remember the last probe position after a probe retrieved with $#
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
... / ...
CommitLineData
1/*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "modules/communication/utils/Gcode.h"
11#include "modules/robot/Conveyor.h"
12#include "modules/robot/ActuatorCoordinates.h"
13#include "Endstops.h"
14#include "libs/nuts_bolts.h"
15#include "libs/Pin.h"
16#include "libs/StepperMotor.h"
17#include "wait_api.h" // mbed.h lib
18#include "Robot.h"
19#include "Stepper.h"
20#include "Config.h"
21#include "SlowTicker.h"
22#include "Planner.h"
23#include "checksumm.h"
24#include "utils.h"
25#include "ConfigValue.h"
26#include "libs/StreamOutput.h"
27#include "PublicDataRequest.h"
28#include "EndstopsPublicAccess.h"
29#include "StreamOutputPool.h"
30#include "StepTicker.h"
31#include "BaseSolution.h"
32#include "SerialMessage.h"
33
34#include <ctype.h>
35
36#define ALPHA_AXIS 0
37#define BETA_AXIS 1
38#define GAMMA_AXIS 2
39#define X_AXIS 0
40#define Y_AXIS 1
41#define Z_AXIS 2
42
43#define endstops_module_enable_checksum CHECKSUM("endstops_enable")
44#define corexy_homing_checksum CHECKSUM("corexy_homing")
45#define delta_homing_checksum CHECKSUM("delta_homing")
46#define rdelta_homing_checksum CHECKSUM("rdelta_homing")
47#define scara_homing_checksum CHECKSUM("scara_homing")
48
49#define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
50#define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
51#define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
52
53#define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
54#define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
55#define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
56
57#define alpha_trim_checksum CHECKSUM("alpha_trim")
58#define beta_trim_checksum CHECKSUM("beta_trim")
59#define gamma_trim_checksum CHECKSUM("gamma_trim")
60
61// these values are in steps and should be deprecated
62#define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
63#define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
64#define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
65
66#define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
67#define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
68#define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
69
70#define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
71#define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
72#define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
73
74// same as above but in user friendly mm/s and mm
75#define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
76#define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
77#define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
78
79#define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
80#define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
81#define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
82
83#define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
84#define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
85#define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
86
87#define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
88
89#define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
90#define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
91#define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
92#define home_to_max_checksum CHECKSUM("home_to_max")
93#define home_to_min_checksum CHECKSUM("home_to_min")
94#define alpha_min_checksum CHECKSUM("alpha_min")
95#define beta_min_checksum CHECKSUM("beta_min")
96#define gamma_min_checksum CHECKSUM("gamma_min")
97
98#define alpha_max_checksum CHECKSUM("alpha_max")
99#define beta_max_checksum CHECKSUM("beta_max")
100#define gamma_max_checksum CHECKSUM("gamma_max")
101
102#define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
103#define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
104#define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
105
106#define homing_order_checksum CHECKSUM("homing_order")
107#define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
108
109#define STEPPER THEKERNEL->robot->actuators
110#define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
111
112
113// Homing States
114enum {
115 MOVING_TO_ENDSTOP_FAST, // homing move
116 MOVING_BACK, // homing move
117 MOVING_TO_ENDSTOP_SLOW, // homing move
118 NOT_HOMING,
119 BACK_OFF_HOME,
120 MOVE_TO_ORIGIN,
121 LIMIT_TRIGGERED
122};
123
124Endstops::Endstops()
125{
126 this->status = NOT_HOMING;
127 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
128}
129
130void Endstops::on_module_loaded()
131{
132 // Do not do anything if not enabled
133 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
134 delete this;
135 return;
136 }
137
138 register_for_event(ON_GCODE_RECEIVED);
139 register_for_event(ON_GET_PUBLIC_DATA);
140 register_for_event(ON_SET_PUBLIC_DATA);
141
142 THEKERNEL->step_ticker->register_acceleration_tick_handler([this]() {acceleration_tick(); });
143
144 // Settings
145 this->on_config_reload(this);
146}
147
148// Get config
149void Endstops::on_config_reload(void *argument)
150{
151 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
156 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
157
158 // These are the old ones in steps still here for backwards compatibility
159 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
160 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
161 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
162 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
163 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
164 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
165 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
166 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
167 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
168
169 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
170 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
171 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
172 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
173 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
174 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
175 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
176 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
177 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
178 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
179
180 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
181
182 // get homing direction and convert to boolean where true is home to min, and false is home to max
183 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
184 this->home_direction[0] = home_dir != home_to_max_checksum;
185
186 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
187 this->home_direction[1] = home_dir != home_to_max_checksum;
188
189 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
190 this->home_direction[2] = home_dir != home_to_max_checksum;
191
192 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
193 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
194 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
195
196 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
197 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
198 this->is_rdelta = THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
199 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
200
201 // see if an order has been specified, must be three characters, XYZ or YXZ etc
202 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
203 this->homing_order = 0;
204 if(order.size() == 3 && !this->is_delta) {
205 int shift = 0;
206 for(auto c : order) {
207 uint8_t i = toupper(c) - 'X';
208 if(i > 2) { // bad value
209 this->homing_order = 0;
210 break;
211 }
212 homing_order |= (i << shift);
213 shift += 2;
214 }
215 }
216
217 // endstop trim used by deltas to do soft adjusting
218 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
219 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
220 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
221 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
222
223 // limits enabled
224 this->limit_enable[X_AXIS] = THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
225 this->limit_enable[Y_AXIS] = THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
226 this->limit_enable[Z_AXIS] = THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
227
228 // set to true by default for deltas duwe to trim, false on cartesians
229 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
230
231 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]) {
232 register_for_event(ON_IDLE);
233 if(this->is_delta) {
234 // we must enable all the limits not just one
235 this->limit_enable[X_AXIS] = true;
236 this->limit_enable[Y_AXIS] = true;
237 this->limit_enable[Z_AXIS] = true;
238 }
239 }
240
241 //
242 if(this->is_delta || this->is_rdelta) {
243 // some things must be the same or they will die, so force it here to avoid config errors
244 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
245 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
246 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
247 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
248 // NOTE homing_position for rdelta is the angle of the actuator not the cartesian position
249 if(!this->is_rdelta) this->homing_position[0] = this->homing_position[1] = 0;
250 }
251}
252
253bool Endstops::debounced_get(int pin)
254{
255 uint8_t debounce = 0;
256 while(this->pins[pin].get()) {
257 if ( ++debounce >= this->debounce_count ) {
258 // pin triggered
259 return true;
260 }
261 }
262 return false;
263}
264
265static const char *endstop_names[] = {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
266
267void Endstops::on_idle(void *argument)
268{
269 if(this->status == LIMIT_TRIGGERED) {
270 // if we were in limit triggered see if it has been cleared
271 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
272 if(this->limit_enable[c]) {
273 std::array<int, 2> minmax{{0, 3}};
274 // check min and max endstops
275 for (int i : minmax) {
276 int n = c + i;
277 if(this->pins[n].get()) {
278 // still triggered, so exit
279 bounce_cnt = 0;
280 return;
281 }
282 }
283 }
284 }
285 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
286 // clear the state
287 this->status = NOT_HOMING;
288 }
289 return;
290
291 } else if(this->status != NOT_HOMING) {
292 // don't check while homing
293 return;
294 }
295
296 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
297 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
298 std::array<int, 2> minmax{{0, 3}};
299 // check min and max endstops
300 for (int i : minmax) {
301 int n = c + i;
302 if(debounced_get(n)) {
303 // endstop triggered
304 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
305 this->status = LIMIT_TRIGGERED;
306 // disables heaters and motors, ignores incoming Gcode and flushes block queue
307 THEKERNEL->call_event(ON_HALT, nullptr);
308 return;
309 }
310 }
311 }
312 }
313}
314
315// if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
316// checks if triggered and only backs off if triggered
317void Endstops::back_off_home(char axes_to_move)
318{
319 std::vector<std::pair<char, float>> params;
320 this->status = BACK_OFF_HOME;
321
322 // these are handled differently
323 if(is_delta) {
324 // Move off of the endstop using a regular relative move in Z only
325 params.push_back({'Z', this->retract_mm[Z_AXIS] * (this->home_direction[Z_AXIS] ? 1 : -1)});
326
327 } else {
328 // cartesians, concatenate all the moves we need to do into one gcode
329 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
330 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
331
332 // if not triggered no need to move off
333 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
334 params.push_back({c + 'X', this->retract_mm[c] * (this->home_direction[c] ? 1 : -1)});
335 }
336 }
337 }
338
339 if(!params.empty()) {
340 // Move off of the endstop using a regular relative move
341 params.insert(params.begin(), {'G', 0});
342 // use X slow rate to move, Z should have a max speed set anyway
343 params.push_back({'F', this->slow_rates[X_AXIS] * 60.0F});
344 char gcode_buf[64];
345 append_parameters(gcode_buf, params, sizeof(gcode_buf));
346 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
347 bool oldmode = THEKERNEL->robot->absolute_mode;
348 THEKERNEL->robot->absolute_mode = false; // needs to be relative mode
349 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
350 THEKERNEL->robot->absolute_mode = oldmode; // restore mode
351 // Wait for above to finish
352 THEKERNEL->conveyor->wait_for_empty_queue();
353 }
354
355 this->status = NOT_HOMING;
356}
357
358// If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
359void Endstops::move_to_origin(char axes_to_move)
360{
361 if( (axes_to_move & 0x03) != 3 ) return; // ignore if X and Y not homing
362
363 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
364 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
365
366 this->status = MOVE_TO_ORIGIN;
367 // Move to center using a regular move, use slower of X and Y fast rate
368 float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
369 char buf[32];
370 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
371 struct SerialMessage message;
372 message.message = buf;
373 message.stream = &(StreamOutput::NullStream);
374 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
375 // Wait for above to finish
376 THEKERNEL->conveyor->wait_for_empty_queue();
377 this->status = NOT_HOMING;
378}
379
380bool Endstops::wait_for_homed(char axes_to_move)
381{
382 bool running = true;
383 unsigned int debounce[3] = {0, 0, 0};
384 while (running) {
385 running = false;
386 THEKERNEL->call_event(ON_IDLE);
387
388 // check if on_halt (eg kill)
389 if(THEKERNEL->is_halted()) return false;
390
391 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
392 if ( ( axes_to_move >> c ) & 1 ) {
393 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
394 if ( debounce[c] < debounce_count ) {
395 debounce[c]++;
396 running = true;
397 } else if ( STEPPER[c]->is_moving() ) {
398 STEPPER[c]->move(0, 0);
399 axes_to_move &= ~(1 << c); // no need to check it again
400 }
401 } else {
402 // The endstop was not hit yet
403 running = true;
404 debounce[c] = 0;
405 }
406 }
407 }
408 }
409 return true;
410}
411
412void Endstops::do_homing_cartesian(char axes_to_move)
413{
414 // check if on_halt (eg kill)
415 if(THEKERNEL->is_halted()) return;
416
417 // this homing works for cartesian and delta printers
418 // Start moving the axes to the origin
419 this->status = MOVING_TO_ENDSTOP_FAST;
420 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
421 if ( ( axes_to_move >> c) & 1 ) {
422 this->feed_rate[c] = this->fast_rates[c];
423 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
424 }
425 }
426
427 // Wait for all axes to have homed
428 if(!this->wait_for_homed(axes_to_move)) return;
429
430 // Move back a small distance
431 this->status = MOVING_BACK;
432 bool inverted_dir;
433 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
434 if ( ( axes_to_move >> c ) & 1 ) {
435 inverted_dir = !this->home_direction[c];
436 this->feed_rate[c] = this->slow_rates[c];
437 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
438 }
439 }
440
441 // Wait for moves to be done
442 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
443 if ( ( axes_to_move >> c ) & 1 ) {
444 while ( STEPPER[c]->is_moving() ) {
445 THEKERNEL->call_event(ON_IDLE);
446 if(THEKERNEL->is_halted()) return;
447 }
448 }
449 }
450
451 // Start moving the axes to the origin slowly
452 this->status = MOVING_TO_ENDSTOP_SLOW;
453 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
454 if ( ( axes_to_move >> c ) & 1 ) {
455 this->feed_rate[c] = this->slow_rates[c];
456 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
457 }
458 }
459
460 // Wait for all axes to have homed
461 if(!this->wait_for_homed(axes_to_move)) return;
462}
463
464bool Endstops::wait_for_homed_corexy(int axis)
465{
466 bool running = true;
467 unsigned int debounce[3] = {0, 0, 0};
468 while (running) {
469 running = false;
470 THEKERNEL->call_event(ON_IDLE);
471
472 // check if on_halt (eg kill)
473 if(THEKERNEL->is_halted()) return false;
474
475 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
476 if ( debounce[axis] < debounce_count ) {
477 debounce[axis] ++;
478 running = true;
479 } else {
480 // turn both off if running
481 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
482 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
483 }
484 } else {
485 // The endstop was not hit yet
486 running = true;
487 debounce[axis] = 0;
488 }
489 }
490 return true;
491}
492
493void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
494{
495 // check if on_halt (eg kill)
496 if(THEKERNEL->is_halted()) return;
497
498 this->status = MOVING_TO_ENDSTOP_FAST;
499 this->feed_rate[X_AXIS] = fast_rate;
500 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
501 this->feed_rate[Y_AXIS] = fast_rate;
502 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
503
504 // wait for primary axis
505 if(!this->wait_for_homed_corexy(home_axis)) return;
506
507 // Move back a small distance
508 this->status = MOVING_BACK;
509 this->feed_rate[X_AXIS] = slow_rate;
510 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
511 this->feed_rate[Y_AXIS] = slow_rate;
512 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
513
514 // wait until done
515 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
516 THEKERNEL->call_event(ON_IDLE);
517 if(THEKERNEL->is_halted()) return;
518 }
519
520 // Start moving the axes to the origin slowly
521 this->status = MOVING_TO_ENDSTOP_SLOW;
522 this->feed_rate[X_AXIS] = slow_rate;
523 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
524 this->feed_rate[Y_AXIS] = slow_rate;
525 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
526
527 // wait for primary axis
528 if(!this->wait_for_homed_corexy(home_axis)) return;
529}
530
531// this homing works for HBots/CoreXY
532void Endstops::do_homing_corexy(char axes_to_move)
533{
534 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
535 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
536 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
537 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
538
539 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
540 // determine which motor to turn and which way
541 bool dirx = this->home_direction[X_AXIS];
542 bool diry = this->home_direction[Y_AXIS];
543 int motor;
544 bool dir;
545 if(dirx && diry) { // min/min
546 motor = X_AXIS;
547 dir = true;
548 } else if(dirx && !diry) { // min/max
549 motor = Y_AXIS;
550 dir = true;
551 } else if(!dirx && diry) { // max/min
552 motor = Y_AXIS;
553 dir = false;
554 } else if(!dirx && !diry) { // max/max
555 motor = X_AXIS;
556 dir = false;
557 }
558
559 // then move both X and Y until one hits the endstop
560 this->status = MOVING_TO_ENDSTOP_FAST;
561 // need to allow for more ground covered when moving diagonally
562 this->feed_rate[motor] = this->fast_rates[motor] * 1.4142;
563 STEPPER[motor]->move(dir, 10000000, 0);
564 // wait until either X or Y hits the endstop
565 bool running = true;
566 while (running) {
567 THEKERNEL->call_event(ON_IDLE);
568 if(THEKERNEL->is_halted()) return;
569 for(int m = X_AXIS; m <= Y_AXIS; m++) {
570 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
571 // turn off motor
572 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
573 running = false;
574 break;
575 }
576 }
577 }
578 }
579
580 // move individual axis
581 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
582 bool dir = this->home_direction[X_AXIS];
583 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
584 }
585
586 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
587 bool dir = this->home_direction[Y_AXIS];
588 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
589 }
590
591 if (axes_to_move & 0x04) { // move Z
592 do_homing_cartesian(0x04); // just home normally for Z
593 }
594}
595
596void Endstops::home(char axes_to_move)
597{
598 // not a block move so disable the last tick setting
599 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
600 STEPPER[c]->set_moved_last_block(false);
601 }
602
603 if (is_corexy) {
604 // corexy/HBot homing
605 do_homing_corexy(axes_to_move);
606 } else {
607 // cartesian/delta homing
608 do_homing_cartesian(axes_to_move);
609 }
610
611 // make sure all steppers are off (especially if aborted)
612 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
613 STEPPER[c]->move(0, 0);
614 }
615 this->status = NOT_HOMING;
616}
617
618// Start homing sequences by response to GCode commands
619void Endstops::on_gcode_received(void *argument)
620{
621 Gcode *gcode = static_cast<Gcode *>(argument);
622 if ( gcode->has_g && gcode->g == 28) {
623 if( (gcode->subcode == 0 && THEKERNEL->is_grbl_mode()) || (gcode->subcode == 2 && !THEKERNEL->is_grbl_mode()) ) {
624 // G28 in grbl mode or G28.2 in normal mode will do a rapid to the predefined position
625 // TODO spec says if XYZ specified move to them first then move to MCS of specifed axis
626 char buf[32];
627 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
628 struct SerialMessage message;
629 message.message = buf;
630 message.stream = &(StreamOutput::NullStream);
631 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
632 return;
633
634 } else if(THEKERNEL->is_grbl_mode() && gcode->subcode == 2) { // G28.2 in grbl mode forces homing (triggered by $H)
635 // fall through so it does homing cycle
636
637 } else if(gcode->subcode == 1) { // G28.1 set pre defined position
638 // saves current position in absolute machine coordinates
639 THEKERNEL->robot->get_axis_position(saved_position);
640 return;
641
642 } else if(gcode->subcode == 3) { // G28.3 is a smoothie special it sets manual homing
643 if(gcode->get_num_args() == 0) {
644 THEKERNEL->robot->reset_axis_position(0, 0, 0);
645 } else {
646 // do a manual homing based on given coordinates, no endstops required
647 if(gcode->has_letter('X')) THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
648 if(gcode->has_letter('Y')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
649 if(gcode->has_letter('Z')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
650 }
651 return;
652
653 } else if(gcode->subcode == 4) { // G28.4 is a smoothie special it sets manual homing based on the actuator position (used for rotary delta)
654 // do a manual homing based on given coordinates, no endstops required
655 float a=NAN, b=NAN, c=NAN;
656 if(gcode->has_letter('A')) a= gcode->get_value('A');
657 if(gcode->has_letter('B')) b= gcode->get_value('B');
658 if(gcode->has_letter('C')) c= gcode->get_value('C');
659 THEKERNEL->robot->reset_actuator_position(a, b, c);
660 return;
661
662 } else if(THEKERNEL->is_grbl_mode()) {
663 gcode->stream->printf("error:Unsupported command\n");
664 return;
665 }
666
667 // G28 is received, we have homing to do
668
669 // First wait for the queue to be empty
670 THEKERNEL->conveyor->wait_for_empty_queue();
671
672 // Do we move select axes or all of them
673 char axes_to_move = 0;
674 // only enable homing if the endstop is defined, deltas, scaras always home all axis
675 bool home_all = this->is_delta || this->is_rdelta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
676
677 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
678 if ( (home_all || gcode->has_letter(c + 'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
679 axes_to_move += ( 1 << c );
680 }
681 }
682
683 // Enable the motors
684 THEKERNEL->stepper->turn_enable_pins_on();
685
686 // do the actual homing
687 if(homing_order != 0) {
688 // if an order has been specified do it in the specified order
689 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
690 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
691 for (uint8_t m = homing_order; m != 0; m >>= 2) {
692 int a = (1 << (m & 0x03)); // axis to move
693 if((a & axes_to_move) != 0) {
694 home(a);
695 }
696 // check if on_halt (eg kill)
697 if(THEKERNEL->is_halted()) break;
698 }
699
700 } else {
701 // they all home at the same time
702 home(axes_to_move);
703 }
704
705 // check if on_halt (eg kill)
706 if(THEKERNEL->is_halted()) {
707 if(!THEKERNEL->is_grbl_mode()) {
708 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
709 }
710 return;
711 }
712
713 // set the last probe position to the actuator units moved during this home
714 THEKERNEL->robot->set_last_probe_position(std::make_tuple(STEPPER[0]->get_stepped()/STEPS_PER_MM(0), STEPPER[1]->get_stepped()/STEPS_PER_MM(1), STEPPER[2]->get_stepped()/STEPS_PER_MM(2), 0));
715
716 if(home_all) {
717 // Here's where we would have been if the endstops were perfectly trimmed
718 // NOTE on a rotary delta home_offset is actuator position in degrees when homed and
719 // home_offset is the theta offset for each actuator, so M206 is used to set theta offset for each actuator in degrees
720 float ideal_position[3] = {
721 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
722 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
723 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
724 };
725
726 bool has_endstop_trim = this->is_delta || this->is_scara;
727 if (has_endstop_trim) {
728 ActuatorCoordinates ideal_actuator_position;
729 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
730
731 // We are actually not at the ideal position, but a trim away
732 ActuatorCoordinates real_actuator_position = {
733 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
734 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
735 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
736 };
737
738 float real_position[3];
739 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
740 // Reset the actuator positions to correspond our real position
741 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
742
743 } else {
744 // without endstop trim, real_position == ideal_position
745 if(is_rdelta) {
746 // with a rotary delta we set the actuators angle then use the FK to calculate the resulting cartesian coordinates
747 THEKERNEL->robot->reset_actuator_position(ideal_position[0], ideal_position[1], ideal_position[2]);
748
749 }else{
750 // Reset the actuator positions to correspond our real position
751 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
752 }
753 }
754
755 } else {
756 // Zero the ax(i/e)s position, add in the home offset
757 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
758 if ( (axes_to_move >> c) & 1 ) {
759 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
760 }
761 }
762 }
763
764 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
765 // default is off for cartesian on for deltas
766 if(!is_delta) {
767 // NOTE a rotary delta usually has optical or hall-effect endstops so it is safe to go past them a little bit
768 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
769 // if limit switches are enabled we must back off endstop after setting home
770 back_off_home(axes_to_move);
771
772 } else if(this->move_to_origin_after_home || this->limit_enable[X_AXIS]) {
773 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
774 // also need to back off endstops if limits are enabled
775 back_off_home(axes_to_move);
776 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
777 }
778 }
779
780 if (gcode->has_m) {
781 switch (gcode->m) {
782 case 119: {
783 for (int i = 0; i < 6; ++i) {
784 if(this->pins[i].connected())
785 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
786 }
787 gcode->add_nl = true;
788
789 }
790 break;
791
792 case 206: // M206 - set homing offset
793 if(!is_rdelta) {
794 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
795 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
796 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
797 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
798
799 }else{
800 // set theta offset
801 if (gcode->has_letter('A')) home_offset[0] = gcode->get_value('A');
802 if (gcode->has_letter('B')) home_offset[1] = gcode->get_value('B');
803 if (gcode->has_letter('C')) home_offset[2] = gcode->get_value('C');
804 gcode->stream->printf("Theta offset A %8.5f B %8.5f C %8.5f\n", home_offset[0], home_offset[1], home_offset[2]);
805 }
806 break;
807
808 case 306:
809 if(!is_rdelta) { // Similar to M206 and G92 but sets Homing offsets based on current position
810 float cartesian[3];
811 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
812 if (gcode->has_letter('X')) {
813 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
814 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
815 }
816 if (gcode->has_letter('Y')) {
817 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
818 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
819 }
820 if (gcode->has_letter('Z')) {
821 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
822 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
823 }
824
825 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
826
827 }else{
828 // for a rotary delta M306 calibrates the homing angle
829 // by doing M306 A-56.17 it will calculate the M206 A value (the theta offset for actuator A) based on the difference
830 // between what it thinks is the current angle and what the current angle actually is specified by A (ditto for B and C)
831
832 // get the current angle for each actuator
833 ActuatorCoordinates current_angle{
834 THEKERNEL->robot->actuators[X_AXIS]->get_current_position(),
835 THEKERNEL->robot->actuators[Y_AXIS]->get_current_position(),
836 THEKERNEL->robot->actuators[Z_AXIS]->get_current_position()
837 };
838
839 //figure out what home_offset needs to be to correct the homing_position
840 if (gcode->has_letter('A')) {
841 float a= gcode->get_value('A'); // what actual angle is
842 home_offset[0]= (a - current_angle[0]);
843 THEKERNEL->robot->reset_actuator_position(a, NAN, NAN);
844 }
845 if (gcode->has_letter('B')) {
846 float b= gcode->get_value('B');
847 home_offset[1]= (b - current_angle[1]);
848 THEKERNEL->robot->reset_actuator_position(NAN, b, NAN);
849 }
850 if (gcode->has_letter('C')) {
851 float c= gcode->get_value('C');
852 home_offset[2]= (c - current_angle[2]);
853 THEKERNEL->robot->reset_actuator_position(NAN, NAN, c);
854 }
855
856 gcode->stream->printf("Theta Offset: A %8.5f B %8.5f C %8.5f\n", home_offset[0], home_offset[1], home_offset[2]);
857 }
858 break;
859
860 case 500: // save settings
861 case 503: // print settings
862 if(!is_rdelta)
863 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
864 else
865 gcode->stream->printf(";Theta offset (degrees):\nM206 A%1.5f B%1.5f C%1.5f\n", home_offset[0], home_offset[1], home_offset[2]);
866
867 if (this->is_delta || this->is_scara) {
868 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
869 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
870 }
871 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
872 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f Z%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS], saved_position[Z_AXIS]);
873 }
874 break;
875
876 case 665:
877 if (this->is_delta || this->is_scara) { // M665 - set max gamma/z height
878 float gamma_max = this->homing_position[2];
879 if (gcode->has_letter('Z')) {
880 this->homing_position[2] = gamma_max = gcode->get_value('Z');
881 }
882 gcode->stream->printf("Max Z %8.3f ", gamma_max);
883 gcode->add_nl = true;
884 }
885 break;
886
887 case 666:
888 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
889 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
890 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
891 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
892
893 // print the current trim values in mm
894 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
895
896 }
897 break;
898
899 // NOTE this is to test accuracy of lead screws etc.
900 case 1910: {
901 // M1910.0 - move specific number of raw steps
902 // M1910.1 - stop any moves
903 // M1910.2 - move specific number of actuator coordinates (usually mm but is degrees for a rotary delta)
904 if(gcode->subcode == 0 || gcode->subcode == 2) {
905 // Enable the motors
906 THEKERNEL->stepper->turn_enable_pins_on();
907
908 int32_t x = 0, y = 0, z = 0, f = 200 * 16;
909 if (gcode->has_letter('F')) f = gcode->get_value('F');
910
911 if (gcode->has_letter('X')) {
912 float v = gcode->get_value('X');
913 if(gcode->subcode == 2) x= lroundf(v * STEPS_PER_MM(X_AXIS));
914 else x= roundf(v);
915 STEPPER[X_AXIS]->move(x < 0, abs(x), f);
916 }
917 if (gcode->has_letter('Y')) {
918 float v = gcode->get_value('Y');
919 if(gcode->subcode == 2) y= lroundf(v * STEPS_PER_MM(Y_AXIS));
920 else y= roundf(v);
921 STEPPER[Y_AXIS]->move(y < 0, abs(y), f);
922 }
923 if (gcode->has_letter('Z')) {
924 float v = gcode->get_value('Z');
925 if(gcode->subcode == 2) z= lroundf(v * STEPS_PER_MM(Z_AXIS));
926 else z= roundf(v);
927 STEPPER[Z_AXIS]->move(z < 0, abs(z), f);
928 }
929 gcode->stream->printf("Moving X %ld Y %ld Z %ld steps at F %ld steps/sec\n", x, y, z, f);
930
931 } else if(gcode->subcode == 1) {
932 // stop any that are moving
933 for (int i = 0; i < 3; ++i) {
934 if(STEPPER[i]->is_moving()) STEPPER[i]->move(0, 0);
935 }
936 }
937 break;
938 }
939 }
940 }
941}
942
943// Called periodically to change the speed to match acceleration
944void Endstops::acceleration_tick(void)
945{
946 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
947
948 // foreach stepper that is moving
949 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
950 if( !STEPPER[c]->is_moving() ) continue;
951
952 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
953 uint32_t target_rate = floorf(this->feed_rate[c] * STEPS_PER_MM(c));
954 float acc = (c == Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
955 if( current_rate < target_rate ) {
956 uint32_t rate_increase = floorf((acc / THEKERNEL->acceleration_ticks_per_second) * STEPS_PER_MM(c));
957 current_rate = min( target_rate, current_rate + rate_increase );
958 }
959 if( current_rate > target_rate ) { current_rate = target_rate; }
960
961 // steps per second
962 STEPPER[c]->set_speed(current_rate);
963 }
964
965 return;
966}
967
968void Endstops::on_get_public_data(void* argument)
969{
970 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
971
972 if(!pdr->starts_with(endstops_checksum)) return;
973
974 if(pdr->second_element_is(trim_checksum)) {
975 pdr->set_data_ptr(&this->trim_mm);
976 pdr->set_taken();
977
978 } else if(pdr->second_element_is(home_offset_checksum)) {
979 pdr->set_data_ptr(&this->home_offset);
980 pdr->set_taken();
981
982 } else if(pdr->second_element_is(saved_position_checksum)) {
983 pdr->set_data_ptr(&this->saved_position);
984 pdr->set_taken();
985
986 } else if(pdr->second_element_is(get_homing_status_checksum)) {
987 bool *homing= static_cast<bool *>(pdr->get_data_ptr());
988 *homing= this->status != NOT_HOMING;
989 pdr->set_taken();
990 }
991}
992
993void Endstops::on_set_public_data(void* argument)
994{
995 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
996
997 if(!pdr->starts_with(endstops_checksum)) return;
998
999 if(pdr->second_element_is(trim_checksum)) {
1000 float *t = static_cast<float*>(pdr->get_data_ptr());
1001 this->trim_mm[0] = t[0];
1002 this->trim_mm[1] = t[1];
1003 this->trim_mm[2] = t[2];
1004 pdr->set_taken();
1005
1006 } else if(pdr->second_element_is(home_offset_checksum)) {
1007 float *t = static_cast<float*>(pdr->get_data_ptr());
1008 if(!isnan(t[0])) this->home_offset[0] = t[0];
1009 if(!isnan(t[1])) this->home_offset[1] = t[1];
1010 if(!isnan(t[2])) this->home_offset[2] = t[2];
1011 }
1012}