added grbl commands when in grbl_mode (set in config with grbl_mode true)
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
... / ...
CommitLineData
1/*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "modules/communication/utils/Gcode.h"
11#include "modules/robot/Conveyor.h"
12#include "modules/robot/ActuatorCoordinates.h"
13#include "Endstops.h"
14#include "libs/nuts_bolts.h"
15#include "libs/Pin.h"
16#include "libs/StepperMotor.h"
17#include "wait_api.h" // mbed.h lib
18#include "Robot.h"
19#include "Stepper.h"
20#include "Config.h"
21#include "SlowTicker.h"
22#include "Planner.h"
23#include "checksumm.h"
24#include "utils.h"
25#include "ConfigValue.h"
26#include "libs/StreamOutput.h"
27#include "PublicDataRequest.h"
28#include "EndstopsPublicAccess.h"
29#include "StreamOutputPool.h"
30#include "StepTicker.h"
31#include "BaseSolution.h"
32#include "SerialMessage.h"
33
34#include <ctype.h>
35
36#define ALPHA_AXIS 0
37#define BETA_AXIS 1
38#define GAMMA_AXIS 2
39#define X_AXIS 0
40#define Y_AXIS 1
41#define Z_AXIS 2
42
43#define endstops_module_enable_checksum CHECKSUM("endstops_enable")
44#define corexy_homing_checksum CHECKSUM("corexy_homing")
45#define delta_homing_checksum CHECKSUM("delta_homing")
46#define scara_homing_checksum CHECKSUM("scara_homing")
47
48#define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
49#define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
50#define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
51
52#define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
53#define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
54#define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
55
56#define alpha_trim_checksum CHECKSUM("alpha_trim")
57#define beta_trim_checksum CHECKSUM("beta_trim")
58#define gamma_trim_checksum CHECKSUM("gamma_trim")
59
60// these values are in steps and should be deprecated
61#define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
62#define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
63#define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
64
65#define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
66#define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
67#define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
68
69#define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
70#define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
71#define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
72
73// same as above but in user friendly mm/s and mm
74#define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
75#define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
76#define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
77
78#define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
79#define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
80#define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
81
82#define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
83#define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
84#define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
85
86#define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
87
88#define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
89#define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
90#define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
91#define home_to_max_checksum CHECKSUM("home_to_max")
92#define home_to_min_checksum CHECKSUM("home_to_min")
93#define alpha_min_checksum CHECKSUM("alpha_min")
94#define beta_min_checksum CHECKSUM("beta_min")
95#define gamma_min_checksum CHECKSUM("gamma_min")
96
97#define alpha_max_checksum CHECKSUM("alpha_max")
98#define beta_max_checksum CHECKSUM("beta_max")
99#define gamma_max_checksum CHECKSUM("gamma_max")
100
101#define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
102#define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
103#define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
104
105#define homing_order_checksum CHECKSUM("homing_order")
106#define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
107
108#define STEPPER THEKERNEL->robot->actuators
109#define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
110
111
112// Homing States
113enum{
114 MOVING_TO_ENDSTOP_FAST, // homing move
115 MOVING_BACK, // homing move
116 MOVING_TO_ENDSTOP_SLOW, // homing move
117 NOT_HOMING,
118 BACK_OFF_HOME,
119 MOVE_TO_ORIGIN,
120 LIMIT_TRIGGERED
121};
122
123Endstops::Endstops()
124{
125 this->status = NOT_HOMING;
126 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
127}
128
129void Endstops::on_module_loaded()
130{
131 // Do not do anything if not enabled
132 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
133 delete this;
134 return;
135 }
136
137 register_for_event(ON_GCODE_RECEIVED);
138 register_for_event(ON_GET_PUBLIC_DATA);
139 register_for_event(ON_SET_PUBLIC_DATA);
140
141 THEKERNEL->step_ticker->register_acceleration_tick_handler([this](){acceleration_tick(); });
142
143 // Settings
144 this->on_config_reload(this);
145}
146
147// Get config
148void Endstops::on_config_reload(void *argument)
149{
150 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
151 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
156
157 // These are the old ones in steps still here for backwards compatibility
158 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
159 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
160 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
161 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
162 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
163 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
164 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
165 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
166 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
167
168 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
169 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
170 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
171 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
172 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
173 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
174 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
175 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
176 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
177 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
178
179 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
180
181 // get homing direction and convert to boolean where true is home to min, and false is home to max
182 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
183 this->home_direction[0] = home_dir != home_to_max_checksum;
184
185 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
186 this->home_direction[1] = home_dir != home_to_max_checksum;
187
188 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
189 this->home_direction[2] = home_dir != home_to_max_checksum;
190
191 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
192 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
193 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
194
195 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
196 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
197 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
198
199 // see if an order has been specified, must be three characters, XYZ or YXZ etc
200 string order= THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
201 this->homing_order= 0;
202 if(order.size() == 3 && !this->is_delta) {
203 int shift= 0;
204 for(auto c : order) {
205 uint8_t i= toupper(c) - 'X';
206 if(i > 2) { // bad value
207 this->homing_order= 0;
208 break;
209 }
210 homing_order |= (i << shift);
211 shift += 2;
212 }
213 }
214
215 // endstop trim used by deltas to do soft adjusting
216 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
217 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
218 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
219 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
220
221 // limits enabled
222 this->limit_enable[X_AXIS]= THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
223 this->limit_enable[Y_AXIS]= THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
224 this->limit_enable[Z_AXIS]= THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
225
226 //s et to true by default for deltas duwe to trim, false on cartesians
227 this->move_to_origin_after_home= THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
228
229 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]){
230 register_for_event(ON_IDLE);
231 if(this->is_delta) {
232 // we must enable all the limits not just one
233 this->limit_enable[X_AXIS]= true;
234 this->limit_enable[Y_AXIS]= true;
235 this->limit_enable[Z_AXIS]= true;
236 }
237 }
238
239 // NOTE this may also be true of scara. TBD
240 if(this->is_delta) {
241 // some things must be the same or they will die, so force it here to avoid config errors
242 this->fast_rates[1]= this->fast_rates[2]= this->fast_rates[0];
243 this->slow_rates[1]= this->slow_rates[2]= this->slow_rates[0];
244 this->retract_mm[1]= this->retract_mm[2]= this->retract_mm[0];
245 this->home_direction[1]= this->home_direction[2]= this->home_direction[0];
246 this->homing_position[0]= this->homing_position[1]= 0;
247 }
248}
249
250bool Endstops::debounced_get(int pin)
251{
252 uint8_t debounce= 0;
253 while(this->pins[pin].get()) {
254 if ( ++debounce >= this->debounce_count ) {
255 // pin triggered
256 return true;
257 }
258 }
259 return false;
260}
261
262static const char *endstop_names[]= {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
263
264void Endstops::on_idle(void *argument)
265{
266 if(this->status == LIMIT_TRIGGERED) {
267 // if we were in limit triggered see if it has been cleared
268 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
269 if(this->limit_enable[c]) {
270 std::array<int, 2> minmax{{0, 3}};
271 // check min and max endstops
272 for (int i : minmax) {
273 int n= c+i;
274 if(this->pins[n].get()) {
275 // still triggered, so exit
276 bounce_cnt= 0;
277 return;
278 }
279 }
280 }
281 }
282 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
283 // clear the state
284 this->status= NOT_HOMING;
285 }
286 return;
287
288 }else if(this->status != NOT_HOMING) {
289 // don't check while homing
290 return;
291 }
292
293 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
294 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
295 std::array<int, 2> minmax{{0, 3}};
296 // check min and max endstops
297 for (int i : minmax) {
298 int n= c+i;
299 if(debounced_get(n)) {
300 // endstop triggered
301 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
302 this->status= LIMIT_TRIGGERED;
303 // disables heaters and motors, ignores incoming Gcode and flushes block queue
304 THEKERNEL->call_event(ON_HALT, nullptr);
305 return;
306 }
307 }
308 }
309 }
310}
311
312// if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
313// checks if triggered and only backs off if triggered
314void Endstops::back_off_home(char axes_to_move)
315{
316 std::vector<std::pair<char,float>> params;
317 this->status = BACK_OFF_HOME;
318
319 // these are handled differently
320 if(is_delta || is_scara) {
321 // Move off of the endstop using a regular relative move in Z only
322 params.push_back({'Z', this->retract_mm[Z_AXIS]*(this->home_direction[Z_AXIS]?1:-1)});
323
324 }else{
325 // cartesians, concatenate all the moves we need to do into one gcode
326 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
327 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
328
329 // if not triggered no need to move off
330 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
331 params.push_back({c+'X', this->retract_mm[c]*(this->home_direction[c]?1:-1)});
332 }
333 }
334 }
335
336 if(!params.empty()) {
337 // Move off of the endstop using a regular relative move
338 params.insert(params.begin(), {'G', 0});
339 // use X slow rate to move, Z should have a max speed set anyway
340 params.push_back({'F', this->slow_rates[X_AXIS]*60.0F});
341 char gcode_buf[64];
342 append_parameters(gcode_buf, params, sizeof(gcode_buf));
343 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
344 bool oldmode= THEKERNEL->robot->absolute_mode;
345 THEKERNEL->robot->absolute_mode= false; // needs to be relative mode
346 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
347 THEKERNEL->robot->absolute_mode= oldmode; // restore mode
348 // Wait for above to finish
349 THEKERNEL->conveyor->wait_for_empty_queue();
350 }
351
352 this->status = NOT_HOMING;
353}
354
355// If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
356void Endstops::move_to_origin(char axes_to_move)
357{
358 if( (axes_to_move&0x03) != 3 ) return; // ignore if X and Y not homing
359
360 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
361 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
362
363 this->status = MOVE_TO_ORIGIN;
364 // Move to center using a regular move, use slower of X and Y fast rate
365 float rate= std::min(this->fast_rates[0], this->fast_rates[1])*60.0F;
366 char buf[32];
367 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
368 struct SerialMessage message;
369 message.message = buf;
370 message.stream = &(StreamOutput::NullStream);
371 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
372 // Wait for above to finish
373 THEKERNEL->conveyor->wait_for_empty_queue();
374 this->status = NOT_HOMING;
375}
376
377bool Endstops::wait_for_homed(char axes_to_move)
378{
379 bool running = true;
380 unsigned int debounce[3] = {0, 0, 0};
381 while (running) {
382 running = false;
383 THEKERNEL->call_event(ON_IDLE);
384
385 // check if on_halt (eg kill)
386 if(THEKERNEL->is_halted()) return false;
387
388 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
389 if ( ( axes_to_move >> c ) & 1 ) {
390 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
391 if ( debounce[c] < debounce_count ) {
392 debounce[c]++;
393 running = true;
394 } else if ( STEPPER[c]->is_moving() ) {
395 STEPPER[c]->move(0, 0);
396 axes_to_move &= ~(1<<c); // no need to check it again
397 }
398 } else {
399 // The endstop was not hit yet
400 running = true;
401 debounce[c] = 0;
402 }
403 }
404 }
405 }
406 return true;
407}
408
409void Endstops::do_homing_cartesian(char axes_to_move)
410{
411 // check if on_halt (eg kill)
412 if(THEKERNEL->is_halted()) return;
413
414 // this homing works for cartesian and delta printers
415 // Start moving the axes to the origin
416 this->status = MOVING_TO_ENDSTOP_FAST;
417 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
418 if ( ( axes_to_move >> c) & 1 ) {
419 this->feed_rate[c]= this->fast_rates[c];
420 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
421 }
422 }
423
424 // Wait for all axes to have homed
425 if(!this->wait_for_homed(axes_to_move)) return;
426
427 // Move back a small distance
428 this->status = MOVING_BACK;
429 bool inverted_dir;
430 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
431 if ( ( axes_to_move >> c ) & 1 ) {
432 inverted_dir = !this->home_direction[c];
433 this->feed_rate[c]= this->slow_rates[c];
434 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
435 }
436 }
437
438 // Wait for moves to be done
439 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
440 if ( ( axes_to_move >> c ) & 1 ) {
441 while ( STEPPER[c]->is_moving() ) {
442 THEKERNEL->call_event(ON_IDLE);
443 if(THEKERNEL->is_halted()) return;
444 }
445 }
446 }
447
448 // Start moving the axes to the origin slowly
449 this->status = MOVING_TO_ENDSTOP_SLOW;
450 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
451 if ( ( axes_to_move >> c ) & 1 ) {
452 this->feed_rate[c]= this->slow_rates[c];
453 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
454 }
455 }
456
457 // Wait for all axes to have homed
458 if(!this->wait_for_homed(axes_to_move)) return;
459}
460
461bool Endstops::wait_for_homed_corexy(int axis)
462{
463 bool running = true;
464 unsigned int debounce[3] = {0, 0, 0};
465 while (running) {
466 running = false;
467 THEKERNEL->call_event(ON_IDLE);
468
469 // check if on_halt (eg kill)
470 if(THEKERNEL->is_halted()) return false;
471
472 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
473 if ( debounce[axis] < debounce_count ) {
474 debounce[axis] ++;
475 running = true;
476 } else {
477 // turn both off if running
478 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
479 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
480 }
481 } else {
482 // The endstop was not hit yet
483 running = true;
484 debounce[axis] = 0;
485 }
486 }
487 return true;
488}
489
490void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
491{
492 // check if on_halt (eg kill)
493 if(THEKERNEL->is_halted()) return;
494
495 this->status = MOVING_TO_ENDSTOP_FAST;
496 this->feed_rate[X_AXIS]= fast_rate;
497 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
498 this->feed_rate[Y_AXIS]= fast_rate;
499 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
500
501 // wait for primary axis
502 if(!this->wait_for_homed_corexy(home_axis)) return;
503
504 // Move back a small distance
505 this->status = MOVING_BACK;
506 this->feed_rate[X_AXIS]= slow_rate;
507 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
508 this->feed_rate[Y_AXIS]= slow_rate;
509 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
510
511 // wait until done
512 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
513 THEKERNEL->call_event(ON_IDLE);
514 if(THEKERNEL->is_halted()) return;
515 }
516
517 // Start moving the axes to the origin slowly
518 this->status = MOVING_TO_ENDSTOP_SLOW;
519 this->feed_rate[X_AXIS]= slow_rate;
520 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
521 this->feed_rate[Y_AXIS]= slow_rate;
522 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
523
524 // wait for primary axis
525 if(!this->wait_for_homed_corexy(home_axis)) return;
526}
527
528// this homing works for HBots/CoreXY
529void Endstops::do_homing_corexy(char axes_to_move)
530{
531 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
532 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
533 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
534 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
535
536 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
537 // determine which motor to turn and which way
538 bool dirx= this->home_direction[X_AXIS];
539 bool diry= this->home_direction[Y_AXIS];
540 int motor;
541 bool dir;
542 if(dirx && diry) { // min/min
543 motor= X_AXIS;
544 dir= true;
545 }else if(dirx && !diry) { // min/max
546 motor= Y_AXIS;
547 dir= true;
548 }else if(!dirx && diry) { // max/min
549 motor= Y_AXIS;
550 dir= false;
551 }else if(!dirx && !diry) { // max/max
552 motor= X_AXIS;
553 dir= false;
554 }
555
556 // then move both X and Y until one hits the endstop
557 this->status = MOVING_TO_ENDSTOP_FAST;
558 // need to allow for more ground covered when moving diagonally
559 this->feed_rate[motor]= this->fast_rates[motor]*1.4142;
560 STEPPER[motor]->move(dir, 10000000, 0);
561 // wait until either X or Y hits the endstop
562 bool running= true;
563 while (running) {
564 THEKERNEL->call_event(ON_IDLE);
565 if(THEKERNEL->is_halted()) return;
566 for(int m=X_AXIS;m<=Y_AXIS;m++) {
567 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
568 // turn off motor
569 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
570 running= false;
571 break;
572 }
573 }
574 }
575 }
576
577 // move individual axis
578 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
579 bool dir= this->home_direction[X_AXIS];
580 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
581 }
582
583 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
584 bool dir= this->home_direction[Y_AXIS];
585 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
586 }
587
588 if (axes_to_move & 0x04) { // move Z
589 do_homing_cartesian(0x04); // just home normally for Z
590 }
591}
592
593void Endstops::home(char axes_to_move)
594{
595 // not a block move so disable the last tick setting
596 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
597 STEPPER[c]->set_moved_last_block(false);
598 }
599
600 if (is_corexy){
601 // corexy/HBot homing
602 do_homing_corexy(axes_to_move);
603 }else{
604 // cartesian/delta homing
605 do_homing_cartesian(axes_to_move);
606 }
607
608 // make sure all steppers are off (especially if aborted)
609 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
610 STEPPER[c]->move(0, 0);
611 }
612 this->status = NOT_HOMING;
613}
614
615// Start homing sequences by response to GCode commands
616void Endstops::on_gcode_received(void *argument)
617{
618 Gcode *gcode = static_cast<Gcode *>(argument);
619 if ( gcode->has_g) {
620 if ( gcode->g == 28 ) {
621 if(THEKERNEL->is_grbl_mode()) {
622 if(gcode->subcode == 0) { // G28 goto pre defined position
623 // TODO
624
625 }else if(gcode->subcode == 1) { // G28.1 set pre defined position
626 // TODO
627
628 }else if(gcode->subcode == 2) { // G28.2 force homing cycle
629 // fall through to do this
630
631 }else{
632 gcode->stream->printf("error:Unsupported command\n");
633 return;
634 }
635
636 }else{
637 if(gcode->subcode == 1) { // G28.1
638 if(gcode->get_num_args() == 0) {
639 THEKERNEL->robot->reset_axis_position(0, 0, 0);
640 }else{
641 // do a manual homing based on current position, no endstops required
642 if(gcode->has_letter('X')) THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
643 if(gcode->has_letter('Y')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
644 if(gcode->has_letter('Z')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
645 }
646 return;
647 }
648 }
649
650 // G28 is received, we have homing to do
651
652 // First wait for the queue to be empty
653 THEKERNEL->conveyor->wait_for_empty_queue();
654
655 // Do we move select axes or all of them
656 char axes_to_move = 0;
657 // only enable homing if the endstop is defined, deltas, scaras always home all axis
658 bool home_all = this->is_delta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
659
660 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
661 if ( (home_all || gcode->has_letter(c+'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
662 axes_to_move += ( 1 << c );
663 }
664 }
665
666 // Enable the motors
667 THEKERNEL->stepper->turn_enable_pins_on();
668
669 // do the actual homing
670 if(homing_order != 0){
671 // if an order has been specified do it in the specified order
672 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
673 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
674 for (uint8_t m = homing_order; m != 0; m >>= 2) {
675 int a= (1 << (m & 0x03)); // axis to move
676 if((a & axes_to_move) != 0){
677 home(a);
678 }
679 // check if on_halt (eg kill)
680 if(THEKERNEL->is_halted()) break;
681 }
682
683 }else {
684 // they all home at the same time
685 home(axes_to_move);
686 }
687
688 // check if on_halt (eg kill)
689 if(THEKERNEL->is_halted()){
690 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
691 return;
692 }
693
694 if(home_all) {
695 // Here's where we would have been if the endstops were perfectly trimmed
696 float ideal_position[3] = {
697 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
698 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
699 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
700 };
701
702 bool has_endstop_trim = this->is_delta || this->is_scara;
703 if (has_endstop_trim) {
704 ActuatorCoordinates ideal_actuator_position;
705 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
706
707 // We are actually not at the ideal position, but a trim away
708 ActuatorCoordinates real_actuator_position = {
709 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
710 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
711 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
712 };
713
714 float real_position[3];
715 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
716 // Reset the actuator positions to correspond our real position
717 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
718 } else {
719 // without endstop trim, real_position == ideal_position
720 // Reset the actuator positions to correspond our real position
721 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
722 }
723 } else {
724 // Zero the ax(i/e)s position, add in the home offset
725 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
726 if ( (axes_to_move >> c) & 1 ) {
727 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
728 }
729 }
730 }
731
732 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
733 // default is off for cartesian on for deltas
734 if(!is_delta) {
735 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
736 // if limit switches are enabled we must back off endstop after setting home
737 back_off_home(axes_to_move);
738
739 }else if(this->move_to_origin_after_home || this->limit_enable[X_AXIS]) {
740 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
741 // also need to back off endstops if limits are enabled
742 back_off_home(axes_to_move);
743 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
744 }
745 }
746
747 } else if (gcode->has_m) {
748 switch (gcode->m) {
749 case 119: {
750 for (int i = 0; i < 6; ++i) {
751 if(this->pins[i].connected())
752 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
753 }
754 gcode->add_nl= true;
755
756 }
757 break;
758
759 case 206: // M206 - set homing offset
760 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
761 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
762 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
763 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
764
765 break;
766
767 case 306: // Similar to M206 and G92 but sets Homing offsets based on current position
768 {
769 float cartesian[3];
770 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
771 if (gcode->has_letter('X')){
772 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
773 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
774 }
775 if (gcode->has_letter('Y')) {
776 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
777 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
778 }
779 if (gcode->has_letter('Z')) {
780 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
781 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
782 }
783
784 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
785
786 }
787 break;
788
789 case 500: // save settings
790 case 503: // print settings
791 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
792 if (this->is_delta || this->is_scara) {
793 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
794 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
795 }
796 break;
797
798 case 665: { // M665 - set max gamma/z height
799
800 float gamma_max = this->homing_position[2];
801 if (gcode->has_letter('Z')) {
802 this->homing_position[2] = gamma_max = gcode->get_value('Z');
803 }
804 gcode->stream->printf("Max Z %8.3f ", gamma_max);
805 gcode->add_nl = true;
806 }
807 break;
808
809
810 case 666:
811 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
812 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
813 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
814 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
815
816 // print the current trim values in mm
817 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
818
819 }
820 break;
821
822 // NOTE this is to test accuracy of lead screws etc.
823 case 1910: { // M1910 - move specific number of raw steps
824 if(gcode->subcode == 0) {
825 // Enable the motors
826 THEKERNEL->stepper->turn_enable_pins_on();
827
828 int x= 0, y=0 , z= 0, f= 200*16;
829 if (gcode->has_letter('F')) f = gcode->get_value('F');
830 if (gcode->has_letter('X')) {
831 x = gcode->get_value('X');
832 STEPPER[X_AXIS]->move(x<0, abs(x), f);
833 }
834 if (gcode->has_letter('Y')) {
835 y = gcode->get_value('Y');
836 STEPPER[Y_AXIS]->move(y<0, abs(y), f);
837 }
838 if (gcode->has_letter('Z')) {
839 z = gcode->get_value('Z');
840 STEPPER[Z_AXIS]->move(z<0, abs(z), f);
841 }
842 gcode->stream->printf("Moving X %d Y %d Z %d steps at F %d steps/sec\n", x, y, z, f);
843
844 }else if(gcode->subcode == 1) {
845 // stop any that are moving
846 for (int i = 0; i < 3; ++i) {
847 if(STEPPER[i]->is_moving()) STEPPER[i]->move(0, 0);
848 }
849 }
850 break;
851 }
852 }
853 }
854}
855
856// Called periodically to change the speed to match acceleration
857void Endstops::acceleration_tick(void)
858{
859 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
860
861 // foreach stepper that is moving
862 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
863 if( !STEPPER[c]->is_moving() ) continue;
864
865 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
866 uint32_t target_rate = floorf(this->feed_rate[c]*STEPS_PER_MM(c));
867 float acc= (c==Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
868 if( current_rate < target_rate ){
869 uint32_t rate_increase = floorf((acc/THEKERNEL->acceleration_ticks_per_second)*STEPS_PER_MM(c));
870 current_rate = min( target_rate, current_rate + rate_increase );
871 }
872 if( current_rate > target_rate ){ current_rate = target_rate; }
873
874 // steps per second
875 STEPPER[c]->set_speed(current_rate);
876 }
877
878 return;
879}
880
881void Endstops::on_get_public_data(void* argument){
882 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
883
884 if(!pdr->starts_with(endstops_checksum)) return;
885
886 if(pdr->second_element_is(trim_checksum)) {
887 pdr->set_data_ptr(&this->trim_mm);
888 pdr->set_taken();
889
890 }else if(pdr->second_element_is(home_offset_checksum)) {
891 pdr->set_data_ptr(&this->home_offset);
892 pdr->set_taken();
893 }
894}
895
896void Endstops::on_set_public_data(void* argument){
897 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
898
899 if(!pdr->starts_with(endstops_checksum)) return;
900
901 if(pdr->second_element_is(trim_checksum)) {
902 float *t= static_cast<float*>(pdr->get_data_ptr());
903 this->trim_mm[0]= t[0];
904 this->trim_mm[1]= t[1];
905 this->trim_mm[2]= t[2];
906 pdr->set_taken();
907
908 }else if(pdr->second_element_is(home_offset_checksum)) {
909 float *t= static_cast<float*>(pdr->get_data_ptr());
910 if(!isnan(t[0])) this->home_offset[0]= t[0];
911 if(!isnan(t[1])) this->home_offset[1]= t[1];
912 if(!isnan(t[2])) this->home_offset[2]= t[2];
913 }
914}