* apt-pkg/contrib/sha256.cc:
[ntk/apt.git] / apt-pkg / contrib / sha256.cc
1 /*
2 * Cryptographic API.
3 *
4 * SHA-256, as specified in
5 * http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf
6 *
7 * SHA-256 code by Jean-Luc Cooke <jlcooke@certainkey.com>.
8 *
9 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
10 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
11 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
12 *
13 * Ported from the Linux kernel to Apt by Anthony Towns <ajt@debian.org>
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the Free
17 * Software Foundation; either version 2 of the License, or (at your option)
18 * any later version.
19 *
20 */
21 #define SHA256_DIGEST_SIZE 32
22 #define SHA256_HMAC_BLOCK_SIZE 64
23
24 #define ror32(value,bits) (((value) >> (bits)) | ((value) << (32 - (bits))))
25
26 #include <apt-pkg/sha256.h>
27 #include <apt-pkg/strutl.h>
28 #include <string.h>
29 #include <unistd.h>
30 #include <stdint.h>
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <arpa/inet.h>
34
35 typedef uint32_t u32;
36 typedef uint8_t u8;
37
38 static inline u32 Ch(u32 x, u32 y, u32 z)
39 {
40 return z ^ (x & (y ^ z));
41 }
42
43 static inline u32 Maj(u32 x, u32 y, u32 z)
44 {
45 return (x & y) | (z & (x | y));
46 }
47
48 #define e0(x) (ror32(x, 2) ^ ror32(x,13) ^ ror32(x,22))
49 #define e1(x) (ror32(x, 6) ^ ror32(x,11) ^ ror32(x,25))
50 #define s0(x) (ror32(x, 7) ^ ror32(x,18) ^ (x >> 3))
51 #define s1(x) (ror32(x,17) ^ ror32(x,19) ^ (x >> 10))
52
53 #define H0 0x6a09e667
54 #define H1 0xbb67ae85
55 #define H2 0x3c6ef372
56 #define H3 0xa54ff53a
57 #define H4 0x510e527f
58 #define H5 0x9b05688c
59 #define H6 0x1f83d9ab
60 #define H7 0x5be0cd19
61
62 static inline void LOAD_OP(int I, u32 *W, const u8 *input)
63 {
64 W[I] = ( ((u32) input[I + 0] << 24)
65 | ((u32) input[I + 1] << 16)
66 | ((u32) input[I + 2] << 8)
67 | ((u32) input[I + 3]));
68 }
69
70 static inline void BLEND_OP(int I, u32 *W)
71 {
72 W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
73 }
74
75 static void sha256_transform(u32 *state, const u8 *input)
76 {
77 u32 a, b, c, d, e, f, g, h, t1, t2;
78 u32 W[64];
79 int i;
80
81 /* load the input */
82 for (i = 0; i < 16; i++)
83 LOAD_OP(i, W, input);
84
85 /* now blend */
86 for (i = 16; i < 64; i++)
87 BLEND_OP(i, W);
88
89 /* load the state into our registers */
90 a=state[0]; b=state[1]; c=state[2]; d=state[3];
91 e=state[4]; f=state[5]; g=state[6]; h=state[7];
92
93 /* now iterate */
94 t1 = h + e1(e) + Ch(e,f,g) + 0x428a2f98 + W[ 0];
95 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
96 t1 = g + e1(d) + Ch(d,e,f) + 0x71374491 + W[ 1];
97 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
98 t1 = f + e1(c) + Ch(c,d,e) + 0xb5c0fbcf + W[ 2];
99 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
100 t1 = e + e1(b) + Ch(b,c,d) + 0xe9b5dba5 + W[ 3];
101 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
102 t1 = d + e1(a) + Ch(a,b,c) + 0x3956c25b + W[ 4];
103 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
104 t1 = c + e1(h) + Ch(h,a,b) + 0x59f111f1 + W[ 5];
105 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
106 t1 = b + e1(g) + Ch(g,h,a) + 0x923f82a4 + W[ 6];
107 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
108 t1 = a + e1(f) + Ch(f,g,h) + 0xab1c5ed5 + W[ 7];
109 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
110
111 t1 = h + e1(e) + Ch(e,f,g) + 0xd807aa98 + W[ 8];
112 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
113 t1 = g + e1(d) + Ch(d,e,f) + 0x12835b01 + W[ 9];
114 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
115 t1 = f + e1(c) + Ch(c,d,e) + 0x243185be + W[10];
116 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
117 t1 = e + e1(b) + Ch(b,c,d) + 0x550c7dc3 + W[11];
118 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
119 t1 = d + e1(a) + Ch(a,b,c) + 0x72be5d74 + W[12];
120 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
121 t1 = c + e1(h) + Ch(h,a,b) + 0x80deb1fe + W[13];
122 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
123 t1 = b + e1(g) + Ch(g,h,a) + 0x9bdc06a7 + W[14];
124 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
125 t1 = a + e1(f) + Ch(f,g,h) + 0xc19bf174 + W[15];
126 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
127
128 t1 = h + e1(e) + Ch(e,f,g) + 0xe49b69c1 + W[16];
129 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
130 t1 = g + e1(d) + Ch(d,e,f) + 0xefbe4786 + W[17];
131 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
132 t1 = f + e1(c) + Ch(c,d,e) + 0x0fc19dc6 + W[18];
133 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
134 t1 = e + e1(b) + Ch(b,c,d) + 0x240ca1cc + W[19];
135 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
136 t1 = d + e1(a) + Ch(a,b,c) + 0x2de92c6f + W[20];
137 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
138 t1 = c + e1(h) + Ch(h,a,b) + 0x4a7484aa + W[21];
139 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
140 t1 = b + e1(g) + Ch(g,h,a) + 0x5cb0a9dc + W[22];
141 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
142 t1 = a + e1(f) + Ch(f,g,h) + 0x76f988da + W[23];
143 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
144
145 t1 = h + e1(e) + Ch(e,f,g) + 0x983e5152 + W[24];
146 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
147 t1 = g + e1(d) + Ch(d,e,f) + 0xa831c66d + W[25];
148 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
149 t1 = f + e1(c) + Ch(c,d,e) + 0xb00327c8 + W[26];
150 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
151 t1 = e + e1(b) + Ch(b,c,d) + 0xbf597fc7 + W[27];
152 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
153 t1 = d + e1(a) + Ch(a,b,c) + 0xc6e00bf3 + W[28];
154 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
155 t1 = c + e1(h) + Ch(h,a,b) + 0xd5a79147 + W[29];
156 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
157 t1 = b + e1(g) + Ch(g,h,a) + 0x06ca6351 + W[30];
158 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
159 t1 = a + e1(f) + Ch(f,g,h) + 0x14292967 + W[31];
160 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
161
162 t1 = h + e1(e) + Ch(e,f,g) + 0x27b70a85 + W[32];
163 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
164 t1 = g + e1(d) + Ch(d,e,f) + 0x2e1b2138 + W[33];
165 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
166 t1 = f + e1(c) + Ch(c,d,e) + 0x4d2c6dfc + W[34];
167 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
168 t1 = e + e1(b) + Ch(b,c,d) + 0x53380d13 + W[35];
169 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
170 t1 = d + e1(a) + Ch(a,b,c) + 0x650a7354 + W[36];
171 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
172 t1 = c + e1(h) + Ch(h,a,b) + 0x766a0abb + W[37];
173 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
174 t1 = b + e1(g) + Ch(g,h,a) + 0x81c2c92e + W[38];
175 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
176 t1 = a + e1(f) + Ch(f,g,h) + 0x92722c85 + W[39];
177 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
178
179 t1 = h + e1(e) + Ch(e,f,g) + 0xa2bfe8a1 + W[40];
180 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
181 t1 = g + e1(d) + Ch(d,e,f) + 0xa81a664b + W[41];
182 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
183 t1 = f + e1(c) + Ch(c,d,e) + 0xc24b8b70 + W[42];
184 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
185 t1 = e + e1(b) + Ch(b,c,d) + 0xc76c51a3 + W[43];
186 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
187 t1 = d + e1(a) + Ch(a,b,c) + 0xd192e819 + W[44];
188 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
189 t1 = c + e1(h) + Ch(h,a,b) + 0xd6990624 + W[45];
190 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
191 t1 = b + e1(g) + Ch(g,h,a) + 0xf40e3585 + W[46];
192 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
193 t1 = a + e1(f) + Ch(f,g,h) + 0x106aa070 + W[47];
194 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
195
196 t1 = h + e1(e) + Ch(e,f,g) + 0x19a4c116 + W[48];
197 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
198 t1 = g + e1(d) + Ch(d,e,f) + 0x1e376c08 + W[49];
199 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
200 t1 = f + e1(c) + Ch(c,d,e) + 0x2748774c + W[50];
201 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
202 t1 = e + e1(b) + Ch(b,c,d) + 0x34b0bcb5 + W[51];
203 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
204 t1 = d + e1(a) + Ch(a,b,c) + 0x391c0cb3 + W[52];
205 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
206 t1 = c + e1(h) + Ch(h,a,b) + 0x4ed8aa4a + W[53];
207 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
208 t1 = b + e1(g) + Ch(g,h,a) + 0x5b9cca4f + W[54];
209 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
210 t1 = a + e1(f) + Ch(f,g,h) + 0x682e6ff3 + W[55];
211 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
212
213 t1 = h + e1(e) + Ch(e,f,g) + 0x748f82ee + W[56];
214 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
215 t1 = g + e1(d) + Ch(d,e,f) + 0x78a5636f + W[57];
216 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
217 t1 = f + e1(c) + Ch(c,d,e) + 0x84c87814 + W[58];
218 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
219 t1 = e + e1(b) + Ch(b,c,d) + 0x8cc70208 + W[59];
220 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
221 t1 = d + e1(a) + Ch(a,b,c) + 0x90befffa + W[60];
222 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
223 t1 = c + e1(h) + Ch(h,a,b) + 0xa4506ceb + W[61];
224 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
225 t1 = b + e1(g) + Ch(g,h,a) + 0xbef9a3f7 + W[62];
226 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
227 t1 = a + e1(f) + Ch(f,g,h) + 0xc67178f2 + W[63];
228 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
229
230 state[0] += a; state[1] += b; state[2] += c; state[3] += d;
231 state[4] += e; state[5] += f; state[6] += g; state[7] += h;
232
233 /* clear any sensitive info... */
234 a = b = c = d = e = f = g = h = t1 = t2 = 0;
235 memset(W, 0, 64 * sizeof(u32));
236 }
237
238 SHA256Summation::SHA256Summation()
239 {
240 Sum.state[0] = H0;
241 Sum.state[1] = H1;
242 Sum.state[2] = H2;
243 Sum.state[3] = H3;
244 Sum.state[4] = H4;
245 Sum.state[5] = H5;
246 Sum.state[6] = H6;
247 Sum.state[7] = H7;
248 Sum.count[0] = Sum.count[1] = 0;
249 memset(Sum.buf, 0, sizeof(Sum.buf));
250 Done = false;
251 }
252
253 bool SHA256Summation::Add(const u8 *data, unsigned long len)
254 {
255 struct sha256_ctx *sctx = &Sum;
256 unsigned int i, index, part_len;
257
258 if (Done) return false;
259
260 /* Compute number of bytes mod 128 */
261 index = (unsigned int)((sctx->count[0] >> 3) & 0x3f);
262
263 /* Update number of bits */
264 if ((sctx->count[0] += (len << 3)) < (len << 3)) {
265 sctx->count[1]++;
266 sctx->count[1] += (len >> 29);
267 }
268
269 part_len = 64 - index;
270
271 /* Transform as many times as possible. */
272 if (len >= part_len) {
273 memcpy(&sctx->buf[index], data, part_len);
274 sha256_transform(sctx->state, sctx->buf);
275
276 for (i = part_len; i + 63 < len; i += 64)
277 sha256_transform(sctx->state, &data[i]);
278 index = 0;
279 } else {
280 i = 0;
281 }
282
283 /* Buffer remaining input */
284 memcpy(&sctx->buf[index], &data[i], len-i);
285
286 return true;
287 }
288
289 SHA256SumValue SHA256Summation::Result()
290 {
291 struct sha256_ctx *sctx = &Sum;
292 if (!Done) {
293 u8 bits[8];
294 unsigned int index, pad_len, t;
295 static const u8 padding[64] = { 0x80, };
296
297 /* Save number of bits */
298 t = sctx->count[0];
299 bits[7] = t; t >>= 8;
300 bits[6] = t; t >>= 8;
301 bits[5] = t; t >>= 8;
302 bits[4] = t;
303 t = sctx->count[1];
304 bits[3] = t; t >>= 8;
305 bits[2] = t; t >>= 8;
306 bits[1] = t; t >>= 8;
307 bits[0] = t;
308
309 /* Pad out to 56 mod 64. */
310 index = (sctx->count[0] >> 3) & 0x3f;
311 pad_len = (index < 56) ? (56 - index) : ((64+56) - index);
312 Add(padding, pad_len);
313
314 /* Append length (before padding) */
315 Add(bits, 8);
316 }
317
318 Done = true;
319
320 /* Store state in digest */
321
322 SHA256SumValue res;
323 u8 *out = res.Sum;
324
325 int i, j;
326 unsigned int t;
327 for (i = j = 0; i < 8; i++, j += 4) {
328 t = sctx->state[i];
329 out[j+3] = t; t >>= 8;
330 out[j+2] = t; t >>= 8;
331 out[j+1] = t; t >>= 8;
332 out[j ] = t;
333 }
334
335 return res;
336 }
337
338 // SHA256SumValue::SHA256SumValue - Constructs the sum from a string /*{{{*/
339 // ---------------------------------------------------------------------
340 /* The string form of a SHA256 is a 64 character hex number */
341 SHA256SumValue::SHA256SumValue(string Str)
342 {
343 memset(Sum,0,sizeof(Sum));
344 Set(Str);
345 }
346
347 /*}}}*/
348 // SHA256SumValue::SHA256SumValue - Default constructor /*{{{*/
349 // ---------------------------------------------------------------------
350 /* Sets the value to 0 */
351 SHA256SumValue::SHA256SumValue()
352 {
353 memset(Sum,0,sizeof(Sum));
354 }
355
356 /*}}}*/
357 // SHA256SumValue::Set - Set the sum from a string /*{{{*/
358 // ---------------------------------------------------------------------
359 /* Converts the hex string into a set of chars */
360 bool SHA256SumValue::Set(string Str)
361 {
362 return Hex2Num(Str,Sum,sizeof(Sum));
363 }
364 /*}}}*/
365 // SHA256SumValue::Value - Convert the number into a string /*{{{*/
366 // ---------------------------------------------------------------------
367 /* Converts the set of chars into a hex string in lower case */
368 string SHA256SumValue::Value() const
369 {
370 char Conv[16] =
371 { '0','1','2','3','4','5','6','7','8','9','a','b',
372 'c','d','e','f'
373 };
374 char Result[65];
375 Result[64] = 0;
376
377 // Convert each char into two letters
378 int J = 0;
379 int I = 0;
380 for (; I != 64; J++,I += 2)
381 {
382 Result[I] = Conv[Sum[J] >> 4];
383 Result[I + 1] = Conv[Sum[J] & 0xF];
384 }
385
386 return string(Result);
387 }
388
389
390
391 // SHA256SumValue::operator == - Comparator /*{{{*/
392 // ---------------------------------------------------------------------
393 /* Call memcmp on the buffer */
394 bool SHA256SumValue::operator == (const SHA256SumValue & rhs) const
395 {
396 return memcmp(Sum,rhs.Sum,sizeof(Sum)) == 0;
397 }
398 /*}}}*/
399
400
401 // SHA256Summation::AddFD - Add content of file into the checksum /*{{{*/
402 // ---------------------------------------------------------------------
403 /* */
404 bool SHA256Summation::AddFD(int Fd,unsigned long Size)
405 {
406 unsigned char Buf[64 * 64];
407 int Res = 0;
408 int ToEOF = (Size == 0);
409 while (Size != 0 || ToEOF)
410 {
411 unsigned n = sizeof(Buf);
412 if (!ToEOF) n = min(Size,(unsigned long)n);
413 Res = read(Fd,Buf,n);
414 if (Res < 0 || (!ToEOF && (unsigned) Res != n)) // error, or short read
415 return false;
416 if (ToEOF && Res == 0) // EOF
417 break;
418 Size -= Res;
419 Add(Buf,Res);
420 }
421 return true;
422 }
423 /*}}}*/
424