Fix nyquist (and other splits using D2 in debouncing) (#3067)
[jackhill/qmk/firmware.git] / keyboards / handwired / dactyl_manuform / matrix.c
1 /*
2 Copyright 2012 Jun Wako <wakojun@gmail.com>
3
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 /*
19 * scan matrix
20 */
21 #include <stdint.h>
22 #include <stdbool.h>
23 #include <avr/io.h>
24 #include "wait.h"
25 #include "print.h"
26 #include "debug.h"
27 #include "util.h"
28 #include "matrix.h"
29 #include "split_util.h"
30 #include "pro_micro.h"
31 #include "config.h"
32 #include "timer.h"
33
34 #ifdef USE_I2C
35 # include "i2c.h"
36 #else // USE_SERIAL
37 # include "serial.h"
38 #endif
39
40 #ifndef DEBOUNCING_DELAY
41 # define DEBOUNCING_DELAY 5
42 #endif
43
44 #if (DEBOUNCING_DELAY > 0)
45 static uint16_t debouncing_time;
46 static bool debouncing = false;
47 #endif
48
49 #if (MATRIX_COLS <= 8)
50 # define print_matrix_header() print("\nr/c 01234567\n")
51 # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
52 # define matrix_bitpop(i) bitpop(matrix[i])
53 # define ROW_SHIFTER ((uint8_t)1)
54 #else
55 # error "Currently only supports 8 COLS"
56 #endif
57 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
58
59 #define ERROR_DISCONNECT_COUNT 5
60
61 #define ROWS_PER_HAND (MATRIX_ROWS/2)
62
63 static uint8_t error_count = 0;
64
65 static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
66 static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
67
68 /* matrix state(1:on, 0:off) */
69 static matrix_row_t matrix[MATRIX_ROWS];
70 static matrix_row_t matrix_debouncing[MATRIX_ROWS];
71
72 #if (DIODE_DIRECTION == COL2ROW)
73 static void init_cols(void);
74 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
75 static void unselect_rows(void);
76 static void select_row(uint8_t row);
77 static void unselect_row(uint8_t row);
78 #elif (DIODE_DIRECTION == ROW2COL)
79 static void init_rows(void);
80 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
81 static void unselect_cols(void);
82 static void unselect_col(uint8_t col);
83 static void select_col(uint8_t col);
84 #endif
85
86 __attribute__ ((weak))
87 void matrix_init_kb(void) {
88 matrix_init_user();
89 }
90
91 __attribute__ ((weak))
92 void matrix_scan_kb(void) {
93 matrix_scan_user();
94 }
95
96 __attribute__ ((weak))
97 void matrix_init_user(void) {
98 }
99
100 __attribute__ ((weak))
101 void matrix_scan_user(void) {
102 }
103
104 inline
105 uint8_t matrix_rows(void)
106 {
107 return MATRIX_ROWS;
108 }
109
110 inline
111 uint8_t matrix_cols(void)
112 {
113 return MATRIX_COLS;
114 }
115
116 void matrix_init(void)
117 {
118 #ifdef DISABLE_JTAG
119 // JTAG disable for PORT F. write JTD bit twice within four cycles.
120 MCUCR |= (1<<JTD);
121 MCUCR |= (1<<JTD);
122 #endif
123
124 debug_enable = true;
125 debug_matrix = true;
126 debug_mouse = true;
127 // initialize row and col
128 #if (DIODE_DIRECTION == COL2ROW)
129 unselect_rows();
130 init_cols();
131 #elif (DIODE_DIRECTION == ROW2COL)
132 unselect_cols();
133 init_rows();
134 #endif
135
136 TX_RX_LED_INIT;
137
138 // initialize matrix state: all keys off
139 for (uint8_t i=0; i < MATRIX_ROWS; i++) {
140 matrix[i] = 0;
141 matrix_debouncing[i] = 0;
142 }
143
144 matrix_init_quantum();
145
146 }
147
148 uint8_t _matrix_scan(void)
149 {
150 int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
151 #if (DIODE_DIRECTION == COL2ROW)
152 // Set row, read cols
153 for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
154 # if (DEBOUNCING_DELAY > 0)
155 bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
156
157 if (matrix_changed) {
158 debouncing = true;
159 debouncing_time = timer_read();
160 }
161
162 # else
163 read_cols_on_row(matrix+offset, current_row);
164 # endif
165
166 }
167
168 #elif (DIODE_DIRECTION == ROW2COL)
169 // Set col, read rows
170 for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
171 # if (DEBOUNCING_DELAY > 0)
172 bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
173 if (matrix_changed) {
174 debouncing = true;
175 debouncing_time = timer_read();
176 }
177 # else
178 read_rows_on_col(matrix+offset, current_col);
179 # endif
180
181 }
182 #endif
183
184 # if (DEBOUNCING_DELAY > 0)
185 if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
186 for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
187 matrix[i+offset] = matrix_debouncing[i+offset];
188 }
189 debouncing = false;
190 }
191 # endif
192
193 return 1;
194 }
195
196 #ifdef USE_I2C
197
198 // Get rows from other half over i2c
199 int i2c_transaction(void) {
200 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
201
202 int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
203 if (err) goto i2c_error;
204
205 // start of matrix stored at 0x00
206 err = i2c_master_write(0x00);
207 if (err) goto i2c_error;
208
209 // Start read
210 err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
211 if (err) goto i2c_error;
212
213 if (!err) {
214 int i;
215 for (i = 0; i < ROWS_PER_HAND-1; ++i) {
216 matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
217 }
218 matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
219 i2c_master_stop();
220 } else {
221 i2c_error: // the cable is disconnceted, or something else went wrong
222 i2c_reset_state();
223 return err;
224 }
225
226 return 0;
227 }
228
229 #else // USE_SERIAL
230
231 int serial_transaction(void) {
232 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
233
234 if (serial_update_buffers()) {
235 return 1;
236 }
237
238 for (int i = 0; i < ROWS_PER_HAND; ++i) {
239 matrix[slaveOffset+i] = serial_slave_buffer[i];
240 }
241 return 0;
242 }
243 #endif
244
245 uint8_t matrix_scan(void)
246 {
247 uint8_t ret = _matrix_scan();
248
249 #ifdef USE_I2C
250 if( i2c_transaction() ) {
251 #else // USE_SERIAL
252 if( serial_transaction() ) {
253 #endif
254 // turn on the indicator led when halves are disconnected
255 TXLED1;
256
257 error_count++;
258
259 if (error_count > ERROR_DISCONNECT_COUNT) {
260 // reset other half if disconnected
261 int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
262 for (int i = 0; i < ROWS_PER_HAND; ++i) {
263 matrix[slaveOffset+i] = 0;
264 }
265 }
266 } else {
267 // turn off the indicator led on no error
268 TXLED0;
269 error_count = 0;
270 }
271 matrix_scan_quantum();
272 return ret;
273 }
274
275 void matrix_slave_scan(void) {
276 _matrix_scan();
277
278 int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
279
280 #ifdef USE_I2C
281 for (int i = 0; i < ROWS_PER_HAND; ++i) {
282 i2c_slave_buffer[i] = matrix[offset+i];
283 }
284 #else // USE_SERIAL
285 for (int i = 0; i < ROWS_PER_HAND; ++i) {
286 serial_slave_buffer[i] = matrix[offset+i];
287 }
288 #endif
289 }
290
291 bool matrix_is_modified(void)
292 {
293 if (debouncing) return false;
294 return true;
295 }
296
297 inline
298 bool matrix_is_on(uint8_t row, uint8_t col)
299 {
300 return (matrix[row] & ((matrix_row_t)1<<col));
301 }
302
303 inline
304 matrix_row_t matrix_get_row(uint8_t row)
305 {
306 return matrix[row];
307 }
308
309 void matrix_print(void)
310 {
311 print("\nr/c 0123456789ABCDEF\n");
312 for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
313 phex(row); print(": ");
314 pbin_reverse16(matrix_get_row(row));
315 print("\n");
316 }
317 }
318
319 uint8_t matrix_key_count(void)
320 {
321 uint8_t count = 0;
322 for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
323 count += bitpop16(matrix[i]);
324 }
325 return count;
326 }
327
328 #if (DIODE_DIRECTION == COL2ROW)
329
330 static void init_cols(void)
331 {
332 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
333 uint8_t pin = col_pins[x];
334 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
335 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
336 }
337 }
338
339 static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
340 {
341 // Store last value of row prior to reading
342 matrix_row_t last_row_value = current_matrix[current_row];
343
344 // Clear data in matrix row
345 current_matrix[current_row] = 0;
346
347 // Select row and wait for row selecton to stabilize
348 select_row(current_row);
349 wait_us(30);
350
351 // For each col...
352 for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
353
354 // Select the col pin to read (active low)
355 uint8_t pin = col_pins[col_index];
356 uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
357
358 // Populate the matrix row with the state of the col pin
359 current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
360 }
361
362 // Unselect row
363 unselect_row(current_row);
364
365 return (last_row_value != current_matrix[current_row]);
366 }
367
368 static void select_row(uint8_t row)
369 {
370 uint8_t pin = row_pins[row];
371 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
372 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
373 }
374
375 static void unselect_row(uint8_t row)
376 {
377 uint8_t pin = row_pins[row];
378 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
379 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
380 }
381
382 static void unselect_rows(void)
383 {
384 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
385 uint8_t pin = row_pins[x];
386 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
387 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
388 }
389 }
390
391 #elif (DIODE_DIRECTION == ROW2COL)
392
393 static void init_rows(void)
394 {
395 for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
396 uint8_t pin = row_pins[x];
397 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
398 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
399 }
400 }
401
402 static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
403 {
404 bool matrix_changed = false;
405
406 // Select col and wait for col selecton to stabilize
407 select_col(current_col);
408 wait_us(30);
409
410 // For each row...
411 for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
412 {
413
414 // Store last value of row prior to reading
415 matrix_row_t last_row_value = current_matrix[row_index];
416
417 // Check row pin state
418 if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
419 {
420 // Pin LO, set col bit
421 current_matrix[row_index] |= (ROW_SHIFTER << current_col);
422 }
423 else
424 {
425 // Pin HI, clear col bit
426 current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
427 }
428
429 // Determine if the matrix changed state
430 if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
431 {
432 matrix_changed = true;
433 }
434 }
435
436 // Unselect col
437 unselect_col(current_col);
438
439 return matrix_changed;
440 }
441
442 static void select_col(uint8_t col)
443 {
444 uint8_t pin = col_pins[col];
445 _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
446 _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
447 }
448
449 static void unselect_col(uint8_t col)
450 {
451 uint8_t pin = col_pins[col];
452 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
453 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
454 }
455
456 static void unselect_cols(void)
457 {
458 for(uint8_t x = 0; x < MATRIX_COLS; x++) {
459 uint8_t pin = col_pins[x];
460 _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
461 _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
462 }
463 }
464
465 #endif