Merge from emacs-24; up to 2012-05-07T14:57:18Z!michael.albinus@gmx.de
[bpt/emacs.git] / doc / lispref / numbers.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
acaf905b 3@c Copyright (C) 1990-1995, 1998-1999, 2001-2012
1ddd6622 4@c Free Software Foundation, Inc.
b8d4c8d0 5@c See the file elisp.texi for copying conditions.
ecc6530d 6@node Numbers
b8d4c8d0
GM
7@chapter Numbers
8@cindex integers
9@cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12@dfn{floating point numbers}. Integers are whole numbers such as
13@minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
14numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
152.71828. They can also be expressed in exponential notation: 1.5e2
16equals 150; in this example, @samp{e2} stands for ten to the second
17power, and that is multiplied by 1.5. Floating point values are not
18exact; they have a fixed, limited amount of precision.
19
20@menu
21* Integer Basics:: Representation and range of integers.
d24880de 22* Float Basics:: Representation and range of floating point.
b8d4c8d0
GM
23* Predicates on Numbers:: Testing for numbers.
24* Comparison of Numbers:: Equality and inequality predicates.
d24880de 25* Numeric Conversions:: Converting float to integer and vice versa.
b8d4c8d0
GM
26* Arithmetic Operations:: How to add, subtract, multiply and divide.
27* Rounding Operations:: Explicitly rounding floating point numbers.
28* Bitwise Operations:: Logical and, or, not, shifting.
29* Math Functions:: Trig, exponential and logarithmic functions.
30* Random Numbers:: Obtaining random integers, predictable or not.
31@end menu
32
33@node Integer Basics
b8d4c8d0
GM
34@section Integer Basics
35
36 The range of values for an integer depends on the machine. The
1ddd6622 37minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
b8d4c8d0 38@ifnottex
1ddd6622 39-2**29
b8d4c8d0
GM
40@end ifnottex
41@tex
1ddd6622 42@math{-2^{29}}
b8d4c8d0
GM
43@end tex
44to
45@ifnottex
1ddd6622 462**29 - 1),
b8d4c8d0
GM
47@end ifnottex
48@tex
1ddd6622 49@math{2^{29}-1}),
b8d4c8d0 50@end tex
001903b5
PE
51but some machines provide a wider range. Many examples in this
52chapter assume that an integer has 30 bits and that floating point
be14b9ab 53numbers are IEEE double precision.
b8d4c8d0
GM
54@cindex overflow
55
56 The Lisp reader reads an integer as a sequence of digits with optional
fed14fd7
PE
57initial sign and optional final period. An integer that is out of the
58Emacs range is treated as a floating-point number.
b8d4c8d0
GM
59
60@example
61 1 ; @r{The integer 1.}
62 1. ; @r{The integer 1.}
63+1 ; @r{Also the integer 1.}
64-1 ; @r{The integer @minus{}1.}
fed14fd7 65 1073741825 ; @r{The floating point number 1073741825.0.}
b8d4c8d0
GM
66 0 ; @r{The integer 0.}
67-0 ; @r{The integer 0.}
68@end example
69
70@cindex integers in specific radix
71@cindex radix for reading an integer
72@cindex base for reading an integer
73@cindex hex numbers
74@cindex octal numbers
75@cindex reading numbers in hex, octal, and binary
76 The syntax for integers in bases other than 10 uses @samp{#}
77followed by a letter that specifies the radix: @samp{b} for binary,
78@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79specify radix @var{radix}. Case is not significant for the letter
80that specifies the radix. Thus, @samp{#b@var{integer}} reads
81@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82@var{integer} in radix @var{radix}. Allowed values of @var{radix} run
83from 2 to 36. For example:
84
85@example
86#b101100 @result{} 44
87#o54 @result{} 44
88#x2c @result{} 44
89#24r1k @result{} 44
90@end example
91
92 To understand how various functions work on integers, especially the
93bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94view the numbers in their binary form.
95
1ddd6622 96 In 30-bit binary, the decimal integer 5 looks like this:
b8d4c8d0
GM
97
98@example
001903b5 990000...000101 (30 bits total)
b8d4c8d0
GM
100@end example
101
102@noindent
001903b5
PE
103(The @samp{...} stands for enough bits to fill out a 30-bit word; in
104this case, @samp{...} stands for twenty 0 bits. Later examples also
105use the @samp{...} notation to make binary integers easier to read.)
b8d4c8d0
GM
106
107 The integer @minus{}1 looks like this:
108
109@example
001903b5 1101111...111111 (30 bits total)
b8d4c8d0
GM
111@end example
112
113@noindent
114@cindex two's complement
1ddd6622 115@minus{}1 is represented as 30 ones. (This is called @dfn{two's
b8d4c8d0
GM
116complement} notation.)
117
118 The negative integer, @minus{}5, is creating by subtracting 4 from
119@minus{}1. In binary, the decimal integer 4 is 100. Consequently,
120@minus{}5 looks like this:
121
122@example
001903b5 1231111...111011 (30 bits total)
b8d4c8d0
GM
124@end example
125
1ddd6622
GM
126 In this implementation, the largest 30-bit binary integer value is
127536,870,911 in decimal. In binary, it looks like this:
b8d4c8d0
GM
128
129@example
001903b5 1300111...111111 (30 bits total)
b8d4c8d0
GM
131@end example
132
133 Since the arithmetic functions do not check whether integers go
1ddd6622
GM
134outside their range, when you add 1 to 536,870,911, the value is the
135negative integer @minus{}536,870,912:
b8d4c8d0
GM
136
137@example
1ddd6622
GM
138(+ 1 536870911)
139 @result{} -536870912
001903b5 140 @result{} 1000...000000 (30 bits total)
b8d4c8d0
GM
141@end example
142
143 Many of the functions described in this chapter accept markers for
144arguments in place of numbers. (@xref{Markers}.) Since the actual
145arguments to such functions may be either numbers or markers, we often
146give these arguments the name @var{number-or-marker}. When the argument
147value is a marker, its position value is used and its buffer is ignored.
148
eddf142c
EZ
149@cindex largest Lisp integer number
150@cindex maximum Lisp integer number
b8d4c8d0
GM
151@defvar most-positive-fixnum
152The value of this variable is the largest integer that Emacs Lisp
153can handle.
154@end defvar
155
eddf142c
EZ
156@cindex smallest Lisp integer number
157@cindex minimum Lisp integer number
b8d4c8d0
GM
158@defvar most-negative-fixnum
159The value of this variable is the smallest integer that Emacs Lisp can
160handle. It is negative.
161@end defvar
162
57e2db6d
EZ
163 @xref{Character Codes, max-char}, for the maximum value of a valid
164character codepoint.
165
b8d4c8d0
GM
166@node Float Basics
167@section Floating Point Basics
168
fead402d 169@cindex @acronym{IEEE} floating point
b8d4c8d0
GM
170 Floating point numbers are useful for representing numbers that are
171not integral. The precise range of floating point numbers is
172machine-specific; it is the same as the range of the C data type
fead402d
CY
173@code{double} on the machine you are using. Emacs uses the
174@acronym{IEEE} floating point standard where possible (the standard is
175supported by most modern computers).
b8d4c8d0 176
fead402d 177 The read syntax for floating point numbers requires either a decimal
b8d4c8d0
GM
178point (with at least one digit following), an exponent, or both. For
179example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
180@samp{.15e4} are five ways of writing a floating point number whose
fead402d
CY
181value is 1500. They are all equivalent. You can also use a minus
182sign to write negative floating point numbers, as in @samp{-1.0}.
183
184 Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
185respect to @code{equal} and @code{=}), even though the two are
186distinguishable in the @acronym{IEEE} floating point standard.
b8d4c8d0 187
b8d4c8d0
GM
188@cindex positive infinity
189@cindex negative infinity
190@cindex infinity
191@cindex NaN
fead402d
CY
192 The @acronym{IEEE} floating point standard supports positive
193infinity and negative infinity as floating point values. It also
194provides for a class of values called NaN or ``not-a-number'';
195numerical functions return such values in cases where there is no
196correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN. (NaN
197values can also carry a sign, but for practical purposes there's no
198significant difference between different NaN values in Emacs Lisp.)
c990426a
PE
199
200When a function is documented to return a NaN, it returns an
201implementation-defined value when Emacs is running on one of the
202now-rare platforms that do not use @acronym{IEEE} floating point. For
203example, @code{(log -1.0)} typically returns a NaN, but on
204non-@acronym{IEEE} platforms it returns an implementation-defined
205value.
206
fead402d 207Here are the read syntaxes for these special floating point values:
b8d4c8d0
GM
208
209@table @asis
210@item positive infinity
211@samp{1.0e+INF}
212@item negative infinity
213@samp{-1.0e+INF}
fed14fd7 214@item Not-a-number
b8d4c8d0
GM
215@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
216@end table
217
fead402d
CY
218@defun isnan number
219This predicate tests whether its argument is NaN, and returns @code{t}
220if so, @code{nil} otherwise. The argument must be a number.
221@end defun
222
223 The following functions are specialized for handling floating point
224numbers:
225
226@defun frexp x
227This function returns a cons cell @code{(@var{sig} . @var{exp})},
228where @var{sig} and @var{exp} are respectively the significand and
229exponent of the floating point number @var{x}:
230
231@smallexample
232@var{x} = @var{sig} * 2^@var{exp}
233@end smallexample
234
235@var{sig} is a floating point number between 0.5 (inclusive) and 1.0
236(exclusive). If @var{x} is zero, the return value is @code{(0 . 0)}.
237@end defun
b8d4c8d0 238
fead402d
CY
239@defun ldexp sig &optional exp
240This function returns a floating point number corresponding to the
241significand @var{sig} and exponent @var{exp}.
242@end defun
b8d4c8d0 243
fead402d
CY
244@defun copysign x1 x2
245This function copies the sign of @var{x2} to the value of @var{x1},
246and returns the result. @var{x1} and @var{x2} must be floating point
247numbers.
248@end defun
b8d4c8d0
GM
249
250@defun logb number
251This function returns the binary exponent of @var{number}. More
c990426a 252precisely, the value is the logarithm of |@var{number}| base 2, rounded
b8d4c8d0
GM
253down to an integer.
254
255@example
256(logb 10)
257 @result{} 3
258(logb 10.0e20)
259 @result{} 69
260@end example
261@end defun
262
263@node Predicates on Numbers
264@section Type Predicates for Numbers
265@cindex predicates for numbers
266
267 The functions in this section test for numbers, or for a specific
268type of number. The functions @code{integerp} and @code{floatp} can
269take any type of Lisp object as argument (they would not be of much
270use otherwise), but the @code{zerop} predicate requires a number as
271its argument. See also @code{integer-or-marker-p} and
272@code{number-or-marker-p}, in @ref{Predicates on Markers}.
273
274@defun floatp object
275This predicate tests whether its argument is a floating point
276number and returns @code{t} if so, @code{nil} otherwise.
b8d4c8d0
GM
277@end defun
278
279@defun integerp object
280This predicate tests whether its argument is an integer, and returns
281@code{t} if so, @code{nil} otherwise.
282@end defun
283
284@defun numberp object
285This predicate tests whether its argument is a number (either integer or
286floating point), and returns @code{t} if so, @code{nil} otherwise.
287@end defun
288
0f29fa41 289@defun natnump object
b8d4c8d0 290@cindex natural numbers
bccc0e40 291This predicate (whose name comes from the phrase ``natural number'')
0f29fa41
CY
292tests to see whether its argument is a nonnegative integer, and
293returns @code{t} if so, @code{nil} otherwise. 0 is considered
294non-negative.
b8d4c8d0 295
0f29fa41
CY
296@findex wholenump number
297This is a synonym for @code{natnump}.
b8d4c8d0
GM
298@end defun
299
300@defun zerop number
301This predicate tests whether its argument is zero, and returns @code{t}
302if so, @code{nil} otherwise. The argument must be a number.
303
304@code{(zerop x)} is equivalent to @code{(= x 0)}.
305@end defun
306
307@node Comparison of Numbers
308@section Comparison of Numbers
309@cindex number comparison
310@cindex comparing numbers
311
312 To test numbers for numerical equality, you should normally use
313@code{=}, not @code{eq}. There can be many distinct floating point
314number objects with the same numeric value. If you use @code{eq} to
315compare them, then you test whether two values are the same
316@emph{object}. By contrast, @code{=} compares only the numeric values
317of the objects.
318
319 At present, each integer value has a unique Lisp object in Emacs Lisp.
320Therefore, @code{eq} is equivalent to @code{=} where integers are
321concerned. It is sometimes convenient to use @code{eq} for comparing an
322unknown value with an integer, because @code{eq} does not report an
323error if the unknown value is not a number---it accepts arguments of any
324type. By contrast, @code{=} signals an error if the arguments are not
325numbers or markers. However, it is a good idea to use @code{=} if you
326can, even for comparing integers, just in case we change the
327representation of integers in a future Emacs version.
328
329 Sometimes it is useful to compare numbers with @code{equal}; it
330treats two numbers as equal if they have the same data type (both
331integers, or both floating point) and the same value. By contrast,
332@code{=} can treat an integer and a floating point number as equal.
333@xref{Equality Predicates}.
334
335 There is another wrinkle: because floating point arithmetic is not
336exact, it is often a bad idea to check for equality of two floating
337point values. Usually it is better to test for approximate equality.
338Here's a function to do this:
339
340@example
341(defvar fuzz-factor 1.0e-6)
342(defun approx-equal (x y)
343 (or (and (= x 0) (= y 0))
344 (< (/ (abs (- x y))
345 (max (abs x) (abs y)))
346 fuzz-factor)))
347@end example
348
349@cindex CL note---integers vrs @code{eq}
350@quotation
351@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
352@code{=} because Common Lisp implements multi-word integers, and two
353distinct integer objects can have the same numeric value. Emacs Lisp
354can have just one integer object for any given value because it has a
355limited range of integer values.
356@end quotation
357
358@defun = number-or-marker1 number-or-marker2
359This function tests whether its arguments are numerically equal, and
360returns @code{t} if so, @code{nil} otherwise.
361@end defun
362
363@defun eql value1 value2
364This function acts like @code{eq} except when both arguments are
365numbers. It compares numbers by type and numeric value, so that
366@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
367@code{(eql 1 1)} both return @code{t}.
368@end defun
369
370@defun /= number-or-marker1 number-or-marker2
371This function tests whether its arguments are numerically equal, and
372returns @code{t} if they are not, and @code{nil} if they are.
373@end defun
374
375@defun < number-or-marker1 number-or-marker2
376This function tests whether its first argument is strictly less than
377its second argument. It returns @code{t} if so, @code{nil} otherwise.
378@end defun
379
380@defun <= number-or-marker1 number-or-marker2
381This function tests whether its first argument is less than or equal
382to its second argument. It returns @code{t} if so, @code{nil}
383otherwise.
384@end defun
385
386@defun > number-or-marker1 number-or-marker2
387This function tests whether its first argument is strictly greater
388than its second argument. It returns @code{t} if so, @code{nil}
389otherwise.
390@end defun
391
392@defun >= number-or-marker1 number-or-marker2
393This function tests whether its first argument is greater than or
394equal to its second argument. It returns @code{t} if so, @code{nil}
395otherwise.
396@end defun
397
398@defun max number-or-marker &rest numbers-or-markers
399This function returns the largest of its arguments.
400If any of the arguments is floating-point, the value is returned
401as floating point, even if it was given as an integer.
402
403@example
404(max 20)
405 @result{} 20
406(max 1 2.5)
407 @result{} 2.5
408(max 1 3 2.5)
409 @result{} 3.0
410@end example
411@end defun
412
413@defun min number-or-marker &rest numbers-or-markers
414This function returns the smallest of its arguments.
415If any of the arguments is floating-point, the value is returned
416as floating point, even if it was given as an integer.
417
418@example
419(min -4 1)
420 @result{} -4
421@end example
422@end defun
423
424@defun abs number
425This function returns the absolute value of @var{number}.
426@end defun
427
428@node Numeric Conversions
429@section Numeric Conversions
430@cindex rounding in conversions
431@cindex number conversions
432@cindex converting numbers
433
434To convert an integer to floating point, use the function @code{float}.
435
436@defun float number
437This returns @var{number} converted to floating point.
438If @var{number} is already a floating point number, @code{float} returns
439it unchanged.
440@end defun
441
442There are four functions to convert floating point numbers to integers;
443they differ in how they round. All accept an argument @var{number}
444and an optional argument @var{divisor}. Both arguments may be
445integers or floating point numbers. @var{divisor} may also be
446@code{nil}. If @var{divisor} is @code{nil} or omitted, these
447functions convert @var{number} to an integer, or return it unchanged
448if it already is an integer. If @var{divisor} is non-@code{nil}, they
449divide @var{number} by @var{divisor} and convert the result to an
450integer. An @code{arith-error} results if @var{divisor} is 0.
451
452@defun truncate number &optional divisor
453This returns @var{number}, converted to an integer by rounding towards
454zero.
455
456@example
457(truncate 1.2)
458 @result{} 1
459(truncate 1.7)
460 @result{} 1
461(truncate -1.2)
462 @result{} -1
463(truncate -1.7)
464 @result{} -1
465@end example
466@end defun
467
468@defun floor number &optional divisor
469This returns @var{number}, converted to an integer by rounding downward
470(towards negative infinity).
471
472If @var{divisor} is specified, this uses the kind of division
473operation that corresponds to @code{mod}, rounding downward.
474
475@example
476(floor 1.2)
477 @result{} 1
478(floor 1.7)
479 @result{} 1
480(floor -1.2)
481 @result{} -2
482(floor -1.7)
483 @result{} -2
484(floor 5.99 3)
485 @result{} 1
486@end example
487@end defun
488
489@defun ceiling number &optional divisor
490This returns @var{number}, converted to an integer by rounding upward
491(towards positive infinity).
492
493@example
494(ceiling 1.2)
495 @result{} 2
496(ceiling 1.7)
497 @result{} 2
498(ceiling -1.2)
499 @result{} -1
500(ceiling -1.7)
501 @result{} -1
502@end example
503@end defun
504
505@defun round number &optional divisor
506This returns @var{number}, converted to an integer by rounding towards the
507nearest integer. Rounding a value equidistant between two integers
508may choose the integer closer to zero, or it may prefer an even integer,
509depending on your machine.
510
511@example
512(round 1.2)
513 @result{} 1
514(round 1.7)
515 @result{} 2
516(round -1.2)
517 @result{} -1
518(round -1.7)
519 @result{} -2
520@end example
521@end defun
522
523@node Arithmetic Operations
524@section Arithmetic Operations
525@cindex arithmetic operations
526
527 Emacs Lisp provides the traditional four arithmetic operations:
528addition, subtraction, multiplication, and division. Remainder and modulus
529functions supplement the division functions. The functions to
530add or subtract 1 are provided because they are traditional in Lisp and
531commonly used.
532
533 All of these functions except @code{%} return a floating point value
534if any argument is floating.
535
c717b326 536 It is important to note that in Emacs Lisp, arithmetic functions
001903b5
PE
537do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
538@minus{}536870912, depending on your hardware.
b8d4c8d0
GM
539
540@defun 1+ number-or-marker
541This function returns @var{number-or-marker} plus 1.
542For example,
543
544@example
545(setq foo 4)
546 @result{} 4
547(1+ foo)
548 @result{} 5
549@end example
550
551This function is not analogous to the C operator @code{++}---it does not
552increment a variable. It just computes a sum. Thus, if we continue,
553
554@example
555foo
556 @result{} 4
557@end example
558
559If you want to increment the variable, you must use @code{setq},
560like this:
561
562@example
563(setq foo (1+ foo))
564 @result{} 5
565@end example
566@end defun
567
568@defun 1- number-or-marker
569This function returns @var{number-or-marker} minus 1.
570@end defun
571
572@defun + &rest numbers-or-markers
573This function adds its arguments together. When given no arguments,
574@code{+} returns 0.
575
576@example
577(+)
578 @result{} 0
579(+ 1)
580 @result{} 1
581(+ 1 2 3 4)
582 @result{} 10
583@end example
584@end defun
585
586@defun - &optional number-or-marker &rest more-numbers-or-markers
587The @code{-} function serves two purposes: negation and subtraction.
588When @code{-} has a single argument, the value is the negative of the
589argument. When there are multiple arguments, @code{-} subtracts each of
590the @var{more-numbers-or-markers} from @var{number-or-marker},
591cumulatively. If there are no arguments, the result is 0.
592
593@example
594(- 10 1 2 3 4)
595 @result{} 0
596(- 10)
597 @result{} -10
598(-)
599 @result{} 0
600@end example
601@end defun
602
603@defun * &rest numbers-or-markers
604This function multiplies its arguments together, and returns the
605product. When given no arguments, @code{*} returns 1.
606
607@example
608(*)
609 @result{} 1
610(* 1)
611 @result{} 1
612(* 1 2 3 4)
613 @result{} 24
614@end example
615@end defun
616
617@defun / dividend divisor &rest divisors
618This function divides @var{dividend} by @var{divisor} and returns the
619quotient. If there are additional arguments @var{divisors}, then it
620divides @var{dividend} by each divisor in turn. Each argument may be a
621number or a marker.
622
623If all the arguments are integers, then the result is an integer too.
624This means the result has to be rounded. On most machines, the result
625is rounded towards zero after each division, but some machines may round
626differently with negative arguments. This is because the Lisp function
627@code{/} is implemented using the C division operator, which also
628permits machine-dependent rounding. As a practical matter, all known
629machines round in the standard fashion.
630
631@cindex @code{arith-error} in division
632If you divide an integer by 0, an @code{arith-error} error is signaled.
633(@xref{Errors}.) Floating point division by zero returns either
634infinity or a NaN if your machine supports @acronym{IEEE} floating point;
635otherwise, it signals an @code{arith-error} error.
636
637@example
638@group
639(/ 6 2)
640 @result{} 3
641@end group
642(/ 5 2)
643 @result{} 2
644(/ 5.0 2)
645 @result{} 2.5
646(/ 5 2.0)
647 @result{} 2.5
648(/ 5.0 2.0)
649 @result{} 2.5
650(/ 25 3 2)
651 @result{} 4
652@group
653(/ -17 6)
654 @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
655@end group
656@end example
657@end defun
658
659@defun % dividend divisor
660@cindex remainder
661This function returns the integer remainder after division of @var{dividend}
662by @var{divisor}. The arguments must be integers or markers.
663
664For negative arguments, the remainder is in principle machine-dependent
665since the quotient is; but in practice, all known machines behave alike.
666
667An @code{arith-error} results if @var{divisor} is 0.
668
669@example
670(% 9 4)
671 @result{} 1
672(% -9 4)
673 @result{} -1
674(% 9 -4)
675 @result{} 1
676(% -9 -4)
677 @result{} -1
678@end example
679
680For any two integers @var{dividend} and @var{divisor},
681
682@example
683@group
684(+ (% @var{dividend} @var{divisor})
685 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
686@end group
687@end example
688
689@noindent
690always equals @var{dividend}.
691@end defun
692
693@defun mod dividend divisor
694@cindex modulus
695This function returns the value of @var{dividend} modulo @var{divisor};
696in other words, the remainder after division of @var{dividend}
697by @var{divisor}, but with the same sign as @var{divisor}.
698The arguments must be numbers or markers.
699
700Unlike @code{%}, @code{mod} returns a well-defined result for negative
701arguments. It also permits floating point arguments; it rounds the
702quotient downward (towards minus infinity) to an integer, and uses that
703quotient to compute the remainder.
704
c990426a
PE
705If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
706error if both arguments are integers, and returns a NaN otherwise.
b8d4c8d0
GM
707
708@example
709@group
710(mod 9 4)
711 @result{} 1
712@end group
713@group
714(mod -9 4)
715 @result{} 3
716@end group
717@group
718(mod 9 -4)
719 @result{} -3
720@end group
721@group
722(mod -9 -4)
723 @result{} -1
724@end group
725@group
726(mod 5.5 2.5)
727 @result{} .5
728@end group
729@end example
730
731For any two numbers @var{dividend} and @var{divisor},
732
733@example
734@group
735(+ (mod @var{dividend} @var{divisor})
736 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
737@end group
738@end example
739
740@noindent
741always equals @var{dividend}, subject to rounding error if either
742argument is floating point. For @code{floor}, see @ref{Numeric
743Conversions}.
744@end defun
745
746@node Rounding Operations
747@section Rounding Operations
748@cindex rounding without conversion
749
750The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
751@code{ftruncate} take a floating point argument and return a floating
752point result whose value is a nearby integer. @code{ffloor} returns the
753nearest integer below; @code{fceiling}, the nearest integer above;
754@code{ftruncate}, the nearest integer in the direction towards zero;
755@code{fround}, the nearest integer.
756
757@defun ffloor float
758This function rounds @var{float} to the next lower integral value, and
759returns that value as a floating point number.
760@end defun
761
762@defun fceiling float
763This function rounds @var{float} to the next higher integral value, and
764returns that value as a floating point number.
765@end defun
766
767@defun ftruncate float
768This function rounds @var{float} towards zero to an integral value, and
769returns that value as a floating point number.
770@end defun
771
772@defun fround float
773This function rounds @var{float} to the nearest integral value,
774and returns that value as a floating point number.
775@end defun
776
777@node Bitwise Operations
778@section Bitwise Operations on Integers
779@cindex bitwise arithmetic
780@cindex logical arithmetic
781
782 In a computer, an integer is represented as a binary number, a
783sequence of @dfn{bits} (digits which are either zero or one). A bitwise
784operation acts on the individual bits of such a sequence. For example,
785@dfn{shifting} moves the whole sequence left or right one or more places,
16152b76 786reproducing the same pattern ``moved over''.
b8d4c8d0
GM
787
788 The bitwise operations in Emacs Lisp apply only to integers.
789
790@defun lsh integer1 count
791@cindex logical shift
792@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
793bits in @var{integer1} to the left @var{count} places, or to the right
794if @var{count} is negative, bringing zeros into the vacated bits. If
795@var{count} is negative, @code{lsh} shifts zeros into the leftmost
796(most-significant) bit, producing a positive result even if
797@var{integer1} is negative. Contrast this with @code{ash}, below.
798
799Here are two examples of @code{lsh}, shifting a pattern of bits one
800place to the left. We show only the low-order eight bits of the binary
801pattern; the rest are all zero.
802
803@example
804@group
805(lsh 5 1)
806 @result{} 10
807;; @r{Decimal 5 becomes decimal 10.}
80800000101 @result{} 00001010
809
810(lsh 7 1)
811 @result{} 14
812;; @r{Decimal 7 becomes decimal 14.}
81300000111 @result{} 00001110
814@end group
815@end example
816
817@noindent
818As the examples illustrate, shifting the pattern of bits one place to
819the left produces a number that is twice the value of the previous
820number.
821
822Shifting a pattern of bits two places to the left produces results
823like this (with 8-bit binary numbers):
824
825@example
826@group
827(lsh 3 2)
828 @result{} 12
829;; @r{Decimal 3 becomes decimal 12.}
83000000011 @result{} 00001100
831@end group
832@end example
833
834On the other hand, shifting one place to the right looks like this:
835
836@example
837@group
838(lsh 6 -1)
839 @result{} 3
840;; @r{Decimal 6 becomes decimal 3.}
84100000110 @result{} 00000011
842@end group
843
844@group
845(lsh 5 -1)
846 @result{} 2
847;; @r{Decimal 5 becomes decimal 2.}
84800000101 @result{} 00000010
849@end group
850@end example
851
852@noindent
853As the example illustrates, shifting one place to the right divides the
854value of a positive integer by two, rounding downward.
855
c717b326 856The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
b8d4c8d0
GM
857not check for overflow, so shifting left can discard significant bits
858and change the sign of the number. For example, left shifting
001903b5 859536,870,911 produces @minus{}2 in the 30-bit implementation:
b8d4c8d0
GM
860
861@example
1ddd6622 862(lsh 536870911 1) ; @r{left shift}
b8d4c8d0
GM
863 @result{} -2
864@end example
865
001903b5 866In binary, the argument looks like this:
b8d4c8d0
GM
867
868@example
869@group
1ddd6622 870;; @r{Decimal 536,870,911}
001903b5 8710111...111111 (30 bits total)
b8d4c8d0
GM
872@end group
873@end example
874
875@noindent
876which becomes the following when left shifted:
877
878@example
879@group
880;; @r{Decimal @minus{}2}
001903b5 8811111...111110 (30 bits total)
b8d4c8d0
GM
882@end group
883@end example
884@end defun
885
886@defun ash integer1 count
887@cindex arithmetic shift
888@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
889to the left @var{count} places, or to the right if @var{count}
890is negative.
891
892@code{ash} gives the same results as @code{lsh} except when
893@var{integer1} and @var{count} are both negative. In that case,
894@code{ash} puts ones in the empty bit positions on the left, while
895@code{lsh} puts zeros in those bit positions.
896
897Thus, with @code{ash}, shifting the pattern of bits one place to the right
898looks like this:
899
900@example
901@group
902(ash -6 -1) @result{} -3
903;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
001903b5 9041111...111010 (30 bits total)
b8d4c8d0 905 @result{}
001903b5 9061111...111101 (30 bits total)
b8d4c8d0
GM
907@end group
908@end example
909
910In contrast, shifting the pattern of bits one place to the right with
911@code{lsh} looks like this:
912
913@example
914@group
1ddd6622
GM
915(lsh -6 -1) @result{} 536870909
916;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
001903b5 9171111...111010 (30 bits total)
b8d4c8d0 918 @result{}
001903b5 9190111...111101 (30 bits total)
b8d4c8d0
GM
920@end group
921@end example
922
923Here are other examples:
924
925@c !!! Check if lined up in smallbook format! XDVI shows problem
926@c with smallbook but not with regular book! --rjc 16mar92
927@smallexample
928@group
001903b5 929 ; @r{ 30-bit binary values}
b8d4c8d0 930
be14b9ab
PE
931(lsh 5 2) ; 5 = @r{0000...000101}
932 @result{} 20 ; = @r{0000...010100}
b8d4c8d0
GM
933@end group
934@group
935(ash 5 2)
936 @result{} 20
be14b9ab
PE
937(lsh -5 2) ; -5 = @r{1111...111011}
938 @result{} -20 ; = @r{1111...101100}
b8d4c8d0
GM
939(ash -5 2)
940 @result{} -20
941@end group
942@group
be14b9ab
PE
943(lsh 5 -2) ; 5 = @r{0000...000101}
944 @result{} 1 ; = @r{0000...000001}
b8d4c8d0
GM
945@end group
946@group
947(ash 5 -2)
948 @result{} 1
949@end group
950@group
be14b9ab 951(lsh -5 -2) ; -5 = @r{1111...111011}
001903b5 952 @result{} 268435454
be14b9ab 953 ; = @r{0011...111110}
b8d4c8d0
GM
954@end group
955@group
be14b9ab
PE
956(ash -5 -2) ; -5 = @r{1111...111011}
957 @result{} -2 ; = @r{1111...111110}
b8d4c8d0
GM
958@end group
959@end smallexample
960@end defun
961
962@defun logand &rest ints-or-markers
963This function returns the ``logical and'' of the arguments: the
964@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
965set in all the arguments. (``Set'' means that the value of the bit is 1
966rather than 0.)
967
968For example, using 4-bit binary numbers, the ``logical and'' of 13 and
96912 is 12: 1101 combined with 1100 produces 1100.
970In both the binary numbers, the leftmost two bits are set (i.e., they
971are 1's), so the leftmost two bits of the returned value are set.
972However, for the rightmost two bits, each is zero in at least one of
973the arguments, so the rightmost two bits of the returned value are 0's.
974
975@noindent
976Therefore,
977
978@example
979@group
980(logand 13 12)
981 @result{} 12
982@end group
983@end example
984
985If @code{logand} is not passed any argument, it returns a value of
986@minus{}1. This number is an identity element for @code{logand}
987because its binary representation consists entirely of ones. If
988@code{logand} is passed just one argument, it returns that argument.
989
990@smallexample
991@group
001903b5 992 ; @r{ 30-bit binary values}
b8d4c8d0 993
be14b9ab
PE
994(logand 14 13) ; 14 = @r{0000...001110}
995 ; 13 = @r{0000...001101}
996 @result{} 12 ; 12 = @r{0000...001100}
b8d4c8d0
GM
997@end group
998
999@group
be14b9ab
PE
1000(logand 14 13 4) ; 14 = @r{0000...001110}
1001 ; 13 = @r{0000...001101}
1002 ; 4 = @r{0000...000100}
1003 @result{} 4 ; 4 = @r{0000...000100}
b8d4c8d0
GM
1004@end group
1005
1006@group
1007(logand)
be14b9ab 1008 @result{} -1 ; -1 = @r{1111...111111}
b8d4c8d0
GM
1009@end group
1010@end smallexample
1011@end defun
1012
1013@defun logior &rest ints-or-markers
1014This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1015is set in the result if, and only if, the @var{n}th bit is set in at least
1016one of the arguments. If there are no arguments, the result is zero,
1017which is an identity element for this operation. If @code{logior} is
1018passed just one argument, it returns that argument.
1019
1020@smallexample
1021@group
001903b5 1022 ; @r{ 30-bit binary values}
b8d4c8d0 1023
be14b9ab
PE
1024(logior 12 5) ; 12 = @r{0000...001100}
1025 ; 5 = @r{0000...000101}
1026 @result{} 13 ; 13 = @r{0000...001101}
b8d4c8d0
GM
1027@end group
1028
1029@group
be14b9ab
PE
1030(logior 12 5 7) ; 12 = @r{0000...001100}
1031 ; 5 = @r{0000...000101}
1032 ; 7 = @r{0000...000111}
1033 @result{} 15 ; 15 = @r{0000...001111}
b8d4c8d0
GM
1034@end group
1035@end smallexample
1036@end defun
1037
1038@defun logxor &rest ints-or-markers
1039This function returns the ``exclusive or'' of its arguments: the
1040@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1041set in an odd number of the arguments. If there are no arguments, the
1042result is 0, which is an identity element for this operation. If
1043@code{logxor} is passed just one argument, it returns that argument.
1044
1045@smallexample
1046@group
001903b5 1047 ; @r{ 30-bit binary values}
b8d4c8d0 1048
be14b9ab
PE
1049(logxor 12 5) ; 12 = @r{0000...001100}
1050 ; 5 = @r{0000...000101}
1051 @result{} 9 ; 9 = @r{0000...001001}
b8d4c8d0
GM
1052@end group
1053
1054@group
be14b9ab
PE
1055(logxor 12 5 7) ; 12 = @r{0000...001100}
1056 ; 5 = @r{0000...000101}
1057 ; 7 = @r{0000...000111}
1058 @result{} 14 ; 14 = @r{0000...001110}
b8d4c8d0
GM
1059@end group
1060@end smallexample
1061@end defun
1062
1063@defun lognot integer
1064This function returns the logical complement of its argument: the @var{n}th
1065bit is one in the result if, and only if, the @var{n}th bit is zero in
1066@var{integer}, and vice-versa.
1067
1068@example
1069(lognot 5)
1070 @result{} -6
001903b5 1071;; 5 = @r{0000...000101} (30 bits total)
b8d4c8d0 1072;; @r{becomes}
001903b5 1073;; -6 = @r{1111...111010} (30 bits total)
b8d4c8d0
GM
1074@end example
1075@end defun
1076
1077@node Math Functions
1078@section Standard Mathematical Functions
1079@cindex transcendental functions
1080@cindex mathematical functions
1081@cindex floating-point functions
1082
1083 These mathematical functions allow integers as well as floating point
1084numbers as arguments.
1085
1086@defun sin arg
1087@defunx cos arg
1088@defunx tan arg
1089These are the ordinary trigonometric functions, with argument measured
1090in radians.
1091@end defun
1092
1093@defun asin arg
1094The value of @code{(asin @var{arg})} is a number between
1095@ifnottex
1096@minus{}pi/2
1097@end ifnottex
1098@tex
1099@math{-\pi/2}
1100@end tex
1101and
1102@ifnottex
1103pi/2
1104@end ifnottex
1105@tex
1106@math{\pi/2}
1107@end tex
c990426a
PE
1108(inclusive) whose sine is @var{arg}. If @var{arg} is out of range
1109(outside [@minus{}1, 1]), @code{asin} returns a NaN.
b8d4c8d0
GM
1110@end defun
1111
1112@defun acos arg
1113The value of @code{(acos @var{arg})} is a number between 0 and
1114@ifnottex
1115pi
1116@end ifnottex
1117@tex
1118@math{\pi}
1119@end tex
c990426a
PE
1120(inclusive) whose cosine is @var{arg}. If @var{arg} is out of range
1121(outside [@minus{}1, 1]), @code{acos} returns a NaN.
b8d4c8d0
GM
1122@end defun
1123
1124@defun atan y &optional x
1125The value of @code{(atan @var{y})} is a number between
1126@ifnottex
1127@minus{}pi/2
1128@end ifnottex
1129@tex
1130@math{-\pi/2}
1131@end tex
1132and
1133@ifnottex
1134pi/2
1135@end ifnottex
1136@tex
1137@math{\pi/2}
1138@end tex
1139(exclusive) whose tangent is @var{y}. If the optional second
1140argument @var{x} is given, the value of @code{(atan y x)} is the
1141angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1142@code{X} axis.
1143@end defun
1144
1145@defun exp arg
fead402d
CY
1146This is the exponential function; it returns @math{e} to the power
1147@var{arg}.
b8d4c8d0
GM
1148@end defun
1149
1150@defun log arg &optional base
fead402d
CY
1151This function returns the logarithm of @var{arg}, with base
1152@var{base}. If you don't specify @var{base}, the natural base
c990426a
PE
1153@math{e} is used. If @var{arg} or @var{base} is negative, @code{log}
1154returns a NaN.
b8d4c8d0
GM
1155@end defun
1156
1157@ignore
1158@defun expm1 arg
1159This function returns @code{(1- (exp @var{arg}))}, but it is more
1160accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1161is close to 1.
1162@end defun
1163
1164@defun log1p arg
1165This function returns @code{(log (1+ @var{arg}))}, but it is more
1166accurate than that when @var{arg} is so small that adding 1 to it would
1167lose accuracy.
1168@end defun
1169@end ignore
1170
1171@defun log10 arg
c990426a
PE
1172This function returns the logarithm of @var{arg}, with base 10:
1173@code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}.
b8d4c8d0
GM
1174@end defun
1175
1176@defun expt x y
1177This function returns @var{x} raised to power @var{y}. If both
c717b326
PE
1178arguments are integers and @var{y} is positive, the result is an
1179integer; in this case, overflow causes truncation, so watch out.
c990426a
PE
1180If @var{x} is a finite negative number and @var{y} is a finite
1181non-integer, @code{expt} returns a NaN.
b8d4c8d0
GM
1182@end defun
1183
1184@defun sqrt arg
1185This returns the square root of @var{arg}. If @var{arg} is negative,
c990426a 1186@code{sqrt} returns a NaN.
b8d4c8d0
GM
1187@end defun
1188
fead402d
CY
1189In addition, Emacs defines the following common mathematical
1190constants:
1191
1192@defvar float-e
1193The mathematical constant @math{e} (2.71828@dots{}).
1194@end defvar
1195
1196@defvar float-pi
1197The mathematical constant @math{pi} (3.14159@dots{}).
1198@end defvar
1199
b8d4c8d0
GM
1200@node Random Numbers
1201@section Random Numbers
1202@cindex random numbers
1203
1204A deterministic computer program cannot generate true random numbers.
1205For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1206pseudo-random numbers is generated in a deterministic fashion. The
1207numbers are not truly random, but they have certain properties that
1208mimic a random series. For example, all possible values occur equally
1209often in a pseudo-random series.
1210
0e23ef9d 1211In Emacs, pseudo-random numbers are generated from a ``seed''.
b8d4c8d0 1212Starting from any given seed, the @code{random} function always
0e23ef9d
PE
1213generates the same sequence of numbers. Emacs typically starts with a
1214different seed each time, so the sequence of values of @code{random}
1215typically differs in each Emacs run.
1216
1217Sometimes you want the random number sequence to be repeatable. For
1218example, when debugging a program whose behavior depends on the random
1219number sequence, it is helpful to get the same behavior in each
1220program run. To make the sequence repeat, execute @code{(random "")}.
1221This sets the seed to a constant value for your particular Emacs
1222executable (though it may differ for other Emacs builds). You can use
1223other strings to choose various seed values.
b8d4c8d0
GM
1224
1225@defun random &optional limit
1226This function returns a pseudo-random integer. Repeated calls return a
1227series of pseudo-random integers.
1228
1229If @var{limit} is a positive integer, the value is chosen to be
0e23ef9d
PE
1230nonnegative and less than @var{limit}. Otherwise, the value
1231might be any integer representable in Lisp.
b8d4c8d0
GM
1232
1233If @var{limit} is @code{t}, it means to choose a new seed based on the
1234current time of day and on Emacs's process @acronym{ID} number.
b8d4c8d0 1235
0e23ef9d
PE
1236If @var{limit} is a string, it means to choose a new seed based on the
1237string's contents.
1238
b8d4c8d0 1239@end defun