Allow TABS in config
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
index f24f82f..acea78e 100644 (file)
 #include "Block.h"
 #include "Planner.h"
 #include "Conveyor.h"
+#include "Gcode.h"
+#include "libs/StreamOutputPool.h"
+#include "Stepper.h"
+
+#include "mri.h"
+
 using std::string;
 #include <vector>
-#include "../communication/utils/Gcode.h"
 
 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
@@ -34,27 +39,48 @@ void Block::clear()
     gcodes.clear();
     clear_vector(this->steps);
 
-    steps_event_count= 0;
-    nominal_rate= 0;
-    nominal_speed= 0.0F;
-    millimeters= 0.0F;
-    entry_speed= 0.0F;
-    rate_delta= 0.0F;
-    initial_rate= -1;
-    final_rate= -1;
-    accelerate_until= 0;
-    decelerate_after= 0;
-    direction_bits= 0;
-    recalculate_flag= false;
-    nominal_length_flag= false;
-    max_entry_speed= 0.0F;
-    is_ready= false;
-    times_taken= 0;
+    steps_event_count   = 0;
+    nominal_rate        = 0;
+    nominal_speed       = 0.0F;
+    millimeters         = 0.0F;
+    entry_speed         = 0.0F;
+    exit_speed          = 0.0F;
+    rate_delta          = 0.0F;
+    initial_rate        = -1;
+    final_rate          = -1;
+    accelerate_until    = 0;
+    decelerate_after    = 0;
+    direction_bits      = 0;
+    recalculate_flag    = false;
+    nominal_length_flag = false;
+    max_entry_speed     = 0.0F;
+    is_ready            = false;
+    times_taken         = 0;
 }
 
 void Block::debug()
 {
-    THEKERNEL->streams->printf("%p: steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d  entry/max: %10.4f/%10.4f taken:%d ready:%d \r\n", this, this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate, this->entry_speed, this->max_entry_speed, this->times_taken, this->is_ready );
+    THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d  entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
+                               this,
+                                         this->steps[0],
+                                               this->steps[1],
+                                                      this->steps[2],
+                                                               this->steps_event_count,
+                                                                             this->nominal_rate,
+                                                                                   this->nominal_speed,
+                                                                                            this->millimeters,
+                                                                                                         this->rate_delta,
+                                                                                                                 this->accelerate_until,
+                                                                                                                         this->decelerate_after,
+                                                                                                                                   this->initial_rate,
+                                                                                                                                        this->final_rate,
+                                                                                                                                                          this->entry_speed,
+                                                                                                                                                                this->max_entry_speed,
+                                                                                                                                                                             this->times_taken,
+                                                                                                                                                                                      this->is_ready,
+                                                                                                                                                                                                recalculate_flag?1:0,
+                                                                                                                                                                                                          nominal_length_flag?1:0
+                             );
 }
 
 
@@ -67,17 +93,20 @@ void Block::debug()
 //                              +-------------+
 //                                  time -->
 */
-void Block::calculate_trapezoid( float entryfactor, float exitfactor )
+void Block::calculate_trapezoid( float entryspeed, float exitspeed )
 {
+    // if block is currently executing, don't touch anything!
+    if (times_taken)
+        return;
 
     // The planner passes us factors, we need to transform them in rates
-    this->initial_rate = ceil(this->nominal_rate * entryfactor);   // (step/min)
-    this->final_rate   = ceil(this->nominal_rate * exitfactor);    // (step/min)
+    this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed);   // (step/s)
+    this->final_rate   = ceil(this->nominal_rate * exitspeed  / this->nominal_speed);   // (step/s)
 
     // How many steps to accelerate and decelerate
-    float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
-    int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
-    int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate,  -acceleration_per_minute ) );
+    float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second; // ( step/s^2)
+    int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
+    int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate,  -acceleration_per_second ) );
 
     // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
     int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
@@ -86,7 +115,7 @@ void Block::calculate_trapezoid( float entryfactor, float exitfactor )
     // have to use intersection_distance() to calculate when to abort acceleration and start braking
     // in order to reach the final_rate exactly at the end of this block.
     if (plateau_steps < 0) {
-        accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
+        accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
         accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
         accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
         plateau_steps = 0;
@@ -94,6 +123,7 @@ void Block::calculate_trapezoid( float entryfactor, float exitfactor )
     this->accelerate_until = accelerate_steps;
     this->decelerate_after = accelerate_steps + plateau_steps;
 
+    this->exit_speed = exitspeed;
 }
 
 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
@@ -126,150 +156,137 @@ float Block::intersection_distance(float initialrate, float finalrate, float acc
 // acceleration within the allotted distance.
 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
 {
-    return(
-              sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
-          );
+    return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
 }
 
 
 // Called by Planner::recalculate() when scanning the plan from last to first entry.
-void Block::reverse_pass(Block *next)
+float Block::reverse_pass(float exit_speed)
 {
-
-    if (next) {
-        // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
-        // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
-        // check for maximum allowable speed reductions to ensure maximum possible planned speed.
-        if (this->entry_speed != this->max_entry_speed) {
-
-            // If nominal length true, max junction speed is guaranteed to be reached. Only compute
-            // for max allowable speed if block is decelerating and nominal length is false.
-            if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
-                this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-THEKERNEL->planner->acceleration, next->entry_speed, this->millimeters));
-            } else {
-                this->entry_speed = this->max_entry_speed;
-            }
-            this->recalculate_flag = true;
-
+    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
+    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
+    // check for maximum allowable speed reductions to ensure maximum possible planned speed.
+    if (this->entry_speed != this->max_entry_speed)
+    {
+        // If nominal length true, max junction speed is guaranteed to be reached. Only compute
+        // for max allowable speed if block is decelerating and nominal length is false.
+        if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
+        {
+            float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
+
+            this->entry_speed = min(max_entry_speed, this->max_entry_speed);
+
+            return this->entry_speed;
         }
-    } // Skip last block. Already initialized and set for recalculation.
+        else
+            this->entry_speed = this->max_entry_speed;
+    }
 
+    return this->entry_speed;
 }
 
 
 // Called by Planner::recalculate() when scanning the plan from first to last entry.
-void Block::forward_pass(Block *previous)
+// returns maximum exit speed of this block
+float Block::forward_pass(float prev_max_exit_speed)
 {
-
-    if(!previous) {
-        return;    // Begin planning after buffer_tail
-    }
-
     // If the previous block is an acceleration block, but it is not long enough to complete the
     // full speed change within the block, we need to adjust the entry speed accordingly. Entry
     // speeds have already been reset, maximized, and reverse planned by reverse planner.
     // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
-    if (!previous->nominal_length_flag) {
-        if (previous->entry_speed < this->entry_speed) {
-            float entry_speed = min( this->entry_speed,
-                                     max_allowable_speed(-THEKERNEL->planner->acceleration, previous->entry_speed, previous->millimeters) );
-
-            // Check for junction speed change
-            if (this->entry_speed != entry_speed) {
-                this->entry_speed = entry_speed;
-                this->recalculate_flag = true;
-            }
-        }
+
+    // TODO: find out if both of these checks are necessary
+    if (prev_max_exit_speed > nominal_speed)
+        prev_max_exit_speed = nominal_speed;
+    if (prev_max_exit_speed > max_entry_speed)
+        prev_max_exit_speed = max_entry_speed;
+
+    if (prev_max_exit_speed <= entry_speed)
+    {
+        // accel limited
+        entry_speed = prev_max_exit_speed;
+        // since we're now acceleration or cruise limited
+        // we don't need to recalculate our entry speed anymore
+        recalculate_flag = false;
     }
+    // else
+    // // decel limited, do nothing
+
+    return max_exit_speed();
+}
+
+float Block::max_exit_speed()
+{
+    // if block is currently executing, return cached exit speed from calculate_trapezoid
+    // this ensures that a block following a currently executing block will have correct entry speed
+    if (times_taken)
+        return exit_speed;
+
+    // if nominal_length_flag is asserted
+    // we are guaranteed to reach nominal speed regardless of entry speed
+    // thus, max exit will always be nominal
+    if (nominal_length_flag)
+        return nominal_speed;
 
+    // otherwise, we have to work out max exit speed based on entry and acceleration
+    float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
+
+    return min(max, nominal_speed);
 }
 
 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
-void Block::append_gcode(Gcode *gcode)
+void Block::append_gcode(Gcodegcode)
 {
-    __disable_irq();
     Gcode new_gcode = *gcode;
-    this->gcodes.push_back(new_gcode);
-    __enable_irq();
+    gcodes.push_back(new_gcode);
 }
 
-// The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
-void Block::pop_and_execute_gcode()
+void Block::begin()
 {
-    Block *block = const_cast<Block *>(this);
-    for(unsigned short index = 0; index < block->gcodes.size(); index++) {
-        THEKERNEL->call_event(ON_GCODE_EXECUTE, &(block->gcodes[index]));
-    }
+    recalculate_flag = false;
+
+    if (!is_ready)
+        __debugbreak();
+
+    times_taken = -1;
+
+    // execute all the gcodes related to this block
+    for(unsigned int index = 0; index < gcodes.size(); index++)
+        THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
+
+    THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
+
+    if (times_taken < 0)
+        release();
 }
 
 // Signal the conveyor that this block is ready to be injected into the system
 void Block::ready()
 {
     this->is_ready = true;
-    THEKERNEL->conveyor->new_block_added();
 }
 
 // Mark the block as taken by one more module
 void Block::take()
 {
-    this->times_taken++;
+    if (times_taken < 0)
+        times_taken = 0;
+    times_taken++;
 }
 
 // Mark the block as no longer taken by one module, go to next block if this free's it
-// This is one of the craziest bits in smoothie
 void Block::release()
 {
-
-    // A block can be taken by several modules, we want to actually release it only when all modules have release()d it
-    this->times_taken--;
-    if( this->times_taken < 1 ) {
-
-        // All modules are done with this block
-        // Call the on_block_end event so all modules can act accordingly
-        THEKERNEL->call_event(ON_BLOCK_END, this);
-
-        // Gcodes corresponding to the *following* blocks are stored in this block.
-        // We execute them all in order when this block is finished executing
-        this->pop_and_execute_gcode();
-
-        // We would normally delete this block directly here, but we can't, because this is interrupt context, no crazy memory stuff here
-        // So instead we increment a counter, and it will be deleted in main loop context
-        Conveyor *conveyor = THEKERNEL->conveyor;
-
-        unsigned int n = conveyor->queue.next(conveyor->gc_pending);
-        if (n != conveyor->queue.head_i)
-            conveyor->gc_pending = n;
-
-        // We don't look for the next block to execute if the conveyor is already doing that itself
-        if( conveyor->looking_for_new_block == false ) {
-
-            // If there are still blocks to execute
-            if (conveyor->gc_pending != conveyor->queue.head_i)
-            {
-                Block *candidate =  conveyor->queue.item_ref(conveyor->gc_pending);
-
-                // We only execute blocks that are ready ( their math is done )
-                if( candidate->is_ready ) {
-
-                    // Execute this candidate
-                    conveyor->current_block = candidate;
-                    candidate->recalculate_flag = false; // make sure planner doesn't alter this block while we're running it
-                    THEKERNEL->call_event(ON_BLOCK_BEGIN, conveyor->current_block);
-
-                    // If no module took this block, release it ourselves, as nothing else will do it otherwise
-                    if( conveyor->current_block->times_taken < 1 ) {
-                        conveyor->current_block->times_taken = 1;
-                        conveyor->current_block->release();
-                    }
-                } else {
-                    conveyor->current_block = NULL;
-                }
-            } else {
-                conveyor->current_block = NULL;
-            }
+    if (--this->times_taken <= 0)
+    {
+        times_taken = 0;
+        if (is_ready)
+        {
+            is_ready = false;
+            THEKERNEL->call_event(ON_BLOCK_END, this);
+
+            // ensure conveyor gets called last
+            THEKERNEL->conveyor->on_block_end(this);
         }
     }
 }
-
-
-