count; i++)
2471 objp[i] = va_arg (ap, Lisp_Object);
2472 va_end (ap);
2473
2474 for (val = Qnil, i = count - 1; i >= 0; i--)
2475 {
2476 if (type == CONSTYPE_PURE)
2477 val = pure_cons (objp[i], val);
2478 else if (type == CONSTYPE_HEAP)
2479 val = Fcons (objp[i], val);
2480 else
2481 emacs_abort ();
2482 }
2483 return val;
2484 }
2485
2486 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2487 doc: /* Return a newly created list with specified arguments as elements.
2488 Any number of arguments, even zero arguments, are allowed.
2489 usage: (list &rest OBJECTS) */)
2490 (ptrdiff_t nargs, Lisp_Object *args)
2491 {
2492 register Lisp_Object val;
2493 val = Qnil;
2494
2495 while (nargs > 0)
2496 {
2497 nargs--;
2498 val = Fcons (args[nargs], val);
2499 }
2500 return val;
2501 }
2502
2503
2504 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2505 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2506 (register Lisp_Object length, Lisp_Object init)
2507 {
2508 register Lisp_Object val;
2509 register EMACS_INT size;
2510
2511 CHECK_NATNUM (length);
2512 size = XFASTINT (length);
2513
2514 val = Qnil;
2515 while (size > 0)
2516 {
2517 val = Fcons (init, val);
2518 --size;
2519
2520 if (size > 0)
2521 {
2522 val = Fcons (init, val);
2523 --size;
2524
2525 if (size > 0)
2526 {
2527 val = Fcons (init, val);
2528 --size;
2529
2530 if (size > 0)
2531 {
2532 val = Fcons (init, val);
2533 --size;
2534
2535 if (size > 0)
2536 {
2537 val = Fcons (init, val);
2538 --size;
2539 }
2540 }
2541 }
2542 }
2543
2544 QUIT;
2545 }
2546
2547 return val;
2548 }
2549
2550
2551 \f
2552 /***********************************************************************
2553 Vector Allocation
2554 ***********************************************************************/
2555
2556 /* This value is balanced well enough to avoid too much internal overhead
2557 for the most common cases; it's not required to be a power of two, but
2558 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2559
2560 #define VECTOR_BLOCK_SIZE 4096
2561
2562 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2563 enum
2564 {
2565 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2566 };
2567
2568 /* ROUNDUP_SIZE must be a power of 2. */
2569 verify ((roundup_size & (roundup_size - 1)) == 0);
2570
2571 /* Verify assumptions described above. */
2572 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2573 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2574
2575 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2576
2577 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2578
2579 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2580
2581 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2582
2583 /* Size of the minimal vector allocated from block. */
2584
2585 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2586
2587 /* Size of the largest vector allocated from block. */
2588
2589 #define VBLOCK_BYTES_MAX \
2590 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2591
2592 /* We maintain one free list for each possible block-allocated
2593 vector size, and this is the number of free lists we have. */
2594
2595 #define VECTOR_MAX_FREE_LIST_INDEX \
2596 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2597
2598 /* Common shortcut to advance vector pointer over a block data. */
2599
2600 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2601
2602 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2603
2604 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2605
2606 /* Get and set the next field in block-allocated vectorlike objects on
2607 the free list. Doing it this way respects C's aliasing rules.
2608 We could instead make 'contents' a union, but that would mean
2609 changes everywhere that the code uses 'contents'. */
2610 static struct Lisp_Vector *
2611 next_in_free_list (struct Lisp_Vector *v)
2612 {
2613 intptr_t i = XLI (v->contents[0]);
2614 return (struct Lisp_Vector *) i;
2615 }
2616 static void
2617 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2618 {
2619 v->contents[0] = XIL ((intptr_t) next);
2620 }
2621
2622 /* Common shortcut to setup vector on a free list. */
2623
2624 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2625 do { \
2626 (tmp) = ((nbytes - header_size) / word_size); \
2627 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2628 eassert ((nbytes) % roundup_size == 0); \
2629 (tmp) = VINDEX (nbytes); \
2630 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2631 set_next_in_free_list (v, vector_free_lists[tmp]); \
2632 vector_free_lists[tmp] = (v); \
2633 total_free_vector_slots += (nbytes) / word_size; \
2634 } while (0)
2635
2636 /* This internal type is used to maintain the list of large vectors
2637 which are allocated at their own, e.g. outside of vector blocks. */
2638
2639 struct large_vector
2640 {
2641 union {
2642 struct large_vector *vector;
2643 #if USE_LSB_TAG
2644 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2645 unsigned char c[vroundup (sizeof (struct large_vector *))];
2646 #endif
2647 } next;
2648 struct Lisp_Vector v;
2649 };
2650
2651 /* This internal type is used to maintain an underlying storage
2652 for small vectors. */
2653
2654 struct vector_block
2655 {
2656 char data[VECTOR_BLOCK_BYTES];
2657 struct vector_block *next;
2658 };
2659
2660 /* Chain of vector blocks. */
2661
2662 static struct vector_block *vector_blocks;
2663
2664 /* Vector free lists, where NTH item points to a chain of free
2665 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2666
2667 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2668
2669 /* Singly-linked list of large vectors. */
2670
2671 static struct large_vector *large_vectors;
2672
2673 /* The only vector with 0 slots, allocated from pure space. */
2674
2675 Lisp_Object zero_vector;
2676
2677 /* Number of live vectors. */
2678
2679 static EMACS_INT total_vectors;
2680
2681 /* Total size of live and free vectors, in Lisp_Object units. */
2682
2683 static EMACS_INT total_vector_slots, total_free_vector_slots;
2684
2685 /* Get a new vector block. */
2686
2687 static struct vector_block *
2688 allocate_vector_block (void)
2689 {
2690 struct vector_block *block = xmalloc (sizeof *block);
2691
2692 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2693 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2694 MEM_TYPE_VECTOR_BLOCK);
2695 #endif
2696
2697 block->next = vector_blocks;
2698 vector_blocks = block;
2699 return block;
2700 }
2701
2702 /* Called once to initialize vector allocation. */
2703
2704 static void
2705 init_vectors (void)
2706 {
2707 zero_vector = make_pure_vector (0);
2708 }
2709
2710 /* Allocate vector from a vector block. */
2711
2712 static struct Lisp_Vector *
2713 allocate_vector_from_block (size_t nbytes)
2714 {
2715 struct Lisp_Vector *vector;
2716 struct vector_block *block;
2717 size_t index, restbytes;
2718
2719 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2720 eassert (nbytes % roundup_size == 0);
2721
2722 /* First, try to allocate from a free list
2723 containing vectors of the requested size. */
2724 index = VINDEX (nbytes);
2725 if (vector_free_lists[index])
2726 {
2727 vector = vector_free_lists[index];
2728 vector_free_lists[index] = next_in_free_list (vector);
2729 total_free_vector_slots -= nbytes / word_size;
2730 return vector;
2731 }
2732
2733 /* Next, check free lists containing larger vectors. Since
2734 we will split the result, we should have remaining space
2735 large enough to use for one-slot vector at least. */
2736 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2737 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2738 if (vector_free_lists[index])
2739 {
2740 /* This vector is larger than requested. */
2741 vector = vector_free_lists[index];
2742 vector_free_lists[index] = next_in_free_list (vector);
2743 total_free_vector_slots -= nbytes / word_size;
2744
2745 /* Excess bytes are used for the smaller vector,
2746 which should be set on an appropriate free list. */
2747 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2748 eassert (restbytes % roundup_size == 0);
2749 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2750 return vector;
2751 }
2752
2753 /* Finally, need a new vector block. */
2754 block = allocate_vector_block ();
2755
2756 /* New vector will be at the beginning of this block. */
2757 vector = (struct Lisp_Vector *) block->data;
2758
2759 /* If the rest of space from this block is large enough
2760 for one-slot vector at least, set up it on a free list. */
2761 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2762 if (restbytes >= VBLOCK_BYTES_MIN)
2763 {
2764 eassert (restbytes % roundup_size == 0);
2765 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2766 }
2767 return vector;
2768 }
2769
2770 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2771
2772 #define VECTOR_IN_BLOCK(vector, block) \
2773 ((char *) (vector) <= (block)->data \
2774 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2775
2776 /* Return the memory footprint of V in bytes. */
2777
2778 static ptrdiff_t
2779 vector_nbytes (struct Lisp_Vector *v)
2780 {
2781 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2782
2783 if (size & PSEUDOVECTOR_FLAG)
2784 {
2785 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2786 size = (bool_header_size
2787 + (((struct Lisp_Bool_Vector *) v)->size
2788 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2789 / BOOL_VECTOR_BITS_PER_CHAR);
2790 else
2791 size = (header_size
2792 + ((size & PSEUDOVECTOR_SIZE_MASK)
2793 + ((size & PSEUDOVECTOR_REST_MASK)
2794 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2795 }
2796 else
2797 size = header_size + size * word_size;
2798 return vroundup (size);
2799 }
2800
2801 /* Reclaim space used by unmarked vectors. */
2802
2803 static void
2804 sweep_vectors (void)
2805 {
2806 struct vector_block *block, **bprev = &vector_blocks;
2807 struct large_vector *lv, **lvprev = &large_vectors;
2808 struct Lisp_Vector *vector, *next;
2809
2810 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2811 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2812
2813 /* Looking through vector blocks. */
2814
2815 for (block = vector_blocks; block; block = *bprev)
2816 {
2817 bool free_this_block = 0;
2818 ptrdiff_t nbytes;
2819
2820 for (vector = (struct Lisp_Vector *) block->data;
2821 VECTOR_IN_BLOCK (vector, block); vector = next)
2822 {
2823 if (VECTOR_MARKED_P (vector))
2824 {
2825 VECTOR_UNMARK (vector);
2826 total_vectors++;
2827 nbytes = vector_nbytes (vector);
2828 total_vector_slots += nbytes / word_size;
2829 next = ADVANCE (vector, nbytes);
2830 }
2831 else
2832 {
2833 ptrdiff_t total_bytes;
2834
2835 nbytes = vector_nbytes (vector);
2836 total_bytes = nbytes;
2837 next = ADVANCE (vector, nbytes);
2838
2839 /* While NEXT is not marked, try to coalesce with VECTOR,
2840 thus making VECTOR of the largest possible size. */
2841
2842 while (VECTOR_IN_BLOCK (next, block))
2843 {
2844 if (VECTOR_MARKED_P (next))
2845 break;
2846 nbytes = vector_nbytes (next);
2847 total_bytes += nbytes;
2848 next = ADVANCE (next, nbytes);
2849 }
2850
2851 eassert (total_bytes % roundup_size == 0);
2852
2853 if (vector == (struct Lisp_Vector *) block->data
2854 && !VECTOR_IN_BLOCK (next, block))
2855 /* This block should be freed because all of it's
2856 space was coalesced into the only free vector. */
2857 free_this_block = 1;
2858 else
2859 {
2860 int tmp;
2861 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2862 }
2863 }
2864 }
2865
2866 if (free_this_block)
2867 {
2868 *bprev = block->next;
2869 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2870 mem_delete (mem_find (block->data));
2871 #endif
2872 xfree (block);
2873 }
2874 else
2875 bprev = &block->next;
2876 }
2877
2878 /* Sweep large vectors. */
2879
2880 for (lv = large_vectors; lv; lv = *lvprev)
2881 {
2882 vector = &lv->v;
2883 if (VECTOR_MARKED_P (vector))
2884 {
2885 VECTOR_UNMARK (vector);
2886 total_vectors++;
2887 if (vector->header.size & PSEUDOVECTOR_FLAG)
2888 {
2889 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2890
2891 /* All non-bool pseudovectors are small enough to be allocated
2892 from vector blocks. This code should be redesigned if some
2893 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2894 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2895
2896 total_vector_slots
2897 += (bool_header_size
2898 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2899 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2900 }
2901 else
2902 total_vector_slots
2903 += header_size / word_size + vector->header.size;
2904 lvprev = &lv->next.vector;
2905 }
2906 else
2907 {
2908 *lvprev = lv->next.vector;
2909 lisp_free (lv);
2910 }
2911 }
2912 }
2913
2914 /* Value is a pointer to a newly allocated Lisp_Vector structure
2915 with room for LEN Lisp_Objects. */
2916
2917 static struct Lisp_Vector *
2918 allocate_vectorlike (ptrdiff_t len)
2919 {
2920 struct Lisp_Vector *p;
2921
2922 MALLOC_BLOCK_INPUT;
2923
2924 if (len == 0)
2925 p = XVECTOR (zero_vector);
2926 else
2927 {
2928 size_t nbytes = header_size + len * word_size;
2929
2930 #ifdef DOUG_LEA_MALLOC
2931 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2932 because mapped region contents are not preserved in
2933 a dumped Emacs. */
2934 mallopt (M_MMAP_MAX, 0);
2935 #endif
2936
2937 if (nbytes <= VBLOCK_BYTES_MAX)
2938 p = allocate_vector_from_block (vroundup (nbytes));
2939 else
2940 {
2941 struct large_vector *lv
2942 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2943 + len * word_size),
2944 MEM_TYPE_VECTORLIKE);
2945 lv->next.vector = large_vectors;
2946 large_vectors = lv;
2947 p = &lv->v;
2948 }
2949
2950 #ifdef DOUG_LEA_MALLOC
2951 /* Back to a reasonable maximum of mmap'ed areas. */
2952 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2953 #endif
2954
2955 consing_since_gc += nbytes;
2956 vector_cells_consed += len;
2957 }
2958
2959 MALLOC_UNBLOCK_INPUT;
2960
2961 return p;
2962 }
2963
2964
2965 /* Allocate a vector with LEN slots. */
2966
2967 struct Lisp_Vector *
2968 allocate_vector (EMACS_INT len)
2969 {
2970 struct Lisp_Vector *v;
2971 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2972
2973 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2974 memory_full (SIZE_MAX);
2975 v = allocate_vectorlike (len);
2976 v->header.size = len;
2977 return v;
2978 }
2979
2980
2981 /* Allocate other vector-like structures. */
2982
2983 struct Lisp_Vector *
2984 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2985 {
2986 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2987 int i;
2988
2989 /* Catch bogus values. */
2990 eassert (tag <= PVEC_FONT);
2991 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2992 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2993
2994 /* Only the first lisplen slots will be traced normally by the GC. */
2995 for (i = 0; i < lisplen; ++i)
2996 v->contents[i] = Qnil;
2997
2998 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2999 return v;
3000 }
3001
3002 struct buffer *
3003 allocate_buffer (void)
3004 {
3005 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3006
3007 BUFFER_PVEC_INIT (b);
3008 /* Put B on the chain of all buffers including killed ones. */
3009 b->next = all_buffers;
3010 all_buffers = b;
3011 /* Note that the rest fields of B are not initialized. */
3012 return b;
3013 }
3014
3015 struct Lisp_Hash_Table *
3016 allocate_hash_table (void)
3017 {
3018 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3019 }
3020
3021 struct window *
3022 allocate_window (void)
3023 {
3024 struct window *w;
3025
3026 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3027 /* Users assumes that non-Lisp data is zeroed. */
3028 memset (&w->current_matrix, 0,
3029 sizeof (*w) - offsetof (struct window, current_matrix));
3030 return w;
3031 }
3032
3033 struct terminal *
3034 allocate_terminal (void)
3035 {
3036 struct terminal *t;
3037
3038 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3039 /* Users assumes that non-Lisp data is zeroed. */
3040 memset (&t->next_terminal, 0,
3041 sizeof (*t) - offsetof (struct terminal, next_terminal));
3042 return t;
3043 }
3044
3045 struct frame *
3046 allocate_frame (void)
3047 {
3048 struct frame *f;
3049
3050 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3051 /* Users assumes that non-Lisp data is zeroed. */
3052 memset (&f->face_cache, 0,
3053 sizeof (*f) - offsetof (struct frame, face_cache));
3054 return f;
3055 }
3056
3057 struct Lisp_Process *
3058 allocate_process (void)
3059 {
3060 struct Lisp_Process *p;
3061
3062 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3063 /* Users assumes that non-Lisp data is zeroed. */
3064 memset (&p->pid, 0,
3065 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3066 return p;
3067 }
3068
3069 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3070 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3071 See also the function `vector'. */)
3072 (register Lisp_Object length, Lisp_Object init)
3073 {
3074 Lisp_Object vector;
3075 register ptrdiff_t sizei;
3076 register ptrdiff_t i;
3077 register struct Lisp_Vector *p;
3078
3079 CHECK_NATNUM (length);
3080
3081 p = allocate_vector (XFASTINT (length));
3082 sizei = XFASTINT (length);
3083 for (i = 0; i < sizei; i++)
3084 p->contents[i] = init;
3085
3086 XSETVECTOR (vector, p);
3087 return vector;
3088 }
3089
3090
3091 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3092 doc: /* Return a newly created vector with specified arguments as elements.
3093 Any number of arguments, even zero arguments, are allowed.
3094 usage: (vector &rest OBJECTS) */)
3095 (ptrdiff_t nargs, Lisp_Object *args)
3096 {
3097 ptrdiff_t i;
3098 register Lisp_Object val = make_uninit_vector (nargs);
3099 register struct Lisp_Vector *p = XVECTOR (val);
3100
3101 for (i = 0; i < nargs; i++)
3102 p->contents[i] = args[i];
3103 return val;
3104 }
3105
3106 void
3107 make_byte_code (struct Lisp_Vector *v)
3108 {
3109 if (v->header.size > 1 && STRINGP (v->contents[1])
3110 && STRING_MULTIBYTE (v->contents[1]))
3111 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3112 earlier because they produced a raw 8-bit string for byte-code
3113 and now such a byte-code string is loaded as multibyte while
3114 raw 8-bit characters converted to multibyte form. Thus, now we
3115 must convert them back to the original unibyte form. */
3116 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3117 XSETPVECTYPE (v, PVEC_COMPILED);
3118 }
3119
3120 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3121 doc: /* Create a byte-code object with specified arguments as elements.
3122 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3123 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3124 and (optional) INTERACTIVE-SPEC.
3125 The first four arguments are required; at most six have any
3126 significance.
3127 The ARGLIST can be either like the one of `lambda', in which case the arguments
3128 will be dynamically bound before executing the byte code, or it can be an
3129 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3130 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3131 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3132 argument to catch the left-over arguments. If such an integer is used, the
3133 arguments will not be dynamically bound but will be instead pushed on the
3134 stack before executing the byte-code.
3135 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3136 (ptrdiff_t nargs, Lisp_Object *args)
3137 {
3138 ptrdiff_t i;
3139 register Lisp_Object val = make_uninit_vector (nargs);
3140 register struct Lisp_Vector *p = XVECTOR (val);
3141
3142 /* We used to purecopy everything here, if purify-flag was set. This worked
3143 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3144 dangerous, since make-byte-code is used during execution to build
3145 closures, so any closure built during the preload phase would end up
3146 copied into pure space, including its free variables, which is sometimes
3147 just wasteful and other times plainly wrong (e.g. those free vars may want
3148 to be setcar'd). */
3149
3150 for (i = 0; i < nargs; i++)
3151 p->contents[i] = args[i];
3152 make_byte_code (p);
3153 XSETCOMPILED (val, p);
3154 return val;
3155 }
3156
3157
3158 \f
3159 /***********************************************************************
3160 Symbol Allocation
3161 ***********************************************************************/
3162
3163 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3164 of the required alignment if LSB tags are used. */
3165
3166 union aligned_Lisp_Symbol
3167 {
3168 struct Lisp_Symbol s;
3169 #if USE_LSB_TAG
3170 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3171 & -GCALIGNMENT];
3172 #endif
3173 };
3174
3175 /* Each symbol_block is just under 1020 bytes long, since malloc
3176 really allocates in units of powers of two and uses 4 bytes for its
3177 own overhead. */
3178
3179 #define SYMBOL_BLOCK_SIZE \
3180 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3181
3182 struct symbol_block
3183 {
3184 /* Place `symbols' first, to preserve alignment. */
3185 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3186 struct symbol_block *next;
3187 };
3188
3189 /* Current symbol block and index of first unused Lisp_Symbol
3190 structure in it. */
3191
3192 static struct symbol_block *symbol_block;
3193 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3194
3195 /* List of free symbols. */
3196
3197 static struct Lisp_Symbol *symbol_free_list;
3198
3199 static void
3200 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3201 {
3202 XSYMBOL (sym)->name = name;
3203 }
3204
3205 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3206 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3207 Its value is void, and its function definition and property list are nil. */)
3208 (Lisp_Object name)
3209 {
3210 register Lisp_Object val;
3211 register struct Lisp_Symbol *p;
3212
3213 CHECK_STRING (name);
3214
3215 MALLOC_BLOCK_INPUT;
3216
3217 if (symbol_free_list)
3218 {
3219 XSETSYMBOL (val, symbol_free_list);
3220 symbol_free_list = symbol_free_list->next;
3221 }
3222 else
3223 {
3224 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3225 {
3226 struct symbol_block *new
3227 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3228 new->next = symbol_block;
3229 symbol_block = new;
3230 symbol_block_index = 0;
3231 total_free_symbols += SYMBOL_BLOCK_SIZE;
3232 }
3233 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3234 symbol_block_index++;
3235 }
3236
3237 MALLOC_UNBLOCK_INPUT;
3238
3239 p = XSYMBOL (val);
3240 set_symbol_name (val, name);
3241 set_symbol_plist (val, Qnil);
3242 p->redirect = SYMBOL_PLAINVAL;
3243 SET_SYMBOL_VAL (p, Qunbound);
3244 set_symbol_function (val, Qnil);
3245 set_symbol_next (val, NULL);
3246 p->gcmarkbit = 0;
3247 p->interned = SYMBOL_UNINTERNED;
3248 p->constant = 0;
3249 p->declared_special = 0;
3250 consing_since_gc += sizeof (struct Lisp_Symbol);
3251 symbols_consed++;
3252 total_free_symbols--;
3253 return val;
3254 }
3255
3256
3257 \f
3258 /***********************************************************************
3259 Marker (Misc) Allocation
3260 ***********************************************************************/
3261
3262 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3263 the required alignment when LSB tags are used. */
3264
3265 union aligned_Lisp_Misc
3266 {
3267 union Lisp_Misc m;
3268 #if USE_LSB_TAG
3269 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3270 & -GCALIGNMENT];
3271 #endif
3272 };
3273
3274 /* Allocation of markers and other objects that share that structure.
3275 Works like allocation of conses. */
3276
3277 #define MARKER_BLOCK_SIZE \
3278 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3279
3280 struct marker_block
3281 {
3282 /* Place `markers' first, to preserve alignment. */
3283 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3284 struct marker_block *next;
3285 };
3286
3287 static struct marker_block *marker_block;
3288 static int marker_block_index = MARKER_BLOCK_SIZE;
3289
3290 static union Lisp_Misc *marker_free_list;
3291
3292 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3293
3294 static Lisp_Object
3295 allocate_misc (enum Lisp_Misc_Type type)
3296 {
3297 Lisp_Object val;
3298
3299 MALLOC_BLOCK_INPUT;
3300
3301 if (marker_free_list)
3302 {
3303 XSETMISC (val, marker_free_list);
3304 marker_free_list = marker_free_list->u_free.chain;
3305 }
3306 else
3307 {
3308 if (marker_block_index == MARKER_BLOCK_SIZE)
3309 {
3310 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3311 new->next = marker_block;
3312 marker_block = new;
3313 marker_block_index = 0;
3314 total_free_markers += MARKER_BLOCK_SIZE;
3315 }
3316 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3317 marker_block_index++;
3318 }
3319
3320 MALLOC_UNBLOCK_INPUT;
3321
3322 --total_free_markers;
3323 consing_since_gc += sizeof (union Lisp_Misc);
3324 misc_objects_consed++;
3325 XMISCANY (val)->type = type;
3326 XMISCANY (val)->gcmarkbit = 0;
3327 return val;
3328 }
3329
3330 /* Free a Lisp_Misc object. */
3331
3332 void
3333 free_misc (Lisp_Object misc)
3334 {
3335 XMISCANY (misc)->type = Lisp_Misc_Free;
3336 XMISC (misc)->u_free.chain = marker_free_list;
3337 marker_free_list = XMISC (misc);
3338 consing_since_gc -= sizeof (union Lisp_Misc);
3339 total_free_markers++;
3340 }
3341
3342 /* Verify properties of Lisp_Save_Value's representation
3343 that are assumed here and elsewhere. */
3344
3345 verify (SAVE_UNUSED == 0);
3346 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3347 >> SAVE_SLOT_BITS)
3348 == 0);
3349
3350 /* Return Lisp_Save_Value objects for the various combinations
3351 that callers need. */
3352
3353 Lisp_Object
3354 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3355 {
3356 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3357 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3358 p->save_type = SAVE_TYPE_INT_INT_INT;
3359 p->data[0].integer = a;
3360 p->data[1].integer = b;
3361 p->data[2].integer = c;
3362 return val;
3363 }
3364
3365 Lisp_Object
3366 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3367 Lisp_Object d)
3368 {
3369 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3370 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3371 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3372 p->data[0].object = a;
3373 p->data[1].object = b;
3374 p->data[2].object = c;
3375 p->data[3].object = d;
3376 return val;
3377 }
3378
3379 #if defined HAVE_NS || defined HAVE_NTGUI
3380 Lisp_Object
3381 make_save_ptr (void *a)
3382 {
3383 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3384 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3385 p->save_type = SAVE_POINTER;
3386 p->data[0].pointer = a;
3387 return val;
3388 }
3389 #endif
3390
3391 Lisp_Object
3392 make_save_ptr_int (void *a, ptrdiff_t b)
3393 {
3394 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3395 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3396 p->save_type = SAVE_TYPE_PTR_INT;
3397 p->data[0].pointer = a;
3398 p->data[1].integer = b;
3399 return val;
3400 }
3401
3402 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3403 Lisp_Object
3404 make_save_ptr_ptr (void *a, void *b)
3405 {
3406 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3407 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3408 p->save_type = SAVE_TYPE_PTR_PTR;
3409 p->data[0].pointer = a;
3410 p->data[1].pointer = b;
3411 return val;
3412 }
3413 #endif
3414
3415 Lisp_Object
3416 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3417 {
3418 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3419 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3420 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3421 p->data[0].funcpointer = a;
3422 p->data[1].pointer = b;
3423 p->data[2].object = c;
3424 return val;
3425 }
3426
3427 /* Return a Lisp_Save_Value object that represents an array A
3428 of N Lisp objects. */
3429
3430 Lisp_Object
3431 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3432 {
3433 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3434 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3435 p->save_type = SAVE_TYPE_MEMORY;
3436 p->data[0].pointer = a;
3437 p->data[1].integer = n;
3438 return val;
3439 }
3440
3441 /* Free a Lisp_Save_Value object. Do not use this function
3442 if SAVE contains pointer other than returned by xmalloc. */
3443
3444 void
3445 free_save_value (Lisp_Object save)
3446 {
3447 xfree (XSAVE_POINTER (save, 0));
3448 free_misc (save);
3449 }
3450
3451 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3452
3453 Lisp_Object
3454 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3455 {
3456 register Lisp_Object overlay;
3457
3458 overlay = allocate_misc (Lisp_Misc_Overlay);
3459 OVERLAY_START (overlay) = start;
3460 OVERLAY_END (overlay) = end;
3461 set_overlay_plist (overlay, plist);
3462 XOVERLAY (overlay)->next = NULL;
3463 return overlay;
3464 }
3465
3466 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3467 doc: /* Return a newly allocated marker which does not point at any place. */)
3468 (void)
3469 {
3470 register Lisp_Object val;
3471 register struct Lisp_Marker *p;
3472
3473 val = allocate_misc (Lisp_Misc_Marker);
3474 p = XMARKER (val);
3475 p->buffer = 0;
3476 p->bytepos = 0;
3477 p->charpos = 0;
3478 p->next = NULL;
3479 p->insertion_type = 0;
3480 p->need_adjustment = 0;
3481 return val;
3482 }
3483
3484 /* Return a newly allocated marker which points into BUF
3485 at character position CHARPOS and byte position BYTEPOS. */
3486
3487 Lisp_Object
3488 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3489 {
3490 Lisp_Object obj;
3491 struct Lisp_Marker *m;
3492
3493 /* No dead buffers here. */
3494 eassert (BUFFER_LIVE_P (buf));
3495
3496 /* Every character is at least one byte. */
3497 eassert (charpos <= bytepos);
3498
3499 obj = allocate_misc (Lisp_Misc_Marker);
3500 m = XMARKER (obj);
3501 m->buffer = buf;
3502 m->charpos = charpos;
3503 m->bytepos = bytepos;
3504 m->insertion_type = 0;
3505 m->need_adjustment = 0;
3506 m->next = BUF_MARKERS (buf);
3507 BUF_MARKERS (buf) = m;
3508 return obj;
3509 }
3510
3511 /* Put MARKER back on the free list after using it temporarily. */
3512
3513 void
3514 free_marker (Lisp_Object marker)
3515 {
3516 unchain_marker (XMARKER (marker));
3517 free_misc (marker);
3518 }
3519
3520 \f
3521 /* Return a newly created vector or string with specified arguments as
3522 elements. If all the arguments are characters that can fit
3523 in a string of events, make a string; otherwise, make a vector.
3524
3525 Any number of arguments, even zero arguments, are allowed. */
3526
3527 Lisp_Object
3528 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3529 {
3530 ptrdiff_t i;
3531
3532 for (i = 0; i < nargs; i++)
3533 /* The things that fit in a string
3534 are characters that are in 0...127,
3535 after discarding the meta bit and all the bits above it. */
3536 if (!INTEGERP (args[i])
3537 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3538 return Fvector (nargs, args);
3539
3540 /* Since the loop exited, we know that all the things in it are
3541 characters, so we can make a string. */
3542 {
3543 Lisp_Object result;
3544
3545 result = Fmake_string (make_number (nargs), make_number (0));
3546 for (i = 0; i < nargs; i++)
3547 {
3548 SSET (result, i, XINT (args[i]));
3549 /* Move the meta bit to the right place for a string char. */
3550 if (XINT (args[i]) & CHAR_META)
3551 SSET (result, i, SREF (result, i) | 0x80);
3552 }
3553
3554 return result;
3555 }
3556 }
3557
3558
3559 \f
3560 /************************************************************************
3561 Memory Full Handling
3562 ************************************************************************/
3563
3564
3565 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3566 there may have been size_t overflow so that malloc was never
3567 called, or perhaps malloc was invoked successfully but the
3568 resulting pointer had problems fitting into a tagged EMACS_INT. In
3569 either case this counts as memory being full even though malloc did
3570 not fail. */
3571
3572 void
3573 memory_full (size_t nbytes)
3574 {
3575 /* Do not go into hysterics merely because a large request failed. */
3576 bool enough_free_memory = 0;
3577 if (SPARE_MEMORY < nbytes)
3578 {
3579 void *p;
3580
3581 MALLOC_BLOCK_INPUT;
3582 p = malloc (SPARE_MEMORY);
3583 if (p)
3584 {
3585 free (p);
3586 enough_free_memory = 1;
3587 }
3588 MALLOC_UNBLOCK_INPUT;
3589 }
3590
3591 if (! enough_free_memory)
3592 {
3593 int i;
3594
3595 Vmemory_full = Qt;
3596
3597 memory_full_cons_threshold = sizeof (struct cons_block);
3598
3599 /* The first time we get here, free the spare memory. */
3600 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3601 if (spare_memory[i])
3602 {
3603 if (i == 0)
3604 free (spare_memory[i]);
3605 else if (i >= 1 && i <= 4)
3606 lisp_align_free (spare_memory[i]);
3607 else
3608 lisp_free (spare_memory[i]);
3609 spare_memory[i] = 0;
3610 }
3611 }
3612
3613 /* This used to call error, but if we've run out of memory, we could
3614 get infinite recursion trying to build the string. */
3615 xsignal (Qnil, Vmemory_signal_data);
3616 }
3617
3618 /* If we released our reserve (due to running out of memory),
3619 and we have a fair amount free once again,
3620 try to set aside another reserve in case we run out once more.
3621
3622 This is called when a relocatable block is freed in ralloc.c,
3623 and also directly from this file, in case we're not using ralloc.c. */
3624
3625 void
3626 refill_memory_reserve (void)
3627 {
3628 #ifndef SYSTEM_MALLOC
3629 if (spare_memory[0] == 0)
3630 spare_memory[0] = malloc (SPARE_MEMORY);
3631 if (spare_memory[1] == 0)
3632 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3633 MEM_TYPE_SPARE);
3634 if (spare_memory[2] == 0)
3635 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3636 MEM_TYPE_SPARE);
3637 if (spare_memory[3] == 0)
3638 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3639 MEM_TYPE_SPARE);
3640 if (spare_memory[4] == 0)
3641 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3642 MEM_TYPE_SPARE);
3643 if (spare_memory[5] == 0)
3644 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3645 MEM_TYPE_SPARE);
3646 if (spare_memory[6] == 0)
3647 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3648 MEM_TYPE_SPARE);
3649 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3650 Vmemory_full = Qnil;
3651 #endif
3652 }
3653 \f
3654 /************************************************************************
3655 C Stack Marking
3656 ************************************************************************/
3657
3658 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3659
3660 /* Conservative C stack marking requires a method to identify possibly
3661 live Lisp objects given a pointer value. We do this by keeping
3662 track of blocks of Lisp data that are allocated in a red-black tree
3663 (see also the comment of mem_node which is the type of nodes in
3664 that tree). Function lisp_malloc adds information for an allocated
3665 block to the red-black tree with calls to mem_insert, and function
3666 lisp_free removes it with mem_delete. Functions live_string_p etc
3667 call mem_find to lookup information about a given pointer in the
3668 tree, and use that to determine if the pointer points to a Lisp
3669 object or not. */
3670
3671 /* Initialize this part of alloc.c. */
3672
3673 static void
3674 mem_init (void)
3675 {
3676 mem_z.left = mem_z.right = MEM_NIL;
3677 mem_z.parent = NULL;
3678 mem_z.color = MEM_BLACK;
3679 mem_z.start = mem_z.end = NULL;
3680 mem_root = MEM_NIL;
3681 }
3682
3683
3684 /* Value is a pointer to the mem_node containing START. Value is
3685 MEM_NIL if there is no node in the tree containing START. */
3686
3687 static struct mem_node *
3688 mem_find (void *start)
3689 {
3690 struct mem_node *p;
3691
3692 if (start < min_heap_address || start > max_heap_address)
3693 return MEM_NIL;
3694
3695 /* Make the search always successful to speed up the loop below. */
3696 mem_z.start = start;
3697 mem_z.end = (char *) start + 1;
3698
3699 p = mem_root;
3700 while (start < p->start || start >= p->end)
3701 p = start < p->start ? p->left : p->right;
3702 return p;
3703 }
3704
3705
3706 /* Insert a new node into the tree for a block of memory with start
3707 address START, end address END, and type TYPE. Value is a
3708 pointer to the node that was inserted. */
3709
3710 static struct mem_node *
3711 mem_insert (void *start, void *end, enum mem_type type)
3712 {
3713 struct mem_node *c, *parent, *x;
3714
3715 if (min_heap_address == NULL || start < min_heap_address)
3716 min_heap_address = start;
3717 if (max_heap_address == NULL || end > max_heap_address)
3718 max_heap_address = end;
3719
3720 /* See where in the tree a node for START belongs. In this
3721 particular application, it shouldn't happen that a node is already
3722 present. For debugging purposes, let's check that. */
3723 c = mem_root;
3724 parent = NULL;
3725
3726 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3727
3728 while (c != MEM_NIL)
3729 {
3730 if (start >= c->start && start < c->end)
3731 emacs_abort ();
3732 parent = c;
3733 c = start < c->start ? c->left : c->right;
3734 }
3735
3736 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3737
3738 while (c != MEM_NIL)
3739 {
3740 parent = c;
3741 c = start < c->start ? c->left : c->right;
3742 }
3743
3744 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3745
3746 /* Create a new node. */
3747 #ifdef GC_MALLOC_CHECK
3748 x = malloc (sizeof *x);
3749 if (x == NULL)
3750 emacs_abort ();
3751 #else
3752 x = xmalloc (sizeof *x);
3753 #endif
3754 x->start = start;
3755 x->end = end;
3756 x->type = type;
3757 x->parent = parent;
3758 x->left = x->right = MEM_NIL;
3759 x->color = MEM_RED;
3760
3761 /* Insert it as child of PARENT or install it as root. */
3762 if (parent)
3763 {
3764 if (start < parent->start)
3765 parent->left = x;
3766 else
3767 parent->right = x;
3768 }
3769 else
3770 mem_root = x;
3771
3772 /* Re-establish red-black tree properties. */
3773 mem_insert_fixup (x);
3774
3775 return x;
3776 }
3777
3778
3779 /* Re-establish the red-black properties of the tree, and thereby
3780 balance the tree, after node X has been inserted; X is always red. */
3781
3782 static void
3783 mem_insert_fixup (struct mem_node *x)
3784 {
3785 while (x != mem_root && x->parent->color == MEM_RED)
3786 {
3787 /* X is red and its parent is red. This is a violation of
3788 red-black tree property #3. */
3789
3790 if (x->parent == x->parent->parent->left)
3791 {
3792 /* We're on the left side of our grandparent, and Y is our
3793 "uncle". */
3794 struct mem_node *y = x->parent->parent->right;
3795
3796 if (y->color == MEM_RED)
3797 {
3798 /* Uncle and parent are red but should be black because
3799 X is red. Change the colors accordingly and proceed
3800 with the grandparent. */
3801 x->parent->color = MEM_BLACK;
3802 y->color = MEM_BLACK;
3803 x->parent->parent->color = MEM_RED;
3804 x = x->parent->parent;
3805 }
3806 else
3807 {
3808 /* Parent and uncle have different colors; parent is
3809 red, uncle is black. */
3810 if (x == x->parent->right)
3811 {
3812 x = x->parent;
3813 mem_rotate_left (x);
3814 }
3815
3816 x->parent->color = MEM_BLACK;
3817 x->parent->parent->color = MEM_RED;
3818 mem_rotate_right (x->parent->parent);
3819 }
3820 }
3821 else
3822 {
3823 /* This is the symmetrical case of above. */
3824 struct mem_node *y = x->parent->parent->left;
3825
3826 if (y->color == MEM_RED)
3827 {
3828 x->parent->color = MEM_BLACK;
3829 y->color = MEM_BLACK;
3830 x->parent->parent->color = MEM_RED;
3831 x = x->parent->parent;
3832 }
3833 else
3834 {
3835 if (x == x->parent->left)
3836 {
3837 x = x->parent;
3838 mem_rotate_right (x);
3839 }
3840
3841 x->parent->color = MEM_BLACK;
3842 x->parent->parent->color = MEM_RED;
3843 mem_rotate_left (x->parent->parent);
3844 }
3845 }
3846 }
3847
3848 /* The root may have been changed to red due to the algorithm. Set
3849 it to black so that property #5 is satisfied. */
3850 mem_root->color = MEM_BLACK;
3851 }
3852
3853
3854 /* (x) (y)
3855 / \ / \
3856 a (y) ===> (x) c
3857 / \ / \
3858 b c a b */
3859
3860 static void
3861 mem_rotate_left (struct mem_node *x)
3862 {
3863 struct mem_node *y;
3864
3865 /* Turn y's left sub-tree into x's right sub-tree. */
3866 y = x->right;
3867 x->right = y->left;
3868 if (y->left != MEM_NIL)
3869 y->left->parent = x;
3870
3871 /* Y's parent was x's parent. */
3872 if (y != MEM_NIL)
3873 y->parent = x->parent;
3874
3875 /* Get the parent to point to y instead of x. */
3876 if (x->parent)
3877 {
3878 if (x == x->parent->left)
3879 x->parent->left = y;
3880 else
3881 x->parent->right = y;
3882 }
3883 else
3884 mem_root = y;
3885
3886 /* Put x on y's left. */
3887 y->left = x;
3888 if (x != MEM_NIL)
3889 x->parent = y;
3890 }
3891
3892
3893 /* (x) (Y)
3894 / \ / \
3895 (y) c ===> a (x)
3896 / \ / \
3897 a b b c */
3898
3899 static void
3900 mem_rotate_right (struct mem_node *x)
3901 {
3902 struct mem_node *y = x->left;
3903
3904 x->left = y->right;
3905 if (y->right != MEM_NIL)
3906 y->right->parent = x;
3907
3908 if (y != MEM_NIL)
3909 y->parent = x->parent;
3910 if (x->parent)
3911 {
3912 if (x == x->parent->right)
3913 x->parent->right = y;
3914 else
3915 x->parent->left = y;
3916 }
3917 else
3918 mem_root = y;
3919
3920 y->right = x;
3921 if (x != MEM_NIL)
3922 x->parent = y;
3923 }
3924
3925
3926 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3927
3928 static void
3929 mem_delete (struct mem_node *z)
3930 {
3931 struct mem_node *x, *y;
3932
3933 if (!z || z == MEM_NIL)
3934 return;
3935
3936 if (z->left == MEM_NIL || z->right == MEM_NIL)
3937 y = z;
3938 else
3939 {
3940 y = z->right;
3941 while (y->left != MEM_NIL)
3942 y = y->left;
3943 }
3944
3945 if (y->left != MEM_NIL)
3946 x = y->left;
3947 else
3948 x = y->right;
3949
3950 x->parent = y->parent;
3951 if (y->parent)
3952 {
3953 if (y == y->parent->left)
3954 y->parent->left = x;
3955 else
3956 y->parent->right = x;
3957 }
3958 else
3959 mem_root = x;
3960
3961 if (y != z)
3962 {
3963 z->start = y->start;
3964 z->end = y->end;
3965 z->type = y->type;
3966 }
3967
3968 if (y->color == MEM_BLACK)
3969 mem_delete_fixup (x);
3970
3971 #ifdef GC_MALLOC_CHECK
3972 free (y);
3973 #else
3974 xfree (y);
3975 #endif
3976 }
3977
3978
3979 /* Re-establish the red-black properties of the tree, after a
3980 deletion. */
3981
3982 static void
3983 mem_delete_fixup (struct mem_node *x)
3984 {
3985 while (x != mem_root && x->color == MEM_BLACK)
3986 {
3987 if (x == x->parent->left)
3988 {
3989 struct mem_node *w = x->parent->right;
3990
3991 if (w->color == MEM_RED)
3992 {
3993 w->color = MEM_BLACK;
3994 x->parent->color = MEM_RED;
3995 mem_rotate_left (x->parent);
3996 w = x->parent->right;
3997 }
3998
3999 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4000 {
4001 w->color = MEM_RED;
4002 x = x->parent;
4003 }
4004 else
4005 {
4006 if (w->right->color == MEM_BLACK)
4007 {
4008 w->left->color = MEM_BLACK;
4009 w->color = MEM_RED;
4010 mem_rotate_right (w);
4011 w = x->parent->right;
4012 }
4013 w->color = x->parent->color;
4014 x->parent->color = MEM_BLACK;
4015 w->right->color = MEM_BLACK;
4016 mem_rotate_left (x->parent);
4017 x = mem_root;
4018 }
4019 }
4020 else
4021 {
4022 struct mem_node *w = x->parent->left;
4023
4024 if (w->color == MEM_RED)
4025 {
4026 w->color = MEM_BLACK;
4027 x->parent->color = MEM_RED;
4028 mem_rotate_right (x->parent);
4029 w = x->parent->left;
4030 }
4031
4032 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4033 {
4034 w->color = MEM_RED;
4035 x = x->parent;
4036 }
4037 else
4038 {
4039 if (w->left->color == MEM_BLACK)
4040 {
4041 w->right->color = MEM_BLACK;
4042 w->color = MEM_RED;
4043 mem_rotate_left (w);
4044 w = x->parent->left;
4045 }
4046
4047 w->color = x->parent->color;
4048 x->parent->color = MEM_BLACK;
4049 w->left->color = MEM_BLACK;
4050 mem_rotate_right (x->parent);
4051 x = mem_root;
4052 }
4053 }
4054 }
4055
4056 x->color = MEM_BLACK;
4057 }
4058
4059
4060 /* Value is non-zero if P is a pointer to a live Lisp string on
4061 the heap. M is a pointer to the mem_block for P. */
4062
4063 static bool
4064 live_string_p (struct mem_node *m, void *p)
4065 {
4066 if (m->type == MEM_TYPE_STRING)
4067 {
4068 struct string_block *b = m->start;
4069 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4070
4071 /* P must point to the start of a Lisp_String structure, and it
4072 must not be on the free-list. */
4073 return (offset >= 0
4074 && offset % sizeof b->strings[0] == 0
4075 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4076 && ((struct Lisp_String *) p)->data != NULL);
4077 }
4078 else
4079 return 0;
4080 }
4081
4082
4083 /* Value is non-zero if P is a pointer to a live Lisp cons on
4084 the heap. M is a pointer to the mem_block for P. */
4085
4086 static bool
4087 live_cons_p (struct mem_node *m, void *p)
4088 {
4089 if (m->type == MEM_TYPE_CONS)
4090 {
4091 struct cons_block *b = m->start;
4092 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4093
4094 /* P must point to the start of a Lisp_Cons, not be
4095 one of the unused cells in the current cons block,
4096 and not be on the free-list. */
4097 return (offset >= 0
4098 && offset % sizeof b->conses[0] == 0
4099 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4100 && (b != cons_block
4101 || offset / sizeof b->conses[0] < cons_block_index)
4102 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4103 }
4104 else
4105 return 0;
4106 }
4107
4108
4109 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4110 the heap. M is a pointer to the mem_block for P. */
4111
4112 static bool
4113 live_symbol_p (struct mem_node *m, void *p)
4114 {
4115 if (m->type == MEM_TYPE_SYMBOL)
4116 {
4117 struct symbol_block *b = m->start;
4118 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4119
4120 /* P must point to the start of a Lisp_Symbol, not be
4121 one of the unused cells in the current symbol block,
4122 and not be on the free-list. */
4123 return (offset >= 0
4124 && offset % sizeof b->symbols[0] == 0
4125 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4126 && (b != symbol_block
4127 || offset / sizeof b->symbols[0] < symbol_block_index)
4128 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4129 }
4130 else
4131 return 0;
4132 }
4133
4134
4135 /* Value is non-zero if P is a pointer to a live Lisp float on
4136 the heap. M is a pointer to the mem_block for P. */
4137
4138 static bool
4139 live_float_p (struct mem_node *m, void *p)
4140 {
4141 if (m->type == MEM_TYPE_FLOAT)
4142 {
4143 struct float_block *b = m->start;
4144 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4145
4146 /* P must point to the start of a Lisp_Float and not be
4147 one of the unused cells in the current float block. */
4148 return (offset >= 0
4149 && offset % sizeof b->floats[0] == 0
4150 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4151 && (b != float_block
4152 || offset / sizeof b->floats[0] < float_block_index));
4153 }
4154 else
4155 return 0;
4156 }
4157
4158
4159 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4160 the heap. M is a pointer to the mem_block for P. */
4161
4162 static bool
4163 live_misc_p (struct mem_node *m, void *p)
4164 {
4165 if (m->type == MEM_TYPE_MISC)
4166 {
4167 struct marker_block *b = m->start;
4168 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4169
4170 /* P must point to the start of a Lisp_Misc, not be
4171 one of the unused cells in the current misc block,
4172 and not be on the free-list. */
4173 return (offset >= 0
4174 && offset % sizeof b->markers[0] == 0
4175 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4176 && (b != marker_block
4177 || offset / sizeof b->markers[0] < marker_block_index)
4178 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4179 }
4180 else
4181 return 0;
4182 }
4183
4184
4185 /* Value is non-zero if P is a pointer to a live vector-like object.
4186 M is a pointer to the mem_block for P. */
4187
4188 static bool
4189 live_vector_p (struct mem_node *m, void *p)
4190 {
4191 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4192 {
4193 /* This memory node corresponds to a vector block. */
4194 struct vector_block *block = m->start;
4195 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4196
4197 /* P is in the block's allocation range. Scan the block
4198 up to P and see whether P points to the start of some
4199 vector which is not on a free list. FIXME: check whether
4200 some allocation patterns (probably a lot of short vectors)
4201 may cause a substantial overhead of this loop. */
4202 while (VECTOR_IN_BLOCK (vector, block)
4203 && vector <= (struct Lisp_Vector *) p)
4204 {
4205 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4206 return 1;
4207 else
4208 vector = ADVANCE (vector, vector_nbytes (vector));
4209 }
4210 }
4211 else if (m->type == MEM_TYPE_VECTORLIKE
4212 && (char *) p == ((char *) m->start
4213 + offsetof (struct large_vector, v)))
4214 /* This memory node corresponds to a large vector. */
4215 return 1;
4216 return 0;
4217 }
4218
4219
4220 /* Value is non-zero if P is a pointer to a live buffer. M is a
4221 pointer to the mem_block for P. */
4222
4223 static bool
4224 live_buffer_p (struct mem_node *m, void *p)
4225 {
4226 /* P must point to the start of the block, and the buffer
4227 must not have been killed. */
4228 return (m->type == MEM_TYPE_BUFFER
4229 && p == m->start
4230 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4231 }
4232
4233 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4234
4235 #if GC_MARK_STACK
4236
4237 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4238
4239 /* Currently not used, but may be called from gdb. */
4240
4241 void dump_zombies (void) EXTERNALLY_VISIBLE;
4242
4243 /* Array of objects that are kept alive because the C stack contains
4244 a pattern that looks like a reference to them . */
4245
4246 #define MAX_ZOMBIES 10
4247 static Lisp_Object zombies[MAX_ZOMBIES];
4248
4249 /* Number of zombie objects. */
4250
4251 static EMACS_INT nzombies;
4252
4253 /* Number of garbage collections. */
4254
4255 static EMACS_INT ngcs;
4256
4257 /* Average percentage of zombies per collection. */
4258
4259 static double avg_zombies;
4260
4261 /* Max. number of live and zombie objects. */
4262
4263 static EMACS_INT max_live, max_zombies;
4264
4265 /* Average number of live objects per GC. */
4266
4267 static double avg_live;
4268
4269 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4270 doc: /* Show information about live and zombie objects. */)
4271 (void)
4272 {
4273 Lisp_Object args[8], zombie_list = Qnil;
4274 EMACS_INT i;
4275 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4276 zombie_list = Fcons (zombies[i], zombie_list);
4277 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4278 args[1] = make_number (ngcs);
4279 args[2] = make_float (avg_live);
4280 args[3] = make_float (avg_zombies);
4281 args[4] = make_float (avg_zombies / avg_live / 100);
4282 args[5] = make_number (max_live);
4283 args[6] = make_number (max_zombies);
4284 args[7] = zombie_list;
4285 return Fmessage (8, args);
4286 }
4287
4288 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4289
4290
4291 /* Mark OBJ if we can prove it's a Lisp_Object. */
4292
4293 static void
4294 mark_maybe_object (Lisp_Object obj)
4295 {
4296 void *po;
4297 struct mem_node *m;
4298
4299 if (INTEGERP (obj))
4300 return;
4301
4302 po = (void *) XPNTR (obj);
4303 m = mem_find (po);
4304
4305 if (m != MEM_NIL)
4306 {
4307 bool mark_p = 0;
4308
4309 switch (XTYPE (obj))
4310 {
4311 case Lisp_String:
4312 mark_p = (live_string_p (m, po)
4313 && !STRING_MARKED_P ((struct Lisp_String *) po));
4314 break;
4315
4316 case Lisp_Cons:
4317 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4318 break;
4319
4320 case Lisp_Symbol:
4321 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4322 break;
4323
4324 case Lisp_Float:
4325 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4326 break;
4327
4328 case Lisp_Vectorlike:
4329 /* Note: can't check BUFFERP before we know it's a
4330 buffer because checking that dereferences the pointer
4331 PO which might point anywhere. */
4332 if (live_vector_p (m, po))
4333 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4334 else if (live_buffer_p (m, po))
4335 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4336 break;
4337
4338 case Lisp_Misc:
4339 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4340 break;
4341
4342 default:
4343 break;
4344 }
4345
4346 if (mark_p)
4347 {
4348 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4349 if (nzombies < MAX_ZOMBIES)
4350 zombies[nzombies] = obj;
4351 ++nzombies;
4352 #endif
4353 mark_object (obj);
4354 }
4355 }
4356 }
4357
4358
4359 /* If P points to Lisp data, mark that as live if it isn't already
4360 marked. */
4361
4362 static void
4363 mark_maybe_pointer (void *p)
4364 {
4365 struct mem_node *m;
4366
4367 /* Quickly rule out some values which can't point to Lisp data.
4368 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4369 Otherwise, assume that Lisp data is aligned on even addresses. */
4370 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4371 return;
4372
4373 m = mem_find (p);
4374 if (m != MEM_NIL)
4375 {
4376 Lisp_Object obj = Qnil;
4377
4378 switch (m->type)
4379 {
4380 case MEM_TYPE_NON_LISP:
4381 case MEM_TYPE_SPARE:
4382 /* Nothing to do; not a pointer to Lisp memory. */
4383 break;
4384
4385 case MEM_TYPE_BUFFER:
4386 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4387 XSETVECTOR (obj, p);
4388 break;
4389
4390 case MEM_TYPE_CONS:
4391 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4392 XSETCONS (obj, p);
4393 break;
4394
4395 case MEM_TYPE_STRING:
4396 if (live_string_p (m, p)
4397 && !STRING_MARKED_P ((struct Lisp_String *) p))
4398 XSETSTRING (obj, p);
4399 break;
4400
4401 case MEM_TYPE_MISC:
4402 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4403 XSETMISC (obj, p);
4404 break;
4405
4406 case MEM_TYPE_SYMBOL:
4407 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4408 XSETSYMBOL (obj, p);
4409 break;
4410
4411 case MEM_TYPE_FLOAT:
4412 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4413 XSETFLOAT (obj, p);
4414 break;
4415
4416 case MEM_TYPE_VECTORLIKE:
4417 case MEM_TYPE_VECTOR_BLOCK:
4418 if (live_vector_p (m, p))
4419 {
4420 Lisp_Object tem;
4421 XSETVECTOR (tem, p);
4422 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4423 obj = tem;
4424 }
4425 break;
4426
4427 default:
4428 emacs_abort ();
4429 }
4430
4431 if (!NILP (obj))
4432 mark_object (obj);
4433 }
4434 }
4435
4436
4437 /* Alignment of pointer values. Use alignof, as it sometimes returns
4438 a smaller alignment than GCC's __alignof__ and mark_memory might
4439 miss objects if __alignof__ were used. */
4440 #define GC_POINTER_ALIGNMENT alignof (void *)
4441
4442 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4443 not suffice, which is the typical case. A host where a Lisp_Object is
4444 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4445 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4446 suffice to widen it to to a Lisp_Object and check it that way. */
4447 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4448 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4449 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4450 nor mark_maybe_object can follow the pointers. This should not occur on
4451 any practical porting target. */
4452 # error "MSB type bits straddle pointer-word boundaries"
4453 # endif
4454 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4455 pointer words that hold pointers ORed with type bits. */
4456 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4457 #else
4458 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4459 words that hold unmodified pointers. */
4460 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4461 #endif
4462
4463 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4464 or END+OFFSET..START. */
4465
4466 static void
4467 mark_memory (void *start, void *end)
4468 #if defined (__clang__) && defined (__has_feature)
4469 #if __has_feature(address_sanitizer)
4470 /* Do not allow -faddress-sanitizer to check this function, since it
4471 crosses the function stack boundary, and thus would yield many
4472 false positives. */
4473 __attribute__((no_address_safety_analysis))
4474 #endif
4475 #endif
4476 {
4477 void **pp;
4478 int i;
4479
4480 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4481 nzombies = 0;
4482 #endif
4483
4484 /* Make START the pointer to the start of the memory region,
4485 if it isn't already. */
4486 if (end < start)
4487 {
4488 void *tem = start;
4489 start = end;
4490 end = tem;
4491 }
4492
4493 /* Mark Lisp data pointed to. This is necessary because, in some
4494 situations, the C compiler optimizes Lisp objects away, so that
4495 only a pointer to them remains. Example:
4496
4497 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4498 ()
4499 {
4500 Lisp_Object obj = build_string ("test");
4501 struct Lisp_String *s = XSTRING (obj);
4502 Fgarbage_collect ();
4503 fprintf (stderr, "test `%s'\n", s->data);
4504 return Qnil;
4505 }
4506
4507 Here, `obj' isn't really used, and the compiler optimizes it
4508 away. The only reference to the life string is through the
4509 pointer `s'. */
4510
4511 for (pp = start; (void *) pp < end; pp++)
4512 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4513 {
4514 void *p = *(void **) ((char *) pp + i);
4515 mark_maybe_pointer (p);
4516 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4517 mark_maybe_object (XIL ((intptr_t) p));
4518 }
4519 }
4520
4521 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4522
4523 static bool setjmp_tested_p;
4524 static int longjmps_done;
4525
4526 #define SETJMP_WILL_LIKELY_WORK "\
4527 \n\
4528 Emacs garbage collector has been changed to use conservative stack\n\
4529 marking. Emacs has determined that the method it uses to do the\n\
4530 marking will likely work on your system, but this isn't sure.\n\
4531 \n\
4532 If you are a system-programmer, or can get the help of a local wizard\n\
4533 who is, please take a look at the function mark_stack in alloc.c, and\n\
4534 verify that the methods used are appropriate for your system.\n\
4535 \n\
4536 Please mail the result to <emacs-devel@gnu.org>.\n\
4537 "
4538
4539 #define SETJMP_WILL_NOT_WORK "\
4540 \n\
4541 Emacs garbage collector has been changed to use conservative stack\n\
4542 marking. Emacs has determined that the default method it uses to do the\n\
4543 marking will not work on your system. We will need a system-dependent\n\
4544 solution for your system.\n\
4545 \n\
4546 Please take a look at the function mark_stack in alloc.c, and\n\
4547 try to find a way to make it work on your system.\n\
4548 \n\
4549 Note that you may get false negatives, depending on the compiler.\n\
4550 In particular, you need to use -O with GCC for this test.\n\
4551 \n\
4552 Please mail the result to <emacs-devel@gnu.org>.\n\
4553 "
4554
4555
4556 /* Perform a quick check if it looks like setjmp saves registers in a
4557 jmp_buf. Print a message to stderr saying so. When this test
4558 succeeds, this is _not_ a proof that setjmp is sufficient for
4559 conservative stack marking. Only the sources or a disassembly
4560 can prove that. */
4561
4562 static void
4563 test_setjmp (void)
4564 {
4565 char buf[10];
4566 register int x;
4567 sys_jmp_buf jbuf;
4568
4569 /* Arrange for X to be put in a register. */
4570 sprintf (buf, "1");
4571 x = strlen (buf);
4572 x = 2 * x - 1;
4573
4574 sys_setjmp (jbuf);
4575 if (longjmps_done == 1)
4576 {
4577 /* Came here after the longjmp at the end of the function.
4578
4579 If x == 1, the longjmp has restored the register to its
4580 value before the setjmp, and we can hope that setjmp
4581 saves all such registers in the jmp_buf, although that
4582 isn't sure.
4583
4584 For other values of X, either something really strange is
4585 taking place, or the setjmp just didn't save the register. */
4586
4587 if (x == 1)
4588 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4589 else
4590 {
4591 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4592 exit (1);
4593 }
4594 }
4595
4596 ++longjmps_done;
4597 x = 2;
4598 if (longjmps_done == 1)
4599 sys_longjmp (jbuf, 1);
4600 }
4601
4602 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4603
4604
4605 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4606
4607 /* Abort if anything GCPRO'd doesn't survive the GC. */
4608
4609 static void
4610 check_gcpros (void)
4611 {
4612 struct gcpro *p;
4613 ptrdiff_t i;
4614
4615 for (p = gcprolist; p; p = p->next)
4616 for (i = 0; i < p->nvars; ++i)
4617 if (!survives_gc_p (p->var[i]))
4618 /* FIXME: It's not necessarily a bug. It might just be that the
4619 GCPRO is unnecessary or should release the object sooner. */
4620 emacs_abort ();
4621 }
4622
4623 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4624
4625 void
4626 dump_zombies (void)
4627 {
4628 int i;
4629
4630 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4631 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4632 {
4633 fprintf (stderr, " %d = ", i);
4634 debug_print (zombies[i]);
4635 }
4636 }
4637
4638 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4639
4640
4641 /* Mark live Lisp objects on the C stack.
4642
4643 There are several system-dependent problems to consider when
4644 porting this to new architectures:
4645
4646 Processor Registers
4647
4648 We have to mark Lisp objects in CPU registers that can hold local
4649 variables or are used to pass parameters.
4650
4651 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4652 something that either saves relevant registers on the stack, or
4653 calls mark_maybe_object passing it each register's contents.
4654
4655 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4656 implementation assumes that calling setjmp saves registers we need
4657 to see in a jmp_buf which itself lies on the stack. This doesn't
4658 have to be true! It must be verified for each system, possibly
4659 by taking a look at the source code of setjmp.
4660
4661 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4662 can use it as a machine independent method to store all registers
4663 to the stack. In this case the macros described in the previous
4664 two paragraphs are not used.
4665
4666 Stack Layout
4667
4668 Architectures differ in the way their processor stack is organized.
4669 For example, the stack might look like this
4670
4671 +----------------+
4672 | Lisp_Object | size = 4
4673 +----------------+
4674 | something else | size = 2
4675 +----------------+
4676 | Lisp_Object | size = 4
4677 +----------------+
4678 | ... |
4679
4680 In such a case, not every Lisp_Object will be aligned equally. To
4681 find all Lisp_Object on the stack it won't be sufficient to walk
4682 the stack in steps of 4 bytes. Instead, two passes will be
4683 necessary, one starting at the start of the stack, and a second
4684 pass starting at the start of the stack + 2. Likewise, if the
4685 minimal alignment of Lisp_Objects on the stack is 1, four passes
4686 would be necessary, each one starting with one byte more offset
4687 from the stack start. */
4688
4689 static void
4690 mark_stack (void)
4691 {
4692 void *end;
4693
4694 #ifdef HAVE___BUILTIN_UNWIND_INIT
4695 /* Force callee-saved registers and register windows onto the stack.
4696 This is the preferred method if available, obviating the need for
4697 machine dependent methods. */
4698 __builtin_unwind_init ();
4699 end = &end;
4700 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4701 #ifndef GC_SAVE_REGISTERS_ON_STACK
4702 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4703 union aligned_jmpbuf {
4704 Lisp_Object o;
4705 sys_jmp_buf j;
4706 } j;
4707 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4708 #endif
4709 /* This trick flushes the register windows so that all the state of
4710 the process is contained in the stack. */
4711 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4712 needed on ia64 too. See mach_dep.c, where it also says inline
4713 assembler doesn't work with relevant proprietary compilers. */
4714 #ifdef __sparc__
4715 #if defined (__sparc64__) && defined (__FreeBSD__)
4716 /* FreeBSD does not have a ta 3 handler. */
4717 asm ("flushw");
4718 #else
4719 asm ("ta 3");
4720 #endif
4721 #endif
4722
4723 /* Save registers that we need to see on the stack. We need to see
4724 registers used to hold register variables and registers used to
4725 pass parameters. */
4726 #ifdef GC_SAVE_REGISTERS_ON_STACK
4727 GC_SAVE_REGISTERS_ON_STACK (end);
4728 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4729
4730 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4731 setjmp will definitely work, test it
4732 and print a message with the result
4733 of the test. */
4734 if (!setjmp_tested_p)
4735 {
4736 setjmp_tested_p = 1;
4737 test_setjmp ();
4738 }
4739 #endif /* GC_SETJMP_WORKS */
4740
4741 sys_setjmp (j.j);
4742 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4743 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4744 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4745
4746 /* This assumes that the stack is a contiguous region in memory. If
4747 that's not the case, something has to be done here to iterate
4748 over the stack segments. */
4749 mark_memory (stack_base, end);
4750
4751 /* Allow for marking a secondary stack, like the register stack on the
4752 ia64. */
4753 #ifdef GC_MARK_SECONDARY_STACK
4754 GC_MARK_SECONDARY_STACK ();
4755 #endif
4756
4757 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4758 check_gcpros ();
4759 #endif
4760 }
4761
4762 #else /* GC_MARK_STACK == 0 */
4763
4764 #define mark_maybe_object(obj) emacs_abort ()
4765
4766 #endif /* GC_MARK_STACK != 0 */
4767
4768
4769 /* Determine whether it is safe to access memory at address P. */
4770 static int
4771 valid_pointer_p (void *p)
4772 {
4773 #ifdef WINDOWSNT
4774 return w32_valid_pointer_p (p, 16);
4775 #else
4776 int fd[2];
4777
4778 /* Obviously, we cannot just access it (we would SEGV trying), so we
4779 trick the o/s to tell us whether p is a valid pointer.
4780 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4781 not validate p in that case. */
4782
4783 if (emacs_pipe (fd) == 0)
4784 {
4785 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4786 emacs_close (fd[1]);
4787 emacs_close (fd[0]);
4788 return valid;
4789 }
4790
4791 return -1;
4792 #endif
4793 }
4794
4795 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4796 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4797 cannot validate OBJ. This function can be quite slow, so its primary
4798 use is the manual debugging. The only exception is print_object, where
4799 we use it to check whether the memory referenced by the pointer of
4800 Lisp_Save_Value object contains valid objects. */
4801
4802 int
4803 valid_lisp_object_p (Lisp_Object obj)
4804 {
4805 void *p;
4806 #if GC_MARK_STACK
4807 struct mem_node *m;
4808 #endif
4809
4810 if (INTEGERP (obj))
4811 return 1;
4812
4813 p = (void *) XPNTR (obj);
4814 if (PURE_POINTER_P (p))
4815 return 1;
4816
4817 if (p == &buffer_defaults || p == &buffer_local_symbols)
4818 return 2;
4819
4820 #if !GC_MARK_STACK
4821 return valid_pointer_p (p);
4822 #else
4823
4824 m = mem_find (p);
4825
4826 if (m == MEM_NIL)
4827 {
4828 int valid = valid_pointer_p (p);
4829 if (valid <= 0)
4830 return valid;
4831
4832 if (SUBRP (obj))
4833 return 1;
4834
4835 return 0;
4836 }
4837
4838 switch (m->type)
4839 {
4840 case MEM_TYPE_NON_LISP:
4841 case MEM_TYPE_SPARE:
4842 return 0;
4843
4844 case MEM_TYPE_BUFFER:
4845 return live_buffer_p (m, p) ? 1 : 2;
4846
4847 case MEM_TYPE_CONS:
4848 return live_cons_p (m, p);
4849
4850 case MEM_TYPE_STRING:
4851 return live_string_p (m, p);
4852
4853 case MEM_TYPE_MISC:
4854 return live_misc_p (m, p);
4855
4856 case MEM_TYPE_SYMBOL:
4857 return live_symbol_p (m, p);
4858
4859 case MEM_TYPE_FLOAT:
4860 return live_float_p (m, p);
4861
4862 case MEM_TYPE_VECTORLIKE:
4863 case MEM_TYPE_VECTOR_BLOCK:
4864 return live_vector_p (m, p);
4865
4866 default:
4867 break;
4868 }
4869
4870 return 0;
4871 #endif
4872 }
4873
4874
4875
4876 \f
4877 /***********************************************************************
4878 Pure Storage Management
4879 ***********************************************************************/
4880
4881 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4882 pointer to it. TYPE is the Lisp type for which the memory is
4883 allocated. TYPE < 0 means it's not used for a Lisp object. */
4884
4885 static void *
4886 pure_alloc (size_t size, int type)
4887 {
4888 void *result;
4889 #if USE_LSB_TAG
4890 size_t alignment = GCALIGNMENT;
4891 #else
4892 size_t alignment = alignof (EMACS_INT);
4893
4894 /* Give Lisp_Floats an extra alignment. */
4895 if (type == Lisp_Float)
4896 alignment = alignof (struct Lisp_Float);
4897 #endif
4898
4899 again:
4900 if (type >= 0)
4901 {
4902 /* Allocate space for a Lisp object from the beginning of the free
4903 space with taking account of alignment. */
4904 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4905 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4906 }
4907 else
4908 {
4909 /* Allocate space for a non-Lisp object from the end of the free
4910 space. */
4911 pure_bytes_used_non_lisp += size;
4912 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4913 }
4914 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4915
4916 if (pure_bytes_used <= pure_size)
4917 return result;
4918
4919 /* Don't allocate a large amount here,
4920 because it might get mmap'd and then its address
4921 might not be usable. */
4922 purebeg = xmalloc (10000);
4923 pure_size = 10000;
4924 pure_bytes_used_before_overflow += pure_bytes_used - size;
4925 pure_bytes_used = 0;
4926 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4927 goto again;
4928 }
4929
4930
4931 /* Print a warning if PURESIZE is too small. */
4932
4933 void
4934 check_pure_size (void)
4935 {
4936 if (pure_bytes_used_before_overflow)
4937 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4938 " bytes needed)"),
4939 pure_bytes_used + pure_bytes_used_before_overflow);
4940 }
4941
4942
4943 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4944 the non-Lisp data pool of the pure storage, and return its start
4945 address. Return NULL if not found. */
4946
4947 static char *
4948 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4949 {
4950 int i;
4951 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4952 const unsigned char *p;
4953 char *non_lisp_beg;
4954
4955 if (pure_bytes_used_non_lisp <= nbytes)
4956 return NULL;
4957
4958 /* Set up the Boyer-Moore table. */
4959 skip = nbytes + 1;
4960 for (i = 0; i < 256; i++)
4961 bm_skip[i] = skip;
4962
4963 p = (const unsigned char *) data;
4964 while (--skip > 0)
4965 bm_skip[*p++] = skip;
4966
4967 last_char_skip = bm_skip['\0'];
4968
4969 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4970 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4971
4972 /* See the comments in the function `boyer_moore' (search.c) for the
4973 use of `infinity'. */
4974 infinity = pure_bytes_used_non_lisp + 1;
4975 bm_skip['\0'] = infinity;
4976
4977 p = (const unsigned char *) non_lisp_beg + nbytes;
4978 start = 0;
4979 do
4980 {
4981 /* Check the last character (== '\0'). */
4982 do
4983 {
4984 start += bm_skip[*(p + start)];
4985 }
4986 while (start <= start_max);
4987
4988 if (start < infinity)
4989 /* Couldn't find the last character. */
4990 return NULL;
4991
4992 /* No less than `infinity' means we could find the last
4993 character at `p[start - infinity]'. */
4994 start -= infinity;
4995
4996 /* Check the remaining characters. */
4997 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4998 /* Found. */
4999 return non_lisp_beg + start;
5000
5001 start += last_char_skip;
5002 }
5003 while (start <= start_max);
5004
5005 return NULL;
5006 }
5007
5008
5009 /* Return a string allocated in pure space. DATA is a buffer holding
5010 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5011 means make the result string multibyte.
5012
5013 Must get an error if pure storage is full, since if it cannot hold
5014 a large string it may be able to hold conses that point to that
5015 string; then the string is not protected from gc. */
5016
5017 Lisp_Object
5018 make_pure_string (const char *data,
5019 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5020 {
5021 Lisp_Object string;
5022 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5023 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5024 if (s->data == NULL)
5025 {
5026 s->data = pure_alloc (nbytes + 1, -1);
5027 memcpy (s->data, data, nbytes);
5028 s->data[nbytes] = '\0';
5029 }
5030 s->size = nchars;
5031 s->size_byte = multibyte ? nbytes : -1;
5032 s->intervals = NULL;
5033 XSETSTRING (string, s);
5034 return string;
5035 }
5036
5037 /* Return a string allocated in pure space. Do not
5038 allocate the string data, just point to DATA. */
5039
5040 Lisp_Object
5041 make_pure_c_string (const char *data, ptrdiff_t nchars)
5042 {
5043 Lisp_Object string;
5044 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5045 s->size = nchars;
5046 s->size_byte = -1;
5047 s->data = (unsigned char *) data;
5048 s->intervals = NULL;
5049 XSETSTRING (string, s);
5050 return string;
5051 }
5052
5053 /* Return a cons allocated from pure space. Give it pure copies
5054 of CAR as car and CDR as cdr. */
5055
5056 Lisp_Object
5057 pure_cons (Lisp_Object car, Lisp_Object cdr)
5058 {
5059 Lisp_Object new;
5060 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5061 XSETCONS (new, p);
5062 XSETCAR (new, Fpurecopy (car));
5063 XSETCDR (new, Fpurecopy (cdr));
5064 return new;
5065 }
5066
5067
5068 /* Value is a float object with value NUM allocated from pure space. */
5069
5070 static Lisp_Object
5071 make_pure_float (double num)
5072 {
5073 Lisp_Object new;
5074 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5075 XSETFLOAT (new, p);
5076 XFLOAT_INIT (new, num);
5077 return new;
5078 }
5079
5080
5081 /* Return a vector with room for LEN Lisp_Objects allocated from
5082 pure space. */
5083
5084 static Lisp_Object
5085 make_pure_vector (ptrdiff_t len)
5086 {
5087 Lisp_Object new;
5088 size_t size = header_size + len * word_size;
5089 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5090 XSETVECTOR (new, p);
5091 XVECTOR (new)->header.size = len;
5092 return new;
5093 }
5094
5095
5096 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5097 doc: /* Make a copy of object OBJ in pure storage.
5098 Recursively copies contents of vectors and cons cells.
5099 Does not copy symbols. Copies strings without text properties. */)
5100 (register Lisp_Object obj)
5101 {
5102 if (NILP (Vpurify_flag))
5103 return obj;
5104
5105 if (PURE_POINTER_P (XPNTR (obj)))
5106 return obj;
5107
5108 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5109 {
5110 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5111 if (!NILP (tmp))
5112 return tmp;
5113 }
5114
5115 if (CONSP (obj))
5116 obj = pure_cons (XCAR (obj), XCDR (obj));
5117 else if (FLOATP (obj))
5118 obj = make_pure_float (XFLOAT_DATA (obj));
5119 else if (STRINGP (obj))
5120 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5121 SBYTES (obj),
5122 STRING_MULTIBYTE (obj));
5123 else if (COMPILEDP (obj) || VECTORP (obj))
5124 {
5125 register struct Lisp_Vector *vec;
5126 register ptrdiff_t i;
5127 ptrdiff_t size;
5128
5129 size = ASIZE (obj);
5130 if (size & PSEUDOVECTOR_FLAG)
5131 size &= PSEUDOVECTOR_SIZE_MASK;
5132 vec = XVECTOR (make_pure_vector (size));
5133 for (i = 0; i < size; i++)
5134 vec->contents[i] = Fpurecopy (AREF (obj, i));
5135 if (COMPILEDP (obj))
5136 {
5137 XSETPVECTYPE (vec, PVEC_COMPILED);
5138 XSETCOMPILED (obj, vec);
5139 }
5140 else
5141 XSETVECTOR (obj, vec);
5142 }
5143 else if (MARKERP (obj))
5144 error ("Attempt to copy a marker to pure storage");
5145 else
5146 /* Not purified, don't hash-cons. */
5147 return obj;
5148
5149 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5150 Fputhash (obj, obj, Vpurify_flag);
5151
5152 return obj;
5153 }
5154
5155
5156 \f
5157 /***********************************************************************
5158 Protection from GC
5159 ***********************************************************************/
5160
5161 /* Put an entry in staticvec, pointing at the variable with address
5162 VARADDRESS. */
5163
5164 void
5165 staticpro (Lisp_Object *varaddress)
5166 {
5167 if (staticidx >= NSTATICS)
5168 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5169 staticvec[staticidx++] = varaddress;
5170 }
5171
5172 \f
5173 /***********************************************************************
5174 Protection from GC
5175 ***********************************************************************/
5176
5177 /* Temporarily prevent garbage collection. */
5178
5179 ptrdiff_t
5180 inhibit_garbage_collection (void)
5181 {
5182 ptrdiff_t count = SPECPDL_INDEX ();
5183
5184 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5185 return count;
5186 }
5187
5188 /* Used to avoid possible overflows when
5189 converting from C to Lisp integers. */
5190
5191 static Lisp_Object
5192 bounded_number (EMACS_INT number)
5193 {
5194 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5195 }
5196
5197 /* Calculate total bytes of live objects. */
5198
5199 static size_t
5200 total_bytes_of_live_objects (void)
5201 {
5202 size_t tot = 0;
5203 tot += total_conses * sizeof (struct Lisp_Cons);
5204 tot += total_symbols * sizeof (struct Lisp_Symbol);
5205 tot += total_markers * sizeof (union Lisp_Misc);
5206 tot += total_string_bytes;
5207 tot += total_vector_slots * word_size;
5208 tot += total_floats * sizeof (struct Lisp_Float);
5209 tot += total_intervals * sizeof (struct interval);
5210 tot += total_strings * sizeof (struct Lisp_String);
5211 return tot;
5212 }
5213
5214 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5215 doc: /* Reclaim storage for Lisp objects no longer needed.
5216 Garbage collection happens automatically if you cons more than
5217 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5218 `garbage-collect' normally returns a list with info on amount of space in use,
5219 where each entry has the form (NAME SIZE USED FREE), where:
5220 - NAME is a symbol describing the kind of objects this entry represents,
5221 - SIZE is the number of bytes used by each one,
5222 - USED is the number of those objects that were found live in the heap,
5223 - FREE is the number of those objects that are not live but that Emacs
5224 keeps around for future allocations (maybe because it does not know how
5225 to return them to the OS).
5226 However, if there was overflow in pure space, `garbage-collect'
5227 returns nil, because real GC can't be done.
5228 See Info node `(elisp)Garbage Collection'. */)
5229 (void)
5230 {
5231 struct buffer *nextb;
5232 char stack_top_variable;
5233 ptrdiff_t i;
5234 bool message_p;
5235 ptrdiff_t count = SPECPDL_INDEX ();
5236 struct timespec start;
5237 Lisp_Object retval = Qnil;
5238 size_t tot_before = 0;
5239
5240 if (abort_on_gc)
5241 emacs_abort ();
5242
5243 /* Can't GC if pure storage overflowed because we can't determine
5244 if something is a pure object or not. */
5245 if (pure_bytes_used_before_overflow)
5246 return Qnil;
5247
5248 /* Record this function, so it appears on the profiler's backtraces. */
5249 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5250
5251 check_cons_list ();
5252
5253 /* Don't keep undo information around forever.
5254 Do this early on, so it is no problem if the user quits. */
5255 FOR_EACH_BUFFER (nextb)
5256 compact_buffer (nextb);
5257
5258 if (profiler_memory_running)
5259 tot_before = total_bytes_of_live_objects ();
5260
5261 start = current_timespec ();
5262
5263 /* In case user calls debug_print during GC,
5264 don't let that cause a recursive GC. */
5265 consing_since_gc = 0;
5266
5267 /* Save what's currently displayed in the echo area. */
5268 message_p = push_message ();
5269 record_unwind_protect_void (pop_message_unwind);
5270
5271 /* Save a copy of the contents of the stack, for debugging. */
5272 #if MAX_SAVE_STACK > 0
5273 if (NILP (Vpurify_flag))
5274 {
5275 char *stack;
5276 ptrdiff_t stack_size;
5277 if (&stack_top_variable < stack_bottom)
5278 {
5279 stack = &stack_top_variable;
5280 stack_size = stack_bottom - &stack_top_variable;
5281 }
5282 else
5283 {
5284 stack = stack_bottom;
5285 stack_size = &stack_top_variable - stack_bottom;
5286 }
5287 if (stack_size <= MAX_SAVE_STACK)
5288 {
5289 if (stack_copy_size < stack_size)
5290 {
5291 stack_copy = xrealloc (stack_copy, stack_size);
5292 stack_copy_size = stack_size;
5293 }
5294 memcpy (stack_copy, stack, stack_size);
5295 }
5296 }
5297 #endif /* MAX_SAVE_STACK > 0 */
5298
5299 if (garbage_collection_messages)
5300 message1_nolog ("Garbage collecting...");
5301
5302 block_input ();
5303
5304 shrink_regexp_cache ();
5305
5306 gc_in_progress = 1;
5307
5308 /* Mark all the special slots that serve as the roots of accessibility. */
5309
5310 mark_buffer (&buffer_defaults);
5311 mark_buffer (&buffer_local_symbols);
5312
5313 for (i = 0; i < staticidx; i++)
5314 mark_object (*staticvec[i]);
5315
5316 mark_specpdl ();
5317 mark_terminals ();
5318 mark_kboards ();
5319
5320 #ifdef USE_GTK
5321 xg_mark_data ();
5322 #endif
5323
5324 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5325 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5326 mark_stack ();
5327 #else
5328 {
5329 register struct gcpro *tail;
5330 for (tail = gcprolist; tail; tail = tail->next)
5331 for (i = 0; i < tail->nvars; i++)
5332 mark_object (tail->var[i]);
5333 }
5334 mark_byte_stack ();
5335 {
5336 struct catchtag *catch;
5337 struct handler *handler;
5338
5339 for (catch = catchlist; catch; catch = catch->next)
5340 {
5341 mark_object (catch->tag);
5342 mark_object (catch->val);
5343 }
5344 for (handler = handlerlist; handler; handler = handler->next)
5345 {
5346 mark_object (handler->handler);
5347 mark_object (handler->var);
5348 }
5349 }
5350 #endif
5351
5352 #ifdef HAVE_WINDOW_SYSTEM
5353 mark_fringe_data ();
5354 #endif
5355
5356 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5357 mark_stack ();
5358 #endif
5359
5360 /* Everything is now marked, except for the things that require special
5361 finalization, i.e. the undo_list.
5362 Look thru every buffer's undo list
5363 for elements that update markers that were not marked,
5364 and delete them. */
5365 FOR_EACH_BUFFER (nextb)
5366 {
5367 /* If a buffer's undo list is Qt, that means that undo is
5368 turned off in that buffer. Calling truncate_undo_list on
5369 Qt tends to return NULL, which effectively turns undo back on.
5370 So don't call truncate_undo_list if undo_list is Qt. */
5371 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5372 {
5373 Lisp_Object tail, prev;
5374 tail = nextb->INTERNAL_FIELD (undo_list);
5375 prev = Qnil;
5376 while (CONSP (tail))
5377 {
5378 if (CONSP (XCAR (tail))
5379 && MARKERP (XCAR (XCAR (tail)))
5380 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5381 {
5382 if (NILP (prev))
5383 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5384 else
5385 {
5386 tail = XCDR (tail);
5387 XSETCDR (prev, tail);
5388 }
5389 }
5390 else
5391 {
5392 prev = tail;
5393 tail = XCDR (tail);
5394 }
5395 }
5396 }
5397 /* Now that we have stripped the elements that need not be in the
5398 undo_list any more, we can finally mark the list. */
5399 mark_object (nextb->INTERNAL_FIELD (undo_list));
5400 }
5401
5402 gc_sweep ();
5403
5404 /* Clear the mark bits that we set in certain root slots. */
5405
5406 unmark_byte_stack ();
5407 VECTOR_UNMARK (&buffer_defaults);
5408 VECTOR_UNMARK (&buffer_local_symbols);
5409
5410 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5411 dump_zombies ();
5412 #endif
5413
5414 check_cons_list ();
5415
5416 gc_in_progress = 0;
5417
5418 unblock_input ();
5419
5420 consing_since_gc = 0;
5421 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5422 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5423
5424 gc_relative_threshold = 0;
5425 if (FLOATP (Vgc_cons_percentage))
5426 { /* Set gc_cons_combined_threshold. */
5427 double tot = total_bytes_of_live_objects ();
5428
5429 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5430 if (0 < tot)
5431 {
5432 if (tot < TYPE_MAXIMUM (EMACS_INT))
5433 gc_relative_threshold = tot;
5434 else
5435 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5436 }
5437 }
5438
5439 if (garbage_collection_messages)
5440 {
5441 if (message_p || minibuf_level > 0)
5442 restore_message ();
5443 else
5444 message1_nolog ("Garbage collecting...done");
5445 }
5446
5447 unbind_to (count, Qnil);
5448 {
5449 Lisp_Object total[11];
5450 int total_size = 10;
5451
5452 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5453 bounded_number (total_conses),
5454 bounded_number (total_free_conses));
5455
5456 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5457 bounded_number (total_symbols),
5458 bounded_number (total_free_symbols));
5459
5460 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5461 bounded_number (total_markers),
5462 bounded_number (total_free_markers));
5463
5464 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5465 bounded_number (total_strings),
5466 bounded_number (total_free_strings));
5467
5468 total[4] = list3 (Qstring_bytes, make_number (1),
5469 bounded_number (total_string_bytes));
5470
5471 total[5] = list3 (Qvectors,
5472 make_number (header_size + sizeof (Lisp_Object)),
5473 bounded_number (total_vectors));
5474
5475 total[6] = list4 (Qvector_slots, make_number (word_size),
5476 bounded_number (total_vector_slots),
5477 bounded_number (total_free_vector_slots));
5478
5479 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5480 bounded_number (total_floats),
5481 bounded_number (total_free_floats));
5482
5483 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5484 bounded_number (total_intervals),
5485 bounded_number (total_free_intervals));
5486
5487 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5488 bounded_number (total_buffers));
5489
5490 #ifdef DOUG_LEA_MALLOC
5491 total_size++;
5492 total[10] = list4 (Qheap, make_number (1024),
5493 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5494 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5495 #endif
5496 retval = Flist (total_size, total);
5497 }
5498
5499 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5500 {
5501 /* Compute average percentage of zombies. */
5502 double nlive
5503 = (total_conses + total_symbols + total_markers + total_strings
5504 + total_vectors + total_floats + total_intervals + total_buffers);
5505
5506 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5507 max_live = max (nlive, max_live);
5508 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5509 max_zombies = max (nzombies, max_zombies);
5510 ++ngcs;
5511 }
5512 #endif
5513
5514 if (!NILP (Vpost_gc_hook))
5515 {
5516 ptrdiff_t gc_count = inhibit_garbage_collection ();
5517 safe_run_hooks (Qpost_gc_hook);
5518 unbind_to (gc_count, Qnil);
5519 }
5520
5521 /* Accumulate statistics. */
5522 if (FLOATP (Vgc_elapsed))
5523 {
5524 struct timespec since_start = timespec_sub (current_timespec (), start);
5525 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5526 + timespectod (since_start));
5527 }
5528
5529 gcs_done++;
5530
5531 /* Collect profiling data. */
5532 if (profiler_memory_running)
5533 {
5534 size_t swept = 0;
5535 size_t tot_after = total_bytes_of_live_objects ();
5536 if (tot_before > tot_after)
5537 swept = tot_before - tot_after;
5538 malloc_probe (swept);
5539 }
5540
5541 return retval;
5542 }
5543
5544
5545 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5546 only interesting objects referenced from glyphs are strings. */
5547
5548 static void
5549 mark_glyph_matrix (struct glyph_matrix *matrix)
5550 {
5551 struct glyph_row *row = matrix->rows;
5552 struct glyph_row *end = row + matrix->nrows;
5553
5554 for (; row < end; ++row)
5555 if (row->enabled_p)
5556 {
5557 int area;
5558 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5559 {
5560 struct glyph *glyph = row->glyphs[area];
5561 struct glyph *end_glyph = glyph + row->used[area];
5562
5563 for (; glyph < end_glyph; ++glyph)
5564 if (STRINGP (glyph->object)
5565 && !STRING_MARKED_P (XSTRING (glyph->object)))
5566 mark_object (glyph->object);
5567 }
5568 }
5569 }
5570
5571
5572 /* Mark Lisp faces in the face cache C. */
5573
5574 static void
5575 mark_face_cache (struct face_cache *c)
5576 {
5577 if (c)
5578 {
5579 int i, j;
5580 for (i = 0; i < c->used; ++i)
5581 {
5582 struct face *face = FACE_FROM_ID (c->f, i);
5583
5584 if (face)
5585 {
5586 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5587 mark_object (face->lface[j]);
5588 }
5589 }
5590 }
5591 }
5592
5593
5594 \f
5595 /* Mark reference to a Lisp_Object.
5596 If the object referred to has not been seen yet, recursively mark
5597 all the references contained in it. */
5598
5599 #define LAST_MARKED_SIZE 500
5600 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5601 static int last_marked_index;
5602
5603 /* For debugging--call abort when we cdr down this many
5604 links of a list, in mark_object. In debugging,
5605 the call to abort will hit a breakpoint.
5606 Normally this is zero and the check never goes off. */
5607 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5608
5609 static void
5610 mark_vectorlike (struct Lisp_Vector *ptr)
5611 {
5612 ptrdiff_t size = ptr->header.size;
5613 ptrdiff_t i;
5614
5615 eassert (!VECTOR_MARKED_P (ptr));
5616 VECTOR_MARK (ptr); /* Else mark it. */
5617 if (size & PSEUDOVECTOR_FLAG)
5618 size &= PSEUDOVECTOR_SIZE_MASK;
5619
5620 /* Note that this size is not the memory-footprint size, but only
5621 the number of Lisp_Object fields that we should trace.
5622 The distinction is used e.g. by Lisp_Process which places extra
5623 non-Lisp_Object fields at the end of the structure... */
5624 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5625 mark_object (ptr->contents[i]);
5626 }
5627
5628 /* Like mark_vectorlike but optimized for char-tables (and
5629 sub-char-tables) assuming that the contents are mostly integers or
5630 symbols. */
5631
5632 static void
5633 mark_char_table (struct Lisp_Vector *ptr)
5634 {
5635 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5636 int i;
5637
5638 eassert (!VECTOR_MARKED_P (ptr));
5639 VECTOR_MARK (ptr);
5640 for (i = 0; i < size; i++)
5641 {
5642 Lisp_Object val = ptr->contents[i];
5643
5644 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5645 continue;
5646 if (SUB_CHAR_TABLE_P (val))
5647 {
5648 if (! VECTOR_MARKED_P (XVECTOR (val)))
5649 mark_char_table (XVECTOR (val));
5650 }
5651 else
5652 mark_object (val);
5653 }
5654 }
5655
5656 /* Mark the chain of overlays starting at PTR. */
5657
5658 static void
5659 mark_overlay (struct Lisp_Overlay *ptr)
5660 {
5661 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5662 {
5663 ptr->gcmarkbit = 1;
5664 mark_object (ptr->start);
5665 mark_object (ptr->end);
5666 mark_object (ptr->plist);
5667 }
5668 }
5669
5670 /* Mark Lisp_Objects and special pointers in BUFFER. */
5671
5672 static void
5673 mark_buffer (struct buffer *buffer)
5674 {
5675 /* This is handled much like other pseudovectors... */
5676 mark_vectorlike ((struct Lisp_Vector *) buffer);
5677
5678 /* ...but there are some buffer-specific things. */
5679
5680 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5681
5682 /* For now, we just don't mark the undo_list. It's done later in
5683 a special way just before the sweep phase, and after stripping
5684 some of its elements that are not needed any more. */
5685
5686 mark_overlay (buffer->overlays_before);
5687 mark_overlay (buffer->overlays_after);
5688
5689 /* If this is an indirect buffer, mark its base buffer. */
5690 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5691 mark_buffer (buffer->base_buffer);
5692 }
5693
5694 /* Remove killed buffers or items whose car is a killed buffer from
5695 LIST, and mark other items. Return changed LIST, which is marked. */
5696
5697 static Lisp_Object
5698 mark_discard_killed_buffers (Lisp_Object list)
5699 {
5700 Lisp_Object tail, *prev = &list;
5701
5702 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5703 tail = XCDR (tail))
5704 {
5705 Lisp_Object tem = XCAR (tail);
5706 if (CONSP (tem))
5707 tem = XCAR (tem);
5708 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5709 *prev = XCDR (tail);
5710 else
5711 {
5712 CONS_MARK (XCONS (tail));
5713 mark_object (XCAR (tail));
5714 prev = xcdr_addr (tail);
5715 }
5716 }
5717 mark_object (tail);
5718 return list;
5719 }
5720
5721 /* Determine type of generic Lisp_Object and mark it accordingly. */
5722
5723 void
5724 mark_object (Lisp_Object arg)
5725 {
5726 register Lisp_Object obj = arg;
5727 #ifdef GC_CHECK_MARKED_OBJECTS
5728 void *po;
5729 struct mem_node *m;
5730 #endif
5731 ptrdiff_t cdr_count = 0;
5732
5733 loop:
5734
5735 if (PURE_POINTER_P (XPNTR (obj)))
5736 return;
5737
5738 last_marked[last_marked_index++] = obj;
5739 if (last_marked_index == LAST_MARKED_SIZE)
5740 last_marked_index = 0;
5741
5742 /* Perform some sanity checks on the objects marked here. Abort if
5743 we encounter an object we know is bogus. This increases GC time
5744 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5745 #ifdef GC_CHECK_MARKED_OBJECTS
5746
5747 po = (void *) XPNTR (obj);
5748
5749 /* Check that the object pointed to by PO is known to be a Lisp
5750 structure allocated from the heap. */
5751 #define CHECK_ALLOCATED() \
5752 do { \
5753 m = mem_find (po); \
5754 if (m == MEM_NIL) \
5755 emacs_abort (); \
5756 } while (0)
5757
5758 /* Check that the object pointed to by PO is live, using predicate
5759 function LIVEP. */
5760 #define CHECK_LIVE(LIVEP) \
5761 do { \
5762 if (!LIVEP (m, po)) \
5763 emacs_abort (); \
5764 } while (0)
5765
5766 /* Check both of the above conditions. */
5767 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5768 do { \
5769 CHECK_ALLOCATED (); \
5770 CHECK_LIVE (LIVEP); \
5771 } while (0) \
5772
5773 #else /* not GC_CHECK_MARKED_OBJECTS */
5774
5775 #define CHECK_LIVE(LIVEP) (void) 0
5776 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5777
5778 #endif /* not GC_CHECK_MARKED_OBJECTS */
5779
5780 switch (XTYPE (obj))
5781 {
5782 case Lisp_String:
5783 {
5784 register struct Lisp_String *ptr = XSTRING (obj);
5785 if (STRING_MARKED_P (ptr))
5786 break;
5787 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5788 MARK_STRING (ptr);
5789 MARK_INTERVAL_TREE (ptr->intervals);
5790 #ifdef GC_CHECK_STRING_BYTES
5791 /* Check that the string size recorded in the string is the
5792 same as the one recorded in the sdata structure. */
5793 string_bytes (ptr);
5794 #endif /* GC_CHECK_STRING_BYTES */
5795 }
5796 break;
5797
5798 case Lisp_Vectorlike:
5799 {
5800 register struct Lisp_Vector *ptr = XVECTOR (obj);
5801 register ptrdiff_t pvectype;
5802
5803 if (VECTOR_MARKED_P (ptr))
5804 break;
5805
5806 #ifdef GC_CHECK_MARKED_OBJECTS
5807 m = mem_find (po);
5808 if (m == MEM_NIL && !SUBRP (obj))
5809 emacs_abort ();
5810 #endif /* GC_CHECK_MARKED_OBJECTS */
5811
5812 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5813 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5814 >> PSEUDOVECTOR_AREA_BITS);
5815 else
5816 pvectype = PVEC_NORMAL_VECTOR;
5817
5818 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5819 CHECK_LIVE (live_vector_p);
5820
5821 switch (pvectype)
5822 {
5823 case PVEC_BUFFER:
5824 #ifdef GC_CHECK_MARKED_OBJECTS
5825 {
5826 struct buffer *b;
5827 FOR_EACH_BUFFER (b)
5828 if (b == po)
5829 break;
5830 if (b == NULL)
5831 emacs_abort ();
5832 }
5833 #endif /* GC_CHECK_MARKED_OBJECTS */
5834 mark_buffer ((struct buffer *) ptr);
5835 break;
5836
5837 case PVEC_COMPILED:
5838 { /* We could treat this just like a vector, but it is better
5839 to save the COMPILED_CONSTANTS element for last and avoid
5840 recursion there. */
5841 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5842 int i;
5843
5844 VECTOR_MARK (ptr);
5845 for (i = 0; i < size; i++)
5846 if (i != COMPILED_CONSTANTS)
5847 mark_object (ptr->contents[i]);
5848 if (size > COMPILED_CONSTANTS)
5849 {
5850 obj = ptr->contents[COMPILED_CONSTANTS];
5851 goto loop;
5852 }
5853 }
5854 break;
5855
5856 case PVEC_FRAME:
5857 mark_vectorlike (ptr);
5858 mark_face_cache (((struct frame *) ptr)->face_cache);
5859 break;
5860
5861 case PVEC_WINDOW:
5862 {
5863 struct window *w = (struct window *) ptr;
5864
5865 mark_vectorlike (ptr);
5866
5867 /* Mark glyph matrices, if any. Marking window
5868 matrices is sufficient because frame matrices
5869 use the same glyph memory. */
5870 if (w->current_matrix)
5871 {
5872 mark_glyph_matrix (w->current_matrix);
5873 mark_glyph_matrix (w->desired_matrix);
5874 }
5875
5876 /* Filter out killed buffers from both buffer lists
5877 in attempt to help GC to reclaim killed buffers faster.
5878 We can do it elsewhere for live windows, but this is the
5879 best place to do it for dead windows. */
5880 wset_prev_buffers
5881 (w, mark_discard_killed_buffers (w->prev_buffers));
5882 wset_next_buffers
5883 (w, mark_discard_killed_buffers (w->next_buffers));
5884 }
5885 break;
5886
5887 case PVEC_HASH_TABLE:
5888 {
5889 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5890
5891 mark_vectorlike (ptr);
5892 mark_object (h->test.name);
5893 mark_object (h->test.user_hash_function);
5894 mark_object (h->test.user_cmp_function);
5895 /* If hash table is not weak, mark all keys and values.
5896 For weak tables, mark only the vector. */
5897 if (NILP (h->weak))
5898 mark_object (h->key_and_value);
5899 else
5900 VECTOR_MARK (XVECTOR (h->key_and_value));
5901 }
5902 break;
5903
5904 case PVEC_CHAR_TABLE:
5905 mark_char_table (ptr);
5906 break;
5907
5908 case PVEC_BOOL_VECTOR:
5909 /* No Lisp_Objects to mark in a bool vector. */
5910 VECTOR_MARK (ptr);
5911 break;
5912
5913 case PVEC_SUBR:
5914 break;
5915
5916 case PVEC_FREE:
5917 emacs_abort ();
5918
5919 default:
5920 mark_vectorlike (ptr);
5921 }
5922 }
5923 break;
5924
5925 case Lisp_Symbol:
5926 {
5927 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5928 struct Lisp_Symbol *ptrx;
5929
5930 if (ptr->gcmarkbit)
5931 break;
5932 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5933 ptr->gcmarkbit = 1;
5934 mark_object (ptr->function);
5935 mark_object (ptr->plist);
5936 switch (ptr->redirect)
5937 {
5938 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5939 case SYMBOL_VARALIAS:
5940 {
5941 Lisp_Object tem;
5942 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5943 mark_object (tem);
5944 break;
5945 }
5946 case SYMBOL_LOCALIZED:
5947 {
5948 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5949 Lisp_Object where = blv->where;
5950 /* If the value is set up for a killed buffer or deleted
5951 frame, restore it's global binding. If the value is
5952 forwarded to a C variable, either it's not a Lisp_Object
5953 var, or it's staticpro'd already. */
5954 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5955 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5956 swap_in_global_binding (ptr);
5957 mark_object (blv->where);
5958 mark_object (blv->valcell);
5959 mark_object (blv->defcell);
5960 break;
5961 }
5962 case SYMBOL_FORWARDED:
5963 /* If the value is forwarded to a buffer or keyboard field,
5964 these are marked when we see the corresponding object.
5965 And if it's forwarded to a C variable, either it's not
5966 a Lisp_Object var, or it's staticpro'd already. */
5967 break;
5968 default: emacs_abort ();
5969 }
5970 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5971 MARK_STRING (XSTRING (ptr->name));
5972 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5973
5974 ptr = ptr->next;
5975 if (ptr)
5976 {
5977 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5978 XSETSYMBOL (obj, ptrx);
5979 goto loop;
5980 }
5981 }
5982 break;
5983
5984 case Lisp_Misc:
5985 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5986
5987 if (XMISCANY (obj)->gcmarkbit)
5988 break;
5989
5990 switch (XMISCTYPE (obj))
5991 {
5992 case Lisp_Misc_Marker:
5993 /* DO NOT mark thru the marker's chain.
5994 The buffer's markers chain does not preserve markers from gc;
5995 instead, markers are removed from the chain when freed by gc. */
5996 XMISCANY (obj)->gcmarkbit = 1;
5997 break;
5998
5999 case Lisp_Misc_Save_Value:
6000 XMISCANY (obj)->gcmarkbit = 1;
6001 {
6002 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6003 /* If `save_type' is zero, `data[0].pointer' is the address
6004 of a memory area containing `data[1].integer' potential
6005 Lisp_Objects. */
6006 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6007 {
6008 Lisp_Object *p = ptr->data[0].pointer;
6009 ptrdiff_t nelt;
6010 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6011 mark_maybe_object (*p);
6012 }
6013 else
6014 {
6015 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6016 int i;
6017 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6018 if (save_type (ptr, i) == SAVE_OBJECT)
6019 mark_object (ptr->data[i].object);
6020 }
6021 }
6022 break;
6023
6024 case Lisp_Misc_Overlay:
6025 mark_overlay (XOVERLAY (obj));
6026 break;
6027
6028 default:
6029 emacs_abort ();
6030 }
6031 break;
6032
6033 case Lisp_Cons:
6034 {
6035 register struct Lisp_Cons *ptr = XCONS (obj);
6036 if (CONS_MARKED_P (ptr))
6037 break;
6038 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6039 CONS_MARK (ptr);
6040 /* If the cdr is nil, avoid recursion for the car. */
6041 if (EQ (ptr->u.cdr, Qnil))
6042 {
6043 obj = ptr->car;
6044 cdr_count = 0;
6045 goto loop;
6046 }
6047 mark_object (ptr->car);
6048 obj = ptr->u.cdr;
6049 cdr_count++;
6050 if (cdr_count == mark_object_loop_halt)
6051 emacs_abort ();
6052 goto loop;
6053 }
6054
6055 case Lisp_Float:
6056 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6057 FLOAT_MARK (XFLOAT (obj));
6058 break;
6059
6060 case_Lisp_Int:
6061 break;
6062
6063 default:
6064 emacs_abort ();
6065 }
6066
6067 #undef CHECK_LIVE
6068 #undef CHECK_ALLOCATED
6069 #undef CHECK_ALLOCATED_AND_LIVE
6070 }
6071 /* Mark the Lisp pointers in the terminal objects.
6072 Called by Fgarbage_collect. */
6073
6074 static void
6075 mark_terminals (void)
6076 {
6077 struct terminal *t;
6078 for (t = terminal_list; t; t = t->next_terminal)
6079 {
6080 eassert (t->name != NULL);
6081 #ifdef HAVE_WINDOW_SYSTEM
6082 /* If a terminal object is reachable from a stacpro'ed object,
6083 it might have been marked already. Make sure the image cache
6084 gets marked. */
6085 mark_image_cache (t->image_cache);
6086 #endif /* HAVE_WINDOW_SYSTEM */
6087 if (!VECTOR_MARKED_P (t))
6088 mark_vectorlike ((struct Lisp_Vector *)t);
6089 }
6090 }
6091
6092
6093
6094 /* Value is non-zero if OBJ will survive the current GC because it's
6095 either marked or does not need to be marked to survive. */
6096
6097 bool
6098 survives_gc_p (Lisp_Object obj)
6099 {
6100 bool survives_p;
6101
6102 switch (XTYPE (obj))
6103 {
6104 case_Lisp_Int:
6105 survives_p = 1;
6106 break;
6107
6108 case Lisp_Symbol:
6109 survives_p = XSYMBOL (obj)->gcmarkbit;
6110 break;
6111
6112 case Lisp_Misc:
6113 survives_p = XMISCANY (obj)->gcmarkbit;
6114 break;
6115
6116 case Lisp_String:
6117 survives_p = STRING_MARKED_P (XSTRING (obj));
6118 break;
6119
6120 case Lisp_Vectorlike:
6121 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6122 break;
6123
6124 case Lisp_Cons:
6125 survives_p = CONS_MARKED_P (XCONS (obj));
6126 break;
6127
6128 case Lisp_Float:
6129 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6130 break;
6131
6132 default:
6133 emacs_abort ();
6134 }
6135
6136 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6137 }
6138
6139
6140 \f
6141 /* Sweep: find all structures not marked, and free them. */
6142
6143 static void
6144 gc_sweep (void)
6145 {
6146 /* Remove or mark entries in weak hash tables.
6147 This must be done before any object is unmarked. */
6148 sweep_weak_hash_tables ();
6149
6150 sweep_strings ();
6151 check_string_bytes (!noninteractive);
6152
6153 /* Put all unmarked conses on free list */
6154 {
6155 register struct cons_block *cblk;
6156 struct cons_block **cprev = &cons_block;
6157 register int lim = cons_block_index;
6158 EMACS_INT num_free = 0, num_used = 0;
6159
6160 cons_free_list = 0;
6161
6162 for (cblk = cons_block; cblk; cblk = *cprev)
6163 {
6164 register int i = 0;
6165 int this_free = 0;
6166 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6167
6168 /* Scan the mark bits an int at a time. */
6169 for (i = 0; i < ilim; i++)
6170 {
6171 if (cblk->gcmarkbits[i] == -1)
6172 {
6173 /* Fast path - all cons cells for this int are marked. */
6174 cblk->gcmarkbits[i] = 0;
6175 num_used += BITS_PER_INT;
6176 }
6177 else
6178 {
6179 /* Some cons cells for this int are not marked.
6180 Find which ones, and free them. */
6181 int start, pos, stop;
6182
6183 start = i * BITS_PER_INT;
6184 stop = lim - start;
6185 if (stop > BITS_PER_INT)
6186 stop = BITS_PER_INT;
6187 stop += start;
6188
6189 for (pos = start; pos < stop; pos++)
6190 {
6191 if (!CONS_MARKED_P (&cblk->conses[pos]))
6192 {
6193 this_free++;
6194 cblk->conses[pos].u.chain = cons_free_list;
6195 cons_free_list = &cblk->conses[pos];
6196 #if GC_MARK_STACK
6197 cons_free_list->car = Vdead;
6198 #endif
6199 }
6200 else
6201 {
6202 num_used++;
6203 CONS_UNMARK (&cblk->conses[pos]);
6204 }
6205 }
6206 }
6207 }
6208
6209 lim = CONS_BLOCK_SIZE;
6210 /* If this block contains only free conses and we have already
6211 seen more than two blocks worth of free conses then deallocate
6212 this block. */
6213 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6214 {
6215 *cprev = cblk->next;
6216 /* Unhook from the free list. */
6217 cons_free_list = cblk->conses[0].u.chain;
6218 lisp_align_free (cblk);
6219 }
6220 else
6221 {
6222 num_free += this_free;
6223 cprev = &cblk->next;
6224 }
6225 }
6226 total_conses = num_used;
6227 total_free_conses = num_free;
6228 }
6229
6230 /* Put all unmarked floats on free list */
6231 {
6232 register struct float_block *fblk;
6233 struct float_block **fprev = &float_block;
6234 register int lim = float_block_index;
6235 EMACS_INT num_free = 0, num_used = 0;
6236
6237 float_free_list = 0;
6238
6239 for (fblk = float_block; fblk; fblk = *fprev)
6240 {
6241 register int i;
6242 int this_free = 0;
6243 for (i = 0; i < lim; i++)
6244 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6245 {
6246 this_free++;
6247 fblk->floats[i].u.chain = float_free_list;
6248 float_free_list = &fblk->floats[i];
6249 }
6250 else
6251 {
6252 num_used++;
6253 FLOAT_UNMARK (&fblk->floats[i]);
6254 }
6255 lim = FLOAT_BLOCK_SIZE;
6256 /* If this block contains only free floats and we have already
6257 seen more than two blocks worth of free floats then deallocate
6258 this block. */
6259 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6260 {
6261 *fprev = fblk->next;
6262 /* Unhook from the free list. */
6263 float_free_list = fblk->floats[0].u.chain;
6264 lisp_align_free (fblk);
6265 }
6266 else
6267 {
6268 num_free += this_free;
6269 fprev = &fblk->next;
6270 }
6271 }
6272 total_floats = num_used;
6273 total_free_floats = num_free;
6274 }
6275
6276 /* Put all unmarked intervals on free list */
6277 {
6278 register struct interval_block *iblk;
6279 struct interval_block **iprev = &interval_block;
6280 register int lim = interval_block_index;
6281 EMACS_INT num_free = 0, num_used = 0;
6282
6283 interval_free_list = 0;
6284
6285 for (iblk = interval_block; iblk; iblk = *iprev)
6286 {
6287 register int i;
6288 int this_free = 0;
6289
6290 for (i = 0; i < lim; i++)
6291 {
6292 if (!iblk->intervals[i].gcmarkbit)
6293 {
6294 set_interval_parent (&iblk->intervals[i], interval_free_list);
6295 interval_free_list = &iblk->intervals[i];
6296 this_free++;
6297 }
6298 else
6299 {
6300 num_used++;
6301 iblk->intervals[i].gcmarkbit = 0;
6302 }
6303 }
6304 lim = INTERVAL_BLOCK_SIZE;
6305 /* If this block contains only free intervals and we have already
6306 seen more than two blocks worth of free intervals then
6307 deallocate this block. */
6308 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6309 {
6310 *iprev = iblk->next;
6311 /* Unhook from the free list. */
6312 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6313 lisp_free (iblk);
6314 }
6315 else
6316 {
6317 num_free += this_free;
6318 iprev = &iblk->next;
6319 }
6320 }
6321 total_intervals = num_used;
6322 total_free_intervals = num_free;
6323 }
6324
6325 /* Put all unmarked symbols on free list */
6326 {
6327 register struct symbol_block *sblk;
6328 struct symbol_block **sprev = &symbol_block;
6329 register int lim = symbol_block_index;
6330 EMACS_INT num_free = 0, num_used = 0;
6331
6332 symbol_free_list = NULL;
6333
6334 for (sblk = symbol_block; sblk; sblk = *sprev)
6335 {
6336 int this_free = 0;
6337 union aligned_Lisp_Symbol *sym = sblk->symbols;
6338 union aligned_Lisp_Symbol *end = sym + lim;
6339
6340 for (; sym < end; ++sym)
6341 {
6342 /* Check if the symbol was created during loadup. In such a case
6343 it might be pointed to by pure bytecode which we don't trace,
6344 so we conservatively assume that it is live. */
6345 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6346
6347 if (!sym->s.gcmarkbit && !pure_p)
6348 {
6349 if (sym->s.redirect == SYMBOL_LOCALIZED)
6350 xfree (SYMBOL_BLV (&sym->s));
6351 sym->s.next = symbol_free_list;
6352 symbol_free_list = &sym->s;
6353 #if GC_MARK_STACK
6354 symbol_free_list->function = Vdead;
6355 #endif
6356 ++this_free;
6357 }
6358 else
6359 {
6360 ++num_used;
6361 if (!pure_p)
6362 UNMARK_STRING (XSTRING (sym->s.name));
6363 sym->s.gcmarkbit = 0;
6364 }
6365 }
6366
6367 lim = SYMBOL_BLOCK_SIZE;
6368 /* If this block contains only free symbols and we have already
6369 seen more than two blocks worth of free symbols then deallocate
6370 this block. */
6371 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6372 {
6373 *sprev = sblk->next;
6374 /* Unhook from the free list. */
6375 symbol_free_list = sblk->symbols[0].s.next;
6376 lisp_free (sblk);
6377 }
6378 else
6379 {
6380 num_free += this_free;
6381 sprev = &sblk->next;
6382 }
6383 }
6384 total_symbols = num_used;
6385 total_free_symbols = num_free;
6386 }
6387
6388 /* Put all unmarked misc's on free list.
6389 For a marker, first unchain it from the buffer it points into. */
6390 {
6391 register struct marker_block *mblk;
6392 struct marker_block **mprev = &marker_block;
6393 register int lim = marker_block_index;
6394 EMACS_INT num_free = 0, num_used = 0;
6395
6396 marker_free_list = 0;
6397
6398 for (mblk = marker_block; mblk; mblk = *mprev)
6399 {
6400 register int i;
6401 int this_free = 0;
6402
6403 for (i = 0; i < lim; i++)
6404 {
6405 if (!mblk->markers[i].m.u_any.gcmarkbit)
6406 {
6407 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6408 unchain_marker (&mblk->markers[i].m.u_marker);
6409 /* Set the type of the freed object to Lisp_Misc_Free.
6410 We could leave the type alone, since nobody checks it,
6411 but this might catch bugs faster. */
6412 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6413 mblk->markers[i].m.u_free.chain = marker_free_list;
6414 marker_free_list = &mblk->markers[i].m;
6415 this_free++;
6416 }
6417 else
6418 {
6419 num_used++;
6420 mblk->markers[i].m.u_any.gcmarkbit = 0;
6421 }
6422 }
6423 lim = MARKER_BLOCK_SIZE;
6424 /* If this block contains only free markers and we have already
6425 seen more than two blocks worth of free markers then deallocate
6426 this block. */
6427 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6428 {
6429 *mprev = mblk->next;
6430 /* Unhook from the free list. */
6431 marker_free_list = mblk->markers[0].m.u_free.chain;
6432 lisp_free (mblk);
6433 }
6434 else
6435 {
6436 num_free += this_free;
6437 mprev = &mblk->next;
6438 }
6439 }
6440
6441 total_markers = num_used;
6442 total_free_markers = num_free;
6443 }
6444
6445 /* Free all unmarked buffers */
6446 {
6447 register struct buffer *buffer, **bprev = &all_buffers;
6448
6449 total_buffers = 0;
6450 for (buffer = all_buffers; buffer; buffer = *bprev)
6451 if (!VECTOR_MARKED_P (buffer))
6452 {
6453 *bprev = buffer->next;
6454 lisp_free (buffer);
6455 }
6456 else
6457 {
6458 VECTOR_UNMARK (buffer);
6459 /* Do not use buffer_(set|get)_intervals here. */
6460 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6461 total_buffers++;
6462 bprev = &buffer->next;
6463 }
6464 }
6465
6466 sweep_vectors ();
6467 check_string_bytes (!noninteractive);
6468 }
6469
6470
6471
6472 \f
6473 /* Debugging aids. */
6474
6475 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6476 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6477 This may be helpful in debugging Emacs's memory usage.
6478 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6479 (void)
6480 {
6481 Lisp_Object end;
6482
6483 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6484
6485 return end;
6486 }
6487
6488 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6489 doc: /* Return a list of counters that measure how much consing there has been.
6490 Each of these counters increments for a certain kind of object.
6491 The counters wrap around from the largest positive integer to zero.
6492 Garbage collection does not decrease them.
6493 The elements of the value are as follows:
6494 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6495 All are in units of 1 = one object consed
6496 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6497 objects consed.
6498 MISCS include overlays, markers, and some internal types.
6499 Frames, windows, buffers, and subprocesses count as vectors
6500 (but the contents of a buffer's text do not count here). */)
6501 (void)
6502 {
6503 return listn (CONSTYPE_HEAP, 8,
6504 bounded_number (cons_cells_consed),
6505 bounded_number (floats_consed),
6506 bounded_number (vector_cells_consed),
6507 bounded_number (symbols_consed),
6508 bounded_number (string_chars_consed),
6509 bounded_number (misc_objects_consed),
6510 bounded_number (intervals_consed),
6511 bounded_number (strings_consed));
6512 }
6513
6514 /* Find at most FIND_MAX symbols which have OBJ as their value or
6515 function. This is used in gdbinit's `xwhichsymbols' command. */
6516
6517 Lisp_Object
6518 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6519 {
6520 struct symbol_block *sblk;
6521 ptrdiff_t gc_count = inhibit_garbage_collection ();
6522 Lisp_Object found = Qnil;
6523
6524 if (! DEADP (obj))
6525 {
6526 for (sblk = symbol_block; sblk; sblk = sblk->next)
6527 {
6528 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6529 int bn;
6530
6531 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6532 {
6533 struct Lisp_Symbol *sym = &aligned_sym->s;
6534 Lisp_Object val;
6535 Lisp_Object tem;
6536
6537 if (sblk == symbol_block && bn >= symbol_block_index)
6538 break;
6539
6540 XSETSYMBOL (tem, sym);
6541 val = find_symbol_value (tem);
6542 if (EQ (val, obj)
6543 || EQ (sym->function, obj)
6544 || (!NILP (sym->function)
6545 && COMPILEDP (sym->function)
6546 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6547 || (!NILP (val)
6548 && COMPILEDP (val)
6549 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6550 {
6551 found = Fcons (tem, found);
6552 if (--find_max == 0)
6553 goto out;
6554 }
6555 }
6556 }
6557 }
6558
6559 out:
6560 unbind_to (gc_count, Qnil);
6561 return found;
6562 }
6563
6564 #ifdef ENABLE_CHECKING
6565
6566 bool suppress_checking;
6567
6568 void
6569 die (const char *msg, const char *file, int line)
6570 {
6571 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6572 file, line, msg);
6573 terminate_due_to_signal (SIGABRT, INT_MAX);
6574 }
6575 #endif
6576 \f
6577 /* Initialization. */
6578
6579 void
6580 init_alloc_once (void)
6581 {
6582 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6583 purebeg = PUREBEG;
6584 pure_size = PURESIZE;
6585
6586 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6587 mem_init ();
6588 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6589 #endif
6590
6591 #ifdef DOUG_LEA_MALLOC
6592 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6593 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6594 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6595 #endif
6596 init_strings ();
6597 init_vectors ();
6598
6599 refill_memory_reserve ();
6600 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6601 }
6602
6603 void
6604 init_alloc (void)
6605 {
6606 gcprolist = 0;
6607 byte_stack_list = 0;
6608 #if GC_MARK_STACK
6609 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6610 setjmp_tested_p = longjmps_done = 0;
6611 #endif
6612 #endif
6613 Vgc_elapsed = make_float (0.0);
6614 gcs_done = 0;
6615 }
6616
6617 void
6618 syms_of_alloc (void)
6619 {
6620 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6621 doc: /* Number of bytes of consing between garbage collections.
6622 Garbage collection can happen automatically once this many bytes have been
6623 allocated since the last garbage collection. All data types count.
6624
6625 Garbage collection happens automatically only when `eval' is called.
6626
6627 By binding this temporarily to a large number, you can effectively
6628 prevent garbage collection during a part of the program.
6629 See also `gc-cons-percentage'. */);
6630
6631 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6632 doc: /* Portion of the heap used for allocation.
6633 Garbage collection can happen automatically once this portion of the heap
6634 has been allocated since the last garbage collection.
6635 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6636 Vgc_cons_percentage = make_float (0.1);
6637
6638 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6639 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6640
6641 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6642 doc: /* Number of cons cells that have been consed so far. */);
6643
6644 DEFVAR_INT ("floats-consed", floats_consed,
6645 doc: /* Number of floats that have been consed so far. */);
6646
6647 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6648 doc: /* Number of vector cells that have been consed so far. */);
6649
6650 DEFVAR_INT ("symbols-consed", symbols_consed,
6651 doc: /* Number of symbols that have been consed so far. */);
6652
6653 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6654 doc: /* Number of string characters that have been consed so far. */);
6655
6656 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6657 doc: /* Number of miscellaneous objects that have been consed so far.
6658 These include markers and overlays, plus certain objects not visible
6659 to users. */);
6660
6661 DEFVAR_INT ("intervals-consed", intervals_consed,
6662 doc: /* Number of intervals that have been consed so far. */);
6663
6664 DEFVAR_INT ("strings-consed", strings_consed,
6665 doc: /* Number of strings that have been consed so far. */);
6666
6667 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6668 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6669 This means that certain objects should be allocated in shared (pure) space.
6670 It can also be set to a hash-table, in which case this table is used to
6671 do hash-consing of the objects allocated to pure space. */);
6672
6673 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6674 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6675 garbage_collection_messages = 0;
6676
6677 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6678 doc: /* Hook run after garbage collection has finished. */);
6679 Vpost_gc_hook = Qnil;
6680 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6681
6682 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6683 doc: /* Precomputed `signal' argument for memory-full error. */);
6684 /* We build this in advance because if we wait until we need it, we might
6685 not be able to allocate the memory to hold it. */
6686 Vmemory_signal_data
6687 = listn (CONSTYPE_PURE, 2, Qerror,
6688 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6689
6690 DEFVAR_LISP ("memory-full", Vmemory_full,
6691 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6692 Vmemory_full = Qnil;
6693
6694 DEFSYM (Qconses, "conses");
6695 DEFSYM (Qsymbols, "symbols");
6696 DEFSYM (Qmiscs, "miscs");
6697 DEFSYM (Qstrings, "strings");
6698 DEFSYM (Qvectors, "vectors");
6699 DEFSYM (Qfloats, "floats");
6700 DEFSYM (Qintervals, "intervals");
6701 DEFSYM (Qbuffers, "buffers");
6702 DEFSYM (Qstring_bytes, "string-bytes");
6703 DEFSYM (Qvector_slots, "vector-slots");
6704 DEFSYM (Qheap, "heap");
6705 DEFSYM (Qautomatic_gc, "Automatic GC");
6706
6707 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6708 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6709
6710 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6711 doc: /* Accumulated time elapsed in garbage collections.
6712 The time is in seconds as a floating point value. */);
6713 DEFVAR_INT ("gcs-done", gcs_done,
6714 doc: /* Accumulated number of garbage collections done. */);
6715
6716 defsubr (&Scons);
6717 defsubr (&Slist);
6718 defsubr (&Svector);
6719 defsubr (&Smake_byte_code);
6720 defsubr (&Smake_list);
6721 defsubr (&Smake_vector);
6722 defsubr (&Smake_string);
6723 defsubr (&Smake_bool_vector);
6724 defsubr (&Smake_symbol);
6725 defsubr (&Smake_marker);
6726 defsubr (&Spurecopy);
6727 defsubr (&Sgarbage_collect);
6728 defsubr (&Smemory_limit);
6729 defsubr (&Smemory_use_counts);
6730
6731 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6732 defsubr (&Sgc_status);
6733 #endif
6734 }
6735
6736 /* When compiled with GCC, GDB might say "No enum type named
6737 pvec_type" if we don't have at least one symbol with that type, and
6738 then xbacktrace could fail. Similarly for the other enums and
6739 their values. Some non-GCC compilers don't like these constructs. */
6740 #ifdef __GNUC__
6741 union
6742 {
6743 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6744 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6745 enum char_bits char_bits;
6746 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6747 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6748 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6749 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6750 enum Lisp_Bits Lisp_Bits;
6751 enum Lisp_Compiled Lisp_Compiled;
6752 enum maxargs maxargs;
6753 enum MAX_ALLOCA MAX_ALLOCA;
6754 enum More_Lisp_Bits More_Lisp_Bits;
6755 enum pvec_type pvec_type;
6756 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6757 #endif /* __GNUC__ */