Allow TABS in config
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
index 66d9036..453ad97 100644 (file)
@@ -17,6 +17,13 @@ using namespace std;
 #include "Block.h"
 #include "Planner.h"
 #include "Conveyor.h"
+#include "StepperMotor.h"
+#include "Config.h"
+#include "checksumm.h"
+#include "Robot.h"
+#include "Stepper.h"
+
+#include <math.h>
 
 #define acceleration_checksum          CHECKSUM("acceleration")
 #define max_jerk_checksum              CHECKSUM("max_jerk")
@@ -28,9 +35,7 @@ using namespace std;
 // It goes over the list in both direction, every time a block is added, re-doing the math to make sure everything is optimal
 
 Planner::Planner(){
-    clear_vector(this->position);
     clear_vector_float(this->previous_unit_vec);
-    this->previous_nominal_speed = 0.0;
     this->has_deleted_block = false;
 }
 
@@ -41,46 +46,47 @@ void Planner::on_module_loaded(){
 
 // Configure acceleration
 void Planner::on_config_reload(void* argument){
-    this->acceleration =       THEKERNEL->config->value(acceleration_checksum       )->by_default(100  )->as_number() * 60 * 60; // Acceleration is in mm/minute^2, see https://github.com/grbl/grbl/commit/9141ad282540eaa50a41283685f901f29c24ddbd#planner.c
-    this->junction_deviation = THEKERNEL->config->value(junction_deviation_checksum )->by_default(0.05f)->as_number();
+    this->acceleration =       THEKERNEL->config->value(acceleration_checksum       )->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2, see https://github.com/grbl/grbl/commit/9141ad282540eaa50a41283685f901f29c24ddbd#planner.c
+    this->junction_deviation = THEKERNEL->config->value(junction_deviation_checksum )->by_default(  0.05F)->as_number();
     this->minimum_planner_speed = THEKERNEL->config->value(minimum_planner_speed_checksum )->by_default(0.0f)->as_number();
 }
 
 
 // Append a block to the queue, compute it's speed factors
-void Planner::append_block( int target[], float feed_rate, float distance, float deltas[] ){
-
-    // Stall here if the queue is ful
-    THEKERNEL->conveyor->wait_for_queue(2);
-
+void Planner::append_block( float actuator_pos[], float rate_mm_s, float distance, float unit_vec[] )
+{
     // Create ( recycle ) a new block
     Block* block = THEKERNEL->conveyor->queue.head_ref();
 
     // Direction bits
     block->direction_bits = 0;
-    for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
-        if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<stepper); }
-    }
+    for (int i = 0; i < 3; i++)
+    {
+        int steps = THEKERNEL->robot->actuators[i]->steps_to_target(actuator_pos[i]);
 
-    // Number of steps for each stepper
-    for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
+        if (steps < 0)
+            block->direction_bits |= (1<<i);
+
+        // Update current position
+        THEKERNEL->robot->actuators[i]->last_milestone_steps += steps;
+        THEKERNEL->robot->actuators[i]->last_milestone_mm = actuator_pos[i];
+
+        block->steps[i] = labs(steps);
+    }
 
     // Max number of steps, for all axes
     block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
 
     block->millimeters = distance;
-    float inverse_millimeters = 0.0F;
-    if( distance > 0 ){ inverse_millimeters = 1.0F/distance; }
 
-    // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
+    // Calculate speed in mm/sec for each axis. No divide by zero due to previous checks.
     // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
-    float inverse_minute = feed_rate * inverse_millimeters;
-    if( distance > 0 ){
-        block->nominal_speed = block->millimeters * inverse_minute;           // (mm/min) Always > 0
-        block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
+    if( distance > 0.0F ){
+        block->nominal_speed = rate_mm_s;           // (mm/s) Always > 0
+        block->nominal_rate = ceil(block->steps_event_count * rate_mm_s / distance); // (step/s) Always > 0
     }else{
-        block->nominal_speed = 0;
-        block->nominal_rate = 0;
+        block->nominal_speed = 0.0F;
+        block->nominal_rate  = 0;
     }
 
     // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
@@ -90,13 +96,7 @@ void Planner::append_block( int target[], float feed_rate, float distance, float
     // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
     // specifically for each line to compensate for this phenomenon:
     // Convert universal acceleration for direction-dependent stepper rate change parameter
-    block->rate_delta = (float)( ( block->steps_event_count*inverse_millimeters * this->acceleration ) / ( THEKERNEL->stepper->acceleration_ticks_per_second * 60 ) ); // (step/min/acceleration_tick)
-
-    // Compute path unit vector
-    float unit_vec[3];
-    unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
-    unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
-    unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
+    block->rate_delta = (block->steps_event_count * acceleration) / (distance * THEKERNEL->stepper->acceleration_ticks_per_second); // (step/min/acceleration_tick)
 
     // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
     // Let a circle be tangent to both previous and current path line segments, where the junction
@@ -109,29 +109,33 @@ void Planner::append_block( int target[], float feed_rate, float distance, float
     // nonlinearities of both the junction angle and junction velocity.
     float vmax_junction = minimum_planner_speed; // Set default max junction speed
 
-    if ((THEKERNEL->conveyor->queue.is_empty() == false) && (this->previous_nominal_speed > 0.0F)) {
-      // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
-      // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
-      float cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
-                         - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
-                         - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
-
-      // Skip and use default max junction speed for 0 degree acute junction.
-      if (cos_theta < 0.95F) {
-        vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
-        // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
-        if (cos_theta > -0.95F) {
-          // Compute maximum junction velocity based on maximum acceleration and junction deviation
-          float sin_theta_d2 = sqrtf(0.5F*(1.0F-cos_theta)); // Trig half angle identity. Always positive.
-          vmax_junction = min(vmax_junction,
-            sqrtf(this->acceleration * this->junction_deviation * sin_theta_d2/(1.0F-sin_theta_d2)) );
+    if (!THEKERNEL->conveyor->queue.is_empty())
+    {
+        float previous_nominal_speed = THEKERNEL->conveyor->queue.item_ref(THEKERNEL->conveyor->queue.prev(THEKERNEL->conveyor->queue.head_i))->nominal_speed;
+
+        if (previous_nominal_speed > 0.0F) {
+            // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
+            // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
+            float cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
+                                - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+                                - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+
+            // Skip and use default max junction speed for 0 degree acute junction.
+            if (cos_theta < 0.95F) {
+                vmax_junction = min(previous_nominal_speed, block->nominal_speed);
+                // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
+                if (cos_theta > -0.95F) {
+                    // Compute maximum junction velocity based on maximum acceleration and junction deviation
+                    float sin_theta_d2 = sqrtf(0.5F * (1.0F - cos_theta)); // Trig half angle identity. Always positive.
+                    vmax_junction = min(vmax_junction, sqrtf(this->acceleration * this->junction_deviation * sin_theta_d2 / (1.0F - sin_theta_d2)));
+                }
+            }
         }
-      }
     }
     block->max_entry_speed = vmax_junction;
 
     // Initialize block entry speed. Compute based on deceleration to user-defined minimum_planner_speed.
-    float v_allowable = this->max_allowable_speed(-this->acceleration,minimum_planner_speed,block->millimeters); //TODO: Get from config
+    float v_allowable = max_allowable_speed(-acceleration, minimum_planner_speed, block->millimeters); //TODO: Get from config
     block->entry_speed = min(vmax_junction, v_allowable);
 
     // Initialize planner efficiency flags
@@ -149,11 +153,7 @@ void Planner::append_block( int target[], float feed_rate, float distance, float
     block->recalculate_flag = true;
 
     // Update previous path unit_vector and nominal speed
-    memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
-    this->previous_nominal_speed = block->nominal_speed;
-
-    // Update current position
-    memcpy(this->position, target, sizeof(int)*3);
+    memcpy(this->previous_unit_vec, unit_vec, sizeof(previous_unit_vec)); // previous_unit_vec[] = unit_vec[]
 
     // Math-heavy re-computing of the whole queue to take the new
     this->recalculate();
@@ -164,24 +164,6 @@ void Planner::append_block( int target[], float feed_rate, float distance, float
     THEKERNEL->conveyor->queue_head_block();
 }
 
-
-// Recalculates the motion plan according to the following algorithm:
-//
-// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
-// so that:
-//   a. The junction jerk is within the set limit
-//   b. No speed reduction within one block requires faster deceleration than the one, true constant
-//      acceleration.
-// 2. Go over every block in chronological order and dial down junction speed reduction values if
-//   a. The speed increase within one block would require faster accelleration than the one, true
-//      constant acceleration.
-//
-// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
-// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
-// the set limit. Finally it will:
-//
-// 3. Recalculate trapezoids for all blocks.
-//
 void Planner::recalculate() {
     Conveyor::Queue_t &queue = THEKERNEL->conveyor->queue;
 
@@ -195,20 +177,25 @@ void Planner::recalculate() {
      *
      * we find its max entry speed given its exit speed
      *
+     * for each block, walking backwards in the queue:
+     *
      * if max entry speed == current entry speed
      * then we can set recalculate to false, since clearly adding another block didn't allow us to enter faster
+     * and thus we don't need to check entry speed for this block any more
+     *
+     * once we find an accel limited block, we must find the max exit speed and walk the queue forwards
      *
-     * once recalculate is false, we must find the max exit speed
+     * for each block, walking forwards in the queue:
      *
      * given the exit speed of the previous block and our own max entry speed
      * we can tell if we're accel or decel limited (or coasting)
      *
      * if prev_exit > max_entry
-     * then we're still decel limited. update previous traps with our max entry for prev exit
+     *     then we're still decel limited. update previous trapezoid with our max entry for prev exit
      * if max_entry >= prev_exit
-     * then we're accel limited. set recalculate to false, work out max exit speed
-     *
+     *     then we're accel limited. set recalculate to false, work out max exit speed
      *
+     * finally, work out trapezoid for the final (and newest) block.
      */
 
     /*
@@ -231,13 +218,15 @@ void Planner::recalculate() {
             current     = queue.item_ref(block_index);
         }
 
-        // now current points to either tail or first non-recalculate block
-        // and has not had its reverse_pass called
-        // or its calc trap
-        // entry_speed is set to the *exit* speed of current.
-        // each block from current to head has its entry speed set to its max entry speed- limited by decel or nominal_rate
+        /*
+         * Step 2:
+         * now current points to either tail or first non-recalculate block
+         * and has not had its reverse_pass called
+         * or its calc trap
+         * entry_speed is set to the *exit* speed of current.
+         * each block from current to head has its entry speed set to its max entry speed- limited by decel or nominal_rate
+         */
 
-        // TODO: if current is being executed, use its trapezoidal exit speed instead of max exit speed
         float exit_speed = current->max_exit_speed();
 
         while (block_index != queue.head_i)
@@ -250,11 +239,15 @@ void Planner::recalculate() {
             // so this block can decide if it's accel or decel limited and update its fields as appropriate
             exit_speed = current->forward_pass(exit_speed);
 
-            // TODO: don't touch previous if it's already being executed
             previous->calculate_trapezoid(previous->entry_speed, current->entry_speed);
         }
     }
 
+    /*
+     * Step 3:
+     * work out trapezoid for final (and newest) block
+     */
+
     // now current points to the head item
     // which has not had calculate_trapezoid run yet
     current->calculate_trapezoid(current->entry_speed, minimum_planner_speed);