* dispnew.c (direct_output_for_insert): Compute the face of the
[bpt/emacs.git] / src / intervals.c
CommitLineData
a50699fd 1/* Code for doing intervals.
294efdbe 2 Copyright (C) 1993 Free Software Foundation, Inc.
a50699fd
JA
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38*/
39
40
41#include "config.h"
42#include "lisp.h"
43#include "intervals.h"
44#include "buffer.h"
a50699fd 45
d2f7a802
JA
46/* The rest of the file is within this conditional. */
47#ifdef USE_TEXT_PROPERTIES
48
a50699fd
JA
49/* Factor for weight-balancing interval trees. */
50Lisp_Object interval_balance_threshold;
51\f
52/* Utility functions for intervals. */
53
54
55/* Create the root interval of some object, a buffer or string. */
56
57INTERVAL
58create_root_interval (parent)
59 Lisp_Object parent;
60{
61 INTERVAL new = make_interval ();
62
63 if (XTYPE (parent) == Lisp_Buffer)
64 {
65 new->total_length = BUF_Z (XBUFFER (parent)) - 1;
66 XBUFFER (parent)->intervals = new;
67 }
68 else if (XTYPE (parent) == Lisp_String)
69 {
70 new->total_length = XSTRING (parent)->size;
71 XSTRING (parent)->intervals = new;
72 }
73
74 new->parent = (INTERVAL) parent;
75 new->position = 1;
76
77 return new;
78}
79
80/* Make the interval TARGET have exactly the properties of SOURCE */
81
82void
83copy_properties (source, target)
84 register INTERVAL source, target;
85{
86 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
87 return;
88
89 COPY_INTERVAL_CACHE (source, target);
90 target->plist = Fcopy_sequence (source->plist);
91}
92
93/* Merge the properties of interval SOURCE into the properties
323a7ad4
RS
94 of interval TARGET. That is to say, each property in SOURCE
95 is added to TARGET if TARGET has no such property as yet. */
a50699fd
JA
96
97static void
98merge_properties (source, target)
99 register INTERVAL source, target;
100{
101 register Lisp_Object o, sym, val;
102
103 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
104 return;
105
106 MERGE_INTERVAL_CACHE (source, target);
107
108 o = source->plist;
109 while (! EQ (o, Qnil))
110 {
111 sym = Fcar (o);
112 val = Fmemq (sym, target->plist);
113
114 if (NILP (val))
115 {
116 o = Fcdr (o);
117 val = Fcar (o);
118 target->plist = Fcons (sym, Fcons (val, target->plist));
119 o = Fcdr (o);
120 }
121 else
122 o = Fcdr (Fcdr (o));
123 }
124}
125
126/* Return 1 if the two intervals have the same properties,
127 0 otherwise. */
128
129int
130intervals_equal (i0, i1)
131 INTERVAL i0, i1;
132{
133 register Lisp_Object i0_cdr, i0_sym, i1_val;
134 register i1_len;
135
136 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
137 return 1;
138
323a7ad4
RS
139 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
140 return 0;
141
a50699fd
JA
142 i1_len = XFASTINT (Flength (i1->plist));
143 if (i1_len & 0x1) /* Paranoia -- plists are always even */
144 abort ();
145 i1_len /= 2;
146 i0_cdr = i0->plist;
147 while (!NILP (i0_cdr))
148 {
149 /* Lengths of the two plists were unequal */
150 if (i1_len == 0)
151 return 0;
152
153 i0_sym = Fcar (i0_cdr);
154 i1_val = Fmemq (i0_sym, i1->plist);
155
156 /* i0 has something i1 doesn't */
157 if (EQ (i1_val, Qnil))
158 return 0;
159
160 /* i0 and i1 both have sym, but it has different values in each */
161 i0_cdr = Fcdr (i0_cdr);
162 if (! Fequal (i1_val, Fcar (i0_cdr)))
163 return 0;
164
165 i0_cdr = Fcdr (i0_cdr);
166 i1_len--;
167 }
168
169 /* Lengths of the two plists were unequal */
170 if (i1_len > 0)
171 return 0;
172
173 return 1;
174}
175\f
176static int icount;
177static int idepth;
178static int zero_length;
179
a50699fd 180/* Traverse an interval tree TREE, performing FUNCTION on each node.
4a93c905 181 Pass FUNCTION two args: an interval, and ARG. */
a50699fd
JA
182
183void
4a93c905 184traverse_intervals (tree, position, depth, function, arg)
a50699fd 185 INTERVAL tree;
e0b63493 186 int position, depth;
a50699fd 187 void (* function) ();
4a93c905 188 Lisp_Object arg;
a50699fd
JA
189{
190 if (NULL_INTERVAL_P (tree))
191 return;
192
323a7ad4 193 traverse_intervals (tree->left, position, depth + 1, function, arg);
a50699fd
JA
194 position += LEFT_TOTAL_LENGTH (tree);
195 tree->position = position;
4a93c905 196 (*function) (tree, arg);
a50699fd 197 position += LENGTH (tree);
323a7ad4 198 traverse_intervals (tree->right, position, depth + 1, function, arg);
a50699fd
JA
199}
200\f
201#if 0
202/* These functions are temporary, for debugging purposes only. */
203
204INTERVAL search_interval, found_interval;
205
206void
207check_for_interval (i)
208 register INTERVAL i;
209{
210 if (i == search_interval)
211 {
212 found_interval = i;
213 icount++;
214 }
215}
216
217INTERVAL
218search_for_interval (i, tree)
219 register INTERVAL i, tree;
220{
221 icount = 0;
222 search_interval = i;
223 found_interval = NULL_INTERVAL;
4a93c905 224 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
a50699fd
JA
225 return found_interval;
226}
227
228static void
229inc_interval_count (i)
230 INTERVAL i;
231{
232 icount++;
233 if (LENGTH (i) == 0)
234 zero_length++;
235 if (depth > idepth)
236 idepth = depth;
237}
238
239int
240count_intervals (i)
241 register INTERVAL i;
242{
243 icount = 0;
244 idepth = 0;
245 zero_length = 0;
4a93c905 246 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
a50699fd
JA
247
248 return icount;
249}
250
251static INTERVAL
252root_interval (interval)
253 INTERVAL interval;
254{
255 register INTERVAL i = interval;
256
257 while (! ROOT_INTERVAL_P (i))
258 i = i->parent;
259
260 return i;
261}
262#endif
263\f
264/* Assuming that a left child exists, perform the following operation:
265
266 A B
267 / \ / \
268 B => A
269 / \ / \
270 c c
271*/
272
273static INTERVAL
274rotate_right (interval)
275 INTERVAL interval;
276{
277 INTERVAL i;
278 INTERVAL B = interval->left;
279 int len = LENGTH (interval);
280
281 /* Deal with any Parent of A; make it point to B. */
282 if (! ROOT_INTERVAL_P (interval))
283 if (AM_LEFT_CHILD (interval))
284 interval->parent->left = interval->left;
285 else
286 interval->parent->right = interval->left;
287 interval->left->parent = interval->parent;
288
289 /* B gets the same length as A, since it get A's position in the tree. */
290 interval->left->total_length = interval->total_length;
291
292 /* B becomes the parent of A. */
293 i = interval->left->right;
294 interval->left->right = interval;
295 interval->parent = interval->left;
296
297 /* A gets c as left child. */
298 interval->left = i;
299 if (! NULL_INTERVAL_P (i))
300 i->parent = interval;
301 interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
302 + RIGHT_TOTAL_LENGTH (interval));
303
304 return B;
305}
306\f
307/* Assuming that a right child exists, perform the following operation:
308
309 A B
310 / \ / \
311 B => A
312 / \ / \
313 c c
314*/
315
316static INTERVAL
317rotate_left (interval)
318 INTERVAL interval;
319{
320 INTERVAL i;
321 INTERVAL B = interval->right;
322 int len = LENGTH (interval);
323
324 /* Deal with the parent of A. */
325 if (! ROOT_INTERVAL_P (interval))
326 if (AM_LEFT_CHILD (interval))
327 interval->parent->left = interval->right;
328 else
329 interval->parent->right = interval->right;
330 interval->right->parent = interval->parent;
331
332 /* B must have the same total length of A. */
333 interval->right->total_length = interval->total_length;
334
335 /* Make B the parent of A */
336 i = interval->right->left;
337 interval->right->left = interval;
338 interval->parent = interval->right;
339
340 /* Make A point to c */
341 interval->right = i;
342 if (! NULL_INTERVAL_P (i))
343 i->parent = interval;
344 interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
345 + RIGHT_TOTAL_LENGTH (interval));
346
347 return B;
348}
349\f
90ba40fc
JA
350/* Split INTERVAL into two pieces, starting the second piece at character
351 position OFFSET (counting from 1), relative to INTERVAL. The right-hand
352 piece (second, lexicographically) is returned.
353
354 The size and position fields of the two intervals are set based upon
355 those of the original interval. The property list of the new interval
356 is reset, thus it is up to the caller to do the right thing with the
357 result.
a50699fd
JA
358
359 Note that this does not change the position of INTERVAL; if it is a root,
360 it is still a root after this operation. */
361
362INTERVAL
90ba40fc 363split_interval_right (interval, offset)
a50699fd 364 INTERVAL interval;
90ba40fc 365 int offset;
a50699fd
JA
366{
367 INTERVAL new = make_interval ();
368 int position = interval->position;
90ba40fc 369 int new_length = LENGTH (interval) - offset + 1;
a50699fd 370
90ba40fc 371 new->position = position + offset - 1;
a50699fd 372 new->parent = interval;
a50699fd
JA
373
374 if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval))
375 {
376 interval->right = new;
377 new->total_length = new_length;
378
379 return new;
380 }
381
382 /* Insert the new node between INTERVAL and its right child. */
383 new->right = interval->right;
384 interval->right->parent = new;
385 interval->right = new;
386
387 new->total_length = new_length + new->right->total_length;
388
389 return new;
390}
391
90ba40fc
JA
392/* Split INTERVAL into two pieces, starting the second piece at character
393 position OFFSET (counting from 1), relative to INTERVAL. The left-hand
394 piece (first, lexicographically) is returned.
a50699fd 395
90ba40fc
JA
396 The size and position fields of the two intervals are set based upon
397 those of the original interval. The property list of the new interval
398 is reset, thus it is up to the caller to do the right thing with the
399 result.
400
401 Note that this does not change the position of INTERVAL; if it is a root,
402 it is still a root after this operation. */
a50699fd
JA
403
404INTERVAL
90ba40fc 405split_interval_left (interval, offset)
a50699fd 406 INTERVAL interval;
90ba40fc 407 int offset;
a50699fd
JA
408{
409 INTERVAL new = make_interval ();
410 int position = interval->position;
90ba40fc 411 int new_length = offset - 1;
a50699fd 412
a50699fd 413 new->position = interval->position;
90ba40fc 414 interval->position = interval->position + offset - 1;
a50699fd
JA
415 new->parent = interval;
416
417 if (NULL_LEFT_CHILD (interval))
418 {
419 interval->left = new;
420 new->total_length = new_length;
421
422 return new;
423 }
424
425 /* Insert the new node between INTERVAL and its left child. */
426 new->left = interval->left;
427 new->left->parent = new;
428 interval->left = new;
323a7ad4 429 new->total_length = new_length + LEFT_TOTAL_LENGTH (new);
a50699fd
JA
430
431 return new;
432}
433\f
90ba40fc
JA
434/* Find the interval containing text position POSITION in the text
435 represented by the interval tree TREE. POSITION is relative to
436 the beginning of that text.
a50699fd 437
90ba40fc
JA
438 The `position' field, which is a cache of an interval's position,
439 is updated in the interval found. Other functions (e.g., next_interval)
440 will update this cache based on the result of find_interval. */
441
442INLINE INTERVAL
a50699fd
JA
443find_interval (tree, position)
444 register INTERVAL tree;
445 register int position;
446{
447 register int relative_position = position;
448
449 if (NULL_INTERVAL_P (tree))
450 return NULL_INTERVAL;
451
452 if (position > TOTAL_LENGTH (tree))
453 abort (); /* Paranoia */
454#if 0
455 position = TOTAL_LENGTH (tree);
456#endif
457
458 while (1)
459 {
460 if (relative_position <= LEFT_TOTAL_LENGTH (tree))
461 {
462 tree = tree->left;
463 }
464 else if (relative_position > (TOTAL_LENGTH (tree)
465 - RIGHT_TOTAL_LENGTH (tree)))
466 {
467 relative_position -= (TOTAL_LENGTH (tree)
468 - RIGHT_TOTAL_LENGTH (tree));
469 tree = tree->right;
470 }
471 else
472 {
473 tree->position = LEFT_TOTAL_LENGTH (tree)
474 + position - relative_position + 1;
475 return tree;
476 }
477 }
478}
479\f
480/* Find the succeeding interval (lexicographically) to INTERVAL.
90ba40fc
JA
481 Sets the `position' field based on that of INTERVAL (see
482 find_interval). */
a50699fd
JA
483
484INTERVAL
485next_interval (interval)
486 register INTERVAL interval;
487{
488 register INTERVAL i = interval;
489 register int next_position;
490
491 if (NULL_INTERVAL_P (i))
492 return NULL_INTERVAL;
493 next_position = interval->position + LENGTH (interval);
494
495 if (! NULL_RIGHT_CHILD (i))
496 {
497 i = i->right;
498 while (! NULL_LEFT_CHILD (i))
499 i = i->left;
500
501 i->position = next_position;
502 return i;
503 }
504
505 while (! NULL_PARENT (i))
506 {
507 if (AM_LEFT_CHILD (i))
508 {
509 i = i->parent;
510 i->position = next_position;
511 return i;
512 }
513
514 i = i->parent;
515 }
516
517 return NULL_INTERVAL;
518}
519
520/* Find the preceding interval (lexicographically) to INTERVAL.
90ba40fc
JA
521 Sets the `position' field based on that of INTERVAL (see
522 find_interval). */
a50699fd
JA
523
524INTERVAL
525previous_interval (interval)
526 register INTERVAL interval;
527{
528 register INTERVAL i;
529 register position_of_previous;
530
531 if (NULL_INTERVAL_P (interval))
532 return NULL_INTERVAL;
533
534 if (! NULL_LEFT_CHILD (interval))
535 {
536 i = interval->left;
537 while (! NULL_RIGHT_CHILD (i))
538 i = i->right;
539
540 i->position = interval->position - LENGTH (i);
541 return i;
542 }
543
544 i = interval;
545 while (! NULL_PARENT (i))
546 {
547 if (AM_RIGHT_CHILD (i))
548 {
549 i = i->parent;
550
551 i->position = interval->position - LENGTH (i);
552 return i;
553 }
554 i = i->parent;
555 }
556
557 return NULL_INTERVAL;
558}
559\f
90ba40fc 560#if 0
a50699fd
JA
561/* Traverse a path down the interval tree TREE to the interval
562 containing POSITION, adjusting all nodes on the path for
563 an addition of LENGTH characters. Insertion between two intervals
564 (i.e., point == i->position, where i is second interval) means
565 text goes into second interval.
566
567 Modifications are needed to handle the hungry bits -- after simply
568 finding the interval at position (don't add length going down),
569 if it's the beginning of the interval, get the previous interval
570 and check the hugry bits of both. Then add the length going back up
571 to the root. */
572
573static INTERVAL
574adjust_intervals_for_insertion (tree, position, length)
575 INTERVAL tree;
576 int position, length;
577{
578 register int relative_position;
579 register INTERVAL this;
580
581 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
582 abort ();
583
584 /* If inserting at point-max of a buffer, that position
585 will be out of range */
586 if (position > TOTAL_LENGTH (tree))
587 position = TOTAL_LENGTH (tree);
588 relative_position = position;
589 this = tree;
590
591 while (1)
592 {
593 if (relative_position <= LEFT_TOTAL_LENGTH (this))
594 {
595 this->total_length += length;
596 this = this->left;
597 }
598 else if (relative_position > (TOTAL_LENGTH (this)
599 - RIGHT_TOTAL_LENGTH (this)))
600 {
601 relative_position -= (TOTAL_LENGTH (this)
602 - RIGHT_TOTAL_LENGTH (this));
603 this->total_length += length;
604 this = this->right;
605 }
606 else
607 {
608 /* If we are to use zero-length intervals as buffer pointers,
609 then this code will have to change. */
610 this->total_length += length;
611 this->position = LEFT_TOTAL_LENGTH (this)
612 + position - relative_position + 1;
613 return tree;
614 }
615 }
616}
90ba40fc
JA
617#endif
618
619/* Effect an adjustment corresponding to the addition of LENGTH characters
620 of text. Do this by finding the interval containing POSITION in the
621 interval tree TREE, and then adjusting all of it's ancestors by adding
622 LENGTH to them.
623
624 If POSITION is the first character of an interval, meaning that point
625 is actually between the two intervals, make the new text belong to
626 the interval which is "sticky".
627
1d1d7ba0 628 If both intervals are "sticky", then make them belong to the left-most
90ba40fc
JA
629 interval. Another possibility would be to create a new interval for
630 this text, and make it have the merged properties of both ends. */
631
632static INTERVAL
633adjust_intervals_for_insertion (tree, position, length)
634 INTERVAL tree;
635 int position, length;
636{
637 register INTERVAL i;
638
639 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
640 abort ();
641
642 /* If inserting at point-max of a buffer, that position
643 will be out of range. */
644 if (position > TOTAL_LENGTH (tree))
645 position = TOTAL_LENGTH (tree);
646
647 i = find_interval (tree, position);
648 /* If we are positioned between intervals, check the stickiness of
649 both of them. */
650 if (position == i->position
651 && position != 1)
652 {
249a6da9 653 register INTERVAL prev = previous_interval (i);
90ba40fc
JA
654
655 /* If both intervals are sticky here, then default to the
656 left-most one. But perhaps we should create a new
657 interval here instead... */
7b1d5b85 658 if (END_STICKY_P (prev))
90ba40fc
JA
659 i = prev;
660 }
661
662 while (! NULL_INTERVAL_P (i))
663 {
664 i->total_length += length;
249a6da9 665 i = i->parent;
90ba40fc
JA
666 }
667
668 return tree;
669}
a50699fd 670\f
90ba40fc
JA
671/* Delete an node I from its interval tree by merging its subtrees
672 into one subtree which is then returned. Caller is responsible for
a50699fd
JA
673 storing the resulting subtree into its parent. */
674
675static INTERVAL
676delete_node (i)
677 register INTERVAL i;
678{
679 register INTERVAL migrate, this;
680 register int migrate_amt;
681
682 if (NULL_INTERVAL_P (i->left))
683 return i->right;
684 if (NULL_INTERVAL_P (i->right))
685 return i->left;
686
687 migrate = i->left;
688 migrate_amt = i->left->total_length;
689 this = i->right;
690 this->total_length += migrate_amt;
691 while (! NULL_INTERVAL_P (this->left))
692 {
693 this = this->left;
694 this->total_length += migrate_amt;
695 }
696 this->left = migrate;
697 migrate->parent = this;
698
699 return i->right;
700}
701
702/* Delete interval I from its tree by calling `delete_node'
703 and properly connecting the resultant subtree.
704
705 I is presumed to be empty; that is, no adjustments are made
706 for the length of I. */
707
708void
709delete_interval (i)
710 register INTERVAL i;
711{
712 register INTERVAL parent;
713 int amt = LENGTH (i);
714
715 if (amt > 0) /* Only used on zero-length intervals now. */
716 abort ();
717
718 if (ROOT_INTERVAL_P (i))
719 {
720 Lisp_Object owner = (Lisp_Object) i->parent;
721 parent = delete_node (i);
722 if (! NULL_INTERVAL_P (parent))
723 parent->parent = (INTERVAL) owner;
724
725 if (XTYPE (owner) == Lisp_Buffer)
726 XBUFFER (owner)->intervals = parent;
727 else if (XTYPE (owner) == Lisp_String)
728 XSTRING (owner)->intervals = parent;
729 else
730 abort ();
731
732 return;
733 }
734
735 parent = i->parent;
736 if (AM_LEFT_CHILD (i))
737 {
738 parent->left = delete_node (i);
739 if (! NULL_INTERVAL_P (parent->left))
740 parent->left->parent = parent;
741 }
742 else
743 {
744 parent->right = delete_node (i);
745 if (! NULL_INTERVAL_P (parent->right))
746 parent->right->parent = parent;
747 }
748}
749\f
1d1d7ba0
JA
750/* Find the interval in TREE corresponding to the character position FROM
751 and delete as much as possible of AMOUNT from that interval, starting
752 after the relative position of FROM within it. Return the amount
753 actually deleted, and if the interval was zeroed-out, delete that
754 interval node from the tree.
a50699fd 755
1d1d7ba0
JA
756 Do this by recursing down TREE to the interval in question, and
757 deleting the appropriate amount of text. */
a50699fd
JA
758
759static int
760interval_deletion_adjustment (tree, from, amount)
761 register INTERVAL tree;
762 register int from, amount;
763{
764 register int relative_position = from;
765
766 if (NULL_INTERVAL_P (tree))
767 return 0;
768
769 /* Left branch */
770 if (relative_position <= LEFT_TOTAL_LENGTH (tree))
771 {
772 int subtract = interval_deletion_adjustment (tree->left,
773 relative_position,
774 amount);
775 tree->total_length -= subtract;
776 return subtract;
777 }
778 /* Right branch */
779 else if (relative_position > (TOTAL_LENGTH (tree)
780 - RIGHT_TOTAL_LENGTH (tree)))
781 {
782 int subtract;
783
784 relative_position -= (tree->total_length
785 - RIGHT_TOTAL_LENGTH (tree));
786 subtract = interval_deletion_adjustment (tree->right,
787 relative_position,
788 amount);
789 tree->total_length -= subtract;
790 return subtract;
791 }
792 /* Here -- this node */
793 else
794 {
795 /* If this is a zero-length, marker interval, then
796 we must skip it. */
797
798 if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1)
799 {
800 /* This means we're deleting from the beginning of this interval. */
801 register int my_amount = LENGTH (tree);
802
803 if (amount < my_amount)
804 {
805 tree->total_length -= amount;
806 return amount;
807 }
808 else
809 {
810 tree->total_length -= my_amount;
811 if (LENGTH (tree) != 0)
812 abort (); /* Paranoia */
813
814 delete_interval (tree);
815 return my_amount;
816 }
817 }
818 else /* Deleting starting in the middle. */
819 {
820 register int my_amount = ((tree->total_length
821 - RIGHT_TOTAL_LENGTH (tree))
822 - relative_position + 1);
823
824 if (amount <= my_amount)
825 {
826 tree->total_length -= amount;
827 return amount;
828 }
829 else
830 {
831 tree->total_length -= my_amount;
832 return my_amount;
833 }
834 }
835 }
836
1d1d7ba0 837 /* Never reach here */
a50699fd
JA
838 abort ();
839}
840
1d1d7ba0
JA
841/* Effect the adjustments neccessary to the interval tree of BUFFER
842 to correspond to the deletion of LENGTH characters from that buffer
843 text. The deletion is effected at position START (relative to the
844 buffer). */
845
a50699fd
JA
846static void
847adjust_intervals_for_deletion (buffer, start, length)
848 struct buffer *buffer;
849 int start, length;
850{
851 register int left_to_delete = length;
852 register INTERVAL tree = buffer->intervals;
853 register int deleted;
854
855 if (NULL_INTERVAL_P (tree))
856 return;
857
858 if (length == TOTAL_LENGTH (tree))
859 {
860 buffer->intervals = NULL_INTERVAL;
861 return;
862 }
863
864 if (ONLY_INTERVAL_P (tree))
865 {
866 tree->total_length -= length;
867 return;
868 }
869
870 if (start > TOTAL_LENGTH (tree))
871 start = TOTAL_LENGTH (tree);
872 while (left_to_delete > 0)
873 {
874 left_to_delete -= interval_deletion_adjustment (tree, start,
875 left_to_delete);
876 tree = buffer->intervals;
877 if (left_to_delete == tree->total_length)
878 {
879 buffer->intervals = NULL_INTERVAL;
880 return;
881 }
882 }
883}
884\f
1d1d7ba0
JA
885/* Make the adjustments neccessary to the interval tree of BUFFER to
886 represent an addition or deletion of LENGTH characters starting
887 at position START. Addition or deletion is indicated by the sign
888 of LENGTH. */
a50699fd
JA
889
890INLINE void
891offset_intervals (buffer, start, length)
892 struct buffer *buffer;
893 int start, length;
894{
895 if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
896 return;
897
898 if (length > 0)
899 adjust_intervals_for_insertion (buffer->intervals, start, length);
900 else
901 adjust_intervals_for_deletion (buffer, start, -length);
902}
9c79dd1b
JA
903\f
904/* Merge interval I with its lexicographic successor. The resulting
905 interval is returned, and has the properties of the original
906 successor. The properties of I are lost. I is removed from the
907 interval tree.
908
909 IMPORTANT:
910 The caller must verify that this is not the last (rightmost)
911 interval. */
912
913INTERVAL
914merge_interval_right (i)
915 register INTERVAL i;
916{
917 register int absorb = LENGTH (i);
918 register INTERVAL successor;
919
920 /* Zero out this interval. */
921 i->total_length -= absorb;
922
923 /* Find the succeeding interval. */
924 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
925 as we descend. */
926 {
927 successor = i->right;
928 while (! NULL_LEFT_CHILD (successor))
929 {
930 successor->total_length += absorb;
931 successor = successor->left;
932 }
933
934 successor->total_length += absorb;
935 delete_interval (i);
936 return successor;
937 }
938
939 successor = i;
940 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
941 we ascend. */
942 {
943 if (AM_LEFT_CHILD (successor))
944 {
945 successor = successor->parent;
946 delete_interval (i);
947 return successor;
948 }
949
950 successor = successor->parent;
951 successor->total_length -= absorb;
952 }
953
954 /* This must be the rightmost or last interval and cannot
955 be merged right. The caller should have known. */
956 abort ();
957}
958\f
959/* Merge interval I with its lexicographic predecessor. The resulting
960 interval is returned, and has the properties of the original predecessor.
961 The properties of I are lost. Interval node I is removed from the tree.
962
963 IMPORTANT:
964 The caller must verify that this is not the first (leftmost) interval. */
965
966INTERVAL
967merge_interval_left (i)
968 register INTERVAL i;
969{
970 register int absorb = LENGTH (i);
971 register INTERVAL predecessor;
972
973 /* Zero out this interval. */
974 i->total_length -= absorb;
975
976 /* Find the preceding interval. */
977 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
978 adding ABSORB as we go. */
979 {
980 predecessor = i->left;
981 while (! NULL_RIGHT_CHILD (predecessor))
982 {
983 predecessor->total_length += absorb;
984 predecessor = predecessor->right;
985 }
986
987 predecessor->total_length += absorb;
988 delete_interval (i);
989 return predecessor;
990 }
991
992 predecessor = i;
993 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
994 subtracting ABSORB. */
995 {
996 if (AM_RIGHT_CHILD (predecessor))
997 {
998 predecessor = predecessor->parent;
999 delete_interval (i);
1000 return predecessor;
1001 }
1002
1003 predecessor = predecessor->parent;
1004 predecessor->total_length -= absorb;
1005 }
a50699fd 1006
9c79dd1b
JA
1007 /* This must be the leftmost or first interval and cannot
1008 be merged left. The caller should have known. */
1009 abort ();
1010}
1011\f
1d1d7ba0
JA
1012/* Make an exact copy of interval tree SOURCE which descends from
1013 PARENT. This is done by recursing through SOURCE, copying
1014 the current interval and its properties, and then adjusting
1015 the pointers of the copy. */
1016
a50699fd
JA
1017static INTERVAL
1018reproduce_tree (source, parent)
1019 INTERVAL source, parent;
1020{
1021 register INTERVAL t = make_interval ();
1022
1023 bcopy (source, t, INTERVAL_SIZE);
1024 copy_properties (source, t);
1025 t->parent = parent;
1026 if (! NULL_LEFT_CHILD (source))
1027 t->left = reproduce_tree (source->left, t);
1028 if (! NULL_RIGHT_CHILD (source))
1029 t->right = reproduce_tree (source->right, t);
1030
1031 return t;
1032}
1033
1d1d7ba0
JA
1034/* Make a new interval of length LENGTH starting at START in the
1035 group of intervals INTERVALS, which is actually an interval tree.
1036 Returns the new interval.
1037
1038 Generate an error if the new positions would overlap an existing
1039 interval. */
1040
a50699fd
JA
1041static INTERVAL
1042make_new_interval (intervals, start, length)
1043 INTERVAL intervals;
1044 int start, length;
1045{
1046 INTERVAL slot;
1047
1048 slot = find_interval (intervals, start);
1049 if (start + length > slot->position + LENGTH (slot))
1050 error ("Interval would overlap");
1051
1052 if (start == slot->position && length == LENGTH (slot))
1053 return slot;
1054
1055 if (slot->position == start)
1056 {
1057 /* New right node. */
1058 split_interval_right (slot, length + 1);
1059 return slot;
1060 }
1061
1062 if (slot->position + LENGTH (slot) == start + length)
1063 {
1064 /* New left node. */
1065 split_interval_left (slot, LENGTH (slot) - length + 1);
1066 return slot;
1067 }
1068
1069 /* Convert interval SLOT into three intervals. */
1070 split_interval_left (slot, start - slot->position + 1);
1071 split_interval_right (slot, length + 1);
1072 return slot;
1073}
294efdbe 1074\f
9c79dd1b 1075/* Insert the intervals of SOURCE into BUFFER at POSITION.
a50699fd
JA
1076
1077 This is used in insdel.c when inserting Lisp_Strings into
9c79dd1b 1078 the buffer. The text corresponding to SOURCE is already in
a50699fd
JA
1079 the buffer when this is called. The intervals of new tree are
1080 those belonging to the string being inserted; a copy is not made.
1081
1082 If the inserted text had no intervals associated, this function
1083 simply returns -- offset_intervals should handle placing the
90ba40fc 1084 text in the correct interval, depending on the sticky bits.
a50699fd
JA
1085
1086 If the inserted text had properties (intervals), then there are two
1087 cases -- either insertion happened in the middle of some interval,
1088 or between two intervals.
1089
1090 If the text goes into the middle of an interval, then new
1091 intervals are created in the middle with only the properties of
1092 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1093 which case the new text has the union of its properties and those
1094 of the text into which it was inserted.
1095
1096 If the text goes between two intervals, then if neither interval
90ba40fc
JA
1097 had its appropriate sticky property set (front_sticky, rear_sticky),
1098 the new text has only its properties. If one of the sticky properties
a50699fd
JA
1099 is set, then the new text "sticks" to that region and its properties
1100 depend on merging as above. If both the preceding and succeding
90ba40fc
JA
1101 intervals to the new text are "sticky", then the new text retains
1102 only its properties, as if neither sticky property were set. Perhaps
a50699fd
JA
1103 we should consider merging all three sets of properties onto the new
1104 text... */
1105
1106void
9c79dd1b
JA
1107graft_intervals_into_buffer (source, position, buffer)
1108 INTERVAL source;
a50699fd 1109 int position;
9c79dd1b 1110 struct buffer *buffer;
a50699fd 1111{
323a7ad4 1112 register INTERVAL under, over, this, prev;
9c79dd1b 1113 register INTERVAL tree = buffer->intervals;
323a7ad4 1114 int middle;
a50699fd
JA
1115
1116 /* If the new text has no properties, it becomes part of whatever
323a7ad4 1117 interval it was inserted into. */
9c79dd1b 1118 if (NULL_INTERVAL_P (source))
a50699fd
JA
1119 return;
1120
a50699fd
JA
1121 if (NULL_INTERVAL_P (tree))
1122 {
1123 /* The inserted text constitutes the whole buffer, so
1124 simply copy over the interval structure. */
249a6da9 1125 if (BUF_Z (buffer) == TOTAL_LENGTH (source))
a50699fd 1126 {
9c79dd1b 1127 buffer->intervals = reproduce_tree (source, tree->parent);
a50699fd
JA
1128 /* Explicitly free the old tree here. */
1129
1130 return;
1131 }
1132
1133 /* Create an interval tree in which to place a copy
323a7ad4 1134 of the intervals of the inserted string. */
a50699fd 1135 {
249a6da9
JA
1136 Lisp_Object buf;
1137 XSET (buf, Lisp_Buffer, buffer);
323a7ad4 1138 tree = create_root_interval (buf);
a50699fd
JA
1139 }
1140 }
1141 else
9c79dd1b 1142 if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
323a7ad4
RS
1143 /* If the buffer contains only the new string, but
1144 there was already some interval tree there, then it may be
1145 some zero length intervals. Eventually, do something clever
1146 about inserting properly. For now, just waste the old intervals. */
1147 {
1148 buffer->intervals = reproduce_tree (source, tree->parent);
1149 /* Explicitly free the old tree here. */
a50699fd 1150
323a7ad4
RS
1151 return;
1152 }
1153 else
1154 /* Paranoia -- the text has already been added, so this buffer
1155 should be of non-zero length. */
1156 if (TOTAL_LENGTH (tree) == 0)
1157 abort ();
a50699fd
JA
1158
1159 this = under = find_interval (tree, position);
1160 if (NULL_INTERVAL_P (under)) /* Paranoia */
1161 abort ();
9c79dd1b 1162 over = find_interval (source, 1);
a50699fd 1163
323a7ad4
RS
1164 /* Here for insertion in the middle of an interval.
1165 Split off an equivalent interval to the right,
1166 then don't bother with it any more. */
a50699fd 1167
323a7ad4 1168 if (position > under->position)
a50699fd
JA
1169 {
1170 INTERVAL end_unchanged
323a7ad4 1171 = split_interval_left (this, position - under->position + 1);
a50699fd 1172 copy_properties (under, end_unchanged);
323a7ad4
RS
1173 under->position = position;
1174 prev = 0;
1175 middle = 1;
a50699fd 1176 }
323a7ad4
RS
1177 else
1178 {
1179 prev = previous_interval (under);
1180 if (prev && !END_STICKY_P (prev))
1181 prev = 0;
1182 }
1183
1184 /* Insertion is now at beginning of UNDER. */
a50699fd 1185
323a7ad4
RS
1186 /* The inserted text "sticks" to the interval `under',
1187 which means it gets those properties. */
a50699fd
JA
1188 while (! NULL_INTERVAL_P (over))
1189 {
323a7ad4
RS
1190 position = LENGTH (over) + 1;
1191 if (position < LENGTH (under))
1192 this = split_interval_left (under, position);
1193 else
1194 this = under;
a50699fd 1195 copy_properties (over, this);
323a7ad4
RS
1196 /* Insertion at the end of an interval, PREV,
1197 inherits from PREV if PREV is sticky at the end. */
1198 if (prev && ! FRONT_STICKY_P (under)
1199 && MERGE_INSERTIONS (prev))
1200 merge_properties (prev, this);
1201 /* Maybe it inherits from the following interval
1202 if that is sticky at the front. */
1203 else if ((FRONT_STICKY_P (under) || middle)
1204 && MERGE_INSERTIONS (under))
a50699fd 1205 merge_properties (under, this);
a50699fd
JA
1206 over = next_interval (over);
1207 }
1208
9c79dd1b 1209 buffer->intervals = balance_intervals (buffer->intervals);
a50699fd
JA
1210 return;
1211}
1212
5cae0ec6
RS
1213/* Get the value of property PROP from PLIST,
1214 which is the plist of an interval.
1215 We check for direct properties and for categories with property PROP. */
1216
1217Lisp_Object
323a7ad4
RS
1218textget (plist, prop)
1219 Lisp_Object plist;
1220 register Lisp_Object prop;
1221{
5cae0ec6
RS
1222 register Lisp_Object tail, fallback;
1223 fallback = Qnil;
323a7ad4
RS
1224
1225 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1226 {
1227 register Lisp_Object tem;
1228 tem = Fcar (tail);
1229 if (EQ (prop, tem))
1230 return Fcar (Fcdr (tail));
5cae0ec6
RS
1231 if (EQ (tem, Qcategory))
1232 fallback = Fget (Fcar (Fcdr (tail)), prop);
323a7ad4 1233 }
5cae0ec6
RS
1234
1235 return fallback;
323a7ad4 1236}
294efdbe 1237\f
5cae0ec6
RS
1238/* Set point in BUFFER to POSITION. If the target position is
1239 before an invisible character which is not displayed with a special glyph,
323a7ad4 1240 move back to an ok place to display. */
a50699fd
JA
1241
1242void
1243set_point (position, buffer)
1244 register int position;
1245 register struct buffer *buffer;
1246{
323a7ad4 1247 register INTERVAL to, from, toprev, fromprev, target;
a50699fd
JA
1248 register int iposition = position;
1249 int buffer_point;
1250 register Lisp_Object obj;
1251 int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
9c79dd1b 1252 int old_position = buffer->text.pt;
a50699fd
JA
1253
1254 if (position == buffer->text.pt)
1255 return;
1256
1257 if (NULL_INTERVAL_P (buffer->intervals))
1258 {
1259 buffer->text.pt = position;
1260 return;
1261 }
1262
1263 /* Perhaps we should just change `position' to the limit. */
1264 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1265 abort ();
1266
1267 /* Position Z is really one past the last char in the buffer. */
294efdbe 1268 if (position == BUF_ZV (buffer))
a50699fd
JA
1269 iposition = position - 1;
1270
323a7ad4
RS
1271 /* Set TO to the interval containing the char after POSITION,
1272 and TOPREV to the interval containing the char before POSITION.
1273 Either one may be null. They may be equal. */
a50699fd 1274 to = find_interval (buffer->intervals, iposition);
294efdbe
RS
1275 if (position == BUF_BEGV (buffer))
1276 toprev = 0;
1277 else if (to->position == position)
323a7ad4
RS
1278 toprev = previous_interval (to);
1279 else if (iposition != position)
1280 toprev = to, to = 0;
1281 else
1282 toprev = to;
1283
294efdbe
RS
1284 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1285 ? BUF_ZV (buffer) - 1
323a7ad4 1286 : BUF_PT (buffer));
9c79dd1b 1287
323a7ad4
RS
1288 /* Set FROM to the interval containing the char after PT,
1289 and FROMPREV to the interval containing the char before PT.
1290 Either one may be null. They may be equal. */
9c79dd1b 1291 /* We could cache this and save time. */
a50699fd 1292 from = find_interval (buffer->intervals, buffer_point);
294efdbe
RS
1293 if (from->position == BUF_BEGV (buffer))
1294 fromprev = 0;
1295 else if (from->position == BUF_PT (buffer))
323a7ad4
RS
1296 fromprev = previous_interval (from);
1297 else if (buffer_point != BUF_PT (buffer))
1298 fromprev = from, from = 0;
1299 else
1300 fromprev = from;
a50699fd
JA
1301
1302 /* Moving within an interval */
323a7ad4 1303 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
a50699fd
JA
1304 {
1305 buffer->text.pt = position;
1306 return;
1307 }
1308
5cae0ec6
RS
1309 /* If the new position is before an invisible character,
1310 move forward over all such. */
1311 while (! NULL_INTERVAL_P (to)
1312 && ! INTERVAL_VISIBLE_P (to)
1313 && ! DISPLAY_INVISIBLE_GLYPH (to))
a50699fd 1314 {
5cae0ec6
RS
1315 toprev = to;
1316 to = next_interval (to);
323a7ad4 1317 position = to->position;
a50699fd 1318 }
323a7ad4
RS
1319
1320 buffer->text.pt = position;
a50699fd 1321
d7e3e52b
JA
1322 /* We run point-left and point-entered hooks here, iff the
1323 two intervals are not equivalent. These hooks take
323a7ad4
RS
1324 (old_point, new_point) as arguments. */
1325 if (! intervals_equal (from, to)
1326 || ! intervals_equal (fromprev, toprev))
9c79dd1b 1327 {
323a7ad4
RS
1328 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1329
1330 if (fromprev)
1331 leave_after = textget (fromprev->plist, Qpoint_left);
1332 else
1333 leave_after = Qnil;
1334 if (from)
1335 leave_before = textget (from->plist, Qpoint_left);
1336 else
1337 leave_before = Qnil;
1338
1339 if (toprev)
1340 enter_after = textget (toprev->plist, Qpoint_entered);
1341 else
1342 enter_after = Qnil;
1343 if (to)
1344 enter_before = textget (to->plist, Qpoint_entered);
1345 else
1346 enter_before = Qnil;
9c79dd1b 1347
323a7ad4
RS
1348 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1349 call2 (leave_before, old_position, position);
1350 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1351 call2 (leave_after, old_position, position);
9c79dd1b 1352
323a7ad4
RS
1353 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1354 call2 (enter_before, old_position, position);
1355 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1356 call2 (enter_after, old_position, position);
9c79dd1b 1357 }
a50699fd
JA
1358}
1359
9c79dd1b 1360/* Set point temporarily, without checking any text properties. */
a50699fd 1361
9c79dd1b
JA
1362INLINE void
1363temp_set_point (position, buffer)
1364 int position;
1365 struct buffer *buffer;
1366{
1367 buffer->text.pt = position;
1368}
294efdbe 1369\f
5cae0ec6
RS
1370/* Return the proper local map for position POSITION in BUFFER.
1371 Use the map specified by the local-map property, if any.
1372 Otherwise, use BUFFER's local map. */
1373
1374Lisp_Object
1375get_local_map (position, buffer)
1376 register int position;
1377 register struct buffer *buffer;
1378{
1379 register INTERVAL interval;
1380 Lisp_Object prop, tem;
1381
1382 if (NULL_INTERVAL_P (buffer->intervals))
1383 return current_buffer->keymap;
1384
1385 /* Perhaps we should just change `position' to the limit. */
1386 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1387 abort ();
1388
1389 /* Position Z is really one past the last char in the buffer. */
1390 if (position == BUF_ZV (buffer))
1391 return current_buffer->keymap;
1392
1393 interval = find_interval (buffer->intervals, position);
1394 prop = textget (interval->plist, Qlocal_map);
1395 if (NILP (prop))
1396 return current_buffer->keymap;
1397
1398 /* Use the local map only if it is valid. */
1399 tem = Fkeymapp (prop);
1400 if (!NILP (tem))
1401 return prop;
1402
1403 return current_buffer->keymap;
1404}
1405\f
294efdbe
RS
1406/* Call the modification hook functions in LIST, each with START and END. */
1407
1408static void
1409call_mod_hooks (list, start, end)
1410 Lisp_Object list, start, end;
1411{
1412 struct gcpro gcpro1;
1413 GCPRO1 (list);
1414 while (!NILP (list))
1415 {
1416 call2 (Fcar (list), start, end);
1417 list = Fcdr (list);
1418 }
1419 UNGCPRO;
1420}
9c79dd1b
JA
1421
1422/* Check for read-only intervals and signal an error if we find one.
1423 Then check for any modification hooks in the range START up to
1424 (but not including) TO. Create a list of all these hooks in
1425 lexicographic order, eliminating consecutive extra copies of the
1426 same hook. Then call those hooks in order, with START and END - 1
1427 as arguments. */
a50699fd
JA
1428
1429void
1430verify_interval_modification (buf, start, end)
1431 struct buffer *buf;
1432 int start, end;
1433{
1434 register INTERVAL intervals = buf->intervals;
294efdbe
RS
1435 register INTERVAL i, prev;
1436 Lisp_Object hooks;
1437 register Lisp_Object prev_mod_hooks;
1438 Lisp_Object mod_hooks;
9c79dd1b 1439 struct gcpro gcpro1;
a50699fd 1440
294efdbe
RS
1441 hooks = Qnil;
1442 prev_mod_hooks = Qnil;
1443 mod_hooks = Qnil;
1444
a50699fd
JA
1445 if (NULL_INTERVAL_P (intervals))
1446 return;
1447
1448 if (start > end)
1449 {
1450 int temp = start;
1451 start = end;
1452 end = temp;
1453 }
1454
294efdbe
RS
1455 /* For an insert operation, check the two chars around the position. */
1456 if (start == end)
a50699fd 1457 {
294efdbe
RS
1458 INTERVAL prev;
1459 Lisp_Object before, after;
a50699fd 1460
294efdbe
RS
1461 /* Set I to the interval containing the char after START,
1462 and PREV to the interval containing the char before START.
1463 Either one may be null. They may be equal. */
1464 i = find_interval (intervals,
1465 (start == BUF_ZV (buf) ? start - 1 : start));
1466
1467 if (start == BUF_BEGV (buf))
1468 prev = 0;
1469 if (i->position == start)
1470 prev = previous_interval (i);
1471 else if (i->position < start)
1472 prev = i;
1473 if (start == BUF_ZV (buf))
1474 i = 0;
1475
1476 if (NULL_INTERVAL_P (prev))
1477 {
5cae0ec6 1478 after = textget (i->plist, Qread_only);
294efdbe
RS
1479 if (! NILP (after))
1480 error ("Attempt to insert within read-only text");
1481 }
1482 else if (NULL_INTERVAL_P (i))
1483 {
5cae0ec6 1484 before = textget (prev->plist, Qread_only);
294efdbe
RS
1485 if (! NILP (before))
1486 error ("Attempt to insert within read-only text");
1487 }
1488 else
1489 {
5cae0ec6
RS
1490 before = textget (prev->plist, Qread_only);
1491 after = textget (i->plist, Qread_only);
294efdbe
RS
1492 if (! NILP (before) && EQ (before, after))
1493 error ("Attempt to insert within read-only text");
1494 }
1495
1496 /* Run both mod hooks (just once if they're the same). */
1497 if (!NULL_INTERVAL_P (prev))
1498 prev_mod_hooks = textget (prev->plist, Qmodification_hooks);
1499 if (!NULL_INTERVAL_P (i))
1500 mod_hooks = textget (i->plist, Qmodification_hooks);
1501 GCPRO1 (mod_hooks);
1502 if (! NILP (prev_mod_hooks))
1503 call_mod_hooks (prev_mod_hooks, make_number (start),
1504 make_number (end));
1505 UNGCPRO;
1506 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1507 call_mod_hooks (mod_hooks, make_number (start), make_number (end));
a50699fd
JA
1508 }
1509 else
a50699fd 1510 {
294efdbe
RS
1511 /* Loop over intervals on or next to START...END,
1512 collecting their hooks. */
9c79dd1b 1513
294efdbe
RS
1514 i = find_interval (intervals, start);
1515 do
9c79dd1b 1516 {
294efdbe
RS
1517 if (! INTERVAL_WRITABLE_P (i))
1518 error ("Attempt to modify read-only text");
9c79dd1b 1519
294efdbe
RS
1520 mod_hooks = textget (i->plist, Qmodification_hooks);
1521 if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
1522 {
1523 hooks = Fcons (mod_hooks, hooks);
1524 prev_mod_hooks = mod_hooks;
1525 }
a50699fd 1526
294efdbe
RS
1527 i = next_interval (i);
1528 }
1529 /* Keep going thru the interval containing the char before END. */
1530 while (! NULL_INTERVAL_P (i) && i->position < end);
1531
1532 GCPRO1 (hooks);
1533 hooks = Fnreverse (hooks);
1534 while (! EQ (hooks, Qnil))
1535 {
1536 call_mod_hooks (Fcar (hooks), make_number (start),
1537 make_number (end));
1538 hooks = Fcdr (hooks);
1539 }
1540 UNGCPRO;
9c79dd1b 1541 }
a50699fd
JA
1542}
1543
1544/* Balance an interval node if the amount of text in its left and right
1545 subtrees differs by more than the percentage specified by
1546 `interval-balance-threshold'. */
1547
1548static INTERVAL
1549balance_an_interval (i)
1550 INTERVAL i;
1551{
1552 register int total_children_size = (LEFT_TOTAL_LENGTH (i)
1553 + RIGHT_TOTAL_LENGTH (i));
1554 register int threshold = (XFASTINT (interval_balance_threshold)
1555 * (total_children_size / 100));
1556
1557 if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
1558 && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
1559 return rotate_right (i);
1560
1561 if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
1562 && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
1563 return rotate_right (i);
1564
1565#if 0
1566 if (LEFT_TOTAL_LENGTH (i) >
1567 (RIGHT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold)))
1568 return rotate_right (i);
1569
1570 if (RIGHT_TOTAL_LENGTH (i) >
1571 (LEFT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold)))
1572 return rotate_left (i);
1573#endif
1574
1575 return i;
1576}
1577
1578/* Balance the interval tree TREE. Balancing is by weight
1579 (the amount of text). */
1580
1581INTERVAL
1582balance_intervals (tree)
1583 register INTERVAL tree;
1584{
1585 register INTERVAL new_tree;
1586
1587 if (NULL_INTERVAL_P (tree))
1588 return NULL_INTERVAL;
1589
1590 new_tree = tree;
1591 do
1592 {
1593 tree = new_tree;
1594 new_tree = balance_an_interval (new_tree);
1595 }
1596 while (new_tree != tree);
1597
1598 return new_tree;
1599}
1600
9c79dd1b 1601/* Produce an interval tree reflecting the intervals in
a50699fd
JA
1602 TREE from START to START + LENGTH. */
1603
7b1d5b85 1604INTERVAL
a50699fd
JA
1605copy_intervals (tree, start, length)
1606 INTERVAL tree;
1607 int start, length;
1608{
1609 register INTERVAL i, new, t;
1610 register int got;
1611
1612 if (NULL_INTERVAL_P (tree) || length <= 0)
1613 return NULL_INTERVAL;
1614
1615 i = find_interval (tree, start);
1616 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1617 abort ();
1618
1619 /* If there is only one interval and it's the default, return nil. */
1620 if ((start - i->position + 1 + length) < LENGTH (i)
1621 && DEFAULT_INTERVAL_P (i))
1622 return NULL_INTERVAL;
1623
1624 new = make_interval ();
1625 new->position = 1;
1626 got = (LENGTH (i) - (start - i->position));
9c79dd1b 1627 new->total_length = length;
a50699fd
JA
1628 copy_properties (i, new);
1629
1630 t = new;
1631 while (got < length)
1632 {
1633 i = next_interval (i);
9c79dd1b 1634 t = split_interval_right (t, got + 1);
a50699fd
JA
1635 copy_properties (i, t);
1636 got += LENGTH (i);
1637 }
1638
1639 if (got > length)
1640 t->total_length -= (got - length);
1641
1642 return balance_intervals (new);
1643}
1644
a50699fd
JA
1645/* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1646
d7e3e52b 1647INLINE void
a50699fd
JA
1648copy_intervals_to_string (string, buffer, position, length)
1649 Lisp_Object string, buffer;
1650 int position, length;
1651{
1652 INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
1653 position, length);
1654 if (NULL_INTERVAL_P (interval_copy))
1655 return;
1656
1657 interval_copy->parent = (INTERVAL) string;
1658 XSTRING (string)->intervals = interval_copy;
1659}
d2f7a802
JA
1660
1661#endif /* USE_TEXT_PROPERTIES */