(byte-compile-log-1): In non-batch case, don't mention the file name
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
CommitLineData
3eac9910
JB
1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
e1f0df62 3;;; Copyright (c) 1991, 1994, 2000 Free Software Foundation, Inc.
3eac9910
JB
4
5;; Author: Jamie Zawinski <jwz@lucid.com>
6;; Hallvard Furuseth <hbf@ulrik.uio.no>
e1f0df62 7;; Maintainer: FSF
3eac9910 8;; Keywords: internal
1c393159
JB
9
10;; This file is part of GNU Emacs.
11
12;; GNU Emacs is free software; you can redistribute it and/or modify
13;; it under the terms of the GNU General Public License as published by
3eac9910 14;; the Free Software Foundation; either version 2, or (at your option)
1c393159
JB
15;; any later version.
16
17;; GNU Emacs is distributed in the hope that it will be useful,
18;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20;; GNU General Public License for more details.
21
22;; You should have received a copy of the GNU General Public License
b578f267
EN
23;; along with GNU Emacs; see the file COPYING. If not, write to the
24;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25;; Boston, MA 02111-1307, USA.
1c393159 26
3eac9910
JB
27;;; Commentary:
28
b578f267
EN
29;; ========================================================================
30;; "No matter how hard you try, you can't make a racehorse out of a pig.
31;; You can, however, make a faster pig."
32;;
33;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35;; still not going to make it go faster than 70 mph, but it might be easier
36;; to get it there.
37;;
1c393159 38
b578f267
EN
39;; TO DO:
40;;
72d8b544 41;; (apply (lambda (x &rest y) ...) 1 (foo))
b578f267
EN
42;;
43;; maintain a list of functions known not to access any global variables
44;; (actually, give them a 'dynamically-safe property) and then
45;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47;; by recursing on this, we might be able to eliminate the entire let.
48;; However certain variables should never have their bindings optimized
49;; away, because they affect everything.
50;; (put 'debug-on-error 'binding-is-magic t)
51;; (put 'debug-on-abort 'binding-is-magic t)
52;; (put 'debug-on-next-call 'binding-is-magic t)
53;; (put 'mocklisp-arguments 'binding-is-magic t)
54;; (put 'inhibit-quit 'binding-is-magic t)
55;; (put 'quit-flag 'binding-is-magic t)
56;; (put 't 'binding-is-magic t)
57;; (put 'nil 'binding-is-magic t)
58;; possibly also
59;; (put 'gc-cons-threshold 'binding-is-magic t)
60;; (put 'track-mouse 'binding-is-magic t)
61;; others?
62;;
63;; Simple defsubsts often produce forms like
64;; (let ((v1 (f1)) (v2 (f2)) ...)
65;; (FN v1 v2 ...))
66;; It would be nice if we could optimize this to
67;; (FN (f1) (f2) ...)
68;; but we can't unless FN is dynamically-safe (it might be dynamically
69;; referring to the bindings that the lambda arglist established.)
70;; One of the uncountable lossages introduced by dynamic scope...
71;;
72;; Maybe there should be a control-structure that says "turn on
73;; fast-and-loose type-assumptive optimizations here." Then when
74;; we see a form like (car foo) we can from then on assume that
75;; the variable foo is of type cons, and optimize based on that.
76;; But, this won't win much because of (you guessed it) dynamic
77;; scope. Anything down the stack could change the value.
78;; (Another reason it doesn't work is that it is perfectly valid
79;; to call car with a null argument.) A better approach might
80;; be to allow type-specification of the form
81;; (put 'foo 'arg-types '(float (list integer) dynamic))
82;; (put 'foo 'result-type 'bool)
83;; It should be possible to have these types checked to a certain
84;; degree.
85;;
86;; collapse common subexpressions
87;;
88;; It would be nice if redundant sequences could be factored out as well,
89;; when they are known to have no side-effects:
90;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91;; but beware of traps like
92;; (cons (list x y) (list x y))
93;;
94;; Tail-recursion elimination is not really possible in Emacs Lisp.
95;; Tail-recursion elimination is almost always impossible when all variables
96;; have dynamic scope, but given that the "return" byteop requires the
97;; binding stack to be empty (rather than emptying it itself), there can be
98;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99;; make any bindings.
100;;
101;; Here is an example of an Emacs Lisp function which could safely be
102;; byte-compiled tail-recursively:
103;;
104;; (defun tail-map (fn list)
105;; (cond (list
106;; (funcall fn (car list))
107;; (tail-map fn (cdr list)))))
108;;
109;; However, if there was even a single let-binding around the COND,
110;; it could not be byte-compiled, because there would be an "unbind"
111;; byte-op between the final "call" and "return." Adding a
112;; Bunbind_all byteop would fix this.
113;;
114;; (defun foo (x y z) ... (foo a b c))
115;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118;;
119;; this also can be considered tail recursion:
120;;
121;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122;; could generalize this by doing the optimization
123;; (goto X) ... X: (return) --> (return)
124;;
125;; But this doesn't solve all of the problems: although by doing tail-
126;; recursion elimination in this way, the call-stack does not grow, the
127;; binding-stack would grow with each recursive step, and would eventually
128;; overflow. I don't believe there is any way around this without lexical
129;; scope.
130;;
131;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132;;
133;; Idea: the form (lexical-scope) in a file means that the file may be
134;; compiled lexically. This proclamation is file-local. Then, within
135;; that file, "let" would establish lexical bindings, and "let-dynamic"
136;; would do things the old way. (Or we could use CL "declare" forms.)
137;; We'd have to notice defvars and defconsts, since those variables should
138;; always be dynamic, and attempting to do a lexical binding of them
139;; should simply do a dynamic binding instead.
140;; But! We need to know about variables that were not necessarily defvarred
141;; in the file being compiled (doing a boundp check isn't good enough.)
142;; Fdefvar() would have to be modified to add something to the plist.
143;;
144;; A major disadvantage of this scheme is that the interpreter and compiler
145;; would have different semantics for files compiled with (dynamic-scope).
146;; Since this would be a file-local optimization, there would be no way to
147;; modify the interpreter to obey this (unless the loader was hacked
148;; in some grody way, but that's a really bad idea.)
97e6527f
KH
149
150;; Other things to consider:
151
152;;;;; Associative math should recognize subcalls to identical function:
153;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154;;;;; This should generate the same as (1+ x) and (1- x)
155
156;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157;;;;; An awful lot of functions always return a non-nil value. If they're
158;;;;; error free also they may act as true-constants.
159
160;;;(disassemble (lambda (x) (and (point) (foo))))
161;;;;; When
162;;;;; - all but one arguments to a function are constant
163;;;;; - the non-constant argument is an if-expression (cond-expression?)
164;;;;; then the outer function can be distributed. If the guarding
165;;;;; condition is side-effect-free [assignment-free] then the other
166;;;;; arguments may be any expressions. Since, however, the code size
167;;;;; can increase this way they should be "simple". Compare:
168
169;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172;;;;; (car (cons A B)) -> (progn B A)
173;;;(disassemble (lambda (x) (car (cons (foo) 42))))
174
175;;;;; (cdr (cons A B)) -> (progn A B)
176;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178;;;;; (car (list A B ...)) -> (progn B ... A)
179;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
182;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
1c393159 184
3eac9910 185;;; Code:
1c393159 186
c144230d
MR
187(require 'bytecomp)
188
1c393159
JB
189(defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
72d8b544 195 (mapcar (lambda (arg)
1c393159
JB
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
216 c
217 (format "(%s %s)" c a))))
218 args)))))
219
220(defmacro byte-compile-log-lap (format-string &rest args)
221 (list 'and
222 '(memq byte-optimize-log '(t byte))
223 (cons 'byte-compile-log-lap-1
224 (cons format-string args))))
225
226\f
227;;; byte-compile optimizers to support inlining
228
229(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
230
231(defun byte-optimize-inline-handler (form)
232 "byte-optimize-handler for the `inline' special-form."
233 (cons 'progn
234 (mapcar
72d8b544 235 (lambda (sexp)
1c393159
JB
236 (let ((fn (car-safe sexp)))
237 (if (and (symbolp fn)
238 (or (cdr (assq fn byte-compile-function-environment))
239 (and (fboundp fn)
240 (not (or (cdr (assq fn byte-compile-macro-environment))
241 (and (consp (setq fn (symbol-function fn)))
242 (eq (car fn) 'macro))
243 (subrp fn))))))
244 (byte-compile-inline-expand sexp)
245 sexp)))
246 (cdr form))))
247
248
70e1dad8
RS
249;; Splice the given lap code into the current instruction stream.
250;; If it has any labels in it, you're responsible for making sure there
251;; are no collisions, and that byte-compile-tag-number is reasonable
252;; after this is spliced in. The provided list is destroyed.
1c393159 253(defun byte-inline-lapcode (lap)
1c393159
JB
254 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
255
256
257(defun byte-compile-inline-expand (form)
258 (let* ((name (car form))
259 (fn (or (cdr (assq name byte-compile-function-environment))
260 (and (fboundp name) (symbol-function name)))))
261 (if (null fn)
262 (progn
c59a4192
GM
263 (byte-compile-warn "Attempt to inline `%s' before it was defined"
264 name)
1c393159
JB
265 form)
266 ;; else
78ecf55a
GM
267 (when (and (consp fn) (eq (car fn) 'autoload))
268 (load (nth 2 fn))
269 (setq fn (or (and (fboundp name) (symbol-function name))
270 (cdr (assq name byte-compile-function-environment)))))
1c393159 271 (if (and (consp fn) (eq (car fn) 'autoload))
c59a4192 272 (error "File `%s' didn't define `%s'" (nth 2 fn) name))
1c393159
JB
273 (if (symbolp fn)
274 (byte-compile-inline-expand (cons fn (cdr form)))
96d699f3 275 (if (byte-code-function-p fn)
70b40ea1 276 (let (string)
2b29a376 277 (fetch-bytecode fn)
70b40ea1
RS
278 (setq string (aref fn 1))
279 (if (fboundp 'string-as-unibyte)
280 (setq string (string-as-unibyte string)))
2b29a376 281 (cons (list 'lambda (aref fn 0)
70b40ea1 282 (list 'byte-code string (aref fn 2) (aref fn 3)))
2b29a376 283 (cdr form)))
223a2a62
KH
284 (if (eq (car-safe fn) 'lambda)
285 (cons fn (cdr form))
286 ;; Give up on inlining.
287 form))))))
1c393159
JB
288
289;;; ((lambda ...) ...)
290;;;
291(defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
96d699f3 295 (if (byte-code-function-p lambda)
7e1dae73
JB
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
1c393159
JB
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
78ecf55a 330 (byte-compile-warn "Attempt to open-code `%s' with too few arguments" name)
1c393159
JB
331 (setq arglist nil values 'too-few))
332 (t
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
78ecf55a 341 "Attempt to open-code `%s' with too many arguments" name))
1c393159 342 form)
936ae731
GM
343
344 ;; The following leads to infinite recursion when loading a
345 ;; file containing `(defsubst f () (f))', and then trying to
346 ;; byte-compile that file.
347 ;(setq body (mapcar 'byte-optimize-form body)))
348
1c393159
JB
349 (let ((newform
350 (if bindings
351 (cons 'let (cons (nreverse bindings) body))
352 (cons 'progn body))))
353 (byte-compile-log " %s\t==>\t%s" form newform)
354 newform)))))
355
356\f
357;;; implementing source-level optimizers
358
359(defun byte-optimize-form-code-walker (form for-effect)
360 ;;
361 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
362 ;; we need to have special knowledge of the syntax of the special forms
363 ;; like let and defun (that's why they're special forms :-). (Actually,
364 ;; the important aspect is that they are subrs that don't evaluate all of
365 ;; their args.)
366 ;;
367 (let ((fn (car-safe form))
368 tmp)
369 (cond ((not (consp form))
370 (if (not (and for-effect
371 (or byte-compile-delete-errors
372 (not (symbolp form))
373 (eq form t))))
374 form))
375 ((eq fn 'quote)
376 (if (cdr (cdr form))
78ecf55a 377 (byte-compile-warn "Malformed quote form: `%s'"
1c393159
JB
378 (prin1-to-string form)))
379 ;; map (quote nil) to nil to simplify optimizer logic.
380 ;; map quoted constants to nil if for-effect (just because).
381 (and (nth 1 form)
382 (not for-effect)
383 form))
96d699f3 384 ((or (byte-code-function-p fn)
1c393159
JB
385 (eq 'lambda (car-safe fn)))
386 (byte-compile-unfold-lambda form))
387 ((memq fn '(let let*))
388 ;; recursively enter the optimizer for the bindings and body
389 ;; of a let or let*. This for depth-firstness: forms that
390 ;; are more deeply nested are optimized first.
391 (cons fn
392 (cons
72d8b544 393 (mapcar (lambda (binding)
1c393159
JB
394 (if (symbolp binding)
395 binding
396 (if (cdr (cdr binding))
78ecf55a 397 (byte-compile-warn "Malformed let binding: `%s'"
1c393159
JB
398 (prin1-to-string binding)))
399 (list (car binding)
400 (byte-optimize-form (nth 1 binding) nil))))
401 (nth 1 form))
402 (byte-optimize-body (cdr (cdr form)) for-effect))))
403 ((eq fn 'cond)
404 (cons fn
72d8b544 405 (mapcar (lambda (clause)
1c393159
JB
406 (if (consp clause)
407 (cons
408 (byte-optimize-form (car clause) nil)
409 (byte-optimize-body (cdr clause) for-effect))
78ecf55a 410 (byte-compile-warn "Malformed cond form: `%s'"
1c393159
JB
411 (prin1-to-string clause))
412 clause))
413 (cdr form))))
414 ((eq fn 'progn)
415 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
416 (if (cdr (cdr form))
417 (progn
418 (setq tmp (byte-optimize-body (cdr form) for-effect))
419 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog1)
422 (if (cdr (cdr form))
423 (cons 'prog1
424 (cons (byte-optimize-form (nth 1 form) for-effect)
425 (byte-optimize-body (cdr (cdr form)) t)))
426 (byte-optimize-form (nth 1 form) for-effect)))
427 ((eq fn 'prog2)
428 (cons 'prog2
429 (cons (byte-optimize-form (nth 1 form) t)
430 (cons (byte-optimize-form (nth 2 form) for-effect)
431 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
432
2754fefa 433 ((memq fn '(save-excursion save-restriction save-current-buffer))
1c393159
JB
434 ;; those subrs which have an implicit progn; it's not quite good
435 ;; enough to treat these like normal function calls.
436 ;; This can turn (save-excursion ...) into (save-excursion) which
437 ;; will be optimized away in the lap-optimize pass.
438 (cons fn (byte-optimize-body (cdr form) for-effect)))
439
440 ((eq fn 'with-output-to-temp-buffer)
441 ;; this is just like the above, except for the first argument.
442 (cons fn
443 (cons
444 (byte-optimize-form (nth 1 form) nil)
445 (byte-optimize-body (cdr (cdr form)) for-effect))))
446
447 ((eq fn 'if)
448 (cons fn
449 (cons (byte-optimize-form (nth 1 form) nil)
450 (cons
451 (byte-optimize-form (nth 2 form) for-effect)
452 (byte-optimize-body (nthcdr 3 form) for-effect)))))
453
454 ((memq fn '(and or)) ; remember, and/or are control structures.
455 ;; take forms off the back until we can't any more.
eb8c3be9 456 ;; In the future it could conceivably be a problem that the
1c393159
JB
457 ;; subexpressions of these forms are optimized in the reverse
458 ;; order, but it's ok for now.
459 (if for-effect
460 (let ((backwards (reverse (cdr form))))
461 (while (and backwards
462 (null (setcar backwards
463 (byte-optimize-form (car backwards)
464 for-effect))))
465 (setq backwards (cdr backwards)))
466 (if (and (cdr form) (null backwards))
467 (byte-compile-log
468 " all subforms of %s called for effect; deleted" form))
469 (and backwards
470 (cons fn (nreverse backwards))))
471 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
472
473 ((eq fn 'interactive)
78ecf55a 474 (byte-compile-warn "Misplaced interactive spec: `%s'"
1c393159
JB
475 (prin1-to-string form))
476 nil)
477
478 ((memq fn '(defun defmacro function
479 condition-case save-window-excursion))
480 ;; These forms are compiled as constants or by breaking out
481 ;; all the subexpressions and compiling them separately.
482 form)
483
484 ((eq fn 'unwind-protect)
485 ;; the "protected" part of an unwind-protect is compiled (and thus
486 ;; optimized) as a top-level form, so don't do it here. But the
487 ;; non-protected part has the same for-effect status as the
488 ;; unwind-protect itself. (The protected part is always for effect,
489 ;; but that isn't handled properly yet.)
490 (cons fn
491 (cons (byte-optimize-form (nth 1 form) for-effect)
492 (cdr (cdr form)))))
493
494 ((eq fn 'catch)
495 ;; the body of a catch is compiled (and thus optimized) as a
496 ;; top-level form, so don't do it here. The tag is never
497 ;; for-effect. The body should have the same for-effect status
498 ;; as the catch form itself, but that isn't handled properly yet.
499 (cons fn
500 (cons (byte-optimize-form (nth 1 form) nil)
501 (cdr (cdr form)))))
502
503 ;; If optimization is on, this is the only place that macros are
504 ;; expanded. If optimization is off, then macroexpansion happens
505 ;; in byte-compile-form. Otherwise, the macros are already expanded
506 ;; by the time that is reached.
507 ((not (eq form
508 (setq form (macroexpand form
509 byte-compile-macro-environment))))
510 (byte-optimize-form form for-effect))
5428ee02
RS
511
512 ;; Support compiler macros as in cl.el.
513 ((and (fboundp 'compiler-macroexpand)
4f493b7c
RS
514 (symbolp (car-safe form))
515 (get (car-safe form) 'cl-compiler-macro)
5428ee02 516 (not (eq form
b8ba68e5 517 (setq form (compiler-macroexpand form)))))
5428ee02 518 (byte-optimize-form form for-effect))
1c393159
JB
519
520 ((not (symbolp fn))
521 (or (eq 'mocklisp (car-safe fn)) ; ha!
78ecf55a 522 (byte-compile-warn "`%s' is a malformed function"
1c393159
JB
523 (prin1-to-string fn)))
524 form)
525
526 ((and for-effect (setq tmp (get fn 'side-effect-free))
527 (or byte-compile-delete-errors
528 (eq tmp 'error-free)
529 (progn
78ecf55a 530 (byte-compile-warn "`%s' called for effect"
1c393159
JB
531 (prin1-to-string form))
532 nil)))
533 (byte-compile-log " %s called for effect; deleted" fn)
534 ;; appending a nil here might not be necessary, but it can't hurt.
535 (byte-optimize-form
536 (cons 'progn (append (cdr form) '(nil))) t))
537
538 (t
539 ;; Otherwise, no args can be considered to be for-effect,
540 ;; even if the called function is for-effect, because we
541 ;; don't know anything about that function.
542 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
543
544
545(defun byte-optimize-form (form &optional for-effect)
546 "The source-level pass of the optimizer."
547 ;;
548 ;; First, optimize all sub-forms of this one.
549 (setq form (byte-optimize-form-code-walker form for-effect))
550 ;;
551 ;; after optimizing all subforms, optimize this form until it doesn't
552 ;; optimize any further. This means that some forms will be passed through
553 ;; the optimizer many times, but that's necessary to make the for-effect
554 ;; processing do as much as possible.
555 ;;
556 (let (opt new)
557 (if (and (consp form)
558 (symbolp (car form))
559 (or (and for-effect
560 ;; we don't have any of these yet, but we might.
561 (setq opt (get (car form) 'byte-for-effect-optimizer)))
562 (setq opt (get (car form) 'byte-optimizer)))
563 (not (eq form (setq new (funcall opt form)))))
564 (progn
565;; (if (equal form new) (error "bogus optimizer -- %s" opt))
566 (byte-compile-log " %s\t==>\t%s" form new)
567 (setq new (byte-optimize-form new for-effect))
568 new)
569 form)))
570
571
572(defun byte-optimize-body (forms all-for-effect)
573 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
574 ;; forms, all but the last of which are optimized with the assumption that
575 ;; they are being called for effect. the last is for-effect as well if
576 ;; all-for-effect is true. returns a new list of forms.
577 (let ((rest forms)
578 (result nil)
579 fe new)
580 (while rest
581 (setq fe (or all-for-effect (cdr rest)))
582 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
583 (if (or new (not fe))
584 (setq result (cons new result)))
585 (setq rest (cdr rest)))
586 (nreverse result)))
587
588\f
589;;; some source-level optimizers
590;;;
591;;; when writing optimizers, be VERY careful that the optimizer returns
592;;; something not EQ to its argument if and ONLY if it has made a change.
593;;; This implies that you cannot simply destructively modify the list;
594;;; you must return something not EQ to it if you make an optimization.
595;;;
596;;; It is now safe to optimize code such that it introduces new bindings.
597
eb8c3be9 598;; I'd like this to be a defsubst, but let's not be self-referential...
1c393159
JB
599(defmacro byte-compile-trueconstp (form)
600 ;; Returns non-nil if FORM is a non-nil constant.
e1f0df62
DL
601 `(cond ((consp ,form) (eq (car ,form) 'quote))
602 ((not (symbolp ,form)))
603 ((eq ,form t))
604 ((keywordp ,form))))
1c393159 605
70e1dad8
RS
606;; If the function is being called with constant numeric args,
607;; evaluate as much as possible at compile-time. This optimizer
608;; assumes that the function is associative, like + or *.
1c393159 609(defun byte-optimize-associative-math (form)
1c393159
JB
610 (let ((args nil)
611 (constants nil)
612 (rest (cdr form)))
613 (while rest
614 (if (numberp (car rest))
615 (setq constants (cons (car rest) constants))
616 (setq args (cons (car rest) args)))
617 (setq rest (cdr rest)))
618 (if (cdr constants)
619 (if args
620 (list (car form)
621 (apply (car form) constants)
622 (if (cdr args)
623 (cons (car form) (nreverse args))
624 (car args)))
625 (apply (car form) constants))
626 form)))
627
70e1dad8 628;; If the function is being called with constant numeric args,
97e6527f
KH
629;; evaluate as much as possible at compile-time. This optimizer
630;; assumes that the function satisfies
631;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
632;; like - and /.
1c393159 633(defun byte-optimize-nonassociative-math (form)
1c393159
JB
634 (if (or (not (numberp (car (cdr form))))
635 (not (numberp (car (cdr (cdr form))))))
636 form
637 (let ((constant (car (cdr form)))
638 (rest (cdr (cdr form))))
639 (while (numberp (car rest))
640 (setq constant (funcall (car form) constant (car rest))
641 rest (cdr rest)))
642 (if rest
643 (cons (car form) (cons constant rest))
644 constant))))
645
646;;(defun byte-optimize-associative-two-args-math (form)
647;; (setq form (byte-optimize-associative-math form))
648;; (if (consp form)
649;; (byte-optimize-two-args-left form)
650;; form))
651
652;;(defun byte-optimize-nonassociative-two-args-math (form)
653;; (setq form (byte-optimize-nonassociative-math form))
654;; (if (consp form)
655;; (byte-optimize-two-args-right form)
656;; form))
657
97e6527f 658(defun byte-optimize-approx-equal (x y)
1fa68f21 659 (<= (* (abs (- x y)) 100) (abs (+ x y))))
97e6527f
KH
660
661;; Collect all the constants from FORM, after the STARTth arg,
662;; and apply FUN to them to make one argument at the end.
663;; For functions that can handle floats, that optimization
664;; can be incorrect because reordering can cause an overflow
665;; that would otherwise be avoided by encountering an arg that is a float.
666;; We avoid this problem by (1) not moving float constants and
667;; (2) not moving anything if it would cause an overflow.
1c393159
JB
668(defun byte-optimize-delay-constants-math (form start fun)
669 ;; Merge all FORM's constants from number START, call FUN on them
670 ;; and put the result at the end.
97e6527f
KH
671 (let ((rest (nthcdr (1- start) form))
672 (orig form)
673 ;; t means we must check for overflow.
674 (overflow (memq fun '(+ *))))
1c393159 675 (while (cdr (setq rest (cdr rest)))
97e6527f 676 (if (integerp (car rest))
1c393159
JB
677 (let (constants)
678 (setq form (copy-sequence form)
679 rest (nthcdr (1- start) form))
680 (while (setq rest (cdr rest))
97e6527f 681 (cond ((integerp (car rest))
1c393159
JB
682 (setq constants (cons (car rest) constants))
683 (setcar rest nil))))
97e6527f
KH
684 ;; If necessary, check now for overflow
685 ;; that might be caused by reordering.
686 (if (and overflow
687 ;; We have overflow if the result of doing the arithmetic
688 ;; on floats is not even close to the result
689 ;; of doing it on integers.
690 (not (byte-optimize-approx-equal
691 (apply fun (mapcar 'float constants))
692 (float (apply fun constants)))))
693 (setq form orig)
694 (setq form (nconc (delq nil form)
695 (list (apply fun (nreverse constants)))))))))
1c393159
JB
696 form))
697
698(defun byte-optimize-plus (form)
699 (setq form (byte-optimize-delay-constants-math form 1 '+))
700 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
701 ;;(setq form (byte-optimize-associative-two-args-math form))
702 (cond ((null (cdr form))
703 (condition-case ()
704 (eval form)
705 (error form)))
3315a6a3
RS
706;;; It is not safe to delete the function entirely
707;;; (actually, it would be safe if we know the sole arg
708;;; is not a marker).
709;; ((null (cdr (cdr form))) (nth 1 form))
ea9d6371
RS
710 ((null (cddr form))
711 (if (numberp (nth 1 form))
712 (nth 1 form)
713 form))
1fa68f21
RS
714 ((and (null (nthcdr 3 form))
715 (or (memq (nth 1 form) '(1 -1))
716 (memq (nth 2 form) '(1 -1))))
79d137ff 717 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
1fa68f21
RS
718 (let ((integer
719 (if (memq (nth 1 form) '(1 -1))
720 (nth 1 form)
721 (nth 2 form)))
722 (other
723 (if (memq (nth 1 form) '(1 -1))
724 (nth 2 form)
725 (nth 1 form))))
726 (list (if (eq integer 1) '1+ '1-)
727 other)))
1c393159
JB
728 (t form)))
729
730(defun byte-optimize-minus (form)
731 ;; Put constants at the end, except the last constant.
732 (setq form (byte-optimize-delay-constants-math form 2 '+))
733 ;; Now only first and last element can be a number.
734 (let ((last (car (reverse (nthcdr 3 form)))))
735 (cond ((eq 0 last)
736 ;; (- x y ... 0) --> (- x y ...)
737 (setq form (copy-sequence form))
738 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
1fa68f21
RS
739 ((equal (nthcdr 2 form) '(1))
740 (setq form (list '1- (nth 1 form))))
741 ((equal (nthcdr 2 form) '(-1))
742 (setq form (list '1+ (nth 1 form))))
1c393159
JB
743 ;; If form is (- CONST foo... CONST), merge first and last.
744 ((and (numberp (nth 1 form))
745 (numberp last))
746 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
747 (delq last (copy-sequence (nthcdr 3 form))))))))
3315a6a3
RS
748;;; It is not safe to delete the function entirely
749;;; (actually, it would be safe if we know the sole arg
750;;; is not a marker).
751;;; (if (eq (nth 2 form) 0)
752;;; (nth 1 form) ; (- x 0) --> x
1c393159
JB
753 (byte-optimize-predicate
754 (if (and (null (cdr (cdr (cdr form))))
755 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
756 (cons (car form) (cdr (cdr form)))
3315a6a3
RS
757 form))
758;;; )
759 )
1c393159
JB
760
761(defun byte-optimize-multiply (form)
762 (setq form (byte-optimize-delay-constants-math form 1 '*))
763 ;; If there is a constant in FORM, it is now the last element.
764 (cond ((null (cdr form)) 1)
3315a6a3
RS
765;;; It is not safe to delete the function entirely
766;;; (actually, it would be safe if we know the sole arg
767;;; is not a marker or if it appears in other arithmetic).
768;;; ((null (cdr (cdr form))) (nth 1 form))
1c393159 769 ((let ((last (car (reverse form))))
97e6527f 770 (cond ((eq 0 last) (cons 'progn (cdr form)))
1c393159
JB
771 ((eq 1 last) (delq 1 (copy-sequence form)))
772 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
773 ((and (eq 2 last)
774 (memq t (mapcar 'symbolp (cdr form))))
775 (prog1 (setq form (delq 2 (copy-sequence form)))
776 (while (not (symbolp (car (setq form (cdr form))))))
777 (setcar form (list '+ (car form) (car form)))))
778 (form))))))
779
780(defsubst byte-compile-butlast (form)
781 (nreverse (cdr (reverse form))))
782
783(defun byte-optimize-divide (form)
784 (setq form (byte-optimize-delay-constants-math form 2 '*))
785 (let ((last (car (reverse (cdr (cdr form))))))
786 (if (numberp last)
199dd758 787 (cond ((= (length form) 3)
97e6527f
KH
788 (if (and (numberp (nth 1 form))
789 (not (zerop last))
790 (condition-case nil
791 (/ (nth 1 form) last)
792 (error nil)))
793 (setq form (list 'progn (/ (nth 1 form) last)))))
199dd758 794 ((= last 1)
1c393159
JB
795 (setq form (byte-compile-butlast form)))
796 ((numberp (nth 1 form))
797 (setq form (cons (car form)
798 (cons (/ (nth 1 form) last)
799 (byte-compile-butlast (cdr (cdr form)))))
800 last nil))))
3315a6a3
RS
801 (cond
802;;; ((null (cdr (cdr form)))
803;;; (nth 1 form))
1c393159
JB
804 ((eq (nth 1 form) 0)
805 (append '(progn) (cdr (cdr form)) '(0)))
806 ((eq last -1)
807 (list '- (if (nthcdr 3 form)
808 (byte-compile-butlast form)
809 (nth 1 form))))
810 (form))))
811
812(defun byte-optimize-logmumble (form)
813 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
814 (byte-optimize-predicate
815 (cond ((memq 0 form)
816 (setq form (if (eq (car form) 'logand)
817 (cons 'progn (cdr form))
818 (delq 0 (copy-sequence form)))))
819 ((and (eq (car-safe form) 'logior)
820 (memq -1 form))
97e6527f 821 (cons 'progn (cdr form)))
1c393159
JB
822 (form))))
823
824
825(defun byte-optimize-binary-predicate (form)
826 (if (byte-compile-constp (nth 1 form))
827 (if (byte-compile-constp (nth 2 form))
828 (condition-case ()
829 (list 'quote (eval form))
830 (error form))
831 ;; This can enable some lapcode optimizations.
832 (list (car form) (nth 2 form) (nth 1 form)))
833 form))
834
835(defun byte-optimize-predicate (form)
836 (let ((ok t)
837 (rest (cdr form)))
838 (while (and rest ok)
839 (setq ok (byte-compile-constp (car rest))
840 rest (cdr rest)))
841 (if ok
842 (condition-case ()
843 (list 'quote (eval form))
844 (error form))
845 form)))
846
847(defun byte-optimize-identity (form)
848 (if (and (cdr form) (null (cdr (cdr form))))
849 (nth 1 form)
78ecf55a 850 (byte-compile-warn "Identity called with %d arg%s, but requires 1"
1c393159
JB
851 (length (cdr form))
852 (if (= 1 (length (cdr form))) "" "s"))
853 form))
854
855(put 'identity 'byte-optimizer 'byte-optimize-identity)
856
857(put '+ 'byte-optimizer 'byte-optimize-plus)
858(put '* 'byte-optimizer 'byte-optimize-multiply)
859(put '- 'byte-optimizer 'byte-optimize-minus)
860(put '/ 'byte-optimizer 'byte-optimize-divide)
861(put 'max 'byte-optimizer 'byte-optimize-associative-math)
862(put 'min 'byte-optimizer 'byte-optimize-associative-math)
863
864(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
865(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
1c393159
JB
866(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
867(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
868(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
869
870(put '< 'byte-optimizer 'byte-optimize-predicate)
871(put '> 'byte-optimizer 'byte-optimize-predicate)
872(put '<= 'byte-optimizer 'byte-optimize-predicate)
873(put '>= 'byte-optimizer 'byte-optimize-predicate)
874(put '1+ 'byte-optimizer 'byte-optimize-predicate)
875(put '1- 'byte-optimizer 'byte-optimize-predicate)
876(put 'not 'byte-optimizer 'byte-optimize-predicate)
877(put 'null 'byte-optimizer 'byte-optimize-predicate)
878(put 'memq 'byte-optimizer 'byte-optimize-predicate)
879(put 'consp 'byte-optimizer 'byte-optimize-predicate)
880(put 'listp 'byte-optimizer 'byte-optimize-predicate)
881(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
882(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
883(put 'string< 'byte-optimizer 'byte-optimize-predicate)
884(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
885
886(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
887(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
888(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
889(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
890
891(put 'car 'byte-optimizer 'byte-optimize-predicate)
892(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
893(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
894(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
895
896
897;; I'm not convinced that this is necessary. Doesn't the optimizer loop
898;; take care of this? - Jamie
899;; I think this may some times be necessary to reduce ie (quote 5) to 5,
eb8c3be9 900;; so arithmetic optimizers recognize the numeric constant. - Hallvard
1c393159
JB
901(put 'quote 'byte-optimizer 'byte-optimize-quote)
902(defun byte-optimize-quote (form)
903 (if (or (consp (nth 1 form))
904 (and (symbolp (nth 1 form))
e1f0df62 905 (not (byte-compile-const-symbol-p form))))
1c393159
JB
906 form
907 (nth 1 form)))
908
909(defun byte-optimize-zerop (form)
910 (cond ((numberp (nth 1 form))
911 (eval form))
912 (byte-compile-delete-errors
913 (list '= (nth 1 form) 0))
914 (form)))
915
916(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
917
918(defun byte-optimize-and (form)
919 ;; Simplify if less than 2 args.
920 ;; if there is a literal nil in the args to `and', throw it and following
921 ;; forms away, and surround the `and' with (progn ... nil).
922 (cond ((null (cdr form)))
923 ((memq nil form)
924 (list 'progn
925 (byte-optimize-and
926 (prog1 (setq form (copy-sequence form))
927 (while (nth 1 form)
928 (setq form (cdr form)))
929 (setcdr form nil)))
930 nil))
931 ((null (cdr (cdr form)))
932 (nth 1 form))
933 ((byte-optimize-predicate form))))
934
935(defun byte-optimize-or (form)
936 ;; Throw away nil's, and simplify if less than 2 args.
937 ;; If there is a literal non-nil constant in the args to `or', throw away all
938 ;; following forms.
939 (if (memq nil form)
940 (setq form (delq nil (copy-sequence form))))
941 (let ((rest form))
942 (while (cdr (setq rest (cdr rest)))
943 (if (byte-compile-trueconstp (car rest))
944 (setq form (copy-sequence form)
945 rest (setcdr (memq (car rest) form) nil))))
946 (if (cdr (cdr form))
947 (byte-optimize-predicate form)
948 (nth 1 form))))
949
950(defun byte-optimize-cond (form)
951 ;; if any clauses have a literal nil as their test, throw them away.
952 ;; if any clause has a literal non-nil constant as its test, throw
953 ;; away all following clauses.
954 (let (rest)
955 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
956 (while (setq rest (assq nil (cdr form)))
957 (setq form (delq rest (copy-sequence form))))
958 (if (memq nil (cdr form))
959 (setq form (delq nil (copy-sequence form))))
960 (setq rest form)
961 (while (setq rest (cdr rest))
962 (cond ((byte-compile-trueconstp (car-safe (car rest)))
963 (cond ((eq rest (cdr form))
964 (setq form
965 (if (cdr (car rest))
966 (if (cdr (cdr (car rest)))
967 (cons 'progn (cdr (car rest)))
968 (nth 1 (car rest)))
969 (car (car rest)))))
970 ((cdr rest)
971 (setq form (copy-sequence form))
972 (setcdr (memq (car rest) form) nil)))
973 (setq rest nil)))))
974 ;;
975 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
976 (if (eq 'cond (car-safe form))
977 (let ((clauses (cdr form)))
978 (if (and (consp (car clauses))
979 (null (cdr (car clauses))))
980 (list 'or (car (car clauses))
981 (byte-optimize-cond
982 (cons (car form) (cdr (cdr form)))))
983 form))
984 form))
985
986(defun byte-optimize-if (form)
987 ;; (if <true-constant> <then> <else...>) ==> <then>
988 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
989 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
990 ;; (if <test> <then> nil) ==> (if <test> <then>)
991 (let ((clause (nth 1 form)))
992 (cond ((byte-compile-trueconstp clause)
993 (nth 2 form))
994 ((null clause)
995 (if (nthcdr 4 form)
996 (cons 'progn (nthcdr 3 form))
997 (nth 3 form)))
998 ((nth 2 form)
999 (if (equal '(nil) (nthcdr 3 form))
1000 (list 'if clause (nth 2 form))
1001 form))
1002 ((or (nth 3 form) (nthcdr 4 form))
97e6527f
KH
1003 (list 'if
1004 ;; Don't make a double negative;
1005 ;; instead, take away the one that is there.
1006 (if (and (consp clause) (memq (car clause) '(not null))
1007 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1008 (nth 1 clause)
1009 (list 'not clause))
1c393159
JB
1010 (if (nthcdr 4 form)
1011 (cons 'progn (nthcdr 3 form))
1012 (nth 3 form))))
1013 (t
1014 (list 'progn clause nil)))))
1015
1016(defun byte-optimize-while (form)
1017 (if (nth 1 form)
1018 form))
1019
1020(put 'and 'byte-optimizer 'byte-optimize-and)
1021(put 'or 'byte-optimizer 'byte-optimize-or)
1022(put 'cond 'byte-optimizer 'byte-optimize-cond)
1023(put 'if 'byte-optimizer 'byte-optimize-if)
1024(put 'while 'byte-optimizer 'byte-optimize-while)
1025
1026;; byte-compile-negation-optimizer lives in bytecomp.el
1027(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1028(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1029(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1030
1031
1032(defun byte-optimize-funcall (form)
72d8b544
SM
1033 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1034 ;; (funcall foo ...) ==> (foo ...)
1c393159
JB
1035 (let ((fn (nth 1 form)))
1036 (if (memq (car-safe fn) '(quote function))
1037 (cons (nth 1 fn) (cdr (cdr form)))
1038 form)))
1039
1040(defun byte-optimize-apply (form)
1041 ;; If the last arg is a literal constant, turn this into a funcall.
1042 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1043 (let ((fn (nth 1 form))
1044 (last (nth (1- (length form)) form))) ; I think this really is fastest
1045 (or (if (or (null last)
1046 (eq (car-safe last) 'quote))
1047 (if (listp (nth 1 last))
1048 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
7e1dae73 1049 (nconc (list 'funcall fn) butlast
72d8b544 1050 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1c393159 1051 (byte-compile-warn
78ecf55a 1052 "Last arg to apply can't be a literal atom: `%s'"
1c393159
JB
1053 (prin1-to-string last))
1054 nil))
1055 form)))
1056
1057(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1058(put 'apply 'byte-optimizer 'byte-optimize-apply)
1059
1060
1061(put 'let 'byte-optimizer 'byte-optimize-letX)
1062(put 'let* 'byte-optimizer 'byte-optimize-letX)
1063(defun byte-optimize-letX (form)
1064 (cond ((null (nth 1 form))
1065 ;; No bindings
1066 (cons 'progn (cdr (cdr form))))
1067 ((or (nth 2 form) (nthcdr 3 form))
1068 form)
1069 ;; The body is nil
1070 ((eq (car form) 'let)
5d265171
RS
1071 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1072 '(nil)))
1c393159
JB
1073 (t
1074 (let ((binds (reverse (nth 1 form))))
1075 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1076
1077
1078(put 'nth 'byte-optimizer 'byte-optimize-nth)
1079(defun byte-optimize-nth (form)
97e6527f 1080 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1c393159
JB
1081 (list 'car (if (zerop (nth 1 form))
1082 (nth 2 form)
1083 (list 'cdr (nth 2 form))))
1084 (byte-optimize-predicate form)))
1085
1086(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1087(defun byte-optimize-nthcdr (form)
97e6527f
KH
1088 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1089 (byte-optimize-predicate form)
1090 (let ((count (nth 1 form)))
1c393159 1091 (setq form (nth 2 form))
eec4c3ca 1092 (while (>= (setq count (1- count)) 0)
1c393159
JB
1093 (setq form (list 'cdr form)))
1094 form)))
79d137ff
KH
1095
1096(put 'concat 'byte-optimizer 'byte-optimize-concat)
1097(defun byte-optimize-concat (form)
1098 (let ((args (cdr form))
1099 (constant t))
1100 (while (and args constant)
1101 (or (byte-compile-constp (car args))
1102 (setq constant nil))
1103 (setq args (cdr args)))
1104 (if constant
1105 (eval form)
1106 form)))
f34bba69
DL
1107
1108;; Avoid having to write forward-... with a negative arg for speed.
1109(put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1110(defun byte-optimize-backward-char (form)
1111 (cond ((and (= 2 (safe-length form))
1112 (numberp (nth 1 form)))
1113 (list 'forward-char (eval (- (nth 1 form)))))
1114 ((= 1 (safe-length form))
1115 '(forward-char -1))
1116 (t form)))
1117
1118(put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1119(defun byte-optimize-backward-word (form)
1120 (cond ((and (= 2 (safe-length form))
1121 (numberp (nth 1 form)))
1122 (list 'forward-word (eval (- (nth 1 form)))))
1123 ((= 1 (safe-length form))
1124 '(forward-char -1))
1125 (t form)))
e1f0df62
DL
1126
1127(put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1128(defun byte-optimize-char-before (form)
1129 (cond ((= 2 (safe-length form))
1130 `(char-after (1- ,(nth 1 form))))
1131 ((= 1 (safe-length form))
1132 '(char-after (1- (point))))
1133 (t form)))
1c393159
JB
1134\f
1135;;; enumerating those functions which need not be called if the returned
1136;;; value is not used. That is, something like
1137;;; (progn (list (something-with-side-effects) (yow))
1138;;; (foo))
1139;;; may safely be turned into
1140;;; (progn (progn (something-with-side-effects) (yow))
1141;;; (foo))
1142;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1143
1144;;; I wonder if I missed any :-\)
1145(let ((side-effect-free-fns
c20a77cc
RS
1146 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1147 assoc assq
1148 boundp buffer-file-name buffer-local-variables buffer-modified-p
1149 buffer-substring
049a65a3
DL
1150 capitalize car-less-than-car car cdr ceiling char-after char-before
1151 concat coordinates-in-window-p
f34bba69 1152 char-width copy-marker cos count-lines
c20a77cc
RS
1153 default-boundp default-value documentation downcase
1154 elt exp expt fboundp featurep
1c393159
JB
1155 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1156 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
f34bba69 1157 float floor format frame-visible-p
2412aadb
DL
1158 get gethash get-buffer get-buffer-window getenv get-file-buffer
1159 hash-table-count
c20a77cc 1160 int-to-string
f34bba69 1161 keymap-parent
e1f0df62
DL
1162 length local-variable-if-set-p local-variable-p log log10 logand
1163 logb logior lognot logxor lsh
c20a77cc
RS
1164 marker-buffer max member memq min mod
1165 next-window nth nthcdr number-to-string
049a65a3 1166 parse-colon-path prefix-numeric-value previous-window propertize
c20a77cc 1167 radians-to-degrees rassq regexp-quote reverse round
049a65a3 1168 sin sqrt string string< string= string-equal string-lessp string-to-char
f34bba69
DL
1169 string-to-int string-to-number substring symbol-function symbol-plist
1170 symbol-value
1171 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
c20a77cc
RS
1172 window-buffer window-dedicated-p window-edges window-height
1173 window-hscroll window-minibuffer-p window-width
1c393159 1174 zerop))
1c393159 1175 (side-effect-and-error-free-fns
c20a77cc
RS
1176 '(arrayp atom
1177 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1178 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
f34bba69
DL
1179 current-buffer current-global-map current-indentation
1180 current-local-map current-minor-mode-maps
049a65a3
DL
1181 dot dot-marker eobp eolp eq equal eventp
1182 floatp following-char framep
c20a77cc 1183 get-largest-window get-lru-window
2412aadb 1184 hash-table-p
c20a77cc
RS
1185 identity ignore integerp integer-or-marker-p interactive-p
1186 invocation-directory invocation-name
f34bba69
DL
1187 keymapp
1188 line-beginning-position line-end-position list listp
c20a77cc
RS
1189 make-marker mark mark-marker markerp memory-limit minibuffer-window
1190 mouse-movement-p
1191 natnump nlistp not null number-or-marker-p numberp
1192 one-window-p overlayp
049a65a3 1193 point point-marker point-min point-max preceding-char processp
f34bba69
DL
1194 recent-keys recursion-depth
1195 selected-frame selected-window sequencep stringp subrp symbolp
1196 standard-case-table standard-syntax-table syntax-table-p
1197 this-command-keys this-command-keys-vector this-single-command-keys
1198 this-single-command-raw-keys
c20a77cc
RS
1199 user-full-name user-login-name user-original-login-name
1200 user-real-login-name user-real-uid user-uid
f34bba69 1201 vector vectorp visible-frame-list
c20a77cc 1202 window-configuration-p window-live-p windowp)))
1c393159
JB
1203 (while side-effect-free-fns
1204 (put (car side-effect-free-fns) 'side-effect-free t)
1205 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1206 (while side-effect-and-error-free-fns
1207 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1208 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1209 nil)
1210
1211
1212(defun byte-compile-splice-in-already-compiled-code (form)
1213 ;; form is (byte-code "..." [...] n)
1214 (if (not (memq byte-optimize '(t lap)))
1215 (byte-compile-normal-call form)
1216 (byte-inline-lapcode
1217 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1218 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1219 byte-compile-maxdepth))
1220 (setq byte-compile-depth (1+ byte-compile-depth))))
1221
1222(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1223
1224\f
1225(defconst byte-constref-ops
1226 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1227
1228;;; This function extracts the bitfields from variable-length opcodes.
1229;;; Originally defined in disass.el (which no longer uses it.)
1230
1231(defun disassemble-offset ()
1232 "Don't call this!"
1233 ;; fetch and return the offset for the current opcode.
1234 ;; return NIL if this opcode has no offset
1235 ;; OP, PTR and BYTES are used and set dynamically
1236 (defvar op)
1237 (defvar ptr)
1238 (defvar bytes)
1239 (cond ((< op byte-nth)
1240 (let ((tem (logand op 7)))
1241 (setq op (logand op 248))
1242 (cond ((eq tem 6)
1243 (setq ptr (1+ ptr)) ;offset in next byte
1244 (aref bytes ptr))
1245 ((eq tem 7)
1246 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1247 (+ (aref bytes ptr)
1248 (progn (setq ptr (1+ ptr))
1249 (lsh (aref bytes ptr) 8))))
1250 (t tem)))) ;offset was in opcode
1251 ((>= op byte-constant)
1252 (prog1 (- op byte-constant) ;offset in opcode
1253 (setq op byte-constant)))
1254 ((and (>= op byte-constant2)
1255 (<= op byte-goto-if-not-nil-else-pop))
1256 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1257 (+ (aref bytes ptr)
1258 (progn (setq ptr (1+ ptr))
1259 (lsh (aref bytes ptr) 8))))
3eac9910 1260 ((and (>= op byte-listN)
1c393159
JB
1261 (<= op byte-insertN))
1262 (setq ptr (1+ ptr)) ;offset in next byte
1263 (aref bytes ptr))))
1264
1265
1266;;; This de-compiler is used for inline expansion of compiled functions,
1267;;; and by the disassembler.
1268;;;
41cf13b9
RS
1269;;; This list contains numbers, which are pc values,
1270;;; before each instruction.
1c393159 1271(defun byte-decompile-bytecode (bytes constvec)
eb8c3be9 1272 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1c393159
JB
1273 (let ((byte-compile-constants nil)
1274 (byte-compile-variables nil)
1275 (byte-compile-tag-number 0))
1276 (byte-decompile-bytecode-1 bytes constvec)))
1277
70e1dad8
RS
1278;; As byte-decompile-bytecode, but updates
1279;; byte-compile-{constants, variables, tag-number}.
cffcfe66 1280;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
70e1dad8 1281;; with `goto's destined for the end of the code.
cffcfe66
RS
1282;; That is for use by the compiler.
1283;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1284;; In that case, we put a pc value into the list
1285;; before each insn (or its label).
1286(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1c393159
JB
1287 (let ((length (length bytes))
1288 (ptr 0) optr tag tags op offset
1289 lap tmp
1290 endtag
1291 (retcount 0))
1292 (while (not (= ptr length))
cffcfe66
RS
1293 (or make-spliceable
1294 (setq lap (cons ptr lap)))
1c393159
JB
1295 (setq op (aref bytes ptr)
1296 optr ptr
1297 offset (disassemble-offset)) ; this does dynamic-scope magic
1298 (setq op (aref byte-code-vector op))
3eac9910 1299 (cond ((memq op byte-goto-ops)
1c393159
JB
1300 ;; it's a pc
1301 (setq offset
1302 (cdr (or (assq offset tags)
1303 (car (setq tags
1304 (cons (cons offset
1305 (byte-compile-make-tag))
1306 tags)))))))
1307 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1308 ((memq op byte-constref-ops)))
6ebe9f82
RS
1309 (setq tmp (if (>= offset (length constvec))
1310 (list 'out-of-range offset)
1311 (aref constvec offset))
1c393159
JB
1312 offset (if (eq op 'byte-constant)
1313 (byte-compile-get-constant tmp)
1314 (or (assq tmp byte-compile-variables)
1315 (car (setq byte-compile-variables
1316 (cons (list tmp)
1317 byte-compile-variables)))))))
cffcfe66 1318 ((and make-spliceable
1c393159
JB
1319 (eq op 'byte-return))
1320 (if (= ptr (1- length))
1321 (setq op nil)
1322 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1323 op 'byte-goto))))
1324 ;; lap = ( [ (pc . (op . arg)) ]* )
1325 (setq lap (cons (cons optr (cons op (or offset 0)))
1326 lap))
1327 (setq ptr (1+ ptr)))
1328 ;; take off the dummy nil op that we replaced a trailing "return" with.
1329 (let ((rest lap))
1330 (while rest
41cf13b9
RS
1331 (cond ((numberp (car rest)))
1332 ((setq tmp (assq (car (car rest)) tags))
1c393159
JB
1333 ;; this addr is jumped to
1334 (setcdr rest (cons (cons nil (cdr tmp))
1335 (cdr rest)))
1336 (setq tags (delq tmp tags))
1337 (setq rest (cdr rest))))
1338 (setq rest (cdr rest))))
1339 (if tags (error "optimizer error: missed tags %s" tags))
1340 (if (null (car (cdr (car lap))))
1341 (setq lap (cdr lap)))
1342 (if endtag
1343 (setq lap (cons (cons nil endtag) lap)))
1344 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
41cf13b9
RS
1345 (mapcar (function (lambda (elt)
1346 (if (numberp elt)
1347 elt
1348 (cdr elt))))
1349 (nreverse lap))))
1c393159
JB
1350
1351\f
1352;;; peephole optimizer
1353
1354(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1355
1356(defconst byte-conditional-ops
1357 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1358 byte-goto-if-not-nil-else-pop))
1359
1360(defconst byte-after-unbind-ops
1361 '(byte-constant byte-dup
1362 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
43fd1680 1363 byte-eq byte-not
1c393159 1364 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
cb88b56e
RS
1365 byte-interactive-p)
1366 ;; How about other side-effect-free-ops? Is it safe to move an
1367 ;; error invocation (such as from nth) out of an unwind-protect?
43fd1680
RS
1368 ;; No, it is not, because the unwind-protect forms can alter
1369 ;; the inside of the object to which nth would apply.
1370 ;; For the same reason, byte-equal was deleted from this list.
cb88b56e 1371 "Byte-codes that can be moved past an unbind.")
1c393159
JB
1372
1373(defconst byte-compile-side-effect-and-error-free-ops
1374 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1375 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1376 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1377 byte-point-min byte-following-char byte-preceding-char
1378 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1379 byte-current-buffer byte-interactive-p))
1380
1381(defconst byte-compile-side-effect-free-ops
1382 (nconc
1383 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1384 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1385 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1386 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1387 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1388 byte-member byte-assq byte-quo byte-rem)
1389 byte-compile-side-effect-and-error-free-ops))
1390
8545ff2f 1391;;; This crock is because of the way DEFVAR_BOOL variables work.
1c393159
JB
1392;;; Consider the code
1393;;;
1394;;; (defun foo (flag)
1395;;; (let ((old-pop-ups pop-up-windows)
1396;;; (pop-up-windows flag))
1397;;; (cond ((not (eq pop-up-windows old-pop-ups))
1398;;; (setq old-pop-ups pop-up-windows)
1399;;; ...))))
1400;;;
1401;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1402;;; something else. But if we optimize
1403;;;
1404;;; varref flag
1405;;; varbind pop-up-windows
1406;;; varref pop-up-windows
1407;;; not
1408;;; to
1409;;; varref flag
1410;;; dup
1411;;; varbind pop-up-windows
1412;;; not
1413;;;
1414;;; we break the program, because it will appear that pop-up-windows and
1415;;; old-pop-ups are not EQ when really they are. So we have to know what
1416;;; the BOOL variables are, and not perform this optimization on them.
e5b69caa
DL
1417
1418;;; The variable `byte-boolean-vars' is now primitive and updated
1419;;; automatically by DEFVAR_BOOL.
1c393159
JB
1420
1421(defun byte-optimize-lapcode (lap &optional for-effect)
1422 "Simple peephole optimizer. LAP is both modified and returned."
944425c0
DL
1423 (let (lap0
1424 lap1
1425 lap2
1c393159
JB
1426 (keep-going 'first-time)
1427 (add-depth 0)
1428 rest tmp tmp2 tmp3
1429 (side-effect-free (if byte-compile-delete-errors
1430 byte-compile-side-effect-free-ops
1431 byte-compile-side-effect-and-error-free-ops)))
1432 (while keep-going
1433 (or (eq keep-going 'first-time)
1434 (byte-compile-log-lap " ---- next pass"))
1435 (setq rest lap
1436 keep-going nil)
1437 (while rest
1438 (setq lap0 (car rest)
1439 lap1 (nth 1 rest)
1440 lap2 (nth 2 rest))
1441
1442 ;; You may notice that sequences like "dup varset discard" are
1443 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1444 ;; You may be tempted to change this; resist that temptation.
1445 (cond ;;
1446 ;; <side-effect-free> pop --> <deleted>
1447 ;; ...including:
1448 ;; const-X pop --> <deleted>
1449 ;; varref-X pop --> <deleted>
1450 ;; dup pop --> <deleted>
1451 ;;
1452 ((and (eq 'byte-discard (car lap1))
1453 (memq (car lap0) side-effect-free))
1454 (setq keep-going t)
1455 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1456 (setq rest (cdr rest))
1457 (cond ((= tmp 1)
1458 (byte-compile-log-lap
1459 " %s discard\t-->\t<deleted>" lap0)
1460 (setq lap (delq lap0 (delq lap1 lap))))
1461 ((= tmp 0)
1462 (byte-compile-log-lap
1463 " %s discard\t-->\t<deleted> discard" lap0)
1464 (setq lap (delq lap0 lap)))
1465 ((= tmp -1)
1466 (byte-compile-log-lap
1467 " %s discard\t-->\tdiscard discard" lap0)
1468 (setcar lap0 'byte-discard)
1469 (setcdr lap0 0))
1470 ((error "Optimizer error: too much on the stack"))))
1471 ;;
1472 ;; goto*-X X: --> X:
1473 ;;
1474 ((and (memq (car lap0) byte-goto-ops)
1475 (eq (cdr lap0) lap1))
1476 (cond ((eq (car lap0) 'byte-goto)
1477 (setq lap (delq lap0 lap))
1478 (setq tmp "<deleted>"))
1479 ((memq (car lap0) byte-goto-always-pop-ops)
1480 (setcar lap0 (setq tmp 'byte-discard))
1481 (setcdr lap0 0))
1482 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1483 (and (memq byte-optimize-log '(t byte))
1484 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1485 (nth 1 lap1) (nth 1 lap1)
1486 tmp (nth 1 lap1)))
1487 (setq keep-going t))
1488 ;;
1489 ;; varset-X varref-X --> dup varset-X
1490 ;; varbind-X varref-X --> dup varbind-X
1491 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1492 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1493 ;; The latter two can enable other optimizations.
1494 ;;
1495 ((and (eq 'byte-varref (car lap2))
1496 (eq (cdr lap1) (cdr lap2))
1497 (memq (car lap1) '(byte-varset byte-varbind)))
1498 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1499 (not (eq (car lap0) 'byte-constant)))
1500 nil
1501 (setq keep-going t)
1502 (if (memq (car lap0) '(byte-constant byte-dup))
1503 (progn
1504 (setq tmp (if (or (not tmp)
e1f0df62
DL
1505 (byte-compile-const-symbol-p
1506 (car (cdr lap0))))
1c393159
JB
1507 (cdr lap0)
1508 (byte-compile-get-constant t)))
1509 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1510 lap0 lap1 lap2 lap0 lap1
1511 (cons (car lap0) tmp))
1512 (setcar lap2 (car lap0))
1513 (setcdr lap2 tmp))
1514 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1515 (setcar lap2 (car lap1))
1516 (setcar lap1 'byte-dup)
1517 (setcdr lap1 0)
1518 ;; The stack depth gets locally increased, so we will
1519 ;; increase maxdepth in case depth = maxdepth here.
1520 ;; This can cause the third argument to byte-code to
1521 ;; be larger than necessary.
1522 (setq add-depth 1))))
1523 ;;
1524 ;; dup varset-X discard --> varset-X
1525 ;; dup varbind-X discard --> varbind-X
1526 ;; (the varbind variant can emerge from other optimizations)
1527 ;;
1528 ((and (eq 'byte-dup (car lap0))
1529 (eq 'byte-discard (car lap2))
1530 (memq (car lap1) '(byte-varset byte-varbind)))
1531 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1532 (setq keep-going t
1533 rest (cdr rest))
1534 (setq lap (delq lap0 (delq lap2 lap))))
1535 ;;
1536 ;; not goto-X-if-nil --> goto-X-if-non-nil
1537 ;; not goto-X-if-non-nil --> goto-X-if-nil
1538 ;;
1539 ;; it is wrong to do the same thing for the -else-pop variants.
1540 ;;
1541 ((and (eq 'byte-not (car lap0))
1542 (or (eq 'byte-goto-if-nil (car lap1))
1543 (eq 'byte-goto-if-not-nil (car lap1))))
1544 (byte-compile-log-lap " not %s\t-->\t%s"
1545 lap1
1546 (cons
1547 (if (eq (car lap1) 'byte-goto-if-nil)
1548 'byte-goto-if-not-nil
1549 'byte-goto-if-nil)
1550 (cdr lap1)))
1551 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1552 'byte-goto-if-not-nil
1553 'byte-goto-if-nil))
1554 (setq lap (delq lap0 lap))
1555 (setq keep-going t))
1556 ;;
1557 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1558 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1559 ;;
1560 ;; it is wrong to do the same thing for the -else-pop variants.
1561 ;;
1562 ((and (or (eq 'byte-goto-if-nil (car lap0))
1563 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1564 (eq 'byte-goto (car lap1)) ; gotoY
1565 (eq (cdr lap0) lap2)) ; TAG X
1566 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1567 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1568 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1569 lap0 lap1 lap2
1570 (cons inverse (cdr lap1)) lap2)
1571 (setq lap (delq lap0 lap))
1572 (setcar lap1 inverse)
1573 (setq keep-going t)))
1574 ;;
1575 ;; const goto-if-* --> whatever
1576 ;;
1577 ((and (eq 'byte-constant (car lap0))
1578 (memq (car lap1) byte-conditional-ops))
1579 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1580 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1581 (car (cdr lap0))
1582 (not (car (cdr lap0))))
1583 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1584 lap0 lap1)
1585 (setq rest (cdr rest)
1586 lap (delq lap0 (delq lap1 lap))))
1587 (t
1588 (if (memq (car lap1) byte-goto-always-pop-ops)
1589 (progn
1590 (byte-compile-log-lap " %s %s\t-->\t%s"
1591 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1592 (setq lap (delq lap0 lap)))
1593 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1594 (cons 'byte-goto (cdr lap1))))
1595 (setcar lap1 'byte-goto)))
1596 (setq keep-going t))
1597 ;;
1598 ;; varref-X varref-X --> varref-X dup
1599 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1600 ;; We don't optimize the const-X variations on this here,
1601 ;; because that would inhibit some goto optimizations; we
1602 ;; optimize the const-X case after all other optimizations.
1603 ;;
1604 ((and (eq 'byte-varref (car lap0))
1605 (progn
1606 (setq tmp (cdr rest))
1607 (while (eq (car (car tmp)) 'byte-dup)
1608 (setq tmp (cdr tmp)))
1609 t)
1610 (eq (cdr lap0) (cdr (car tmp)))
1611 (eq 'byte-varref (car (car tmp))))
1612 (if (memq byte-optimize-log '(t byte))
1613 (let ((str ""))
1614 (setq tmp2 (cdr rest))
1615 (while (not (eq tmp tmp2))
1616 (setq tmp2 (cdr tmp2)
1617 str (concat str " dup")))
1618 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1619 lap0 str lap0 lap0 str)))
1620 (setq keep-going t)
1621 (setcar (car tmp) 'byte-dup)
1622 (setcdr (car tmp) 0)
1623 (setq rest tmp))
1624 ;;
1625 ;; TAG1: TAG2: --> TAG1: <deleted>
1626 ;; (and other references to TAG2 are replaced with TAG1)
1627 ;;
1628 ((and (eq (car lap0) 'TAG)
1629 (eq (car lap1) 'TAG))
1630 (and (memq byte-optimize-log '(t byte))
eb8c3be9 1631 (byte-compile-log " adjacent tags %d and %d merged"
1c393159
JB
1632 (nth 1 lap1) (nth 1 lap0)))
1633 (setq tmp3 lap)
1634 (while (setq tmp2 (rassq lap0 tmp3))
1635 (setcdr tmp2 lap1)
1636 (setq tmp3 (cdr (memq tmp2 tmp3))))
1637 (setq lap (delq lap0 lap)
1638 keep-going t))
1639 ;;
1640 ;; unused-TAG: --> <deleted>
1641 ;;
1642 ((and (eq 'TAG (car lap0))
1643 (not (rassq lap0 lap)))
1644 (and (memq byte-optimize-log '(t byte))
1645 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1646 (setq lap (delq lap0 lap)
1647 keep-going t))
1648 ;;
1649 ;; goto ... --> goto <delete until TAG or end>
1650 ;; return ... --> return <delete until TAG or end>
1651 ;;
1652 ((and (memq (car lap0) '(byte-goto byte-return))
1653 (not (memq (car lap1) '(TAG nil))))
1654 (setq tmp rest)
1655 (let ((i 0)
1656 (opt-p (memq byte-optimize-log '(t lap)))
1657 str deleted)
1658 (while (and (setq tmp (cdr tmp))
1659 (not (eq 'TAG (car (car tmp)))))
1660 (if opt-p (setq deleted (cons (car tmp) deleted)
1661 str (concat str " %s")
1662 i (1+ i))))
1663 (if opt-p
1664 (let ((tagstr
1665 (if (eq 'TAG (car (car tmp)))
dec4e22e 1666 (format "%d:" (car (cdr (car tmp))))
1c393159
JB
1667 (or (car tmp) ""))))
1668 (if (< i 6)
1669 (apply 'byte-compile-log-lap-1
1670 (concat " %s" str
1671 " %s\t-->\t%s <deleted> %s")
1672 lap0
1673 (nconc (nreverse deleted)
1674 (list tagstr lap0 tagstr)))
1675 (byte-compile-log-lap
1676 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1677 lap0 i (if (= i 1) "" "s")
1678 tagstr lap0 tagstr))))
1679 (rplacd rest tmp))
1680 (setq keep-going t))
1681 ;;
1682 ;; <safe-op> unbind --> unbind <safe-op>
1683 ;; (this may enable other optimizations.)
1684 ;;
1685 ((and (eq 'byte-unbind (car lap1))
1686 (memq (car lap0) byte-after-unbind-ops))
1687 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1688 (setcar rest lap1)
1689 (setcar (cdr rest) lap0)
1690 (setq keep-going t))
1691 ;;
1692 ;; varbind-X unbind-N --> discard unbind-(N-1)
1693 ;; save-excursion unbind-N --> unbind-(N-1)
1694 ;; save-restriction unbind-N --> unbind-(N-1)
1695 ;;
1696 ((and (eq 'byte-unbind (car lap1))
1697 (memq (car lap0) '(byte-varbind byte-save-excursion
1698 byte-save-restriction))
1699 (< 0 (cdr lap1)))
1700 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1701 (delq lap1 rest))
1702 (if (eq (car lap0) 'byte-varbind)
1703 (setcar rest (cons 'byte-discard 0))
1704 (setq lap (delq lap0 lap)))
1705 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1706 lap0 (cons (car lap1) (1+ (cdr lap1)))
1707 (if (eq (car lap0) 'byte-varbind)
1708 (car rest)
1709 (car (cdr rest)))
1710 (if (and (/= 0 (cdr lap1))
1711 (eq (car lap0) 'byte-varbind))
1712 (car (cdr rest))
1713 ""))
1714 (setq keep-going t))
1715 ;;
1716 ;; goto*-X ... X: goto-Y --> goto*-Y
1717 ;; goto-X ... X: return --> return
1718 ;;
1719 ((and (memq (car lap0) byte-goto-ops)
1720 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1721 '(byte-goto byte-return)))
1722 (cond ((and (not (eq tmp lap0))
1723 (or (eq (car lap0) 'byte-goto)
1724 (eq (car tmp) 'byte-goto)))
1725 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1726 (car lap0) tmp tmp)
1727 (if (eq (car tmp) 'byte-return)
1728 (setcar lap0 'byte-return))
1729 (setcdr lap0 (cdr tmp))
1730 (setq keep-going t))))
1731 ;;
1732 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1733 ;; goto-*-else-pop X ... X: discard --> whatever
1734 ;;
1735 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1736 byte-goto-if-not-nil-else-pop))
1737 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1738 (eval-when-compile
1739 (cons 'byte-discard byte-conditional-ops)))
1740 (not (eq lap0 (car tmp))))
1741 (setq tmp2 (car tmp))
1742 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1743 byte-goto-if-nil)
1744 (byte-goto-if-not-nil-else-pop
1745 byte-goto-if-not-nil))))
1746 (if (memq (car tmp2) tmp3)
1747 (progn (setcar lap0 (car tmp2))
1748 (setcdr lap0 (cdr tmp2))
1749 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1750 (car lap0) tmp2 lap0))
1751 ;; Get rid of the -else-pop's and jump one step further.
1752 (or (eq 'TAG (car (nth 1 tmp)))
1753 (setcdr tmp (cons (byte-compile-make-tag)
1754 (cdr tmp))))
1755 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1756 (car lap0) tmp2 (nth 1 tmp3))
1757 (setcar lap0 (nth 1 tmp3))
1758 (setcdr lap0 (nth 1 tmp)))
1759 (setq keep-going t))
1760 ;;
1761 ;; const goto-X ... X: goto-if-* --> whatever
1762 ;; const goto-X ... X: discard --> whatever
1763 ;;
1764 ((and (eq (car lap0) 'byte-constant)
1765 (eq (car lap1) 'byte-goto)
1766 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1767 (eval-when-compile
1768 (cons 'byte-discard byte-conditional-ops)))
1769 (not (eq lap1 (car tmp))))
1770 (setq tmp2 (car tmp))
1771 (cond ((memq (car tmp2)
1772 (if (null (car (cdr lap0)))
1773 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1774 '(byte-goto-if-not-nil
1775 byte-goto-if-not-nil-else-pop)))
1776 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1777 lap0 tmp2 lap0 tmp2)
1778 (setcar lap1 (car tmp2))
1779 (setcdr lap1 (cdr tmp2))
1780 ;; Let next step fix the (const,goto-if*) sequence.
1781 (setq rest (cons nil rest)))
1782 (t
1783 ;; Jump one step further
1784 (byte-compile-log-lap
1785 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1786 lap0 tmp2)
1787 (or (eq 'TAG (car (nth 1 tmp)))
1788 (setcdr tmp (cons (byte-compile-make-tag)
1789 (cdr tmp))))
1790 (setcdr lap1 (car (cdr tmp)))
1791 (setq lap (delq lap0 lap))))
1792 (setq keep-going t))
1793 ;;
1794 ;; X: varref-Y ... varset-Y goto-X -->
1795 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1796 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1797 ;; (This is so usual for while loops that it is worth handling).
1798 ;;
1799 ((and (eq (car lap1) 'byte-varset)
1800 (eq (car lap2) 'byte-goto)
1801 (not (memq (cdr lap2) rest)) ;Backwards jump
1802 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1803 'byte-varref)
1804 (eq (cdr (car tmp)) (cdr lap1))
1805 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1806 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1807 (let ((newtag (byte-compile-make-tag)))
1808 (byte-compile-log-lap
1809 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1810 (nth 1 (cdr lap2)) (car tmp)
1811 lap1 lap2
1812 (nth 1 (cdr lap2)) (car tmp)
1813 (nth 1 newtag) 'byte-dup lap1
1814 (cons 'byte-goto newtag)
1815 )
1816 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1817 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1818 (setq add-depth 1)
1819 (setq keep-going t))
1820 ;;
1821 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1822 ;; (This can pull the loop test to the end of the loop)
1823 ;;
1824 ((and (eq (car lap0) 'byte-goto)
1825 (eq (car lap1) 'TAG)
1826 (eq lap1
1827 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1828 (memq (car (car tmp))
1829 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1830 byte-goto-if-nil-else-pop)))
1831;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1832;; lap0 lap1 (cdr lap0) (car tmp))
1833 (let ((newtag (byte-compile-make-tag)))
1834 (byte-compile-log-lap
1835 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1836 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1837 (cons (cdr (assq (car (car tmp))
1838 '((byte-goto-if-nil . byte-goto-if-not-nil)
1839 (byte-goto-if-not-nil . byte-goto-if-nil)
1840 (byte-goto-if-nil-else-pop .
1841 byte-goto-if-not-nil-else-pop)
1842 (byte-goto-if-not-nil-else-pop .
1843 byte-goto-if-nil-else-pop))))
1844 newtag)
1845
1846 (nth 1 newtag)
1847 )
1848 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1849 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1850 ;; We can handle this case but not the -if-not-nil case,
1851 ;; because we won't know which non-nil constant to push.
1852 (setcdr rest (cons (cons 'byte-constant
1853 (byte-compile-get-constant nil))
1854 (cdr rest))))
1855 (setcar lap0 (nth 1 (memq (car (car tmp))
1856 '(byte-goto-if-nil-else-pop
1857 byte-goto-if-not-nil
1858 byte-goto-if-nil
1859 byte-goto-if-not-nil
1860 byte-goto byte-goto))))
1861 )
1862 (setq keep-going t))
1863 )
1864 (setq rest (cdr rest)))
1865 )
1866 ;; Cleanup stage:
1867 ;; Rebuild byte-compile-constants / byte-compile-variables.
1868 ;; Simple optimizations that would inhibit other optimizations if they
1869 ;; were done in the optimizing loop, and optimizations which there is no
1870 ;; need to do more than once.
1871 (setq byte-compile-constants nil
1872 byte-compile-variables nil)
1873 (setq rest lap)
1874 (while rest
1875 (setq lap0 (car rest)
1876 lap1 (nth 1 rest))
1877 (if (memq (car lap0) byte-constref-ops)
98a602e3 1878 (if (not (eq (car lap0) 'byte-constant))
1c393159
JB
1879 (or (memq (cdr lap0) byte-compile-variables)
1880 (setq byte-compile-variables (cons (cdr lap0)
1881 byte-compile-variables)))
1882 (or (memq (cdr lap0) byte-compile-constants)
1883 (setq byte-compile-constants (cons (cdr lap0)
1884 byte-compile-constants)))))
1885 (cond (;;
1886 ;; const-C varset-X const-C --> const-C dup varset-X
1887 ;; const-C varbind-X const-C --> const-C dup varbind-X
1888 ;;
1889 (and (eq (car lap0) 'byte-constant)
1890 (eq (car (nth 2 rest)) 'byte-constant)
1891 (eq (cdr lap0) (car (nth 2 rest)))
1892 (memq (car lap1) '(byte-varbind byte-varset)))
1893 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1894 lap0 lap1 lap0 lap0 lap1)
1895 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1896 (setcar (cdr rest) (cons 'byte-dup 0))
1897 (setq add-depth 1))
1898 ;;
1899 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1900 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1901 ;;
1902 ((memq (car lap0) '(byte-constant byte-varref))
1903 (setq tmp rest
1904 tmp2 nil)
1905 (while (progn
1906 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1907 (and (eq (cdr lap0) (cdr (car tmp)))
1908 (eq (car lap0) (car (car tmp)))))
1909 (setcar tmp (cons 'byte-dup 0))
1910 (setq tmp2 t))
1911 (if tmp2
1912 (byte-compile-log-lap
dec4e22e 1913 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1c393159
JB
1914 ;;
1915 ;; unbind-N unbind-M --> unbind-(N+M)
1916 ;;
1917 ((and (eq 'byte-unbind (car lap0))
1918 (eq 'byte-unbind (car lap1)))
1919 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1920 (cons 'byte-unbind
1921 (+ (cdr lap0) (cdr lap1))))
1922 (setq keep-going t)
1923 (setq lap (delq lap0 lap))
1924 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1925 )
1926 (setq rest (cdr rest)))
1927 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1928 lap)
1929
1ffa4286 1930(provide 'byte-opt)
1c393159
JB
1931
1932\f
1933;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1934;; itself, compile some of its most used recursive functions (at load time).
1935;;
1936(eval-when-compile
96d699f3 1937 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1c393159
JB
1938 (assq 'byte-code (symbol-function 'byte-optimize-form))
1939 (let ((byte-optimize nil)
1940 (byte-compile-warnings nil))
72d8b544
SM
1941 (mapcar (lambda (x)
1942 (or noninteractive (message "compiling %s..." x))
1943 (byte-compile x)
1944 (or noninteractive (message "compiling %s...done" x)))
1c393159
JB
1945 '(byte-optimize-form
1946 byte-optimize-body
1947 byte-optimize-predicate
1948 byte-optimize-binary-predicate
1949 ;; Inserted some more than necessary, to speed it up.
1950 byte-optimize-form-code-walker
1951 byte-optimize-lapcode))))
1952 nil)
3eac9910
JB
1953
1954;;; byte-opt.el ends here