(x_get_customization_string): Don't use value of strcpy.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
85586484 6 Copyright (C) 1993 Free Software Foundation, Inc.
bc78d348
KB
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
29/* We need this for `regex.h', and perhaps for the Emacs include files. */
30#include <sys/types.h>
31
71715da9 32#ifdef HAVE_CONFIG_H
a8cfc9f7
DM
33#include "config.h"
34#endif
35
bc78d348
KB
36/* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38#ifdef emacs
39
bc78d348
KB
40#include "lisp.h"
41#include "buffer.h"
42#include "syntax.h"
43
44/* Emacs uses `NULL' as a predicate. */
45#undef NULL
46
47#else /* not emacs */
48
74da5007
JB
49#ifdef STDC_HEADERS
50#include <stdlib.h>
51#else
52char *malloc ();
53char *realloc ();
54#endif
55
56
bc78d348
KB
57/* We used to test for `BSTRING' here, but only GCC and Emacs define
58 `BSTRING', as far as I know, and neither of them use this code. */
18ec5b05 59#if HAVE_STRING_H || STDC_HEADERS
bc78d348 60#include <string.h>
9114e279 61#ifndef bcmp
bc78d348 62#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
9114e279
KB
63#endif
64#ifndef bcopy
bc78d348 65#define bcopy(s, d, n) memcpy ((d), (s), (n))
9114e279
KB
66#endif
67#ifndef bzero
bc78d348 68#define bzero(s, n) memset ((s), 0, (n))
9114e279 69#endif
bc78d348
KB
70#else
71#include <strings.h>
72#endif
73
bc78d348
KB
74/* Define the syntax stuff for \<, \>, etc. */
75
76/* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78#ifndef Sword
79#define Sword 1
80#endif
81
82#ifdef SYNTAX_TABLE
83
84extern char *re_syntax_table;
85
86#else /* not SYNTAX_TABLE */
87
88/* How many characters in the character set. */
89#define CHAR_SET_SIZE 256
90
91static char re_syntax_table[CHAR_SET_SIZE];
92
93static void
94init_syntax_once ()
95{
96 register int c;
97 static int done = 0;
98
99 if (done)
100 return;
101
102 bzero (re_syntax_table, sizeof re_syntax_table);
103
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
106
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
109
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
112
113 re_syntax_table['_'] = Sword;
114
115 done = 1;
116}
117
118#endif /* not SYNTAX_TABLE */
119
120#define SYNTAX(c) re_syntax_table[c]
121
122#endif /* not emacs */
123\f
124/* Get the interface, including the syntax bits. */
125#include "regex.h"
126
bc78d348
KB
127/* isalpha etc. are used for the character classes. */
128#include <ctype.h>
c6b40788 129
a1dd004b
JB
130/* Jim Meyering writes:
131
132 "... Some ctype macros are valid only for character codes that
133 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
134 using /bin/cc or gcc but without giving an ansi option). So, all
135 ctype uses should be through macros like ISPRINT... If
136 STDC_HEADERS is defined, then autoconf has verified that the ctype
137 macros don't need to be guarded with references to isascii. ...
138 Defining isascii to 1 should let any compiler worth its salt
139 eliminate the && through constant folding." */
140#if ! defined (isascii) || defined (STDC_HEADERS)
141#undef isascii
c6b40788 142#define isascii(c) 1
bc78d348 143#endif
c6b40788
JM
144
145#ifdef isblank
146#define ISBLANK(c) (isascii (c) && isblank (c))
147#else
148#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
bc78d348 149#endif
c6b40788
JM
150#ifdef isgraph
151#define ISGRAPH(c) (isascii (c) && isgraph (c))
152#else
153#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
154#endif
155
156#define ISPRINT(c) (isascii (c) && isprint (c))
157#define ISDIGIT(c) (isascii (c) && isdigit (c))
158#define ISALNUM(c) (isascii (c) && isalnum (c))
159#define ISALPHA(c) (isascii (c) && isalpha (c))
160#define ISCNTRL(c) (isascii (c) && iscntrl (c))
161#define ISLOWER(c) (isascii (c) && islower (c))
162#define ISPUNCT(c) (isascii (c) && ispunct (c))
163#define ISSPACE(c) (isascii (c) && isspace (c))
164#define ISUPPER(c) (isascii (c) && isupper (c))
165#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
bc78d348
KB
166
167#ifndef NULL
168#define NULL 0
169#endif
170
171/* We remove any previous definition of `SIGN_EXTEND_CHAR',
172 since ours (we hope) works properly with all combinations of
173 machines, compilers, `char' and `unsigned char' argument types.
174 (Per Bothner suggested the basic approach.) */
175#undef SIGN_EXTEND_CHAR
176#if __STDC__
177#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
9114e279 178#else /* not __STDC__ */
bc78d348
KB
179/* As in Harbison and Steele. */
180#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
181#endif
182\f
183/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
184 use `alloca' instead of `malloc'. This is because using malloc in
185 re_search* or re_match* could cause memory leaks when C-g is used in
186 Emacs; also, malloc is slower and causes storage fragmentation. On
187 the other hand, malloc is more portable, and easier to debug.
188
189 Because we sometimes use alloca, some routines have to be macros,
190 not functions -- `alloca'-allocated space disappears at the end of the
191 function it is called in. */
192
193#ifdef REGEX_MALLOC
194
195#define REGEX_ALLOCATE malloc
196#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
197
198#else /* not REGEX_MALLOC */
199
200/* Emacs already defines alloca, sometimes. */
201#ifndef alloca
202
203/* Make alloca work the best possible way. */
204#ifdef __GNUC__
205#define alloca __builtin_alloca
206#else /* not __GNUC__ */
207#if HAVE_ALLOCA_H
208#include <alloca.h>
209#else /* not __GNUC__ or HAVE_ALLOCA_H */
210#ifndef _AIX /* Already did AIX, up at the top. */
211char *alloca ();
212#endif /* not _AIX */
213#endif /* not HAVE_ALLOCA_H */
214#endif /* not __GNUC__ */
215
216#endif /* not alloca */
217
218#define REGEX_ALLOCATE alloca
219
220/* Assumes a `char *destination' variable. */
221#define REGEX_REALLOCATE(source, osize, nsize) \
222 (destination = (char *) alloca (nsize), \
223 bcopy (source, destination, osize), \
224 destination)
225
226#endif /* not REGEX_MALLOC */
227
228
229/* True if `size1' is non-NULL and PTR is pointing anywhere inside
230 `string1' or just past its end. This works if PTR is NULL, which is
231 a good thing. */
232#define FIRST_STRING_P(ptr) \
233 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
234
235/* (Re)Allocate N items of type T using malloc, or fail. */
236#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
237#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
e959bada
JB
238#define RETALLOC_IF(addr, n, t) \
239 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
bc78d348
KB
240#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
241
242#define BYTEWIDTH 8 /* In bits. */
243
244#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
245
246#define MAX(a, b) ((a) > (b) ? (a) : (b))
247#define MIN(a, b) ((a) < (b) ? (a) : (b))
248
249typedef char boolean;
250#define false 0
251#define true 1
252\f
253/* These are the command codes that appear in compiled regular
254 expressions. Some opcodes are followed by argument bytes. A
255 command code can specify any interpretation whatsoever for its
256 arguments. Zero bytes may appear in the compiled regular expression.
257
258 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
259 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
260 `exactn' we use here must also be 1. */
261
262typedef enum
263{
264 no_op = 0,
265
266 /* Followed by one byte giving n, then by n literal bytes. */
267 exactn = 1,
268
269 /* Matches any (more or less) character. */
270 anychar,
271
272 /* Matches any one char belonging to specified set. First
273 following byte is number of bitmap bytes. Then come bytes
274 for a bitmap saying which chars are in. Bits in each byte
275 are ordered low-bit-first. A character is in the set if its
276 bit is 1. A character too large to have a bit in the map is
277 automatically not in the set. */
278 charset,
279
280 /* Same parameters as charset, but match any character that is
281 not one of those specified. */
282 charset_not,
283
284 /* Start remembering the text that is matched, for storing in a
285 register. Followed by one byte with the register number, in
286 the range 0 to one less than the pattern buffer's re_nsub
287 field. Then followed by one byte with the number of groups
288 inner to this one. (This last has to be part of the
289 start_memory only because we need it in the on_failure_jump
290 of re_match_2.) */
291 start_memory,
292
293 /* Stop remembering the text that is matched and store it in a
294 memory register. Followed by one byte with the register
295 number, in the range 0 to one less than `re_nsub' in the
296 pattern buffer, and one byte with the number of inner groups,
297 just like `start_memory'. (We need the number of inner
298 groups here because we don't have any easy way of finding the
299 corresponding start_memory when we're at a stop_memory.) */
300 stop_memory,
301
302 /* Match a duplicate of something remembered. Followed by one
303 byte containing the register number. */
304 duplicate,
305
306 /* Fail unless at beginning of line. */
307 begline,
308
309 /* Fail unless at end of line. */
310 endline,
311
312 /* Succeeds if at beginning of buffer (if emacs) or at beginning
313 of string to be matched (if not). */
314 begbuf,
315
316 /* Analogously, for end of buffer/string. */
317 endbuf,
318
319 /* Followed by two byte relative address to which to jump. */
320 jump,
321
322 /* Same as jump, but marks the end of an alternative. */
323 jump_past_alt,
324
325 /* Followed by two-byte relative address of place to resume at
326 in case of failure. */
327 on_failure_jump,
328
329 /* Like on_failure_jump, but pushes a placeholder instead of the
330 current string position when executed. */
331 on_failure_keep_string_jump,
332
333 /* Throw away latest failure point and then jump to following
334 two-byte relative address. */
335 pop_failure_jump,
336
337 /* Change to pop_failure_jump if know won't have to backtrack to
338 match; otherwise change to jump. This is used to jump
339 back to the beginning of a repeat. If what follows this jump
340 clearly won't match what the repeat does, such that we can be
341 sure that there is no use backtracking out of repetitions
342 already matched, then we change it to a pop_failure_jump.
343 Followed by two-byte address. */
344 maybe_pop_jump,
345
346 /* Jump to following two-byte address, and push a dummy failure
347 point. This failure point will be thrown away if an attempt
348 is made to use it for a failure. A `+' construct makes this
349 before the first repeat. Also used as an intermediary kind
350 of jump when compiling an alternative. */
351 dummy_failure_jump,
352
353 /* Push a dummy failure point and continue. Used at the end of
354 alternatives. */
355 push_dummy_failure,
356
357 /* Followed by two-byte relative address and two-byte number n.
358 After matching N times, jump to the address upon failure. */
359 succeed_n,
360
361 /* Followed by two-byte relative address, and two-byte number n.
362 Jump to the address N times, then fail. */
363 jump_n,
364
365 /* Set the following two-byte relative address to the
366 subsequent two-byte number. The address *includes* the two
367 bytes of number. */
368 set_number_at,
369
370 wordchar, /* Matches any word-constituent character. */
371 notwordchar, /* Matches any char that is not a word-constituent. */
372
373 wordbeg, /* Succeeds if at word beginning. */
374 wordend, /* Succeeds if at word end. */
375
376 wordbound, /* Succeeds if at a word boundary. */
377 notwordbound /* Succeeds if not at a word boundary. */
378
379#ifdef emacs
380 ,before_dot, /* Succeeds if before point. */
381 at_dot, /* Succeeds if at point. */
382 after_dot, /* Succeeds if after point. */
383
384 /* Matches any character whose syntax is specified. Followed by
385 a byte which contains a syntax code, e.g., Sword. */
386 syntaxspec,
387
388 /* Matches any character whose syntax is not that specified. */
389 notsyntaxspec
390#endif /* emacs */
391} re_opcode_t;
392\f
393/* Common operations on the compiled pattern. */
394
395/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
396
397#define STORE_NUMBER(destination, number) \
398 do { \
399 (destination)[0] = (number) & 0377; \
400 (destination)[1] = (number) >> 8; \
401 } while (0)
402
403/* Same as STORE_NUMBER, except increment DESTINATION to
404 the byte after where the number is stored. Therefore, DESTINATION
405 must be an lvalue. */
406
407#define STORE_NUMBER_AND_INCR(destination, number) \
408 do { \
409 STORE_NUMBER (destination, number); \
410 (destination) += 2; \
411 } while (0)
412
413/* Put into DESTINATION a number stored in two contiguous bytes starting
414 at SOURCE. */
415
416#define EXTRACT_NUMBER(destination, source) \
417 do { \
418 (destination) = *(source) & 0377; \
419 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
420 } while (0)
421
422#ifdef DEBUG
423static void
424extract_number (dest, source)
425 int *dest;
426 unsigned char *source;
427{
428 int temp = SIGN_EXTEND_CHAR (*(source + 1));
429 *dest = *source & 0377;
430 *dest += temp << 8;
431}
432
433#ifndef EXTRACT_MACROS /* To debug the macros. */
434#undef EXTRACT_NUMBER
435#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
436#endif /* not EXTRACT_MACROS */
437
438#endif /* DEBUG */
439
440/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
441 SOURCE must be an lvalue. */
442
443#define EXTRACT_NUMBER_AND_INCR(destination, source) \
444 do { \
445 EXTRACT_NUMBER (destination, source); \
446 (source) += 2; \
447 } while (0)
448
449#ifdef DEBUG
450static void
451extract_number_and_incr (destination, source)
452 int *destination;
453 unsigned char **source;
454{
455 extract_number (destination, *source);
456 *source += 2;
457}
458
459#ifndef EXTRACT_MACROS
460#undef EXTRACT_NUMBER_AND_INCR
461#define EXTRACT_NUMBER_AND_INCR(dest, src) \
462 extract_number_and_incr (&dest, &src)
463#endif /* not EXTRACT_MACROS */
464
465#endif /* DEBUG */
466\f
467/* If DEBUG is defined, Regex prints many voluminous messages about what
468 it is doing (if the variable `debug' is nonzero). If linked with the
469 main program in `iregex.c', you can enter patterns and strings
470 interactively. And if linked with the main program in `main.c' and
471 the other test files, you can run the already-written tests. */
472
473#ifdef DEBUG
474
475/* We use standard I/O for debugging. */
476#include <stdio.h>
477
478/* It is useful to test things that ``must'' be true when debugging. */
479#include <assert.h>
480
481static int debug = 0;
482
483#define DEBUG_STATEMENT(e) e
484#define DEBUG_PRINT1(x) if (debug) printf (x)
485#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
486#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
9114e279 487#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
bc78d348
KB
488#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
489 if (debug) print_partial_compiled_pattern (s, e)
490#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
491 if (debug) print_double_string (w, s1, sz1, s2, sz2)
492
493
494extern void printchar ();
495
496/* Print the fastmap in human-readable form. */
497
498void
499print_fastmap (fastmap)
500 char *fastmap;
501{
502 unsigned was_a_range = 0;
503 unsigned i = 0;
504
505 while (i < (1 << BYTEWIDTH))
506 {
507 if (fastmap[i++])
508 {
509 was_a_range = 0;
510 printchar (i - 1);
511 while (i < (1 << BYTEWIDTH) && fastmap[i])
512 {
513 was_a_range = 1;
514 i++;
515 }
516 if (was_a_range)
517 {
518 printf ("-");
519 printchar (i - 1);
520 }
521 }
522 }
523 putchar ('\n');
524}
525
526
527/* Print a compiled pattern string in human-readable form, starting at
528 the START pointer into it and ending just before the pointer END. */
529
530void
531print_partial_compiled_pattern (start, end)
532 unsigned char *start;
533 unsigned char *end;
534{
535 int mcnt, mcnt2;
536 unsigned char *p = start;
537 unsigned char *pend = end;
538
539 if (start == NULL)
540 {
541 printf ("(null)\n");
542 return;
543 }
544
545 /* Loop over pattern commands. */
546 while (p < pend)
547 {
b0bef8c5
JB
548 printf ("%d:\t", p - start);
549
bc78d348
KB
550 switch ((re_opcode_t) *p++)
551 {
552 case no_op:
553 printf ("/no_op");
554 break;
555
556 case exactn:
557 mcnt = *p++;
558 printf ("/exactn/%d", mcnt);
559 do
560 {
561 putchar ('/');
562 printchar (*p++);
563 }
564 while (--mcnt);
565 break;
566
567 case start_memory:
568 mcnt = *p++;
569 printf ("/start_memory/%d/%d", mcnt, *p++);
570 break;
571
572 case stop_memory:
573 mcnt = *p++;
574 printf ("/stop_memory/%d/%d", mcnt, *p++);
575 break;
576
577 case duplicate:
578 printf ("/duplicate/%d", *p++);
579 break;
580
581 case anychar:
582 printf ("/anychar");
583 break;
584
585 case charset:
586 case charset_not:
587 {
b0bef8c5
JB
588 register int c, last = -100;
589 register int in_range = 0;
bc78d348 590
b0bef8c5
JB
591 printf ("/charset [%s",
592 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
bc78d348
KB
593
594 assert (p + *p < pend);
595
b0bef8c5
JB
596 for (c = 0; c < 256; c++)
597 if (c / 8 < *p
598 && (p[1 + (c/8)] & (1 << (c % 8))))
599 {
600 /* Are we starting a range? */
601 if (last + 1 == c && ! in_range)
602 {
603 putchar ('-');
604 in_range = 1;
605 }
606 /* Have we broken a range? */
607 else if (last + 1 != c && in_range)
bc78d348 608 {
b0bef8c5
JB
609 printchar (last);
610 in_range = 0;
611 }
bc78d348 612
b0bef8c5
JB
613 if (! in_range)
614 printchar (c);
bc78d348 615
b0bef8c5 616 last = c;
bc78d348 617 }
b0bef8c5
JB
618
619 if (in_range)
620 printchar (last);
621
622 putchar (']');
623
bc78d348 624 p += 1 + *p;
bc78d348 625 }
b0bef8c5 626 break;
bc78d348
KB
627
628 case begline:
629 printf ("/begline");
630 break;
631
632 case endline:
633 printf ("/endline");
634 break;
635
636 case on_failure_jump:
637 extract_number_and_incr (&mcnt, &p);
b0bef8c5 638 printf ("/on_failure_jump to %d", p + mcnt - start);
bc78d348
KB
639 break;
640
641 case on_failure_keep_string_jump:
642 extract_number_and_incr (&mcnt, &p);
b0bef8c5 643 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
bc78d348
KB
644 break;
645
646 case dummy_failure_jump:
647 extract_number_and_incr (&mcnt, &p);
b0bef8c5 648 printf ("/dummy_failure_jump to %d", p + mcnt - start);
bc78d348
KB
649 break;
650
651 case push_dummy_failure:
652 printf ("/push_dummy_failure");
653 break;
654
655 case maybe_pop_jump:
656 extract_number_and_incr (&mcnt, &p);
b0bef8c5 657 printf ("/maybe_pop_jump to %d", p + mcnt - start);
bc78d348
KB
658 break;
659
660 case pop_failure_jump:
661 extract_number_and_incr (&mcnt, &p);
b0bef8c5 662 printf ("/pop_failure_jump to %d", p + mcnt - start);
bc78d348
KB
663 break;
664
665 case jump_past_alt:
666 extract_number_and_incr (&mcnt, &p);
b0bef8c5 667 printf ("/jump_past_alt to %d", p + mcnt - start);
bc78d348
KB
668 break;
669
670 case jump:
671 extract_number_and_incr (&mcnt, &p);
b0bef8c5 672 printf ("/jump to %d", p + mcnt - start);
bc78d348
KB
673 break;
674
675 case succeed_n:
676 extract_number_and_incr (&mcnt, &p);
677 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 678 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
679 break;
680
681 case jump_n:
682 extract_number_and_incr (&mcnt, &p);
683 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 684 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
685 break;
686
687 case set_number_at:
688 extract_number_and_incr (&mcnt, &p);
689 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 690 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
bc78d348
KB
691 break;
692
693 case wordbound:
694 printf ("/wordbound");
695 break;
696
697 case notwordbound:
698 printf ("/notwordbound");
699 break;
700
701 case wordbeg:
702 printf ("/wordbeg");
703 break;
704
705 case wordend:
706 printf ("/wordend");
707
708#ifdef emacs
709 case before_dot:
710 printf ("/before_dot");
711 break;
712
713 case at_dot:
714 printf ("/at_dot");
715 break;
716
717 case after_dot:
718 printf ("/after_dot");
719 break;
720
721 case syntaxspec:
722 printf ("/syntaxspec");
723 mcnt = *p++;
724 printf ("/%d", mcnt);
725 break;
726
727 case notsyntaxspec:
728 printf ("/notsyntaxspec");
729 mcnt = *p++;
730 printf ("/%d", mcnt);
731 break;
732#endif /* emacs */
733
734 case wordchar:
735 printf ("/wordchar");
736 break;
737
738 case notwordchar:
739 printf ("/notwordchar");
740 break;
741
742 case begbuf:
743 printf ("/begbuf");
744 break;
745
746 case endbuf:
747 printf ("/endbuf");
748 break;
749
750 default:
751 printf ("?%d", *(p-1));
752 }
b0bef8c5
JB
753
754 putchar ('\n');
bc78d348 755 }
b0bef8c5
JB
756
757 printf ("%d:\tend of pattern.\n", p - start);
bc78d348
KB
758}
759
760
761void
762print_compiled_pattern (bufp)
763 struct re_pattern_buffer *bufp;
764{
765 unsigned char *buffer = bufp->buffer;
766
767 print_partial_compiled_pattern (buffer, buffer + bufp->used);
768 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
769
770 if (bufp->fastmap_accurate && bufp->fastmap)
771 {
772 printf ("fastmap: ");
773 print_fastmap (bufp->fastmap);
774 }
775
776 printf ("re_nsub: %d\t", bufp->re_nsub);
777 printf ("regs_alloc: %d\t", bufp->regs_allocated);
778 printf ("can_be_null: %d\t", bufp->can_be_null);
779 printf ("newline_anchor: %d\n", bufp->newline_anchor);
780 printf ("no_sub: %d\t", bufp->no_sub);
781 printf ("not_bol: %d\t", bufp->not_bol);
782 printf ("not_eol: %d\t", bufp->not_eol);
783 printf ("syntax: %d\n", bufp->syntax);
784 /* Perhaps we should print the translate table? */
785}
786
787
788void
789print_double_string (where, string1, size1, string2, size2)
790 const char *where;
791 const char *string1;
792 const char *string2;
793 int size1;
794 int size2;
795{
796 unsigned this_char;
797
798 if (where == NULL)
799 printf ("(null)");
800 else
801 {
802 if (FIRST_STRING_P (where))
803 {
804 for (this_char = where - string1; this_char < size1; this_char++)
805 printchar (string1[this_char]);
806
807 where = string2;
808 }
809
810 for (this_char = where - string2; this_char < size2; this_char++)
811 printchar (string2[this_char]);
812 }
813}
814
815#else /* not DEBUG */
816
817#undef assert
818#define assert(e)
819
820#define DEBUG_STATEMENT(e)
821#define DEBUG_PRINT1(x)
822#define DEBUG_PRINT2(x1, x2)
823#define DEBUG_PRINT3(x1, x2, x3)
9114e279 824#define DEBUG_PRINT4(x1, x2, x3, x4)
bc78d348
KB
825#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
826#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
827
828#endif /* not DEBUG */
829\f
830/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
831 also be assigned to arbitrarily: each pattern buffer stores its own
832 syntax, so it can be changed between regex compilations. */
833reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
834
835
836/* Specify the precise syntax of regexps for compilation. This provides
837 for compatibility for various utilities which historically have
838 different, incompatible syntaxes.
839
840 The argument SYNTAX is a bit mask comprised of the various bits
841 defined in regex.h. We return the old syntax. */
842
843reg_syntax_t
844re_set_syntax (syntax)
845 reg_syntax_t syntax;
846{
847 reg_syntax_t ret = re_syntax_options;
848
849 re_syntax_options = syntax;
850 return ret;
851}
852\f
853/* This table gives an error message for each of the error codes listed
854 in regex.h. Obviously the order here has to be same as there. */
855
856static const char *re_error_msg[] =
857 { NULL, /* REG_NOERROR */
858 "No match", /* REG_NOMATCH */
859 "Invalid regular expression", /* REG_BADPAT */
860 "Invalid collation character", /* REG_ECOLLATE */
861 "Invalid character class name", /* REG_ECTYPE */
862 "Trailing backslash", /* REG_EESCAPE */
863 "Invalid back reference", /* REG_ESUBREG */
864 "Unmatched [ or [^", /* REG_EBRACK */
865 "Unmatched ( or \\(", /* REG_EPAREN */
866 "Unmatched \\{", /* REG_EBRACE */
867 "Invalid content of \\{\\}", /* REG_BADBR */
868 "Invalid range end", /* REG_ERANGE */
869 "Memory exhausted", /* REG_ESPACE */
870 "Invalid preceding regular expression", /* REG_BADRPT */
871 "Premature end of regular expression", /* REG_EEND */
872 "Regular expression too big", /* REG_ESIZE */
873 "Unmatched ) or \\)", /* REG_ERPAREN */
874 };
875\f
e959bada
JB
876/* Avoiding alloca during matching, to placate r_alloc. */
877
a822d92f 878/* Define MATCH_MAY_ALLOCATE if we need to make sure that the
e959bada
JB
879 searching and matching functions should not call alloca. On some
880 systems, alloca is implemented in terms of malloc, and if we're
881 using the relocating allocator routines, then malloc could cause a
882 relocation, which might (if the strings being searched are in the
883 ralloc heap) shift the data out from underneath the regexp
85be3101
JB
884 routines.
885
886 Here's another reason to avoid allocation: Emacs insists on
887 processing input from X in a signal handler; processing X input may
888 call malloc; if input arrives while a matching routine is calling
889 malloc, then we're scrod. But Emacs can't just block input while
890 calling matching routines; then we don't notice interrupts when
891 they come in. So, Emacs blocks input around all regexp calls
892 except the matching calls, which it leaves unprotected, in the
893 faith that they will not malloc. */
a822d92f
JB
894
895/* Normally, this is fine. */
896#define MATCH_MAY_ALLOCATE
897
898/* But under some circumstances, it's not. */
85be3101 899#if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
a822d92f 900#undef MATCH_MAY_ALLOCATE
e959bada 901#endif
bc78d348 902
e959bada
JB
903\f
904/* Failure stack declarations and macros; both re_compile_fastmap and
905 re_match_2 use a failure stack. These have to be macros because of
906 REGEX_ALLOCATE. */
907
bc78d348 908
e959bada
JB
909/* Number of failure points for which to initially allocate space
910 when matching. If this number is exceeded, we allocate more
911 space, so it is not a hard limit. */
912#ifndef INIT_FAILURE_ALLOC
913#define INIT_FAILURE_ALLOC 5
914#endif
bc78d348 915
e959bada
JB
916/* Roughly the maximum number of failure points on the stack. Would be
917 exactly that if always used MAX_FAILURE_SPACE each time we failed.
918 This is a variable only so users of regex can assign to it; we never
919 change it ourselves. */
920int re_max_failures = 2000;
bc78d348 921
e959bada 922typedef const unsigned char *fail_stack_elt_t;
bc78d348 923
e959bada
JB
924typedef struct
925{
926 fail_stack_elt_t *stack;
927 unsigned size;
928 unsigned avail; /* Offset of next open position. */
929} fail_stack_type;
bc78d348 930
e959bada
JB
931#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
932#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
933#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
934#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
bc78d348 935
bc78d348 936
e959bada 937/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
bc78d348 938
a822d92f 939#ifdef MATCH_MAY_ALLOCATE
e959bada 940#define INIT_FAIL_STACK() \
bc78d348 941 do { \
e959bada
JB
942 fail_stack.stack = (fail_stack_elt_t *) \
943 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
944 \
945 if (fail_stack.stack == NULL) \
946 return -2; \
947 \
948 fail_stack.size = INIT_FAILURE_ALLOC; \
949 fail_stack.avail = 0; \
bc78d348 950 } while (0)
e959bada
JB
951#else
952#define INIT_FAIL_STACK() \
bc78d348 953 do { \
e959bada 954 fail_stack.avail = 0; \
bc78d348 955 } while (0)
e959bada 956#endif
bc78d348
KB
957
958
e959bada 959/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
bc78d348 960
e959bada
JB
961 Return 1 if succeeds, and 0 if either ran out of memory
962 allocating space for it or it was already too large.
963
964 REGEX_REALLOCATE requires `destination' be declared. */
bc78d348 965
e959bada
JB
966#define DOUBLE_FAIL_STACK(fail_stack) \
967 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
968 ? 0 \
969 : ((fail_stack).stack = (fail_stack_elt_t *) \
970 REGEX_REALLOCATE ((fail_stack).stack, \
971 (fail_stack).size * sizeof (fail_stack_elt_t), \
972 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
973 \
974 (fail_stack).stack == NULL \
975 ? 0 \
976 : ((fail_stack).size <<= 1, \
977 1)))
bc78d348 978
bc78d348 979
e959bada 980/* Push PATTERN_OP on FAIL_STACK.
bc78d348 981
e959bada
JB
982 Return 1 if was able to do so and 0 if ran out of memory allocating
983 space to do so. */
984#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
985 ((FAIL_STACK_FULL () \
986 && !DOUBLE_FAIL_STACK (fail_stack)) \
987 ? 0 \
988 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
989 1))
bc78d348 990
e959bada
JB
991/* This pushes an item onto the failure stack. Must be a four-byte
992 value. Assumes the variable `fail_stack'. Probably should only
993 be called from within `PUSH_FAILURE_POINT'. */
994#define PUSH_FAILURE_ITEM(item) \
995 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
bc78d348 996
e959bada
JB
997/* The complement operation. Assumes `fail_stack' is nonempty. */
998#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
bc78d348 999
e959bada
JB
1000/* Used to omit pushing failure point id's when we're not debugging. */
1001#ifdef DEBUG
1002#define DEBUG_PUSH PUSH_FAILURE_ITEM
1003#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1004#else
1005#define DEBUG_PUSH(item)
1006#define DEBUG_POP(item_addr)
1007#endif
bc78d348 1008
bc78d348 1009
e959bada
JB
1010/* Push the information about the state we will need
1011 if we ever fail back to it.
1012
1013 Requires variables fail_stack, regstart, regend, reg_info, and
1014 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1015 declared.
1016
1017 Does `return FAILURE_CODE' if runs out of memory. */
bc78d348 1018
e959bada
JB
1019#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1020 do { \
1021 char *destination; \
1022 /* Must be int, so when we don't save any registers, the arithmetic \
1023 of 0 + -1 isn't done as unsigned. */ \
1024 int this_reg; \
1025 \
1026 DEBUG_STATEMENT (failure_id++); \
1027 DEBUG_STATEMENT (nfailure_points_pushed++); \
1028 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1029 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1030 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1031 \
1032 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1033 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1034 \
1035 /* Ensure we have enough space allocated for what we will push. */ \
1036 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1037 { \
1038 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1039 return failure_code; \
1040 \
1041 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1042 (fail_stack).size); \
1043 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1044 } \
1045 \
1046 /* Push the info, starting with the registers. */ \
1047 DEBUG_PRINT1 ("\n"); \
1048 \
1049 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1050 this_reg++) \
1051 { \
1052 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1053 DEBUG_STATEMENT (num_regs_pushed++); \
1054 \
1055 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1056 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1057 \
1058 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1059 PUSH_FAILURE_ITEM (regend[this_reg]); \
1060 \
1061 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1062 DEBUG_PRINT2 (" match_null=%d", \
1063 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1064 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1065 DEBUG_PRINT2 (" matched_something=%d", \
1066 MATCHED_SOMETHING (reg_info[this_reg])); \
1067 DEBUG_PRINT2 (" ever_matched=%d", \
1068 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1069 DEBUG_PRINT1 ("\n"); \
1070 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1071 } \
1072 \
1073 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1074 PUSH_FAILURE_ITEM (lowest_active_reg); \
1075 \
1076 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1077 PUSH_FAILURE_ITEM (highest_active_reg); \
1078 \
1079 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1080 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1081 PUSH_FAILURE_ITEM (pattern_place); \
1082 \
1083 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1084 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1085 size2); \
1086 DEBUG_PRINT1 ("'\n"); \
1087 PUSH_FAILURE_ITEM (string_place); \
1088 \
1089 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1090 DEBUG_PUSH (failure_id); \
1091 } while (0)
1092
1093/* This is the number of items that are pushed and popped on the stack
1094 for each register. */
1095#define NUM_REG_ITEMS 3
1096
1097/* Individual items aside from the registers. */
1098#ifdef DEBUG
1099#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1100#else
1101#define NUM_NONREG_ITEMS 4
1102#endif
1103
1104/* We push at most this many items on the stack. */
1105#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1106
1107/* We actually push this many items. */
1108#define NUM_FAILURE_ITEMS \
1109 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1110 + NUM_NONREG_ITEMS)
1111
1112/* How many items can still be added to the stack without overflowing it. */
1113#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1114
1115
1116/* Pops what PUSH_FAIL_STACK pushes.
1117
1118 We restore into the parameters, all of which should be lvalues:
1119 STR -- the saved data position.
1120 PAT -- the saved pattern position.
1121 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1122 REGSTART, REGEND -- arrays of string positions.
1123 REG_INFO -- array of information about each subexpression.
1124
1125 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1126 `pend', `string1', `size1', `string2', and `size2'. */
1127
1128#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1129{ \
1130 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1131 int this_reg; \
1132 const unsigned char *string_temp; \
1133 \
1134 assert (!FAIL_STACK_EMPTY ()); \
1135 \
1136 /* Remove failure points and point to how many regs pushed. */ \
1137 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1138 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1139 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1140 \
1141 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1142 \
1143 DEBUG_POP (&failure_id); \
1144 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1145 \
1146 /* If the saved string location is NULL, it came from an \
1147 on_failure_keep_string_jump opcode, and we want to throw away the \
1148 saved NULL, thus retaining our current position in the string. */ \
1149 string_temp = POP_FAILURE_ITEM (); \
1150 if (string_temp != NULL) \
1151 str = (const char *) string_temp; \
1152 \
1153 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1154 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1155 DEBUG_PRINT1 ("'\n"); \
1156 \
1157 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1158 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1159 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1160 \
1161 /* Restore register info. */ \
1162 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1163 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1164 \
1165 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1166 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1167 \
1168 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1169 { \
1170 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1171 \
1172 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1173 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1174 \
1175 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1177 \
1178 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1180 } \
1181 \
1182 DEBUG_STATEMENT (nfailure_points_popped++); \
1183} /* POP_FAILURE_POINT */
1184
1185
1186\f
1187/* Structure for per-register (a.k.a. per-group) information.
1188 This must not be longer than one word, because we push this value
1189 onto the failure stack. Other register information, such as the
1190 starting and ending positions (which are addresses), and the list of
1191 inner groups (which is a bits list) are maintained in separate
1192 variables.
1193
1194 We are making a (strictly speaking) nonportable assumption here: that
1195 the compiler will pack our bit fields into something that fits into
1196 the type of `word', i.e., is something that fits into one item on the
1197 failure stack. */
1198typedef union
1199{
1200 fail_stack_elt_t word;
1201 struct
1202 {
1203 /* This field is one if this group can match the empty string,
1204 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1205#define MATCH_NULL_UNSET_VALUE 3
1206 unsigned match_null_string_p : 2;
1207 unsigned is_active : 1;
1208 unsigned matched_something : 1;
1209 unsigned ever_matched_something : 1;
1210 } bits;
1211} register_info_type;
1212
1213#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1214#define IS_ACTIVE(R) ((R).bits.is_active)
1215#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1216#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1217
1218
1219/* Call this when have matched a real character; it sets `matched' flags
1220 for the subexpressions which we are currently inside. Also records
1221 that those subexprs have matched. */
1222#define SET_REGS_MATCHED() \
1223 do \
1224 { \
1225 unsigned r; \
1226 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1227 { \
1228 MATCHED_SOMETHING (reg_info[r]) \
1229 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1230 = 1; \
1231 } \
1232 } \
1233 while (0)
1234
1235
1236/* Registers are set to a sentinel when they haven't yet matched. */
1237#define REG_UNSET_VALUE ((char *) -1)
1238#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1239
1240
1241\f
a822d92f 1242/* How do we implement a missing MATCH_MAY_ALLOCATE?
e959bada
JB
1243 We make the fail stack a global thing, and then grow it to
1244 re_max_failures when we compile. */
a822d92f 1245#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
1246static fail_stack_type fail_stack;
1247
1248static const char ** regstart, ** regend;
1249static const char ** old_regstart, ** old_regend;
1250static const char **best_regstart, **best_regend;
1251static register_info_type *reg_info;
1252static const char **reg_dummy;
1253static register_info_type *reg_info_dummy;
1254#endif
1255
1256\f
1257/* Subroutine declarations and macros for regex_compile. */
1258
1259static void store_op1 (), store_op2 ();
1260static void insert_op1 (), insert_op2 ();
1261static boolean at_begline_loc_p (), at_endline_loc_p ();
1262static boolean group_in_compile_stack ();
1263static reg_errcode_t compile_range ();
1264
1265/* Fetch the next character in the uncompiled pattern---translating it
1266 if necessary. Also cast from a signed character in the constant
1267 string passed to us by the user to an unsigned char that we can use
1268 as an array index (in, e.g., `translate'). */
1269#define PATFETCH(c) \
1270 do {if (p == pend) return REG_EEND; \
1271 c = (unsigned char) *p++; \
1272 if (translate) c = translate[c]; \
1273 } while (0)
1274
1275/* Fetch the next character in the uncompiled pattern, with no
1276 translation. */
1277#define PATFETCH_RAW(c) \
1278 do {if (p == pend) return REG_EEND; \
1279 c = (unsigned char) *p++; \
1280 } while (0)
1281
1282/* Go backwards one character in the pattern. */
1283#define PATUNFETCH p--
1284
1285
1286/* If `translate' is non-null, return translate[D], else just D. We
1287 cast the subscript to translate because some data is declared as
1288 `char *', to avoid warnings when a string constant is passed. But
1289 when we use a character as a subscript we must make it unsigned. */
1290#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1291
1292
1293/* Macros for outputting the compiled pattern into `buffer'. */
1294
1295/* If the buffer isn't allocated when it comes in, use this. */
1296#define INIT_BUF_SIZE 32
1297
1298/* Make sure we have at least N more bytes of space in buffer. */
1299#define GET_BUFFER_SPACE(n) \
1300 while (b - bufp->buffer + (n) > bufp->allocated) \
1301 EXTEND_BUFFER ()
1302
1303/* Make sure we have one more byte of buffer space and then add C to it. */
1304#define BUF_PUSH(c) \
1305 do { \
1306 GET_BUFFER_SPACE (1); \
1307 *b++ = (unsigned char) (c); \
1308 } while (0)
1309
1310
1311/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1312#define BUF_PUSH_2(c1, c2) \
1313 do { \
1314 GET_BUFFER_SPACE (2); \
1315 *b++ = (unsigned char) (c1); \
1316 *b++ = (unsigned char) (c2); \
1317 } while (0)
1318
1319
1320/* As with BUF_PUSH_2, except for three bytes. */
1321#define BUF_PUSH_3(c1, c2, c3) \
1322 do { \
1323 GET_BUFFER_SPACE (3); \
1324 *b++ = (unsigned char) (c1); \
1325 *b++ = (unsigned char) (c2); \
1326 *b++ = (unsigned char) (c3); \
1327 } while (0)
1328
1329
1330/* Store a jump with opcode OP at LOC to location TO. We store a
1331 relative address offset by the three bytes the jump itself occupies. */
1332#define STORE_JUMP(op, loc, to) \
1333 store_op1 (op, loc, (to) - (loc) - 3)
1334
1335/* Likewise, for a two-argument jump. */
1336#define STORE_JUMP2(op, loc, to, arg) \
1337 store_op2 (op, loc, (to) - (loc) - 3, arg)
1338
1339/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1340#define INSERT_JUMP(op, loc, to) \
1341 insert_op1 (op, loc, (to) - (loc) - 3, b)
1342
1343/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1344#define INSERT_JUMP2(op, loc, to, arg) \
1345 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1346
1347
1348/* This is not an arbitrary limit: the arguments which represent offsets
1349 into the pattern are two bytes long. So if 2^16 bytes turns out to
1350 be too small, many things would have to change. */
1351#define MAX_BUF_SIZE (1L << 16)
1352
1353
1354/* Extend the buffer by twice its current size via realloc and
1355 reset the pointers that pointed into the old block to point to the
1356 correct places in the new one. If extending the buffer results in it
1357 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1358#define EXTEND_BUFFER() \
1359 do { \
1360 unsigned char *old_buffer = bufp->buffer; \
1361 if (bufp->allocated == MAX_BUF_SIZE) \
1362 return REG_ESIZE; \
1363 bufp->allocated <<= 1; \
1364 if (bufp->allocated > MAX_BUF_SIZE) \
1365 bufp->allocated = MAX_BUF_SIZE; \
1366 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1367 if (bufp->buffer == NULL) \
1368 return REG_ESPACE; \
1369 /* If the buffer moved, move all the pointers into it. */ \
1370 if (old_buffer != bufp->buffer) \
1371 { \
1372 b = (b - old_buffer) + bufp->buffer; \
1373 begalt = (begalt - old_buffer) + bufp->buffer; \
1374 if (fixup_alt_jump) \
1375 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1376 if (laststart) \
1377 laststart = (laststart - old_buffer) + bufp->buffer; \
1378 if (pending_exact) \
1379 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1380 } \
1381 } while (0)
1382
1383
1384/* Since we have one byte reserved for the register number argument to
1385 {start,stop}_memory, the maximum number of groups we can report
1386 things about is what fits in that byte. */
1387#define MAX_REGNUM 255
1388
1389/* But patterns can have more than `MAX_REGNUM' registers. We just
1390 ignore the excess. */
1391typedef unsigned regnum_t;
1392
1393
1394/* Macros for the compile stack. */
1395
1396/* Since offsets can go either forwards or backwards, this type needs to
1397 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1398typedef int pattern_offset_t;
1399
1400typedef struct
1401{
1402 pattern_offset_t begalt_offset;
1403 pattern_offset_t fixup_alt_jump;
1404 pattern_offset_t inner_group_offset;
1405 pattern_offset_t laststart_offset;
1406 regnum_t regnum;
1407} compile_stack_elt_t;
1408
1409
1410typedef struct
1411{
1412 compile_stack_elt_t *stack;
1413 unsigned size;
1414 unsigned avail; /* Offset of next open position. */
1415} compile_stack_type;
1416
1417
1418#define INIT_COMPILE_STACK_SIZE 32
1419
1420#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1421#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1422
1423/* The next available element. */
1424#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1425
1426
1427/* Set the bit for character C in a list. */
1428#define SET_LIST_BIT(c) \
1429 (b[((unsigned char) (c)) / BYTEWIDTH] \
1430 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1431
1432
1433/* Get the next unsigned number in the uncompiled pattern. */
1434#define GET_UNSIGNED_NUMBER(num) \
1435 { if (p != pend) \
1436 { \
1437 PATFETCH (c); \
1438 while (ISDIGIT (c)) \
1439 { \
1440 if (num < 0) \
1441 num = 0; \
1442 num = num * 10 + c - '0'; \
1443 if (p == pend) \
1444 break; \
1445 PATFETCH (c); \
1446 } \
bc78d348
KB
1447 } \
1448 }
1449
1450#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1451
1452#define IS_CHAR_CLASS(string) \
1453 (STREQ (string, "alpha") || STREQ (string, "upper") \
1454 || STREQ (string, "lower") || STREQ (string, "digit") \
1455 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1456 || STREQ (string, "space") || STREQ (string, "print") \
1457 || STREQ (string, "punct") || STREQ (string, "graph") \
1458 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1459\f
1460/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1461 Returns one of error codes defined in `regex.h', or zero for success.
1462
1463 Assumes the `allocated' (and perhaps `buffer') and `translate'
1464 fields are set in BUFP on entry.
1465
1466 If it succeeds, results are put in BUFP (if it returns an error, the
1467 contents of BUFP are undefined):
1468 `buffer' is the compiled pattern;
1469 `syntax' is set to SYNTAX;
1470 `used' is set to the length of the compiled pattern;
9114e279
KB
1471 `fastmap_accurate' is zero;
1472 `re_nsub' is the number of subexpressions in PATTERN;
1473 `not_bol' and `not_eol' are zero;
bc78d348
KB
1474
1475 The `fastmap' and `newline_anchor' fields are neither
1476 examined nor set. */
1477
1478static reg_errcode_t
1479regex_compile (pattern, size, syntax, bufp)
1480 const char *pattern;
1481 int size;
1482 reg_syntax_t syntax;
1483 struct re_pattern_buffer *bufp;
1484{
1485 /* We fetch characters from PATTERN here. Even though PATTERN is
1486 `char *' (i.e., signed), we declare these variables as unsigned, so
1487 they can be reliably used as array indices. */
1488 register unsigned char c, c1;
1489
1490 /* A random tempory spot in PATTERN. */
1491 const char *p1;
1492
1493 /* Points to the end of the buffer, where we should append. */
1494 register unsigned char *b;
1495
1496 /* Keeps track of unclosed groups. */
1497 compile_stack_type compile_stack;
1498
1499 /* Points to the current (ending) position in the pattern. */
1500 const char *p = pattern;
1501 const char *pend = pattern + size;
1502
1503 /* How to translate the characters in the pattern. */
1504 char *translate = bufp->translate;
1505
1506 /* Address of the count-byte of the most recently inserted `exactn'
1507 command. This makes it possible to tell if a new exact-match
1508 character can be added to that command or if the character requires
1509 a new `exactn' command. */
1510 unsigned char *pending_exact = 0;
1511
1512 /* Address of start of the most recently finished expression.
1513 This tells, e.g., postfix * where to find the start of its
1514 operand. Reset at the beginning of groups and alternatives. */
1515 unsigned char *laststart = 0;
1516
1517 /* Address of beginning of regexp, or inside of last group. */
1518 unsigned char *begalt;
1519
1520 /* Place in the uncompiled pattern (i.e., the {) to
1521 which to go back if the interval is invalid. */
1522 const char *beg_interval;
1523
1524 /* Address of the place where a forward jump should go to the end of
1525 the containing expression. Each alternative of an `or' -- except the
1526 last -- ends with a forward jump of this sort. */
1527 unsigned char *fixup_alt_jump = 0;
1528
1529 /* Counts open-groups as they are encountered. Remembered for the
1530 matching close-group on the compile stack, so the same register
1531 number is put in the stop_memory as the start_memory. */
1532 regnum_t regnum = 0;
1533
1534#ifdef DEBUG
1535 DEBUG_PRINT1 ("\nCompiling pattern: ");
1536 if (debug)
1537 {
1538 unsigned debug_count;
1539
1540 for (debug_count = 0; debug_count < size; debug_count++)
1541 printchar (pattern[debug_count]);
1542 putchar ('\n');
1543 }
1544#endif /* DEBUG */
1545
1546 /* Initialize the compile stack. */
1547 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1548 if (compile_stack.stack == NULL)
1549 return REG_ESPACE;
1550
1551 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1552 compile_stack.avail = 0;
1553
1554 /* Initialize the pattern buffer. */
1555 bufp->syntax = syntax;
1556 bufp->fastmap_accurate = 0;
1557 bufp->not_bol = bufp->not_eol = 0;
1558
1559 /* Set `used' to zero, so that if we return an error, the pattern
1560 printer (for debugging) will think there's no pattern. We reset it
1561 at the end. */
1562 bufp->used = 0;
1563
1564 /* Always count groups, whether or not bufp->no_sub is set. */
1565 bufp->re_nsub = 0;
1566
1567#if !defined (emacs) && !defined (SYNTAX_TABLE)
1568 /* Initialize the syntax table. */
1569 init_syntax_once ();
1570#endif
1571
1572 if (bufp->allocated == 0)
1573 {
1574 if (bufp->buffer)
1575 { /* If zero allocated, but buffer is non-null, try to realloc
1576 enough space. This loses if buffer's address is bogus, but
1577 that is the user's responsibility. */
1578 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1579 }
1580 else
1581 { /* Caller did not allocate a buffer. Do it for them. */
1582 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1583 }
1584 if (!bufp->buffer) return REG_ESPACE;
1585
1586 bufp->allocated = INIT_BUF_SIZE;
1587 }
1588
1589 begalt = b = bufp->buffer;
1590
1591 /* Loop through the uncompiled pattern until we're at the end. */
1592 while (p != pend)
1593 {
1594 PATFETCH (c);
1595
1596 switch (c)
1597 {
1598 case '^':
1599 {
1600 if ( /* If at start of pattern, it's an operator. */
1601 p == pattern + 1
1602 /* If context independent, it's an operator. */
1603 || syntax & RE_CONTEXT_INDEP_ANCHORS
1604 /* Otherwise, depends on what's come before. */
1605 || at_begline_loc_p (pattern, p, syntax))
1606 BUF_PUSH (begline);
1607 else
1608 goto normal_char;
1609 }
1610 break;
1611
1612
1613 case '$':
1614 {
1615 if ( /* If at end of pattern, it's an operator. */
1616 p == pend
1617 /* If context independent, it's an operator. */
1618 || syntax & RE_CONTEXT_INDEP_ANCHORS
1619 /* Otherwise, depends on what's next. */
1620 || at_endline_loc_p (p, pend, syntax))
1621 BUF_PUSH (endline);
1622 else
1623 goto normal_char;
1624 }
1625 break;
1626
1627
1628 case '+':
1629 case '?':
1630 if ((syntax & RE_BK_PLUS_QM)
1631 || (syntax & RE_LIMITED_OPS))
1632 goto normal_char;
1633 handle_plus:
1634 case '*':
1635 /* If there is no previous pattern... */
1636 if (!laststart)
1637 {
1638 if (syntax & RE_CONTEXT_INVALID_OPS)
1639 return REG_BADRPT;
1640 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1641 goto normal_char;
1642 }
1643
1644 {
1645 /* Are we optimizing this jump? */
1646 boolean keep_string_p = false;
1647
1648 /* 1 means zero (many) matches is allowed. */
1649 char zero_times_ok = 0, many_times_ok = 0;
1650
1651 /* If there is a sequence of repetition chars, collapse it
1652 down to just one (the right one). We can't combine
1653 interval operators with these because of, e.g., `a{2}*',
1654 which should only match an even number of `a's. */
1655
1656 for (;;)
1657 {
1658 zero_times_ok |= c != '+';
1659 many_times_ok |= c != '?';
1660
1661 if (p == pend)
1662 break;
1663
1664 PATFETCH (c);
1665
1666 if (c == '*'
1667 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1668 ;
1669
1670 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1671 {
1672 if (p == pend) return REG_EESCAPE;
1673
1674 PATFETCH (c1);
1675 if (!(c1 == '+' || c1 == '?'))
1676 {
1677 PATUNFETCH;
1678 PATUNFETCH;
1679 break;
1680 }
1681
1682 c = c1;
1683 }
1684 else
1685 {
1686 PATUNFETCH;
1687 break;
1688 }
1689
1690 /* If we get here, we found another repeat character. */
1691 }
1692
1693 /* Star, etc. applied to an empty pattern is equivalent
1694 to an empty pattern. */
1695 if (!laststart)
1696 break;
1697
1698 /* Now we know whether or not zero matches is allowed
1699 and also whether or not two or more matches is allowed. */
1700 if (many_times_ok)
1701 { /* More than one repetition is allowed, so put in at the
1702 end a backward relative jump from `b' to before the next
1703 jump we're going to put in below (which jumps from
1704 laststart to after this jump).
1705
1706 But if we are at the `*' in the exact sequence `.*\n',
1707 insert an unconditional jump backwards to the .,
1708 instead of the beginning of the loop. This way we only
1709 push a failure point once, instead of every time
1710 through the loop. */
1711 assert (p - 1 > pattern);
1712
1713 /* Allocate the space for the jump. */
1714 GET_BUFFER_SPACE (3);
1715
1716 /* We know we are not at the first character of the pattern,
1717 because laststart was nonzero. And we've already
1718 incremented `p', by the way, to be the character after
1719 the `*'. Do we have to do something analogous here
1720 for null bytes, because of RE_DOT_NOT_NULL? */
1721 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
5745b086 1722 && zero_times_ok
bc78d348
KB
1723 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1724 && !(syntax & RE_DOT_NEWLINE))
1725 { /* We have .*\n. */
1726 STORE_JUMP (jump, b, laststart);
1727 keep_string_p = true;
1728 }
1729 else
1730 /* Anything else. */
1731 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1732
1733 /* We've added more stuff to the buffer. */
1734 b += 3;
1735 }
1736
1737 /* On failure, jump from laststart to b + 3, which will be the
1738 end of the buffer after this jump is inserted. */
1739 GET_BUFFER_SPACE (3);
1740 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1741 : on_failure_jump,
1742 laststart, b + 3);
1743 pending_exact = 0;
1744 b += 3;
1745
1746 if (!zero_times_ok)
1747 {
1748 /* At least one repetition is required, so insert a
1749 `dummy_failure_jump' before the initial
1750 `on_failure_jump' instruction of the loop. This
1751 effects a skip over that instruction the first time
1752 we hit that loop. */
1753 GET_BUFFER_SPACE (3);
1754 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1755 b += 3;
1756 }
1757 }
1758 break;
1759
1760
1761 case '.':
1762 laststart = b;
1763 BUF_PUSH (anychar);
1764 break;
1765
1766
1767 case '[':
1768 {
1769 boolean had_char_class = false;
1770
1771 if (p == pend) return REG_EBRACK;
1772
1773 /* Ensure that we have enough space to push a charset: the
1774 opcode, the length count, and the bitset; 34 bytes in all. */
1775 GET_BUFFER_SPACE (34);
1776
1777 laststart = b;
1778
1779 /* We test `*p == '^' twice, instead of using an if
1780 statement, so we only need one BUF_PUSH. */
1781 BUF_PUSH (*p == '^' ? charset_not : charset);
1782 if (*p == '^')
1783 p++;
1784
1785 /* Remember the first position in the bracket expression. */
1786 p1 = p;
1787
1788 /* Push the number of bytes in the bitmap. */
1789 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1790
1791 /* Clear the whole map. */
1792 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1793
1794 /* charset_not matches newline according to a syntax bit. */
1795 if ((re_opcode_t) b[-2] == charset_not
1796 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1797 SET_LIST_BIT ('\n');
1798
1799 /* Read in characters and ranges, setting map bits. */
1800 for (;;)
1801 {
1802 if (p == pend) return REG_EBRACK;
1803
1804 PATFETCH (c);
1805
1806 /* \ might escape characters inside [...] and [^...]. */
1807 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1808 {
1809 if (p == pend) return REG_EESCAPE;
1810
1811 PATFETCH (c1);
1812 SET_LIST_BIT (c1);
1813 continue;
1814 }
1815
1816 /* Could be the end of the bracket expression. If it's
1817 not (i.e., when the bracket expression is `[]' so
1818 far), the ']' character bit gets set way below. */
1819 if (c == ']' && p != p1 + 1)
1820 break;
1821
1822 /* Look ahead to see if it's a range when the last thing
1823 was a character class. */
1824 if (had_char_class && c == '-' && *p != ']')
1825 return REG_ERANGE;
1826
1827 /* Look ahead to see if it's a range when the last thing
1828 was a character: if this is a hyphen not at the
1829 beginning or the end of a list, then it's the range
1830 operator. */
1831 if (c == '-'
1832 && !(p - 2 >= pattern && p[-2] == '[')
1833 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1834 && *p != ']')
1835 {
1836 reg_errcode_t ret
1837 = compile_range (&p, pend, translate, syntax, b);
1838 if (ret != REG_NOERROR) return ret;
1839 }
1840
1841 else if (p[0] == '-' && p[1] != ']')
1842 { /* This handles ranges made up of characters only. */
1843 reg_errcode_t ret;
1844
1845 /* Move past the `-'. */
1846 PATFETCH (c1);
1847
1848 ret = compile_range (&p, pend, translate, syntax, b);
1849 if (ret != REG_NOERROR) return ret;
1850 }
1851
1852 /* See if we're at the beginning of a possible character
1853 class. */
1854
1855 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1856 { /* Leave room for the null. */
1857 char str[CHAR_CLASS_MAX_LENGTH + 1];
1858
1859 PATFETCH (c);
1860 c1 = 0;
1861
1862 /* If pattern is `[[:'. */
1863 if (p == pend) return REG_EBRACK;
1864
1865 for (;;)
1866 {
1867 PATFETCH (c);
1868 if (c == ':' || c == ']' || p == pend
1869 || c1 == CHAR_CLASS_MAX_LENGTH)
1870 break;
1871 str[c1++] = c;
1872 }
1873 str[c1] = '\0';
1874
1875 /* If isn't a word bracketed by `[:' and:`]':
1876 undo the ending character, the letters, and leave
1877 the leading `:' and `[' (but set bits for them). */
1878 if (c == ':' && *p == ']')
1879 {
1880 int ch;
1881 boolean is_alnum = STREQ (str, "alnum");
1882 boolean is_alpha = STREQ (str, "alpha");
1883 boolean is_blank = STREQ (str, "blank");
1884 boolean is_cntrl = STREQ (str, "cntrl");
1885 boolean is_digit = STREQ (str, "digit");
1886 boolean is_graph = STREQ (str, "graph");
1887 boolean is_lower = STREQ (str, "lower");
1888 boolean is_print = STREQ (str, "print");
1889 boolean is_punct = STREQ (str, "punct");
1890 boolean is_space = STREQ (str, "space");
1891 boolean is_upper = STREQ (str, "upper");
1892 boolean is_xdigit = STREQ (str, "xdigit");
1893
1894 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1895
1896 /* Throw away the ] at the end of the character
1897 class. */
1898 PATFETCH (c);
1899
1900 if (p == pend) return REG_EBRACK;
1901
1902 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1903 {
c6b40788
JM
1904 if ( (is_alnum && ISALNUM (ch))
1905 || (is_alpha && ISALPHA (ch))
1906 || (is_blank && ISBLANK (ch))
1907 || (is_cntrl && ISCNTRL (ch))
1908 || (is_digit && ISDIGIT (ch))
1909 || (is_graph && ISGRAPH (ch))
1910 || (is_lower && ISLOWER (ch))
1911 || (is_print && ISPRINT (ch))
1912 || (is_punct && ISPUNCT (ch))
1913 || (is_space && ISSPACE (ch))
1914 || (is_upper && ISUPPER (ch))
1915 || (is_xdigit && ISXDIGIT (ch)))
bc78d348
KB
1916 SET_LIST_BIT (ch);
1917 }
1918 had_char_class = true;
1919 }
1920 else
1921 {
1922 c1++;
1923 while (c1--)
1924 PATUNFETCH;
1925 SET_LIST_BIT ('[');
1926 SET_LIST_BIT (':');
1927 had_char_class = false;
1928 }
1929 }
1930 else
1931 {
1932 had_char_class = false;
1933 SET_LIST_BIT (c);
1934 }
1935 }
1936
1937 /* Discard any (non)matching list bytes that are all 0 at the
1938 end of the map. Decrease the map-length byte too. */
1939 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1940 b[-1]--;
1941 b += b[-1];
1942 }
1943 break;
1944
1945
1946 case '(':
1947 if (syntax & RE_NO_BK_PARENS)
1948 goto handle_open;
1949 else
1950 goto normal_char;
1951
1952
1953 case ')':
1954 if (syntax & RE_NO_BK_PARENS)
1955 goto handle_close;
1956 else
1957 goto normal_char;
1958
1959
1960 case '\n':
1961 if (syntax & RE_NEWLINE_ALT)
1962 goto handle_alt;
1963 else
1964 goto normal_char;
1965
1966
1967 case '|':
1968 if (syntax & RE_NO_BK_VBAR)
1969 goto handle_alt;
1970 else
1971 goto normal_char;
1972
1973
1974 case '{':
1975 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1976 goto handle_interval;
1977 else
1978 goto normal_char;
1979
1980
1981 case '\\':
1982 if (p == pend) return REG_EESCAPE;
1983
1984 /* Do not translate the character after the \, so that we can
1985 distinguish, e.g., \B from \b, even if we normally would
1986 translate, e.g., B to b. */
1987 PATFETCH_RAW (c);
1988
1989 switch (c)
1990 {
1991 case '(':
1992 if (syntax & RE_NO_BK_PARENS)
1993 goto normal_backslash;
1994
1995 handle_open:
1996 bufp->re_nsub++;
1997 regnum++;
1998
1999 if (COMPILE_STACK_FULL)
2000 {
2001 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2002 compile_stack_elt_t);
2003 if (compile_stack.stack == NULL) return REG_ESPACE;
2004
2005 compile_stack.size <<= 1;
2006 }
2007
2008 /* These are the values to restore when we hit end of this
2009 group. They are all relative offsets, so that if the
2010 whole pattern moves because of realloc, they will still
2011 be valid. */
2012 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2013 COMPILE_STACK_TOP.fixup_alt_jump
2014 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2015 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2016 COMPILE_STACK_TOP.regnum = regnum;
2017
2018 /* We will eventually replace the 0 with the number of
2019 groups inner to this one. But do not push a
2020 start_memory for groups beyond the last one we can
2021 represent in the compiled pattern. */
2022 if (regnum <= MAX_REGNUM)
2023 {
2024 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2025 BUF_PUSH_3 (start_memory, regnum, 0);
2026 }
2027
2028 compile_stack.avail++;
2029
2030 fixup_alt_jump = 0;
2031 laststart = 0;
2032 begalt = b;
5745b086
JB
2033 /* If we've reached MAX_REGNUM groups, then this open
2034 won't actually generate any code, so we'll have to
2035 clear pending_exact explicitly. */
2036 pending_exact = 0;
bc78d348
KB
2037 break;
2038
2039
2040 case ')':
2041 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2042
2043 if (COMPILE_STACK_EMPTY)
2044 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2045 goto normal_backslash;
2046 else
2047 return REG_ERPAREN;
2048
2049 handle_close:
2050 if (fixup_alt_jump)
2051 { /* Push a dummy failure point at the end of the
2052 alternative for a possible future
2053 `pop_failure_jump' to pop. See comments at
2054 `push_dummy_failure' in `re_match_2'. */
2055 BUF_PUSH (push_dummy_failure);
2056
2057 /* We allocated space for this jump when we assigned
2058 to `fixup_alt_jump', in the `handle_alt' case below. */
2059 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2060 }
2061
2062 /* See similar code for backslashed left paren above. */
2063 if (COMPILE_STACK_EMPTY)
2064 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2065 goto normal_char;
2066 else
2067 return REG_ERPAREN;
2068
2069 /* Since we just checked for an empty stack above, this
2070 ``can't happen''. */
2071 assert (compile_stack.avail != 0);
2072 {
2073 /* We don't just want to restore into `regnum', because
2074 later groups should continue to be numbered higher,
2075 as in `(ab)c(de)' -- the second group is #2. */
2076 regnum_t this_group_regnum;
2077
2078 compile_stack.avail--;
2079 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2080 fixup_alt_jump
2081 = COMPILE_STACK_TOP.fixup_alt_jump
2082 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2083 : 0;
2084 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2085 this_group_regnum = COMPILE_STACK_TOP.regnum;
5745b086
JB
2086 /* If we've reached MAX_REGNUM groups, then this open
2087 won't actually generate any code, so we'll have to
2088 clear pending_exact explicitly. */
2089 pending_exact = 0;
bc78d348
KB
2090
2091 /* We're at the end of the group, so now we know how many
2092 groups were inside this one. */
2093 if (this_group_regnum <= MAX_REGNUM)
2094 {
2095 unsigned char *inner_group_loc
2096 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2097
2098 *inner_group_loc = regnum - this_group_regnum;
2099 BUF_PUSH_3 (stop_memory, this_group_regnum,
2100 regnum - this_group_regnum);
2101 }
2102 }
2103 break;
2104
2105
2106 case '|': /* `\|'. */
2107 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2108 goto normal_backslash;
2109 handle_alt:
2110 if (syntax & RE_LIMITED_OPS)
2111 goto normal_char;
2112
2113 /* Insert before the previous alternative a jump which
2114 jumps to this alternative if the former fails. */
2115 GET_BUFFER_SPACE (3);
2116 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2117 pending_exact = 0;
2118 b += 3;
2119
2120 /* The alternative before this one has a jump after it
2121 which gets executed if it gets matched. Adjust that
2122 jump so it will jump to this alternative's analogous
2123 jump (put in below, which in turn will jump to the next
2124 (if any) alternative's such jump, etc.). The last such
2125 jump jumps to the correct final destination. A picture:
2126 _____ _____
2127 | | | |
2128 | v | v
2129 a | b | c
2130
9114e279
KB
2131 If we are at `b', then fixup_alt_jump right now points to a
2132 three-byte space after `a'. We'll put in the jump, set
2133 fixup_alt_jump to right after `b', and leave behind three
2134 bytes which we'll fill in when we get to after `c'. */
bc78d348
KB
2135
2136 if (fixup_alt_jump)
2137 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2138
2139 /* Mark and leave space for a jump after this alternative,
2140 to be filled in later either by next alternative or
2141 when know we're at the end of a series of alternatives. */
2142 fixup_alt_jump = b;
2143 GET_BUFFER_SPACE (3);
2144 b += 3;
2145
2146 laststart = 0;
2147 begalt = b;
2148 break;
2149
2150
2151 case '{':
2152 /* If \{ is a literal. */
2153 if (!(syntax & RE_INTERVALS)
2154 /* If we're at `\{' and it's not the open-interval
2155 operator. */
2156 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2157 || (p - 2 == pattern && p == pend))
2158 goto normal_backslash;
2159
2160 handle_interval:
2161 {
2162 /* If got here, then the syntax allows intervals. */
2163
2164 /* At least (most) this many matches must be made. */
2165 int lower_bound = -1, upper_bound = -1;
2166
2167 beg_interval = p - 1;
2168
2169 if (p == pend)
2170 {
2171 if (syntax & RE_NO_BK_BRACES)
2172 goto unfetch_interval;
2173 else
2174 return REG_EBRACE;
2175 }
2176
2177 GET_UNSIGNED_NUMBER (lower_bound);
2178
2179 if (c == ',')
2180 {
2181 GET_UNSIGNED_NUMBER (upper_bound);
2182 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2183 }
2184 else
2185 /* Interval such as `{1}' => match exactly once. */
2186 upper_bound = lower_bound;
2187
2188 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2189 || lower_bound > upper_bound)
2190 {
2191 if (syntax & RE_NO_BK_BRACES)
2192 goto unfetch_interval;
2193 else
2194 return REG_BADBR;
2195 }
2196
2197 if (!(syntax & RE_NO_BK_BRACES))
2198 {
2199 if (c != '\\') return REG_EBRACE;
2200
2201 PATFETCH (c);
2202 }
2203
2204 if (c != '}')
2205 {
2206 if (syntax & RE_NO_BK_BRACES)
2207 goto unfetch_interval;
2208 else
2209 return REG_BADBR;
2210 }
2211
2212 /* We just parsed a valid interval. */
2213
2214 /* If it's invalid to have no preceding re. */
2215 if (!laststart)
2216 {
2217 if (syntax & RE_CONTEXT_INVALID_OPS)
2218 return REG_BADRPT;
2219 else if (syntax & RE_CONTEXT_INDEP_OPS)
2220 laststart = b;
2221 else
2222 goto unfetch_interval;
2223 }
2224
2225 /* If the upper bound is zero, don't want to succeed at
2226 all; jump from `laststart' to `b + 3', which will be
2227 the end of the buffer after we insert the jump. */
2228 if (upper_bound == 0)
2229 {
2230 GET_BUFFER_SPACE (3);
2231 INSERT_JUMP (jump, laststart, b + 3);
2232 b += 3;
2233 }
2234
2235 /* Otherwise, we have a nontrivial interval. When
2236 we're all done, the pattern will look like:
2237 set_number_at <jump count> <upper bound>
2238 set_number_at <succeed_n count> <lower bound>
2239 succeed_n <after jump addr> <succed_n count>
2240 <body of loop>
2241 jump_n <succeed_n addr> <jump count>
2242 (The upper bound and `jump_n' are omitted if
2243 `upper_bound' is 1, though.) */
2244 else
2245 { /* If the upper bound is > 1, we need to insert
2246 more at the end of the loop. */
2247 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2248
2249 GET_BUFFER_SPACE (nbytes);
2250
2251 /* Initialize lower bound of the `succeed_n', even
2252 though it will be set during matching by its
2253 attendant `set_number_at' (inserted next),
2254 because `re_compile_fastmap' needs to know.
2255 Jump to the `jump_n' we might insert below. */
2256 INSERT_JUMP2 (succeed_n, laststart,
2257 b + 5 + (upper_bound > 1) * 5,
2258 lower_bound);
2259 b += 5;
2260
2261 /* Code to initialize the lower bound. Insert
2262 before the `succeed_n'. The `5' is the last two
2263 bytes of this `set_number_at', plus 3 bytes of
2264 the following `succeed_n'. */
2265 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2266 b += 5;
2267
2268 if (upper_bound > 1)
2269 { /* More than one repetition is allowed, so
2270 append a backward jump to the `succeed_n'
2271 that starts this interval.
2272
2273 When we've reached this during matching,
2274 we'll have matched the interval once, so
2275 jump back only `upper_bound - 1' times. */
2276 STORE_JUMP2 (jump_n, b, laststart + 5,
2277 upper_bound - 1);
2278 b += 5;
2279
2280 /* The location we want to set is the second
2281 parameter of the `jump_n'; that is `b-2' as
2282 an absolute address. `laststart' will be
2283 the `set_number_at' we're about to insert;
2284 `laststart+3' the number to set, the source
2285 for the relative address. But we are
2286 inserting into the middle of the pattern --
2287 so everything is getting moved up by 5.
2288 Conclusion: (b - 2) - (laststart + 3) + 5,
2289 i.e., b - laststart.
2290
2291 We insert this at the beginning of the loop
2292 so that if we fail during matching, we'll
2293 reinitialize the bounds. */
2294 insert_op2 (set_number_at, laststart, b - laststart,
2295 upper_bound - 1, b);
2296 b += 5;
2297 }
2298 }
2299 pending_exact = 0;
2300 beg_interval = NULL;
2301 }
2302 break;
2303
2304 unfetch_interval:
2305 /* If an invalid interval, match the characters as literals. */
2306 assert (beg_interval);
2307 p = beg_interval;
2308 beg_interval = NULL;
2309
2310 /* normal_char and normal_backslash need `c'. */
2311 PATFETCH (c);
2312
2313 if (!(syntax & RE_NO_BK_BRACES))
2314 {
2315 if (p > pattern && p[-1] == '\\')
2316 goto normal_backslash;
2317 }
2318 goto normal_char;
2319
2320#ifdef emacs
2321 /* There is no way to specify the before_dot and after_dot
2322 operators. rms says this is ok. --karl */
2323 case '=':
2324 BUF_PUSH (at_dot);
2325 break;
2326
2327 case 's':
2328 laststart = b;
2329 PATFETCH (c);
2330 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2331 break;
2332
2333 case 'S':
2334 laststart = b;
2335 PATFETCH (c);
2336 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2337 break;
2338#endif /* emacs */
2339
2340
2341 case 'w':
2342 laststart = b;
2343 BUF_PUSH (wordchar);
2344 break;
2345
2346
2347 case 'W':
2348 laststart = b;
2349 BUF_PUSH (notwordchar);
2350 break;
2351
2352
2353 case '<':
2354 BUF_PUSH (wordbeg);
2355 break;
2356
2357 case '>':
2358 BUF_PUSH (wordend);
2359 break;
2360
2361 case 'b':
2362 BUF_PUSH (wordbound);
2363 break;
2364
2365 case 'B':
2366 BUF_PUSH (notwordbound);
2367 break;
2368
2369 case '`':
2370 BUF_PUSH (begbuf);
2371 break;
2372
2373 case '\'':
2374 BUF_PUSH (endbuf);
2375 break;
2376
2377 case '1': case '2': case '3': case '4': case '5':
2378 case '6': case '7': case '8': case '9':
2379 if (syntax & RE_NO_BK_REFS)
2380 goto normal_char;
2381
2382 c1 = c - '0';
2383
2384 if (c1 > regnum)
2385 return REG_ESUBREG;
2386
2387 /* Can't back reference to a subexpression if inside of it. */
2388 if (group_in_compile_stack (compile_stack, c1))
2389 goto normal_char;
2390
2391 laststart = b;
2392 BUF_PUSH_2 (duplicate, c1);
2393 break;
2394
2395
2396 case '+':
2397 case '?':
2398 if (syntax & RE_BK_PLUS_QM)
2399 goto handle_plus;
2400 else
2401 goto normal_backslash;
2402
2403 default:
2404 normal_backslash:
2405 /* You might think it would be useful for \ to mean
2406 not to translate; but if we don't translate it
2407 it will never match anything. */
2408 c = TRANSLATE (c);
2409 goto normal_char;
2410 }
2411 break;
2412
2413
2414 default:
2415 /* Expects the character in `c'. */
2416 normal_char:
2417 /* If no exactn currently being built. */
2418 if (!pending_exact
2419
2420 /* If last exactn not at current position. */
2421 || pending_exact + *pending_exact + 1 != b
2422
2423 /* We have only one byte following the exactn for the count. */
2424 || *pending_exact == (1 << BYTEWIDTH) - 1
2425
2426 /* If followed by a repetition operator. */
2427 || *p == '*' || *p == '^'
2428 || ((syntax & RE_BK_PLUS_QM)
2429 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2430 : (*p == '+' || *p == '?'))
2431 || ((syntax & RE_INTERVALS)
2432 && ((syntax & RE_NO_BK_BRACES)
2433 ? *p == '{'
2434 : (p[0] == '\\' && p[1] == '{'))))
2435 {
2436 /* Start building a new exactn. */
2437
2438 laststart = b;
2439
2440 BUF_PUSH_2 (exactn, 0);
2441 pending_exact = b - 1;
2442 }
2443
2444 BUF_PUSH (c);
2445 (*pending_exact)++;
2446 break;
2447 } /* switch (c) */
e959bada 2448 } /* while p != pend */
4af46de6 2449
e959bada
JB
2450
2451 /* Through the pattern now. */
2452
2453 if (fixup_alt_jump)
2454 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
bc78d348 2455
e959bada
JB
2456 if (!COMPILE_STACK_EMPTY)
2457 return REG_EPAREN;
bc78d348 2458
e959bada 2459 free (compile_stack.stack);
bc78d348 2460
e959bada
JB
2461 /* We have succeeded; set the length of the buffer. */
2462 bufp->used = b - bufp->buffer;
2463
2464#ifdef DEBUG
2465 if (debug)
bc78d348 2466 {
e959bada
JB
2467 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2468 print_compiled_pattern (bufp);
bc78d348 2469 }
e959bada 2470#endif /* DEBUG */
bc78d348 2471
a822d92f 2472#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
2473 /* Initialize the failure stack to the largest possible stack. This
2474 isn't necessary unless we're trying to avoid calling alloca in
2475 the search and match routines. */
2476 {
2477 int num_regs = bufp->re_nsub + 1;
2478
2479 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2480 is strictly greater than re_max_failures, the largest possible stack
2481 is 2 * re_max_failures failure points. */
2482 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2483 if (fail_stack.stack)
2484 fail_stack.stack =
2485 (fail_stack_elt_t *) realloc (fail_stack.stack,
2486 (fail_stack.size
2487 * sizeof (fail_stack_elt_t)));
2488 else
2489 fail_stack.stack =
2490 (fail_stack_elt_t *) malloc (fail_stack.size
2491 * sizeof (fail_stack_elt_t));
2492
2493 /* Initialize some other variables the matcher uses. */
2494 RETALLOC_IF (regstart, num_regs, const char *);
2495 RETALLOC_IF (regend, num_regs, const char *);
2496 RETALLOC_IF (old_regstart, num_regs, const char *);
2497 RETALLOC_IF (old_regend, num_regs, const char *);
2498 RETALLOC_IF (best_regstart, num_regs, const char *);
2499 RETALLOC_IF (best_regend, num_regs, const char *);
2500 RETALLOC_IF (reg_info, num_regs, register_info_type);
2501 RETALLOC_IF (reg_dummy, num_regs, const char *);
2502 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2503 }
bc78d348
KB
2504#endif
2505
e959bada
JB
2506 return REG_NOERROR;
2507} /* regex_compile */
2508\f
2509/* Subroutines for `regex_compile'. */
bc78d348 2510
e959bada 2511/* Store OP at LOC followed by two-byte integer parameter ARG. */
bc78d348 2512
e959bada
JB
2513static void
2514store_op1 (op, loc, arg)
2515 re_opcode_t op;
2516 unsigned char *loc;
2517 int arg;
bc78d348 2518{
e959bada
JB
2519 *loc = (unsigned char) op;
2520 STORE_NUMBER (loc + 1, arg);
2521}
bc78d348 2522
bc78d348 2523
e959bada 2524/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2525
e959bada
JB
2526static void
2527store_op2 (op, loc, arg1, arg2)
2528 re_opcode_t op;
2529 unsigned char *loc;
2530 int arg1, arg2;
2531{
2532 *loc = (unsigned char) op;
2533 STORE_NUMBER (loc + 1, arg1);
2534 STORE_NUMBER (loc + 3, arg2);
2535}
bc78d348 2536
bc78d348 2537
e959bada
JB
2538/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2539 for OP followed by two-byte integer parameter ARG. */
bc78d348 2540
e959bada
JB
2541static void
2542insert_op1 (op, loc, arg, end)
2543 re_opcode_t op;
2544 unsigned char *loc;
2545 int arg;
2546 unsigned char *end;
2547{
2548 register unsigned char *pfrom = end;
2549 register unsigned char *pto = end + 3;
bc78d348 2550
e959bada
JB
2551 while (pfrom != loc)
2552 *--pto = *--pfrom;
2553
2554 store_op1 (op, loc, arg);
2555}
bc78d348 2556
bc78d348 2557
e959bada 2558/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2559
e959bada
JB
2560static void
2561insert_op2 (op, loc, arg1, arg2, end)
2562 re_opcode_t op;
2563 unsigned char *loc;
2564 int arg1, arg2;
2565 unsigned char *end;
2566{
2567 register unsigned char *pfrom = end;
2568 register unsigned char *pto = end + 5;
bc78d348 2569
e959bada
JB
2570 while (pfrom != loc)
2571 *--pto = *--pfrom;
2572
2573 store_op2 (op, loc, arg1, arg2);
2574}
bc78d348 2575
bc78d348 2576
e959bada
JB
2577/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2578 after an alternative or a begin-subexpression. We assume there is at
2579 least one character before the ^. */
bc78d348 2580
e959bada
JB
2581static boolean
2582at_begline_loc_p (pattern, p, syntax)
2583 const char *pattern, *p;
2584 reg_syntax_t syntax;
2585{
2586 const char *prev = p - 2;
2587 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2588
2589 return
2590 /* After a subexpression? */
2591 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2592 /* After an alternative? */
2593 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2594}
bc78d348 2595
bc78d348 2596
e959bada
JB
2597/* The dual of at_begline_loc_p. This one is for $. We assume there is
2598 at least one character after the $, i.e., `P < PEND'. */
2599
2600static boolean
2601at_endline_loc_p (p, pend, syntax)
2602 const char *p, *pend;
2603 int syntax;
2604{
2605 const char *next = p;
2606 boolean next_backslash = *next == '\\';
2607 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2608
2609 return
2610 /* Before a subexpression? */
2611 (syntax & RE_NO_BK_PARENS ? *next == ')'
2612 : next_backslash && next_next && *next_next == ')')
2613 /* Before an alternative? */
2614 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2615 : next_backslash && next_next && *next_next == '|');
2616}
bc78d348
KB
2617
2618
e959bada
JB
2619/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2620 false if it's not. */
bc78d348 2621
e959bada
JB
2622static boolean
2623group_in_compile_stack (compile_stack, regnum)
2624 compile_stack_type compile_stack;
2625 regnum_t regnum;
2626{
2627 int this_element;
2628
2629 for (this_element = compile_stack.avail - 1;
2630 this_element >= 0;
2631 this_element--)
2632 if (compile_stack.stack[this_element].regnum == regnum)
2633 return true;
2634
2635 return false;
2636}
2637
2638
2639/* Read the ending character of a range (in a bracket expression) from the
2640 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2641 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2642 Then we set the translation of all bits between the starting and
2643 ending characters (inclusive) in the compiled pattern B.
bc78d348 2644
e959bada
JB
2645 Return an error code.
2646
2647 We use these short variable names so we can use the same macros as
2648 `regex_compile' itself. */
bc78d348 2649
e959bada
JB
2650static reg_errcode_t
2651compile_range (p_ptr, pend, translate, syntax, b)
2652 const char **p_ptr, *pend;
2653 char *translate;
2654 reg_syntax_t syntax;
2655 unsigned char *b;
2656{
2657 unsigned this_char;
2658
2659 const char *p = *p_ptr;
2660 int range_start, range_end;
2661
2662 if (p == pend)
2663 return REG_ERANGE;
2664
2665 /* Even though the pattern is a signed `char *', we need to fetch
2666 with unsigned char *'s; if the high bit of the pattern character
2667 is set, the range endpoints will be negative if we fetch using a
2668 signed char *.
2669
2670 We also want to fetch the endpoints without translating them; the
2671 appropriate translation is done in the bit-setting loop below. */
2672 range_start = ((unsigned char *) p)[-2];
2673 range_end = ((unsigned char *) p)[0];
2674
2675 /* Have to increment the pointer into the pattern string, so the
2676 caller isn't still at the ending character. */
2677 (*p_ptr)++;
2678
2679 /* If the start is after the end, the range is empty. */
2680 if (range_start > range_end)
2681 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2682
2683 /* Here we see why `this_char' has to be larger than an `unsigned
2684 char' -- the range is inclusive, so if `range_end' == 0xff
2685 (assuming 8-bit characters), we would otherwise go into an infinite
2686 loop, since all characters <= 0xff. */
2687 for (this_char = range_start; this_char <= range_end; this_char++)
2688 {
2689 SET_LIST_BIT (TRANSLATE (this_char));
2690 }
2691
2692 return REG_NOERROR;
2693}
bc78d348
KB
2694\f
2695/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2696 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2697 characters can start a string that matches the pattern. This fastmap
2698 is used by re_search to skip quickly over impossible starting points.
2699
2700 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2701 area as BUFP->fastmap.
2702
2703 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2704 the pattern buffer.
2705
2706 Returns 0 if we succeed, -2 if an internal error. */
2707
2708int
2709re_compile_fastmap (bufp)
2710 struct re_pattern_buffer *bufp;
2711{
2712 int j, k;
a822d92f 2713#ifdef MATCH_MAY_ALLOCATE
bc78d348 2714 fail_stack_type fail_stack;
e959bada 2715#endif
bc78d348
KB
2716#ifndef REGEX_MALLOC
2717 char *destination;
2718#endif
2719 /* We don't push any register information onto the failure stack. */
2720 unsigned num_regs = 0;
2721
2722 register char *fastmap = bufp->fastmap;
2723 unsigned char *pattern = bufp->buffer;
2724 unsigned long size = bufp->used;
2725 const unsigned char *p = pattern;
2726 register unsigned char *pend = pattern + size;
2727
2728 /* Assume that each path through the pattern can be null until
2729 proven otherwise. We set this false at the bottom of switch
2730 statement, to which we get only if a particular path doesn't
2731 match the empty string. */
2732 boolean path_can_be_null = true;
2733
2734 /* We aren't doing a `succeed_n' to begin with. */
2735 boolean succeed_n_p = false;
2736
2737 assert (fastmap != NULL && p != NULL);
2738
2739 INIT_FAIL_STACK ();
2740 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2741 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2742 bufp->can_be_null = 0;
2743
2744 while (p != pend || !FAIL_STACK_EMPTY ())
2745 {
2746 if (p == pend)
2747 {
2748 bufp->can_be_null |= path_can_be_null;
2749
2750 /* Reset for next path. */
2751 path_can_be_null = true;
2752
2753 p = fail_stack.stack[--fail_stack.avail];
2754 }
2755
2756 /* We should never be about to go beyond the end of the pattern. */
2757 assert (p < pend);
2758
2759#ifdef SWITCH_ENUM_BUG
2760 switch ((int) ((re_opcode_t) *p++))
2761#else
2762 switch ((re_opcode_t) *p++)
2763#endif
2764 {
2765
2766 /* I guess the idea here is to simply not bother with a fastmap
2767 if a backreference is used, since it's too hard to figure out
2768 the fastmap for the corresponding group. Setting
2769 `can_be_null' stops `re_search_2' from using the fastmap, so
2770 that is all we do. */
2771 case duplicate:
2772 bufp->can_be_null = 1;
2773 return 0;
2774
2775
2776 /* Following are the cases which match a character. These end
2777 with `break'. */
2778
2779 case exactn:
2780 fastmap[p[1]] = 1;
2781 break;
2782
2783
2784 case charset:
2785 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2786 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2787 fastmap[j] = 1;
2788 break;
2789
2790
2791 case charset_not:
2792 /* Chars beyond end of map must be allowed. */
2793 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2794 fastmap[j] = 1;
2795
2796 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2797 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2798 fastmap[j] = 1;
2799 break;
2800
2801
2802 case wordchar:
2803 for (j = 0; j < (1 << BYTEWIDTH); j++)
2804 if (SYNTAX (j) == Sword)
2805 fastmap[j] = 1;
2806 break;
2807
2808
2809 case notwordchar:
2810 for (j = 0; j < (1 << BYTEWIDTH); j++)
2811 if (SYNTAX (j) != Sword)
2812 fastmap[j] = 1;
2813 break;
2814
2815
2816 case anychar:
2817 /* `.' matches anything ... */
2818 for (j = 0; j < (1 << BYTEWIDTH); j++)
2819 fastmap[j] = 1;
2820
2821 /* ... except perhaps newline. */
2822 if (!(bufp->syntax & RE_DOT_NEWLINE))
2823 fastmap['\n'] = 0;
2824
2825 /* Return if we have already set `can_be_null'; if we have,
2826 then the fastmap is irrelevant. Something's wrong here. */
2827 else if (bufp->can_be_null)
2828 return 0;
2829
2830 /* Otherwise, have to check alternative paths. */
2831 break;
2832
2833
2834#ifdef emacs
2835 case syntaxspec:
2836 k = *p++;
2837 for (j = 0; j < (1 << BYTEWIDTH); j++)
2838 if (SYNTAX (j) == (enum syntaxcode) k)
2839 fastmap[j] = 1;
2840 break;
2841
2842
2843 case notsyntaxspec:
2844 k = *p++;
2845 for (j = 0; j < (1 << BYTEWIDTH); j++)
2846 if (SYNTAX (j) != (enum syntaxcode) k)
2847 fastmap[j] = 1;
2848 break;
2849
2850
2851 /* All cases after this match the empty string. These end with
2852 `continue'. */
2853
2854
2855 case before_dot:
2856 case at_dot:
2857 case after_dot:
2858 continue;
2859#endif /* not emacs */
2860
2861
2862 case no_op:
2863 case begline:
2864 case endline:
2865 case begbuf:
2866 case endbuf:
2867 case wordbound:
2868 case notwordbound:
2869 case wordbeg:
2870 case wordend:
2871 case push_dummy_failure:
2872 continue;
2873
2874
2875 case jump_n:
2876 case pop_failure_jump:
2877 case maybe_pop_jump:
2878 case jump:
2879 case jump_past_alt:
2880 case dummy_failure_jump:
2881 EXTRACT_NUMBER_AND_INCR (j, p);
2882 p += j;
2883 if (j > 0)
2884 continue;
2885
2886 /* Jump backward implies we just went through the body of a
2887 loop and matched nothing. Opcode jumped to should be
2888 `on_failure_jump' or `succeed_n'. Just treat it like an
2889 ordinary jump. For a * loop, it has pushed its failure
2890 point already; if so, discard that as redundant. */
2891 if ((re_opcode_t) *p != on_failure_jump
2892 && (re_opcode_t) *p != succeed_n)
2893 continue;
2894
2895 p++;
2896 EXTRACT_NUMBER_AND_INCR (j, p);
2897 p += j;
2898
2899 /* If what's on the stack is where we are now, pop it. */
2900 if (!FAIL_STACK_EMPTY ()
2901 && fail_stack.stack[fail_stack.avail - 1] == p)
2902 fail_stack.avail--;
2903
2904 continue;
2905
2906
2907 case on_failure_jump:
2908 case on_failure_keep_string_jump:
2909 handle_on_failure_jump:
2910 EXTRACT_NUMBER_AND_INCR (j, p);
2911
2912 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2913 end of the pattern. We don't want to push such a point,
2914 since when we restore it above, entering the switch will
2915 increment `p' past the end of the pattern. We don't need
2916 to push such a point since we obviously won't find any more
2917 fastmap entries beyond `pend'. Such a pattern can match
2918 the null string, though. */
2919 if (p + j < pend)
2920 {
2921 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2922 return -2;
2923 }
2924 else
2925 bufp->can_be_null = 1;
2926
2927 if (succeed_n_p)
2928 {
2929 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2930 succeed_n_p = false;
2931 }
2932
2933 continue;
2934
2935
2936 case succeed_n:
2937 /* Get to the number of times to succeed. */
2938 p += 2;
2939
2940 /* Increment p past the n for when k != 0. */
2941 EXTRACT_NUMBER_AND_INCR (k, p);
2942 if (k == 0)
2943 {
2944 p -= 4;
2945 succeed_n_p = true; /* Spaghetti code alert. */
2946 goto handle_on_failure_jump;
2947 }
2948 continue;
2949
2950
2951 case set_number_at:
2952 p += 4;
2953 continue;
2954
2955
2956 case start_memory:
2957 case stop_memory:
2958 p += 2;
2959 continue;
2960
2961
2962 default:
2963 abort (); /* We have listed all the cases. */
2964 } /* switch *p++ */
2965
2966 /* Getting here means we have found the possible starting
2967 characters for one path of the pattern -- and that the empty
2968 string does not match. We need not follow this path further.
2969 Instead, look at the next alternative (remembered on the
2970 stack), or quit if no more. The test at the top of the loop
2971 does these things. */
2972 path_can_be_null = false;
2973 p = pend;
2974 } /* while p */
2975
2976 /* Set `can_be_null' for the last path (also the first path, if the
2977 pattern is empty). */
2978 bufp->can_be_null |= path_can_be_null;
2979 return 0;
2980} /* re_compile_fastmap */
2981\f
2982/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2983 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2984 this memory for recording register information. STARTS and ENDS
2985 must be allocated using the malloc library routine, and must each
2986 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2987
2988 If NUM_REGS == 0, then subsequent matches should allocate their own
2989 register data.
2990
2991 Unless this function is called, the first search or match using
2992 PATTERN_BUFFER will allocate its own register data, without
2993 freeing the old data. */
2994
2995void
2996re_set_registers (bufp, regs, num_regs, starts, ends)
2997 struct re_pattern_buffer *bufp;
2998 struct re_registers *regs;
2999 unsigned num_regs;
3000 regoff_t *starts, *ends;
3001{
3002 if (num_regs)
3003 {
3004 bufp->regs_allocated = REGS_REALLOCATE;
3005 regs->num_regs = num_regs;
3006 regs->start = starts;
3007 regs->end = ends;
3008 }
3009 else
3010 {
3011 bufp->regs_allocated = REGS_UNALLOCATED;
3012 regs->num_regs = 0;
3013 regs->start = regs->end = (regoff_t) 0;
3014 }
3015}
3016\f
3017/* Searching routines. */
3018
3019/* Like re_search_2, below, but only one string is specified, and
3020 doesn't let you say where to stop matching. */
3021
3022int
3023re_search (bufp, string, size, startpos, range, regs)
3024 struct re_pattern_buffer *bufp;
3025 const char *string;
3026 int size, startpos, range;
3027 struct re_registers *regs;
3028{
3029 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3030 regs, size);
3031}
3032
3033
3034/* Using the compiled pattern in BUFP->buffer, first tries to match the
3035 virtual concatenation of STRING1 and STRING2, starting first at index
3036 STARTPOS, then at STARTPOS + 1, and so on.
3037
3038 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3039
3040 RANGE is how far to scan while trying to match. RANGE = 0 means try
3041 only at STARTPOS; in general, the last start tried is STARTPOS +
3042 RANGE.
3043
3044 In REGS, return the indices of the virtual concatenation of STRING1
3045 and STRING2 that matched the entire BUFP->buffer and its contained
3046 subexpressions.
3047
3048 Do not consider matching one past the index STOP in the virtual
3049 concatenation of STRING1 and STRING2.
3050
3051 We return either the position in the strings at which the match was
3052 found, -1 if no match, or -2 if error (such as failure
3053 stack overflow). */
3054
3055int
3056re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3057 struct re_pattern_buffer *bufp;
3058 const char *string1, *string2;
3059 int size1, size2;
3060 int startpos;
3061 int range;
3062 struct re_registers *regs;
3063 int stop;
3064{
3065 int val;
3066 register char *fastmap = bufp->fastmap;
3067 register char *translate = bufp->translate;
3068 int total_size = size1 + size2;
3069 int endpos = startpos + range;
3070
3071 /* Check for out-of-range STARTPOS. */
3072 if (startpos < 0 || startpos > total_size)
3073 return -1;
3074
3075 /* Fix up RANGE if it might eventually take us outside
3076 the virtual concatenation of STRING1 and STRING2. */
3077 if (endpos < -1)
3078 range = -1 - startpos;
3079 else if (endpos > total_size)
3080 range = total_size - startpos;
3081
bc78d348 3082 /* If the search isn't to be a backwards one, don't waste time in a
9114e279
KB
3083 search for a pattern that must be anchored. */
3084 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
bc78d348
KB
3085 {
3086 if (startpos > 0)
3087 return -1;
3088 else
3089 range = 1;
3090 }
3091
9114e279
KB
3092 /* Update the fastmap now if not correct already. */
3093 if (fastmap && !bufp->fastmap_accurate)
3094 if (re_compile_fastmap (bufp) == -2)
3095 return -2;
3096
3097 /* Loop through the string, looking for a place to start matching. */
bc78d348
KB
3098 for (;;)
3099 {
3100 /* If a fastmap is supplied, skip quickly over characters that
3101 cannot be the start of a match. If the pattern can match the
3102 null string, however, we don't need to skip characters; we want
3103 the first null string. */
3104 if (fastmap && startpos < total_size && !bufp->can_be_null)
3105 {
3106 if (range > 0) /* Searching forwards. */
3107 {
3108 register const char *d;
3109 register int lim = 0;
3110 int irange = range;
3111
3112 if (startpos < size1 && startpos + range >= size1)
3113 lim = range - (size1 - startpos);
3114
3115 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3116
3117 /* Written out as an if-else to avoid testing `translate'
3118 inside the loop. */
3119 if (translate)
3120 while (range > lim
11a364d9
JB
3121 && !fastmap[(unsigned char)
3122 translate[(unsigned char) *d++]])
bc78d348
KB
3123 range--;
3124 else
3125 while (range > lim && !fastmap[(unsigned char) *d++])
3126 range--;
3127
3128 startpos += irange - range;
3129 }
3130 else /* Searching backwards. */
3131 {
3132 register char c = (size1 == 0 || startpos >= size1
3133 ? string2[startpos - size1]
3134 : string1[startpos]);
3135
9114e279 3136 if (!fastmap[(unsigned char) TRANSLATE (c)])
bc78d348
KB
3137 goto advance;
3138 }
3139 }
3140
3141 /* If can't match the null string, and that's all we have left, fail. */
3142 if (range >= 0 && startpos == total_size && fastmap
3143 && !bufp->can_be_null)
3144 return -1;
3145
3146 val = re_match_2 (bufp, string1, size1, string2, size2,
3147 startpos, regs, stop);
3148 if (val >= 0)
3149 return startpos;
3150
3151 if (val == -2)
3152 return -2;
3153
3154 advance:
3155 if (!range)
3156 break;
3157 else if (range > 0)
3158 {
3159 range--;
3160 startpos++;
3161 }
3162 else
3163 {
3164 range++;
3165 startpos--;
3166 }
3167 }
3168 return -1;
3169} /* re_search_2 */
3170\f
3171/* Declarations and macros for re_match_2. */
3172
3173static int bcmp_translate ();
3174static boolean alt_match_null_string_p (),
3175 common_op_match_null_string_p (),
3176 group_match_null_string_p ();
3177
bc78d348
KB
3178/* This converts PTR, a pointer into one of the search strings `string1'
3179 and `string2' into an offset from the beginning of that string. */
3180#define POINTER_TO_OFFSET(ptr) \
3181 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3182
bc78d348
KB
3183/* Macros for dealing with the split strings in re_match_2. */
3184
3185#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3186
3187/* Call before fetching a character with *d. This switches over to
3188 string2 if necessary. */
3189#define PREFETCH() \
3190 while (d == dend) \
3191 { \
3192 /* End of string2 => fail. */ \
3193 if (dend == end_match_2) \
3194 goto fail; \
3195 /* End of string1 => advance to string2. */ \
3196 d = string2; \
3197 dend = end_match_2; \
3198 }
3199
3200
3201/* Test if at very beginning or at very end of the virtual concatenation
3202 of `string1' and `string2'. If only one string, it's `string2'. */
9114e279
KB
3203#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3204#define AT_STRINGS_END(d) ((d) == end2)
bc78d348
KB
3205
3206
3207/* Test if D points to a character which is word-constituent. We have
3208 two special cases to check for: if past the end of string1, look at
3209 the first character in string2; and if before the beginning of
9114e279
KB
3210 string2, look at the last character in string1. */
3211#define WORDCHAR_P(d) \
bc78d348 3212 (SYNTAX ((d) == end1 ? *string2 \
9114e279
KB
3213 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3214 == Sword)
bc78d348
KB
3215
3216/* Test if the character before D and the one at D differ with respect
3217 to being word-constituent. */
3218#define AT_WORD_BOUNDARY(d) \
9114e279
KB
3219 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3220 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
bc78d348
KB
3221
3222
3223/* Free everything we malloc. */
a822d92f 3224#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3225#ifdef REGEX_MALLOC
3226#define FREE_VAR(var) if (var) free (var); var = NULL
3227#define FREE_VARIABLES() \
3228 do { \
3229 FREE_VAR (fail_stack.stack); \
3230 FREE_VAR (regstart); \
3231 FREE_VAR (regend); \
3232 FREE_VAR (old_regstart); \
3233 FREE_VAR (old_regend); \
3234 FREE_VAR (best_regstart); \
3235 FREE_VAR (best_regend); \
3236 FREE_VAR (reg_info); \
3237 FREE_VAR (reg_dummy); \
3238 FREE_VAR (reg_info_dummy); \
3239 } while (0)
3240#else /* not REGEX_MALLOC */
3241/* Some MIPS systems (at least) want this to free alloca'd storage. */
3242#define FREE_VARIABLES() alloca (0)
3243#endif /* not REGEX_MALLOC */
a822d92f
JB
3244#else
3245#define FREE_VARIABLES() /* Do nothing! */
3246#endif /* not MATCH_MAY_ALLOCATE */
bc78d348
KB
3247
3248/* These values must meet several constraints. They must not be valid
3249 register values; since we have a limit of 255 registers (because
3250 we use only one byte in the pattern for the register number), we can
3251 use numbers larger than 255. They must differ by 1, because of
3252 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3253 be larger than the value for the highest register, so we do not try
3254 to actually save any registers when none are active. */
3255#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3256#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3257\f
3258/* Matching routines. */
3259
3260#ifndef emacs /* Emacs never uses this. */
3261/* re_match is like re_match_2 except it takes only a single string. */
3262
3263int
3264re_match (bufp, string, size, pos, regs)
3265 struct re_pattern_buffer *bufp;
3266 const char *string;
3267 int size, pos;
3268 struct re_registers *regs;
3269 {
3270 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3271}
3272#endif /* not emacs */
3273
3274
3275/* re_match_2 matches the compiled pattern in BUFP against the
3276 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3277 and SIZE2, respectively). We start matching at POS, and stop
3278 matching at STOP.
3279
3280 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3281 store offsets for the substring each group matched in REGS. See the
3282 documentation for exactly how many groups we fill.
3283
3284 We return -1 if no match, -2 if an internal error (such as the
3285 failure stack overflowing). Otherwise, we return the length of the
3286 matched substring. */
3287
3288int
3289re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3290 struct re_pattern_buffer *bufp;
3291 const char *string1, *string2;
3292 int size1, size2;
3293 int pos;
3294 struct re_registers *regs;
3295 int stop;
3296{
3297 /* General temporaries. */
3298 int mcnt;
3299 unsigned char *p1;
3300
3301 /* Just past the end of the corresponding string. */
3302 const char *end1, *end2;
3303
3304 /* Pointers into string1 and string2, just past the last characters in
3305 each to consider matching. */
3306 const char *end_match_1, *end_match_2;
3307
3308 /* Where we are in the data, and the end of the current string. */
3309 const char *d, *dend;
3310
3311 /* Where we are in the pattern, and the end of the pattern. */
3312 unsigned char *p = bufp->buffer;
3313 register unsigned char *pend = p + bufp->used;
3314
3315 /* We use this to map every character in the string. */
3316 char *translate = bufp->translate;
3317
3318 /* Failure point stack. Each place that can handle a failure further
3319 down the line pushes a failure point on this stack. It consists of
3320 restart, regend, and reg_info for all registers corresponding to
3321 the subexpressions we're currently inside, plus the number of such
3322 registers, and, finally, two char *'s. The first char * is where
3323 to resume scanning the pattern; the second one is where to resume
3324 scanning the strings. If the latter is zero, the failure point is
3325 a ``dummy''; if a failure happens and the failure point is a dummy,
3326 it gets discarded and the next next one is tried. */
a822d92f 3327#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3328 fail_stack_type fail_stack;
e959bada 3329#endif
bc78d348
KB
3330#ifdef DEBUG
3331 static unsigned failure_id = 0;
9114e279 3332 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
bc78d348
KB
3333#endif
3334
3335 /* We fill all the registers internally, independent of what we
3336 return, for use in backreferences. The number here includes
3337 an element for register zero. */
3338 unsigned num_regs = bufp->re_nsub + 1;
3339
3340 /* The currently active registers. */
3341 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3342 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3343
3344 /* Information on the contents of registers. These are pointers into
3345 the input strings; they record just what was matched (on this
3346 attempt) by a subexpression part of the pattern, that is, the
3347 regnum-th regstart pointer points to where in the pattern we began
3348 matching and the regnum-th regend points to right after where we
3349 stopped matching the regnum-th subexpression. (The zeroth register
3350 keeps track of what the whole pattern matches.) */
a822d92f 3351#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3352 const char **regstart, **regend;
e959bada 3353#endif
bc78d348
KB
3354
3355 /* If a group that's operated upon by a repetition operator fails to
3356 match anything, then the register for its start will need to be
3357 restored because it will have been set to wherever in the string we
3358 are when we last see its open-group operator. Similarly for a
3359 register's end. */
a822d92f 3360#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3361 const char **old_regstart, **old_regend;
e959bada 3362#endif
bc78d348
KB
3363
3364 /* The is_active field of reg_info helps us keep track of which (possibly
3365 nested) subexpressions we are currently in. The matched_something
3366 field of reg_info[reg_num] helps us tell whether or not we have
3367 matched any of the pattern so far this time through the reg_num-th
3368 subexpression. These two fields get reset each time through any
3369 loop their register is in. */
a822d92f 3370#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3371 register_info_type *reg_info;
e959bada 3372#endif
bc78d348
KB
3373
3374 /* The following record the register info as found in the above
3375 variables when we find a match better than any we've seen before.
3376 This happens as we backtrack through the failure points, which in
3377 turn happens only if we have not yet matched the entire string. */
3378 unsigned best_regs_set = false;
a822d92f 3379#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3380 const char **best_regstart, **best_regend;
e959bada 3381#endif
bc78d348
KB
3382
3383 /* Logically, this is `best_regend[0]'. But we don't want to have to
3384 allocate space for that if we're not allocating space for anything
3385 else (see below). Also, we never need info about register 0 for
3386 any of the other register vectors, and it seems rather a kludge to
3387 treat `best_regend' differently than the rest. So we keep track of
3388 the end of the best match so far in a separate variable. We
3389 initialize this to NULL so that when we backtrack the first time
3390 and need to test it, it's not garbage. */
3391 const char *match_end = NULL;
3392
3393 /* Used when we pop values we don't care about. */
a822d92f 3394#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348
KB
3395 const char **reg_dummy;
3396 register_info_type *reg_info_dummy;
e959bada 3397#endif
bc78d348
KB
3398
3399#ifdef DEBUG
3400 /* Counts the total number of registers pushed. */
3401 unsigned num_regs_pushed = 0;
3402#endif
3403
3404 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3405
3406 INIT_FAIL_STACK ();
3407
a822d92f 3408#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3409 /* Do not bother to initialize all the register variables if there are
3410 no groups in the pattern, as it takes a fair amount of time. If
3411 there are groups, we include space for register 0 (the whole
3412 pattern), even though we never use it, since it simplifies the
3413 array indexing. We should fix this. */
3414 if (bufp->re_nsub)
3415 {
3416 regstart = REGEX_TALLOC (num_regs, const char *);
3417 regend = REGEX_TALLOC (num_regs, const char *);
3418 old_regstart = REGEX_TALLOC (num_regs, const char *);
3419 old_regend = REGEX_TALLOC (num_regs, const char *);
3420 best_regstart = REGEX_TALLOC (num_regs, const char *);
3421 best_regend = REGEX_TALLOC (num_regs, const char *);
3422 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3423 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3424 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3425
3426 if (!(regstart && regend && old_regstart && old_regend && reg_info
3427 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3428 {
3429 FREE_VARIABLES ();
3430 return -2;
3431 }
3432 }
e959bada 3433#if defined (REGEX_MALLOC)
bc78d348
KB
3434 else
3435 {
3436 /* We must initialize all our variables to NULL, so that
9114e279 3437 `FREE_VARIABLES' doesn't try to free them. */
bc78d348
KB
3438 regstart = regend = old_regstart = old_regend = best_regstart
3439 = best_regend = reg_dummy = NULL;
3440 reg_info = reg_info_dummy = (register_info_type *) NULL;
3441 }
3442#endif /* REGEX_MALLOC */
a822d92f 3443#endif /* MATCH_MAY_ALLOCATE */
bc78d348
KB
3444
3445 /* The starting position is bogus. */
3446 if (pos < 0 || pos > size1 + size2)
3447 {
3448 FREE_VARIABLES ();
3449 return -1;
3450 }
3451
3452 /* Initialize subexpression text positions to -1 to mark ones that no
3453 start_memory/stop_memory has been seen for. Also initialize the
3454 register information struct. */
3455 for (mcnt = 1; mcnt < num_regs; mcnt++)
3456 {
3457 regstart[mcnt] = regend[mcnt]
3458 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3459
3460 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3461 IS_ACTIVE (reg_info[mcnt]) = 0;
3462 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3463 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3464 }
3465
3466 /* We move `string1' into `string2' if the latter's empty -- but not if
3467 `string1' is null. */
3468 if (size2 == 0 && string1 != NULL)
3469 {
3470 string2 = string1;
3471 size2 = size1;
3472 string1 = 0;
3473 size1 = 0;
3474 }
3475 end1 = string1 + size1;
3476 end2 = string2 + size2;
3477
3478 /* Compute where to stop matching, within the two strings. */
3479 if (stop <= size1)
3480 {
3481 end_match_1 = string1 + stop;
3482 end_match_2 = string2;
3483 }
3484 else
3485 {
3486 end_match_1 = end1;
3487 end_match_2 = string2 + stop - size1;
3488 }
3489
3490 /* `p' scans through the pattern as `d' scans through the data.
3491 `dend' is the end of the input string that `d' points within. `d'
3492 is advanced into the following input string whenever necessary, but
3493 this happens before fetching; therefore, at the beginning of the
3494 loop, `d' can be pointing at the end of a string, but it cannot
3495 equal `string2'. */
3496 if (size1 > 0 && pos <= size1)
3497 {
3498 d = string1 + pos;
3499 dend = end_match_1;
3500 }
3501 else
3502 {
3503 d = string2 + pos - size1;
3504 dend = end_match_2;
3505 }
3506
3507 DEBUG_PRINT1 ("The compiled pattern is: ");
3508 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3509 DEBUG_PRINT1 ("The string to match is: `");
3510 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3511 DEBUG_PRINT1 ("'\n");
3512
3513 /* This loops over pattern commands. It exits by returning from the
3514 function if the match is complete, or it drops through if the match
3515 fails at this starting point in the input data. */
3516 for (;;)
3517 {
3518 DEBUG_PRINT2 ("\n0x%x: ", p);
3519
3520 if (p == pend)
3521 { /* End of pattern means we might have succeeded. */
9114e279
KB
3522 DEBUG_PRINT1 ("end of pattern ... ");
3523
3524 /* If we haven't matched the entire string, and we want the
3525 longest match, try backtracking. */
bc78d348
KB
3526 if (d != end_match_2)
3527 {
3528 DEBUG_PRINT1 ("backtracking.\n");
3529
3530 if (!FAIL_STACK_EMPTY ())
3531 { /* More failure points to try. */
3532 boolean same_str_p = (FIRST_STRING_P (match_end)
3533 == MATCHING_IN_FIRST_STRING);
3534
3535 /* If exceeds best match so far, save it. */
3536 if (!best_regs_set
3537 || (same_str_p && d > match_end)
3538 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3539 {
3540 best_regs_set = true;
3541 match_end = d;
3542
3543 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3544
3545 for (mcnt = 1; mcnt < num_regs; mcnt++)
3546 {
3547 best_regstart[mcnt] = regstart[mcnt];
3548 best_regend[mcnt] = regend[mcnt];
3549 }
3550 }
3551 goto fail;
3552 }
3553
3554 /* If no failure points, don't restore garbage. */
3555 else if (best_regs_set)
3556 {
3557 restore_best_regs:
3558 /* Restore best match. It may happen that `dend ==
3559 end_match_1' while the restored d is in string2.
3560 For example, the pattern `x.*y.*z' against the
3561 strings `x-' and `y-z-', if the two strings are
3562 not consecutive in memory. */
9114e279
KB
3563 DEBUG_PRINT1 ("Restoring best registers.\n");
3564
bc78d348
KB
3565 d = match_end;
3566 dend = ((d >= string1 && d <= end1)
3567 ? end_match_1 : end_match_2);
3568
3569 for (mcnt = 1; mcnt < num_regs; mcnt++)
3570 {
3571 regstart[mcnt] = best_regstart[mcnt];
3572 regend[mcnt] = best_regend[mcnt];
3573 }
3574 }
3575 } /* d != end_match_2 */
3576
9114e279 3577 DEBUG_PRINT1 ("Accepting match.\n");
bc78d348
KB
3578
3579 /* If caller wants register contents data back, do it. */
3580 if (regs && !bufp->no_sub)
3581 {
3582 /* Have the register data arrays been allocated? */
3583 if (bufp->regs_allocated == REGS_UNALLOCATED)
3584 { /* No. So allocate them with malloc. We need one
3585 extra element beyond `num_regs' for the `-1' marker
3586 GNU code uses. */
3587 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3588 regs->start = TALLOC (regs->num_regs, regoff_t);
3589 regs->end = TALLOC (regs->num_regs, regoff_t);
3590 if (regs->start == NULL || regs->end == NULL)
3591 return -2;
3592 bufp->regs_allocated = REGS_REALLOCATE;
3593 }
3594 else if (bufp->regs_allocated == REGS_REALLOCATE)
3595 { /* Yes. If we need more elements than were already
3596 allocated, reallocate them. If we need fewer, just
3597 leave it alone. */
3598 if (regs->num_regs < num_regs + 1)
3599 {
3600 regs->num_regs = num_regs + 1;
3601 RETALLOC (regs->start, regs->num_regs, regoff_t);
3602 RETALLOC (regs->end, regs->num_regs, regoff_t);
3603 if (regs->start == NULL || regs->end == NULL)
3604 return -2;
3605 }
3606 }
3607 else
a1dd004b
JB
3608 {
3609 /* These braces fend off a "empty body in an else-statement"
3610 warning under GCC when assert expands to nothing. */
3611 assert (bufp->regs_allocated == REGS_FIXED);
3612 }
bc78d348
KB
3613
3614 /* Convert the pointer data in `regstart' and `regend' to
3615 indices. Register zero has to be set differently,
3616 since we haven't kept track of any info for it. */
3617 if (regs->num_regs > 0)
3618 {
3619 regs->start[0] = pos;
3620 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3621 : d - string2 + size1);
3622 }
3623
3624 /* Go through the first `min (num_regs, regs->num_regs)'
3625 registers, since that is all we initialized. */
3626 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3627 {
3628 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3629 regs->start[mcnt] = regs->end[mcnt] = -1;
3630 else
3631 {
3632 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3633 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3634 }
3635 }
3636
3637 /* If the regs structure we return has more elements than
3638 were in the pattern, set the extra elements to -1. If
3639 we (re)allocated the registers, this is the case,
3640 because we always allocate enough to have at least one
3641 -1 at the end. */
3642 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3643 regs->start[mcnt] = regs->end[mcnt] = -1;
3644 } /* regs && !bufp->no_sub */
3645
3646 FREE_VARIABLES ();
9114e279
KB
3647 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3648 nfailure_points_pushed, nfailure_points_popped,
3649 nfailure_points_pushed - nfailure_points_popped);
3650 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
bc78d348
KB
3651
3652 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3653 ? string1
3654 : string2 - size1);
3655
3656 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3657
3658 return mcnt;
3659 }
3660
3661 /* Otherwise match next pattern command. */
3662#ifdef SWITCH_ENUM_BUG
3663 switch ((int) ((re_opcode_t) *p++))
3664#else
3665 switch ((re_opcode_t) *p++)
3666#endif
3667 {
3668 /* Ignore these. Used to ignore the n of succeed_n's which
3669 currently have n == 0. */
3670 case no_op:
3671 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3672 break;
3673
3674
3675 /* Match the next n pattern characters exactly. The following
3676 byte in the pattern defines n, and the n bytes after that
3677 are the characters to match. */
3678 case exactn:
3679 mcnt = *p++;
3680 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3681
3682 /* This is written out as an if-else so we don't waste time
3683 testing `translate' inside the loop. */
3684 if (translate)
3685 {
3686 do
3687 {
3688 PREFETCH ();
3689 if (translate[(unsigned char) *d++] != (char) *p++)
3690 goto fail;
3691 }
3692 while (--mcnt);
3693 }
3694 else
3695 {
3696 do
3697 {
3698 PREFETCH ();
3699 if (*d++ != (char) *p++) goto fail;
3700 }
3701 while (--mcnt);
3702 }
3703 SET_REGS_MATCHED ();
3704 break;
3705
3706
3707 /* Match any character except possibly a newline or a null. */
3708 case anychar:
3709 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3710
3711 PREFETCH ();
3712
3713 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3714 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3715 goto fail;
3716
3717 SET_REGS_MATCHED ();
3718 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3719 d++;
3720 break;
3721
3722
3723 case charset:
3724 case charset_not:
3725 {
3726 register unsigned char c;
3727 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3728
3729 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3730
3731 PREFETCH ();
3732 c = TRANSLATE (*d); /* The character to match. */
3733
3734 /* Cast to `unsigned' instead of `unsigned char' in case the
3735 bit list is a full 32 bytes long. */
3736 if (c < (unsigned) (*p * BYTEWIDTH)
3737 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3738 not = !not;
3739
3740 p += 1 + *p;
3741
3742 if (!not) goto fail;
3743
3744 SET_REGS_MATCHED ();
3745 d++;
3746 break;
3747 }
3748
3749
3750 /* The beginning of a group is represented by start_memory.
3751 The arguments are the register number in the next byte, and the
3752 number of groups inner to this one in the next. The text
3753 matched within the group is recorded (in the internal
3754 registers data structure) under the register number. */
3755 case start_memory:
3756 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3757
3758 /* Find out if this group can match the empty string. */
3759 p1 = p; /* To send to group_match_null_string_p. */
3760
3761 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3762 REG_MATCH_NULL_STRING_P (reg_info[*p])
3763 = group_match_null_string_p (&p1, pend, reg_info);
3764
3765 /* Save the position in the string where we were the last time
3766 we were at this open-group operator in case the group is
3767 operated upon by a repetition operator, e.g., with `(a*)*b'
3768 against `ab'; then we want to ignore where we are now in
3769 the string in case this attempt to match fails. */
3770 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3771 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3772 : regstart[*p];
3773 DEBUG_PRINT2 (" old_regstart: %d\n",
3774 POINTER_TO_OFFSET (old_regstart[*p]));
3775
3776 regstart[*p] = d;
3777 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3778
3779 IS_ACTIVE (reg_info[*p]) = 1;
3780 MATCHED_SOMETHING (reg_info[*p]) = 0;
3781
3782 /* This is the new highest active register. */
3783 highest_active_reg = *p;
3784
3785 /* If nothing was active before, this is the new lowest active
3786 register. */
3787 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3788 lowest_active_reg = *p;
3789
3790 /* Move past the register number and inner group count. */
3791 p += 2;
3792 break;
3793
3794
3795 /* The stop_memory opcode represents the end of a group. Its
3796 arguments are the same as start_memory's: the register
3797 number, and the number of inner groups. */
3798 case stop_memory:
3799 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3800
3801 /* We need to save the string position the last time we were at
3802 this close-group operator in case the group is operated
3803 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3804 against `aba'; then we want to ignore where we are now in
3805 the string in case this attempt to match fails. */
3806 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3807 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3808 : regend[*p];
3809 DEBUG_PRINT2 (" old_regend: %d\n",
3810 POINTER_TO_OFFSET (old_regend[*p]));
3811
3812 regend[*p] = d;
3813 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3814
3815 /* This register isn't active anymore. */
3816 IS_ACTIVE (reg_info[*p]) = 0;
3817
3818 /* If this was the only register active, nothing is active
3819 anymore. */
3820 if (lowest_active_reg == highest_active_reg)
3821 {
3822 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3823 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3824 }
3825 else
3826 { /* We must scan for the new highest active register, since
3827 it isn't necessarily one less than now: consider
3828 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3829 new highest active register is 1. */
3830 unsigned char r = *p - 1;
3831 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3832 r--;
3833
3834 /* If we end up at register zero, that means that we saved
3835 the registers as the result of an `on_failure_jump', not
3836 a `start_memory', and we jumped to past the innermost
3837 `stop_memory'. For example, in ((.)*) we save
3838 registers 1 and 2 as a result of the *, but when we pop
3839 back to the second ), we are at the stop_memory 1.
3840 Thus, nothing is active. */
3841 if (r == 0)
3842 {
3843 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3844 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3845 }
3846 else
3847 highest_active_reg = r;
3848 }
3849
3850 /* If just failed to match something this time around with a
3851 group that's operated on by a repetition operator, try to
9114e279 3852 force exit from the ``loop'', and restore the register
bc78d348
KB
3853 information for this group that we had before trying this
3854 last match. */
3855 if ((!MATCHED_SOMETHING (reg_info[*p])
3856 || (re_opcode_t) p[-3] == start_memory)
3857 && (p + 2) < pend)
3858 {
3859 boolean is_a_jump_n = false;
3860
3861 p1 = p + 2;
3862 mcnt = 0;
3863 switch ((re_opcode_t) *p1++)
3864 {
3865 case jump_n:
3866 is_a_jump_n = true;
3867 case pop_failure_jump:
3868 case maybe_pop_jump:
3869 case jump:
3870 case dummy_failure_jump:
3871 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3872 if (is_a_jump_n)
3873 p1 += 2;
3874 break;
3875
3876 default:
3877 /* do nothing */ ;
3878 }
3879 p1 += mcnt;
3880
3881 /* If the next operation is a jump backwards in the pattern
3882 to an on_failure_jump right before the start_memory
3883 corresponding to this stop_memory, exit from the loop
3884 by forcing a failure after pushing on the stack the
3885 on_failure_jump's jump in the pattern, and d. */
3886 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3887 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3888 {
3889 /* If this group ever matched anything, then restore
3890 what its registers were before trying this last
3891 failed match, e.g., with `(a*)*b' against `ab' for
3892 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3893 against `aba' for regend[3].
3894
3895 Also restore the registers for inner groups for,
3896 e.g., `((a*)(b*))*' against `aba' (register 3 would
3897 otherwise get trashed). */
3898
3899 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3900 {
3901 unsigned r;
3902
3903 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3904
3905 /* Restore this and inner groups' (if any) registers. */
3906 for (r = *p; r < *p + *(p + 1); r++)
3907 {
3908 regstart[r] = old_regstart[r];
3909
3910 /* xx why this test? */
3911 if ((int) old_regend[r] >= (int) regstart[r])
3912 regend[r] = old_regend[r];
3913 }
3914 }
3915 p1++;
3916 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3917 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3918
3919 goto fail;
3920 }
3921 }
3922
3923 /* Move past the register number and the inner group count. */
3924 p += 2;
3925 break;
3926
3927
3928 /* \<digit> has been turned into a `duplicate' command which is
3929 followed by the numeric value of <digit> as the register number. */
3930 case duplicate:
3931 {
3932 register const char *d2, *dend2;
3933 int regno = *p++; /* Get which register to match against. */
3934 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3935
3936 /* Can't back reference a group which we've never matched. */
3937 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3938 goto fail;
3939
3940 /* Where in input to try to start matching. */
3941 d2 = regstart[regno];
3942
3943 /* Where to stop matching; if both the place to start and
3944 the place to stop matching are in the same string, then
3945 set to the place to stop, otherwise, for now have to use
3946 the end of the first string. */
3947
3948 dend2 = ((FIRST_STRING_P (regstart[regno])
3949 == FIRST_STRING_P (regend[regno]))
3950 ? regend[regno] : end_match_1);
3951 for (;;)
3952 {
3953 /* If necessary, advance to next segment in register
3954 contents. */
3955 while (d2 == dend2)
3956 {
3957 if (dend2 == end_match_2) break;
3958 if (dend2 == regend[regno]) break;
3959
3960 /* End of string1 => advance to string2. */
3961 d2 = string2;
3962 dend2 = regend[regno];
3963 }
3964 /* At end of register contents => success */
3965 if (d2 == dend2) break;
3966
3967 /* If necessary, advance to next segment in data. */
3968 PREFETCH ();
3969
3970 /* How many characters left in this segment to match. */
3971 mcnt = dend - d;
3972
3973 /* Want how many consecutive characters we can match in
3974 one shot, so, if necessary, adjust the count. */
3975 if (mcnt > dend2 - d2)
3976 mcnt = dend2 - d2;
3977
3978 /* Compare that many; failure if mismatch, else move
3979 past them. */
3980 if (translate
3981 ? bcmp_translate (d, d2, mcnt, translate)
3982 : bcmp (d, d2, mcnt))
3983 goto fail;
3984 d += mcnt, d2 += mcnt;
3985 }
3986 }
3987 break;
3988
3989
3990 /* begline matches the empty string at the beginning of the string
3991 (unless `not_bol' is set in `bufp'), and, if
3992 `newline_anchor' is set, after newlines. */
3993 case begline:
3994 DEBUG_PRINT1 ("EXECUTING begline.\n");
3995
9114e279 3996 if (AT_STRINGS_BEG (d))
bc78d348
KB
3997 {
3998 if (!bufp->not_bol) break;
3999 }
4000 else if (d[-1] == '\n' && bufp->newline_anchor)
4001 {
4002 break;
4003 }
4004 /* In all other cases, we fail. */
4005 goto fail;
4006
4007
4008 /* endline is the dual of begline. */
4009 case endline:
4010 DEBUG_PRINT1 ("EXECUTING endline.\n");
4011
9114e279 4012 if (AT_STRINGS_END (d))
bc78d348
KB
4013 {
4014 if (!bufp->not_eol) break;
4015 }
4016
4017 /* We have to ``prefetch'' the next character. */
4018 else if ((d == end1 ? *string2 : *d) == '\n'
4019 && bufp->newline_anchor)
4020 {
4021 break;
4022 }
4023 goto fail;
4024
4025
4026 /* Match at the very beginning of the data. */
4027 case begbuf:
4028 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
9114e279 4029 if (AT_STRINGS_BEG (d))
bc78d348
KB
4030 break;
4031 goto fail;
4032
4033
4034 /* Match at the very end of the data. */
4035 case endbuf:
4036 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
9114e279 4037 if (AT_STRINGS_END (d))
bc78d348
KB
4038 break;
4039 goto fail;
4040
4041
4042 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4043 pushes NULL as the value for the string on the stack. Then
4044 `pop_failure_point' will keep the current value for the
4045 string, instead of restoring it. To see why, consider
4046 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4047 then the . fails against the \n. But the next thing we want
4048 to do is match the \n against the \n; if we restored the
4049 string value, we would be back at the foo.
4050
4051 Because this is used only in specific cases, we don't need to
4052 check all the things that `on_failure_jump' does, to make
4053 sure the right things get saved on the stack. Hence we don't
4054 share its code. The only reason to push anything on the
4055 stack at all is that otherwise we would have to change
4056 `anychar's code to do something besides goto fail in this
4057 case; that seems worse than this. */
4058 case on_failure_keep_string_jump:
4059 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4060
4061 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4062 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4063
4064 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4065 break;
4066
4067
4068 /* Uses of on_failure_jump:
4069
4070 Each alternative starts with an on_failure_jump that points
4071 to the beginning of the next alternative. Each alternative
4072 except the last ends with a jump that in effect jumps past
4073 the rest of the alternatives. (They really jump to the
4074 ending jump of the following alternative, because tensioning
4075 these jumps is a hassle.)
4076
4077 Repeats start with an on_failure_jump that points past both
4078 the repetition text and either the following jump or
4079 pop_failure_jump back to this on_failure_jump. */
4080 case on_failure_jump:
4081 on_failure:
4082 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4083
4084 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4085 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4086
4087 /* If this on_failure_jump comes right before a group (i.e.,
4088 the original * applied to a group), save the information
4089 for that group and all inner ones, so that if we fail back
4090 to this point, the group's information will be correct.
9114e279 4091 For example, in \(a*\)*\1, we need the preceding group,
bc78d348
KB
4092 and in \(\(a*\)b*\)\2, we need the inner group. */
4093
4094 /* We can't use `p' to check ahead because we push
4095 a failure point to `p + mcnt' after we do this. */
4096 p1 = p;
4097
4098 /* We need to skip no_op's before we look for the
4099 start_memory in case this on_failure_jump is happening as
4100 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4101 against aba. */
4102 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4103 p1++;
4104
4105 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4106 {
4107 /* We have a new highest active register now. This will
4108 get reset at the start_memory we are about to get to,
4109 but we will have saved all the registers relevant to
4110 this repetition op, as described above. */
4111 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4112 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4113 lowest_active_reg = *(p1 + 1);
4114 }
4115
4116 DEBUG_PRINT1 (":\n");
4117 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4118 break;
4119
4120
9114e279
KB
4121 /* A smart repeat ends with `maybe_pop_jump'.
4122 We change it to either `pop_failure_jump' or `jump'. */
bc78d348
KB
4123 case maybe_pop_jump:
4124 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4125 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4126 {
4127 register unsigned char *p2 = p;
4128
4129 /* Compare the beginning of the repeat with what in the
4130 pattern follows its end. If we can establish that there
4131 is nothing that they would both match, i.e., that we
4132 would have to backtrack because of (as in, e.g., `a*a')
4133 then we can change to pop_failure_jump, because we'll
4134 never have to backtrack.
4135
4136 This is not true in the case of alternatives: in
4137 `(a|ab)*' we do need to backtrack to the `ab' alternative
4138 (e.g., if the string was `ab'). But instead of trying to
4139 detect that here, the alternative has put on a dummy
4140 failure point which is what we will end up popping. */
4141
4f9d3ad8
RS
4142 /* Skip over open/close-group commands.
4143 If what follows this loop is a ...+ construct,
4144 look at what begins its body, since we will have to
4145 match at least one of that. */
4146 while (1)
4147 {
4148 if (p2 + 2 < pend
4149 && ((re_opcode_t) *p2 == stop_memory
4150 || (re_opcode_t) *p2 == start_memory))
4151 p2 += 3;
4152 else if (p2 + 6 < pend
4153 && (re_opcode_t) *p2 == dummy_failure_jump)
4154 p2 += 6;
4155 else
4156 break;
4157 }
4158
4159 p1 = p + mcnt;
4160 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4161 to the `maybe_finalize_jump' of this case. Examine what
4162 follows. */
bc78d348
KB
4163
4164 /* If we're at the end of the pattern, we can change. */
4165 if (p2 == pend)
71715da9
JB
4166 {
4167 /* Consider what happens when matching ":\(.*\)"
4168 against ":/". I don't really understand this code
4169 yet. */
bc78d348 4170 p[-3] = (unsigned char) pop_failure_jump;
71715da9
JB
4171 DEBUG_PRINT1
4172 (" End of pattern: change to `pop_failure_jump'.\n");
bc78d348
KB
4173 }
4174
4175 else if ((re_opcode_t) *p2 == exactn
4176 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4177 {
4178 register unsigned char c
4179 = *p2 == (unsigned char) endline ? '\n' : p2[2];
bc78d348 4180
bc78d348 4181 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
9114e279
KB
4182 {
4183 p[-3] = (unsigned char) pop_failure_jump;
4184 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4185 c, p1[5]);
4186 }
4187
bc78d348
KB
4188 else if ((re_opcode_t) p1[3] == charset
4189 || (re_opcode_t) p1[3] == charset_not)
4190 {
4191 int not = (re_opcode_t) p1[3] == charset_not;
4192
4193 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4194 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4195 not = !not;
4196
4197 /* `not' is equal to 1 if c would match, which means
4198 that we can't change to pop_failure_jump. */
4199 if (!not)
4200 {
4201 p[-3] = (unsigned char) pop_failure_jump;
9114e279 4202 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
bc78d348
KB
4203 }
4204 }
4205 }
4f9d3ad8
RS
4206 else if ((re_opcode_t) *p2 == charset)
4207 {
4208 register unsigned char c
4209 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4210
4211 if ((re_opcode_t) p1[3] == exactn
4212 && ! (p2[1] * BYTEWIDTH > p1[4]
4213 && (p2[1 + p1[4] / BYTEWIDTH]
4214 & (1 << (p1[4] % BYTEWIDTH)))))
4215 {
4216 p[-3] = (unsigned char) pop_failure_jump;
4217 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4218 c, p1[5]);
4219 }
4220
4221 else if ((re_opcode_t) p1[3] == charset_not)
4222 {
4223 int idx;
4224 /* We win if the charset_not inside the loop
4225 lists every character listed in the charset after. */
4226 for (idx = 0; idx < p2[1]; idx++)
4227 if (! (p2[2 + idx] == 0
4228 || (idx < p1[4]
4229 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4230 break;
4231
4232 if (idx == p2[1])
4233 {
4234 p[-3] = (unsigned char) pop_failure_jump;
4235 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4236 }
4237 }
4238 else if ((re_opcode_t) p1[3] == charset)
4239 {
4240 int idx;
4241 /* We win if the charset inside the loop
4242 has no overlap with the one after the loop. */
4243 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4244 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4245 break;
4246
4247 if (idx == p2[1] || idx == p1[4])
4248 {
4249 p[-3] = (unsigned char) pop_failure_jump;
4250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4251 }
4252 }
4253 }
bc78d348
KB
4254 }
4255 p -= 2; /* Point at relative address again. */
4256 if ((re_opcode_t) p[-1] != pop_failure_jump)
4257 {
4258 p[-1] = (unsigned char) jump;
9114e279 4259 DEBUG_PRINT1 (" Match => jump.\n");
bc78d348
KB
4260 goto unconditional_jump;
4261 }
4262 /* Note fall through. */
4263
4264
4265 /* The end of a simple repeat has a pop_failure_jump back to
4266 its matching on_failure_jump, where the latter will push a
4267 failure point. The pop_failure_jump takes off failure
4268 points put on by this pop_failure_jump's matching
4269 on_failure_jump; we got through the pattern to here from the
4270 matching on_failure_jump, so didn't fail. */
4271 case pop_failure_jump:
4272 {
4273 /* We need to pass separate storage for the lowest and
4274 highest registers, even though we don't care about the
4275 actual values. Otherwise, we will restore only one
4276 register from the stack, since lowest will == highest in
4277 `pop_failure_point'. */
4278 unsigned dummy_low_reg, dummy_high_reg;
4279 unsigned char *pdummy;
4280 const char *sdummy;
4281
4282 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4283 POP_FAILURE_POINT (sdummy, pdummy,
4284 dummy_low_reg, dummy_high_reg,
4285 reg_dummy, reg_dummy, reg_info_dummy);
4286 }
4287 /* Note fall through. */
4288
4289
4290 /* Unconditionally jump (without popping any failure points). */
4291 case jump:
4292 unconditional_jump:
4293 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4294 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4295 p += mcnt; /* Do the jump. */
4296 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4297 break;
4298
4299
4300 /* We need this opcode so we can detect where alternatives end
4301 in `group_match_null_string_p' et al. */
4302 case jump_past_alt:
4303 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4304 goto unconditional_jump;
4305
4306
4307 /* Normally, the on_failure_jump pushes a failure point, which
4308 then gets popped at pop_failure_jump. We will end up at
4309 pop_failure_jump, also, and with a pattern of, say, `a+', we
4310 are skipping over the on_failure_jump, so we have to push
4311 something meaningless for pop_failure_jump to pop. */
4312 case dummy_failure_jump:
4313 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4314 /* It doesn't matter what we push for the string here. What
4315 the code at `fail' tests is the value for the pattern. */
4316 PUSH_FAILURE_POINT (0, 0, -2);
4317 goto unconditional_jump;
4318
4319
4320 /* At the end of an alternative, we need to push a dummy failure
9114e279 4321 point in case we are followed by a `pop_failure_jump', because
bc78d348
KB
4322 we don't want the failure point for the alternative to be
4323 popped. For example, matching `(a|ab)*' against `aab'
4324 requires that we match the `ab' alternative. */
4325 case push_dummy_failure:
4326 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4327 /* See comments just above at `dummy_failure_jump' about the
4328 two zeroes. */
4329 PUSH_FAILURE_POINT (0, 0, -2);
4330 break;
4331
4332 /* Have to succeed matching what follows at least n times.
4333 After that, handle like `on_failure_jump'. */
4334 case succeed_n:
4335 EXTRACT_NUMBER (mcnt, p + 2);
4336 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4337
4338 assert (mcnt >= 0);
4339 /* Originally, this is how many times we HAVE to succeed. */
4340 if (mcnt > 0)
4341 {
4342 mcnt--;
4343 p += 2;
4344 STORE_NUMBER_AND_INCR (p, mcnt);
4345 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4346 }
4347 else if (mcnt == 0)
4348 {
4349 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4350 p[2] = (unsigned char) no_op;
4351 p[3] = (unsigned char) no_op;
4352 goto on_failure;
4353 }
4354 break;
4355
4356 case jump_n:
4357 EXTRACT_NUMBER (mcnt, p + 2);
4358 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4359
4360 /* Originally, this is how many times we CAN jump. */
4361 if (mcnt)
4362 {
4363 mcnt--;
4364 STORE_NUMBER (p + 2, mcnt);
4365 goto unconditional_jump;
4366 }
4367 /* If don't have to jump any more, skip over the rest of command. */
4368 else
4369 p += 4;
4370 break;
4371
4372 case set_number_at:
4373 {
4374 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4375
4376 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4377 p1 = p + mcnt;
4378 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4379 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4380 STORE_NUMBER (p1, mcnt);
4381 break;
4382 }
4383
4384 case wordbound:
4385 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4386 if (AT_WORD_BOUNDARY (d))
4387 break;
4388 goto fail;
4389
4390 case notwordbound:
4391 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4392 if (AT_WORD_BOUNDARY (d))
4393 goto fail;
4394 break;
4395
4396 case wordbeg:
4397 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
9114e279 4398 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
bc78d348
KB
4399 break;
4400 goto fail;
4401
4402 case wordend:
4403 DEBUG_PRINT1 ("EXECUTING wordend.\n");
9114e279
KB
4404 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4405 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
bc78d348
KB
4406 break;
4407 goto fail;
4408
4409#ifdef emacs
4410#ifdef emacs19
4411 case before_dot:
4412 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4413 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4414 goto fail;
4415 break;
4416
4417 case at_dot:
4418 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4419 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4420 goto fail;
4421 break;
4422
4423 case after_dot:
4424 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4425 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4426 goto fail;
4427 break;
4428#else /* not emacs19 */
4429 case at_dot:
4430 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4431 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4432 goto fail;
4433 break;
4434#endif /* not emacs19 */
4435
4436 case syntaxspec:
4437 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4438 mcnt = *p++;
4439 goto matchsyntax;
4440
4441 case wordchar:
9114e279 4442 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
bc78d348
KB
4443 mcnt = (int) Sword;
4444 matchsyntax:
4445 PREFETCH ();
9114e279
KB
4446 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4447 goto fail;
bc78d348
KB
4448 SET_REGS_MATCHED ();
4449 break;
4450
4451 case notsyntaxspec:
4452 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4453 mcnt = *p++;
4454 goto matchnotsyntax;
4455
4456 case notwordchar:
9114e279 4457 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
bc78d348 4458 mcnt = (int) Sword;
9114e279 4459 matchnotsyntax:
bc78d348 4460 PREFETCH ();
9114e279
KB
4461 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4462 goto fail;
bc78d348
KB
4463 SET_REGS_MATCHED ();
4464 break;
4465
4466#else /* not emacs */
4467 case wordchar:
4468 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4469 PREFETCH ();
9114e279 4470 if (!WORDCHAR_P (d))
bc78d348
KB
4471 goto fail;
4472 SET_REGS_MATCHED ();
9114e279 4473 d++;
bc78d348
KB
4474 break;
4475
4476 case notwordchar:
4477 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4478 PREFETCH ();
9114e279 4479 if (WORDCHAR_P (d))
bc78d348
KB
4480 goto fail;
4481 SET_REGS_MATCHED ();
9114e279 4482 d++;
bc78d348
KB
4483 break;
4484#endif /* not emacs */
4485
4486 default:
4487 abort ();
4488 }
4489 continue; /* Successfully executed one pattern command; keep going. */
4490
4491
4492 /* We goto here if a matching operation fails. */
4493 fail:
4494 if (!FAIL_STACK_EMPTY ())
4495 { /* A restart point is known. Restore to that state. */
4496 DEBUG_PRINT1 ("\nFAIL:\n");
4497 POP_FAILURE_POINT (d, p,
4498 lowest_active_reg, highest_active_reg,
4499 regstart, regend, reg_info);
4500
4501 /* If this failure point is a dummy, try the next one. */
4502 if (!p)
4503 goto fail;
4504
4505 /* If we failed to the end of the pattern, don't examine *p. */
4506 assert (p <= pend);
4507 if (p < pend)
4508 {
4509 boolean is_a_jump_n = false;
4510
4511 /* If failed to a backwards jump that's part of a repetition
4512 loop, need to pop this failure point and use the next one. */
4513 switch ((re_opcode_t) *p)
4514 {
4515 case jump_n:
4516 is_a_jump_n = true;
4517 case maybe_pop_jump:
4518 case pop_failure_jump:
4519 case jump:
4520 p1 = p + 1;
4521 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4522 p1 += mcnt;
4523
4524 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4525 || (!is_a_jump_n
4526 && (re_opcode_t) *p1 == on_failure_jump))
4527 goto fail;
4528 break;
4529 default:
4530 /* do nothing */ ;
4531 }
4532 }
4533
4534 if (d >= string1 && d <= end1)
4535 dend = end_match_1;
4536 }
4537 else
4538 break; /* Matching at this starting point really fails. */
4539 } /* for (;;) */
4540
4541 if (best_regs_set)
4542 goto restore_best_regs;
4543
4544 FREE_VARIABLES ();
4545
4546 return -1; /* Failure to match. */
4547} /* re_match_2 */
4548\f
4549/* Subroutine definitions for re_match_2. */
4550
4551
4552/* We are passed P pointing to a register number after a start_memory.
4553
4554 Return true if the pattern up to the corresponding stop_memory can
4555 match the empty string, and false otherwise.
4556
4557 If we find the matching stop_memory, sets P to point to one past its number.
4558 Otherwise, sets P to an undefined byte less than or equal to END.
4559
4560 We don't handle duplicates properly (yet). */
4561
4562static boolean
4563group_match_null_string_p (p, end, reg_info)
4564 unsigned char **p, *end;
4565 register_info_type *reg_info;
4566{
4567 int mcnt;
4568 /* Point to after the args to the start_memory. */
4569 unsigned char *p1 = *p + 2;
4570
4571 while (p1 < end)
4572 {
4573 /* Skip over opcodes that can match nothing, and return true or
4574 false, as appropriate, when we get to one that can't, or to the
4575 matching stop_memory. */
4576
4577 switch ((re_opcode_t) *p1)
4578 {
4579 /* Could be either a loop or a series of alternatives. */
4580 case on_failure_jump:
4581 p1++;
4582 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4583
4584 /* If the next operation is not a jump backwards in the
4585 pattern. */
4586
4587 if (mcnt >= 0)
4588 {
4589 /* Go through the on_failure_jumps of the alternatives,
4590 seeing if any of the alternatives cannot match nothing.
4591 The last alternative starts with only a jump,
4592 whereas the rest start with on_failure_jump and end
4593 with a jump, e.g., here is the pattern for `a|b|c':
4594
4595 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4596 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4597 /exactn/1/c
4598
4599 So, we have to first go through the first (n-1)
4600 alternatives and then deal with the last one separately. */
4601
4602
4603 /* Deal with the first (n-1) alternatives, which start
4604 with an on_failure_jump (see above) that jumps to right
4605 past a jump_past_alt. */
4606
4607 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4608 {
4609 /* `mcnt' holds how many bytes long the alternative
4610 is, including the ending `jump_past_alt' and
4611 its number. */
4612
4613 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4614 reg_info))
4615 return false;
4616
4617 /* Move to right after this alternative, including the
4618 jump_past_alt. */
4619 p1 += mcnt;
4620
4621 /* Break if it's the beginning of an n-th alternative
4622 that doesn't begin with an on_failure_jump. */
4623 if ((re_opcode_t) *p1 != on_failure_jump)
4624 break;
4625
4626 /* Still have to check that it's not an n-th
4627 alternative that starts with an on_failure_jump. */
4628 p1++;
4629 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4630 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4631 {
4632 /* Get to the beginning of the n-th alternative. */
4633 p1 -= 3;
4634 break;
4635 }
4636 }
4637
4638 /* Deal with the last alternative: go back and get number
4639 of the `jump_past_alt' just before it. `mcnt' contains
4640 the length of the alternative. */
4641 EXTRACT_NUMBER (mcnt, p1 - 2);
4642
4643 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4644 return false;
4645
4646 p1 += mcnt; /* Get past the n-th alternative. */
4647 } /* if mcnt > 0 */
4648 break;
4649
4650
4651 case stop_memory:
4652 assert (p1[1] == **p);
4653 *p = p1 + 2;
4654 return true;
4655
4656
4657 default:
4658 if (!common_op_match_null_string_p (&p1, end, reg_info))
4659 return false;
4660 }
4661 } /* while p1 < end */
4662
4663 return false;
4664} /* group_match_null_string_p */
4665
4666
4667/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4668 It expects P to be the first byte of a single alternative and END one
4669 byte past the last. The alternative can contain groups. */
4670
4671static boolean
4672alt_match_null_string_p (p, end, reg_info)
4673 unsigned char *p, *end;
4674 register_info_type *reg_info;
4675{
4676 int mcnt;
4677 unsigned char *p1 = p;
4678
4679 while (p1 < end)
4680 {
4681 /* Skip over opcodes that can match nothing, and break when we get
4682 to one that can't. */
4683
4684 switch ((re_opcode_t) *p1)
4685 {
4686 /* It's a loop. */
4687 case on_failure_jump:
4688 p1++;
4689 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4690 p1 += mcnt;
4691 break;
4692
4693 default:
4694 if (!common_op_match_null_string_p (&p1, end, reg_info))
4695 return false;
4696 }
4697 } /* while p1 < end */
4698
4699 return true;
4700} /* alt_match_null_string_p */
4701
4702
4703/* Deals with the ops common to group_match_null_string_p and
4704 alt_match_null_string_p.
4705
4706 Sets P to one after the op and its arguments, if any. */
4707
4708static boolean
4709common_op_match_null_string_p (p, end, reg_info)
4710 unsigned char **p, *end;
4711 register_info_type *reg_info;
4712{
4713 int mcnt;
4714 boolean ret;
4715 int reg_no;
4716 unsigned char *p1 = *p;
4717
4718 switch ((re_opcode_t) *p1++)
4719 {
4720 case no_op:
4721 case begline:
4722 case endline:
4723 case begbuf:
4724 case endbuf:
4725 case wordbeg:
4726 case wordend:
4727 case wordbound:
4728 case notwordbound:
4729#ifdef emacs
4730 case before_dot:
4731 case at_dot:
4732 case after_dot:
4733#endif
4734 break;
4735
4736 case start_memory:
4737 reg_no = *p1;
4738 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4739 ret = group_match_null_string_p (&p1, end, reg_info);
4740
4741 /* Have to set this here in case we're checking a group which
4742 contains a group and a back reference to it. */
4743
4744 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4745 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4746
4747 if (!ret)
4748 return false;
4749 break;
4750
4751 /* If this is an optimized succeed_n for zero times, make the jump. */
4752 case jump:
4753 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4754 if (mcnt >= 0)
4755 p1 += mcnt;
4756 else
4757 return false;
4758 break;
4759
4760 case succeed_n:
4761 /* Get to the number of times to succeed. */
4762 p1 += 2;
4763 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4764
4765 if (mcnt == 0)
4766 {
4767 p1 -= 4;
4768 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4769 p1 += mcnt;
4770 }
4771 else
4772 return false;
4773 break;
4774
4775 case duplicate:
4776 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4777 return false;
4778 break;
4779
4780 case set_number_at:
4781 p1 += 4;
4782
4783 default:
4784 /* All other opcodes mean we cannot match the empty string. */
4785 return false;
4786 }
4787
4788 *p = p1;
4789 return true;
4790} /* common_op_match_null_string_p */
4791
4792
4793/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4794 bytes; nonzero otherwise. */
4795
4796static int
4797bcmp_translate (s1, s2, len, translate)
4798 unsigned char *s1, *s2;
4799 register int len;
4800 char *translate;
4801{
4802 register unsigned char *p1 = s1, *p2 = s2;
4803 while (len)
4804 {
4805 if (translate[*p1++] != translate[*p2++]) return 1;
4806 len--;
4807 }
4808 return 0;
4809}
4810\f
4811/* Entry points for GNU code. */
4812
4813/* re_compile_pattern is the GNU regular expression compiler: it
4814 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4815 Returns 0 if the pattern was valid, otherwise an error string.
4816
4817 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4818 are set in BUFP on entry.
4819
4820 We call regex_compile to do the actual compilation. */
4821
4822const char *
4823re_compile_pattern (pattern, length, bufp)
4824 const char *pattern;
4825 int length;
4826 struct re_pattern_buffer *bufp;
4827{
4828 reg_errcode_t ret;
4829
4830 /* GNU code is written to assume at least RE_NREGS registers will be set
4831 (and at least one extra will be -1). */
4832 bufp->regs_allocated = REGS_UNALLOCATED;
4833
4834 /* And GNU code determines whether or not to get register information
4835 by passing null for the REGS argument to re_match, etc., not by
4836 setting no_sub. */
4837 bufp->no_sub = 0;
4838
4839 /* Match anchors at newline. */
4840 bufp->newline_anchor = 1;
4841
4842 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4843
4844 return re_error_msg[(int) ret];
4845}
4846\f
4847/* Entry points compatible with 4.2 BSD regex library. We don't define
4848 them if this is an Emacs or POSIX compilation. */
4849
4850#if !defined (emacs) && !defined (_POSIX_SOURCE)
4851
4852/* BSD has one and only one pattern buffer. */
4853static struct re_pattern_buffer re_comp_buf;
4854
4855char *
4856re_comp (s)
4857 const char *s;
4858{
4859 reg_errcode_t ret;
4860
4861 if (!s)
4862 {
4863 if (!re_comp_buf.buffer)
4864 return "No previous regular expression";
4865 return 0;
4866 }
4867
4868 if (!re_comp_buf.buffer)
4869 {
4870 re_comp_buf.buffer = (unsigned char *) malloc (200);
4871 if (re_comp_buf.buffer == NULL)
4872 return "Memory exhausted";
4873 re_comp_buf.allocated = 200;
4874
4875 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4876 if (re_comp_buf.fastmap == NULL)
4877 return "Memory exhausted";
4878 }
4879
4880 /* Since `re_exec' always passes NULL for the `regs' argument, we
4881 don't need to initialize the pattern buffer fields which affect it. */
4882
4883 /* Match anchors at newlines. */
4884 re_comp_buf.newline_anchor = 1;
4885
4886 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4887
4888 /* Yes, we're discarding `const' here. */
4889 return (char *) re_error_msg[(int) ret];
4890}
4891
4892
4893int
4894re_exec (s)
4895 const char *s;
4896{
4897 const int len = strlen (s);
4898 return
4899 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4900}
4901#endif /* not emacs and not _POSIX_SOURCE */
4902\f
4903/* POSIX.2 functions. Don't define these for Emacs. */
4904
4905#ifndef emacs
4906
4907/* regcomp takes a regular expression as a string and compiles it.
4908
4909 PREG is a regex_t *. We do not expect any fields to be initialized,
4910 since POSIX says we shouldn't. Thus, we set
4911
4912 `buffer' to the compiled pattern;
4913 `used' to the length of the compiled pattern;
4914 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4915 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4916 RE_SYNTAX_POSIX_BASIC;
4917 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4918 `fastmap' and `fastmap_accurate' to zero;
4919 `re_nsub' to the number of subexpressions in PATTERN.
4920
4921 PATTERN is the address of the pattern string.
4922
4923 CFLAGS is a series of bits which affect compilation.
4924
4925 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4926 use POSIX basic syntax.
4927
4928 If REG_NEWLINE is set, then . and [^...] don't match newline.
4929 Also, regexec will try a match beginning after every newline.
4930
4931 If REG_ICASE is set, then we considers upper- and lowercase
4932 versions of letters to be equivalent when matching.
4933
4934 If REG_NOSUB is set, then when PREG is passed to regexec, that
4935 routine will report only success or failure, and nothing about the
4936 registers.
4937
4938 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4939 the return codes and their meanings.) */
4940
4941int
4942regcomp (preg, pattern, cflags)
4943 regex_t *preg;
4944 const char *pattern;
4945 int cflags;
4946{
4947 reg_errcode_t ret;
4948 unsigned syntax
d9088577
DM
4949 = (cflags & REG_EXTENDED) ?
4950 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
bc78d348
KB
4951
4952 /* regex_compile will allocate the space for the compiled pattern. */
4953 preg->buffer = 0;
d9088577 4954 preg->allocated = 0;
8b4cc189 4955 preg->used = 0;
bc78d348
KB
4956
4957 /* Don't bother to use a fastmap when searching. This simplifies the
4958 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4959 characters after newlines into the fastmap. This way, we just try
4960 every character. */
4961 preg->fastmap = 0;
4962
4963 if (cflags & REG_ICASE)
4964 {
4965 unsigned i;
4966
4967 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4968 if (preg->translate == NULL)
4969 return (int) REG_ESPACE;
4970
4971 /* Map uppercase characters to corresponding lowercase ones. */
4972 for (i = 0; i < CHAR_SET_SIZE; i++)
c6b40788 4973 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
bc78d348
KB
4974 }
4975 else
4976 preg->translate = NULL;
4977
4978 /* If REG_NEWLINE is set, newlines are treated differently. */
4979 if (cflags & REG_NEWLINE)
4980 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4981 syntax &= ~RE_DOT_NEWLINE;
4982 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4983 /* It also changes the matching behavior. */
4984 preg->newline_anchor = 1;
4985 }
4986 else
4987 preg->newline_anchor = 0;
4988
4989 preg->no_sub = !!(cflags & REG_NOSUB);
4990
4991 /* POSIX says a null character in the pattern terminates it, so we
4992 can use strlen here in compiling the pattern. */
4993 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4994
4995 /* POSIX doesn't distinguish between an unmatched open-group and an
4996 unmatched close-group: both are REG_EPAREN. */
4997 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4998
4999 return (int) ret;
5000}
5001
5002
5003/* regexec searches for a given pattern, specified by PREG, in the
5004 string STRING.
5005
5006 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5007 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5008 least NMATCH elements, and we set them to the offsets of the
5009 corresponding matched substrings.
5010
5011 EFLAGS specifies `execution flags' which affect matching: if
5012 REG_NOTBOL is set, then ^ does not match at the beginning of the
5013 string; if REG_NOTEOL is set, then $ does not match at the end.
5014
5015 We return 0 if we find a match and REG_NOMATCH if not. */
5016
5017int
5018regexec (preg, string, nmatch, pmatch, eflags)
5019 const regex_t *preg;
5020 const char *string;
5021 size_t nmatch;
5022 regmatch_t pmatch[];
5023 int eflags;
5024{
5025 int ret;
5026 struct re_registers regs;
5027 regex_t private_preg;
5028 int len = strlen (string);
5029 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5030
5031 private_preg = *preg;
5032
5033 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5034 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5035
5036 /* The user has told us exactly how many registers to return
5037 information about, via `nmatch'. We have to pass that on to the
5038 matching routines. */
5039 private_preg.regs_allocated = REGS_FIXED;
5040
5041 if (want_reg_info)
5042 {
5043 regs.num_regs = nmatch;
5044 regs.start = TALLOC (nmatch, regoff_t);
5045 regs.end = TALLOC (nmatch, regoff_t);
5046 if (regs.start == NULL || regs.end == NULL)
5047 return (int) REG_NOMATCH;
5048 }
5049
5050 /* Perform the searching operation. */
5051 ret = re_search (&private_preg, string, len,
5052 /* start: */ 0, /* range: */ len,
5053 want_reg_info ? &regs : (struct re_registers *) 0);
5054
5055 /* Copy the register information to the POSIX structure. */
5056 if (want_reg_info)
5057 {
5058 if (ret >= 0)
5059 {
5060 unsigned r;
5061
5062 for (r = 0; r < nmatch; r++)
5063 {
5064 pmatch[r].rm_so = regs.start[r];
5065 pmatch[r].rm_eo = regs.end[r];
5066 }
5067 }
5068
5069 /* If we needed the temporary register info, free the space now. */
5070 free (regs.start);
5071 free (regs.end);
5072 }
5073
5074 /* We want zero return to mean success, unlike `re_search'. */
5075 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5076}
5077
5078
5079/* Returns a message corresponding to an error code, ERRCODE, returned
9114e279 5080 from either regcomp or regexec. We don't use PREG here. */
bc78d348
KB
5081
5082size_t
5083regerror (errcode, preg, errbuf, errbuf_size)
5084 int errcode;
5085 const regex_t *preg;
5086 char *errbuf;
5087 size_t errbuf_size;
5088{
85586484
JB
5089 const char *msg;
5090 size_t msg_size;
5091
5092 if (errcode < 0
5093 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5094 /* Only error codes returned by the rest of the code should be passed
5095 to this routine. If we are given anything else, or if other regex
5096 code generates an invalid error code, then the program has a bug.
5097 Dump core so we can fix it. */
5098 abort ();
5099
5745b086
JB
5100 msg = re_error_msg[errcode];
5101
5102 /* POSIX doesn't require that we do anything in this case, but why
5103 not be nice. */
5104 if (! msg)
5105 msg = "Success";
5106
85586484 5107 msg_size = strlen (msg) + 1; /* Includes the null. */
bc78d348
KB
5108
5109 if (errbuf_size != 0)
5110 {
5111 if (msg_size > errbuf_size)
5112 {
5113 strncpy (errbuf, msg, errbuf_size - 1);
5114 errbuf[errbuf_size - 1] = 0;
5115 }
5116 else
5117 strcpy (errbuf, msg);
5118 }
5119
5120 return msg_size;
5121}
5122
5123
5124/* Free dynamically allocated space used by PREG. */
5125
5126void
5127regfree (preg)
5128 regex_t *preg;
5129{
5130 if (preg->buffer != NULL)
5131 free (preg->buffer);
5132 preg->buffer = NULL;
5133
5134 preg->allocated = 0;
5135 preg->used = 0;
5136
5137 if (preg->fastmap != NULL)
5138 free (preg->fastmap);
5139 preg->fastmap = NULL;
5140 preg->fastmap_accurate = 0;
5141
5142 if (preg->translate != NULL)
5143 free (preg->translate);
5144 preg->translate = NULL;
5145}
5146
5147#endif /* not emacs */
5148\f
5149/*
5150Local variables:
5151make-backup-files: t
5152version-control: t
5153trim-versions-without-asking: nil
5154End:
5155*/