Allow TABS in config
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
dissimilarity index 64%
index d105dc3..acea78e 100644 (file)
-/*  
-      This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
-      Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
-      Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
-      You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>. 
-*/
-
-#include "libs/Module.h"
-#include "libs/Kernel.h"
-#include "libs/nuts_bolts.h"
-#include <math.h>
-#include "mbed.h"
-#include <string>
-#include "Block.h"
-#include "Planner.h"
-#include "Player.h"
-using std::string;
-#include <vector>
-#include "../communication/utils/Gcode.h"
-
-Block::Block(){
-    clear_vector(this->steps);
-    this->times_taken = 0;   // A block can be "taken" by any number of modules, and the next block is not moved to until all the modules have "released" it. This value serves as a tracker.
-}
-
-void Block::debug(Kernel* kernel){
-    kernel->serial->printf(" steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8d acc:%5d dec:%5d rates:%10d>%10d \r\n", this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate );
-}
-
-
-// Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
-// speed under which you cannot exceed max_jerk no matter what you do.
-double Block::compute_factor_for_safe_speed(){
-    return( this->planner->max_jerk / this->nominal_speed ); 
-}
-
-
-// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-// The factors represent a factor of braking and must be in the range 0.0-1.0.
-//                                +--------+ <- nominal_rate
-//                               /          \
-// nominal_rate*entry_factor -> +            \
-//                              |             + <- nominal_rate*exit_factor
-//                              +-------------+
-//                                  time -->
-void Block::calculate_trapezoid( double entryfactor, double exitfactor ){
-
-    this->initial_rate = ceil(this->nominal_rate * entryfactor);   // (step/min) 
-    this->final_rate   = ceil(this->nominal_rate * exitfactor);    // (step/min)
-    double acceleration_per_minute = this->rate_delta * this->planner->kernel->stepper->acceleration_ticks_per_second * 60.0; 
-    int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
-    int decelerate_steps = ceil( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate,  -acceleration_per_minute ) );
-
-    // Calculate the size of Plateau of Nominal Rate.
-    int plateau_steps = this->steps_event_count-accelerate_steps-decelerate_steps;
-
-   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
-   // have to use intersection_distance() to calculate when to abort acceleration and start braking
-   // in order to reach the final_rate exactly at the end of this block.
-   if (plateau_steps < 0) {
-       accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
-       accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
-       accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
-       plateau_steps = 0;
-   }
-   
-   this->accelerate_until = accelerate_steps;
-   this->decelerate_after = accelerate_steps+plateau_steps; 
-
-}
-
-// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
-// given acceleration:
-double Block::estimate_acceleration_distance(double initialrate, double targetrate, double acceleration) {
-      return( (targetrate*targetrate-initialrate*initialrate)/(2L*acceleration));
-}
-
-// This function gives you the point at which you must start braking (at the rate of -acceleration) if
-// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
-// a total travel of distance. This can be used to compute the intersection point between acceleration and
-// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-//
-/*                          + <- some maximum rate we don't care about
-                           /|\
-                          / | \
-                         /  |  + <- final_rate
-                        /   |  |
-       initial_rate -> +----+--+
-                            ^ ^
-                            | |
-        intersection_distance distance */
-double Block::intersection_distance(double initialrate, double finalrate, double acceleration, double distance) {
-   return((2*acceleration*distance-initialrate*initialrate+finalrate*finalrate)/(4*acceleration));
-}
-
-// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
-// acceleration within the allotted distance.
-inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
-  return(
-    sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance)  //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
-  );
-}
-
-
-// Called by Planner::recalculate() when scanning the plan from last to first entry.
-void Block::reverse_pass(Block* next, Block* previous){
-
-    if (next) {
-        // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
-        // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
-        // check for maximum allowable speed reductions to ensure maximum possible planned speed.
-        if (this->entry_speed != this->max_entry_speed) {
-
-            // If nominal length true, max junction speed is guaranteed to be reached. Only compute
-            // for max allowable speed if block is decelerating and nominal length is false.
-            if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
-                this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-this->planner->acceleration,next->entry_speed,this->millimeters));
-            } else {
-                this->entry_speed = this->max_entry_speed;
-            }
-            this->recalculate_flag = true;
-
-        }
-    } // Skip last block. Already initialized and set for recalculation.
-
-}
-
-
-// Called by Planner::recalculate() when scanning the plan from first to last entry.
-void Block::forward_pass(Block* previous, Block* next){
-
-    if(!previous) { return; } // Begin planning after buffer_tail
-
-    // If the previous block is an acceleration block, but it is not long enough to complete the
-    // full speed change within the block, we need to adjust the entry speed accordingly. Entry
-    // speeds have already been reset, maximized, and reverse planned by reverse planner.
-    // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
-    if (!previous->nominal_length_flag) {
-        if (previous->entry_speed < this->entry_speed) {
-          double entry_speed = min( this->entry_speed,
-            max_allowable_speed(-this->planner->acceleration,previous->entry_speed,previous->millimeters) );
-
-          // Check for junction speed change
-          if (this->entry_speed != entry_speed) {
-            this->entry_speed = entry_speed;
-            this->recalculate_flag = true;
-          }
-        }
-    }
-      
-}
-
-
-// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
-void Block::append_gcode(Gcode* gcode){
-   this->commands.push_back(gcode->command);
-   this->travel_distances.push_back(gcode->millimeters_of_travel);
-}
-
-// The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
-void Block::pop_and_execute_gcode(Kernel* &kernel){
-    for(unsigned short index=0; index<this->commands.size(); index++){
-        string command = this->commands.at(index);
-        double distance = this->travel_distances.at(index);
-        Gcode gcode = Gcode();
-        gcode.command = command;
-        gcode.millimeters_of_travel = distance;
-        kernel->call_event(ON_GCODE_EXECUTE, &gcode ); 
-    }
-}
-
-// Signal the player that this block is ready to be injected into the system
-void Block::ready(){
-    this->player->new_block_added();
-}
-
-// Mark the block as taken by one more module
-void Block::take(){
-    this->times_taken++;
-}
-
-// Mark the block as no longer taken by one module, go to next block if this free's it
-void Block::release(){
-    this->times_taken--;
-    if( this->times_taken < 1 ){
-        this->player->kernel->call_event(ON_BLOCK_END, this);
-        this->pop_and_execute_gcode(this->player->kernel);
-        Player* player = this->player;
-        if( player->queue.size() > 0 ){ 
-            //player->kernel->serial->printf("before: %d\r\n", player->queue.size() );
-            player->queue.delete_first();
-        } 
-        //player->kernel->serial->printf("after: %d\r\n", player->queue.size() );
-        player->current_block = NULL; 
-        player->pop_and_process_new_block();
-    }
-}
-
-
-
+/*
+      This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
+      Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
+      Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
+      You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "libs/Module.h"
+#include "libs/Kernel.h"
+#include "libs/nuts_bolts.h"
+#include <math.h>
+#include <string>
+#include "Block.h"
+#include "Planner.h"
+#include "Conveyor.h"
+#include "Gcode.h"
+#include "libs/StreamOutputPool.h"
+#include "Stepper.h"
+
+#include "mri.h"
+
+using std::string;
+#include <vector>
+
+// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
+// It's stacked on a queue, and that queue is then executed in order, to move the motors.
+// Most of the accel math is also done in this class
+// And GCode objects for use in on_gcode_execute are also help in here
+
+Block::Block()
+{
+    clear();
+}
+
+void Block::clear()
+{
+    //commands.clear();
+    //travel_distances.clear();
+    gcodes.clear();
+    clear_vector(this->steps);
+
+    steps_event_count   = 0;
+    nominal_rate        = 0;
+    nominal_speed       = 0.0F;
+    millimeters         = 0.0F;
+    entry_speed         = 0.0F;
+    exit_speed          = 0.0F;
+    rate_delta          = 0.0F;
+    initial_rate        = -1;
+    final_rate          = -1;
+    accelerate_until    = 0;
+    decelerate_after    = 0;
+    direction_bits      = 0;
+    recalculate_flag    = false;
+    nominal_length_flag = false;
+    max_entry_speed     = 0.0F;
+    is_ready            = false;
+    times_taken         = 0;
+}
+
+void Block::debug()
+{
+    THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d  entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
+                               this,
+                                         this->steps[0],
+                                               this->steps[1],
+                                                      this->steps[2],
+                                                               this->steps_event_count,
+                                                                             this->nominal_rate,
+                                                                                   this->nominal_speed,
+                                                                                            this->millimeters,
+                                                                                                         this->rate_delta,
+                                                                                                                 this->accelerate_until,
+                                                                                                                         this->decelerate_after,
+                                                                                                                                   this->initial_rate,
+                                                                                                                                        this->final_rate,
+                                                                                                                                                          this->entry_speed,
+                                                                                                                                                                this->max_entry_speed,
+                                                                                                                                                                             this->times_taken,
+                                                                                                                                                                                      this->is_ready,
+                                                                                                                                                                                                recalculate_flag?1:0,
+                                                                                                                                                                                                          nominal_length_flag?1:0
+                             );
+}
+
+
+/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+// The factors represent a factor of braking and must be in the range 0.0-1.0.
+//                                +--------+ <- nominal_rate
+//                               /          \
+// nominal_rate*entry_factor -> +            \
+//                              |             + <- nominal_rate*exit_factor
+//                              +-------------+
+//                                  time -->
+*/
+void Block::calculate_trapezoid( float entryspeed, float exitspeed )
+{
+    // if block is currently executing, don't touch anything!
+    if (times_taken)
+        return;
+
+    // The planner passes us factors, we need to transform them in rates
+    this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed);   // (step/s)
+    this->final_rate   = ceil(this->nominal_rate * exitspeed  / this->nominal_speed);   // (step/s)
+
+    // How many steps to accelerate and decelerate
+    float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second; // ( step/s^2)
+    int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
+    int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate,  -acceleration_per_second ) );
+
+    // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
+    int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
+
+    // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
+    // have to use intersection_distance() to calculate when to abort acceleration and start braking
+    // in order to reach the final_rate exactly at the end of this block.
+    if (plateau_steps < 0) {
+        accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
+        accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
+        accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
+        plateau_steps = 0;
+    }
+    this->accelerate_until = accelerate_steps;
+    this->decelerate_after = accelerate_steps + plateau_steps;
+
+    this->exit_speed = exitspeed;
+}
+
+// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
+// given acceleration:
+float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
+{
+    return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
+}
+
+// This function gives you the point at which you must start braking (at the rate of -acceleration) if
+// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
+// a total travel of distance. This can be used to compute the intersection point between acceleration and
+// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
+//
+/*                          + <- some maximum rate we don't care about
+                           /|\
+                          / | \
+                         /  |  + <- final_rate
+                        /   |  |
+       initial_rate -> +----+--+
+                            ^ ^
+                            | |
+        intersection_distance distance */
+float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
+{
+    return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
+{
+    return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
+}
+
+
+// Called by Planner::recalculate() when scanning the plan from last to first entry.
+float Block::reverse_pass(float exit_speed)
+{
+    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
+    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
+    // check for maximum allowable speed reductions to ensure maximum possible planned speed.
+    if (this->entry_speed != this->max_entry_speed)
+    {
+        // If nominal length true, max junction speed is guaranteed to be reached. Only compute
+        // for max allowable speed if block is decelerating and nominal length is false.
+        if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
+        {
+            float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->acceleration, exit_speed, this->millimeters);
+
+            this->entry_speed = min(max_entry_speed, this->max_entry_speed);
+
+            return this->entry_speed;
+        }
+        else
+            this->entry_speed = this->max_entry_speed;
+    }
+
+    return this->entry_speed;
+}
+
+
+// Called by Planner::recalculate() when scanning the plan from first to last entry.
+// returns maximum exit speed of this block
+float Block::forward_pass(float prev_max_exit_speed)
+{
+    // If the previous block is an acceleration block, but it is not long enough to complete the
+    // full speed change within the block, we need to adjust the entry speed accordingly. Entry
+    // speeds have already been reset, maximized, and reverse planned by reverse planner.
+    // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
+
+    // TODO: find out if both of these checks are necessary
+    if (prev_max_exit_speed > nominal_speed)
+        prev_max_exit_speed = nominal_speed;
+    if (prev_max_exit_speed > max_entry_speed)
+        prev_max_exit_speed = max_entry_speed;
+
+    if (prev_max_exit_speed <= entry_speed)
+    {
+        // accel limited
+        entry_speed = prev_max_exit_speed;
+        // since we're now acceleration or cruise limited
+        // we don't need to recalculate our entry speed anymore
+        recalculate_flag = false;
+    }
+    // else
+    // // decel limited, do nothing
+
+    return max_exit_speed();
+}
+
+float Block::max_exit_speed()
+{
+    // if block is currently executing, return cached exit speed from calculate_trapezoid
+    // this ensures that a block following a currently executing block will have correct entry speed
+    if (times_taken)
+        return exit_speed;
+
+    // if nominal_length_flag is asserted
+    // we are guaranteed to reach nominal speed regardless of entry speed
+    // thus, max exit will always be nominal
+    if (nominal_length_flag)
+        return nominal_speed;
+
+    // otherwise, we have to work out max exit speed based on entry and acceleration
+    float max = max_allowable_speed(-THEKERNEL->planner->acceleration, this->entry_speed, this->millimeters);
+
+    return min(max, nominal_speed);
+}
+
+// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
+void Block::append_gcode(Gcode* gcode)
+{
+    Gcode new_gcode = *gcode;
+    gcodes.push_back(new_gcode);
+}
+
+void Block::begin()
+{
+    recalculate_flag = false;
+
+    if (!is_ready)
+        __debugbreak();
+
+    times_taken = -1;
+
+    // execute all the gcodes related to this block
+    for(unsigned int index = 0; index < gcodes.size(); index++)
+        THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
+
+    THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
+
+    if (times_taken < 0)
+        release();
+}
+
+// Signal the conveyor that this block is ready to be injected into the system
+void Block::ready()
+{
+    this->is_ready = true;
+}
+
+// Mark the block as taken by one more module
+void Block::take()
+{
+    if (times_taken < 0)
+        times_taken = 0;
+    times_taken++;
+}
+
+// Mark the block as no longer taken by one module, go to next block if this free's it
+void Block::release()
+{
+    if (--this->times_taken <= 0)
+    {
+        times_taken = 0;
+        if (is_ready)
+        {
+            is_ready = false;
+            THEKERNEL->call_event(ON_BLOCK_END, this);
+
+            // ensure conveyor gets called last
+            THEKERNEL->conveyor->on_block_end(this);
+        }
+    }
+}