(search_regs_saved): Delete initializer.
[bpt/emacs.git] / src / intervals.c
CommitLineData
a50699fd 1/* Code for doing intervals.
3a22ee35 2 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
a50699fd
JA
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
7ce503fd 8the Free Software Foundation; either version 2, or (at your option)
a50699fd
JA
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38*/
39
40
18160b98 41#include <config.h>
a50699fd
JA
42#include "lisp.h"
43#include "intervals.h"
44#include "buffer.h"
328c0f1f 45#include "puresize.h"
f54a8c1a 46#include "keyboard.h"
a50699fd 47
7ce503fd 48/* The rest of the file is within this conditional. */
d2f7a802
JA
49#ifdef USE_TEXT_PROPERTIES
50
45d82bdc
KH
51/* Test for membership, allowing for t (actually any non-cons) to mean the
52 universal set. */
53
54#define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55
d8638d30
RS
56#define min(x, y) ((x) < (y) ? (x) : (y))
57
b5f37d3f 58Lisp_Object merge_properties_sticky ();
a50699fd 59\f
7ce503fd 60/* Utility functions for intervals. */
a50699fd
JA
61
62
7ce503fd 63/* Create the root interval of some object, a buffer or string. */
a50699fd
JA
64
65INTERVAL
66create_root_interval (parent)
67 Lisp_Object parent;
68{
328c0f1f
RS
69 INTERVAL new;
70
71 CHECK_IMPURE (parent);
72
73 new = make_interval ();
a50699fd 74
b629dd47 75 if (BUFFERP (parent))
a50699fd 76 {
2bc7a79b
JB
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
a50699fd
JA
79 XBUFFER (parent)->intervals = new;
80 }
b629dd47 81 else if (STRINGP (parent))
a50699fd
JA
82 {
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
85 }
86
87 new->parent = (INTERVAL) parent;
88 new->position = 1;
89
90 return new;
91}
92
93/* Make the interval TARGET have exactly the properties of SOURCE */
94
95void
96copy_properties (source, target)
97 register INTERVAL source, target;
98{
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
101
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
104}
105
106/* Merge the properties of interval SOURCE into the properties
323a7ad4
RS
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
a50699fd
JA
109
110static void
111merge_properties (source, target)
112 register INTERVAL source, target;
113{
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (! EQ (o, Qnil))
123 {
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
126
127 if (NILP (val))
128 {
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
133 }
134 else
135 o = Fcdr (Fcdr (o));
136 }
137}
138
139/* Return 1 if the two intervals have the same properties,
7ce503fd 140 0 otherwise. */
a50699fd
JA
141
142int
143intervals_equal (i0, i1)
144 INTERVAL i0, i1;
145{
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register i1_len;
148
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
151
323a7ad4
RS
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
154
a50699fd
JA
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
161 {
7ce503fd 162 /* Lengths of the two plists were unequal. */
a50699fd
JA
163 if (i1_len == 0)
164 return 0;
165
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
168
7ce503fd 169 /* i0 has something i1 doesn't. */
a50699fd
JA
170 if (EQ (i1_val, Qnil))
171 return 0;
172
7ce503fd 173 /* i0 and i1 both have sym, but it has different values in each. */
a50699fd 174 i0_cdr = Fcdr (i0_cdr);
7ce503fd 175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
a50699fd
JA
176 return 0;
177
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
180 }
181
7ce503fd 182 /* Lengths of the two plists were unequal. */
a50699fd
JA
183 if (i1_len > 0)
184 return 0;
185
186 return 1;
187}
188\f
189static int icount;
190static int idepth;
191static int zero_length;
192
a50699fd 193/* Traverse an interval tree TREE, performing FUNCTION on each node.
4a93c905 194 Pass FUNCTION two args: an interval, and ARG. */
a50699fd
JA
195
196void
4a93c905 197traverse_intervals (tree, position, depth, function, arg)
a50699fd 198 INTERVAL tree;
e0b63493 199 int position, depth;
a50699fd 200 void (* function) ();
4a93c905 201 Lisp_Object arg;
a50699fd
JA
202{
203 if (NULL_INTERVAL_P (tree))
204 return;
205
323a7ad4 206 traverse_intervals (tree->left, position, depth + 1, function, arg);
a50699fd
JA
207 position += LEFT_TOTAL_LENGTH (tree);
208 tree->position = position;
4a93c905 209 (*function) (tree, arg);
a50699fd 210 position += LENGTH (tree);
323a7ad4 211 traverse_intervals (tree->right, position, depth + 1, function, arg);
a50699fd
JA
212}
213\f
214#if 0
7ce503fd 215/* These functions are temporary, for debugging purposes only. */
a50699fd
JA
216
217INTERVAL search_interval, found_interval;
218
219void
220check_for_interval (i)
221 register INTERVAL i;
222{
223 if (i == search_interval)
224 {
225 found_interval = i;
226 icount++;
227 }
228}
229
230INTERVAL
231search_for_interval (i, tree)
232 register INTERVAL i, tree;
233{
234 icount = 0;
235 search_interval = i;
236 found_interval = NULL_INTERVAL;
4a93c905 237 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
a50699fd
JA
238 return found_interval;
239}
240
241static void
242inc_interval_count (i)
243 INTERVAL i;
244{
245 icount++;
246 if (LENGTH (i) == 0)
247 zero_length++;
248 if (depth > idepth)
249 idepth = depth;
250}
251
252int
253count_intervals (i)
254 register INTERVAL i;
255{
256 icount = 0;
257 idepth = 0;
258 zero_length = 0;
4a93c905 259 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
a50699fd
JA
260
261 return icount;
262}
263
264static INTERVAL
265root_interval (interval)
266 INTERVAL interval;
267{
268 register INTERVAL i = interval;
269
270 while (! ROOT_INTERVAL_P (i))
271 i = i->parent;
272
273 return i;
274}
275#endif
276\f
277/* Assuming that a left child exists, perform the following operation:
278
279 A B
280 / \ / \
281 B => A
282 / \ / \
283 c c
284*/
285
286static INTERVAL
287rotate_right (interval)
288 INTERVAL interval;
289{
290 INTERVAL i;
291 INTERVAL B = interval->left;
4314dea4 292 int old_total = interval->total_length;
a50699fd 293
7ce503fd 294 /* Deal with any Parent of A; make it point to B. */
a50699fd
JA
295 if (! ROOT_INTERVAL_P (interval))
296 if (AM_LEFT_CHILD (interval))
4314dea4 297 interval->parent->left = B;
a50699fd 298 else
4314dea4
RS
299 interval->parent->right = B;
300 B->parent = interval->parent;
a50699fd 301
4314dea4
RS
302 /* Make B the parent of A */
303 i = B->right;
304 B->right = interval;
305 interval->parent = B;
a50699fd 306
4314dea4 307 /* Make A point to c */
a50699fd
JA
308 interval->left = i;
309 if (! NULL_INTERVAL_P (i))
310 i->parent = interval;
4314dea4 311
550bd63a 312 /* A's total length is decreased by the length of B and its left child. */
4314dea4
RS
313 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
314
315 /* B must have the same total length of A. */
316 B->total_length = old_total;
a50699fd
JA
317
318 return B;
319}
4314dea4 320
a50699fd
JA
321/* Assuming that a right child exists, perform the following operation:
322
323 A B
324 / \ / \
325 B => A
326 / \ / \
327 c c
328*/
329
330static INTERVAL
331rotate_left (interval)
332 INTERVAL interval;
333{
334 INTERVAL i;
335 INTERVAL B = interval->right;
4314dea4 336 int old_total = interval->total_length;
a50699fd 337
4314dea4 338 /* Deal with any parent of A; make it point to B. */
a50699fd
JA
339 if (! ROOT_INTERVAL_P (interval))
340 if (AM_LEFT_CHILD (interval))
4314dea4 341 interval->parent->left = B;
a50699fd 342 else
4314dea4
RS
343 interval->parent->right = B;
344 B->parent = interval->parent;
a50699fd
JA
345
346 /* Make B the parent of A */
4314dea4
RS
347 i = B->left;
348 B->left = interval;
349 interval->parent = B;
a50699fd
JA
350
351 /* Make A point to c */
352 interval->right = i;
353 if (! NULL_INTERVAL_P (i))
354 i->parent = interval;
4314dea4 355
550bd63a 356 /* A's total length is decreased by the length of B and its right child. */
4314dea4
RS
357 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
358
359 /* B must have the same total length of A. */
360 B->total_length = old_total;
a50699fd
JA
361
362 return B;
363}
364\f
4314dea4
RS
365/* Balance an interval tree with the assumption that the subtrees
366 themselves are already balanced. */
367
368static INTERVAL
369balance_an_interval (i)
370 INTERVAL i;
371{
372 register int old_diff, new_diff;
373
374 while (1)
375 {
376 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
377 if (old_diff > 0)
378 {
379 new_diff = i->total_length - i->left->total_length
380 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
381 if (abs (new_diff) >= old_diff)
382 break;
383 i = rotate_right (i);
384 balance_an_interval (i->right);
385 }
386 else if (old_diff < 0)
387 {
388 new_diff = i->total_length - i->right->total_length
389 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
390 if (abs (new_diff) >= -old_diff)
391 break;
392 i = rotate_left (i);
393 balance_an_interval (i->left);
394 }
395 else
396 break;
397 }
398 return i;
399}
400
401/* Balance INTERVAL, potentially stuffing it back into its parent
402 Lisp Object. */
403
404static INLINE INTERVAL
405balance_possible_root_interval (interval)
406 register INTERVAL interval;
407{
408 Lisp_Object parent;
409
410 if (interval->parent == NULL_INTERVAL)
411 return interval;
412
413 parent = (Lisp_Object) (interval->parent);
414 interval = balance_an_interval (interval);
415
b629dd47 416 if (BUFFERP (parent))
4314dea4 417 XBUFFER (parent)->intervals = interval;
b629dd47 418 else if (STRINGP (parent))
4314dea4
RS
419 XSTRING (parent)->intervals = interval;
420
421 return interval;
422}
423
424/* Balance the interval tree TREE. Balancing is by weight
425 (the amount of text). */
426
427static INTERVAL
428balance_intervals_internal (tree)
429 register INTERVAL tree;
430{
431 /* Balance within each side. */
432 if (tree->left)
433 balance_intervals (tree->left);
434 if (tree->right)
435 balance_intervals (tree->right);
436 return balance_an_interval (tree);
437}
438
439/* Advertised interface to balance intervals. */
440
441INTERVAL
442balance_intervals (tree)
443 INTERVAL tree;
444{
445 if (tree == NULL_INTERVAL)
446 return NULL_INTERVAL;
447
448 return balance_intervals_internal (tree);
449}
450\f
2bc7a79b
JB
451/* Split INTERVAL into two pieces, starting the second piece at
452 character position OFFSET (counting from 0), relative to INTERVAL.
453 INTERVAL becomes the left-hand piece, and the right-hand piece
454 (second, lexicographically) is returned.
90ba40fc
JA
455
456 The size and position fields of the two intervals are set based upon
457 those of the original interval. The property list of the new interval
458 is reset, thus it is up to the caller to do the right thing with the
459 result.
a50699fd
JA
460
461 Note that this does not change the position of INTERVAL; if it is a root,
7ce503fd 462 it is still a root after this operation. */
a50699fd
JA
463
464INTERVAL
90ba40fc 465split_interval_right (interval, offset)
a50699fd 466 INTERVAL interval;
90ba40fc 467 int offset;
a50699fd
JA
468{
469 INTERVAL new = make_interval ();
470 int position = interval->position;
2bc7a79b 471 int new_length = LENGTH (interval) - offset;
a50699fd 472
2bc7a79b 473 new->position = position + offset;
a50699fd 474 new->parent = interval;
a50699fd 475
4314dea4 476 if (NULL_RIGHT_CHILD (interval))
a50699fd
JA
477 {
478 interval->right = new;
479 new->total_length = new_length;
480
481 return new;
482 }
483
7ce503fd 484 /* Insert the new node between INTERVAL and its right child. */
a50699fd
JA
485 new->right = interval->right;
486 interval->right->parent = new;
487 interval->right = new;
a50699fd
JA
488 new->total_length = new_length + new->right->total_length;
489
4314dea4
RS
490 balance_an_interval (new);
491 balance_possible_root_interval (interval);
492
a50699fd
JA
493 return new;
494}
495
2bc7a79b
JB
496/* Split INTERVAL into two pieces, starting the second piece at
497 character position OFFSET (counting from 0), relative to INTERVAL.
498 INTERVAL becomes the right-hand piece, and the left-hand piece
499 (first, lexicographically) is returned.
a50699fd 500
90ba40fc
JA
501 The size and position fields of the two intervals are set based upon
502 those of the original interval. The property list of the new interval
503 is reset, thus it is up to the caller to do the right thing with the
504 result.
505
506 Note that this does not change the position of INTERVAL; if it is a root,
7ce503fd 507 it is still a root after this operation. */
a50699fd
JA
508
509INTERVAL
90ba40fc 510split_interval_left (interval, offset)
a50699fd 511 INTERVAL interval;
90ba40fc 512 int offset;
a50699fd
JA
513{
514 INTERVAL new = make_interval ();
515 int position = interval->position;
2bc7a79b 516 int new_length = offset;
a50699fd 517
a50699fd 518 new->position = interval->position;
2bc7a79b 519 interval->position = interval->position + offset;
a50699fd
JA
520 new->parent = interval;
521
522 if (NULL_LEFT_CHILD (interval))
523 {
524 interval->left = new;
525 new->total_length = new_length;
526
527 return new;
528 }
529
7ce503fd 530 /* Insert the new node between INTERVAL and its left child. */
a50699fd
JA
531 new->left = interval->left;
532 new->left->parent = new;
533 interval->left = new;
4314dea4
RS
534 new->total_length = new_length + new->left->total_length;
535
536 balance_an_interval (new);
537 balance_possible_root_interval (interval);
a50699fd
JA
538
539 return new;
540}
541\f
90ba40fc 542/* Find the interval containing text position POSITION in the text
24e3d3bf
JB
543 represented by the interval tree TREE. POSITION is a buffer
544 position; the earliest position is 1. If POSITION is at the end of
545 the buffer, return the interval containing the last character.
a50699fd 546
90ba40fc
JA
547 The `position' field, which is a cache of an interval's position,
548 is updated in the interval found. Other functions (e.g., next_interval)
7ce503fd 549 will update this cache based on the result of find_interval. */
90ba40fc
JA
550
551INLINE INTERVAL
a50699fd
JA
552find_interval (tree, position)
553 register INTERVAL tree;
554 register int position;
555{
24e3d3bf
JB
556 /* The distance from the left edge of the subtree at TREE
557 to POSITION. */
558 register int relative_position = position - BEG;
a50699fd
JA
559
560 if (NULL_INTERVAL_P (tree))
561 return NULL_INTERVAL;
562
24e3d3bf 563 if (relative_position > TOTAL_LENGTH (tree))
a50699fd 564 abort (); /* Paranoia */
a50699fd 565
4314dea4
RS
566 tree = balance_possible_root_interval (tree);
567
a50699fd
JA
568 while (1)
569 {
24e3d3bf 570 if (relative_position < LEFT_TOTAL_LENGTH (tree))
a50699fd
JA
571 {
572 tree = tree->left;
573 }
24e3d3bf
JB
574 else if (! NULL_RIGHT_CHILD (tree)
575 && relative_position >= (TOTAL_LENGTH (tree)
576 - RIGHT_TOTAL_LENGTH (tree)))
a50699fd
JA
577 {
578 relative_position -= (TOTAL_LENGTH (tree)
579 - RIGHT_TOTAL_LENGTH (tree));
580 tree = tree->right;
581 }
582 else
583 {
24e3d3bf
JB
584 tree->position =
585 (position - relative_position /* the left edge of *tree */
586 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
587
a50699fd
JA
588 return tree;
589 }
590 }
591}
592\f
593/* Find the succeeding interval (lexicographically) to INTERVAL.
90ba40fc 594 Sets the `position' field based on that of INTERVAL (see
7ce503fd 595 find_interval). */
a50699fd
JA
596
597INTERVAL
598next_interval (interval)
599 register INTERVAL interval;
600{
601 register INTERVAL i = interval;
602 register int next_position;
603
604 if (NULL_INTERVAL_P (i))
605 return NULL_INTERVAL;
606 next_position = interval->position + LENGTH (interval);
607
608 if (! NULL_RIGHT_CHILD (i))
609 {
610 i = i->right;
611 while (! NULL_LEFT_CHILD (i))
612 i = i->left;
613
614 i->position = next_position;
615 return i;
616 }
617
618 while (! NULL_PARENT (i))
619 {
620 if (AM_LEFT_CHILD (i))
621 {
622 i = i->parent;
623 i->position = next_position;
624 return i;
625 }
626
627 i = i->parent;
628 }
629
630 return NULL_INTERVAL;
631}
632
633/* Find the preceding interval (lexicographically) to INTERVAL.
90ba40fc 634 Sets the `position' field based on that of INTERVAL (see
7ce503fd 635 find_interval). */
a50699fd
JA
636
637INTERVAL
638previous_interval (interval)
639 register INTERVAL interval;
640{
641 register INTERVAL i;
642 register position_of_previous;
643
644 if (NULL_INTERVAL_P (interval))
645 return NULL_INTERVAL;
646
647 if (! NULL_LEFT_CHILD (interval))
648 {
649 i = interval->left;
650 while (! NULL_RIGHT_CHILD (i))
651 i = i->right;
652
653 i->position = interval->position - LENGTH (i);
654 return i;
655 }
656
657 i = interval;
658 while (! NULL_PARENT (i))
659 {
660 if (AM_RIGHT_CHILD (i))
661 {
662 i = i->parent;
663
664 i->position = interval->position - LENGTH (i);
665 return i;
666 }
667 i = i->parent;
668 }
669
670 return NULL_INTERVAL;
671}
672\f
90ba40fc 673#if 0
a50699fd
JA
674/* Traverse a path down the interval tree TREE to the interval
675 containing POSITION, adjusting all nodes on the path for
676 an addition of LENGTH characters. Insertion between two intervals
677 (i.e., point == i->position, where i is second interval) means
678 text goes into second interval.
679
680 Modifications are needed to handle the hungry bits -- after simply
681 finding the interval at position (don't add length going down),
682 if it's the beginning of the interval, get the previous interval
683 and check the hugry bits of both. Then add the length going back up
7ce503fd 684 to the root. */
a50699fd
JA
685
686static INTERVAL
687adjust_intervals_for_insertion (tree, position, length)
688 INTERVAL tree;
689 int position, length;
690{
691 register int relative_position;
692 register INTERVAL this;
693
694 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
695 abort ();
696
697 /* If inserting at point-max of a buffer, that position
698 will be out of range */
699 if (position > TOTAL_LENGTH (tree))
700 position = TOTAL_LENGTH (tree);
701 relative_position = position;
702 this = tree;
703
704 while (1)
705 {
706 if (relative_position <= LEFT_TOTAL_LENGTH (this))
707 {
708 this->total_length += length;
709 this = this->left;
710 }
711 else if (relative_position > (TOTAL_LENGTH (this)
712 - RIGHT_TOTAL_LENGTH (this)))
713 {
714 relative_position -= (TOTAL_LENGTH (this)
715 - RIGHT_TOTAL_LENGTH (this));
716 this->total_length += length;
717 this = this->right;
718 }
719 else
720 {
721 /* If we are to use zero-length intervals as buffer pointers,
7ce503fd 722 then this code will have to change. */
a50699fd
JA
723 this->total_length += length;
724 this->position = LEFT_TOTAL_LENGTH (this)
725 + position - relative_position + 1;
726 return tree;
727 }
728 }
729}
90ba40fc
JA
730#endif
731
732/* Effect an adjustment corresponding to the addition of LENGTH characters
733 of text. Do this by finding the interval containing POSITION in the
550bd63a 734 interval tree TREE, and then adjusting all of its ancestors by adding
90ba40fc
JA
735 LENGTH to them.
736
737 If POSITION is the first character of an interval, meaning that point
738 is actually between the two intervals, make the new text belong to
739 the interval which is "sticky".
740
1d1d7ba0 741 If both intervals are "sticky", then make them belong to the left-most
90ba40fc 742 interval. Another possibility would be to create a new interval for
7ce503fd 743 this text, and make it have the merged properties of both ends. */
90ba40fc
JA
744
745static INTERVAL
746adjust_intervals_for_insertion (tree, position, length)
747 INTERVAL tree;
748 int position, length;
749{
750 register INTERVAL i;
7ce503fd
RS
751 register INTERVAL temp;
752 int eobp = 0;
753
90ba40fc
JA
754 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
755 abort ();
756
24e3d3bf
JB
757 /* If inserting at point-max of a buffer, that position will be out
758 of range. Remember that buffer positions are 1-based. */
7ce503fd 759 if (position >= BEG + TOTAL_LENGTH (tree)){
24e3d3bf 760 position = BEG + TOTAL_LENGTH (tree);
7ce503fd
RS
761 eobp = 1;
762 }
90ba40fc
JA
763
764 i = find_interval (tree, position);
7ce503fd 765
2313b945
RS
766 /* If in middle of an interval which is not sticky either way,
767 we must not just give its properties to the insertion.
768 So split this interval at the insertion point. */
769 if (! (position == i->position || eobp)
770 && END_NONSTICKY_P (i)
771 && ! FRONT_STICKY_P (i))
772 {
773 temp = split_interval_right (i, position - i->position);
774 copy_properties (i, temp);
775 i = temp;
776 }
777
90ba40fc 778 /* If we are positioned between intervals, check the stickiness of
7ce503fd
RS
779 both of them. We have to do this too, if we are at BEG or Z. */
780 if (position == i->position || eobp)
90ba40fc 781 {
7ce503fd
RS
782 register INTERVAL prev;
783
784 if (position == BEG)
785 prev = 0;
786 else if (eobp)
787 {
788 prev = i;
789 i = 0;
790 }
791 else
792 prev = previous_interval (i);
90ba40fc 793
7ce503fd
RS
794 /* Even if we are positioned between intervals, we default
795 to the left one if it exists. We extend it now and split
796 off a part later, if stickyness demands it. */
4314dea4
RS
797 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
798 {
799 temp->total_length += length;
800 temp = balance_possible_root_interval (temp);
801 }
7ce503fd
RS
802
803 /* If at least one interval has sticky properties,
804 we check the stickyness property by property. */
805 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
806 {
dd675b05 807 Lisp_Object pleft, pright;
7ce503fd
RS
808 struct interval newi;
809
dd675b05
KH
810 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
811 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
7ce503fd
RS
812 newi.plist = merge_properties_sticky (pleft, pright);
813
814 if(! prev) /* i.e. position == BEG */
815 {
816 if (! intervals_equal (i, &newi))
817 {
818 i = split_interval_left (i, length);
819 i->plist = newi.plist;
820 }
821 }
822 else if (! intervals_equal (prev, &newi))
823 {
824 prev = split_interval_right (prev,
825 position - prev->position);
826 prev->plist = newi.plist;
827 if (! NULL_INTERVAL_P (i)
828 && intervals_equal (prev, i))
829 merge_interval_right (prev);
830 }
831
832 /* We will need to update the cache here later. */
833 }
834 else if (! prev && ! NILP (i->plist))
835 {
836 /* Just split off a new interval at the left.
837 Since I wasn't front-sticky, the empty plist is ok. */
838 i = split_interval_left (i, length);
839 }
90ba40fc
JA
840 }
841
7ce503fd
RS
842 /* Otherwise just extend the interval. */
843 else
90ba40fc 844 {
7ce503fd 845 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
4314dea4
RS
846 {
847 temp->total_length += length;
848 temp = balance_possible_root_interval (temp);
849 }
90ba40fc 850 }
7ce503fd 851
90ba40fc
JA
852 return tree;
853}
7ce503fd 854
45d82bdc
KH
855/* Any property might be front-sticky on the left, rear-sticky on the left,
856 front-sticky on the right, or rear-sticky on the right; the 16 combinations
857 can be arranged in a matrix with rows denoting the left conditions and
858 columns denoting the right conditions:
859 _ __ _
860_ FR FR FR FR
861FR__ 0 1 2 3
862 _FR 4 5 6 7
863FR 8 9 A B
864 FR C D E F
865
866 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
867 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
868 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
869 p8 L p9 L pa L pb L pc L pd L pe L pf L)
870 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
871 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
872 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
873 p8 R p9 R pa R pb R pc R pd R pe R pf R)
874
875 We inherit from whoever has a sticky side facing us. If both sides
876 do (cases 2, 3, E, and F), then we inherit from whichever side has a
877 non-nil value for the current property. If both sides do, then we take
878 from the left.
879
880 When we inherit a property, we get its stickiness as well as its value.
881 So, when we merge the above two lists, we expect to get this:
882
883 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
884 rear-nonsticky (p6 pa)
885 p0 L p1 L p2 L p3 L p6 R p7 R
886 pa R pb R pc L pd L pe L pf L)
887
888 The optimizable special cases are:
889 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
890 left rear-nonsticky = t, right front-sticky = t (inherit right)
891 left rear-nonsticky = t, right front-sticky = nil (inherit none)
892*/
893
7ce503fd
RS
894Lisp_Object
895merge_properties_sticky (pleft, pright)
896 Lisp_Object pleft, pright;
897{
dd675b05
KH
898 register Lisp_Object props, front, rear;
899 Lisp_Object lfront, lrear, rfront, rrear;
45d82bdc
KH
900 register Lisp_Object tail1, tail2, sym, lval, rval;
901 int use_left, use_right;
7ce503fd 902
dd675b05
KH
903 props = Qnil;
904 front = Qnil;
905 rear = Qnil;
906 lfront = textget (pleft, Qfront_sticky);
907 lrear = textget (pleft, Qrear_nonsticky);
908 rfront = textget (pright, Qfront_sticky);
909 rrear = textget (pright, Qrear_nonsticky);
910
45d82bdc
KH
911 /* Go through each element of PRIGHT. */
912 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
7ce503fd
RS
913 {
914 sym = Fcar (tail1);
915
916 /* Sticky properties get special treatment. */
917 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
918 continue;
45d82bdc
KH
919
920 rval = Fcar (Fcdr (tail1));
921 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
922 if (EQ (sym, Fcar (tail2)))
923 break;
924 lval = (NILP (tail2) ? Qnil : Fcar( Fcdr (tail2)));
925
926 use_left = ! TMEM (sym, lrear);
927 use_right = TMEM (sym, rfront);
928 if (use_left && use_right)
929 {
930 use_left = ! NILP (lval);
931 use_right = ! NILP (rval);
932 }
933 if (use_left)
7ce503fd 934 {
45d82bdc
KH
935 /* We build props as (value sym ...) rather than (sym value ...)
936 because we plan to nreverse it when we're done. */
937 if (! NILP (lval))
938 props = Fcons (lval, Fcons (sym, props));
939 if (TMEM (sym, lfront))
7ce503fd 940 front = Fcons (sym, front);
45d82bdc
KH
941 if (TMEM (sym, lrear))
942 rear = Fcons (sym, rear);
7ce503fd 943 }
45d82bdc 944 else if (use_right)
7ce503fd 945 {
45d82bdc
KH
946 if (! NILP (rval))
947 props = Fcons (rval, Fcons (sym, props));
948 if (TMEM (sym, rfront))
949 front = Fcons (sym, front);
950 if (TMEM (sym, rrear))
951 rear = Fcons (sym, rear);
7ce503fd
RS
952 }
953 }
45d82bdc
KH
954
955 /* Now go through each element of PLEFT. */
956 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
7ce503fd
RS
957 {
958 sym = Fcar (tail2);
959
960 /* Sticky properties get special treatment. */
961 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
962 continue;
963
45d82bdc
KH
964 /* If sym is in PRIGHT, we've already considered it. */
965 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
7ce503fd
RS
966 if (EQ (sym, Fcar (tail1)))
967 break;
45d82bdc
KH
968 if (! NILP (tail1))
969 continue;
970
971 lval = Fcar (Fcdr (tail2));
972
973 /* Since rval is known to be nil in this loop, the test simplifies. */
974 if (! TMEM (sym, lrear))
7ce503fd 975 {
45d82bdc
KH
976 if (! NILP (lval))
977 props = Fcons (lval, Fcons (sym, props));
978 if (TMEM (sym, lfront))
979 front = Fcons (sym, front);
980 }
981 else if (TMEM (sym, rfront))
982 {
983 /* The value is nil, but we still inherit the stickiness
984 from the right. */
7ce503fd 985 front = Fcons (sym, front);
45d82bdc 986 if (TMEM (sym, rrear))
7ce503fd
RS
987 rear = Fcons (sym, rear);
988 }
989 }
550bd63a 990 props = Fnreverse (props);
7ce503fd 991 if (! NILP (rear))
550bd63a 992 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
45d82bdc
KH
993 if (! NILP (front))
994 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
7ce503fd 995 return props;
7ce503fd
RS
996}
997
a50699fd 998\f
90ba40fc
JA
999/* Delete an node I from its interval tree by merging its subtrees
1000 into one subtree which is then returned. Caller is responsible for
7ce503fd 1001 storing the resulting subtree into its parent. */
a50699fd
JA
1002
1003static INTERVAL
1004delete_node (i)
1005 register INTERVAL i;
1006{
1007 register INTERVAL migrate, this;
1008 register int migrate_amt;
1009
1010 if (NULL_INTERVAL_P (i->left))
1011 return i->right;
1012 if (NULL_INTERVAL_P (i->right))
1013 return i->left;
1014
1015 migrate = i->left;
1016 migrate_amt = i->left->total_length;
1017 this = i->right;
1018 this->total_length += migrate_amt;
1019 while (! NULL_INTERVAL_P (this->left))
1020 {
1021 this = this->left;
1022 this->total_length += migrate_amt;
1023 }
1024 this->left = migrate;
1025 migrate->parent = this;
1026
1027 return i->right;
1028}
1029
1030/* Delete interval I from its tree by calling `delete_node'
1031 and properly connecting the resultant subtree.
1032
1033 I is presumed to be empty; that is, no adjustments are made
7ce503fd 1034 for the length of I. */
a50699fd
JA
1035
1036void
1037delete_interval (i)
1038 register INTERVAL i;
1039{
1040 register INTERVAL parent;
1041 int amt = LENGTH (i);
1042
7ce503fd 1043 if (amt > 0) /* Only used on zero-length intervals now. */
a50699fd
JA
1044 abort ();
1045
1046 if (ROOT_INTERVAL_P (i))
1047 {
dd675b05
KH
1048 Lisp_Object owner;
1049 owner = (Lisp_Object) i->parent;
a50699fd
JA
1050 parent = delete_node (i);
1051 if (! NULL_INTERVAL_P (parent))
1052 parent->parent = (INTERVAL) owner;
1053
b629dd47 1054 if (BUFFERP (owner))
a50699fd 1055 XBUFFER (owner)->intervals = parent;
b629dd47 1056 else if (STRINGP (owner))
a50699fd
JA
1057 XSTRING (owner)->intervals = parent;
1058 else
1059 abort ();
1060
1061 return;
1062 }
1063
1064 parent = i->parent;
1065 if (AM_LEFT_CHILD (i))
1066 {
1067 parent->left = delete_node (i);
1068 if (! NULL_INTERVAL_P (parent->left))
1069 parent->left->parent = parent;
1070 }
1071 else
1072 {
1073 parent->right = delete_node (i);
1074 if (! NULL_INTERVAL_P (parent->right))
1075 parent->right->parent = parent;
1076 }
1077}
1078\f
24e3d3bf
JB
1079/* Find the interval in TREE corresponding to the relative position
1080 FROM and delete as much as possible of AMOUNT from that interval.
1081 Return the amount actually deleted, and if the interval was
1082 zeroed-out, delete that interval node from the tree.
1083
1084 Note that FROM is actually origin zero, aka relative to the
1085 leftmost edge of tree. This is appropriate since we call ourselves
1086 recursively on subtrees.
a50699fd 1087
1d1d7ba0 1088 Do this by recursing down TREE to the interval in question, and
7ce503fd 1089 deleting the appropriate amount of text. */
a50699fd
JA
1090
1091static int
1092interval_deletion_adjustment (tree, from, amount)
1093 register INTERVAL tree;
1094 register int from, amount;
1095{
1096 register int relative_position = from;
1097
1098 if (NULL_INTERVAL_P (tree))
1099 return 0;
1100
1101 /* Left branch */
24e3d3bf 1102 if (relative_position < LEFT_TOTAL_LENGTH (tree))
a50699fd
JA
1103 {
1104 int subtract = interval_deletion_adjustment (tree->left,
1105 relative_position,
1106 amount);
1107 tree->total_length -= subtract;
1108 return subtract;
1109 }
1110 /* Right branch */
24e3d3bf
JB
1111 else if (relative_position >= (TOTAL_LENGTH (tree)
1112 - RIGHT_TOTAL_LENGTH (tree)))
a50699fd
JA
1113 {
1114 int subtract;
1115
1116 relative_position -= (tree->total_length
1117 - RIGHT_TOTAL_LENGTH (tree));
1118 subtract = interval_deletion_adjustment (tree->right,
1119 relative_position,
1120 amount);
1121 tree->total_length -= subtract;
1122 return subtract;
1123 }
7ce503fd 1124 /* Here -- this node. */
a50699fd
JA
1125 else
1126 {
24e3d3bf
JB
1127 /* How much can we delete from this interval? */
1128 int my_amount = ((tree->total_length
1129 - RIGHT_TOTAL_LENGTH (tree))
1130 - relative_position);
1131
1132 if (amount > my_amount)
1133 amount = my_amount;
1134
1135 tree->total_length -= amount;
1136 if (LENGTH (tree) == 0)
1137 delete_interval (tree);
1138
1139 return amount;
a50699fd
JA
1140 }
1141
7ce503fd 1142 /* Never reach here. */
a50699fd
JA
1143}
1144
24e3d3bf
JB
1145/* Effect the adjustments necessary to the interval tree of BUFFER to
1146 correspond to the deletion of LENGTH characters from that buffer
1147 text. The deletion is effected at position START (which is a
7ce503fd 1148 buffer position, i.e. origin 1). */
1d1d7ba0 1149
a50699fd
JA
1150static void
1151adjust_intervals_for_deletion (buffer, start, length)
1152 struct buffer *buffer;
1153 int start, length;
1154{
1155 register int left_to_delete = length;
1156 register INTERVAL tree = buffer->intervals;
1157 register int deleted;
1158
1159 if (NULL_INTERVAL_P (tree))
1160 return;
1161
24e3d3bf
JB
1162 if (start > BEG + TOTAL_LENGTH (tree)
1163 || start + length > BEG + TOTAL_LENGTH (tree))
1164 abort ();
1165
a50699fd
JA
1166 if (length == TOTAL_LENGTH (tree))
1167 {
1168 buffer->intervals = NULL_INTERVAL;
1169 return;
1170 }
1171
1172 if (ONLY_INTERVAL_P (tree))
1173 {
1174 tree->total_length -= length;
1175 return;
1176 }
1177
24e3d3bf
JB
1178 if (start > BEG + TOTAL_LENGTH (tree))
1179 start = BEG + TOTAL_LENGTH (tree);
a50699fd
JA
1180 while (left_to_delete > 0)
1181 {
24e3d3bf 1182 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
a50699fd
JA
1183 left_to_delete);
1184 tree = buffer->intervals;
1185 if (left_to_delete == tree->total_length)
1186 {
1187 buffer->intervals = NULL_INTERVAL;
1188 return;
1189 }
1190 }
1191}
1192\f
eb8c3be9 1193/* Make the adjustments necessary to the interval tree of BUFFER to
1d1d7ba0
JA
1194 represent an addition or deletion of LENGTH characters starting
1195 at position START. Addition or deletion is indicated by the sign
7ce503fd 1196 of LENGTH. */
a50699fd
JA
1197
1198INLINE void
1199offset_intervals (buffer, start, length)
1200 struct buffer *buffer;
1201 int start, length;
1202{
1203 if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
1204 return;
1205
1206 if (length > 0)
1207 adjust_intervals_for_insertion (buffer->intervals, start, length);
1208 else
1209 adjust_intervals_for_deletion (buffer, start, -length);
1210}
9c79dd1b
JA
1211\f
1212/* Merge interval I with its lexicographic successor. The resulting
1213 interval is returned, and has the properties of the original
1214 successor. The properties of I are lost. I is removed from the
1215 interval tree.
1216
1217 IMPORTANT:
1218 The caller must verify that this is not the last (rightmost)
7ce503fd 1219 interval. */
9c79dd1b
JA
1220
1221INTERVAL
1222merge_interval_right (i)
1223 register INTERVAL i;
1224{
1225 register int absorb = LENGTH (i);
1226 register INTERVAL successor;
1227
7ce503fd 1228 /* Zero out this interval. */
9c79dd1b
JA
1229 i->total_length -= absorb;
1230
7ce503fd 1231 /* Find the succeeding interval. */
9c79dd1b 1232 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
7ce503fd 1233 as we descend. */
9c79dd1b
JA
1234 {
1235 successor = i->right;
1236 while (! NULL_LEFT_CHILD (successor))
1237 {
1238 successor->total_length += absorb;
1239 successor = successor->left;
1240 }
1241
1242 successor->total_length += absorb;
1243 delete_interval (i);
1244 return successor;
1245 }
1246
1247 successor = i;
1248 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
7ce503fd 1249 we ascend. */
9c79dd1b
JA
1250 {
1251 if (AM_LEFT_CHILD (successor))
1252 {
1253 successor = successor->parent;
1254 delete_interval (i);
1255 return successor;
1256 }
1257
1258 successor = successor->parent;
1259 successor->total_length -= absorb;
1260 }
1261
1262 /* This must be the rightmost or last interval and cannot
7ce503fd 1263 be merged right. The caller should have known. */
9c79dd1b
JA
1264 abort ();
1265}
1266\f
1267/* Merge interval I with its lexicographic predecessor. The resulting
1268 interval is returned, and has the properties of the original predecessor.
1269 The properties of I are lost. Interval node I is removed from the tree.
1270
1271 IMPORTANT:
7ce503fd 1272 The caller must verify that this is not the first (leftmost) interval. */
9c79dd1b
JA
1273
1274INTERVAL
1275merge_interval_left (i)
1276 register INTERVAL i;
1277{
1278 register int absorb = LENGTH (i);
1279 register INTERVAL predecessor;
1280
7ce503fd 1281 /* Zero out this interval. */
9c79dd1b
JA
1282 i->total_length -= absorb;
1283
7ce503fd 1284 /* Find the preceding interval. */
9c79dd1b 1285 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
7ce503fd 1286 adding ABSORB as we go. */
9c79dd1b
JA
1287 {
1288 predecessor = i->left;
1289 while (! NULL_RIGHT_CHILD (predecessor))
1290 {
1291 predecessor->total_length += absorb;
1292 predecessor = predecessor->right;
1293 }
1294
1295 predecessor->total_length += absorb;
1296 delete_interval (i);
1297 return predecessor;
1298 }
1299
1300 predecessor = i;
1301 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
7ce503fd 1302 subtracting ABSORB. */
9c79dd1b
JA
1303 {
1304 if (AM_RIGHT_CHILD (predecessor))
1305 {
1306 predecessor = predecessor->parent;
1307 delete_interval (i);
1308 return predecessor;
1309 }
1310
1311 predecessor = predecessor->parent;
1312 predecessor->total_length -= absorb;
1313 }
a50699fd 1314
9c79dd1b 1315 /* This must be the leftmost or first interval and cannot
7ce503fd 1316 be merged left. The caller should have known. */
9c79dd1b
JA
1317 abort ();
1318}
1319\f
1d1d7ba0
JA
1320/* Make an exact copy of interval tree SOURCE which descends from
1321 PARENT. This is done by recursing through SOURCE, copying
1322 the current interval and its properties, and then adjusting
7ce503fd 1323 the pointers of the copy. */
1d1d7ba0 1324
a50699fd
JA
1325static INTERVAL
1326reproduce_tree (source, parent)
1327 INTERVAL source, parent;
1328{
1329 register INTERVAL t = make_interval ();
1330
1331 bcopy (source, t, INTERVAL_SIZE);
1332 copy_properties (source, t);
1333 t->parent = parent;
1334 if (! NULL_LEFT_CHILD (source))
1335 t->left = reproduce_tree (source->left, t);
1336 if (! NULL_RIGHT_CHILD (source))
1337 t->right = reproduce_tree (source->right, t);
1338
1339 return t;
1340}
1341
24e3d3bf
JB
1342#if 0
1343/* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1344
1d1d7ba0
JA
1345/* Make a new interval of length LENGTH starting at START in the
1346 group of intervals INTERVALS, which is actually an interval tree.
1347 Returns the new interval.
1348
1349 Generate an error if the new positions would overlap an existing
7ce503fd 1350 interval. */
1d1d7ba0 1351
a50699fd
JA
1352static INTERVAL
1353make_new_interval (intervals, start, length)
1354 INTERVAL intervals;
1355 int start, length;
1356{
1357 INTERVAL slot;
1358
1359 slot = find_interval (intervals, start);
1360 if (start + length > slot->position + LENGTH (slot))
1361 error ("Interval would overlap");
1362
1363 if (start == slot->position && length == LENGTH (slot))
1364 return slot;
1365
1366 if (slot->position == start)
1367 {
7ce503fd 1368 /* New right node. */
2bc7a79b 1369 split_interval_right (slot, length);
a50699fd
JA
1370 return slot;
1371 }
1372
1373 if (slot->position + LENGTH (slot) == start + length)
1374 {
7ce503fd 1375 /* New left node. */
2bc7a79b 1376 split_interval_left (slot, LENGTH (slot) - length);
a50699fd
JA
1377 return slot;
1378 }
1379
7ce503fd 1380 /* Convert interval SLOT into three intervals. */
2bc7a79b
JB
1381 split_interval_left (slot, start - slot->position);
1382 split_interval_right (slot, length);
a50699fd
JA
1383 return slot;
1384}
24e3d3bf 1385#endif
294efdbe 1386\f
9c79dd1b 1387/* Insert the intervals of SOURCE into BUFFER at POSITION.
0b79989f 1388 LENGTH is the length of the text in SOURCE.
a50699fd 1389
2bc7a79b
JB
1390 This is used in insdel.c when inserting Lisp_Strings into the
1391 buffer. The text corresponding to SOURCE is already in the buffer
1392 when this is called. The intervals of new tree are a copy of those
1393 belonging to the string being inserted; intervals are never
1394 shared.
a50699fd 1395
0b79989f
RS
1396 If the inserted text had no intervals associated, and we don't
1397 want to inherit the surrounding text's properties, this function
a50699fd 1398 simply returns -- offset_intervals should handle placing the
90ba40fc 1399 text in the correct interval, depending on the sticky bits.
a50699fd
JA
1400
1401 If the inserted text had properties (intervals), then there are two
1402 cases -- either insertion happened in the middle of some interval,
1403 or between two intervals.
1404
1405 If the text goes into the middle of an interval, then new
1406 intervals are created in the middle with only the properties of
1407 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1408 which case the new text has the union of its properties and those
1409 of the text into which it was inserted.
1410
1411 If the text goes between two intervals, then if neither interval
90ba40fc
JA
1412 had its appropriate sticky property set (front_sticky, rear_sticky),
1413 the new text has only its properties. If one of the sticky properties
a50699fd 1414 is set, then the new text "sticks" to that region and its properties
eb8c3be9 1415 depend on merging as above. If both the preceding and succeeding
90ba40fc
JA
1416 intervals to the new text are "sticky", then the new text retains
1417 only its properties, as if neither sticky property were set. Perhaps
a50699fd 1418 we should consider merging all three sets of properties onto the new
7ce503fd 1419 text... */
a50699fd
JA
1420
1421void
0b79989f 1422graft_intervals_into_buffer (source, position, length, buffer, inherit)
9c79dd1b 1423 INTERVAL source;
0b79989f 1424 int position, length;
9c79dd1b 1425 struct buffer *buffer;
7ea69158 1426 int inherit;
a50699fd 1427{
323a7ad4 1428 register INTERVAL under, over, this, prev;
9c79dd1b 1429 register INTERVAL tree = buffer->intervals;
323a7ad4 1430 int middle;
a50699fd
JA
1431
1432 /* If the new text has no properties, it becomes part of whatever
7ce503fd 1433 interval it was inserted into. */
9c79dd1b 1434 if (NULL_INTERVAL_P (source))
0b79989f
RS
1435 {
1436 Lisp_Object buf;
08b05272 1437 if (!inherit && ! NULL_INTERVAL_P (tree))
0b79989f 1438 {
55cfc731 1439 XSETBUFFER (buf, buffer);
0b79989f
RS
1440 Fset_text_properties (make_number (position),
1441 make_number (position + length),
1442 Qnil, buf);
1443 }
4314dea4
RS
1444 if (! NULL_INTERVAL_P (buffer->intervals))
1445 buffer->intervals = balance_an_interval (buffer->intervals);
0b79989f
RS
1446 return;
1447 }
a50699fd 1448
a50699fd
JA
1449 if (NULL_INTERVAL_P (tree))
1450 {
1451 /* The inserted text constitutes the whole buffer, so
7ce503fd 1452 simply copy over the interval structure. */
2bc7a79b 1453 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
a50699fd 1454 {
b8e4857c 1455 Lisp_Object buf;
55cfc731 1456 XSETBUFFER (buf, buffer);
b8e4857c 1457 buffer->intervals = reproduce_tree (source, buf);
7ce503fd 1458 /* Explicitly free the old tree here. */
a50699fd
JA
1459
1460 return;
1461 }
1462
1463 /* Create an interval tree in which to place a copy
7ce503fd 1464 of the intervals of the inserted string. */
a50699fd 1465 {
249a6da9 1466 Lisp_Object buf;
55cfc731 1467 XSETBUFFER (buf, buffer);
323a7ad4 1468 tree = create_root_interval (buf);
a50699fd
JA
1469 }
1470 }
7ea69158
RS
1471 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1472 /* If the buffer contains only the new string, but
1473 there was already some interval tree there, then it may be
1474 some zero length intervals. Eventually, do something clever
1475 about inserting properly. For now, just waste the old intervals. */
1476 {
1477 buffer->intervals = reproduce_tree (source, tree->parent);
1478 /* Explicitly free the old tree here. */
a50699fd 1479
7ea69158
RS
1480 return;
1481 }
1482 /* Paranoia -- the text has already been added, so this buffer
1483 should be of non-zero length. */
1484 else if (TOTAL_LENGTH (tree) == 0)
1485 abort ();
a50699fd
JA
1486
1487 this = under = find_interval (tree, position);
1488 if (NULL_INTERVAL_P (under)) /* Paranoia */
1489 abort ();
9c79dd1b 1490 over = find_interval (source, 1);
a50699fd 1491
323a7ad4
RS
1492 /* Here for insertion in the middle of an interval.
1493 Split off an equivalent interval to the right,
1494 then don't bother with it any more. */
a50699fd 1495
323a7ad4 1496 if (position > under->position)
a50699fd
JA
1497 {
1498 INTERVAL end_unchanged
2bc7a79b 1499 = split_interval_left (this, position - under->position);
a50699fd 1500 copy_properties (under, end_unchanged);
323a7ad4
RS
1501 under->position = position;
1502 prev = 0;
1503 middle = 1;
a50699fd 1504 }
323a7ad4
RS
1505 else
1506 {
1507 prev = previous_interval (under);
7ce503fd 1508 if (prev && !END_NONSTICKY_P (prev))
323a7ad4
RS
1509 prev = 0;
1510 }
1511
1512 /* Insertion is now at beginning of UNDER. */
a50699fd 1513
323a7ad4 1514 /* The inserted text "sticks" to the interval `under',
7ce503fd
RS
1515 which means it gets those properties.
1516 The properties of under are the result of
1517 adjust_intervals_for_insertion, so stickyness has
1518 already been taken care of. */
1519
a50699fd
JA
1520 while (! NULL_INTERVAL_P (over))
1521 {
767809fb 1522 if (LENGTH (over) < LENGTH (under))
7ce503fd
RS
1523 {
1524 this = split_interval_left (under, LENGTH (over));
1525 copy_properties (under, this);
1526 }
323a7ad4
RS
1527 else
1528 this = under;
a50699fd 1529 copy_properties (over, this);
7ea69158 1530 if (inherit)
7ce503fd
RS
1531 merge_properties (over, this);
1532 else
1533 copy_properties (over, this);
a50699fd
JA
1534 over = next_interval (over);
1535 }
1536
4314dea4
RS
1537 if (! NULL_INTERVAL_P (buffer->intervals))
1538 buffer->intervals = balance_an_interval (buffer->intervals);
a50699fd
JA
1539 return;
1540}
1541
5cae0ec6
RS
1542/* Get the value of property PROP from PLIST,
1543 which is the plist of an interval.
1544 We check for direct properties and for categories with property PROP. */
1545
1546Lisp_Object
323a7ad4
RS
1547textget (plist, prop)
1548 Lisp_Object plist;
1549 register Lisp_Object prop;
1550{
5cae0ec6
RS
1551 register Lisp_Object tail, fallback;
1552 fallback = Qnil;
323a7ad4
RS
1553
1554 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1555 {
1556 register Lisp_Object tem;
1557 tem = Fcar (tail);
1558 if (EQ (prop, tem))
1559 return Fcar (Fcdr (tail));
5cae0ec6 1560 if (EQ (tem, Qcategory))
5dd6606e
RS
1561 {
1562 tem = Fcar (Fcdr (tail));
1563 if (SYMBOLP (tem))
1564 fallback = Fget (tem, prop);
1565 }
323a7ad4 1566 }
5cae0ec6
RS
1567
1568 return fallback;
323a7ad4 1569}
7ce503fd
RS
1570
1571/* Get the value of property PROP from PLIST,
1572 which is the plist of an interval.
1573 We check for direct properties only! */
1574
1575Lisp_Object
1576textget_direct (plist, prop)
1577 Lisp_Object plist;
1578 register Lisp_Object prop;
1579{
1580 register Lisp_Object tail;
1581
1582 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1583 {
1584 if (EQ (prop, Fcar (tail)))
1585 return Fcar (Fcdr (tail));
1586 }
1587
1588 return Qnil;
1589}
294efdbe 1590\f
5cae0ec6 1591/* Set point in BUFFER to POSITION. If the target position is
f65013b0 1592 before an intangible character, move to an ok place. */
a50699fd
JA
1593
1594void
1595set_point (position, buffer)
1596 register int position;
1597 register struct buffer *buffer;
1598{
323a7ad4 1599 register INTERVAL to, from, toprev, fromprev, target;
a50699fd
JA
1600 int buffer_point;
1601 register Lisp_Object obj;
1602 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
9c79dd1b 1603 int old_position = buffer->text.pt;
a50699fd
JA
1604
1605 if (position == buffer->text.pt)
1606 return;
1607
62056764
JB
1608 /* Check this now, before checking if the buffer has any intervals.
1609 That way, we can catch conditions which break this sanity check
1610 whether or not there are intervals in the buffer. */
1611 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1612 abort ();
1613
a50699fd
JA
1614 if (NULL_INTERVAL_P (buffer->intervals))
1615 {
1616 buffer->text.pt = position;
1617 return;
1618 }
1619
323a7ad4
RS
1620 /* Set TO to the interval containing the char after POSITION,
1621 and TOPREV to the interval containing the char before POSITION.
1622 Either one may be null. They may be equal. */
24e3d3bf 1623 to = find_interval (buffer->intervals, position);
294efdbe
RS
1624 if (position == BUF_BEGV (buffer))
1625 toprev = 0;
1626 else if (to->position == position)
323a7ad4 1627 toprev = previous_interval (to);
323a7ad4
RS
1628 else
1629 toprev = to;
1630
294efdbe
RS
1631 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1632 ? BUF_ZV (buffer) - 1
323a7ad4 1633 : BUF_PT (buffer));
9c79dd1b 1634
323a7ad4
RS
1635 /* Set FROM to the interval containing the char after PT,
1636 and FROMPREV to the interval containing the char before PT.
1637 Either one may be null. They may be equal. */
7ce503fd 1638 /* We could cache this and save time. */
a50699fd 1639 from = find_interval (buffer->intervals, buffer_point);
7ce503fd 1640 if (buffer_point == BUF_BEGV (buffer))
294efdbe
RS
1641 fromprev = 0;
1642 else if (from->position == BUF_PT (buffer))
323a7ad4
RS
1643 fromprev = previous_interval (from);
1644 else if (buffer_point != BUF_PT (buffer))
1645 fromprev = from, from = 0;
1646 else
1647 fromprev = from;
a50699fd 1648
7ce503fd 1649 /* Moving within an interval. */
323a7ad4 1650 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
a50699fd
JA
1651 {
1652 buffer->text.pt = position;
1653 return;
1654 }
1655
d5219de5
RS
1656 /* If the new position is between two intangible characters,
1657 move forward or backward across all such characters. */
1658 if (NILP (Vinhibit_point_motion_hooks) && ! NULL_INTERVAL_P (to)
1659 && ! NULL_INTERVAL_P (toprev))
a50699fd 1660 {
d5219de5
RS
1661 if (backwards)
1662 {
1663 /* Make sure the following character is intangible
1664 if the previous one is. */
1665 if (toprev == to
1666 || ! NILP (textget (to->plist, Qintangible)))
1667 /* Ok, that is so. Back up across intangible text. */
1668 while (! NULL_INTERVAL_P (toprev)
1669 && ! NILP (textget (toprev->plist, Qintangible)))
1670 {
1671 to = toprev;
1672 toprev = previous_interval (toprev);
1673 if (NULL_INTERVAL_P (toprev))
1674 position = BUF_BEGV (buffer);
1675 else
1676 /* This is the only line that's not
1677 dual to the following loop.
1678 That's because we want the position
1679 at the end of TOPREV. */
1680 position = to->position;
1681 }
1682 }
0df8950e 1683 else
d5219de5
RS
1684 {
1685 /* Make sure the previous character is intangible
1686 if the following one is. */
1687 if (toprev == to
1688 || ! NILP (textget (toprev->plist, Qintangible)))
1689 /* Ok, that is so. Advance across intangible text. */
1690 while (! NULL_INTERVAL_P (to)
1691 && ! NILP (textget (to->plist, Qintangible)))
1692 {
1693 toprev = to;
1694 to = next_interval (to);
1695 if (NULL_INTERVAL_P (to))
1696 position = BUF_ZV (buffer);
1697 else
1698 position = to->position;
1699 }
1700 }
1701 /* Here TO is the interval after the stopping point
1702 and TOPREV is the interval before the stopping point.
1703 One or the other may be null. */
a50699fd 1704 }
323a7ad4
RS
1705
1706 buffer->text.pt = position;
a50699fd 1707
d7e3e52b
JA
1708 /* We run point-left and point-entered hooks here, iff the
1709 two intervals are not equivalent. These hooks take
323a7ad4 1710 (old_point, new_point) as arguments. */
ddd931ff
RS
1711 if (NILP (Vinhibit_point_motion_hooks)
1712 && (! intervals_equal (from, to)
1713 || ! intervals_equal (fromprev, toprev)))
9c79dd1b 1714 {
323a7ad4
RS
1715 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1716
1717 if (fromprev)
1718 leave_after = textget (fromprev->plist, Qpoint_left);
1719 else
1720 leave_after = Qnil;
1721 if (from)
1722 leave_before = textget (from->plist, Qpoint_left);
1723 else
1724 leave_before = Qnil;
1725
1726 if (toprev)
1727 enter_after = textget (toprev->plist, Qpoint_entered);
1728 else
1729 enter_after = Qnil;
1730 if (to)
1731 enter_before = textget (to->plist, Qpoint_entered);
1732 else
1733 enter_before = Qnil;
9c79dd1b 1734
323a7ad4
RS
1735 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1736 call2 (leave_before, old_position, position);
1737 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1738 call2 (leave_after, old_position, position);
9c79dd1b 1739
323a7ad4
RS
1740 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1741 call2 (enter_before, old_position, position);
1742 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1743 call2 (enter_after, old_position, position);
9c79dd1b 1744 }
a50699fd
JA
1745}
1746
7ce503fd 1747/* Set point temporarily, without checking any text properties. */
a50699fd 1748
9c79dd1b
JA
1749INLINE void
1750temp_set_point (position, buffer)
1751 int position;
1752 struct buffer *buffer;
1753{
1754 buffer->text.pt = position;
1755}
294efdbe 1756\f
5cae0ec6
RS
1757/* Return the proper local map for position POSITION in BUFFER.
1758 Use the map specified by the local-map property, if any.
1759 Otherwise, use BUFFER's local map. */
1760
1761Lisp_Object
1762get_local_map (position, buffer)
1763 register int position;
1764 register struct buffer *buffer;
1765{
1766 register INTERVAL interval;
1767 Lisp_Object prop, tem;
1768
1769 if (NULL_INTERVAL_P (buffer->intervals))
1770 return current_buffer->keymap;
1771
7ce503fd 1772 /* Perhaps we should just change `position' to the limit. */
5cae0ec6
RS
1773 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1774 abort ();
1775
5cae0ec6
RS
1776 interval = find_interval (buffer->intervals, position);
1777 prop = textget (interval->plist, Qlocal_map);
1778 if (NILP (prop))
1779 return current_buffer->keymap;
1780
1781 /* Use the local map only if it is valid. */
1782 tem = Fkeymapp (prop);
1783 if (!NILP (tem))
1784 return prop;
1785
1786 return current_buffer->keymap;
1787}
1788\f
294efdbe
RS
1789/* Call the modification hook functions in LIST, each with START and END. */
1790
1791static void
1792call_mod_hooks (list, start, end)
1793 Lisp_Object list, start, end;
1794{
1795 struct gcpro gcpro1;
1796 GCPRO1 (list);
1797 while (!NILP (list))
1798 {
1799 call2 (Fcar (list), start, end);
1800 list = Fcdr (list);
1801 }
1802 UNGCPRO;
1803}
9c79dd1b
JA
1804
1805/* Check for read-only intervals and signal an error if we find one.
1806 Then check for any modification hooks in the range START up to
9bdff5c5 1807 (but not including) END. Create a list of all these hooks in
9c79dd1b
JA
1808 lexicographic order, eliminating consecutive extra copies of the
1809 same hook. Then call those hooks in order, with START and END - 1
7ce503fd 1810 as arguments. */
a50699fd
JA
1811
1812void
1813verify_interval_modification (buf, start, end)
1814 struct buffer *buf;
1815 int start, end;
1816{
1817 register INTERVAL intervals = buf->intervals;
294efdbe
RS
1818 register INTERVAL i, prev;
1819 Lisp_Object hooks;
1820 register Lisp_Object prev_mod_hooks;
1821 Lisp_Object mod_hooks;
9c79dd1b 1822 struct gcpro gcpro1;
a50699fd 1823
294efdbe
RS
1824 hooks = Qnil;
1825 prev_mod_hooks = Qnil;
1826 mod_hooks = Qnil;
1827
a50699fd
JA
1828 if (NULL_INTERVAL_P (intervals))
1829 return;
1830
1831 if (start > end)
1832 {
1833 int temp = start;
1834 start = end;
1835 end = temp;
1836 }
1837
294efdbe
RS
1838 /* For an insert operation, check the two chars around the position. */
1839 if (start == end)
a50699fd 1840 {
294efdbe
RS
1841 INTERVAL prev;
1842 Lisp_Object before, after;
a50699fd 1843
294efdbe
RS
1844 /* Set I to the interval containing the char after START,
1845 and PREV to the interval containing the char before START.
1846 Either one may be null. They may be equal. */
24e3d3bf 1847 i = find_interval (intervals, start);
294efdbe
RS
1848
1849 if (start == BUF_BEGV (buf))
1850 prev = 0;
7ce503fd 1851 else if (i->position == start)
294efdbe
RS
1852 prev = previous_interval (i);
1853 else if (i->position < start)
1854 prev = i;
1855 if (start == BUF_ZV (buf))
1856 i = 0;
1857
7ce503fd
RS
1858 /* If Vinhibit_read_only is set and is not a list, we can
1859 skip the read_only checks. */
1860 if (NILP (Vinhibit_read_only) || CONSP (Vinhibit_read_only))
294efdbe 1861 {
7ce503fd
RS
1862 /* If I and PREV differ we need to check for the read-only
1863 property together with its stickyness. If either I or
1864 PREV are 0, this check is all we need.
1865 We have to take special care, since read-only may be
1866 indirectly defined via the category property. */
1867 if (i != prev)
1868 {
1869 if (! NULL_INTERVAL_P (i))
1870 {
1871 after = textget (i->plist, Qread_only);
1872
1873 /* If interval I is read-only and read-only is
1874 front-sticky, inhibit insertion.
1875 Check for read-only as well as category. */
1876 if (! NILP (after)
3e76261f
KH
1877 && NILP (Fmemq (after, Vinhibit_read_only)))
1878 {
1879 Lisp_Object tem;
1880
1881 tem = textget (i->plist, Qfront_sticky);
1882 if (TMEM (Qread_only, tem)
7ce503fd 1883 || (NILP (textget_direct (i->plist, Qread_only))
3e76261f
KH
1884 && TMEM (Qcategory, tem)))
1885 error ("Attempt to insert within read-only text");
1886 }
7ce503fd 1887 }
df28eb7b 1888
7ce503fd
RS
1889 if (! NULL_INTERVAL_P (prev))
1890 {
1891 before = textget (prev->plist, Qread_only);
1892
1893 /* If interval PREV is read-only and read-only isn't
1894 rear-nonsticky, inhibit insertion.
1895 Check for read-only as well as category. */
1896 if (! NILP (before)
3e76261f
KH
1897 && NILP (Fmemq (before, Vinhibit_read_only)))
1898 {
1899 Lisp_Object tem;
1900
1901 tem = textget (prev->plist, Qrear_nonsticky);
1902 if (! TMEM (Qread_only, tem)
1903 && (! NILP (textget_direct (prev->plist,Qread_only))
1904 || ! TMEM (Qcategory, tem)))
1905 error ("Attempt to insert within read-only text");
1906 }
7ce503fd 1907 }
7ce503fd
RS
1908 }
1909 else if (! NULL_INTERVAL_P (i))
7ce503fd 1910 {
df28eb7b
RS
1911 after = textget (i->plist, Qread_only);
1912
1913 /* If interval I is read-only and read-only is
1914 front-sticky, inhibit insertion.
1915 Check for read-only as well as category. */
1916 if (! NILP (after) && NILP (Fmemq (after, Vinhibit_read_only)))
1917 {
1918 Lisp_Object tem;
1919
1920 tem = textget (i->plist, Qfront_sticky);
1921 if (TMEM (Qread_only, tem)
1922 || (NILP (textget_direct (i->plist, Qread_only))
1923 && TMEM (Qcategory, tem)))
1924 error ("Attempt to insert within read-only text");
1925
1926 tem = textget (prev->plist, Qrear_nonsticky);
1927 if (! TMEM (Qread_only, tem)
1928 && (! NILP (textget_direct (prev->plist, Qread_only))
1929 || ! TMEM (Qcategory, tem)))
1930 error ("Attempt to insert within read-only text");
1931 }
7ce503fd 1932 }
294efdbe
RS
1933 }
1934
c3649419 1935 /* Run both insert hooks (just once if they're the same). */
294efdbe 1936 if (!NULL_INTERVAL_P (prev))
f1ca9012 1937 prev_mod_hooks = textget (prev->plist, Qinsert_behind_hooks);
294efdbe 1938 if (!NULL_INTERVAL_P (i))
f1ca9012 1939 mod_hooks = textget (i->plist, Qinsert_in_front_hooks);
294efdbe
RS
1940 GCPRO1 (mod_hooks);
1941 if (! NILP (prev_mod_hooks))
1942 call_mod_hooks (prev_mod_hooks, make_number (start),
1943 make_number (end));
1944 UNGCPRO;
1945 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1946 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
a50699fd
JA
1947 }
1948 else
a50699fd 1949 {
294efdbe
RS
1950 /* Loop over intervals on or next to START...END,
1951 collecting their hooks. */
9c79dd1b 1952
294efdbe
RS
1953 i = find_interval (intervals, start);
1954 do
9c79dd1b 1955 {
294efdbe
RS
1956 if (! INTERVAL_WRITABLE_P (i))
1957 error ("Attempt to modify read-only text");
9c79dd1b 1958
294efdbe
RS
1959 mod_hooks = textget (i->plist, Qmodification_hooks);
1960 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1961 {
1962 hooks = Fcons (mod_hooks, hooks);
1963 prev_mod_hooks = mod_hooks;
1964 }
a50699fd 1965
294efdbe
RS
1966 i = next_interval (i);
1967 }
1968 /* Keep going thru the interval containing the char before END. */
1969 while (! NULL_INTERVAL_P (i) && i->position < end);
1970
1971 GCPRO1 (hooks);
1972 hooks = Fnreverse (hooks);
1973 while (! EQ (hooks, Qnil))
1974 {
1975 call_mod_hooks (Fcar (hooks), make_number (start),
1976 make_number (end));
1977 hooks = Fcdr (hooks);
1978 }
1979 UNGCPRO;
9c79dd1b 1980 }
a50699fd
JA
1981}
1982
9c79dd1b 1983/* Produce an interval tree reflecting the intervals in
7ce503fd 1984 TREE from START to START + LENGTH. */
a50699fd 1985
7b1d5b85 1986INTERVAL
a50699fd
JA
1987copy_intervals (tree, start, length)
1988 INTERVAL tree;
1989 int start, length;
1990{
1991 register INTERVAL i, new, t;
95e3e1ef 1992 register int got, prevlen;
a50699fd
JA
1993
1994 if (NULL_INTERVAL_P (tree) || length <= 0)
1995 return NULL_INTERVAL;
1996
1997 i = find_interval (tree, start);
1998 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1999 abort ();
2000
7ce503fd 2001 /* If there is only one interval and it's the default, return nil. */
a50699fd
JA
2002 if ((start - i->position + 1 + length) < LENGTH (i)
2003 && DEFAULT_INTERVAL_P (i))
2004 return NULL_INTERVAL;
2005
2006 new = make_interval ();
2007 new->position = 1;
2008 got = (LENGTH (i) - (start - i->position));
9c79dd1b 2009 new->total_length = length;
a50699fd
JA
2010 copy_properties (i, new);
2011
2012 t = new;
95e3e1ef 2013 prevlen = got;
a50699fd
JA
2014 while (got < length)
2015 {
2016 i = next_interval (i);
2bc7a79b 2017 t = split_interval_right (t, prevlen);
a50699fd 2018 copy_properties (i, t);
95e3e1ef
RS
2019 prevlen = LENGTH (i);
2020 got += prevlen;
a50699fd
JA
2021 }
2022
4314dea4 2023 return balance_an_interval (new);
a50699fd
JA
2024}
2025
7ce503fd 2026/* Give STRING the properties of BUFFER from POSITION to LENGTH. */
a50699fd 2027
d7e3e52b 2028INLINE void
a50699fd
JA
2029copy_intervals_to_string (string, buffer, position, length)
2030 Lisp_Object string, buffer;
2031 int position, length;
2032{
2033 INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
2034 position, length);
2035 if (NULL_INTERVAL_P (interval_copy))
2036 return;
2037
2038 interval_copy->parent = (INTERVAL) string;
2039 XSTRING (string)->intervals = interval_copy;
2040}
d8638d30
RS
2041\f
2042/* Return 1 if string S1 and S2 have identical properties; 0 otherwise.
2043 Assume they have identical characters. */
2044
2045int
2046compare_string_intervals (s1, s2)
2047 Lisp_Object s1, s2;
2048{
2049 INTERVAL i1, i2;
2050 int pos = 1;
2051 int end = XSTRING (s1)->size + 1;
2052
2053 /* We specify 1 as position because the interval functions
2054 always use positions starting at 1. */
2055 i1 = find_interval (XSTRING (s1)->intervals, 1);
2056 i2 = find_interval (XSTRING (s2)->intervals, 1);
2057
2058 while (pos < end)
2059 {
2060 /* Determine how far we can go before we reach the end of I1 or I2. */
2061 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2062 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2063 int distance = min (len1, len2);
2064
2065 /* If we ever find a mismatch between the strings,
2066 they differ. */
2067 if (! intervals_equal (i1, i2))
2068 return 0;
2069
2070 /* Advance POS till the end of the shorter interval,
2071 and advance one or both interval pointers for the new position. */
2072 pos += distance;
2073 if (len1 == distance)
2074 i1 = next_interval (i1);
2075 if (len2 == distance)
2076 i2 = next_interval (i2);
2077 }
2078 return 1;
2079}
d2f7a802
JA
2080
2081#endif /* USE_TEXT_PROPERTIES */