a2a29d4645f03085621be09091f2a097b409ea96
[clinton/Smoothieware.git] / src / libs / Kernel.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Kernel.h"
9 #include "libs/Module.h"
10 #include "libs/Config.h"
11 #include "libs/nuts_bolts.h"
12 #include "libs/SlowTicker.h"
13 #include "libs/Adc.h"
14 #include "libs/StreamOutputPool.h"
15 #include <mri.h>
16 #include "checksumm.h"
17 #include "ConfigValue.h"
18
19 #include "libs/StepTicker.h"
20 #include "libs/PublicData.h"
21 #include "modules/communication/SerialConsole.h"
22 #include "modules/communication/GcodeDispatch.h"
23 #include "modules/robot/Planner.h"
24 #include "modules/robot/Robot.h"
25 #include "modules/robot/Conveyor.h"
26 #include "StepperMotor.h"
27 #include "BaseSolution.h"
28 #include "EndstopsPublicAccess.h"
29 #include "Configurator.h"
30 #include "SimpleShell.h"
31 #include "TemperatureControlPublicAccess.h"
32
33 #ifndef NO_TOOLS_LASER
34 #include "Laser.h"
35 #endif
36
37 #include "platform_memory.h"
38
39 #include <malloc.h>
40 #include <array>
41 #include <string>
42
43 #define laser_checksum CHECKSUM("laser")
44 #define baud_rate_setting_checksum CHECKSUM("baud_rate")
45 #define uart0_checksum CHECKSUM("uart0")
46
47 #define base_stepping_frequency_checksum CHECKSUM("base_stepping_frequency")
48 #define microseconds_per_step_pulse_checksum CHECKSUM("microseconds_per_step_pulse")
49 #define disable_leds_checksum CHECKSUM("leds_disable")
50 #define grbl_mode_checksum CHECKSUM("grbl_mode")
51 #define feed_hold_enable_checksum CHECKSUM("enable_feed_hold")
52 #define ok_per_line_checksum CHECKSUM("ok_per_line")
53 #define new_status_format_checksum CHECKSUM("new_status_format")
54
55 Kernel* Kernel::instance;
56
57 // The kernel is the central point in Smoothie : it stores modules, and handles event calls
58 Kernel::Kernel()
59 {
60 halted = false;
61 feed_hold = false;
62 enable_feed_hold = false;
63
64 instance = this; // setup the Singleton instance of the kernel
65
66 // serial first at fixed baud rate (DEFAULT_SERIAL_BAUD_RATE) so config can report errors to serial
67 // Set to UART0, this will be changed to use the same UART as MRI if it's enabled
68 this->serial = new SerialConsole(USBTX, USBRX, DEFAULT_SERIAL_BAUD_RATE);
69
70 // Config next, but does not load cache yet
71 this->config = new Config();
72
73 // Pre-load the config cache, do after setting up serial so we can report errors to serial
74 this->config->config_cache_load();
75
76 // now config is loaded we can do normal setup for serial based on config
77 delete this->serial;
78 this->serial = NULL;
79
80 this->streams = new StreamOutputPool();
81
82 this->current_path = "/";
83
84 // Configure UART depending on MRI config
85 // Match up the SerialConsole to MRI UART. This makes it easy to use only one UART for both debug and actual commands.
86 NVIC_SetPriorityGrouping(0);
87
88 #if MRI_ENABLE != 0
89 switch( __mriPlatform_CommUartIndex() ) {
90 case 0:
91 this->serial = new(AHB0) SerialConsole(USBTX, USBRX, this->config->value(uart0_checksum, baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
92 break;
93 case 1:
94 this->serial = new(AHB0) SerialConsole( p13, p14, this->config->value(uart0_checksum, baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
95 break;
96 case 2:
97 this->serial = new(AHB0) SerialConsole( p28, p27, this->config->value(uart0_checksum, baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
98 break;
99 case 3:
100 this->serial = new(AHB0) SerialConsole( p9, p10, this->config->value(uart0_checksum, baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
101 break;
102 }
103 #endif
104 // default
105 if(this->serial == NULL) {
106 this->serial = new(AHB0) SerialConsole(USBTX, USBRX, this->config->value(uart0_checksum, baud_rate_setting_checksum)->by_default(DEFAULT_SERIAL_BAUD_RATE)->as_number());
107 }
108
109 //some boards don't have leds.. TOO BAD!
110 this->use_leds = !this->config->value( disable_leds_checksum )->by_default(false)->as_bool();
111
112 #ifdef CNC
113 this->grbl_mode = this->config->value( grbl_mode_checksum )->by_default(true)->as_bool();
114 #else
115 this->grbl_mode = this->config->value( grbl_mode_checksum )->by_default(false)->as_bool();
116 #endif
117
118 this->enable_feed_hold = this->config->value( feed_hold_enable_checksum )->by_default(this->grbl_mode)->as_bool();
119
120 // we expect ok per line now not per G code, setting this to false will return to the old (incorrect) way of ok per G code
121 this->ok_per_line = this->config->value( ok_per_line_checksum )->by_default(true)->as_bool();
122
123 this->new_status_format = this->config->value( new_status_format_checksum )->by_default(true)->as_bool();
124
125 this->add_module( this->serial );
126
127 // HAL stuff
128 add_module( this->slow_ticker = new SlowTicker());
129
130 this->step_ticker = new StepTicker();
131 this->adc = new Adc();
132
133 // TODO : These should go into platform-specific files
134 // LPC17xx-specific
135 NVIC_SetPriorityGrouping(0);
136 NVIC_SetPriority(TIMER0_IRQn, 2);
137 NVIC_SetPriority(TIMER1_IRQn, 1);
138 NVIC_SetPriority(TIMER2_IRQn, 4);
139 NVIC_SetPriority(PendSV_IRQn, 3);
140
141 // Set other priorities lower than the timers
142 NVIC_SetPriority(ADC_IRQn, 5);
143 NVIC_SetPriority(USB_IRQn, 5);
144
145 // If MRI is enabled
146 if( MRI_ENABLE ) {
147 if( NVIC_GetPriority(UART0_IRQn) > 0 ) { NVIC_SetPriority(UART0_IRQn, 5); }
148 if( NVIC_GetPriority(UART1_IRQn) > 0 ) { NVIC_SetPriority(UART1_IRQn, 5); }
149 if( NVIC_GetPriority(UART2_IRQn) > 0 ) { NVIC_SetPriority(UART2_IRQn, 5); }
150 if( NVIC_GetPriority(UART3_IRQn) > 0 ) { NVIC_SetPriority(UART3_IRQn, 5); }
151 } else {
152 NVIC_SetPriority(UART0_IRQn, 5);
153 NVIC_SetPriority(UART1_IRQn, 5);
154 NVIC_SetPriority(UART2_IRQn, 5);
155 NVIC_SetPriority(UART3_IRQn, 5);
156 }
157
158 // Configure the step ticker
159 this->base_stepping_frequency = this->config->value(base_stepping_frequency_checksum)->by_default(100000)->as_number();
160 float microseconds_per_step_pulse = this->config->value(microseconds_per_step_pulse_checksum)->by_default(1)->as_number();
161
162 // Configure the step ticker
163 this->step_ticker->set_frequency( this->base_stepping_frequency );
164 this->step_ticker->set_unstep_time( microseconds_per_step_pulse );
165
166 // Core modules
167 this->add_module( this->conveyor = new Conveyor() );
168 this->add_module( this->gcode_dispatch = new GcodeDispatch() );
169 this->add_module( this->robot = new Robot() );
170 this->add_module( this->simpleshell = new SimpleShell() );
171
172 this->planner = new Planner();
173 this->configurator = new Configurator();
174 }
175
176 // return a GRBL-like query string for serial ?
177 std::string Kernel::get_query_string()
178 {
179 std::string str;
180 bool homing;
181 bool ok = PublicData::get_value(endstops_checksum, get_homing_status_checksum, 0, &homing);
182 if(!ok) homing = false;
183 bool running = false;
184
185 str.append("<");
186 if(halted) {
187 str.append("Alarm");
188 } else if(homing) {
189 running = true;
190 str.append("Home");
191 } else if(feed_hold) {
192 str.append("Hold");
193 } else if(this->conveyor->is_idle()) {
194 str.append("Idle");
195 } else {
196 running = true;
197 str.append("Run");
198 }
199
200 if(running) {
201 float mpos[3];
202 robot->get_current_machine_position(mpos);
203 // current_position/mpos includes the compensation transform so we need to get the inverse to get actual position
204 if(robot->compensationTransform) robot->compensationTransform(mpos, true); // get inverse compensation transform
205
206 char buf[128];
207 // machine position
208 size_t n = snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(mpos[0]), robot->from_millimeters(mpos[1]), robot->from_millimeters(mpos[2]));
209 if(n > sizeof(buf)) n= sizeof(buf);
210
211 if(new_status_format) {
212 str.append("|MPos:").append(buf, n);
213
214 #if MAX_ROBOT_ACTUATORS > 3
215 // deal with the ABC axis (E will be A)
216 for (int i = A_AXIS; i < robot->get_number_registered_motors(); ++i) {
217 // current actuator position
218 n = snprintf(buf, sizeof(buf), ",%1.4f", robot->from_millimeters(robot->actuators[i]->get_current_position()));
219 if(n > sizeof(buf)) n= sizeof(buf);
220 str.append(buf, n);
221 }
222 #endif
223
224 }else{
225 str.append(",MPos:").append(buf, n);
226 }
227
228 // work space position
229 Robot::wcs_t pos = robot->mcs2wcs(mpos);
230 n = snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(std::get<X_AXIS>(pos)), robot->from_millimeters(std::get<Y_AXIS>(pos)), robot->from_millimeters(std::get<Z_AXIS>(pos)));
231 if(n > sizeof(buf)) n= sizeof(buf);
232
233 if(new_status_format) {
234 str.append("|WPos:").append(buf, n);
235 // current feedrate
236 float fr= robot->from_millimeters(conveyor->get_current_feedrate()*60.0F);
237 n = snprintf(buf, sizeof(buf), "|F:%1.4f", fr);
238 if(n > sizeof(buf)) n= sizeof(buf);
239 str.append(buf, n);
240 float sr= robot->get_s_value();
241 n = snprintf(buf, sizeof(buf), "|S:%1.4f", sr);
242 if(n > sizeof(buf)) n= sizeof(buf);
243 str.append(buf, n);
244
245 // current Laser power
246 #ifndef NO_TOOLS_LASER
247 Laser *plaser= nullptr;
248 if(PublicData::get_value(laser_checksum, (void *)&plaser) && plaser != nullptr) {
249 float lp= plaser->get_current_power();
250 n = snprintf(buf, sizeof(buf), "|L:%1.4f", lp);
251 if(n > sizeof(buf)) n= sizeof(buf);
252 str.append(buf, n);
253 }
254 #endif
255
256 }else{
257 str.append(",WPos:").append(buf, n);
258 }
259
260 } else {
261 // return the last milestone if idle
262 char buf[128];
263 // machine position
264 Robot::wcs_t mpos = robot->get_axis_position();
265 size_t n = snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(std::get<X_AXIS>(mpos)), robot->from_millimeters(std::get<Y_AXIS>(mpos)), robot->from_millimeters(std::get<Z_AXIS>(mpos)));
266 if(n > sizeof(buf)) n= sizeof(buf);
267 if(new_status_format) {
268 str.append("|MPos:").append(buf, n);
269 #if MAX_ROBOT_ACTUATORS > 3
270 // deal with the ABC axis (E will be A)
271 for (int i = A_AXIS; i < robot->get_number_registered_motors(); ++i) {
272 // current actuator position
273 n = snprintf(buf, sizeof(buf), ",%1.4f", robot->from_millimeters(robot->actuators[i]->get_current_position()));
274 if(n > sizeof(buf)) n= sizeof(buf);
275 str.append(buf, n);
276 }
277 #endif
278
279 }else{
280 str.append(",MPos:").append(buf, n);
281 }
282
283 // work space position
284 Robot::wcs_t pos = robot->mcs2wcs(mpos);
285 n = snprintf(buf, sizeof(buf), "%1.4f,%1.4f,%1.4f", robot->from_millimeters(std::get<X_AXIS>(pos)), robot->from_millimeters(std::get<Y_AXIS>(pos)), robot->from_millimeters(std::get<Z_AXIS>(pos)));
286 if(n > sizeof(buf)) n= sizeof(buf);
287 if(new_status_format) {
288 str.append("|WPos:").append(buf, n);
289 }else{
290 str.append(",WPos:").append(buf, n);
291 }
292
293 if(new_status_format) {
294 float fr= robot->from_millimeters(robot->get_feed_rate());
295 n = snprintf(buf, sizeof(buf), "|F:%1.4f", fr);
296 if(n > sizeof(buf)) n= sizeof(buf);
297 str.append(buf, n);
298 }
299
300 }
301
302 // if not grbl mode get temperatures
303 if(new_status_format && !is_grbl_mode()) {
304 struct pad_temperature temp;
305 // scan all temperature controls
306 std::vector<struct pad_temperature> controllers;
307 bool ok = PublicData::get_value(temperature_control_checksum, poll_controls_checksum, &controllers);
308 if (ok) {
309 char buf[32];
310 for (auto &c : controllers) {
311 size_t n= snprintf(buf, sizeof(buf), "|%s:%1.1f,%1.1f", c.designator.c_str(), c.current_temperature, c.target_temperature);
312 if(n > sizeof(buf)) n= sizeof(buf);
313 str.append(buf, n);
314 }
315 }
316 }
317
318 str.append(">\n");
319 return str;
320 }
321
322 // Add a module to Kernel. We don't actually hold a list of modules we just call its on_module_loaded
323 void Kernel::add_module(Module* module)
324 {
325 module->on_module_loaded();
326 }
327
328 // Adds a hook for a given module and event
329 void Kernel::register_for_event(_EVENT_ENUM id_event, Module *mod)
330 {
331 this->hooks[id_event].push_back(mod);
332 }
333
334 // Call a specific event with an argument
335 void Kernel::call_event(_EVENT_ENUM id_event, void * argument)
336 {
337 bool was_idle = true;
338 if(id_event == ON_HALT) {
339 this->halted = (argument == nullptr);
340 was_idle = conveyor->is_idle(); // see if we were doing anything like printing
341 }
342
343 // send to all registered modules
344 for (auto m : hooks[id_event]) {
345 (m->*kernel_callback_functions[id_event])(argument);
346 }
347
348 if(id_event == ON_HALT) {
349 if(!this->halted || !was_idle) {
350 // if we were running and this is a HALT
351 // or if we are clearing the halt with $X or M999
352 // fix up the current positions in case they got out of sync due to backed up commands
353 this->robot->reset_position_from_current_actuator_position();
354 }
355 }
356 }
357
358 // These are used by tests to test for various things. basically mocks
359 bool Kernel::kernel_has_event(_EVENT_ENUM id_event, Module *mod)
360 {
361 for (auto m : hooks[id_event]) {
362 if(m == mod) return true;
363 }
364 return false;
365 }
366
367 void Kernel::unregister_for_event(_EVENT_ENUM id_event, Module *mod)
368 {
369 for (auto i = hooks[id_event].begin(); i != hooks[id_event].end(); ++i) {
370 if(*i == mod) {
371 hooks[id_event].erase(i);
372 return;
373 }
374 }
375 }
376