(autoload-generated-file): New function.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
CommitLineData
55535639 1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
3eac9910 2
3731a850 3;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004,
f0fa15c5 4;; 2005, 2006, 2007 Free Software Foundation, Inc.
3eac9910
JB
5
6;; Author: Jamie Zawinski <jwz@lucid.com>
7;; Hallvard Furuseth <hbf@ulrik.uio.no>
e1f0df62 8;; Maintainer: FSF
3eac9910 9;; Keywords: internal
1c393159
JB
10
11;; This file is part of GNU Emacs.
12
13;; GNU Emacs is free software; you can redistribute it and/or modify
14;; it under the terms of the GNU General Public License as published by
3eac9910 15;; the Free Software Foundation; either version 2, or (at your option)
1c393159
JB
16;; any later version.
17
18;; GNU Emacs is distributed in the hope that it will be useful,
19;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21;; GNU General Public License for more details.
22
23;; You should have received a copy of the GNU General Public License
b578f267 24;; along with GNU Emacs; see the file COPYING. If not, write to the
3a35cf56
LK
25;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
26;; Boston, MA 02110-1301, USA.
1c393159 27
3eac9910
JB
28;;; Commentary:
29
b578f267
EN
30;; ========================================================================
31;; "No matter how hard you try, you can't make a racehorse out of a pig.
32;; You can, however, make a faster pig."
33;;
34;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
a1506d29 35;; makes it be a VW Bug with fuel injection and a turbocharger... You're
b578f267
EN
36;; still not going to make it go faster than 70 mph, but it might be easier
37;; to get it there.
38;;
1c393159 39
b578f267
EN
40;; TO DO:
41;;
72d8b544 42;; (apply (lambda (x &rest y) ...) 1 (foo))
b578f267
EN
43;;
44;; maintain a list of functions known not to access any global variables
45;; (actually, give them a 'dynamically-safe property) and then
46;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
47;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
48;; by recursing on this, we might be able to eliminate the entire let.
49;; However certain variables should never have their bindings optimized
50;; away, because they affect everything.
51;; (put 'debug-on-error 'binding-is-magic t)
52;; (put 'debug-on-abort 'binding-is-magic t)
53;; (put 'debug-on-next-call 'binding-is-magic t)
b578f267
EN
54;; (put 'inhibit-quit 'binding-is-magic t)
55;; (put 'quit-flag 'binding-is-magic t)
56;; (put 't 'binding-is-magic t)
57;; (put 'nil 'binding-is-magic t)
58;; possibly also
59;; (put 'gc-cons-threshold 'binding-is-magic t)
60;; (put 'track-mouse 'binding-is-magic t)
61;; others?
62;;
63;; Simple defsubsts often produce forms like
64;; (let ((v1 (f1)) (v2 (f2)) ...)
65;; (FN v1 v2 ...))
a1506d29 66;; It would be nice if we could optimize this to
b578f267
EN
67;; (FN (f1) (f2) ...)
68;; but we can't unless FN is dynamically-safe (it might be dynamically
69;; referring to the bindings that the lambda arglist established.)
70;; One of the uncountable lossages introduced by dynamic scope...
71;;
a1506d29 72;; Maybe there should be a control-structure that says "turn on
b578f267
EN
73;; fast-and-loose type-assumptive optimizations here." Then when
74;; we see a form like (car foo) we can from then on assume that
75;; the variable foo is of type cons, and optimize based on that.
a1506d29 76;; But, this won't win much because of (you guessed it) dynamic
b578f267
EN
77;; scope. Anything down the stack could change the value.
78;; (Another reason it doesn't work is that it is perfectly valid
79;; to call car with a null argument.) A better approach might
80;; be to allow type-specification of the form
81;; (put 'foo 'arg-types '(float (list integer) dynamic))
82;; (put 'foo 'result-type 'bool)
83;; It should be possible to have these types checked to a certain
84;; degree.
85;;
86;; collapse common subexpressions
87;;
88;; It would be nice if redundant sequences could be factored out as well,
89;; when they are known to have no side-effects:
90;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91;; but beware of traps like
92;; (cons (list x y) (list x y))
93;;
94;; Tail-recursion elimination is not really possible in Emacs Lisp.
95;; Tail-recursion elimination is almost always impossible when all variables
96;; have dynamic scope, but given that the "return" byteop requires the
97;; binding stack to be empty (rather than emptying it itself), there can be
98;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99;; make any bindings.
100;;
101;; Here is an example of an Emacs Lisp function which could safely be
102;; byte-compiled tail-recursively:
103;;
104;; (defun tail-map (fn list)
105;; (cond (list
106;; (funcall fn (car list))
107;; (tail-map fn (cdr list)))))
108;;
109;; However, if there was even a single let-binding around the COND,
110;; it could not be byte-compiled, because there would be an "unbind"
a1506d29 111;; byte-op between the final "call" and "return." Adding a
b578f267
EN
112;; Bunbind_all byteop would fix this.
113;;
114;; (defun foo (x y z) ... (foo a b c))
115;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118;;
119;; this also can be considered tail recursion:
120;;
121;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122;; could generalize this by doing the optimization
123;; (goto X) ... X: (return) --> (return)
124;;
125;; But this doesn't solve all of the problems: although by doing tail-
126;; recursion elimination in this way, the call-stack does not grow, the
127;; binding-stack would grow with each recursive step, and would eventually
128;; overflow. I don't believe there is any way around this without lexical
129;; scope.
130;;
131;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132;;
a1506d29
JB
133;; Idea: the form (lexical-scope) in a file means that the file may be
134;; compiled lexically. This proclamation is file-local. Then, within
b578f267
EN
135;; that file, "let" would establish lexical bindings, and "let-dynamic"
136;; would do things the old way. (Or we could use CL "declare" forms.)
137;; We'd have to notice defvars and defconsts, since those variables should
138;; always be dynamic, and attempting to do a lexical binding of them
139;; should simply do a dynamic binding instead.
140;; But! We need to know about variables that were not necessarily defvarred
141;; in the file being compiled (doing a boundp check isn't good enough.)
142;; Fdefvar() would have to be modified to add something to the plist.
143;;
a1506d29
JB
144;; A major disadvantage of this scheme is that the interpreter and compiler
145;; would have different semantics for files compiled with (dynamic-scope).
b578f267 146;; Since this would be a file-local optimization, there would be no way to
a1506d29 147;; modify the interpreter to obey this (unless the loader was hacked
b578f267 148;; in some grody way, but that's a really bad idea.)
97e6527f
KH
149
150;; Other things to consider:
151
e856a453
SM
152;; ;; Associative math should recognize subcalls to identical function:
153;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154;; ;; This should generate the same as (1+ x) and (1- x)
c1fe6512 155
e856a453
SM
156;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157;; ;; An awful lot of functions always return a non-nil value. If they're
158;; ;; error free also they may act as true-constants.
c1fe6512 159
e856a453
SM
160;; (disassemble (lambda (x) (and (point) (foo))))
161;; ;; When
162;; ;; - all but one arguments to a function are constant
163;; ;; - the non-constant argument is an if-expression (cond-expression?)
164;; ;; then the outer function can be distributed. If the guarding
165;; ;; condition is side-effect-free [assignment-free] then the other
166;; ;; arguments may be any expressions. Since, however, the code size
167;; ;; can increase this way they should be "simple". Compare:
c1fe6512 168
e856a453
SM
169;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
c1fe6512 171
e856a453
SM
172;; ;; (car (cons A B)) -> (prog1 A B)
173;; (disassemble (lambda (x) (car (cons (foo) 42))))
c1fe6512 174
e856a453
SM
175;; ;; (cdr (cons A B)) -> (progn A B)
176;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
c1fe6512 177
e856a453
SM
178;; ;; (car (list A B ...)) -> (prog1 A B ...)
179;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
c1fe6512 180
e856a453
SM
181;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
182;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
97e6527f 183
1c393159 184
3eac9910 185;;; Code:
1c393159 186
c144230d
MR
187(require 'bytecomp)
188
1c393159
JB
189(defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
55535639 191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
1c393159
JB
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
72d8b544 195 (mapcar (lambda (arg)
1c393159
JB
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
216 c
217 (format "(%s %s)" c a))))
218 args)))))
219
220(defmacro byte-compile-log-lap (format-string &rest args)
e856a453
SM
221 `(and (memq byte-optimize-log '(t byte))
222 (byte-compile-log-lap-1 ,format-string ,@args)))
1c393159
JB
223
224\f
225;;; byte-compile optimizers to support inlining
226
227(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
228
229(defun byte-optimize-inline-handler (form)
230 "byte-optimize-handler for the `inline' special-form."
231 (cons 'progn
232 (mapcar
72d8b544 233 (lambda (sexp)
08d72d13
SM
234 (let ((f (car-safe sexp)))
235 (if (and (symbolp f)
236 (or (cdr (assq f byte-compile-function-environment))
237 (not (or (not (fboundp f))
238 (cdr (assq f byte-compile-macro-environment))
239 (and (consp (setq f (symbol-function f)))
240 (eq (car f) 'macro))
241 (subrp f)))))
242 (byte-compile-inline-expand sexp)
243 sexp)))
1c393159
JB
244 (cdr form))))
245
246
70e1dad8
RS
247;; Splice the given lap code into the current instruction stream.
248;; If it has any labels in it, you're responsible for making sure there
249;; are no collisions, and that byte-compile-tag-number is reasonable
250;; after this is spliced in. The provided list is destroyed.
1c393159 251(defun byte-inline-lapcode (lap)
1c393159
JB
252 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
253
1c393159
JB
254(defun byte-compile-inline-expand (form)
255 (let* ((name (car form))
256 (fn (or (cdr (assq name byte-compile-function-environment))
257 (and (fboundp name) (symbol-function name)))))
258 (if (null fn)
259 (progn
244bbdc5 260 (byte-compile-warn "attempt to inline `%s' before it was defined"
c59a4192 261 name)
1c393159
JB
262 form)
263 ;; else
78ecf55a 264 (when (and (consp fn) (eq (car fn) 'autoload))
28881a56 265 (load (nth 1 fn))
78ecf55a
GM
266 (setq fn (or (and (fboundp name) (symbol-function name))
267 (cdr (assq name byte-compile-function-environment)))))
1c393159 268 (if (and (consp fn) (eq (car fn) 'autoload))
0abfa90d 269 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
f61b7b7f 270 (if (and (symbolp fn) (not (eq fn t)))
1c393159 271 (byte-compile-inline-expand (cons fn (cdr form)))
96d699f3 272 (if (byte-code-function-p fn)
70b40ea1 273 (let (string)
2b29a376 274 (fetch-bytecode fn)
70b40ea1 275 (setq string (aref fn 1))
e856a453 276 ;; Isn't it an error for `string' not to be unibyte?? --stef
70b40ea1
RS
277 (if (fboundp 'string-as-unibyte)
278 (setq string (string-as-unibyte string)))
e856a453
SM
279 (cons `(lambda ,(aref fn 0)
280 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
2b29a376 281 (cdr form)))
223a2a62
KH
282 (if (eq (car-safe fn) 'lambda)
283 (cons fn (cdr form))
284 ;; Give up on inlining.
285 form))))))
1c393159 286
e856a453 287;; ((lambda ...) ...)
1c393159
JB
288(defun byte-compile-unfold-lambda (form &optional name)
289 (or name (setq name "anonymous lambda"))
290 (let ((lambda (car form))
291 (values (cdr form)))
96d699f3 292 (if (byte-code-function-p lambda)
7e1dae73
JB
293 (setq lambda (list 'lambda (aref lambda 0)
294 (list 'byte-code (aref lambda 1)
295 (aref lambda 2) (aref lambda 3)))))
1c393159
JB
296 (let ((arglist (nth 1 lambda))
297 (body (cdr (cdr lambda)))
298 optionalp restp
299 bindings)
300 (if (and (stringp (car body)) (cdr body))
301 (setq body (cdr body)))
302 (if (and (consp (car body)) (eq 'interactive (car (car body))))
303 (setq body (cdr body)))
304 (while arglist
305 (cond ((eq (car arglist) '&optional)
306 ;; ok, I'll let this slide because funcall_lambda() does...
307 ;; (if optionalp (error "multiple &optional keywords in %s" name))
308 (if restp (error "&optional found after &rest in %s" name))
309 (if (null (cdr arglist))
310 (error "nothing after &optional in %s" name))
311 (setq optionalp t))
312 ((eq (car arglist) '&rest)
313 ;; ...but it is by no stretch of the imagination a reasonable
314 ;; thing that funcall_lambda() allows (&rest x y) and
315 ;; (&rest x &optional y) in arglists.
316 (if (null (cdr arglist))
317 (error "nothing after &rest in %s" name))
318 (if (cdr (cdr arglist))
319 (error "multiple vars after &rest in %s" name))
320 (setq restp t))
321 (restp
322 (setq bindings (cons (list (car arglist)
323 (and values (cons 'list values)))
324 bindings)
325 values nil))
326 ((and (not optionalp) (null values))
244bbdc5 327 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
1c393159
JB
328 (setq arglist nil values 'too-few))
329 (t
330 (setq bindings (cons (list (car arglist) (car values))
331 bindings)
332 values (cdr values))))
333 (setq arglist (cdr arglist)))
334 (if values
335 (progn
336 (or (eq values 'too-few)
337 (byte-compile-warn
244bbdc5 338 "attempt to open-code `%s' with too many arguments" name))
1c393159 339 form)
a1506d29 340
936ae731
GM
341 ;; The following leads to infinite recursion when loading a
342 ;; file containing `(defsubst f () (f))', and then trying to
343 ;; byte-compile that file.
344 ;(setq body (mapcar 'byte-optimize-form body)))
a1506d29
JB
345
346 (let ((newform
1c393159
JB
347 (if bindings
348 (cons 'let (cons (nreverse bindings) body))
349 (cons 'progn body))))
350 (byte-compile-log " %s\t==>\t%s" form newform)
351 newform)))))
352
353\f
354;;; implementing source-level optimizers
355
356(defun byte-optimize-form-code-walker (form for-effect)
357 ;;
358 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
359 ;; we need to have special knowledge of the syntax of the special forms
360 ;; like let and defun (that's why they're special forms :-). (Actually,
361 ;; the important aspect is that they are subrs that don't evaluate all of
362 ;; their args.)
363 ;;
364 (let ((fn (car-safe form))
365 tmp)
366 (cond ((not (consp form))
367 (if (not (and for-effect
368 (or byte-compile-delete-errors
369 (not (symbolp form))
370 (eq form t))))
371 form))
372 ((eq fn 'quote)
373 (if (cdr (cdr form))
244bbdc5 374 (byte-compile-warn "malformed quote form: `%s'"
1c393159
JB
375 (prin1-to-string form)))
376 ;; map (quote nil) to nil to simplify optimizer logic.
377 ;; map quoted constants to nil if for-effect (just because).
378 (and (nth 1 form)
379 (not for-effect)
380 form))
96d699f3 381 ((or (byte-code-function-p fn)
1c393159
JB
382 (eq 'lambda (car-safe fn)))
383 (byte-compile-unfold-lambda form))
384 ((memq fn '(let let*))
385 ;; recursively enter the optimizer for the bindings and body
386 ;; of a let or let*. This for depth-firstness: forms that
387 ;; are more deeply nested are optimized first.
388 (cons fn
389 (cons
72d8b544 390 (mapcar (lambda (binding)
1c393159
JB
391 (if (symbolp binding)
392 binding
393 (if (cdr (cdr binding))
244bbdc5 394 (byte-compile-warn "malformed let binding: `%s'"
1c393159
JB
395 (prin1-to-string binding)))
396 (list (car binding)
397 (byte-optimize-form (nth 1 binding) nil))))
398 (nth 1 form))
399 (byte-optimize-body (cdr (cdr form)) for-effect))))
400 ((eq fn 'cond)
401 (cons fn
72d8b544 402 (mapcar (lambda (clause)
1c393159
JB
403 (if (consp clause)
404 (cons
405 (byte-optimize-form (car clause) nil)
406 (byte-optimize-body (cdr clause) for-effect))
244bbdc5 407 (byte-compile-warn "malformed cond form: `%s'"
1c393159
JB
408 (prin1-to-string clause))
409 clause))
410 (cdr form))))
411 ((eq fn 'progn)
412 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
413 (if (cdr (cdr form))
414 (progn
415 (setq tmp (byte-optimize-body (cdr form) for-effect))
416 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
417 (byte-optimize-form (nth 1 form) for-effect)))
418 ((eq fn 'prog1)
419 (if (cdr (cdr form))
420 (cons 'prog1
421 (cons (byte-optimize-form (nth 1 form) for-effect)
422 (byte-optimize-body (cdr (cdr form)) t)))
423 (byte-optimize-form (nth 1 form) for-effect)))
424 ((eq fn 'prog2)
425 (cons 'prog2
426 (cons (byte-optimize-form (nth 1 form) t)
427 (cons (byte-optimize-form (nth 2 form) for-effect)
428 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
a1506d29 429
2754fefa 430 ((memq fn '(save-excursion save-restriction save-current-buffer))
1c393159
JB
431 ;; those subrs which have an implicit progn; it's not quite good
432 ;; enough to treat these like normal function calls.
433 ;; This can turn (save-excursion ...) into (save-excursion) which
434 ;; will be optimized away in the lap-optimize pass.
435 (cons fn (byte-optimize-body (cdr form) for-effect)))
a1506d29 436
1c393159
JB
437 ((eq fn 'with-output-to-temp-buffer)
438 ;; this is just like the above, except for the first argument.
439 (cons fn
440 (cons
441 (byte-optimize-form (nth 1 form) nil)
442 (byte-optimize-body (cdr (cdr form)) for-effect))))
a1506d29 443
1c393159 444 ((eq fn 'if)
aefd695a 445 (when (< (length form) 3)
244bbdc5 446 (byte-compile-warn "too few arguments for `if'"))
1c393159
JB
447 (cons fn
448 (cons (byte-optimize-form (nth 1 form) nil)
449 (cons
450 (byte-optimize-form (nth 2 form) for-effect)
451 (byte-optimize-body (nthcdr 3 form) for-effect)))))
a1506d29 452
1c393159
JB
453 ((memq fn '(and or)) ; remember, and/or are control structures.
454 ;; take forms off the back until we can't any more.
eb8c3be9 455 ;; In the future it could conceivably be a problem that the
1c393159
JB
456 ;; subexpressions of these forms are optimized in the reverse
457 ;; order, but it's ok for now.
458 (if for-effect
459 (let ((backwards (reverse (cdr form))))
460 (while (and backwards
461 (null (setcar backwards
462 (byte-optimize-form (car backwards)
463 for-effect))))
464 (setq backwards (cdr backwards)))
465 (if (and (cdr form) (null backwards))
466 (byte-compile-log
467 " all subforms of %s called for effect; deleted" form))
468 (and backwards
e8f3c355 469 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
1c393159
JB
470 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
471
472 ((eq fn 'interactive)
244bbdc5 473 (byte-compile-warn "misplaced interactive spec: `%s'"
1c393159
JB
474 (prin1-to-string form))
475 nil)
a1506d29 476
1c393159
JB
477 ((memq fn '(defun defmacro function
478 condition-case save-window-excursion))
479 ;; These forms are compiled as constants or by breaking out
480 ;; all the subexpressions and compiling them separately.
481 form)
482
483 ((eq fn 'unwind-protect)
484 ;; the "protected" part of an unwind-protect is compiled (and thus
485 ;; optimized) as a top-level form, so don't do it here. But the
486 ;; non-protected part has the same for-effect status as the
487 ;; unwind-protect itself. (The protected part is always for effect,
488 ;; but that isn't handled properly yet.)
489 (cons fn
490 (cons (byte-optimize-form (nth 1 form) for-effect)
491 (cdr (cdr form)))))
a1506d29 492
1c393159
JB
493 ((eq fn 'catch)
494 ;; the body of a catch is compiled (and thus optimized) as a
495 ;; top-level form, so don't do it here. The tag is never
496 ;; for-effect. The body should have the same for-effect status
497 ;; as the catch form itself, but that isn't handled properly yet.
498 (cons fn
499 (cons (byte-optimize-form (nth 1 form) nil)
500 (cdr (cdr form)))))
501
8c26d7b3
RS
502 ((eq fn 'ignore)
503 ;; Don't treat the args to `ignore' as being
504 ;; computed for effect. We want to avoid the warnings
505 ;; that might occur if they were treated that way.
506 ;; However, don't actually bother calling `ignore'.
507 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
508
1c393159
JB
509 ;; If optimization is on, this is the only place that macros are
510 ;; expanded. If optimization is off, then macroexpansion happens
511 ;; in byte-compile-form. Otherwise, the macros are already expanded
512 ;; by the time that is reached.
513 ((not (eq form
514 (setq form (macroexpand form
515 byte-compile-macro-environment))))
516 (byte-optimize-form form for-effect))
5428ee02
RS
517
518 ;; Support compiler macros as in cl.el.
519 ((and (fboundp 'compiler-macroexpand)
4f493b7c
RS
520 (symbolp (car-safe form))
521 (get (car-safe form) 'cl-compiler-macro)
5428ee02 522 (not (eq form
4cead7a2
RS
523 (with-no-warnings
524 (setq form (compiler-macroexpand form))))))
5428ee02 525 (byte-optimize-form form for-effect))
a1506d29 526
1c393159 527 ((not (symbolp fn))
5f11d42c
PJ
528 (byte-compile-warn "`%s' is a malformed function"
529 (prin1-to-string fn))
1c393159
JB
530 form)
531
532 ((and for-effect (setq tmp (get fn 'side-effect-free))
533 (or byte-compile-delete-errors
534 (eq tmp 'error-free)
8c26d7b3
RS
535 ;; Detect the expansion of (pop foo).
536 ;; There is no need to compile the call to `car' there.
537 (and (eq fn 'car)
538 (eq (car-safe (cadr form)) 'prog1)
539 (let ((var (cadr (cadr form)))
540 (last (nth 2 (cadr form))))
541 (and (symbolp var)
542 (null (nthcdr 3 (cadr form)))
543 (eq (car-safe last) 'setq)
544 (eq (cadr last) var)
545 (eq (car-safe (nth 2 last)) 'cdr)
546 (eq (cadr (nth 2 last)) var))))
1c393159 547 (progn
1fbb84da
CY
548 (byte-compile-warn "value returned from %s is unused"
549 (prin1-to-string form))
1c393159
JB
550 nil)))
551 (byte-compile-log " %s called for effect; deleted" fn)
552 ;; appending a nil here might not be necessary, but it can't hurt.
553 (byte-optimize-form
554 (cons 'progn (append (cdr form) '(nil))) t))
a1506d29 555
1c393159
JB
556 (t
557 ;; Otherwise, no args can be considered to be for-effect,
558 ;; even if the called function is for-effect, because we
559 ;; don't know anything about that function.
fb67ebdf
CY
560 (let ((args (mapcar #'byte-optimize-form (cdr form))))
561 (if (and (get fn 'pure)
562 (byte-optimize-all-constp args))
563 (list 'quote (apply fn (mapcar #'eval args)))
564 (cons fn args)))))))
565
566(defun byte-optimize-all-constp (list)
567 "Non-nil iff all elements of LIST satisfy `byte-compile-constp'."
568 (let ((constant t))
569 (while (and list constant)
570 (unless (byte-compile-constp (car list))
571 (setq constant nil))
572 (setq list (cdr list)))
573 constant))
1c393159
JB
574
575(defun byte-optimize-form (form &optional for-effect)
576 "The source-level pass of the optimizer."
577 ;;
578 ;; First, optimize all sub-forms of this one.
579 (setq form (byte-optimize-form-code-walker form for-effect))
580 ;;
581 ;; after optimizing all subforms, optimize this form until it doesn't
582 ;; optimize any further. This means that some forms will be passed through
583 ;; the optimizer many times, but that's necessary to make the for-effect
584 ;; processing do as much as possible.
585 ;;
586 (let (opt new)
587 (if (and (consp form)
588 (symbolp (car form))
589 (or (and for-effect
590 ;; we don't have any of these yet, but we might.
591 (setq opt (get (car form) 'byte-for-effect-optimizer)))
592 (setq opt (get (car form) 'byte-optimizer)))
593 (not (eq form (setq new (funcall opt form)))))
594 (progn
595;; (if (equal form new) (error "bogus optimizer -- %s" opt))
596 (byte-compile-log " %s\t==>\t%s" form new)
597 (setq new (byte-optimize-form new for-effect))
598 new)
599 form)))
600
601
602(defun byte-optimize-body (forms all-for-effect)
603 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
604 ;; forms, all but the last of which are optimized with the assumption that
605 ;; they are being called for effect. the last is for-effect as well if
606 ;; all-for-effect is true. returns a new list of forms.
607 (let ((rest forms)
608 (result nil)
609 fe new)
610 (while rest
611 (setq fe (or all-for-effect (cdr rest)))
612 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
613 (if (or new (not fe))
614 (setq result (cons new result)))
615 (setq rest (cdr rest)))
616 (nreverse result)))
617
618\f
e856a453
SM
619;; some source-level optimizers
620;;
621;; when writing optimizers, be VERY careful that the optimizer returns
622;; something not EQ to its argument if and ONLY if it has made a change.
623;; This implies that you cannot simply destructively modify the list;
624;; you must return something not EQ to it if you make an optimization.
625;;
626;; It is now safe to optimize code such that it introduces new bindings.
1c393159 627
eb8c3be9 628;; I'd like this to be a defsubst, but let's not be self-referential...
1c393159
JB
629(defmacro byte-compile-trueconstp (form)
630 ;; Returns non-nil if FORM is a non-nil constant.
e1f0df62
DL
631 `(cond ((consp ,form) (eq (car ,form) 'quote))
632 ((not (symbolp ,form)))
633 ((eq ,form t))
634 ((keywordp ,form))))
1c393159 635
70e1dad8 636;; If the function is being called with constant numeric args,
a1506d29 637;; evaluate as much as possible at compile-time. This optimizer
70e1dad8 638;; assumes that the function is associative, like + or *.
1c393159 639(defun byte-optimize-associative-math (form)
1c393159
JB
640 (let ((args nil)
641 (constants nil)
642 (rest (cdr form)))
643 (while rest
644 (if (numberp (car rest))
645 (setq constants (cons (car rest) constants))
646 (setq args (cons (car rest) args)))
647 (setq rest (cdr rest)))
648 (if (cdr constants)
649 (if args
650 (list (car form)
651 (apply (car form) constants)
652 (if (cdr args)
653 (cons (car form) (nreverse args))
654 (car args)))
655 (apply (car form) constants))
656 form)))
657
70e1dad8 658;; If the function is being called with constant numeric args,
97e6527f
KH
659;; evaluate as much as possible at compile-time. This optimizer
660;; assumes that the function satisfies
661;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
662;; like - and /.
1c393159 663(defun byte-optimize-nonassociative-math (form)
1c393159
JB
664 (if (or (not (numberp (car (cdr form))))
665 (not (numberp (car (cdr (cdr form))))))
666 form
667 (let ((constant (car (cdr form)))
668 (rest (cdr (cdr form))))
669 (while (numberp (car rest))
670 (setq constant (funcall (car form) constant (car rest))
671 rest (cdr rest)))
672 (if rest
673 (cons (car form) (cons constant rest))
674 constant))))
675
676;;(defun byte-optimize-associative-two-args-math (form)
677;; (setq form (byte-optimize-associative-math form))
678;; (if (consp form)
679;; (byte-optimize-two-args-left form)
680;; form))
681
682;;(defun byte-optimize-nonassociative-two-args-math (form)
683;; (setq form (byte-optimize-nonassociative-math form))
684;; (if (consp form)
685;; (byte-optimize-two-args-right form)
686;; form))
687
97e6527f 688(defun byte-optimize-approx-equal (x y)
1fa68f21 689 (<= (* (abs (- x y)) 100) (abs (+ x y))))
97e6527f
KH
690
691;; Collect all the constants from FORM, after the STARTth arg,
692;; and apply FUN to them to make one argument at the end.
693;; For functions that can handle floats, that optimization
694;; can be incorrect because reordering can cause an overflow
695;; that would otherwise be avoided by encountering an arg that is a float.
696;; We avoid this problem by (1) not moving float constants and
697;; (2) not moving anything if it would cause an overflow.
1c393159
JB
698(defun byte-optimize-delay-constants-math (form start fun)
699 ;; Merge all FORM's constants from number START, call FUN on them
700 ;; and put the result at the end.
97e6527f
KH
701 (let ((rest (nthcdr (1- start) form))
702 (orig form)
703 ;; t means we must check for overflow.
704 (overflow (memq fun '(+ *))))
1c393159 705 (while (cdr (setq rest (cdr rest)))
97e6527f 706 (if (integerp (car rest))
1c393159
JB
707 (let (constants)
708 (setq form (copy-sequence form)
709 rest (nthcdr (1- start) form))
710 (while (setq rest (cdr rest))
97e6527f 711 (cond ((integerp (car rest))
1c393159
JB
712 (setq constants (cons (car rest) constants))
713 (setcar rest nil))))
97e6527f
KH
714 ;; If necessary, check now for overflow
715 ;; that might be caused by reordering.
716 (if (and overflow
717 ;; We have overflow if the result of doing the arithmetic
718 ;; on floats is not even close to the result
719 ;; of doing it on integers.
720 (not (byte-optimize-approx-equal
721 (apply fun (mapcar 'float constants))
722 (float (apply fun constants)))))
723 (setq form orig)
724 (setq form (nconc (delq nil form)
725 (list (apply fun (nreverse constants)))))))))
1c393159
JB
726 form))
727
728(defun byte-optimize-plus (form)
729 (setq form (byte-optimize-delay-constants-math form 1 '+))
730 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
731 ;;(setq form (byte-optimize-associative-two-args-math form))
732 (cond ((null (cdr form))
733 (condition-case ()
734 (eval form)
735 (error form)))
e856a453
SM
736;;; It is not safe to delete the function entirely
737;;; (actually, it would be safe if we know the sole arg
738;;; is not a marker).
739;;; ((null (cdr (cdr form))) (nth 1 form))
ea9d6371
RS
740 ((null (cddr form))
741 (if (numberp (nth 1 form))
742 (nth 1 form)
743 form))
1fa68f21
RS
744 ((and (null (nthcdr 3 form))
745 (or (memq (nth 1 form) '(1 -1))
746 (memq (nth 2 form) '(1 -1))))
79d137ff 747 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
1fa68f21
RS
748 (let ((integer
749 (if (memq (nth 1 form) '(1 -1))
750 (nth 1 form)
751 (nth 2 form)))
752 (other
753 (if (memq (nth 1 form) '(1 -1))
754 (nth 2 form)
755 (nth 1 form))))
756 (list (if (eq integer 1) '1+ '1-)
757 other)))
1c393159
JB
758 (t form)))
759
760(defun byte-optimize-minus (form)
761 ;; Put constants at the end, except the last constant.
762 (setq form (byte-optimize-delay-constants-math form 2 '+))
763 ;; Now only first and last element can be a number.
764 (let ((last (car (reverse (nthcdr 3 form)))))
765 (cond ((eq 0 last)
766 ;; (- x y ... 0) --> (- x y ...)
767 (setq form (copy-sequence form))
768 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
1fa68f21
RS
769 ((equal (nthcdr 2 form) '(1))
770 (setq form (list '1- (nth 1 form))))
771 ((equal (nthcdr 2 form) '(-1))
772 (setq form (list '1+ (nth 1 form))))
1c393159
JB
773 ;; If form is (- CONST foo... CONST), merge first and last.
774 ((and (numberp (nth 1 form))
775 (numberp last))
776 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
777 (delq last (copy-sequence (nthcdr 3 form))))))))
e856a453
SM
778;;; It is not safe to delete the function entirely
779;;; (actually, it would be safe if we know the sole arg
780;;; is not a marker).
3315a6a3
RS
781;;; (if (eq (nth 2 form) 0)
782;;; (nth 1 form) ; (- x 0) --> x
1c393159
JB
783 (byte-optimize-predicate
784 (if (and (null (cdr (cdr (cdr form))))
785 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
786 (cons (car form) (cdr (cdr form)))
3315a6a3
RS
787 form))
788;;; )
789 )
1c393159
JB
790
791(defun byte-optimize-multiply (form)
792 (setq form (byte-optimize-delay-constants-math form 1 '*))
793 ;; If there is a constant in FORM, it is now the last element.
794 (cond ((null (cdr form)) 1)
e856a453
SM
795;;; It is not safe to delete the function entirely
796;;; (actually, it would be safe if we know the sole arg
797;;; is not a marker or if it appears in other arithmetic).
3315a6a3 798;;; ((null (cdr (cdr form))) (nth 1 form))
1c393159 799 ((let ((last (car (reverse form))))
97e6527f 800 (cond ((eq 0 last) (cons 'progn (cdr form)))
1c393159
JB
801 ((eq 1 last) (delq 1 (copy-sequence form)))
802 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
803 ((and (eq 2 last)
804 (memq t (mapcar 'symbolp (cdr form))))
805 (prog1 (setq form (delq 2 (copy-sequence form)))
806 (while (not (symbolp (car (setq form (cdr form))))))
807 (setcar form (list '+ (car form) (car form)))))
808 (form))))))
809
810(defsubst byte-compile-butlast (form)
811 (nreverse (cdr (reverse form))))
812
813(defun byte-optimize-divide (form)
814 (setq form (byte-optimize-delay-constants-math form 2 '*))
815 (let ((last (car (reverse (cdr (cdr form))))))
816 (if (numberp last)
199dd758 817 (cond ((= (length form) 3)
97e6527f
KH
818 (if (and (numberp (nth 1 form))
819 (not (zerop last))
820 (condition-case nil
821 (/ (nth 1 form) last)
822 (error nil)))
823 (setq form (list 'progn (/ (nth 1 form) last)))))
199dd758 824 ((= last 1)
1c393159
JB
825 (setq form (byte-compile-butlast form)))
826 ((numberp (nth 1 form))
827 (setq form (cons (car form)
828 (cons (/ (nth 1 form) last)
829 (byte-compile-butlast (cdr (cdr form)))))
830 last nil))))
a1506d29 831 (cond
3315a6a3
RS
832;;; ((null (cdr (cdr form)))
833;;; (nth 1 form))
1c393159
JB
834 ((eq (nth 1 form) 0)
835 (append '(progn) (cdr (cdr form)) '(0)))
836 ((eq last -1)
837 (list '- (if (nthcdr 3 form)
838 (byte-compile-butlast form)
839 (nth 1 form))))
840 (form))))
841
842(defun byte-optimize-logmumble (form)
843 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
844 (byte-optimize-predicate
845 (cond ((memq 0 form)
846 (setq form (if (eq (car form) 'logand)
847 (cons 'progn (cdr form))
848 (delq 0 (copy-sequence form)))))
849 ((and (eq (car-safe form) 'logior)
850 (memq -1 form))
97e6527f 851 (cons 'progn (cdr form)))
1c393159
JB
852 (form))))
853
854
855(defun byte-optimize-binary-predicate (form)
856 (if (byte-compile-constp (nth 1 form))
857 (if (byte-compile-constp (nth 2 form))
858 (condition-case ()
859 (list 'quote (eval form))
860 (error form))
861 ;; This can enable some lapcode optimizations.
862 (list (car form) (nth 2 form) (nth 1 form)))
863 form))
864
865(defun byte-optimize-predicate (form)
866 (let ((ok t)
867 (rest (cdr form)))
868 (while (and rest ok)
869 (setq ok (byte-compile-constp (car rest))
870 rest (cdr rest)))
871 (if ok
872 (condition-case ()
873 (list 'quote (eval form))
874 (error form))
875 form)))
876
877(defun byte-optimize-identity (form)
878 (if (and (cdr form) (null (cdr (cdr form))))
879 (nth 1 form)
244bbdc5 880 (byte-compile-warn "identity called with %d arg%s, but requires 1"
1c393159
JB
881 (length (cdr form))
882 (if (= 1 (length (cdr form))) "" "s"))
883 form))
884
885(put 'identity 'byte-optimizer 'byte-optimize-identity)
886
887(put '+ 'byte-optimizer 'byte-optimize-plus)
888(put '* 'byte-optimizer 'byte-optimize-multiply)
889(put '- 'byte-optimizer 'byte-optimize-minus)
890(put '/ 'byte-optimizer 'byte-optimize-divide)
891(put 'max 'byte-optimizer 'byte-optimize-associative-math)
892(put 'min 'byte-optimizer 'byte-optimize-associative-math)
893
894(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
895(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
1c393159
JB
896(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
897(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
898(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
899
900(put '< 'byte-optimizer 'byte-optimize-predicate)
901(put '> 'byte-optimizer 'byte-optimize-predicate)
902(put '<= 'byte-optimizer 'byte-optimize-predicate)
903(put '>= 'byte-optimizer 'byte-optimize-predicate)
904(put '1+ 'byte-optimizer 'byte-optimize-predicate)
905(put '1- 'byte-optimizer 'byte-optimize-predicate)
906(put 'not 'byte-optimizer 'byte-optimize-predicate)
907(put 'null 'byte-optimizer 'byte-optimize-predicate)
908(put 'memq 'byte-optimizer 'byte-optimize-predicate)
909(put 'consp 'byte-optimizer 'byte-optimize-predicate)
910(put 'listp 'byte-optimizer 'byte-optimize-predicate)
911(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
912(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
913(put 'string< 'byte-optimizer 'byte-optimize-predicate)
914(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
915
916(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
917(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
918(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
919(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
920
921(put 'car 'byte-optimizer 'byte-optimize-predicate)
922(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
923(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
924(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
925
926
a1506d29 927;; I'm not convinced that this is necessary. Doesn't the optimizer loop
1c393159
JB
928;; take care of this? - Jamie
929;; I think this may some times be necessary to reduce ie (quote 5) to 5,
eb8c3be9 930;; so arithmetic optimizers recognize the numeric constant. - Hallvard
1c393159
JB
931(put 'quote 'byte-optimizer 'byte-optimize-quote)
932(defun byte-optimize-quote (form)
933 (if (or (consp (nth 1 form))
934 (and (symbolp (nth 1 form))
e1f0df62 935 (not (byte-compile-const-symbol-p form))))
1c393159
JB
936 form
937 (nth 1 form)))
938
939(defun byte-optimize-zerop (form)
940 (cond ((numberp (nth 1 form))
941 (eval form))
942 (byte-compile-delete-errors
943 (list '= (nth 1 form) 0))
944 (form)))
945
946(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
947
948(defun byte-optimize-and (form)
949 ;; Simplify if less than 2 args.
950 ;; if there is a literal nil in the args to `and', throw it and following
951 ;; forms away, and surround the `and' with (progn ... nil).
952 (cond ((null (cdr form)))
953 ((memq nil form)
954 (list 'progn
955 (byte-optimize-and
956 (prog1 (setq form (copy-sequence form))
957 (while (nth 1 form)
958 (setq form (cdr form)))
959 (setcdr form nil)))
960 nil))
961 ((null (cdr (cdr form)))
962 (nth 1 form))
963 ((byte-optimize-predicate form))))
964
965(defun byte-optimize-or (form)
966 ;; Throw away nil's, and simplify if less than 2 args.
967 ;; If there is a literal non-nil constant in the args to `or', throw away all
968 ;; following forms.
969 (if (memq nil form)
970 (setq form (delq nil (copy-sequence form))))
971 (let ((rest form))
972 (while (cdr (setq rest (cdr rest)))
973 (if (byte-compile-trueconstp (car rest))
974 (setq form (copy-sequence form)
975 rest (setcdr (memq (car rest) form) nil))))
976 (if (cdr (cdr form))
977 (byte-optimize-predicate form)
978 (nth 1 form))))
979
980(defun byte-optimize-cond (form)
981 ;; if any clauses have a literal nil as their test, throw them away.
982 ;; if any clause has a literal non-nil constant as its test, throw
983 ;; away all following clauses.
984 (let (rest)
985 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
986 (while (setq rest (assq nil (cdr form)))
987 (setq form (delq rest (copy-sequence form))))
988 (if (memq nil (cdr form))
989 (setq form (delq nil (copy-sequence form))))
990 (setq rest form)
991 (while (setq rest (cdr rest))
992 (cond ((byte-compile-trueconstp (car-safe (car rest)))
993 (cond ((eq rest (cdr form))
994 (setq form
995 (if (cdr (car rest))
996 (if (cdr (cdr (car rest)))
997 (cons 'progn (cdr (car rest)))
998 (nth 1 (car rest)))
999 (car (car rest)))))
1000 ((cdr rest)
1001 (setq form (copy-sequence form))
1002 (setcdr (memq (car rest) form) nil)))
1003 (setq rest nil)))))
1004 ;;
1005 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1006 (if (eq 'cond (car-safe form))
1007 (let ((clauses (cdr form)))
1008 (if (and (consp (car clauses))
1009 (null (cdr (car clauses))))
1010 (list 'or (car (car clauses))
1011 (byte-optimize-cond
1012 (cons (car form) (cdr (cdr form)))))
1013 form))
1014 form))
1015
1016(defun byte-optimize-if (form)
1017 ;; (if <true-constant> <then> <else...>) ==> <then>
1018 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1019 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1020 ;; (if <test> <then> nil) ==> (if <test> <then>)
1021 (let ((clause (nth 1 form)))
1022 (cond ((byte-compile-trueconstp clause)
1023 (nth 2 form))
1024 ((null clause)
1025 (if (nthcdr 4 form)
1026 (cons 'progn (nthcdr 3 form))
1027 (nth 3 form)))
1028 ((nth 2 form)
1029 (if (equal '(nil) (nthcdr 3 form))
1030 (list 'if clause (nth 2 form))
1031 form))
1032 ((or (nth 3 form) (nthcdr 4 form))
97e6527f
KH
1033 (list 'if
1034 ;; Don't make a double negative;
1035 ;; instead, take away the one that is there.
1036 (if (and (consp clause) (memq (car clause) '(not null))
1037 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1038 (nth 1 clause)
1039 (list 'not clause))
1c393159
JB
1040 (if (nthcdr 4 form)
1041 (cons 'progn (nthcdr 3 form))
1042 (nth 3 form))))
1043 (t
1044 (list 'progn clause nil)))))
1045
1046(defun byte-optimize-while (form)
aefd695a 1047 (when (< (length form) 2)
244bbdc5 1048 (byte-compile-warn "too few arguments for `while'"))
1c393159
JB
1049 (if (nth 1 form)
1050 form))
1051
1052(put 'and 'byte-optimizer 'byte-optimize-and)
1053(put 'or 'byte-optimizer 'byte-optimize-or)
1054(put 'cond 'byte-optimizer 'byte-optimize-cond)
1055(put 'if 'byte-optimizer 'byte-optimize-if)
1056(put 'while 'byte-optimizer 'byte-optimize-while)
1057
1058;; byte-compile-negation-optimizer lives in bytecomp.el
1059(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1060(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1061(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1062
1063
1064(defun byte-optimize-funcall (form)
72d8b544
SM
1065 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1066 ;; (funcall foo ...) ==> (foo ...)
1c393159
JB
1067 (let ((fn (nth 1 form)))
1068 (if (memq (car-safe fn) '(quote function))
1069 (cons (nth 1 fn) (cdr (cdr form)))
1070 form)))
1071
1072(defun byte-optimize-apply (form)
1073 ;; If the last arg is a literal constant, turn this into a funcall.
1074 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1075 (let ((fn (nth 1 form))
1076 (last (nth (1- (length form)) form))) ; I think this really is fastest
1077 (or (if (or (null last)
1078 (eq (car-safe last) 'quote))
1079 (if (listp (nth 1 last))
1080 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
7e1dae73 1081 (nconc (list 'funcall fn) butlast
72d8b544 1082 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1c393159 1083 (byte-compile-warn
244bbdc5 1084 "last arg to apply can't be a literal atom: `%s'"
1c393159
JB
1085 (prin1-to-string last))
1086 nil))
1087 form)))
1088
1089(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1090(put 'apply 'byte-optimizer 'byte-optimize-apply)
1091
1092
1093(put 'let 'byte-optimizer 'byte-optimize-letX)
1094(put 'let* 'byte-optimizer 'byte-optimize-letX)
1095(defun byte-optimize-letX (form)
1096 (cond ((null (nth 1 form))
1097 ;; No bindings
1098 (cons 'progn (cdr (cdr form))))
1099 ((or (nth 2 form) (nthcdr 3 form))
1100 form)
1101 ;; The body is nil
1102 ((eq (car form) 'let)
5d265171
RS
1103 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1104 '(nil)))
1c393159
JB
1105 (t
1106 (let ((binds (reverse (nth 1 form))))
1107 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1108
1109
1110(put 'nth 'byte-optimizer 'byte-optimize-nth)
1111(defun byte-optimize-nth (form)
56cfa244
DL
1112 (if (= (safe-length form) 3)
1113 (if (memq (nth 1 form) '(0 1))
1114 (list 'car (if (zerop (nth 1 form))
1115 (nth 2 form)
1116 (list 'cdr (nth 2 form))))
1117 (byte-optimize-predicate form))
1118 form))
1c393159
JB
1119
1120(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1121(defun byte-optimize-nthcdr (form)
56cfa244
DL
1122 (if (= (safe-length form) 3)
1123 (if (memq (nth 1 form) '(0 1 2))
1124 (let ((count (nth 1 form)))
1125 (setq form (nth 2 form))
1126 (while (>= (setq count (1- count)) 0)
1127 (setq form (list 'cdr form)))
1128 form)
1129 (byte-optimize-predicate form))
1130 form))
79d137ff 1131
e5c230f4
DL
1132;; Fixme: delete-char -> delete-region (byte-coded)
1133;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1134;; string-make-multibyte for constant args.
1135
1136(put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1137(defun byte-optimize-featurep (form)
e8f3c355
SM
1138 ;; Emacs-21's byte-code doesn't run under XEmacs anyway, so we can
1139 ;; safely optimize away this test.
e5c230f4
DL
1140 (if (equal '((quote xemacs)) (cdr-safe form))
1141 nil
1142 form))
66ff2893
SM
1143
1144(put 'set 'byte-optimizer 'byte-optimize-set)
1145(defun byte-optimize-set (form)
1146 (let ((var (car-safe (cdr-safe form))))
1147 (cond
1148 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
e64e9e6a 1149 `(setq ,(cadr var) ,@(cddr form)))
66ff2893
SM
1150 ((and (eq (car-safe var) 'make-local-variable)
1151 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1152 (consp (cdr var)))
1153 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1154 (t form))))
1c393159 1155\f
e856a453
SM
1156;; enumerating those functions which need not be called if the returned
1157;; value is not used. That is, something like
1158;; (progn (list (something-with-side-effects) (yow))
1159;; (foo))
1160;; may safely be turned into
1161;; (progn (progn (something-with-side-effects) (yow))
1162;; (foo))
1163;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1164
1165;; Some of these functions have the side effect of allocating memory
1166;; and it would be incorrect to replace two calls with one.
1167;; But we don't try to do those kinds of optimizations,
1168;; so it is safe to list such functions here.
1169;; Some of these functions return values that depend on environment
1170;; state, so that constant folding them would be wrong,
1171;; but we don't do constant folding based on this list.
1172
1173;; However, at present the only optimization we normally do
1174;; is delete calls that need not occur, and we only do that
1175;; with the error-free functions.
1176
1177;; I wonder if I missed any :-\)
1c393159 1178(let ((side-effect-free-fns
c20a77cc
RS
1179 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1180 assoc assq
1181 boundp buffer-file-name buffer-local-variables buffer-modified-p
1fc9ee97 1182 buffer-substring byte-code-function-p
049a65a3 1183 capitalize car-less-than-car car cdr ceiling char-after char-before
1fc9ee97
RS
1184 char-equal char-to-string char-width
1185 compare-strings concat coordinates-in-window-p
1186 copy-alist copy-sequence copy-marker cos count-lines
1187 decode-time default-boundp default-value documentation downcase
1188 elt exp expt encode-time error-message-string
1189 fboundp fceiling featurep ffloor
1c393159
JB
1190 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1191 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1fc9ee97
RS
1192 float float-time floor format format-time-string frame-visible-p
1193 fround ftruncate
2412aadb
DL
1194 get gethash get-buffer get-buffer-window getenv get-file-buffer
1195 hash-table-count
1fc9ee97 1196 int-to-string intern-soft
f34bba69 1197 keymap-parent
e1f0df62
DL
1198 length local-variable-if-set-p local-variable-p log log10 logand
1199 logb logior lognot logxor lsh
1fc9ee97 1200 make-list make-string make-symbol
d9881cf1 1201 marker-buffer max member memq min mod multibyte-char-to-unibyte
c20a77cc 1202 next-window nth nthcdr number-to-string
1fc9ee97
RS
1203 parse-colon-path plist-get plist-member
1204 prefix-numeric-value previous-window prin1-to-string propertize
1205 radians-to-degrees rassq rassoc read-from-string regexp-quote
1206 region-beginning region-end reverse round
049a65a3 1207 sin sqrt string string< string= string-equal string-lessp string-to-char
1fc9ee97 1208 string-to-int string-to-number substring sxhash symbol-function
d9881cf1
DL
1209 symbol-name symbol-plist symbol-value string-make-unibyte
1210 string-make-multibyte string-as-multibyte string-as-unibyte
1fc9ee97
RS
1211 tan truncate
1212 unibyte-char-to-multibyte upcase user-full-name
1213 user-login-name user-original-login-name user-variable-p
1214 vconcat
c20a77cc
RS
1215 window-buffer window-dedicated-p window-edges window-height
1216 window-hscroll window-minibuffer-p window-width
1c393159 1217 zerop))
1c393159 1218 (side-effect-and-error-free-fns
c20a77cc 1219 '(arrayp atom
a1506d29 1220 bobp bolp bool-vector-p
1fc9ee97 1221 buffer-end buffer-list buffer-size buffer-string bufferp
c20a77cc 1222 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
f34bba69 1223 current-buffer current-global-map current-indentation
1fc9ee97
RS
1224 current-local-map current-minor-mode-maps current-time
1225 current-time-string current-time-zone
1226 eobp eolp eq equal eventp
049a65a3 1227 floatp following-char framep
c20a77cc 1228 get-largest-window get-lru-window
2412aadb 1229 hash-table-p
c20a77cc
RS
1230 identity ignore integerp integer-or-marker-p interactive-p
1231 invocation-directory invocation-name
f34bba69
DL
1232 keymapp
1233 line-beginning-position line-end-position list listp
c20a77cc
RS
1234 make-marker mark mark-marker markerp memory-limit minibuffer-window
1235 mouse-movement-p
1236 natnump nlistp not null number-or-marker-p numberp
1237 one-window-p overlayp
049a65a3 1238 point point-marker point-min point-max preceding-char processp
f34bba69 1239 recent-keys recursion-depth
1fc9ee97
RS
1240 safe-length selected-frame selected-window sequencep
1241 standard-case-table standard-syntax-table stringp subrp symbolp
1242 syntax-table syntax-table-p
f34bba69
DL
1243 this-command-keys this-command-keys-vector this-single-command-keys
1244 this-single-command-raw-keys
c20a77cc 1245 user-real-login-name user-real-uid user-uid
f34bba69 1246 vector vectorp visible-frame-list
1fc9ee97 1247 wholenump window-configuration-p window-live-p windowp)))
1c393159
JB
1248 (while side-effect-free-fns
1249 (put (car side-effect-free-fns) 'side-effect-free t)
1250 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1251 (while side-effect-and-error-free-fns
1252 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1253 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1254 nil)
1255
fb67ebdf
CY
1256\f
1257;; pure functions are side-effect free functions whose values depend
1258;; only on their arguments. For these functions, calls with constant
1259;; arguments can be evaluated at compile time. This may shift run time
1260;; errors to compile time.
1261
1262(let ((pure-fns
1263 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1264 (while pure-fns
1265 (put (car pure-fns) 'pure t)
1266 (setq pure-fns (cdr pure-fns)))
1267 nil)
1c393159
JB
1268
1269(defun byte-compile-splice-in-already-compiled-code (form)
1270 ;; form is (byte-code "..." [...] n)
1271 (if (not (memq byte-optimize '(t lap)))
1272 (byte-compile-normal-call form)
1273 (byte-inline-lapcode
1274 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1275 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1276 byte-compile-maxdepth))
1277 (setq byte-compile-depth (1+ byte-compile-depth))))
1278
1279(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1280
1281\f
1282(defconst byte-constref-ops
1283 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1284
e856a453
SM
1285;; This function extracts the bitfields from variable-length opcodes.
1286;; Originally defined in disass.el (which no longer uses it.)
1c393159
JB
1287
1288(defun disassemble-offset ()
1289 "Don't call this!"
1290 ;; fetch and return the offset for the current opcode.
f0529b5b 1291 ;; return nil if this opcode has no offset
1c393159
JB
1292 ;; OP, PTR and BYTES are used and set dynamically
1293 (defvar op)
1294 (defvar ptr)
1295 (defvar bytes)
1296 (cond ((< op byte-nth)
1297 (let ((tem (logand op 7)))
1298 (setq op (logand op 248))
1299 (cond ((eq tem 6)
1300 (setq ptr (1+ ptr)) ;offset in next byte
1301 (aref bytes ptr))
1302 ((eq tem 7)
1303 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1304 (+ (aref bytes ptr)
1305 (progn (setq ptr (1+ ptr))
1306 (lsh (aref bytes ptr) 8))))
1307 (t tem)))) ;offset was in opcode
1308 ((>= op byte-constant)
1309 (prog1 (- op byte-constant) ;offset in opcode
1310 (setq op byte-constant)))
1311 ((and (>= op byte-constant2)
1312 (<= op byte-goto-if-not-nil-else-pop))
1313 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1314 (+ (aref bytes ptr)
1315 (progn (setq ptr (1+ ptr))
1316 (lsh (aref bytes ptr) 8))))
3eac9910 1317 ((and (>= op byte-listN)
1c393159
JB
1318 (<= op byte-insertN))
1319 (setq ptr (1+ ptr)) ;offset in next byte
1320 (aref bytes ptr))))
1321
1322
e856a453
SM
1323;; This de-compiler is used for inline expansion of compiled functions,
1324;; and by the disassembler.
1325;;
1326;; This list contains numbers, which are pc values,
1327;; before each instruction.
1c393159 1328(defun byte-decompile-bytecode (bytes constvec)
eb8c3be9 1329 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1c393159
JB
1330 (let ((byte-compile-constants nil)
1331 (byte-compile-variables nil)
1332 (byte-compile-tag-number 0))
1333 (byte-decompile-bytecode-1 bytes constvec)))
1334
70e1dad8
RS
1335;; As byte-decompile-bytecode, but updates
1336;; byte-compile-{constants, variables, tag-number}.
cffcfe66 1337;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
70e1dad8 1338;; with `goto's destined for the end of the code.
cffcfe66
RS
1339;; That is for use by the compiler.
1340;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1341;; In that case, we put a pc value into the list
1342;; before each insn (or its label).
1343(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1c393159 1344 (let ((length (length bytes))
08d72d13 1345 (ptr 0) optr tags op offset
1c393159 1346 lap tmp
08d72d13 1347 endtag)
1c393159 1348 (while (not (= ptr length))
cffcfe66
RS
1349 (or make-spliceable
1350 (setq lap (cons ptr lap)))
1c393159
JB
1351 (setq op (aref bytes ptr)
1352 optr ptr
1353 offset (disassemble-offset)) ; this does dynamic-scope magic
1354 (setq op (aref byte-code-vector op))
3eac9910 1355 (cond ((memq op byte-goto-ops)
1c393159
JB
1356 ;; it's a pc
1357 (setq offset
1358 (cdr (or (assq offset tags)
1359 (car (setq tags
1360 (cons (cons offset
1361 (byte-compile-make-tag))
1362 tags)))))))
1363 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1364 ((memq op byte-constref-ops)))
6ebe9f82
RS
1365 (setq tmp (if (>= offset (length constvec))
1366 (list 'out-of-range offset)
1367 (aref constvec offset))
1c393159
JB
1368 offset (if (eq op 'byte-constant)
1369 (byte-compile-get-constant tmp)
1370 (or (assq tmp byte-compile-variables)
1371 (car (setq byte-compile-variables
1372 (cons (list tmp)
1373 byte-compile-variables)))))))
cffcfe66 1374 ((and make-spliceable
1c393159
JB
1375 (eq op 'byte-return))
1376 (if (= ptr (1- length))
1377 (setq op nil)
1378 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1379 op 'byte-goto))))
1380 ;; lap = ( [ (pc . (op . arg)) ]* )
1381 (setq lap (cons (cons optr (cons op (or offset 0)))
1382 lap))
1383 (setq ptr (1+ ptr)))
1384 ;; take off the dummy nil op that we replaced a trailing "return" with.
1385 (let ((rest lap))
1386 (while rest
41cf13b9
RS
1387 (cond ((numberp (car rest)))
1388 ((setq tmp (assq (car (car rest)) tags))
1c393159
JB
1389 ;; this addr is jumped to
1390 (setcdr rest (cons (cons nil (cdr tmp))
1391 (cdr rest)))
1392 (setq tags (delq tmp tags))
1393 (setq rest (cdr rest))))
1394 (setq rest (cdr rest))))
1395 (if tags (error "optimizer error: missed tags %s" tags))
1396 (if (null (car (cdr (car lap))))
1397 (setq lap (cdr lap)))
1398 (if endtag
1399 (setq lap (cons (cons nil endtag) lap)))
1400 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
41cf13b9
RS
1401 (mapcar (function (lambda (elt)
1402 (if (numberp elt)
1403 elt
1404 (cdr elt))))
1405 (nreverse lap))))
1c393159
JB
1406
1407\f
1408;;; peephole optimizer
1409
1410(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1411
1412(defconst byte-conditional-ops
1413 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1414 byte-goto-if-not-nil-else-pop))
1415
1416(defconst byte-after-unbind-ops
1417 '(byte-constant byte-dup
1418 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
43fd1680 1419 byte-eq byte-not
1c393159 1420 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
cb88b56e
RS
1421 byte-interactive-p)
1422 ;; How about other side-effect-free-ops? Is it safe to move an
1423 ;; error invocation (such as from nth) out of an unwind-protect?
43fd1680
RS
1424 ;; No, it is not, because the unwind-protect forms can alter
1425 ;; the inside of the object to which nth would apply.
1426 ;; For the same reason, byte-equal was deleted from this list.
cb88b56e 1427 "Byte-codes that can be moved past an unbind.")
1c393159
JB
1428
1429(defconst byte-compile-side-effect-and-error-free-ops
1430 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1431 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1432 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1433 byte-point-min byte-following-char byte-preceding-char
1434 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1435 byte-current-buffer byte-interactive-p))
1436
1437(defconst byte-compile-side-effect-free-ops
a1506d29 1438 (nconc
1c393159
JB
1439 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1440 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1441 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1442 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1443 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1444 byte-member byte-assq byte-quo byte-rem)
1445 byte-compile-side-effect-and-error-free-ops))
1446
e856a453
SM
1447;; This crock is because of the way DEFVAR_BOOL variables work.
1448;; Consider the code
1449;;
1450;; (defun foo (flag)
1451;; (let ((old-pop-ups pop-up-windows)
1452;; (pop-up-windows flag))
1453;; (cond ((not (eq pop-up-windows old-pop-ups))
1454;; (setq old-pop-ups pop-up-windows)
1455;; ...))))
1456;;
1457;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1458;; something else. But if we optimize
1459;;
1460;; varref flag
1461;; varbind pop-up-windows
1462;; varref pop-up-windows
1463;; not
1464;; to
1465;; varref flag
1466;; dup
1467;; varbind pop-up-windows
1468;; not
1469;;
1470;; we break the program, because it will appear that pop-up-windows and
1471;; old-pop-ups are not EQ when really they are. So we have to know what
1472;; the BOOL variables are, and not perform this optimization on them.
1473
1474;; The variable `byte-boolean-vars' is now primitive and updated
1475;; automatically by DEFVAR_BOOL.
1c393159
JB
1476
1477(defun byte-optimize-lapcode (lap &optional for-effect)
e856a453
SM
1478 "Simple peephole optimizer. LAP is both modified and returned.
1479If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
944425c0
DL
1480 (let (lap0
1481 lap1
1482 lap2
1c393159
JB
1483 (keep-going 'first-time)
1484 (add-depth 0)
1485 rest tmp tmp2 tmp3
1486 (side-effect-free (if byte-compile-delete-errors
1487 byte-compile-side-effect-free-ops
1488 byte-compile-side-effect-and-error-free-ops)))
1489 (while keep-going
1490 (or (eq keep-going 'first-time)
1491 (byte-compile-log-lap " ---- next pass"))
1492 (setq rest lap
1493 keep-going nil)
1494 (while rest
1495 (setq lap0 (car rest)
1496 lap1 (nth 1 rest)
1497 lap2 (nth 2 rest))
1498
1499 ;; You may notice that sequences like "dup varset discard" are
1500 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1501 ;; You may be tempted to change this; resist that temptation.
1502 (cond ;;
1503 ;; <side-effect-free> pop --> <deleted>
1504 ;; ...including:
1505 ;; const-X pop --> <deleted>
1506 ;; varref-X pop --> <deleted>
1507 ;; dup pop --> <deleted>
1508 ;;
1509 ((and (eq 'byte-discard (car lap1))
1510 (memq (car lap0) side-effect-free))
1511 (setq keep-going t)
1512 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1513 (setq rest (cdr rest))
1514 (cond ((= tmp 1)
1515 (byte-compile-log-lap
1516 " %s discard\t-->\t<deleted>" lap0)
1517 (setq lap (delq lap0 (delq lap1 lap))))
1518 ((= tmp 0)
1519 (byte-compile-log-lap
1520 " %s discard\t-->\t<deleted> discard" lap0)
1521 (setq lap (delq lap0 lap)))
1522 ((= tmp -1)
1523 (byte-compile-log-lap
1524 " %s discard\t-->\tdiscard discard" lap0)
1525 (setcar lap0 'byte-discard)
1526 (setcdr lap0 0))
1527 ((error "Optimizer error: too much on the stack"))))
1528 ;;
1529 ;; goto*-X X: --> X:
1530 ;;
1531 ((and (memq (car lap0) byte-goto-ops)
1532 (eq (cdr lap0) lap1))
1533 (cond ((eq (car lap0) 'byte-goto)
1534 (setq lap (delq lap0 lap))
1535 (setq tmp "<deleted>"))
1536 ((memq (car lap0) byte-goto-always-pop-ops)
1537 (setcar lap0 (setq tmp 'byte-discard))
1538 (setcdr lap0 0))
1539 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1540 (and (memq byte-optimize-log '(t byte))
1541 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1542 (nth 1 lap1) (nth 1 lap1)
1543 tmp (nth 1 lap1)))
1544 (setq keep-going t))
1545 ;;
1546 ;; varset-X varref-X --> dup varset-X
1547 ;; varbind-X varref-X --> dup varbind-X
1548 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1549 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1550 ;; The latter two can enable other optimizations.
1551 ;;
1552 ((and (eq 'byte-varref (car lap2))
1553 (eq (cdr lap1) (cdr lap2))
1554 (memq (car lap1) '(byte-varset byte-varbind)))
1555 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1556 (not (eq (car lap0) 'byte-constant)))
1557 nil
1558 (setq keep-going t)
1559 (if (memq (car lap0) '(byte-constant byte-dup))
1560 (progn
1561 (setq tmp (if (or (not tmp)
e1f0df62
DL
1562 (byte-compile-const-symbol-p
1563 (car (cdr lap0))))
1c393159
JB
1564 (cdr lap0)
1565 (byte-compile-get-constant t)))
1566 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1567 lap0 lap1 lap2 lap0 lap1
1568 (cons (car lap0) tmp))
1569 (setcar lap2 (car lap0))
1570 (setcdr lap2 tmp))
1571 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1572 (setcar lap2 (car lap1))
1573 (setcar lap1 'byte-dup)
1574 (setcdr lap1 0)
1575 ;; The stack depth gets locally increased, so we will
1576 ;; increase maxdepth in case depth = maxdepth here.
1577 ;; This can cause the third argument to byte-code to
1578 ;; be larger than necessary.
1579 (setq add-depth 1))))
1580 ;;
1581 ;; dup varset-X discard --> varset-X
1582 ;; dup varbind-X discard --> varbind-X
1583 ;; (the varbind variant can emerge from other optimizations)
1584 ;;
1585 ((and (eq 'byte-dup (car lap0))
1586 (eq 'byte-discard (car lap2))
1587 (memq (car lap1) '(byte-varset byte-varbind)))
1588 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1589 (setq keep-going t
1590 rest (cdr rest))
1591 (setq lap (delq lap0 (delq lap2 lap))))
1592 ;;
1593 ;; not goto-X-if-nil --> goto-X-if-non-nil
1594 ;; not goto-X-if-non-nil --> goto-X-if-nil
1595 ;;
1596 ;; it is wrong to do the same thing for the -else-pop variants.
1597 ;;
1598 ((and (eq 'byte-not (car lap0))
1599 (or (eq 'byte-goto-if-nil (car lap1))
1600 (eq 'byte-goto-if-not-nil (car lap1))))
1601 (byte-compile-log-lap " not %s\t-->\t%s"
1602 lap1
1603 (cons
1604 (if (eq (car lap1) 'byte-goto-if-nil)
1605 'byte-goto-if-not-nil
1606 'byte-goto-if-nil)
1607 (cdr lap1)))
1608 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1609 'byte-goto-if-not-nil
1610 'byte-goto-if-nil))
1611 (setq lap (delq lap0 lap))
1612 (setq keep-going t))
1613 ;;
1614 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1615 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1616 ;;
1617 ;; it is wrong to do the same thing for the -else-pop variants.
a1506d29 1618 ;;
1c393159
JB
1619 ((and (or (eq 'byte-goto-if-nil (car lap0))
1620 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1621 (eq 'byte-goto (car lap1)) ; gotoY
1622 (eq (cdr lap0) lap2)) ; TAG X
1623 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1624 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1625 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1626 lap0 lap1 lap2
1627 (cons inverse (cdr lap1)) lap2)
1628 (setq lap (delq lap0 lap))
1629 (setcar lap1 inverse)
1630 (setq keep-going t)))
1631 ;;
1632 ;; const goto-if-* --> whatever
1633 ;;
1634 ((and (eq 'byte-constant (car lap0))
1635 (memq (car lap1) byte-conditional-ops))
1636 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1637 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1638 (car (cdr lap0))
1639 (not (car (cdr lap0))))
1640 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1641 lap0 lap1)
1642 (setq rest (cdr rest)
1643 lap (delq lap0 (delq lap1 lap))))
1644 (t
1645 (if (memq (car lap1) byte-goto-always-pop-ops)
1646 (progn
1647 (byte-compile-log-lap " %s %s\t-->\t%s"
1648 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1649 (setq lap (delq lap0 lap)))
1650 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1651 (cons 'byte-goto (cdr lap1))))
1652 (setcar lap1 'byte-goto)))
1653 (setq keep-going t))
1654 ;;
1655 ;; varref-X varref-X --> varref-X dup
1656 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1657 ;; We don't optimize the const-X variations on this here,
1658 ;; because that would inhibit some goto optimizations; we
1659 ;; optimize the const-X case after all other optimizations.
1660 ;;
1661 ((and (eq 'byte-varref (car lap0))
1662 (progn
1663 (setq tmp (cdr rest))
1664 (while (eq (car (car tmp)) 'byte-dup)
1665 (setq tmp (cdr tmp)))
1666 t)
1667 (eq (cdr lap0) (cdr (car tmp)))
1668 (eq 'byte-varref (car (car tmp))))
1669 (if (memq byte-optimize-log '(t byte))
1670 (let ((str ""))
1671 (setq tmp2 (cdr rest))
1672 (while (not (eq tmp tmp2))
1673 (setq tmp2 (cdr tmp2)
1674 str (concat str " dup")))
1675 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1676 lap0 str lap0 lap0 str)))
1677 (setq keep-going t)
1678 (setcar (car tmp) 'byte-dup)
1679 (setcdr (car tmp) 0)
1680 (setq rest tmp))
1681 ;;
1682 ;; TAG1: TAG2: --> TAG1: <deleted>
1683 ;; (and other references to TAG2 are replaced with TAG1)
1684 ;;
1685 ((and (eq (car lap0) 'TAG)
1686 (eq (car lap1) 'TAG))
1687 (and (memq byte-optimize-log '(t byte))
eb8c3be9 1688 (byte-compile-log " adjacent tags %d and %d merged"
1c393159
JB
1689 (nth 1 lap1) (nth 1 lap0)))
1690 (setq tmp3 lap)
1691 (while (setq tmp2 (rassq lap0 tmp3))
1692 (setcdr tmp2 lap1)
1693 (setq tmp3 (cdr (memq tmp2 tmp3))))
1694 (setq lap (delq lap0 lap)
1695 keep-going t))
1696 ;;
1697 ;; unused-TAG: --> <deleted>
1698 ;;
1699 ((and (eq 'TAG (car lap0))
1700 (not (rassq lap0 lap)))
1701 (and (memq byte-optimize-log '(t byte))
1702 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1703 (setq lap (delq lap0 lap)
1704 keep-going t))
1705 ;;
1706 ;; goto ... --> goto <delete until TAG or end>
1707 ;; return ... --> return <delete until TAG or end>
1708 ;;
1709 ((and (memq (car lap0) '(byte-goto byte-return))
1710 (not (memq (car lap1) '(TAG nil))))
1711 (setq tmp rest)
1712 (let ((i 0)
1713 (opt-p (memq byte-optimize-log '(t lap)))
1714 str deleted)
1715 (while (and (setq tmp (cdr tmp))
1716 (not (eq 'TAG (car (car tmp)))))
1717 (if opt-p (setq deleted (cons (car tmp) deleted)
1718 str (concat str " %s")
1719 i (1+ i))))
1720 (if opt-p
a1506d29 1721 (let ((tagstr
1c393159 1722 (if (eq 'TAG (car (car tmp)))
dec4e22e 1723 (format "%d:" (car (cdr (car tmp))))
1c393159
JB
1724 (or (car tmp) ""))))
1725 (if (< i 6)
1726 (apply 'byte-compile-log-lap-1
1727 (concat " %s" str
1728 " %s\t-->\t%s <deleted> %s")
1729 lap0
1730 (nconc (nreverse deleted)
1731 (list tagstr lap0 tagstr)))
1732 (byte-compile-log-lap
1733 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1734 lap0 i (if (= i 1) "" "s")
1735 tagstr lap0 tagstr))))
1736 (rplacd rest tmp))
1737 (setq keep-going t))
1738 ;;
1739 ;; <safe-op> unbind --> unbind <safe-op>
1740 ;; (this may enable other optimizations.)
1741 ;;
1742 ((and (eq 'byte-unbind (car lap1))
1743 (memq (car lap0) byte-after-unbind-ops))
1744 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1745 (setcar rest lap1)
1746 (setcar (cdr rest) lap0)
1747 (setq keep-going t))
1748 ;;
1749 ;; varbind-X unbind-N --> discard unbind-(N-1)
1750 ;; save-excursion unbind-N --> unbind-(N-1)
1751 ;; save-restriction unbind-N --> unbind-(N-1)
1752 ;;
1753 ((and (eq 'byte-unbind (car lap1))
1754 (memq (car lap0) '(byte-varbind byte-save-excursion
1755 byte-save-restriction))
1756 (< 0 (cdr lap1)))
1757 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1758 (delq lap1 rest))
1759 (if (eq (car lap0) 'byte-varbind)
1760 (setcar rest (cons 'byte-discard 0))
1761 (setq lap (delq lap0 lap)))
1762 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1763 lap0 (cons (car lap1) (1+ (cdr lap1)))
1764 (if (eq (car lap0) 'byte-varbind)
1765 (car rest)
1766 (car (cdr rest)))
1767 (if (and (/= 0 (cdr lap1))
1768 (eq (car lap0) 'byte-varbind))
1769 (car (cdr rest))
1770 ""))
1771 (setq keep-going t))
1772 ;;
1773 ;; goto*-X ... X: goto-Y --> goto*-Y
1774 ;; goto-X ... X: return --> return
1775 ;;
1776 ((and (memq (car lap0) byte-goto-ops)
1777 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1778 '(byte-goto byte-return)))
1779 (cond ((and (not (eq tmp lap0))
1780 (or (eq (car lap0) 'byte-goto)
1781 (eq (car tmp) 'byte-goto)))
1782 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1783 (car lap0) tmp tmp)
1784 (if (eq (car tmp) 'byte-return)
1785 (setcar lap0 'byte-return))
1786 (setcdr lap0 (cdr tmp))
1787 (setq keep-going t))))
1788 ;;
1789 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1790 ;; goto-*-else-pop X ... X: discard --> whatever
1791 ;;
1792 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1793 byte-goto-if-not-nil-else-pop))
1794 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1795 (eval-when-compile
1796 (cons 'byte-discard byte-conditional-ops)))
1797 (not (eq lap0 (car tmp))))
1798 (setq tmp2 (car tmp))
1799 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1800 byte-goto-if-nil)
1801 (byte-goto-if-not-nil-else-pop
1802 byte-goto-if-not-nil))))
1803 (if (memq (car tmp2) tmp3)
1804 (progn (setcar lap0 (car tmp2))
1805 (setcdr lap0 (cdr tmp2))
1806 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1807 (car lap0) tmp2 lap0))
1808 ;; Get rid of the -else-pop's and jump one step further.
1809 (or (eq 'TAG (car (nth 1 tmp)))
1810 (setcdr tmp (cons (byte-compile-make-tag)
1811 (cdr tmp))))
1812 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1813 (car lap0) tmp2 (nth 1 tmp3))
1814 (setcar lap0 (nth 1 tmp3))
1815 (setcdr lap0 (nth 1 tmp)))
1816 (setq keep-going t))
1817 ;;
1818 ;; const goto-X ... X: goto-if-* --> whatever
1819 ;; const goto-X ... X: discard --> whatever
1820 ;;
1821 ((and (eq (car lap0) 'byte-constant)
1822 (eq (car lap1) 'byte-goto)
1823 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1824 (eval-when-compile
1825 (cons 'byte-discard byte-conditional-ops)))
1826 (not (eq lap1 (car tmp))))
1827 (setq tmp2 (car tmp))
1828 (cond ((memq (car tmp2)
1829 (if (null (car (cdr lap0)))
1830 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1831 '(byte-goto-if-not-nil
1832 byte-goto-if-not-nil-else-pop)))
1833 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1834 lap0 tmp2 lap0 tmp2)
1835 (setcar lap1 (car tmp2))
1836 (setcdr lap1 (cdr tmp2))
1837 ;; Let next step fix the (const,goto-if*) sequence.
1838 (setq rest (cons nil rest)))
1839 (t
1840 ;; Jump one step further
1841 (byte-compile-log-lap
1842 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1843 lap0 tmp2)
1844 (or (eq 'TAG (car (nth 1 tmp)))
1845 (setcdr tmp (cons (byte-compile-make-tag)
1846 (cdr tmp))))
1847 (setcdr lap1 (car (cdr tmp)))
1848 (setq lap (delq lap0 lap))))
1849 (setq keep-going t))
1850 ;;
1851 ;; X: varref-Y ... varset-Y goto-X -->
1852 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1853 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1854 ;; (This is so usual for while loops that it is worth handling).
1855 ;;
1856 ((and (eq (car lap1) 'byte-varset)
1857 (eq (car lap2) 'byte-goto)
1858 (not (memq (cdr lap2) rest)) ;Backwards jump
1859 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1860 'byte-varref)
1861 (eq (cdr (car tmp)) (cdr lap1))
1862 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1863 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1864 (let ((newtag (byte-compile-make-tag)))
1865 (byte-compile-log-lap
1866 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1867 (nth 1 (cdr lap2)) (car tmp)
1868 lap1 lap2
1869 (nth 1 (cdr lap2)) (car tmp)
1870 (nth 1 newtag) 'byte-dup lap1
1871 (cons 'byte-goto newtag)
1872 )
1873 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1874 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1875 (setq add-depth 1)
1876 (setq keep-going t))
1877 ;;
1878 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1879 ;; (This can pull the loop test to the end of the loop)
1880 ;;
1881 ((and (eq (car lap0) 'byte-goto)
1882 (eq (car lap1) 'TAG)
1883 (eq lap1
1884 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1885 (memq (car (car tmp))
1886 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1887 byte-goto-if-nil-else-pop)))
1888;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1889;; lap0 lap1 (cdr lap0) (car tmp))
1890 (let ((newtag (byte-compile-make-tag)))
1891 (byte-compile-log-lap
1892 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1893 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1894 (cons (cdr (assq (car (car tmp))
1895 '((byte-goto-if-nil . byte-goto-if-not-nil)
1896 (byte-goto-if-not-nil . byte-goto-if-nil)
1897 (byte-goto-if-nil-else-pop .
1898 byte-goto-if-not-nil-else-pop)
1899 (byte-goto-if-not-nil-else-pop .
1900 byte-goto-if-nil-else-pop))))
1901 newtag)
a1506d29 1902
1c393159
JB
1903 (nth 1 newtag)
1904 )
1905 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1906 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1907 ;; We can handle this case but not the -if-not-nil case,
1908 ;; because we won't know which non-nil constant to push.
1909 (setcdr rest (cons (cons 'byte-constant
1910 (byte-compile-get-constant nil))
1911 (cdr rest))))
1912 (setcar lap0 (nth 1 (memq (car (car tmp))
1913 '(byte-goto-if-nil-else-pop
1914 byte-goto-if-not-nil
1915 byte-goto-if-nil
1916 byte-goto-if-not-nil
1917 byte-goto byte-goto))))
1918 )
1919 (setq keep-going t))
1920 )
1921 (setq rest (cdr rest)))
1922 )
1923 ;; Cleanup stage:
1924 ;; Rebuild byte-compile-constants / byte-compile-variables.
1925 ;; Simple optimizations that would inhibit other optimizations if they
1926 ;; were done in the optimizing loop, and optimizations which there is no
1927 ;; need to do more than once.
1928 (setq byte-compile-constants nil
1929 byte-compile-variables nil)
1930 (setq rest lap)
1931 (while rest
1932 (setq lap0 (car rest)
1933 lap1 (nth 1 rest))
1934 (if (memq (car lap0) byte-constref-ops)
3ecf67a1
GM
1935 (if (or (eq (car lap0) 'byte-constant)
1936 (eq (car lap0) 'byte-constant2))
1937 (unless (memq (cdr lap0) byte-compile-constants)
1c393159 1938 (setq byte-compile-constants (cons (cdr lap0)
3ecf67a1
GM
1939 byte-compile-constants)))
1940 (unless (memq (cdr lap0) byte-compile-variables)
1941 (setq byte-compile-variables (cons (cdr lap0)
1942 byte-compile-variables)))))
1c393159
JB
1943 (cond (;;
1944 ;; const-C varset-X const-C --> const-C dup varset-X
1945 ;; const-C varbind-X const-C --> const-C dup varbind-X
1946 ;;
1947 (and (eq (car lap0) 'byte-constant)
1948 (eq (car (nth 2 rest)) 'byte-constant)
3ecf67a1 1949 (eq (cdr lap0) (cdr (nth 2 rest)))
1c393159
JB
1950 (memq (car lap1) '(byte-varbind byte-varset)))
1951 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1952 lap0 lap1 lap0 lap0 lap1)
1953 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1954 (setcar (cdr rest) (cons 'byte-dup 0))
1955 (setq add-depth 1))
1956 ;;
1957 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1958 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1959 ;;
1960 ((memq (car lap0) '(byte-constant byte-varref))
1961 (setq tmp rest
1962 tmp2 nil)
1963 (while (progn
1964 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1965 (and (eq (cdr lap0) (cdr (car tmp)))
1966 (eq (car lap0) (car (car tmp)))))
1967 (setcar tmp (cons 'byte-dup 0))
1968 (setq tmp2 t))
1969 (if tmp2
1970 (byte-compile-log-lap
dec4e22e 1971 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1c393159
JB
1972 ;;
1973 ;; unbind-N unbind-M --> unbind-(N+M)
1974 ;;
1975 ((and (eq 'byte-unbind (car lap0))
1976 (eq 'byte-unbind (car lap1)))
1977 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1978 (cons 'byte-unbind
1979 (+ (cdr lap0) (cdr lap1))))
1980 (setq keep-going t)
1981 (setq lap (delq lap0 lap))
1982 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1983 )
1984 (setq rest (cdr rest)))
1985 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1986 lap)
1987
1ffa4286 1988(provide 'byte-opt)
1c393159
JB
1989
1990\f
1991;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1992;; itself, compile some of its most used recursive functions (at load time).
1993;;
1994(eval-when-compile
96d699f3 1995 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1c393159
JB
1996 (assq 'byte-code (symbol-function 'byte-optimize-form))
1997 (let ((byte-optimize nil)
1998 (byte-compile-warnings nil))
72d8b544
SM
1999 (mapcar (lambda (x)
2000 (or noninteractive (message "compiling %s..." x))
2001 (byte-compile x)
2002 (or noninteractive (message "compiling %s...done" x)))
1c393159
JB
2003 '(byte-optimize-form
2004 byte-optimize-body
2005 byte-optimize-predicate
2006 byte-optimize-binary-predicate
2007 ;; Inserted some more than necessary, to speed it up.
2008 byte-optimize-form-code-walker
2009 byte-optimize-lapcode))))
2010 nil)
3eac9910 2011
f61b7b7f 2012;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
3eac9910 2013;;; byte-opt.el ends here