define-key-after change.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
CommitLineData
3eac9910
JB
1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
d733c5ec 3;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
3eac9910
JB
4
5;; Author: Jamie Zawinski <jwz@lucid.com>
6;; Hallvard Furuseth <hbf@ulrik.uio.no>
7;; Keywords: internal
1c393159
JB
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
3eac9910 13;; the Free Software Foundation; either version 2, or (at your option)
1c393159
JB
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
b578f267
EN
22;; along with GNU Emacs; see the file COPYING. If not, write to the
23;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24;; Boston, MA 02111-1307, USA.
1c393159 25
3eac9910
JB
26;;; Commentary:
27
b578f267
EN
28;; ========================================================================
29;; "No matter how hard you try, you can't make a racehorse out of a pig.
30;; You can, however, make a faster pig."
31;;
32;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
33;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34;; still not going to make it go faster than 70 mph, but it might be easier
35;; to get it there.
36;;
1c393159 37
b578f267
EN
38;; TO DO:
39;;
40;; (apply '(lambda (x &rest y) ...) 1 (foo))
41;;
42;; maintain a list of functions known not to access any global variables
43;; (actually, give them a 'dynamically-safe property) and then
44;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46;; by recursing on this, we might be able to eliminate the entire let.
47;; However certain variables should never have their bindings optimized
48;; away, because they affect everything.
49;; (put 'debug-on-error 'binding-is-magic t)
50;; (put 'debug-on-abort 'binding-is-magic t)
51;; (put 'debug-on-next-call 'binding-is-magic t)
52;; (put 'mocklisp-arguments 'binding-is-magic t)
53;; (put 'inhibit-quit 'binding-is-magic t)
54;; (put 'quit-flag 'binding-is-magic t)
55;; (put 't 'binding-is-magic t)
56;; (put 'nil 'binding-is-magic t)
57;; possibly also
58;; (put 'gc-cons-threshold 'binding-is-magic t)
59;; (put 'track-mouse 'binding-is-magic t)
60;; others?
61;;
62;; Simple defsubsts often produce forms like
63;; (let ((v1 (f1)) (v2 (f2)) ...)
64;; (FN v1 v2 ...))
65;; It would be nice if we could optimize this to
66;; (FN (f1) (f2) ...)
67;; but we can't unless FN is dynamically-safe (it might be dynamically
68;; referring to the bindings that the lambda arglist established.)
69;; One of the uncountable lossages introduced by dynamic scope...
70;;
71;; Maybe there should be a control-structure that says "turn on
72;; fast-and-loose type-assumptive optimizations here." Then when
73;; we see a form like (car foo) we can from then on assume that
74;; the variable foo is of type cons, and optimize based on that.
75;; But, this won't win much because of (you guessed it) dynamic
76;; scope. Anything down the stack could change the value.
77;; (Another reason it doesn't work is that it is perfectly valid
78;; to call car with a null argument.) A better approach might
79;; be to allow type-specification of the form
80;; (put 'foo 'arg-types '(float (list integer) dynamic))
81;; (put 'foo 'result-type 'bool)
82;; It should be possible to have these types checked to a certain
83;; degree.
84;;
85;; collapse common subexpressions
86;;
87;; It would be nice if redundant sequences could be factored out as well,
88;; when they are known to have no side-effects:
89;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90;; but beware of traps like
91;; (cons (list x y) (list x y))
92;;
93;; Tail-recursion elimination is not really possible in Emacs Lisp.
94;; Tail-recursion elimination is almost always impossible when all variables
95;; have dynamic scope, but given that the "return" byteop requires the
96;; binding stack to be empty (rather than emptying it itself), there can be
97;; no truly tail-recursive Emacs Lisp functions that take any arguments or
98;; make any bindings.
99;;
100;; Here is an example of an Emacs Lisp function which could safely be
101;; byte-compiled tail-recursively:
102;;
103;; (defun tail-map (fn list)
104;; (cond (list
105;; (funcall fn (car list))
106;; (tail-map fn (cdr list)))))
107;;
108;; However, if there was even a single let-binding around the COND,
109;; it could not be byte-compiled, because there would be an "unbind"
110;; byte-op between the final "call" and "return." Adding a
111;; Bunbind_all byteop would fix this.
112;;
113;; (defun foo (x y z) ... (foo a b c))
114;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
117;;
118;; this also can be considered tail recursion:
119;;
120;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121;; could generalize this by doing the optimization
122;; (goto X) ... X: (return) --> (return)
123;;
124;; But this doesn't solve all of the problems: although by doing tail-
125;; recursion elimination in this way, the call-stack does not grow, the
126;; binding-stack would grow with each recursive step, and would eventually
127;; overflow. I don't believe there is any way around this without lexical
128;; scope.
129;;
130;; Wouldn't it be nice if Emacs Lisp had lexical scope.
131;;
132;; Idea: the form (lexical-scope) in a file means that the file may be
133;; compiled lexically. This proclamation is file-local. Then, within
134;; that file, "let" would establish lexical bindings, and "let-dynamic"
135;; would do things the old way. (Or we could use CL "declare" forms.)
136;; We'd have to notice defvars and defconsts, since those variables should
137;; always be dynamic, and attempting to do a lexical binding of them
138;; should simply do a dynamic binding instead.
139;; But! We need to know about variables that were not necessarily defvarred
140;; in the file being compiled (doing a boundp check isn't good enough.)
141;; Fdefvar() would have to be modified to add something to the plist.
142;;
143;; A major disadvantage of this scheme is that the interpreter and compiler
144;; would have different semantics for files compiled with (dynamic-scope).
145;; Since this would be a file-local optimization, there would be no way to
146;; modify the interpreter to obey this (unless the loader was hacked
147;; in some grody way, but that's a really bad idea.)
97e6527f
KH
148
149;; Other things to consider:
150
151;;;;; Associative math should recognize subcalls to identical function:
152;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153;;;;; This should generate the same as (1+ x) and (1- x)
154
155;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156;;;;; An awful lot of functions always return a non-nil value. If they're
157;;;;; error free also they may act as true-constants.
158
159;;;(disassemble (lambda (x) (and (point) (foo))))
160;;;;; When
161;;;;; - all but one arguments to a function are constant
162;;;;; - the non-constant argument is an if-expression (cond-expression?)
163;;;;; then the outer function can be distributed. If the guarding
164;;;;; condition is side-effect-free [assignment-free] then the other
165;;;;; arguments may be any expressions. Since, however, the code size
166;;;;; can increase this way they should be "simple". Compare:
167
168;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
170
171;;;;; (car (cons A B)) -> (progn B A)
172;;;(disassemble (lambda (x) (car (cons (foo) 42))))
173
174;;;;; (cdr (cons A B)) -> (progn A B)
175;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
176
177;;;;; (car (list A B ...)) -> (progn B ... A)
178;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
179
180;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
181;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
182
1c393159 183
3eac9910 184;;; Code:
1c393159 185
c144230d
MR
186(require 'bytecomp)
187
1c393159
JB
188(defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar '(lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219(defmacro byte-compile-log-lap (format-string &rest args)
220 (list 'and
221 '(memq byte-optimize-log '(t byte))
222 (cons 'byte-compile-log-lap-1
223 (cons format-string args))))
224
225\f
226;;; byte-compile optimizers to support inlining
227
228(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230(defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 '(lambda (sexp)
235 (let ((fn (car-safe sexp)))
236 (if (and (symbolp fn)
237 (or (cdr (assq fn byte-compile-function-environment))
238 (and (fboundp fn)
239 (not (or (cdr (assq fn byte-compile-macro-environment))
240 (and (consp (setq fn (symbol-function fn)))
241 (eq (car fn) 'macro))
242 (subrp fn))))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
70e1dad8
RS
248;; Splice the given lap code into the current instruction stream.
249;; If it has any labels in it, you're responsible for making sure there
250;; are no collisions, and that byte-compile-tag-number is reasonable
251;; after this is spliced in. The provided list is destroyed.
1c393159 252(defun byte-inline-lapcode (lap)
1c393159
JB
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
254
255
256(defun byte-compile-inline-expand (form)
257 (let* ((name (car form))
258 (fn (or (cdr (assq name byte-compile-function-environment))
259 (and (fboundp name) (symbol-function name)))))
260 (if (null fn)
261 (progn
262 (byte-compile-warn "attempt to inline %s before it was defined" name)
263 form)
264 ;; else
265 (if (and (consp fn) (eq (car fn) 'autoload))
7aec540f
RS
266 (progn
267 (load (nth 1 fn))
268 (setq fn (or (cdr (assq name byte-compile-function-environment))
269 (and (fboundp name) (symbol-function name))))))
1c393159
JB
270 (if (and (consp fn) (eq (car fn) 'autoload))
271 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
272 (if (symbolp fn)
273 (byte-compile-inline-expand (cons fn (cdr form)))
96d699f3 274 (if (byte-code-function-p fn)
70b40ea1 275 (let (string)
2b29a376 276 (fetch-bytecode fn)
70b40ea1
RS
277 (setq string (aref fn 1))
278 (if (fboundp 'string-as-unibyte)
279 (setq string (string-as-unibyte string)))
2b29a376 280 (cons (list 'lambda (aref fn 0)
70b40ea1 281 (list 'byte-code string (aref fn 2) (aref fn 3)))
2b29a376 282 (cdr form)))
223a2a62
KH
283 (if (eq (car-safe fn) 'lambda)
284 (cons fn (cdr form))
285 ;; Give up on inlining.
286 form))))))
1c393159
JB
287
288;;; ((lambda ...) ...)
289;;;
290(defun byte-compile-unfold-lambda (form &optional name)
291 (or name (setq name "anonymous lambda"))
292 (let ((lambda (car form))
293 (values (cdr form)))
96d699f3 294 (if (byte-code-function-p lambda)
7e1dae73
JB
295 (setq lambda (list 'lambda (aref lambda 0)
296 (list 'byte-code (aref lambda 1)
297 (aref lambda 2) (aref lambda 3)))))
1c393159
JB
298 (let ((arglist (nth 1 lambda))
299 (body (cdr (cdr lambda)))
300 optionalp restp
301 bindings)
302 (if (and (stringp (car body)) (cdr body))
303 (setq body (cdr body)))
304 (if (and (consp (car body)) (eq 'interactive (car (car body))))
305 (setq body (cdr body)))
306 (while arglist
307 (cond ((eq (car arglist) '&optional)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp (error "&optional found after &rest in %s" name))
311 (if (null (cdr arglist))
312 (error "nothing after &optional in %s" name))
313 (setq optionalp t))
314 ((eq (car arglist) '&rest)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist))
319 (error "nothing after &rest in %s" name))
320 (if (cdr (cdr arglist))
321 (error "multiple vars after &rest in %s" name))
322 (setq restp t))
323 (restp
324 (setq bindings (cons (list (car arglist)
325 (and values (cons 'list values)))
326 bindings)
327 values nil))
328 ((and (not optionalp) (null values))
329 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
330 (setq arglist nil values 'too-few))
331 (t
332 (setq bindings (cons (list (car arglist) (car values))
333 bindings)
334 values (cdr values))))
335 (setq arglist (cdr arglist)))
336 (if values
337 (progn
338 (or (eq values 'too-few)
339 (byte-compile-warn
340 "attempt to open-code %s with too many arguments" name))
341 form)
92751e42 342 (setq body (mapcar 'byte-optimize-form body))
1c393159
JB
343 (let ((newform
344 (if bindings
345 (cons 'let (cons (nreverse bindings) body))
346 (cons 'progn body))))
347 (byte-compile-log " %s\t==>\t%s" form newform)
348 newform)))))
349
350\f
351;;; implementing source-level optimizers
352
353(defun byte-optimize-form-code-walker (form for-effect)
354 ;;
355 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
356 ;; we need to have special knowledge of the syntax of the special forms
357 ;; like let and defun (that's why they're special forms :-). (Actually,
358 ;; the important aspect is that they are subrs that don't evaluate all of
359 ;; their args.)
360 ;;
361 (let ((fn (car-safe form))
362 tmp)
363 (cond ((not (consp form))
364 (if (not (and for-effect
365 (or byte-compile-delete-errors
366 (not (symbolp form))
367 (eq form t))))
368 form))
369 ((eq fn 'quote)
370 (if (cdr (cdr form))
371 (byte-compile-warn "malformed quote form: %s"
372 (prin1-to-string form)))
373 ;; map (quote nil) to nil to simplify optimizer logic.
374 ;; map quoted constants to nil if for-effect (just because).
375 (and (nth 1 form)
376 (not for-effect)
377 form))
96d699f3 378 ((or (byte-code-function-p fn)
1c393159
JB
379 (eq 'lambda (car-safe fn)))
380 (byte-compile-unfold-lambda form))
381 ((memq fn '(let let*))
382 ;; recursively enter the optimizer for the bindings and body
383 ;; of a let or let*. This for depth-firstness: forms that
384 ;; are more deeply nested are optimized first.
385 (cons fn
386 (cons
387 (mapcar '(lambda (binding)
388 (if (symbolp binding)
389 binding
390 (if (cdr (cdr binding))
391 (byte-compile-warn "malformed let binding: %s"
392 (prin1-to-string binding)))
393 (list (car binding)
394 (byte-optimize-form (nth 1 binding) nil))))
395 (nth 1 form))
396 (byte-optimize-body (cdr (cdr form)) for-effect))))
397 ((eq fn 'cond)
398 (cons fn
399 (mapcar '(lambda (clause)
400 (if (consp clause)
401 (cons
402 (byte-optimize-form (car clause) nil)
403 (byte-optimize-body (cdr clause) for-effect))
404 (byte-compile-warn "malformed cond form: %s"
405 (prin1-to-string clause))
406 clause))
407 (cdr form))))
408 ((eq fn 'progn)
409 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
410 (if (cdr (cdr form))
411 (progn
412 (setq tmp (byte-optimize-body (cdr form) for-effect))
413 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
414 (byte-optimize-form (nth 1 form) for-effect)))
415 ((eq fn 'prog1)
416 (if (cdr (cdr form))
417 (cons 'prog1
418 (cons (byte-optimize-form (nth 1 form) for-effect)
419 (byte-optimize-body (cdr (cdr form)) t)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog2)
422 (cons 'prog2
423 (cons (byte-optimize-form (nth 1 form) t)
424 (cons (byte-optimize-form (nth 2 form) for-effect)
425 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
426
2754fefa 427 ((memq fn '(save-excursion save-restriction save-current-buffer))
1c393159
JB
428 ;; those subrs which have an implicit progn; it's not quite good
429 ;; enough to treat these like normal function calls.
430 ;; This can turn (save-excursion ...) into (save-excursion) which
431 ;; will be optimized away in the lap-optimize pass.
432 (cons fn (byte-optimize-body (cdr form) for-effect)))
433
434 ((eq fn 'with-output-to-temp-buffer)
435 ;; this is just like the above, except for the first argument.
436 (cons fn
437 (cons
438 (byte-optimize-form (nth 1 form) nil)
439 (byte-optimize-body (cdr (cdr form)) for-effect))))
440
441 ((eq fn 'if)
442 (cons fn
443 (cons (byte-optimize-form (nth 1 form) nil)
444 (cons
445 (byte-optimize-form (nth 2 form) for-effect)
446 (byte-optimize-body (nthcdr 3 form) for-effect)))))
447
448 ((memq fn '(and or)) ; remember, and/or are control structures.
449 ;; take forms off the back until we can't any more.
eb8c3be9 450 ;; In the future it could conceivably be a problem that the
1c393159
JB
451 ;; subexpressions of these forms are optimized in the reverse
452 ;; order, but it's ok for now.
453 (if for-effect
454 (let ((backwards (reverse (cdr form))))
455 (while (and backwards
456 (null (setcar backwards
457 (byte-optimize-form (car backwards)
458 for-effect))))
459 (setq backwards (cdr backwards)))
460 (if (and (cdr form) (null backwards))
461 (byte-compile-log
462 " all subforms of %s called for effect; deleted" form))
463 (and backwards
464 (cons fn (nreverse backwards))))
465 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
466
467 ((eq fn 'interactive)
468 (byte-compile-warn "misplaced interactive spec: %s"
469 (prin1-to-string form))
470 nil)
471
472 ((memq fn '(defun defmacro function
473 condition-case save-window-excursion))
474 ;; These forms are compiled as constants or by breaking out
475 ;; all the subexpressions and compiling them separately.
476 form)
477
478 ((eq fn 'unwind-protect)
479 ;; the "protected" part of an unwind-protect is compiled (and thus
480 ;; optimized) as a top-level form, so don't do it here. But the
481 ;; non-protected part has the same for-effect status as the
482 ;; unwind-protect itself. (The protected part is always for effect,
483 ;; but that isn't handled properly yet.)
484 (cons fn
485 (cons (byte-optimize-form (nth 1 form) for-effect)
486 (cdr (cdr form)))))
487
488 ((eq fn 'catch)
489 ;; the body of a catch is compiled (and thus optimized) as a
490 ;; top-level form, so don't do it here. The tag is never
491 ;; for-effect. The body should have the same for-effect status
492 ;; as the catch form itself, but that isn't handled properly yet.
493 (cons fn
494 (cons (byte-optimize-form (nth 1 form) nil)
495 (cdr (cdr form)))))
496
497 ;; If optimization is on, this is the only place that macros are
498 ;; expanded. If optimization is off, then macroexpansion happens
499 ;; in byte-compile-form. Otherwise, the macros are already expanded
500 ;; by the time that is reached.
501 ((not (eq form
502 (setq form (macroexpand form
503 byte-compile-macro-environment))))
504 (byte-optimize-form form for-effect))
5428ee02
RS
505
506 ;; Support compiler macros as in cl.el.
507 ((and (fboundp 'compiler-macroexpand)
4f493b7c
RS
508 (symbolp (car-safe form))
509 (get (car-safe form) 'cl-compiler-macro)
5428ee02 510 (not (eq form
b8ba68e5 511 (setq form (compiler-macroexpand form)))))
5428ee02 512 (byte-optimize-form form for-effect))
1c393159
JB
513
514 ((not (symbolp fn))
515 (or (eq 'mocklisp (car-safe fn)) ; ha!
516 (byte-compile-warn "%s is a malformed function"
517 (prin1-to-string fn)))
518 form)
519
520 ((and for-effect (setq tmp (get fn 'side-effect-free))
521 (or byte-compile-delete-errors
522 (eq tmp 'error-free)
523 (progn
524 (byte-compile-warn "%s called for effect"
525 (prin1-to-string form))
526 nil)))
527 (byte-compile-log " %s called for effect; deleted" fn)
528 ;; appending a nil here might not be necessary, but it can't hurt.
529 (byte-optimize-form
530 (cons 'progn (append (cdr form) '(nil))) t))
531
532 (t
533 ;; Otherwise, no args can be considered to be for-effect,
534 ;; even if the called function is for-effect, because we
535 ;; don't know anything about that function.
536 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
537
538
539(defun byte-optimize-form (form &optional for-effect)
540 "The source-level pass of the optimizer."
541 ;;
542 ;; First, optimize all sub-forms of this one.
543 (setq form (byte-optimize-form-code-walker form for-effect))
544 ;;
545 ;; after optimizing all subforms, optimize this form until it doesn't
546 ;; optimize any further. This means that some forms will be passed through
547 ;; the optimizer many times, but that's necessary to make the for-effect
548 ;; processing do as much as possible.
549 ;;
550 (let (opt new)
551 (if (and (consp form)
552 (symbolp (car form))
553 (or (and for-effect
554 ;; we don't have any of these yet, but we might.
555 (setq opt (get (car form) 'byte-for-effect-optimizer)))
556 (setq opt (get (car form) 'byte-optimizer)))
557 (not (eq form (setq new (funcall opt form)))))
558 (progn
559;; (if (equal form new) (error "bogus optimizer -- %s" opt))
560 (byte-compile-log " %s\t==>\t%s" form new)
561 (setq new (byte-optimize-form new for-effect))
562 new)
563 form)))
564
565
566(defun byte-optimize-body (forms all-for-effect)
567 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
568 ;; forms, all but the last of which are optimized with the assumption that
569 ;; they are being called for effect. the last is for-effect as well if
570 ;; all-for-effect is true. returns a new list of forms.
571 (let ((rest forms)
572 (result nil)
573 fe new)
574 (while rest
575 (setq fe (or all-for-effect (cdr rest)))
576 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
577 (if (or new (not fe))
578 (setq result (cons new result)))
579 (setq rest (cdr rest)))
580 (nreverse result)))
581
582\f
583;;; some source-level optimizers
584;;;
585;;; when writing optimizers, be VERY careful that the optimizer returns
586;;; something not EQ to its argument if and ONLY if it has made a change.
587;;; This implies that you cannot simply destructively modify the list;
588;;; you must return something not EQ to it if you make an optimization.
589;;;
590;;; It is now safe to optimize code such that it introduces new bindings.
591
eb8c3be9 592;; I'd like this to be a defsubst, but let's not be self-referential...
1c393159
JB
593(defmacro byte-compile-trueconstp (form)
594 ;; Returns non-nil if FORM is a non-nil constant.
595 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
596 ((not (symbolp (, form))))
597 ((eq (, form) t)))))
598
70e1dad8
RS
599;; If the function is being called with constant numeric args,
600;; evaluate as much as possible at compile-time. This optimizer
601;; assumes that the function is associative, like + or *.
1c393159 602(defun byte-optimize-associative-math (form)
1c393159
JB
603 (let ((args nil)
604 (constants nil)
605 (rest (cdr form)))
606 (while rest
607 (if (numberp (car rest))
608 (setq constants (cons (car rest) constants))
609 (setq args (cons (car rest) args)))
610 (setq rest (cdr rest)))
611 (if (cdr constants)
612 (if args
613 (list (car form)
614 (apply (car form) constants)
615 (if (cdr args)
616 (cons (car form) (nreverse args))
617 (car args)))
618 (apply (car form) constants))
619 form)))
620
70e1dad8 621;; If the function is being called with constant numeric args,
97e6527f
KH
622;; evaluate as much as possible at compile-time. This optimizer
623;; assumes that the function satisfies
624;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
625;; like - and /.
1c393159 626(defun byte-optimize-nonassociative-math (form)
1c393159
JB
627 (if (or (not (numberp (car (cdr form))))
628 (not (numberp (car (cdr (cdr form))))))
629 form
630 (let ((constant (car (cdr form)))
631 (rest (cdr (cdr form))))
632 (while (numberp (car rest))
633 (setq constant (funcall (car form) constant (car rest))
634 rest (cdr rest)))
635 (if rest
636 (cons (car form) (cons constant rest))
637 constant))))
638
639;;(defun byte-optimize-associative-two-args-math (form)
640;; (setq form (byte-optimize-associative-math form))
641;; (if (consp form)
642;; (byte-optimize-two-args-left form)
643;; form))
644
645;;(defun byte-optimize-nonassociative-two-args-math (form)
646;; (setq form (byte-optimize-nonassociative-math form))
647;; (if (consp form)
648;; (byte-optimize-two-args-right form)
649;; form))
650
97e6527f 651(defun byte-optimize-approx-equal (x y)
1fa68f21 652 (<= (* (abs (- x y)) 100) (abs (+ x y))))
97e6527f
KH
653
654;; Collect all the constants from FORM, after the STARTth arg,
655;; and apply FUN to them to make one argument at the end.
656;; For functions that can handle floats, that optimization
657;; can be incorrect because reordering can cause an overflow
658;; that would otherwise be avoided by encountering an arg that is a float.
659;; We avoid this problem by (1) not moving float constants and
660;; (2) not moving anything if it would cause an overflow.
1c393159
JB
661(defun byte-optimize-delay-constants-math (form start fun)
662 ;; Merge all FORM's constants from number START, call FUN on them
663 ;; and put the result at the end.
97e6527f
KH
664 (let ((rest (nthcdr (1- start) form))
665 (orig form)
666 ;; t means we must check for overflow.
667 (overflow (memq fun '(+ *))))
1c393159 668 (while (cdr (setq rest (cdr rest)))
97e6527f 669 (if (integerp (car rest))
1c393159
JB
670 (let (constants)
671 (setq form (copy-sequence form)
672 rest (nthcdr (1- start) form))
673 (while (setq rest (cdr rest))
97e6527f 674 (cond ((integerp (car rest))
1c393159
JB
675 (setq constants (cons (car rest) constants))
676 (setcar rest nil))))
97e6527f
KH
677 ;; If necessary, check now for overflow
678 ;; that might be caused by reordering.
679 (if (and overflow
680 ;; We have overflow if the result of doing the arithmetic
681 ;; on floats is not even close to the result
682 ;; of doing it on integers.
683 (not (byte-optimize-approx-equal
684 (apply fun (mapcar 'float constants))
685 (float (apply fun constants)))))
686 (setq form orig)
687 (setq form (nconc (delq nil form)
688 (list (apply fun (nreverse constants)))))))))
1c393159
JB
689 form))
690
691(defun byte-optimize-plus (form)
692 (setq form (byte-optimize-delay-constants-math form 1 '+))
693 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
694 ;;(setq form (byte-optimize-associative-two-args-math form))
695 (cond ((null (cdr form))
696 (condition-case ()
697 (eval form)
698 (error form)))
3315a6a3
RS
699;;; It is not safe to delete the function entirely
700;;; (actually, it would be safe if we know the sole arg
701;;; is not a marker).
702;; ((null (cdr (cdr form))) (nth 1 form))
ea9d6371
RS
703 ((null (cddr form))
704 (if (numberp (nth 1 form))
705 (nth 1 form)
706 form))
1fa68f21
RS
707 ((and (null (nthcdr 3 form))
708 (or (memq (nth 1 form) '(1 -1))
709 (memq (nth 2 form) '(1 -1))))
79d137ff 710 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
1fa68f21
RS
711 (let ((integer
712 (if (memq (nth 1 form) '(1 -1))
713 (nth 1 form)
714 (nth 2 form)))
715 (other
716 (if (memq (nth 1 form) '(1 -1))
717 (nth 2 form)
718 (nth 1 form))))
719 (list (if (eq integer 1) '1+ '1-)
720 other)))
1c393159
JB
721 (t form)))
722
723(defun byte-optimize-minus (form)
724 ;; Put constants at the end, except the last constant.
725 (setq form (byte-optimize-delay-constants-math form 2 '+))
726 ;; Now only first and last element can be a number.
727 (let ((last (car (reverse (nthcdr 3 form)))))
728 (cond ((eq 0 last)
729 ;; (- x y ... 0) --> (- x y ...)
730 (setq form (copy-sequence form))
731 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
1fa68f21
RS
732 ((equal (nthcdr 2 form) '(1))
733 (setq form (list '1- (nth 1 form))))
734 ((equal (nthcdr 2 form) '(-1))
735 (setq form (list '1+ (nth 1 form))))
1c393159
JB
736 ;; If form is (- CONST foo... CONST), merge first and last.
737 ((and (numberp (nth 1 form))
738 (numberp last))
739 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
740 (delq last (copy-sequence (nthcdr 3 form))))))))
3315a6a3
RS
741;;; It is not safe to delete the function entirely
742;;; (actually, it would be safe if we know the sole arg
743;;; is not a marker).
744;;; (if (eq (nth 2 form) 0)
745;;; (nth 1 form) ; (- x 0) --> x
1c393159
JB
746 (byte-optimize-predicate
747 (if (and (null (cdr (cdr (cdr form))))
748 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
749 (cons (car form) (cdr (cdr form)))
3315a6a3
RS
750 form))
751;;; )
752 )
1c393159
JB
753
754(defun byte-optimize-multiply (form)
755 (setq form (byte-optimize-delay-constants-math form 1 '*))
756 ;; If there is a constant in FORM, it is now the last element.
757 (cond ((null (cdr form)) 1)
3315a6a3
RS
758;;; It is not safe to delete the function entirely
759;;; (actually, it would be safe if we know the sole arg
760;;; is not a marker or if it appears in other arithmetic).
761;;; ((null (cdr (cdr form))) (nth 1 form))
1c393159 762 ((let ((last (car (reverse form))))
97e6527f 763 (cond ((eq 0 last) (cons 'progn (cdr form)))
1c393159
JB
764 ((eq 1 last) (delq 1 (copy-sequence form)))
765 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
766 ((and (eq 2 last)
767 (memq t (mapcar 'symbolp (cdr form))))
768 (prog1 (setq form (delq 2 (copy-sequence form)))
769 (while (not (symbolp (car (setq form (cdr form))))))
770 (setcar form (list '+ (car form) (car form)))))
771 (form))))))
772
773(defsubst byte-compile-butlast (form)
774 (nreverse (cdr (reverse form))))
775
776(defun byte-optimize-divide (form)
777 (setq form (byte-optimize-delay-constants-math form 2 '*))
778 (let ((last (car (reverse (cdr (cdr form))))))
779 (if (numberp last)
199dd758 780 (cond ((= (length form) 3)
97e6527f
KH
781 (if (and (numberp (nth 1 form))
782 (not (zerop last))
783 (condition-case nil
784 (/ (nth 1 form) last)
785 (error nil)))
786 (setq form (list 'progn (/ (nth 1 form) last)))))
199dd758 787 ((= last 1)
1c393159
JB
788 (setq form (byte-compile-butlast form)))
789 ((numberp (nth 1 form))
790 (setq form (cons (car form)
791 (cons (/ (nth 1 form) last)
792 (byte-compile-butlast (cdr (cdr form)))))
793 last nil))))
3315a6a3
RS
794 (cond
795;;; ((null (cdr (cdr form)))
796;;; (nth 1 form))
1c393159
JB
797 ((eq (nth 1 form) 0)
798 (append '(progn) (cdr (cdr form)) '(0)))
799 ((eq last -1)
800 (list '- (if (nthcdr 3 form)
801 (byte-compile-butlast form)
802 (nth 1 form))))
803 (form))))
804
805(defun byte-optimize-logmumble (form)
806 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
807 (byte-optimize-predicate
808 (cond ((memq 0 form)
809 (setq form (if (eq (car form) 'logand)
810 (cons 'progn (cdr form))
811 (delq 0 (copy-sequence form)))))
812 ((and (eq (car-safe form) 'logior)
813 (memq -1 form))
97e6527f 814 (cons 'progn (cdr form)))
1c393159
JB
815 (form))))
816
817
818(defun byte-optimize-binary-predicate (form)
819 (if (byte-compile-constp (nth 1 form))
820 (if (byte-compile-constp (nth 2 form))
821 (condition-case ()
822 (list 'quote (eval form))
823 (error form))
824 ;; This can enable some lapcode optimizations.
825 (list (car form) (nth 2 form) (nth 1 form)))
826 form))
827
828(defun byte-optimize-predicate (form)
829 (let ((ok t)
830 (rest (cdr form)))
831 (while (and rest ok)
832 (setq ok (byte-compile-constp (car rest))
833 rest (cdr rest)))
834 (if ok
835 (condition-case ()
836 (list 'quote (eval form))
837 (error form))
838 form)))
839
840(defun byte-optimize-identity (form)
841 (if (and (cdr form) (null (cdr (cdr form))))
842 (nth 1 form)
843 (byte-compile-warn "identity called with %d arg%s, but requires 1"
844 (length (cdr form))
845 (if (= 1 (length (cdr form))) "" "s"))
846 form))
847
848(put 'identity 'byte-optimizer 'byte-optimize-identity)
849
850(put '+ 'byte-optimizer 'byte-optimize-plus)
851(put '* 'byte-optimizer 'byte-optimize-multiply)
852(put '- 'byte-optimizer 'byte-optimize-minus)
853(put '/ 'byte-optimizer 'byte-optimize-divide)
854(put 'max 'byte-optimizer 'byte-optimize-associative-math)
855(put 'min 'byte-optimizer 'byte-optimize-associative-math)
856
857(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
858(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
1c393159
JB
859(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
860(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
861(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
862
863(put '< 'byte-optimizer 'byte-optimize-predicate)
864(put '> 'byte-optimizer 'byte-optimize-predicate)
865(put '<= 'byte-optimizer 'byte-optimize-predicate)
866(put '>= 'byte-optimizer 'byte-optimize-predicate)
867(put '1+ 'byte-optimizer 'byte-optimize-predicate)
868(put '1- 'byte-optimizer 'byte-optimize-predicate)
869(put 'not 'byte-optimizer 'byte-optimize-predicate)
870(put 'null 'byte-optimizer 'byte-optimize-predicate)
871(put 'memq 'byte-optimizer 'byte-optimize-predicate)
872(put 'consp 'byte-optimizer 'byte-optimize-predicate)
873(put 'listp 'byte-optimizer 'byte-optimize-predicate)
874(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
875(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
876(put 'string< 'byte-optimizer 'byte-optimize-predicate)
877(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
878
879(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
880(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
881(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
882(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
883
884(put 'car 'byte-optimizer 'byte-optimize-predicate)
885(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
886(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
887(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
888
889
890;; I'm not convinced that this is necessary. Doesn't the optimizer loop
891;; take care of this? - Jamie
892;; I think this may some times be necessary to reduce ie (quote 5) to 5,
eb8c3be9 893;; so arithmetic optimizers recognize the numeric constant. - Hallvard
1c393159
JB
894(put 'quote 'byte-optimizer 'byte-optimize-quote)
895(defun byte-optimize-quote (form)
896 (if (or (consp (nth 1 form))
897 (and (symbolp (nth 1 form))
898 (not (memq (nth 1 form) '(nil t)))))
899 form
900 (nth 1 form)))
901
902(defun byte-optimize-zerop (form)
903 (cond ((numberp (nth 1 form))
904 (eval form))
905 (byte-compile-delete-errors
906 (list '= (nth 1 form) 0))
907 (form)))
908
909(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
910
911(defun byte-optimize-and (form)
912 ;; Simplify if less than 2 args.
913 ;; if there is a literal nil in the args to `and', throw it and following
914 ;; forms away, and surround the `and' with (progn ... nil).
915 (cond ((null (cdr form)))
916 ((memq nil form)
917 (list 'progn
918 (byte-optimize-and
919 (prog1 (setq form (copy-sequence form))
920 (while (nth 1 form)
921 (setq form (cdr form)))
922 (setcdr form nil)))
923 nil))
924 ((null (cdr (cdr form)))
925 (nth 1 form))
926 ((byte-optimize-predicate form))))
927
928(defun byte-optimize-or (form)
929 ;; Throw away nil's, and simplify if less than 2 args.
930 ;; If there is a literal non-nil constant in the args to `or', throw away all
931 ;; following forms.
932 (if (memq nil form)
933 (setq form (delq nil (copy-sequence form))))
934 (let ((rest form))
935 (while (cdr (setq rest (cdr rest)))
936 (if (byte-compile-trueconstp (car rest))
937 (setq form (copy-sequence form)
938 rest (setcdr (memq (car rest) form) nil))))
939 (if (cdr (cdr form))
940 (byte-optimize-predicate form)
941 (nth 1 form))))
942
943(defun byte-optimize-cond (form)
944 ;; if any clauses have a literal nil as their test, throw them away.
945 ;; if any clause has a literal non-nil constant as its test, throw
946 ;; away all following clauses.
947 (let (rest)
948 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
949 (while (setq rest (assq nil (cdr form)))
950 (setq form (delq rest (copy-sequence form))))
951 (if (memq nil (cdr form))
952 (setq form (delq nil (copy-sequence form))))
953 (setq rest form)
954 (while (setq rest (cdr rest))
955 (cond ((byte-compile-trueconstp (car-safe (car rest)))
956 (cond ((eq rest (cdr form))
957 (setq form
958 (if (cdr (car rest))
959 (if (cdr (cdr (car rest)))
960 (cons 'progn (cdr (car rest)))
961 (nth 1 (car rest)))
962 (car (car rest)))))
963 ((cdr rest)
964 (setq form (copy-sequence form))
965 (setcdr (memq (car rest) form) nil)))
966 (setq rest nil)))))
967 ;;
968 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
969 (if (eq 'cond (car-safe form))
970 (let ((clauses (cdr form)))
971 (if (and (consp (car clauses))
972 (null (cdr (car clauses))))
973 (list 'or (car (car clauses))
974 (byte-optimize-cond
975 (cons (car form) (cdr (cdr form)))))
976 form))
977 form))
978
979(defun byte-optimize-if (form)
980 ;; (if <true-constant> <then> <else...>) ==> <then>
981 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
982 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
983 ;; (if <test> <then> nil) ==> (if <test> <then>)
984 (let ((clause (nth 1 form)))
985 (cond ((byte-compile-trueconstp clause)
986 (nth 2 form))
987 ((null clause)
988 (if (nthcdr 4 form)
989 (cons 'progn (nthcdr 3 form))
990 (nth 3 form)))
991 ((nth 2 form)
992 (if (equal '(nil) (nthcdr 3 form))
993 (list 'if clause (nth 2 form))
994 form))
995 ((or (nth 3 form) (nthcdr 4 form))
97e6527f
KH
996 (list 'if
997 ;; Don't make a double negative;
998 ;; instead, take away the one that is there.
999 (if (and (consp clause) (memq (car clause) '(not null))
1000 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1001 (nth 1 clause)
1002 (list 'not clause))
1c393159
JB
1003 (if (nthcdr 4 form)
1004 (cons 'progn (nthcdr 3 form))
1005 (nth 3 form))))
1006 (t
1007 (list 'progn clause nil)))))
1008
1009(defun byte-optimize-while (form)
1010 (if (nth 1 form)
1011 form))
1012
1013(put 'and 'byte-optimizer 'byte-optimize-and)
1014(put 'or 'byte-optimizer 'byte-optimize-or)
1015(put 'cond 'byte-optimizer 'byte-optimize-cond)
1016(put 'if 'byte-optimizer 'byte-optimize-if)
1017(put 'while 'byte-optimizer 'byte-optimize-while)
1018
1019;; byte-compile-negation-optimizer lives in bytecomp.el
1020(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1021(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1022(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1023
1024
1025(defun byte-optimize-funcall (form)
1026 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1027 ;; (funcall 'foo ...) ==> (foo ...)
1028 (let ((fn (nth 1 form)))
1029 (if (memq (car-safe fn) '(quote function))
1030 (cons (nth 1 fn) (cdr (cdr form)))
1031 form)))
1032
1033(defun byte-optimize-apply (form)
1034 ;; If the last arg is a literal constant, turn this into a funcall.
1035 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1036 (let ((fn (nth 1 form))
1037 (last (nth (1- (length form)) form))) ; I think this really is fastest
1038 (or (if (or (null last)
1039 (eq (car-safe last) 'quote))
1040 (if (listp (nth 1 last))
1041 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
7e1dae73
JB
1042 (nconc (list 'funcall fn) butlast
1043 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1c393159
JB
1044 (byte-compile-warn
1045 "last arg to apply can't be a literal atom: %s"
1046 (prin1-to-string last))
1047 nil))
1048 form)))
1049
1050(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1051(put 'apply 'byte-optimizer 'byte-optimize-apply)
1052
1053
1054(put 'let 'byte-optimizer 'byte-optimize-letX)
1055(put 'let* 'byte-optimizer 'byte-optimize-letX)
1056(defun byte-optimize-letX (form)
1057 (cond ((null (nth 1 form))
1058 ;; No bindings
1059 (cons 'progn (cdr (cdr form))))
1060 ((or (nth 2 form) (nthcdr 3 form))
1061 form)
1062 ;; The body is nil
1063 ((eq (car form) 'let)
5d265171
RS
1064 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1065 '(nil)))
1c393159
JB
1066 (t
1067 (let ((binds (reverse (nth 1 form))))
1068 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1069
1070
1071(put 'nth 'byte-optimizer 'byte-optimize-nth)
1072(defun byte-optimize-nth (form)
97e6527f 1073 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1c393159
JB
1074 (list 'car (if (zerop (nth 1 form))
1075 (nth 2 form)
1076 (list 'cdr (nth 2 form))))
1077 (byte-optimize-predicate form)))
1078
1079(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1080(defun byte-optimize-nthcdr (form)
97e6527f
KH
1081 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1082 (byte-optimize-predicate form)
1083 (let ((count (nth 1 form)))
1c393159 1084 (setq form (nth 2 form))
eec4c3ca 1085 (while (>= (setq count (1- count)) 0)
1c393159
JB
1086 (setq form (list 'cdr form)))
1087 form)))
79d137ff
KH
1088
1089(put 'concat 'byte-optimizer 'byte-optimize-concat)
1090(defun byte-optimize-concat (form)
1091 (let ((args (cdr form))
1092 (constant t))
1093 (while (and args constant)
1094 (or (byte-compile-constp (car args))
1095 (setq constant nil))
1096 (setq args (cdr args)))
1097 (if constant
1098 (eval form)
1099 form)))
f34bba69
DL
1100
1101;; Avoid having to write forward-... with a negative arg for speed.
1102(put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1103(defun byte-optimize-backward-char (form)
1104 (cond ((and (= 2 (safe-length form))
1105 (numberp (nth 1 form)))
1106 (list 'forward-char (eval (- (nth 1 form)))))
1107 ((= 1 (safe-length form))
1108 '(forward-char -1))
1109 (t form)))
1110
1111(put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1112(defun byte-optimize-backward-word (form)
1113 (cond ((and (= 2 (safe-length form))
1114 (numberp (nth 1 form)))
1115 (list 'forward-word (eval (- (nth 1 form)))))
1116 ((= 1 (safe-length form))
1117 '(forward-char -1))
1118 (t form)))
1c393159
JB
1119\f
1120;;; enumerating those functions which need not be called if the returned
1121;;; value is not used. That is, something like
1122;;; (progn (list (something-with-side-effects) (yow))
1123;;; (foo))
1124;;; may safely be turned into
1125;;; (progn (progn (something-with-side-effects) (yow))
1126;;; (foo))
1127;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1128
1129;;; I wonder if I missed any :-\)
1130(let ((side-effect-free-fns
c20a77cc
RS
1131 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1132 assoc assq
1133 boundp buffer-file-name buffer-local-variables buffer-modified-p
1134 buffer-substring
1135 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
f34bba69 1136 char-width copy-marker cos count-lines
c20a77cc
RS
1137 default-boundp default-value documentation downcase
1138 elt exp expt fboundp featurep
1c393159
JB
1139 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1140 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
f34bba69 1141 float floor format frame-visible-p
2412aadb
DL
1142 get gethash get-buffer get-buffer-window getenv get-file-buffer
1143 hash-table-count
c20a77cc 1144 int-to-string
f34bba69
DL
1145 keymap-parent
1146 length local-variable-if-set-p local-variable-p log log10 logand logb logior lognot logxor lsh
c20a77cc
RS
1147 marker-buffer max member memq min mod
1148 next-window nth nthcdr number-to-string
f34bba69 1149 parse-colon-path prefix-numeric-value previous-window
c20a77cc
RS
1150 radians-to-degrees rassq regexp-quote reverse round
1151 sin sqrt string< string= string-equal string-lessp string-to-char
f34bba69
DL
1152 string-to-int string-to-number substring symbol-function symbol-plist
1153 symbol-value
1154 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
c20a77cc
RS
1155 window-buffer window-dedicated-p window-edges window-height
1156 window-hscroll window-minibuffer-p window-width
1c393159 1157 zerop))
1c393159 1158 (side-effect-and-error-free-fns
c20a77cc
RS
1159 '(arrayp atom
1160 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1161 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
f34bba69
DL
1162 current-buffer current-global-map current-indentation
1163 current-local-map current-minor-mode-maps
2412aadb 1164 dot dot-marker eobp eolp eq equal eventp floatp framep
c20a77cc 1165 get-largest-window get-lru-window
2412aadb 1166 hash-table-p
c20a77cc
RS
1167 identity ignore integerp integer-or-marker-p interactive-p
1168 invocation-directory invocation-name
f34bba69
DL
1169 keymapp
1170 line-beginning-position line-end-position list listp
c20a77cc
RS
1171 make-marker mark mark-marker markerp memory-limit minibuffer-window
1172 mouse-movement-p
1173 natnump nlistp not null number-or-marker-p numberp
1174 one-window-p overlayp
1175 point point-marker point-min point-max processp
f34bba69
DL
1176 recent-keys recursion-depth
1177 selected-frame selected-window sequencep stringp subrp symbolp
1178 standard-case-table standard-syntax-table syntax-table-p
1179 this-command-keys this-command-keys-vector this-single-command-keys
1180 this-single-command-raw-keys
c20a77cc
RS
1181 user-full-name user-login-name user-original-login-name
1182 user-real-login-name user-real-uid user-uid
f34bba69 1183 vector vectorp visible-frame-list
c20a77cc 1184 window-configuration-p window-live-p windowp)))
1c393159
JB
1185 (while side-effect-free-fns
1186 (put (car side-effect-free-fns) 'side-effect-free t)
1187 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1188 (while side-effect-and-error-free-fns
1189 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1190 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1191 nil)
1192
1193
1194(defun byte-compile-splice-in-already-compiled-code (form)
1195 ;; form is (byte-code "..." [...] n)
1196 (if (not (memq byte-optimize '(t lap)))
1197 (byte-compile-normal-call form)
1198 (byte-inline-lapcode
1199 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1200 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1201 byte-compile-maxdepth))
1202 (setq byte-compile-depth (1+ byte-compile-depth))))
1203
1204(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1205
1206\f
1207(defconst byte-constref-ops
1208 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1209
1210;;; This function extracts the bitfields from variable-length opcodes.
1211;;; Originally defined in disass.el (which no longer uses it.)
1212
1213(defun disassemble-offset ()
1214 "Don't call this!"
1215 ;; fetch and return the offset for the current opcode.
1216 ;; return NIL if this opcode has no offset
1217 ;; OP, PTR and BYTES are used and set dynamically
1218 (defvar op)
1219 (defvar ptr)
1220 (defvar bytes)
1221 (cond ((< op byte-nth)
1222 (let ((tem (logand op 7)))
1223 (setq op (logand op 248))
1224 (cond ((eq tem 6)
1225 (setq ptr (1+ ptr)) ;offset in next byte
1226 (aref bytes ptr))
1227 ((eq tem 7)
1228 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1229 (+ (aref bytes ptr)
1230 (progn (setq ptr (1+ ptr))
1231 (lsh (aref bytes ptr) 8))))
1232 (t tem)))) ;offset was in opcode
1233 ((>= op byte-constant)
1234 (prog1 (- op byte-constant) ;offset in opcode
1235 (setq op byte-constant)))
1236 ((and (>= op byte-constant2)
1237 (<= op byte-goto-if-not-nil-else-pop))
1238 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1239 (+ (aref bytes ptr)
1240 (progn (setq ptr (1+ ptr))
1241 (lsh (aref bytes ptr) 8))))
3eac9910 1242 ((and (>= op byte-listN)
1c393159
JB
1243 (<= op byte-insertN))
1244 (setq ptr (1+ ptr)) ;offset in next byte
1245 (aref bytes ptr))))
1246
1247
1248;;; This de-compiler is used for inline expansion of compiled functions,
1249;;; and by the disassembler.
1250;;;
41cf13b9
RS
1251;;; This list contains numbers, which are pc values,
1252;;; before each instruction.
1c393159 1253(defun byte-decompile-bytecode (bytes constvec)
eb8c3be9 1254 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1c393159
JB
1255 (let ((byte-compile-constants nil)
1256 (byte-compile-variables nil)
1257 (byte-compile-tag-number 0))
1258 (byte-decompile-bytecode-1 bytes constvec)))
1259
70e1dad8
RS
1260;; As byte-decompile-bytecode, but updates
1261;; byte-compile-{constants, variables, tag-number}.
cffcfe66 1262;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
70e1dad8 1263;; with `goto's destined for the end of the code.
cffcfe66
RS
1264;; That is for use by the compiler.
1265;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1266;; In that case, we put a pc value into the list
1267;; before each insn (or its label).
1268(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1c393159
JB
1269 (let ((length (length bytes))
1270 (ptr 0) optr tag tags op offset
1271 lap tmp
1272 endtag
1273 (retcount 0))
1274 (while (not (= ptr length))
cffcfe66
RS
1275 (or make-spliceable
1276 (setq lap (cons ptr lap)))
1c393159
JB
1277 (setq op (aref bytes ptr)
1278 optr ptr
1279 offset (disassemble-offset)) ; this does dynamic-scope magic
1280 (setq op (aref byte-code-vector op))
3eac9910 1281 (cond ((memq op byte-goto-ops)
1c393159
JB
1282 ;; it's a pc
1283 (setq offset
1284 (cdr (or (assq offset tags)
1285 (car (setq tags
1286 (cons (cons offset
1287 (byte-compile-make-tag))
1288 tags)))))))
1289 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1290 ((memq op byte-constref-ops)))
6ebe9f82
RS
1291 (setq tmp (if (>= offset (length constvec))
1292 (list 'out-of-range offset)
1293 (aref constvec offset))
1c393159
JB
1294 offset (if (eq op 'byte-constant)
1295 (byte-compile-get-constant tmp)
1296 (or (assq tmp byte-compile-variables)
1297 (car (setq byte-compile-variables
1298 (cons (list tmp)
1299 byte-compile-variables)))))))
cffcfe66 1300 ((and make-spliceable
1c393159
JB
1301 (eq op 'byte-return))
1302 (if (= ptr (1- length))
1303 (setq op nil)
1304 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1305 op 'byte-goto))))
1306 ;; lap = ( [ (pc . (op . arg)) ]* )
1307 (setq lap (cons (cons optr (cons op (or offset 0)))
1308 lap))
1309 (setq ptr (1+ ptr)))
1310 ;; take off the dummy nil op that we replaced a trailing "return" with.
1311 (let ((rest lap))
1312 (while rest
41cf13b9
RS
1313 (cond ((numberp (car rest)))
1314 ((setq tmp (assq (car (car rest)) tags))
1c393159
JB
1315 ;; this addr is jumped to
1316 (setcdr rest (cons (cons nil (cdr tmp))
1317 (cdr rest)))
1318 (setq tags (delq tmp tags))
1319 (setq rest (cdr rest))))
1320 (setq rest (cdr rest))))
1321 (if tags (error "optimizer error: missed tags %s" tags))
1322 (if (null (car (cdr (car lap))))
1323 (setq lap (cdr lap)))
1324 (if endtag
1325 (setq lap (cons (cons nil endtag) lap)))
1326 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
41cf13b9
RS
1327 (mapcar (function (lambda (elt)
1328 (if (numberp elt)
1329 elt
1330 (cdr elt))))
1331 (nreverse lap))))
1c393159
JB
1332
1333\f
1334;;; peephole optimizer
1335
1336(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1337
1338(defconst byte-conditional-ops
1339 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1340 byte-goto-if-not-nil-else-pop))
1341
1342(defconst byte-after-unbind-ops
1343 '(byte-constant byte-dup
1344 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
43fd1680 1345 byte-eq byte-not
1c393159 1346 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
cb88b56e
RS
1347 byte-interactive-p)
1348 ;; How about other side-effect-free-ops? Is it safe to move an
1349 ;; error invocation (such as from nth) out of an unwind-protect?
43fd1680
RS
1350 ;; No, it is not, because the unwind-protect forms can alter
1351 ;; the inside of the object to which nth would apply.
1352 ;; For the same reason, byte-equal was deleted from this list.
cb88b56e 1353 "Byte-codes that can be moved past an unbind.")
1c393159
JB
1354
1355(defconst byte-compile-side-effect-and-error-free-ops
1356 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1357 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1358 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1359 byte-point-min byte-following-char byte-preceding-char
1360 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1361 byte-current-buffer byte-interactive-p))
1362
1363(defconst byte-compile-side-effect-free-ops
1364 (nconc
1365 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1366 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1367 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1368 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1369 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1370 byte-member byte-assq byte-quo byte-rem)
1371 byte-compile-side-effect-and-error-free-ops))
1372
8545ff2f 1373;;; This crock is because of the way DEFVAR_BOOL variables work.
1c393159
JB
1374;;; Consider the code
1375;;;
1376;;; (defun foo (flag)
1377;;; (let ((old-pop-ups pop-up-windows)
1378;;; (pop-up-windows flag))
1379;;; (cond ((not (eq pop-up-windows old-pop-ups))
1380;;; (setq old-pop-ups pop-up-windows)
1381;;; ...))))
1382;;;
1383;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1384;;; something else. But if we optimize
1385;;;
1386;;; varref flag
1387;;; varbind pop-up-windows
1388;;; varref pop-up-windows
1389;;; not
1390;;; to
1391;;; varref flag
1392;;; dup
1393;;; varbind pop-up-windows
1394;;; not
1395;;;
1396;;; we break the program, because it will appear that pop-up-windows and
1397;;; old-pop-ups are not EQ when really they are. So we have to know what
1398;;; the BOOL variables are, and not perform this optimization on them.
e5b69caa
DL
1399
1400;;; The variable `byte-boolean-vars' is now primitive and updated
1401;;; automatically by DEFVAR_BOOL.
1c393159
JB
1402
1403(defun byte-optimize-lapcode (lap &optional for-effect)
1404 "Simple peephole optimizer. LAP is both modified and returned."
1405 (let (lap0 off0
1406 lap1 off1
1407 lap2 off2
1408 (keep-going 'first-time)
1409 (add-depth 0)
1410 rest tmp tmp2 tmp3
1411 (side-effect-free (if byte-compile-delete-errors
1412 byte-compile-side-effect-free-ops
1413 byte-compile-side-effect-and-error-free-ops)))
1414 (while keep-going
1415 (or (eq keep-going 'first-time)
1416 (byte-compile-log-lap " ---- next pass"))
1417 (setq rest lap
1418 keep-going nil)
1419 (while rest
1420 (setq lap0 (car rest)
1421 lap1 (nth 1 rest)
1422 lap2 (nth 2 rest))
1423
1424 ;; You may notice that sequences like "dup varset discard" are
1425 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1426 ;; You may be tempted to change this; resist that temptation.
1427 (cond ;;
1428 ;; <side-effect-free> pop --> <deleted>
1429 ;; ...including:
1430 ;; const-X pop --> <deleted>
1431 ;; varref-X pop --> <deleted>
1432 ;; dup pop --> <deleted>
1433 ;;
1434 ((and (eq 'byte-discard (car lap1))
1435 (memq (car lap0) side-effect-free))
1436 (setq keep-going t)
1437 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1438 (setq rest (cdr rest))
1439 (cond ((= tmp 1)
1440 (byte-compile-log-lap
1441 " %s discard\t-->\t<deleted>" lap0)
1442 (setq lap (delq lap0 (delq lap1 lap))))
1443 ((= tmp 0)
1444 (byte-compile-log-lap
1445 " %s discard\t-->\t<deleted> discard" lap0)
1446 (setq lap (delq lap0 lap)))
1447 ((= tmp -1)
1448 (byte-compile-log-lap
1449 " %s discard\t-->\tdiscard discard" lap0)
1450 (setcar lap0 'byte-discard)
1451 (setcdr lap0 0))
1452 ((error "Optimizer error: too much on the stack"))))
1453 ;;
1454 ;; goto*-X X: --> X:
1455 ;;
1456 ((and (memq (car lap0) byte-goto-ops)
1457 (eq (cdr lap0) lap1))
1458 (cond ((eq (car lap0) 'byte-goto)
1459 (setq lap (delq lap0 lap))
1460 (setq tmp "<deleted>"))
1461 ((memq (car lap0) byte-goto-always-pop-ops)
1462 (setcar lap0 (setq tmp 'byte-discard))
1463 (setcdr lap0 0))
1464 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1465 (and (memq byte-optimize-log '(t byte))
1466 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1467 (nth 1 lap1) (nth 1 lap1)
1468 tmp (nth 1 lap1)))
1469 (setq keep-going t))
1470 ;;
1471 ;; varset-X varref-X --> dup varset-X
1472 ;; varbind-X varref-X --> dup varbind-X
1473 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1474 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1475 ;; The latter two can enable other optimizations.
1476 ;;
1477 ((and (eq 'byte-varref (car lap2))
1478 (eq (cdr lap1) (cdr lap2))
1479 (memq (car lap1) '(byte-varset byte-varbind)))
1480 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1481 (not (eq (car lap0) 'byte-constant)))
1482 nil
1483 (setq keep-going t)
1484 (if (memq (car lap0) '(byte-constant byte-dup))
1485 (progn
1486 (setq tmp (if (or (not tmp)
1487 (memq (car (cdr lap0)) '(nil t)))
1488 (cdr lap0)
1489 (byte-compile-get-constant t)))
1490 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1491 lap0 lap1 lap2 lap0 lap1
1492 (cons (car lap0) tmp))
1493 (setcar lap2 (car lap0))
1494 (setcdr lap2 tmp))
1495 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1496 (setcar lap2 (car lap1))
1497 (setcar lap1 'byte-dup)
1498 (setcdr lap1 0)
1499 ;; The stack depth gets locally increased, so we will
1500 ;; increase maxdepth in case depth = maxdepth here.
1501 ;; This can cause the third argument to byte-code to
1502 ;; be larger than necessary.
1503 (setq add-depth 1))))
1504 ;;
1505 ;; dup varset-X discard --> varset-X
1506 ;; dup varbind-X discard --> varbind-X
1507 ;; (the varbind variant can emerge from other optimizations)
1508 ;;
1509 ((and (eq 'byte-dup (car lap0))
1510 (eq 'byte-discard (car lap2))
1511 (memq (car lap1) '(byte-varset byte-varbind)))
1512 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1513 (setq keep-going t
1514 rest (cdr rest))
1515 (setq lap (delq lap0 (delq lap2 lap))))
1516 ;;
1517 ;; not goto-X-if-nil --> goto-X-if-non-nil
1518 ;; not goto-X-if-non-nil --> goto-X-if-nil
1519 ;;
1520 ;; it is wrong to do the same thing for the -else-pop variants.
1521 ;;
1522 ((and (eq 'byte-not (car lap0))
1523 (or (eq 'byte-goto-if-nil (car lap1))
1524 (eq 'byte-goto-if-not-nil (car lap1))))
1525 (byte-compile-log-lap " not %s\t-->\t%s"
1526 lap1
1527 (cons
1528 (if (eq (car lap1) 'byte-goto-if-nil)
1529 'byte-goto-if-not-nil
1530 'byte-goto-if-nil)
1531 (cdr lap1)))
1532 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1533 'byte-goto-if-not-nil
1534 'byte-goto-if-nil))
1535 (setq lap (delq lap0 lap))
1536 (setq keep-going t))
1537 ;;
1538 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1539 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1540 ;;
1541 ;; it is wrong to do the same thing for the -else-pop variants.
1542 ;;
1543 ((and (or (eq 'byte-goto-if-nil (car lap0))
1544 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1545 (eq 'byte-goto (car lap1)) ; gotoY
1546 (eq (cdr lap0) lap2)) ; TAG X
1547 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1548 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1549 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1550 lap0 lap1 lap2
1551 (cons inverse (cdr lap1)) lap2)
1552 (setq lap (delq lap0 lap))
1553 (setcar lap1 inverse)
1554 (setq keep-going t)))
1555 ;;
1556 ;; const goto-if-* --> whatever
1557 ;;
1558 ((and (eq 'byte-constant (car lap0))
1559 (memq (car lap1) byte-conditional-ops))
1560 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1561 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1562 (car (cdr lap0))
1563 (not (car (cdr lap0))))
1564 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1565 lap0 lap1)
1566 (setq rest (cdr rest)
1567 lap (delq lap0 (delq lap1 lap))))
1568 (t
1569 (if (memq (car lap1) byte-goto-always-pop-ops)
1570 (progn
1571 (byte-compile-log-lap " %s %s\t-->\t%s"
1572 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1573 (setq lap (delq lap0 lap)))
1574 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1575 (cons 'byte-goto (cdr lap1))))
1576 (setcar lap1 'byte-goto)))
1577 (setq keep-going t))
1578 ;;
1579 ;; varref-X varref-X --> varref-X dup
1580 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1581 ;; We don't optimize the const-X variations on this here,
1582 ;; because that would inhibit some goto optimizations; we
1583 ;; optimize the const-X case after all other optimizations.
1584 ;;
1585 ((and (eq 'byte-varref (car lap0))
1586 (progn
1587 (setq tmp (cdr rest))
1588 (while (eq (car (car tmp)) 'byte-dup)
1589 (setq tmp (cdr tmp)))
1590 t)
1591 (eq (cdr lap0) (cdr (car tmp)))
1592 (eq 'byte-varref (car (car tmp))))
1593 (if (memq byte-optimize-log '(t byte))
1594 (let ((str ""))
1595 (setq tmp2 (cdr rest))
1596 (while (not (eq tmp tmp2))
1597 (setq tmp2 (cdr tmp2)
1598 str (concat str " dup")))
1599 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1600 lap0 str lap0 lap0 str)))
1601 (setq keep-going t)
1602 (setcar (car tmp) 'byte-dup)
1603 (setcdr (car tmp) 0)
1604 (setq rest tmp))
1605 ;;
1606 ;; TAG1: TAG2: --> TAG1: <deleted>
1607 ;; (and other references to TAG2 are replaced with TAG1)
1608 ;;
1609 ((and (eq (car lap0) 'TAG)
1610 (eq (car lap1) 'TAG))
1611 (and (memq byte-optimize-log '(t byte))
eb8c3be9 1612 (byte-compile-log " adjacent tags %d and %d merged"
1c393159
JB
1613 (nth 1 lap1) (nth 1 lap0)))
1614 (setq tmp3 lap)
1615 (while (setq tmp2 (rassq lap0 tmp3))
1616 (setcdr tmp2 lap1)
1617 (setq tmp3 (cdr (memq tmp2 tmp3))))
1618 (setq lap (delq lap0 lap)
1619 keep-going t))
1620 ;;
1621 ;; unused-TAG: --> <deleted>
1622 ;;
1623 ((and (eq 'TAG (car lap0))
1624 (not (rassq lap0 lap)))
1625 (and (memq byte-optimize-log '(t byte))
1626 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1627 (setq lap (delq lap0 lap)
1628 keep-going t))
1629 ;;
1630 ;; goto ... --> goto <delete until TAG or end>
1631 ;; return ... --> return <delete until TAG or end>
1632 ;;
1633 ((and (memq (car lap0) '(byte-goto byte-return))
1634 (not (memq (car lap1) '(TAG nil))))
1635 (setq tmp rest)
1636 (let ((i 0)
1637 (opt-p (memq byte-optimize-log '(t lap)))
1638 str deleted)
1639 (while (and (setq tmp (cdr tmp))
1640 (not (eq 'TAG (car (car tmp)))))
1641 (if opt-p (setq deleted (cons (car tmp) deleted)
1642 str (concat str " %s")
1643 i (1+ i))))
1644 (if opt-p
1645 (let ((tagstr
1646 (if (eq 'TAG (car (car tmp)))
dec4e22e 1647 (format "%d:" (car (cdr (car tmp))))
1c393159
JB
1648 (or (car tmp) ""))))
1649 (if (< i 6)
1650 (apply 'byte-compile-log-lap-1
1651 (concat " %s" str
1652 " %s\t-->\t%s <deleted> %s")
1653 lap0
1654 (nconc (nreverse deleted)
1655 (list tagstr lap0 tagstr)))
1656 (byte-compile-log-lap
1657 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1658 lap0 i (if (= i 1) "" "s")
1659 tagstr lap0 tagstr))))
1660 (rplacd rest tmp))
1661 (setq keep-going t))
1662 ;;
1663 ;; <safe-op> unbind --> unbind <safe-op>
1664 ;; (this may enable other optimizations.)
1665 ;;
1666 ((and (eq 'byte-unbind (car lap1))
1667 (memq (car lap0) byte-after-unbind-ops))
1668 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1669 (setcar rest lap1)
1670 (setcar (cdr rest) lap0)
1671 (setq keep-going t))
1672 ;;
1673 ;; varbind-X unbind-N --> discard unbind-(N-1)
1674 ;; save-excursion unbind-N --> unbind-(N-1)
1675 ;; save-restriction unbind-N --> unbind-(N-1)
1676 ;;
1677 ((and (eq 'byte-unbind (car lap1))
1678 (memq (car lap0) '(byte-varbind byte-save-excursion
1679 byte-save-restriction))
1680 (< 0 (cdr lap1)))
1681 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1682 (delq lap1 rest))
1683 (if (eq (car lap0) 'byte-varbind)
1684 (setcar rest (cons 'byte-discard 0))
1685 (setq lap (delq lap0 lap)))
1686 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1687 lap0 (cons (car lap1) (1+ (cdr lap1)))
1688 (if (eq (car lap0) 'byte-varbind)
1689 (car rest)
1690 (car (cdr rest)))
1691 (if (and (/= 0 (cdr lap1))
1692 (eq (car lap0) 'byte-varbind))
1693 (car (cdr rest))
1694 ""))
1695 (setq keep-going t))
1696 ;;
1697 ;; goto*-X ... X: goto-Y --> goto*-Y
1698 ;; goto-X ... X: return --> return
1699 ;;
1700 ((and (memq (car lap0) byte-goto-ops)
1701 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1702 '(byte-goto byte-return)))
1703 (cond ((and (not (eq tmp lap0))
1704 (or (eq (car lap0) 'byte-goto)
1705 (eq (car tmp) 'byte-goto)))
1706 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1707 (car lap0) tmp tmp)
1708 (if (eq (car tmp) 'byte-return)
1709 (setcar lap0 'byte-return))
1710 (setcdr lap0 (cdr tmp))
1711 (setq keep-going t))))
1712 ;;
1713 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1714 ;; goto-*-else-pop X ... X: discard --> whatever
1715 ;;
1716 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1717 byte-goto-if-not-nil-else-pop))
1718 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1719 (eval-when-compile
1720 (cons 'byte-discard byte-conditional-ops)))
1721 (not (eq lap0 (car tmp))))
1722 (setq tmp2 (car tmp))
1723 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1724 byte-goto-if-nil)
1725 (byte-goto-if-not-nil-else-pop
1726 byte-goto-if-not-nil))))
1727 (if (memq (car tmp2) tmp3)
1728 (progn (setcar lap0 (car tmp2))
1729 (setcdr lap0 (cdr tmp2))
1730 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1731 (car lap0) tmp2 lap0))
1732 ;; Get rid of the -else-pop's and jump one step further.
1733 (or (eq 'TAG (car (nth 1 tmp)))
1734 (setcdr tmp (cons (byte-compile-make-tag)
1735 (cdr tmp))))
1736 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1737 (car lap0) tmp2 (nth 1 tmp3))
1738 (setcar lap0 (nth 1 tmp3))
1739 (setcdr lap0 (nth 1 tmp)))
1740 (setq keep-going t))
1741 ;;
1742 ;; const goto-X ... X: goto-if-* --> whatever
1743 ;; const goto-X ... X: discard --> whatever
1744 ;;
1745 ((and (eq (car lap0) 'byte-constant)
1746 (eq (car lap1) 'byte-goto)
1747 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1748 (eval-when-compile
1749 (cons 'byte-discard byte-conditional-ops)))
1750 (not (eq lap1 (car tmp))))
1751 (setq tmp2 (car tmp))
1752 (cond ((memq (car tmp2)
1753 (if (null (car (cdr lap0)))
1754 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1755 '(byte-goto-if-not-nil
1756 byte-goto-if-not-nil-else-pop)))
1757 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1758 lap0 tmp2 lap0 tmp2)
1759 (setcar lap1 (car tmp2))
1760 (setcdr lap1 (cdr tmp2))
1761 ;; Let next step fix the (const,goto-if*) sequence.
1762 (setq rest (cons nil rest)))
1763 (t
1764 ;; Jump one step further
1765 (byte-compile-log-lap
1766 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1767 lap0 tmp2)
1768 (or (eq 'TAG (car (nth 1 tmp)))
1769 (setcdr tmp (cons (byte-compile-make-tag)
1770 (cdr tmp))))
1771 (setcdr lap1 (car (cdr tmp)))
1772 (setq lap (delq lap0 lap))))
1773 (setq keep-going t))
1774 ;;
1775 ;; X: varref-Y ... varset-Y goto-X -->
1776 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1777 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1778 ;; (This is so usual for while loops that it is worth handling).
1779 ;;
1780 ((and (eq (car lap1) 'byte-varset)
1781 (eq (car lap2) 'byte-goto)
1782 (not (memq (cdr lap2) rest)) ;Backwards jump
1783 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1784 'byte-varref)
1785 (eq (cdr (car tmp)) (cdr lap1))
1786 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1787 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1788 (let ((newtag (byte-compile-make-tag)))
1789 (byte-compile-log-lap
1790 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1791 (nth 1 (cdr lap2)) (car tmp)
1792 lap1 lap2
1793 (nth 1 (cdr lap2)) (car tmp)
1794 (nth 1 newtag) 'byte-dup lap1
1795 (cons 'byte-goto newtag)
1796 )
1797 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1798 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1799 (setq add-depth 1)
1800 (setq keep-going t))
1801 ;;
1802 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1803 ;; (This can pull the loop test to the end of the loop)
1804 ;;
1805 ((and (eq (car lap0) 'byte-goto)
1806 (eq (car lap1) 'TAG)
1807 (eq lap1
1808 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1809 (memq (car (car tmp))
1810 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1811 byte-goto-if-nil-else-pop)))
1812;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1813;; lap0 lap1 (cdr lap0) (car tmp))
1814 (let ((newtag (byte-compile-make-tag)))
1815 (byte-compile-log-lap
1816 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1817 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1818 (cons (cdr (assq (car (car tmp))
1819 '((byte-goto-if-nil . byte-goto-if-not-nil)
1820 (byte-goto-if-not-nil . byte-goto-if-nil)
1821 (byte-goto-if-nil-else-pop .
1822 byte-goto-if-not-nil-else-pop)
1823 (byte-goto-if-not-nil-else-pop .
1824 byte-goto-if-nil-else-pop))))
1825 newtag)
1826
1827 (nth 1 newtag)
1828 )
1829 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1830 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1831 ;; We can handle this case but not the -if-not-nil case,
1832 ;; because we won't know which non-nil constant to push.
1833 (setcdr rest (cons (cons 'byte-constant
1834 (byte-compile-get-constant nil))
1835 (cdr rest))))
1836 (setcar lap0 (nth 1 (memq (car (car tmp))
1837 '(byte-goto-if-nil-else-pop
1838 byte-goto-if-not-nil
1839 byte-goto-if-nil
1840 byte-goto-if-not-nil
1841 byte-goto byte-goto))))
1842 )
1843 (setq keep-going t))
1844 )
1845 (setq rest (cdr rest)))
1846 )
1847 ;; Cleanup stage:
1848 ;; Rebuild byte-compile-constants / byte-compile-variables.
1849 ;; Simple optimizations that would inhibit other optimizations if they
1850 ;; were done in the optimizing loop, and optimizations which there is no
1851 ;; need to do more than once.
1852 (setq byte-compile-constants nil
1853 byte-compile-variables nil)
1854 (setq rest lap)
1855 (while rest
1856 (setq lap0 (car rest)
1857 lap1 (nth 1 rest))
1858 (if (memq (car lap0) byte-constref-ops)
98a602e3 1859 (if (not (eq (car lap0) 'byte-constant))
1c393159
JB
1860 (or (memq (cdr lap0) byte-compile-variables)
1861 (setq byte-compile-variables (cons (cdr lap0)
1862 byte-compile-variables)))
1863 (or (memq (cdr lap0) byte-compile-constants)
1864 (setq byte-compile-constants (cons (cdr lap0)
1865 byte-compile-constants)))))
1866 (cond (;;
1867 ;; const-C varset-X const-C --> const-C dup varset-X
1868 ;; const-C varbind-X const-C --> const-C dup varbind-X
1869 ;;
1870 (and (eq (car lap0) 'byte-constant)
1871 (eq (car (nth 2 rest)) 'byte-constant)
1872 (eq (cdr lap0) (car (nth 2 rest)))
1873 (memq (car lap1) '(byte-varbind byte-varset)))
1874 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1875 lap0 lap1 lap0 lap0 lap1)
1876 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1877 (setcar (cdr rest) (cons 'byte-dup 0))
1878 (setq add-depth 1))
1879 ;;
1880 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1881 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1882 ;;
1883 ((memq (car lap0) '(byte-constant byte-varref))
1884 (setq tmp rest
1885 tmp2 nil)
1886 (while (progn
1887 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1888 (and (eq (cdr lap0) (cdr (car tmp)))
1889 (eq (car lap0) (car (car tmp)))))
1890 (setcar tmp (cons 'byte-dup 0))
1891 (setq tmp2 t))
1892 (if tmp2
1893 (byte-compile-log-lap
dec4e22e 1894 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1c393159
JB
1895 ;;
1896 ;; unbind-N unbind-M --> unbind-(N+M)
1897 ;;
1898 ((and (eq 'byte-unbind (car lap0))
1899 (eq 'byte-unbind (car lap1)))
1900 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1901 (cons 'byte-unbind
1902 (+ (cdr lap0) (cdr lap1))))
1903 (setq keep-going t)
1904 (setq lap (delq lap0 lap))
1905 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1906 )
1907 (setq rest (cdr rest)))
1908 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1909 lap)
1910
1ffa4286 1911(provide 'byte-opt)
1c393159
JB
1912
1913\f
1914;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1915;; itself, compile some of its most used recursive functions (at load time).
1916;;
1917(eval-when-compile
96d699f3 1918 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1c393159
JB
1919 (assq 'byte-code (symbol-function 'byte-optimize-form))
1920 (let ((byte-optimize nil)
1921 (byte-compile-warnings nil))
1922 (mapcar '(lambda (x)
1923 (or noninteractive (message "compiling %s..." x))
1924 (byte-compile x)
1925 (or noninteractive (message "compiling %s...done" x)))
1926 '(byte-optimize-form
1927 byte-optimize-body
1928 byte-optimize-predicate
1929 byte-optimize-binary-predicate
1930 ;; Inserted some more than necessary, to speed it up.
1931 byte-optimize-form-code-walker
1932 byte-optimize-lapcode))))
1933 nil)
3eac9910
JB
1934
1935;;; byte-opt.el ends here