Add a mechanism for force building a particular community layout (#5027)
[jackhill/qmk/firmware.git] / docs / custom_quantum_functions.md
CommitLineData
7b0356d1 1# How to Customize Your Keyboard's Behavior
4f48dd7c 2
bb53635f 3For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
409cb1af 4
7aaef162 5This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.
409cb1af 6
7## A Word on Core vs Keyboards vs Keymap
4f48dd7c 8
9We have structured QMK as a hierarchy:
10
2f942c98 11* Core (`_quantum`)
4f48dd7c 12 * Keyboard/Revision (`_kb`)
13 * Keymap (`_user`)
14
409cb1af 15Each of the functions described below can be defined with a `_kb()` suffix or a `_user()` suffix. We intend for you to use the `_kb()` suffix at the Keyboard/Revision level, while the `_user()` suffix should be used at the Keymap level.
4f48dd7c 16
1ca87968 17When defining functions at the Keyboard/Revision level it is important that your `_kb()` implementation call `_user()` before executing anything else- otherwise the keymap level function will never be called.
4f48dd7c 18
486abde0 19# Custom Keycodes
4f48dd7c 20
409cb1af 21By far the most common task is to change the behavior of an existing keycode or to create a new keycode. From a code standpoint the mechanism for each is very similar.
22
486abde0 23## Defining a New Keycode
4f48dd7c 24
409cb1af 25The first step to creating your own custom keycode(s) is to enumerate them. This means both naming them and assigning a unique number to that keycode. Rather than limit custom keycodes to a fixed range of numbers QMK provides the `SAFE_RANGE` macro. You can use `SAFE_RANGE` when enumerating your custom keycodes to guarantee that you get a unique number.
4f48dd7c 26
409cb1af 27
28Here is an example of enumerating 2 keycodes. After adding this block to your `keymap.c` you will be able to use `FOO` and `BAR` inside your keymap.
b65282f6 29
713ec911 30```c
409cb1af 31enum my_keycodes {
32 FOO = SAFE_RANGE,
33 BAR
34};
b65282f6 35```
36
7b0356d1 37## Programming the Behavior of Any Keycode
b65282f6 38
d8f0faab 39When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up to you to send any key up or down events that are required.
4f48dd7c 40
409cb1af 41These function are called every time a key is pressed or released.
4f48dd7c 42
7b0356d1 43### Example `process_record_user()` Implementation
4f48dd7c 44
409cb1af 45This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.
4f48dd7c 46
713ec911 47```c
409cb1af 48bool process_record_user(uint16_t keycode, keyrecord_t *record) {
49 switch (keycode) {
50 case FOO:
51 if (record->event.pressed) {
52 // Do something when pressed
53 } else {
54 // Do something else when release
55 }
56 return false; // Skip all further processing of this key
57 case KC_ENTER:
58 // Play a tone when enter is pressed
59 if (record->event.pressed) {
d8e29b53 60 PLAY_NOTE_ARRAY(tone_qwerty);
409cb1af 61 }
62 return true; // Let QMK send the enter press/release events
eab41f7b 63 default:
64 return true; // Process all other keycodes normally
409cb1af 65 }
66}
67```
34836a16 68
7b0356d1 69### `process_record_*` Function Documentation
34836a16 70
bb53635f 71* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
409cb1af 72* Keymap: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`
4f48dd7c 73
409cb1af 74The `keycode` argument is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. You should use a `switch...case` block to handle these events.
4f48dd7c 75
af37bb2f 76The `record` argument contains information about the actual press:
4f48dd7c 77
713ec911 78```c
4f48dd7c 79keyrecord_t record {
713ec911
YFL
80 keyevent_t event {
81 keypos_t key {
82 uint8_t col
83 uint8_t row
84 }
85 bool pressed
86 uint16_t time
87 }
4f48dd7c 88}
89```
90
ea8df568 91# LED Control
34836a16 92
94ba2e5a 93QMK provides methods to read the 5 LEDs defined as part of the HID spec:
4f48dd7c 94
95* `USB_LED_NUM_LOCK`
96* `USB_LED_CAPS_LOCK`
97* `USB_LED_SCROLL_LOCK`
98* `USB_LED_COMPOSE`
99* `USB_LED_KANA`
100
94ba2e5a
D
101These five constants correspond to the positional bits of the host LED state.
102There are two ways to get the host LED state:
103
104* by implementing `led_set_user()`
105* by calling `host_keyboard_leds()`
106
107## `led_set_user()`
108
0f8431a5
109This function will be called when the state of one of those 5 LEDs changes. It receives the LED state as a parameter.
110Use the `IS_LED_ON(usb_led, led_name)` and `IS_LED_OFF(usb_led, led_name)` macros to check the LED status.
94ba2e5a
D
111
112!> `host_keyboard_leds()` may already reflect a new value before `led_set_user()` is called.
113
d27d8549 114### Example `led_set_user()` Implementation
4f48dd7c 115
713ec911 116```c
d27d8549 117void led_set_user(uint8_t usb_led) {
94ba2e5a 118 if (IS_LED_ON(usb_led, USB_LED_NUM_LOCK)) {
4f48dd7c 119 PORTB |= (1<<0);
120 } else {
121 PORTB &= ~(1<<0);
122 }
94ba2e5a 123 if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK)) {
4f48dd7c 124 PORTB |= (1<<1);
125 } else {
126 PORTB &= ~(1<<1);
127 }
94ba2e5a 128 if (IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK)) {
4f48dd7c 129 PORTB |= (1<<2);
130 } else {
131 PORTB &= ~(1<<2);
132 }
94ba2e5a 133 if (IS_LED_ON(usb_led, USB_LED_COMPOSE)) {
4f48dd7c 134 PORTB |= (1<<3);
135 } else {
136 PORTB &= ~(1<<3);
137 }
94ba2e5a 138 if (IS_LED_ON(usb_led, USB_LED_KANA)) {
4f48dd7c 139 PORTB |= (1<<4);
140 } else {
141 PORTB &= ~(1<<4);
142 }
143}
2f942c98 144```
409cb1af 145
7b0356d1 146### `led_set_*` Function Documentation
409cb1af 147
bb53635f 148* Keyboard/Revision: `void led_set_kb(uint8_t usb_led)`
409cb1af 149* Keymap: `void led_set_user(uint8_t usb_led)`
150
94ba2e5a
D
151## `host_keyboard_leds()`
152
0f8431a5
153Call this function to get the last received LED state. This is useful for reading the LED state outside `led_set_*`, e.g. in [`matrix_scan_user()`](#matrix-scanning-code).
154For convenience, you can use the `IS_HOST_LED_ON(led_name)` and `IS_HOST_LED_OFF(led_name)` macros instead of calling and checking `host_keyboard_leds()` directly.
94ba2e5a 155
0f8431a5 156## Setting Physical LED State
94ba2e5a
D
157
158Some keyboard implementations provide convenience methods for setting the state of the physical LEDs.
159
0f8431a5 160### Ergodox Boards
94ba2e5a 161
0f8431a5 162The Ergodox implementations provide `ergodox_right_led_1`/`2`/`3_on`/`off()` to turn individual LEDs on or off, as well as `ergodox_right_led_on`/`off(uint8_t led)` to turn them on or off by their index.
94ba2e5a 163
0f8431a5 164In addition, it is possible to specify the brightness level of all LEDs with `ergodox_led_all_set(uint8_t n)`; of individual LEDs with `ergodox_right_led_1`/`2`/`3_set(uint8_t n)`; or by index with `ergodox_right_led_set(uint8_t led, uint8_t n)`.
94ba2e5a 165
0f8431a5 166Ergodox boards also define `LED_BRIGHTNESS_LO` for the lowest brightness and `LED_BRIGHTNESS_HI` for the highest brightness (which is the default).
cb91320d 167
ea8df568 168# Matrix Initialization Code
409cb1af 169
94ba2e5a 170Before a keyboard can be used the hardware must be initialized. QMK handles initialization of the keyboard matrix itself, but if you have other hardware like LEDs or i&#xb2;c controllers you will need to set up that hardware before it can be used.
cb91320d 171
409cb1af 172
42e85d2b 173### Example `matrix_init_user()` Implementation
409cb1af 174
175This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
176
713ec911 177```c
d27d8549 178void matrix_init_user(void) {
409cb1af 179 // Call the keymap level matrix init.
409cb1af 180
181 // Set our LED pins as output
182 DDRB |= (1<<1);
183 DDRB |= (1<<2);
184 DDRB |= (1<<3);
185}
186```
187
7b0356d1 188### `matrix_init_*` Function Documentation
409cb1af 189
bb53635f 190* Keyboard/Revision: `void matrix_init_kb(void)`
409cb1af 191* Keymap: `void matrix_init_user(void)`
192
ea8df568 193# Matrix Scanning Code
409cb1af 194
195Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.
196
7b0356d1 197### Example `matrix_scan_*` Implementation
409cb1af 198
48913153 199This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on Discord](https://discord.gg/Uq7gcHh).
409cb1af 200
7b0356d1 201### `matrix_scan_*` Function Documentation
409cb1af 202
203* Keyboard/Revision: `void matrix_scan_kb(void)`
204* Keymap: `void matrix_scan_user(void)`
205
206This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.
207
94ba2e5a 208You should use this function if you need custom matrix scanning code. It can also be used for custom status output (such as LEDs or a display) or other functionality that you want to trigger regularly even when the user isn't typing.
d27d8549
L
209
210
cb91320d
DJ
211# Keyboard Idling/Wake Code
212
713ec911 213If the board supports it, it can be "idled", by stopping a number of functions. A good example of this is RGB lights or backlights. This can save on power consumption, or may be better behavior for your keyboard.
cb91320d 214
713ec911 215This is controlled by two functions: `suspend_power_down_*` and `suspend_wakeup_init_*`, which are called when the system is board is idled and when it wakes up, respectively.
cb91320d
DJ
216
217
218### Example suspend_power_down_user() and suspend_wakeup_init_user() Implementation
219
220This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
221
713ec911 222```c
cb91320d
DJ
223void suspend_power_down_user(void)
224{
225 rgb_matrix_set_suspend_state(true);
226}
227
228void suspend_wakeup_init_user(void)
229{
230 rgb_matrix_set_suspend_state(false);
231}
232
233```
234
235### `keyboard_init_*` Function Documentation
236
237* Keyboard/Revision: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
238* Keymap: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
239
42e85d2b
L
240# Layer Change Code
241
713ec911 242This runs code every time that the layers get changed. This can be useful for layer indication, or custom layer handling.
42e85d2b
L
243
244### Example `layer_state_set_*` Implementation
245
246This example shows how to set the [RGB Underglow](feature_rgblight.md) lights based on the layer, using the Planck as an example
247
713ec911 248```c
42e85d2b
L
249uint32_t layer_state_set_user(uint32_t state) {
250 switch (biton32(state)) {
251 case _RAISE:
252 rgblight_setrgb (0x00, 0x00, 0xFF);
253 break;
254 case _LOWER:
255 rgblight_setrgb (0xFF, 0x00, 0x00);
256 break;
257 case _PLOVER:
258 rgblight_setrgb (0x00, 0xFF, 0x00);
259 break;
260 case _ADJUST:
261 rgblight_setrgb (0x7A, 0x00, 0xFF);
262 break;
263 default: // for any other layers, or the default layer
264 rgblight_setrgb (0x00, 0xFF, 0xFF);
265 break;
266 }
267 return state;
268}
269```
d965d72d 270### `layer_state_set_*` Function Documentation
42e85d2b
L
271
272* Keyboard/Revision: `void uint32_t layer_state_set_kb(uint32_t state)`
273* Keymap: `uint32_t layer_state_set_user(uint32_t state)`
274
275The `state` is the bitmask of the active layers, as explained in the [Keymap Overview](keymap.md#keymap-layer-status)
e885c793
DJ
276
277
278# Persistent Configuration (EEPROM)
279
280This allows you to configure persistent settings for your keyboard. These settings are stored in the EEPROM of your controller, and are retained even after power loss. The settings can be read with `eeconfig_read_kb` and `eeconfig_read_user`, and can be written to using `eeconfig_update_kb` and `eeconfig_update_user`. This is useful for features that you want to be able to toggle (like toggling rgb layer indication). Additionally, you can use `eeconfig_init_kb` and `eeconfig_init_user` to set the default values for the EEPROM.
281
282The complicated part here, is that there are a bunch of ways that you can store and access data via EEPROM, and there is no "correct" way to do this. However, you only have a DWORD (4 bytes) for each function.
283
284Keep in mind that EEPROM has a limited number of writes. While this is very high, it's not the only thing writing to the EEPROM, and if you write too often, you can potentially drastically shorten the life of your MCU.
285
286* If you don't understand the example, then you may want to avoid using this feature, as it is rather complicated.
287
288### Example Implementation
289
290This is an example of how to add settings, and read and write it. We're using the user keymap for the example here. This is a complex function, and has a lot going on. In fact, it uses a lot of the above functions to work!
291
292
293In your keymap.c file, add this to the top:
294```
295typedef union {
296 uint32_t raw;
297 struct {
298 bool rgb_layer_change :1;
299 };
300} user_config_t;
301
302user_config_t user_config;
303```
304
305This sets up a 32 bit structure that we can store settings with in memory, and write to the EEPROM. Using this removes the need to define variables, since they're defined in this structure. Remember that `bool` (boolean) values use 1 bit, `uint8_t` uses 8 bits, `uint16_t` uses up 16 bits. You can mix and match, but changing the order can cause issues, as it will change the values that are read and written.
306
307We're using `rgb_layer_change`, for the `layer_state_set_*` function, and use `matrix_init_user` and `process_record_user` to configure everything.
308
309Now, using the `matrix_init_user` code above, you want to add `eeconfig_read_user()` to it, to populate the structure you've just created. And you can then immediately use this structure to control functionality in your keymap. And It should look like:
310```
311void matrix_init_user(void) {
312 // Call the keymap level matrix init.
313
314 // Read the user config from EEPROM
315 user_config.raw = eeconfig_read_user();
316
317 // Set default layer, if enabled
318 if (user_config.rgb_layer_change) {
319 rgblight_enable_noeeprom();
320 rgblight_sethsv_noeeprom_cyan();
321 rgblight_mode_noeeprom(1);
322 }
323}
324```
325The above function will use the EEPROM config immediately after reading it, to set the default layer's RGB color. The "raw" value of it is converted in a usable structure based on the "union" that you created above.
326
327```
328uint32_t layer_state_set_user(uint32_t state) {
329 switch (biton32(state)) {
330 case _RAISE:
331 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_magenta(); rgblight_mode_noeeprom(1); }
332 break;
333 case _LOWER:
334 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_red(); rgblight_mode_noeeprom(1); }
335 break;
336 case _PLOVER:
337 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_green(); rgblight_mode_noeeprom(1); }
338 break;
339 case _ADJUST:
340 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_white(); rgblight_mode_noeeprom(1); }
341 break;
342 default: // for any other layers, or the default layer
343 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_cyan(); rgblight_mode_noeeprom(1); }
344 break;
345 }
346 return state;
347}
348```
349This will cause the RGB underglow to be changed ONLY if the value was enabled. Now to configure this value, create a new keycode for `process_record_user` called `RGB_LYR` and `EPRM`. Additionally, we want to make sure that if you use the normal RGB codes, that it turns off Using the example above, make it look this:
350```
351
352bool process_record_user(uint16_t keycode, keyrecord_t *record) {
353 switch (keycode) {
354 case FOO:
355 if (record->event.pressed) {
356 // Do something when pressed
357 } else {
358 // Do something else when release
359 }
360 return false; // Skip all further processing of this key
361 case KC_ENTER:
362 // Play a tone when enter is pressed
363 if (record->event.pressed) {
364 PLAY_NOTE_ARRAY(tone_qwerty);
365 }
366 return true; // Let QMK send the enter press/release events
367 case EPRM:
368 if (record->event.pressed) {
369 eeconfig_init(); // resets the EEPROM to default
370 }
371 return false;
372 case RGB_LYR: // This allows me to use underglow as layer indication, or as normal
373 if (record->event.pressed) {
374 user_config.rgb_layer_change ^= 1; // Toggles the status
375 eeconfig_update_user(user_config.raw); // Writes the new status to EEPROM
376 if (user_config.rgb_layer_change) { // if layer state indication is enabled,
377 layer_state_set(layer_state); // then immediately update the layer color
378 }
379 }
380 return false; break;
381 case RGB_MODE_FORWARD ... RGB_MODE_GRADIENT: // For any of the RGB codes (see quantum_keycodes.h, L400 for reference)
382 if (record->event.pressed) { //This disables layer indication, as it's assumed that if you're changing this ... you want that disabled
383 if (user_config.rgb_layer_change) { // only if this is enabled
384 user_config.rgb_layer_change = false; // disable it, and
385 eeconfig_update_user(user_config.raw); // write the setings to EEPROM
386 }
387 }
388 return true; break;
389 default:
390 return true; // Process all other keycodes normally
391 }
392}
393```
394And lastly, you want to add the `eeconfig_init_user` function, so that when the EEPROM is reset, you can specify default values, and even custom actions. For example, if you want to set rgb layer indication by default, and save the default valued.
395
396```
397void eeconfig_init_user(void) { // EEPROM is getting reset!
398 user_config.rgb_layer_change = true; // We want this enabled by default
399 eeconfig_update_user(user_config.raw); // Write default value to EEPROM now
400
401 // use the non noeeprom versions, to write these values to EEPROM too
402 rgblight_enable(); // Enable RGB by default
403 rgblight_sethsv_cyan(); // Set it to CYAN by default
404 rgblight_mode(1); // set to solid by default
405}
406```
407
408And you're done. The RGB layer indication will only work if you want it to. And it will be saved, even after unplugging the board. And if you use any of the RGB codes, it will disable the layer indication, so that it stays on the mode and color that you set it to.
409
410### 'EECONFIG' Function Documentation
411
412* Keyboard/Revision: `void eeconfig_init_kb(void)`, `uint32_t eeconfig_read_kb(void)` and `void eeconfig_update_kb(uint32_t val)`
413* Keymap: `void eeconfig_init_user(void)`, `uint32_t eeconfig_read_user(void)` and `void eeconfig_update_user(uint32_t val)`
414
415The `val` is the value of the data that you want to write to EEPROM. And the `eeconfig_read_*` function return a 32 bit (DWORD) value from the EEPROM.