Renamed src/lib Parenscript library files, got rid of Parenscript CSS system.
[clinton/parenscript.git] / docs / reference.lisp
1 ;;;# ParenScript Language Reference
2
3 ;;; This chapters describes the core constructs of ParenScript, as
4 ;;; well as its compilation model. This chapter is aimed to be a
5 ;;; comprehensive reference for ParenScript developers. Programmers
6 ;;; looking for how to tweak the ParenScript compiler itself should
7 ;;; turn to the ParenScript Internals chapter.
8
9 ;;;# Statements and Expressions
10 ;;;t \index{statement}
11 ;;;t \index{expression}
12
13 ;;; In contrast to Lisp, where everything is an expression, JavaScript
14 ;;; makes the difference between an expression, which evaluates to a
15 ;;; value, and a statement, which has no value. Examples for
16 ;;; JavaScript statements are `for', `with' and `while'. Most
17 ;;; ParenScript forms are expression, but certain special forms are
18 ;;; not (the forms which are transformed to a JavaScript
19 ;;; statement). All ParenScript expressions are statements
20 ;;; though. Certain forms, like `IF' and `PROGN', generate different
21 ;;; JavaScript constructs whether they are used in an expression
22 ;;; context or a statement context. For example:
23
24 (+ i (if 1 2 3)) => i + (1 ? 2 : 3)
25
26 (if 1 2 3)
27 => if (1) {
28 2;
29 } else {
30 3;
31 }
32
33 ;;;# Symbol conversion
34 ;;;t \index{symbol}
35 ;;;t \index{symbol conversion}
36
37 ;;; Lisp symbols are converted to JavaScript symbols by following a
38 ;;; few simple rules. Special characters `!', `?', `#', `@', `%',
39 ;;; '/', `*' and `+' get replaced by their written-out equivalents
40 ;;; "bang", "what", "hash", "at", "percent", "slash",
41 ;;; "start" and "plus" respectively. The `$' character is untouched.
42
43 !?#@% => bangwhathashatpercent
44
45 ;;; The `-' is an indication that the following character should be
46 ;;; converted to uppercase. Thus, `-' separated symbols are converted
47 ;;; to camelcase. The `_' character however is left untouched.
48
49 bla-foo-bar => blaFooBar
50
51 ;;; If you want a JavaScript symbol beginning with an uppercase, you
52 ;;; can either use a leading `-', which can be misleading in a
53 ;;; mathematical context, or a leading `*'.
54
55 *array => Array
56
57 ;;; The `.' character is left as is in symbols. This allows the
58 ;;; ParenScript programmer to use a practical shortcut when accessing
59 ;;; slots or methods of JavaScript objects. Instead of writing
60
61 (slot-value foobar 'slot)
62
63 ;;; we can write
64
65 foobar.slot
66
67 ;;; A symbol beggining and ending with `+' or `*' is converted to all
68 ;;; uppercase, to signify that this is a constant or a global
69 ;;; variable.
70
71 *global-array* => GLOBALARRAY
72
73 *global-array*.length => GLOBALARRAY.length
74
75 ;;;## Reserved Keywords
76 ;;;t \index{keyword}
77 ;;;t \index{reserved keywords}
78
79 ;;; The following keywords and symbols are reserved in ParenScript,
80 ;;; and should not be used as variable names.
81
82 ! ~ ++ -- * / % + - << >> >>> < > <= >= == != ==== !== & ^ | && || *=
83 /= %= += -= <<= >>= >>>= &= ^= |= 1- 1+ ABSTRACT AND AREF ARRAY
84 BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS COMMA CONST CONTINUE
85 CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE DO DOEACH DOLIST
86 DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS FALSE FINAL FINALLY FLOAT
87 FLOOR FOR FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF INSTANCEOF INT
88 INTERFACE JS LAMBDA LET* LEXICAL-LET* LISP LIST LONG MAKE-ARRAY NATIVE
89 NEW NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED PUBLIC RANDOM REGEX
90 RETURN SETF SHORT SLOT-VALUE STATIC SUPER SWITCH SYMBOL-MACROLET
91 SYNCHRONIZED T THIS THROW THROWS TRANSIENT TRY TYPEOF UNDEFINED UNLESS
92 VAR VOID VOLATILE WHEN WHILE WITH WITH-SLOTS
93
94 ;;;# Literal values
95 ;;;t \index{literal value}
96
97 ;;;## Number literals
98 ;;;t \index{number}
99 ;;;t \index{number literal}
100
101 ; number ::= a Lisp number
102
103 ;;;
104 ;;; ParenScript supports the standard JavaScript literal
105 ;;; values. Numbers are compiled into JavaScript numbers.
106
107 1 => 1
108
109 123.123 => 123.123
110
111 ;;; Note that the base is not conserved between Lisp and JavaScript.
112
113 #x10 => 16
114
115 ;;;## String literals
116 ;;;t \index{string}
117 ;;;t \index{string literal}
118
119 ; string ::= a Lisp string
120
121 ;;; Lisp strings are converted into JavaScript literals.
122
123 "foobar" => 'foobar'
124
125 "bratzel bub" => 'bratzel bub'
126
127 ;;; Escapes in Lisp are not converted to JavaScript escapes. However,
128 ;;; to avoid having to use double backslashes when constructing a
129 ;;; string, you can use the CL-INTERPOL library by Edi Weitz.
130
131 ;;;## Array literals
132 ;;;t \index{array}
133 ;;;t \index{ARRAY}
134 ;;;t \index{MAKE-ARRAY}
135 ;;;t \index{AREF}
136 ;;;t \index{array literal}
137
138 ; (ARRAY {values}*)
139 ; (MAKE-ARRAY {values}*)
140 ; (AREF array index)
141 ;
142 ; values ::= a ParenScript expression
143 ; array ::= a ParenScript expression
144 ; index ::= a ParenScript expression
145
146 ;;; Array literals can be created using the `ARRAY' form.
147
148 (array) => [ ]
149
150 (array 1 2 3) => [ 1, 2, 3 ]
151
152 (array (array 2 3)
153 (array "foobar" "bratzel bub"))
154 => [ [ 2, 3 ], [ 'foobar', 'bratzel bub' ] ]
155
156 ;;; Arrays can also be created with a call to the `Array' function
157 ;;; using the `MAKE-ARRAY'. The two forms have the exact same semantic
158 ;;; on the JavaScript side.
159
160 (make-array) => new Array()
161
162 (make-array 1 2 3) => new Array(1, 2, 3)
163
164 (make-array
165 (make-array 2 3)
166 (make-array "foobar" "bratzel bub"))
167 => new Array(new Array(2, 3), new Array('foobar', 'bratzel bub'))
168
169 ;;; Indexing arrays in ParenScript is done using the form `AREF'. Note
170 ;;; that JavaScript knows of no such thing as an array. Subscripting
171 ;;; an array is in fact reading a property from an object. So in a
172 ;;; semantic sense, there is no real difference between `AREF' and
173 ;;; `SLOT-VALUE'.
174
175 ;;;## Object literals
176 ;;;t \index{CREATE}
177 ;;;t \index{SLOT-VALUE}
178 ;;;t \index{WITH-SLOTS}
179 ;;;t \index{object literal}
180 ;;;t \index{object}
181 ;;;t \index{object property}
182 ;;;t \index{property}
183
184 ; (CREATE {name value}*)
185 ; (SLOT-VALUE object slot-name)
186 ; (WITH-SLOTS ({slot-name}*) object body)
187 ;
188 ; name ::= a ParenScript symbol or a Lisp keyword
189 ; value ::= a ParenScript expression
190 ; object ::= a ParenScript object expression
191 ; slot-name ::= a quoted Lisp symbol
192 ; body ::= a list of ParenScript statements
193
194 ;;;
195 ;;; Object literals can be create using the `CREATE' form. Arguments
196 ;;; to the `CREATE' form is a list of property names and values. To be
197 ;;; more "lispy", the property names can be keywords.
198
199 (create :foo "bar" :blorg 1)
200 => { foo : 'bar',
201 blorg : 1 }
202
203 (create :foo "hihi"
204 :blorg (array 1 2 3)
205 :another-object (create :schtrunz 1))
206 => { foo : 'hihi',
207 blorg : [ 1, 2, 3 ],
208 anotherObject : { schtrunz : 1 } }
209
210 ;;; Object properties can be accessed using the `SLOT-VALUE' form,
211 ;;; which takes an object and a slot-name.
212
213 (slot-value an-object 'foo) => anObject.foo
214
215 ;;; A programmer can also use the "." symbol notation explained above.
216
217 an-object.foo => anObject.foo
218
219 ;;; The form `WITH-SLOTS' can be used to bind the given slot-name
220 ;;; symbols to a macro that will expand into a `SLOT-VALUE' form at
221 ;;; expansion time.
222
223 (with-slots (a b c) this
224 (+ a b c))
225 => this.a + this.b + this.c;
226
227 ;;;## Regular Expression literals
228 ;;;t \index{REGEX}
229 ;;;t \index{regular expression}
230 ;;;t \index{CL-INTERPOL}
231
232 ; (REGEX regex)
233 ;
234 ; regex ::= a Lisp string
235
236 ;;; Regular expressions can be created by using the `REGEX' form. If
237 ;;; the argument does not start with a slash, it is surrounded by
238 ;;; slashes to make it a proper JavaScript regex. If the argument
239 ;;; starts with a slash it is left as it is. This makes it possible
240 ;;; to use modifiers such as slash-i (case-insensitive) or
241 ;;; slash-g (match-globally (all)).
242
243 (regex "foobar") => /foobar/
244
245 (regex "/foobar/i") => /foobar/i
246
247 ;;; Here CL-INTERPOL proves really useful.
248
249 (regex #?r"/([^\s]+)foobar/i") => /([^\s]+)foobar/i
250
251 ;;;## Literal symbols
252 ;;;t \index{T}
253 ;;;t \index{FALSE}
254 ;;;t \index{NIL}
255 ;;;t \index{UNDEFINED}
256 ;;;t \index{THIS}
257 ;;;t \index{literal symbols}
258 ;;;t \index{null}
259 ;;;t \index{true}
260
261 ; T, FALSE, NIL, UNDEFINED, THIS
262
263 ;;; The Lisp symbols `T' and `FALSE' are converted to their JavaScript
264 ;;; boolean equivalents `true' and `false'.
265
266 T => true
267
268 FALSE => false
269
270 ;;; The Lisp symbol `NIL' is converted to the JavaScript keyword
271 ;;; `null'.
272
273 NIL => null
274
275 ;;; The Lisp symbol `UNDEFINED' is converted to the JavaScript keyword
276 ;;; `undefined'.
277
278 UNDEFINED => undefined
279
280 ;;; The Lisp symbol `THIS' is converted to the JavaScript keyword
281 ;;; `this'.
282
283 THIS => this
284
285 ;;;# Variables
286 ;;;t \index{variable}
287 ;;;t \index{symbol}
288
289 ; variable ::= a Lisp symbol
290
291 ;;; All the other literal Lisp values that are not recognized as
292 ;;; special forms or symbol macros are converted to JavaScript
293 ;;; variables. This extreme freedom is actually quite useful, as it
294 ;;; allows the ParenScript programmer to be flexible, as flexible as
295 ;;; JavaScript itself.
296
297 variable => variable
298
299 a-variable => aVariable
300
301 *math => Math
302
303 *math.floor => Math.floor
304
305 ;;;# Function calls and method calls
306 ;;;t \index{function}
307 ;;;t \index{function call}
308 ;;;t \index{method}
309 ;;;t \index{method call}
310
311 ; (function {argument}*)
312 ; (method object {argument}*)
313 ;
314 ; function ::= a ParenScript expression or a Lisp symbol
315 ; method ::= a Lisp symbol beginning with .
316 ; object ::= a ParenScript expression
317 ; argument ::= a ParenScript expression
318
319 ;;; Any list passed to the JavaScript that is not recognized as a
320 ;;; macro or a special form (see "Macro Expansion" below) is
321 ;;; interpreted as a function call. The function call is converted to
322 ;;; the normal JavaScript function call representation, with the
323 ;;; arguments given in paren after the function name.
324
325 (blorg 1 2) => blorg(1, 2)
326
327 (foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))
328 => foobar(blorg(1, 2), blabla(3, 4), [ 2, 3, 4 ])
329
330 ((aref foo i) 1 2) => foo[i](1, 2)
331
332 ;;; A method call is a function call where the function name is a
333 ;;; symbol and begins with a "." . In a method call, the name of the
334 ;;; function is append to its first argument, thus reflecting the
335 ;;; method call syntax of JavaScript. Please note that most method
336 ;;; calls can be abbreviated using the "." trick in symbol names (see
337 ;;; "Symbol Conversion" above).
338
339 (.blorg this 1 2) => this.blorg(1, 2)
340
341 (this.blorg 1 2) => this.blorg(1, 2)
342
343 (.blorg (aref foobar 1) NIL T)
344 => foobar[1].blorg(null, true)
345
346 ;;;# Operator Expressions
347 ;;;t \index{operator}
348 ;;;t \index{operator expression}
349 ;;;t \index{assignment operator}
350 ;;;t \index{EQL}
351 ;;;t \index{NOT}
352 ;;;t \index{AND}
353 ;;;t \index{OR}
354
355 ; (operator {argument}*)
356 ; (single-operator argument)
357 ;
358 ; operator ::= one of *, /, %, +, -, <<, >>, >>>, < >, EQL,
359 ; ==, !=, =, ===, !==, &, ^, |, &&, AND, ||, OR.
360 ; single-operator ::= one of INCF, DECF, ++, --, NOT, !
361 ; argument ::= a ParenScript expression
362
363 ;;; Operator forms are similar to function call forms, but have an
364 ;;; operator as function name.
365 ;;;
366 ;;; Please note that `=' is converted to `==' in JavaScript. The `='
367 ;;; ParenScript operator is not the assignment operator. Unlike
368 ;;; JavaScript, ParenScript supports multiple arguments to the
369 ;;; operators.
370
371 (* 1 2) => 1 * 2
372
373 (= 1 2) => 1 == 2
374
375 (eql 1 2) => 1 == 2
376
377 ;;; Note that the resulting expression is correctly parenthesized,
378 ;;; according to the JavaScript operator precedence that can be found
379 ;;; in table form at:
380
381 http://www.codehouse.com/javascript/precedence/
382
383 (* 1 (+ 2 3 4) 4 (/ 6 7))
384 => 1 * (2 + 3 + 4) * 4 * (6 / 7)
385
386 ;;; The pre increment and decrement operators are also
387 ;;; available. `INCF' and `DECF' are the pre-incrementing and
388 ;;; pre-decrementing operators. These operators can
389 ;;; take only one argument.
390
391 (incf i) => ++i
392
393 (decf i) => --i
394
395 ;;; The `1+' and `1-' operators are shortforms for adding and
396 ;;; substracting 1.
397
398 (1- i) => i - 1
399
400 (1+ i) => i + 1
401
402 ;;; The `not' operator actually optimizes the code a bit. If `not' is
403 ;;; used on another boolean-returning operator, the operator is
404 ;;; reversed.
405
406 (not (< i 2)) => i >= 2
407
408 (not (eql i 2)) => i != 2
409
410 ;;;# Body forms
411 ;;;t \index{body form}
412 ;;;t \index{PROGN}
413 ;;;t \index{body statement}
414
415 ; (PROGN {statement}*) in statement context
416 ; (PROGN {expression}*) in expression context
417 ;
418 ; statement ::= a ParenScript statement
419 ; expression ::= a ParenScript expression
420
421 ;;; The `PROGN' special form defines a sequence of statements when
422 ;;; used in a statement context, or sequence of expression when used
423 ;;; in an expression context. The `PROGN' special form is added
424 ;;; implicitly around the branches of conditional executions forms,
425 ;;; function declarations and iteration constructs.
426
427 ;;; For example, in a statement context:
428
429 (progn (blorg i) (blafoo i))
430 => blorg(i);
431 blafoo(i);
432
433 ;;; In an expression context:
434
435 (+ i (progn (blorg i) (blafoo i)))
436 => i + (blorg(i), blafoo(i))
437
438 ;;; A `PROGN' form doesn't lead to additional indentation or
439 ;;; additional braces around it's body.
440
441 ;;;# Function Definition
442 ;;;t \index{function}
443 ;;;t \index{method}
444 ;;;t \index{function definition}
445 ;;;t \index{DEFUN}
446 ;;;t \index{LAMBDA}
447 ;;;t \index{closure}
448 ;;;t \index{anonymous function}
449
450 ; (DEFUN name ({argument}*) body)
451 ; (LAMBDA ({argument}*) body)
452 ;
453 ; name ::= a Lisp Symbol
454 ; argument ::= a Lisp symbol
455 ; body ::= a list of ParenScript statements
456
457 ;;; As in Lisp, functions are defined using the `DEFUN' form, which
458 ;;; takes a name, a list of arguments, and a function body. An
459 ;;; implicit `PROGN' is added around the body statements.
460
461 (defun a-function (a b)
462 (return (+ a b)))
463 => function aFunction(a, b) {
464 return a + b;
465 }
466
467 ;;; Anonymous functions can be created using the `LAMBDA' form, which
468 ;;; is the same as `DEFUN', but without function name. In fact,
469 ;;; `LAMBDA' creates a `DEFUN' with an empty function name.
470
471 (lambda (a b) (return (+ a b)))
472 => function (a, b) {
473 return a + b;
474 }
475
476 ;;;# Assignment
477 ;;;t \index{assignment}
478 ;;;t \index{SETF}
479 ;;;t \index{DEFSETF}
480 ;;;t \index{assignment operator}
481
482 ; (SETF {lhs rhs}*)
483 ;
484 ; lhs ::= a ParenScript left hand side expression
485 ; rhs ::= a ParenScript expression
486
487 ;;; Assignment is done using the `SETF' form, which is transformed
488 ;;; into a series of assignments using the JavaScript `=' operator.
489
490 (setf a 1) => a = 1;
491
492 (setf a 2 b 3 c 4 x (+ a b c))
493 => a = 2;
494 b = 3;
495 c = 4;
496 x = a + b + c;
497
498 ;;; The `SETF' form can transform assignments of a variable with an
499 ;;; operator expression using this variable into a more "efficient"
500 ;;; assignment operator form. For example:
501
502 (setf a (1+ a)) => a++;
503
504 (setf a (+ a 2 3 4 a)) => a += 2 + 3 + 4 + a;
505
506 (setf a (- 1 a)) => a = 1 - a;
507
508 ;;; New types of setf places can be defined in one of two ways: using
509 ;;; `DEFSETF' or using `DEFUN' with a setf function name; both are
510 ;;; analogous to their Common Lisp counterparts.
511
512 ;;; `DEFSETF' supports both long and short forms, while `DEFUN' of a
513 ;;; setf place generates a JavaScript function name with the __setf_
514 ;;; prefix:
515
516 (defun (setf color) (new-color el)
517 (setf (slot-value (slot-value el 'style) 'color) new-color))
518 => function __setf_color(newColor, el) {
519 el.style.color = newColor;
520 };
521
522 (setf (color some-div) (+ 23 "em"))
523 => var _js2 = someDiv;
524 var _js1 = 23 + 'em';
525 __setf_color(_js1, _js2);
526
527
528 ;;; Note that temporary variables are generated to preserve evaluation
529 ;;; order of the arguments as they would be in Lisp.
530
531 ;;; The following example illustrates how setf places can be used to
532 ;;; provide a uniform protocol for positioning elements in HTML pages:
533
534 (defsetf left (el) (offset)
535 `(setf (slot-value (slot-value ,el 'style) 'left) ,offset)) => null
536
537 (setf (left some-div) (+ 123 "px"))
538 => var _js2 = someDiv;
539 var _js1 = 123 + 'px';
540 _js2.style.left = _js1;
541
542 (progn (defmacro left (el)
543 `(slot-value ,el 'offset-left))
544 (left some-div))
545 => someDiv.offsetLeft;
546
547 ;;;# Single argument statements
548 ;;;t \index{single-argument statement}
549 ;;;t \index{RETURN}
550 ;;;t \index{THROW}
551 ;;;t \index{THROW}
552 ;;;t \index{function}
553
554 ; (RETURN {value}?)
555 ; (THROW {value}?)
556 ;
557 ; value ::= a ParenScript expression
558
559 ;;; The single argument statements `return' and `throw' are generated
560 ;;; by the form `RETURN' and `THROW'. `THROW' has to be used inside a
561 ;;; `TRY' form. `RETURN' is used to return a value from a function
562 ;;; call.
563
564 (return 1) => return 1
565
566 (throw "foobar") => throw 'foobar'
567
568 ;;;# Single argument expression
569 ;;;t \index{single-argument expression}
570 ;;;t \index{object creation}
571 ;;;t \index{object deletion}
572 ;;;t \index{DELETE}
573 ;;;t \index{VOID}
574 ;;;t \index{TYPEOF}
575 ;;;t \index{INSTANCEOF}
576 ;;;t \index{NEW}
577 ;;;t \index{new}
578
579 ; (DELETE {value})
580 ; (VOID {value})
581 ; (TYPEOF {value})
582 ; (INSTANCEOF {value})
583 ; (NEW {value})
584 ;
585 ; value ::= a ParenScript expression
586
587 ;;; The single argument expressions `delete', `void', `typeof',
588 ;;; `instanceof' and `new' are generated by the forms `DELETE',
589 ;;; `VOID', `TYPEOF', `INSTANCEOF' and `NEW'. They all take a
590 ;;; ParenScript expression.
591
592 (delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4)
593
594 (if (= (typeof blorg) *string)
595 (alert (+ "blorg is a string: " blorg))
596 (alert "blorg is not a string"))
597 => if (typeof blorg == String) {
598 alert('blorg is a string: ' + blorg);
599 } else {
600 alert('blorg is not a string');
601 }
602
603 ;;;# Conditional Statements
604 ;;;t \index{conditional statements}
605 ;;;t \index{IF}
606 ;;;t \index{WHEN}
607 ;;;t \index{UNLESS}
608 ;;;t \index{conditionals}
609
610 ; (IF conditional then {else})
611 ; (WHEN condition then)
612 ; (UNLESS condition then)
613 ;
614 ; condition ::= a ParenScript expression
615 ; then ::= a ParenScript statement in statement context, a
616 ; ParenScript expression in expression context
617 ; else ::= a ParenScript statement in statement context, a
618 ; ParenScript expression in expression context
619
620 ;;; The `IF' form compiles to the `if' javascript construct. An
621 ;;; explicit `PROGN' around the then branch and the else branch is
622 ;;; needed if they consist of more than one statement. When the `IF'
623 ;;; form is used in an expression context, a JavaScript `?', `:'
624 ;;; operator form is generated.
625
626 (if (blorg.is-correct)
627 (progn (carry-on) (return i))
628 (alert "blorg is not correct!"))
629 => if (blorg.isCorrect()) {
630 carryOn();
631 return i;
632 } else {
633 alert('blorg is not correct!');
634 }
635
636 (+ i (if (blorg.add-one) 1 2))
637 => i + (blorg.addOne() ? 1 : 2)
638
639 ;;; The `WHEN' and `UNLESS' forms can be used as shortcuts for the
640 ;;; `IF' form.
641
642 (when (blorg.is-correct)
643 (carry-on)
644 (return i))
645 => if (blorg.isCorrect()) {
646 carryOn();
647 return i;
648 }
649
650 (unless (blorg.is-correct)
651 (alert "blorg is not correct!"))
652 => if (!blorg.isCorrect()) {
653 alert('blorg is not correct!');
654 }
655
656 ;;;# Variable declaration
657 ;;;t \index{variable}
658 ;;;t \index{variable declaration}
659 ;;;t \index{binding}
660 ;;;t \index{scoping}
661 ;;;t \index{DEFVAR}
662 ;;;t \index{VAR}
663 ;;;t \index{LET*}
664 ;;;t \index{LEXICAL-LET*}
665
666 ; (DEFVAR var {value}?)
667 ; (VAR var {value}?)
668 ; (LET* ({var | (var value)}) body)
669 ; (LEXICAL-LET* ({var | (var value)}) body)
670 ;
671 ; var ::= a Lisp symbol
672 ; value ::= a ParenScript expression
673 ; body ::= a list of ParenScript statements
674
675 ;;; Parenscript special variables can be declared using the `DEFVAR'
676 ;;; special form, which is similar to its equivalent form in
677 ;;; Lisp. Note that the result is undefined if `DEFVAR' is not used as
678 ;;; a top-level form.
679
680 (defvar *a* (array 1 2 3)) => var A = [ 1, 2, 3 ]
681
682 ;;; One feature present in Parenscript that is not part of Common Lisp
683 ;;; are lexically-scoped global variables, which are declared using
684 ;;; the `VAR' special form.
685
686 ;;; Parenscript provides two special forms for manipulating local
687 ;;; variables: `LET*' and `LEXICAL-LET*'. Both bind their variable
688 ;;; lists sequentially, as indicated by the '*' at the end of their
689 ;;; names, however `LET*' does so using a simple JavaScript
690 ;;; assignment, while `LEXICAL-LET*' actually introduces a new lexical
691 ;;; environment for the variable bindings by creating and populating a
692 ;;; new object and using it as the lexical context for the JavaScript
693 ;;; 'with' form.
694
695 (if (= i 1)
696 (let* ((blorg "hallo"))
697 (alert blorg))
698 (let* ((blorg "blitzel"))
699 (alert blorg)))
700 => if (i == 1) {
701 var blorg = 'hallo';
702 alert(blorg);
703 } else {
704 var blorg = 'blitzel';
705 alert(blorg);
706 }
707
708 (if (= i 1)
709 (lexical-let* ((blorg "hallo"))
710 (alert blorg))
711 (lexical-let* ((blorg "blitzel"))
712 (alert blorg)))
713 => if (i == 1) {
714 (function () {
715 var newlexicalcontext1 = new Object;
716 newlexicalcontext1['blorg'] = 'hallo';
717 with (newlexicalcontext1) {
718 alert(blorg);
719 };
720 })();
721 } else {
722 (function () {
723 var newlexicalcontext3 = new Object;
724 newlexicalcontext3['blorg'] = 'blitzel';
725 with (newlexicalcontext3) {
726 alert(blorg);
727 };
728 })();
729 }
730
731 ;;; Moreover, beware that scoping rules in Lisp and JavaScript are
732 ;;; quite different. For example, don't rely on closures capturing
733 ;;; local variables in the way that you would normally expect.
734
735 ;;;# Iteration constructs
736 ;;;t \index{iteration}
737 ;;;t \index{iteration construct}
738 ;;;t \index{loop}
739 ;;;t \index{array traversal}
740 ;;;t \index{property}
741 ;;;t \index{object property}
742 ;;;t \index{DO}
743 ;;;t \index{DOTIMES}
744 ;;;t \index{DOLIST}
745 ;;;t \index{DOEACH}
746 ;;;t \index{WHILE}
747
748 ; (DO ({var | (var {init}? {step}?)}*) (end-test) body)
749 ; (DOTIMES (var numeric-form) body)
750 ; (DOLIST (var list-form) body)
751 ; (DOEACH (var object) body)
752 ; (WHILE end-test body)
753 ;
754 ; var ::= a Lisp symbol
755 ; numeric-form ::= a ParenScript expression resulting in a number
756 ; list-form ::= a ParenScript expression resulting in an array
757 ; object ::= a ParenScript expression resulting in an object
758 ; init ::= a ParenScript expression
759 ; step ::= a ParenScript expression
760 ; end-test ::= a ParenScript expression
761 ; body ::= a list of ParenScript statements
762
763 ;;; The `DO' form, which is similar to its Lisp form, is transformed
764 ;;; into a JavaScript `for' statement. Note that the ParenScript `DO'
765 ;;; form does not have a return value, that is because `for' is a
766 ;;; statement and not an expression in JavaScript.
767
768 (do ((i 0 (1+ i))
769 (l (aref blorg i) (aref blorg i)))
770 ((or (= i blorg.length)
771 (eql l "Fumitastic")))
772 (document.write (+ "L is " l)))
773 => for (var i = 0, l = blorg[i];
774 !(i == blorg.length || l == 'Fumitastic');
775 i = i + 1, l = blorg[i]) {
776 document.write('L is ' + l);
777 }
778
779 ;;; The `DOTIMES' form, which lets a variable iterate from 0 upto an
780 ;;; end value, is a shortcut for `DO'.
781
782 (dotimes (i blorg.length)
783 (document.write (+ "L is " (aref blorg i))))
784 => for (var i = 0; i < blorg.length; i = i + 1) {
785 document.write('L is ' + blorg[i]);
786 }
787
788 ;;; The `DOLIST' form is a shortcut for iterating over an array. Note
789 ;;; that this form creates temporary variables using a function called
790 ;;; `PS-GENSYM', which is similar to its Lisp counterpart `GENSYM'.
791
792 (dolist (l blorg)
793 (document.write (+ "L is " l)))
794 => var tmpArr1 = blorg;
795 for (var tmpI2 = 0; tmpI2 < tmpArr1.length;
796 tmpI2 = tmpI2 + 1) {
797 var l = tmpArr1[tmpI2];
798 document.write('L is ' + l);
799 };
800
801 ;;; The `DOEACH' form is converted to a `for (var .. in ..)' form in
802 ;;; JavaScript. It is used to iterate over the enumerable properties
803 ;;; of an object.
804
805 (doeach (i object)
806 (document.write (+ i " is " (aref object i))))
807 => for (var i in object) {
808 document.write(i + ' is ' + object[i]);
809 }
810
811 ;;; The `WHILE' form is transformed to the JavaScript form `while',
812 ;;; and loops until a termination test evaluates to false.
813
814 (while (film.is-not-finished)
815 (this.eat (new *popcorn)))
816 => while (film.isNotFinished()) {
817 this.eat(new Popcorn);
818 }
819
820 ;;;# The `CASE' statement
821 ;;;t \index{CASE}
822 ;;;t \index{SWITCH}
823 ;;;t \index{switch}
824
825 ; (CASE case-value clause*)
826 ;
827 ; clause ::= (value body) | ((value*) body) | t-clause
828 ; case-value ::= a ParenScript expression
829 ; value ::= a ParenScript expression
830 ; t-clause ::= {t | otherwise | default} body
831 ; body ::= a list of ParenScript statements
832
833 ;;; The Lisp `CASE' form is transformed to a `switch' statement in
834 ;;; JavaScript. Note that `CASE' is not an expression in
835 ;;; ParenScript.
836
837 (case (aref blorg i)
838 ((1 "one") (alert "one"))
839 (2 (alert "two"))
840 (t (alert "default clause")))
841 => switch (blorg[i]) {
842 case 1:
843 case 'one':
844 alert('one');
845 break;
846 case 2:
847 alert('two');
848 break;
849 default: alert('default clause');
850 }
851
852 ; (SWITCH case-value clause*)
853 ; clause ::= (value body) | (default body)
854
855 ;;; The `SWITCH' form is the equivalent to a javascript switch statement.
856 ;;; No break statements are inserted, and the default case is named `DEFAULT'.
857 ;;; The `CASE' form should be prefered in most cases.
858
859 (switch (aref blorg i)
860 (1 (alert "If I get here"))
861 (2 (alert "I also get here"))
862 (default (alert "I always get here")))
863 => switch (blorg[i]) {
864 case 1: alert('If I get here');
865 case 2: alert('I also get here');
866 default: alert('I always get here');
867 }
868
869
870 ;;;# The `WITH' statement
871 ;;;t \index{WITH}
872 ;;;t \index{dynamic scope}
873 ;;;t \index{binding}
874 ;;;t \index{scoping}
875 ;;;t \index{closure}
876
877 ; (WITH object body)
878 ;
879 ; object ::= a ParenScript expression evaluating to an object
880 ; body ::= a list of ParenScript statements
881
882 ;;; The `WITH' form is compiled to a JavaScript `with' statements, and
883 ;;; adds the object `object' as an intermediary scope objects when
884 ;;; executing the body.
885
886 (with (create :foo "foo" :i "i")
887 (alert (+ "i is now intermediary scoped: " i)))
888 => with ({ foo : 'foo',
889 i : 'i' }) {
890 alert('i is now intermediary scoped: ' + i);
891 }
892
893 ;;;# The `TRY' statement
894 ;;;t \index{TRY}
895 ;;;t \index{CATCH}
896 ;;;t \index{FINALLY}
897 ;;;t \index{exception}
898 ;;;t \index{error handling}
899
900 ; (TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)
901 ;
902 ; body ::= a list of ParenScript statements
903 ; var ::= a Lisp symbol
904
905 ;;; The `TRY' form is converted to a JavaScript `try' statement, and
906 ;;; can be used to catch expressions thrown by the `THROW'
907 ;;; form. The body of the catch clause is invoked when an exception
908 ;;; is catched, and the body of the finally is always invoked when
909 ;;; leaving the body of the `TRY' form.
910
911 (try (throw "i")
912 (:catch (error)
913 (alert (+ "an error happened: " error)))
914 (:finally
915 (alert "Leaving the try form")))
916 => try {
917 throw 'i';
918 } catch (error) {
919 alert('an error happened: ' + error);
920 } finally {
921 alert('Leaving the try form');
922 }
923
924 ;;;# The HTML Generator
925 ;;;t \index{PS-HTML}
926 ;;;t \index{HTML generation}
927
928 ; (PS-HTML html-expression)
929
930 ;;; The HTML generator of ParenScript is very similar to the htmlgen
931 ;;; HTML generator library included with AllegroServe. It accepts the
932 ;;; same input forms as the AllegroServer HTML generator. However,
933 ;;; non-HTML construct are compiled to JavaScript by the ParenScript
934 ;;; compiler. The resulting expression is a JavaScript expression.
935
936 (ps-html ((:a :href "foobar") "blorg"))
937 => '<a href=\"foobar\">blorg</a>'
938
939 (ps-html ((:a :href (generate-a-link)) "blorg"))
940 => '<a href=\"' + generateALink() + '\">blorg</a>'
941
942 ;;; We can recursively call the ParenScript compiler in an HTML
943 ;;; expression.
944
945 (document.write
946 (ps-html ((:a :href "#"
947 :onclick (lisp (ps-inline (transport)))) "link")))
948 => document.write('<a href=\"#\" onclick=\"' + 'javascript:transport()' + '\">link</a>')
949
950 ;;; Forms may be used in attribute lists to conditionally generate
951 ;;; the next attribute. In this example the textarea is sometimes disabled.
952
953 (let* ((disabled nil)
954 (authorized t))
955 (setf element.inner-h-t-m-l
956 (ps-html ((:textarea (or disabled (not authorized)) :disabled "disabled")
957 "Edit me"))))
958 => var disabled = null;
959 var authorized = true;
960 element.innerHTML =
961 '<textarea'
962 + (disabled || !authorized ? ' disabled=\"' + 'disabled' + '\"' : '')
963 + '>Edit me</textarea>';
964
965 ;;;# Macrology
966 ;;;t \index{macro}
967 ;;;t \index{macrology}
968 ;;;t \index{DEFPSMACRO}
969 ;;;t \index{MACROLET}
970 ;;;t \index{SYMBOL-MACROLET}
971 ;;;t \index{PS-GENSYM}
972 ;;;t \index{compiler}
973
974 ; (DEFPSMACRO name lambda-list macro-body)
975 ; (MACROLET ({name lambda-list macro-body}*) body)
976 ; (SYMBOL-MACROLET ({name macro-body}*) body)
977 ; (PS-GENSYM {string})
978 ;
979 ; name ::= a Lisp symbol
980 ; lambda-list ::= a lambda list
981 ; macro-body ::= a Lisp body evaluating to ParenScript code
982 ; body ::= a list of ParenScript statements
983 ; string ::= a string
984
985 ;;; ParenScript can be extended using macros, just like Lisp can be
986 ;;; extended using Lisp macros. Using the special Lisp form
987 ;;; `DEFPSMACRO', the ParenScript language can be
988 ;;; extended. `DEFPSMACRO' adds the new macro to the toplevel macro
989 ;;; environment, which is always accessible during ParenScript
990 ;;; compilation. For example, the `1+' and `1-' operators are
991 ;;; implemented using macros.
992
993 (defpsmacro 1- (form)
994 `(- ,form 1))
995
996 (defpsmacro 1+ (form)
997 `(+ ,form 1))
998
999 ;;; A more complicated ParenScript macro example is the implementation
1000 ;;; of the `DOLIST' form (note how `PS-GENSYM', the ParenScript of
1001 ;;; `GENSYM', is used to generate new ParenScript variable names):
1002
1003 (defpsmacro dolist (i-array &rest body)
1004 (let ((var (first i-array))
1005 (array (second i-array))
1006 (arrvar (ps-gensym "arr"))
1007 (idx (ps-gensym "i")))
1008 `(let* ((,arrvar ,array))
1009 (do ((,idx 0 (incf ,idx)))
1010 ((>= ,idx (slot-value ,arrvar 'length)))
1011 (let* ((,var (aref ,arrvar ,idx)))
1012 ,@body)))))
1013
1014 ;;; Macros can be defined in ParenScript code itself (as opposed to
1015 ;;; from Lisp) by using the ParenScript `MACROLET' and `DEFMACRO'
1016 ;;; forms.
1017
1018 ;;; ParenScript also supports the use of macros defined in the
1019 ;;; underlying Lisp environment. Existing Lisp macros can be imported
1020 ;;; into the ParenScript macro environment by
1021 ;;; `IMPORT-MACROS-FROM-LISP'. This functionality enables code sharing
1022 ;;; between ParenScript and Lisp, and is useful in debugging since the
1023 ;;; full power of Lisp macroexpanders, editors and other supporting
1024 ;;; facilities can be used. However, it is important to note that the
1025 ;;; macroexpansion of Lisp macros and ParenScript macros takes place
1026 ;;; in their own respective environments, and many Lisp macros
1027 ;;; (especially those provided by the Lisp implementation) expand into
1028 ;;; code that is not usable by ParenScript. To make it easy for users
1029 ;;; to take advantage of these features, two additional macro
1030 ;;; definition facilities are provided by ParenScript: `DEFMACRO/PS'
1031 ;;; and `DEFMACRO+PS'. `DEFMACRO/PS' defines a Lisp macro and then
1032 ;;; imports it into the ParenScript macro environment, while
1033 ;;; `DEFMACRO+PS' defines two macros with the same name and expansion,
1034 ;;; one in ParenScript and one in Lisp. `DEFMACRO+PS' is used when the
1035 ;;; full 'macroexpand' of the Lisp macro yields code that cannot be
1036 ;;; used by ParenScript.
1037
1038 ;;; ParenScript also supports symbol macros, which can be introduced
1039 ;;; using the ParenScript form `SYMBOL-MACROLET'.For example, the
1040 ;;; ParenScript `WITH-SLOTS' is implemented using symbol macros.
1041
1042 (defjsmacro with-slots (slots object &rest body)
1043 `(symbol-macrolet ,(mapcar #'(lambda (slot)
1044 `(,slot '(slot-value ,object ',slot)))
1045 slots)
1046 ,@body))
1047
1048
1049 ;;;# The ParenScript namespace system
1050 ;;;t \index{package}
1051 ;;;t \index{namespace}
1052 ;;;t \index{PS-PACKAGE-PREFIX}
1053
1054 ; (setf (PS-PACKAGE-PREFIX package-designator) string)
1055
1056 ;;; Although JavaScript does not offer namespacing or a package
1057 ;;; system, ParenScript does provide a namespace mechanism for
1058 ;;; generated JavaScript by integrating with the Common Lisp package
1059 ;;; system. Since ParenScript code is normally read in by the Lisp
1060 ;;; reader, all symbols (except for uninterned ones, ie - those
1061 ;;; specified with the #: reader macro) have a Lisp package. By
1062 ;;; default, no packages are prefixed. You can specify that symbols in
1063 ;;; a particular package receive a prefix when translated to
1064 ;;; JavaScript with the `PS-PACKAGE-PREFIX' place.
1065
1066 (defpackage "MY-LIBRARY"
1067 (:use #:parenscript))
1068 (setf (ps-package-prefix :my-library) "my_library_")
1069
1070 (defun my-library::library-function (x y)
1071 (return (+ x y)))
1072 -> function my_library_libraryFunction(x, y) {
1073 return x + y;
1074 }
1075
1076 ;;;# Identifier obfuscation
1077 ;;;t \index{obfuscation}
1078 ;;;t \index{identifiers}
1079 ;;;t \index{OBFUSCATE-PACKAGE}
1080 ;;;t \index{UNOBFUSCATE-PACKAGE}
1081
1082 ; (OBFUSCATE-PACKAGE package-designator)
1083 ; (UNOBFUSCATE-PACKAGE package-designator)
1084
1085 ;;; Similar to the namespace mechanism, ParenScript provides a
1086 ;;; facility to generate obfuscated identifiers in certain Lisp
1087 ;;; packages.
1088
1089 (defpackage "OBFUSCATE-ME")
1090 (obfuscate-package :obfuscate-me)
1091
1092 (defun obfuscate-me::library-function2 (a b obfuscate-me::foo)
1093 (+ a (my-library::library-function b obfuscate-me::foo)))
1094
1095 ;;; The obfuscation and namespace facilities can be used on packages
1096 ;;; at the same time.
1097
1098 ;;;# The ParenScript Compiler
1099 ;;;t \index{compiler}
1100 ;;;t \index{ParenScript compiler}
1101 ;;;t \index{COMPILE-SCRIPT}
1102 ;;;t \index{PS}
1103 ;;;t \index{PS*}
1104 ;;;t \index{PS-INLINE}
1105 ;;;t \index{LISP}
1106 ;;;t \index{nested compilation}
1107
1108 ; (COMPILE-SCRIPT script-form &key (output-stream nil))
1109 ; (PS &body body)
1110 ; (PS* &body body)
1111 ; (PS-INLINE &body body)
1112 ; (LISP &body lisp-forms)
1113 ;
1114 ; body ::= ParenScript statements comprising an implicit `PROGN'
1115
1116 ;;; For static ParenScript code, the macros `PS' and `PS-INLINE',
1117 ;;; avoid the need to quote the ParenScript expression. `PS*' and
1118 ;;; `COMPILE-SCRIPT' evaluate their arguments. All these forms except
1119 ;;; for `COMPILE-SCRIPT' treat the given forms as an implicit
1120 ;;; `PROGN'. `PS' and `PS*' return a string of the compiled body,
1121 ;;; while `COMPILE-SCRIPT' takes an optional output-stream parameter
1122 ;;; that can be used to specify a stream to which the generated
1123 ;;; JavaScript will be written. `PS-INLINE' generates a string that
1124 ;;; can be used in HTML node attributes.
1125
1126 ;;; ParenScript can also call out to arbitrary Lisp code at
1127 ;;; compile-time using the special form `LISP'. This is typically used
1128 ;;; to insert the values of Lisp special variables into ParenScript
1129 ;;; code at compile-time, and can also be used to make nested calls to
1130 ;;; the ParenScript compiler, which comes in useful when you want to
1131 ;;; use the result of `PS-INLINE' in `PS-HTML' forms, for
1132 ;;; example. Alternatively the same thing can be accomplished by
1133 ;;; constructing ParenScript programs as lists and passing them to
1134 ;;; `PS*' or `COMPILE-SCRIPT'.