[Keyboard] Tmo50 initial commit (#4891)
[jackhill/qmk/firmware.git] / docs / custom_quantum_functions.md
CommitLineData
7b0356d1 1# How to Customize Your Keyboard's Behavior
4f48dd7c 2
bb53635f 3For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
409cb1af 4
7aaef162 5This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.
409cb1af 6
7## A Word on Core vs Keyboards vs Keymap
4f48dd7c 8
9We have structured QMK as a hierarchy:
10
2f942c98 11* Core (`_quantum`)
4f48dd7c 12 * Keyboard/Revision (`_kb`)
13 * Keymap (`_user`)
14
409cb1af 15Each of the functions described below can be defined with a `_kb()` suffix or a `_user()` suffix. We intend for you to use the `_kb()` suffix at the Keyboard/Revision level, while the `_user()` suffix should be used at the Keymap level.
4f48dd7c 16
1ca87968 17When defining functions at the Keyboard/Revision level it is important that your `_kb()` implementation call `_user()` before executing anything else- otherwise the keymap level function will never be called.
4f48dd7c 18
486abde0 19# Custom Keycodes
4f48dd7c 20
409cb1af 21By far the most common task is to change the behavior of an existing keycode or to create a new keycode. From a code standpoint the mechanism for each is very similar.
22
486abde0 23## Defining a New Keycode
4f48dd7c 24
409cb1af 25The first step to creating your own custom keycode(s) is to enumerate them. This means both naming them and assigning a unique number to that keycode. Rather than limit custom keycodes to a fixed range of numbers QMK provides the `SAFE_RANGE` macro. You can use `SAFE_RANGE` when enumerating your custom keycodes to guarantee that you get a unique number.
4f48dd7c 26
409cb1af 27
28Here is an example of enumerating 2 keycodes. After adding this block to your `keymap.c` you will be able to use `FOO` and `BAR` inside your keymap.
b65282f6 29
713ec911 30```c
409cb1af 31enum my_keycodes {
32 FOO = SAFE_RANGE,
33 BAR
34};
b65282f6 35```
36
7b0356d1 37## Programming the Behavior of Any Keycode
b65282f6 38
d8f0faab 39When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up to you to send any key up or down events that are required.
4f48dd7c 40
409cb1af 41These function are called every time a key is pressed or released.
4f48dd7c 42
7b0356d1 43### Example `process_record_user()` Implementation
4f48dd7c 44
409cb1af 45This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.
4f48dd7c 46
713ec911 47```c
409cb1af 48bool process_record_user(uint16_t keycode, keyrecord_t *record) {
49 switch (keycode) {
50 case FOO:
51 if (record->event.pressed) {
52 // Do something when pressed
53 } else {
54 // Do something else when release
55 }
56 return false; // Skip all further processing of this key
57 case KC_ENTER:
58 // Play a tone when enter is pressed
59 if (record->event.pressed) {
d8e29b53 60 PLAY_NOTE_ARRAY(tone_qwerty);
409cb1af 61 }
62 return true; // Let QMK send the enter press/release events
eab41f7b 63 default:
64 return true; // Process all other keycodes normally
409cb1af 65 }
66}
67```
34836a16 68
7b0356d1 69### `process_record_*` Function Documentation
34836a16 70
bb53635f 71* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
409cb1af 72* Keymap: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`
4f48dd7c 73
409cb1af 74The `keycode` argument is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. You should use a `switch...case` block to handle these events.
4f48dd7c 75
af37bb2f 76The `record` argument contains information about the actual press:
4f48dd7c 77
713ec911 78```c
4f48dd7c 79keyrecord_t record {
713ec911
YFL
80 keyevent_t event {
81 keypos_t key {
82 uint8_t col
83 uint8_t row
84 }
85 bool pressed
86 uint16_t time
87 }
4f48dd7c 88}
89```
90
ea8df568 91# LED Control
34836a16 92
94ba2e5a 93QMK provides methods to read the 5 LEDs defined as part of the HID spec:
4f48dd7c 94
95* `USB_LED_NUM_LOCK`
96* `USB_LED_CAPS_LOCK`
97* `USB_LED_SCROLL_LOCK`
98* `USB_LED_COMPOSE`
99* `USB_LED_KANA`
100
94ba2e5a
D
101These five constants correspond to the positional bits of the host LED state.
102There are two ways to get the host LED state:
103
104* by implementing `led_set_user()`
105* by calling `host_keyboard_leds()`
106
107## `led_set_user()`
108
109This function will be called when the state of one of those 5 LEDs changes.
110It receives the LED state as parameter.
111Use the `IS_LED_ON(USB_LED, LED_NAME)` and `IS_LED_OFF(USB_LED, LED_NAME)`
112macros to check the LED status.
113
114!> `host_keyboard_leds()` may already reflect a new value before `led_set_user()` is called.
115
d27d8549 116### Example `led_set_user()` Implementation
4f48dd7c 117
713ec911 118```c
d27d8549 119void led_set_user(uint8_t usb_led) {
94ba2e5a 120 if (IS_LED_ON(usb_led, USB_LED_NUM_LOCK)) {
4f48dd7c 121 PORTB |= (1<<0);
122 } else {
123 PORTB &= ~(1<<0);
124 }
94ba2e5a 125 if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK)) {
4f48dd7c 126 PORTB |= (1<<1);
127 } else {
128 PORTB &= ~(1<<1);
129 }
94ba2e5a 130 if (IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK)) {
4f48dd7c 131 PORTB |= (1<<2);
132 } else {
133 PORTB &= ~(1<<2);
134 }
94ba2e5a 135 if (IS_LED_ON(usb_led, USB_LED_COMPOSE)) {
4f48dd7c 136 PORTB |= (1<<3);
137 } else {
138 PORTB &= ~(1<<3);
139 }
94ba2e5a 140 if (IS_LED_ON(usb_led, USB_LED_KANA)) {
4f48dd7c 141 PORTB |= (1<<4);
142 } else {
143 PORTB &= ~(1<<4);
144 }
145}
2f942c98 146```
409cb1af 147
7b0356d1 148### `led_set_*` Function Documentation
409cb1af 149
bb53635f 150* Keyboard/Revision: `void led_set_kb(uint8_t usb_led)`
409cb1af 151* Keymap: `void led_set_user(uint8_t usb_led)`
152
94ba2e5a
D
153## `host_keyboard_leds()`
154
155Call this function to get the last received LED state.
156This is useful for reading the LED state outside `led_set_*`, e.g. in [`matrix_scan_user()`](#matrix-scanning-code).
157
158For convenience, you can use the `IS_HOST_LED_ON(LED_NAME)` and `IS_HOST_LED_OFF(LED_NAME)` macros instead of calling `host_keyboard_leds()` directly.
159
160## Setting physical LED state
161
162Some keyboard implementations provide convenience methods for setting the state of the physical LEDs.
163
164### Ergodox and Ergodox EZ
165
166The Ergodox EZ implementation provides `ergodox_right_led_``1`/`2`/`3_on`/`off()`
167to turn individual LEDs on and off, as well as
168`ergodox_right_led_on`/`off(uint8_t led)`
169to turn them on and off by their number.
170
171In addition, it is possible to specify the brightness level with `ergodox_led_all_set(uint8_t n)`,
172for individual LEDs with `ergodox_right_led_1`/`2`/`3_set(uint8_t n)`
173or by their number using `ergodox_right_led_set(uint8_t led, uint8_t n)`.
174
175It defines `LED_BRIGHTNESS_LO` for the lowest brightness and `LED_BRIGHTNESS_HI` for the highest brightness, which is also the default.
cb91320d 176
ea8df568 177# Matrix Initialization Code
409cb1af 178
94ba2e5a 179Before a keyboard can be used the hardware must be initialized. QMK handles initialization of the keyboard matrix itself, but if you have other hardware like LEDs or i&#xb2;c controllers you will need to set up that hardware before it can be used.
cb91320d 180
409cb1af 181
42e85d2b 182### Example `matrix_init_user()` Implementation
409cb1af 183
184This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
185
713ec911 186```c
d27d8549 187void matrix_init_user(void) {
409cb1af 188 // Call the keymap level matrix init.
409cb1af 189
190 // Set our LED pins as output
191 DDRB |= (1<<1);
192 DDRB |= (1<<2);
193 DDRB |= (1<<3);
194}
195```
196
7b0356d1 197### `matrix_init_*` Function Documentation
409cb1af 198
bb53635f 199* Keyboard/Revision: `void matrix_init_kb(void)`
409cb1af 200* Keymap: `void matrix_init_user(void)`
201
ea8df568 202# Matrix Scanning Code
409cb1af 203
204Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.
205
7b0356d1 206### Example `matrix_scan_*` Implementation
409cb1af 207
48913153 208This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on Discord](https://discord.gg/Uq7gcHh).
409cb1af 209
7b0356d1 210### `matrix_scan_*` Function Documentation
409cb1af 211
212* Keyboard/Revision: `void matrix_scan_kb(void)`
213* Keymap: `void matrix_scan_user(void)`
214
215This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.
216
94ba2e5a 217You should use this function if you need custom matrix scanning code. It can also be used for custom status output (such as LEDs or a display) or other functionality that you want to trigger regularly even when the user isn't typing.
d27d8549
L
218
219
cb91320d
DJ
220# Keyboard Idling/Wake Code
221
713ec911 222If the board supports it, it can be "idled", by stopping a number of functions. A good example of this is RGB lights or backlights. This can save on power consumption, or may be better behavior for your keyboard.
cb91320d 223
713ec911 224This is controlled by two functions: `suspend_power_down_*` and `suspend_wakeup_init_*`, which are called when the system is board is idled and when it wakes up, respectively.
cb91320d
DJ
225
226
227### Example suspend_power_down_user() and suspend_wakeup_init_user() Implementation
228
229This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
230
713ec911 231```c
cb91320d
DJ
232void suspend_power_down_user(void)
233{
234 rgb_matrix_set_suspend_state(true);
235}
236
237void suspend_wakeup_init_user(void)
238{
239 rgb_matrix_set_suspend_state(false);
240}
241
242```
243
244### `keyboard_init_*` Function Documentation
245
246* Keyboard/Revision: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
247* Keymap: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
248
42e85d2b
L
249# Layer Change Code
250
713ec911 251This runs code every time that the layers get changed. This can be useful for layer indication, or custom layer handling.
42e85d2b
L
252
253### Example `layer_state_set_*` Implementation
254
255This example shows how to set the [RGB Underglow](feature_rgblight.md) lights based on the layer, using the Planck as an example
256
713ec911 257```c
42e85d2b
L
258uint32_t layer_state_set_user(uint32_t state) {
259 switch (biton32(state)) {
260 case _RAISE:
261 rgblight_setrgb (0x00, 0x00, 0xFF);
262 break;
263 case _LOWER:
264 rgblight_setrgb (0xFF, 0x00, 0x00);
265 break;
266 case _PLOVER:
267 rgblight_setrgb (0x00, 0xFF, 0x00);
268 break;
269 case _ADJUST:
270 rgblight_setrgb (0x7A, 0x00, 0xFF);
271 break;
272 default: // for any other layers, or the default layer
273 rgblight_setrgb (0x00, 0xFF, 0xFF);
274 break;
275 }
276 return state;
277}
278```
d965d72d 279### `layer_state_set_*` Function Documentation
42e85d2b
L
280
281* Keyboard/Revision: `void uint32_t layer_state_set_kb(uint32_t state)`
282* Keymap: `uint32_t layer_state_set_user(uint32_t state)`
283
284The `state` is the bitmask of the active layers, as explained in the [Keymap Overview](keymap.md#keymap-layer-status)
e885c793
DJ
285
286
287# Persistent Configuration (EEPROM)
288
289This allows you to configure persistent settings for your keyboard. These settings are stored in the EEPROM of your controller, and are retained even after power loss. The settings can be read with `eeconfig_read_kb` and `eeconfig_read_user`, and can be written to using `eeconfig_update_kb` and `eeconfig_update_user`. This is useful for features that you want to be able to toggle (like toggling rgb layer indication). Additionally, you can use `eeconfig_init_kb` and `eeconfig_init_user` to set the default values for the EEPROM.
290
291The complicated part here, is that there are a bunch of ways that you can store and access data via EEPROM, and there is no "correct" way to do this. However, you only have a DWORD (4 bytes) for each function.
292
293Keep in mind that EEPROM has a limited number of writes. While this is very high, it's not the only thing writing to the EEPROM, and if you write too often, you can potentially drastically shorten the life of your MCU.
294
295* If you don't understand the example, then you may want to avoid using this feature, as it is rather complicated.
296
297### Example Implementation
298
299This is an example of how to add settings, and read and write it. We're using the user keymap for the example here. This is a complex function, and has a lot going on. In fact, it uses a lot of the above functions to work!
300
301
302In your keymap.c file, add this to the top:
303```
304typedef union {
305 uint32_t raw;
306 struct {
307 bool rgb_layer_change :1;
308 };
309} user_config_t;
310
311user_config_t user_config;
312```
313
314This sets up a 32 bit structure that we can store settings with in memory, and write to the EEPROM. Using this removes the need to define variables, since they're defined in this structure. Remember that `bool` (boolean) values use 1 bit, `uint8_t` uses 8 bits, `uint16_t` uses up 16 bits. You can mix and match, but changing the order can cause issues, as it will change the values that are read and written.
315
316We're using `rgb_layer_change`, for the `layer_state_set_*` function, and use `matrix_init_user` and `process_record_user` to configure everything.
317
318Now, using the `matrix_init_user` code above, you want to add `eeconfig_read_user()` to it, to populate the structure you've just created. And you can then immediately use this structure to control functionality in your keymap. And It should look like:
319```
320void matrix_init_user(void) {
321 // Call the keymap level matrix init.
322
323 // Read the user config from EEPROM
324 user_config.raw = eeconfig_read_user();
325
326 // Set default layer, if enabled
327 if (user_config.rgb_layer_change) {
328 rgblight_enable_noeeprom();
329 rgblight_sethsv_noeeprom_cyan();
330 rgblight_mode_noeeprom(1);
331 }
332}
333```
334The above function will use the EEPROM config immediately after reading it, to set the default layer's RGB color. The "raw" value of it is converted in a usable structure based on the "union" that you created above.
335
336```
337uint32_t layer_state_set_user(uint32_t state) {
338 switch (biton32(state)) {
339 case _RAISE:
340 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_magenta(); rgblight_mode_noeeprom(1); }
341 break;
342 case _LOWER:
343 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_red(); rgblight_mode_noeeprom(1); }
344 break;
345 case _PLOVER:
346 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_green(); rgblight_mode_noeeprom(1); }
347 break;
348 case _ADJUST:
349 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_white(); rgblight_mode_noeeprom(1); }
350 break;
351 default: // for any other layers, or the default layer
352 if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_cyan(); rgblight_mode_noeeprom(1); }
353 break;
354 }
355 return state;
356}
357```
358This will cause the RGB underglow to be changed ONLY if the value was enabled. Now to configure this value, create a new keycode for `process_record_user` called `RGB_LYR` and `EPRM`. Additionally, we want to make sure that if you use the normal RGB codes, that it turns off Using the example above, make it look this:
359```
360
361bool process_record_user(uint16_t keycode, keyrecord_t *record) {
362 switch (keycode) {
363 case FOO:
364 if (record->event.pressed) {
365 // Do something when pressed
366 } else {
367 // Do something else when release
368 }
369 return false; // Skip all further processing of this key
370 case KC_ENTER:
371 // Play a tone when enter is pressed
372 if (record->event.pressed) {
373 PLAY_NOTE_ARRAY(tone_qwerty);
374 }
375 return true; // Let QMK send the enter press/release events
376 case EPRM:
377 if (record->event.pressed) {
378 eeconfig_init(); // resets the EEPROM to default
379 }
380 return false;
381 case RGB_LYR: // This allows me to use underglow as layer indication, or as normal
382 if (record->event.pressed) {
383 user_config.rgb_layer_change ^= 1; // Toggles the status
384 eeconfig_update_user(user_config.raw); // Writes the new status to EEPROM
385 if (user_config.rgb_layer_change) { // if layer state indication is enabled,
386 layer_state_set(layer_state); // then immediately update the layer color
387 }
388 }
389 return false; break;
390 case RGB_MODE_FORWARD ... RGB_MODE_GRADIENT: // For any of the RGB codes (see quantum_keycodes.h, L400 for reference)
391 if (record->event.pressed) { //This disables layer indication, as it's assumed that if you're changing this ... you want that disabled
392 if (user_config.rgb_layer_change) { // only if this is enabled
393 user_config.rgb_layer_change = false; // disable it, and
394 eeconfig_update_user(user_config.raw); // write the setings to EEPROM
395 }
396 }
397 return true; break;
398 default:
399 return true; // Process all other keycodes normally
400 }
401}
402```
403And lastly, you want to add the `eeconfig_init_user` function, so that when the EEPROM is reset, you can specify default values, and even custom actions. For example, if you want to set rgb layer indication by default, and save the default valued.
404
405```
406void eeconfig_init_user(void) { // EEPROM is getting reset!
407 user_config.rgb_layer_change = true; // We want this enabled by default
408 eeconfig_update_user(user_config.raw); // Write default value to EEPROM now
409
410 // use the non noeeprom versions, to write these values to EEPROM too
411 rgblight_enable(); // Enable RGB by default
412 rgblight_sethsv_cyan(); // Set it to CYAN by default
413 rgblight_mode(1); // set to solid by default
414}
415```
416
417And you're done. The RGB layer indication will only work if you want it to. And it will be saved, even after unplugging the board. And if you use any of the RGB codes, it will disable the layer indication, so that it stays on the mode and color that you set it to.
418
419### 'EECONFIG' Function Documentation
420
421* Keyboard/Revision: `void eeconfig_init_kb(void)`, `uint32_t eeconfig_read_kb(void)` and `void eeconfig_update_kb(uint32_t val)`
422* Keymap: `void eeconfig_init_user(void)`, `uint32_t eeconfig_read_user(void)` and `void eeconfig_update_user(uint32_t val)`
423
424The `val` is the value of the data that you want to write to EEPROM. And the `eeconfig_read_*` function return a 32 bit (DWORD) value from the EEPROM.