Go back to stepticker getting data direct from block queue.
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65 17#include "libs/StreamOutputPool.h"
8b260c2c 18#include "StepTicker.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
8b260c2c
JM
25#define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
26#define STEP_TICKER_FREQUENCY_2 (STEP_TICKER_FREQUENCY*STEP_TICKER_FREQUENCY)
27
edac9072
AW
28// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
29// It's stacked on a queue, and that queue is then executed in order, to move the motors.
30// Most of the accel math is also done in this class
31// And GCode objects for use in on_gcode_execute are also help in here
32
1cf31736
JM
33Block::Block()
34{
35 clear();
36}
37
38void Block::clear()
39{
40 //commands.clear();
41 //travel_distances.clear();
9e6014a6
JM
42 //gcodes.clear();
43 //std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
b64cb3dd 44
807b9b57 45 this->steps.fill(0);
1cf31736 46
f539c22f 47 steps_event_count = 0;
1598a726 48 nominal_rate = 0.0F;
f539c22f
MM
49 nominal_speed = 0.0F;
50 millimeters = 0.0F;
51 entry_speed = 0.0F;
f6542ad9 52 exit_speed = 0.0F;
3eadcfee 53 acceleration = 100.0F; // we don't want to get devide by zeroes if this is not set
1598a726 54 initial_rate = 0.0F;
f539c22f
MM
55 accelerate_until = 0;
56 decelerate_after = 0;
57 direction_bits = 0;
58 recalculate_flag = false;
59 nominal_length_flag = false;
60 max_entry_speed = 0.0F;
433d636f 61 is_ready = false;
f6542ad9
JM
62 is_ticking = false;
63 locked = false;
9e6014a6 64
8b260c2c
JM
65 acceleration_per_tick= 0;
66 deceleration_per_tick= 0;
67 total_move_ticks= 0;
4cff3ded
AW
68}
69
433d636f 70void Block::debug() const
1cf31736 71{
121844b7 72 THEKERNEL->streams->printf("%p: steps:X%04lu Y%04lu Z%04lu(max:%4lu) nominal:r%6.1f/s%6.1f mm:%9.6f acc:%5lu dec:%5lu rates:%10.4f entry/max: %10.4f/%10.4f ready:%d recalc:%d nomlen:%d time:%f\r\n",
2134bcf2 73 this,
1b5776bf
JM
74 this->steps[0],
75 this->steps[1],
76 this->steps[2],
77 this->steps_event_count,
78 this->nominal_rate,
79 this->nominal_speed,
80 this->millimeters,
1b5776bf
JM
81 this->accelerate_until,
82 this->decelerate_after,
83 this->initial_rate,
1b5776bf
JM
84 this->entry_speed,
85 this->max_entry_speed,
1b5776bf
JM
86 this->is_ready,
87 recalculate_flag ? 1 : 0,
121844b7
JM
88 nominal_length_flag ? 1 : 0,
89 total_move_ticks/STEP_TICKER_FREQUENCY
1b5776bf 90 );
4cff3ded
AW
91}
92
93
69735c09 94/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
95// The factors represent a factor of braking and must be in the range 0.0-1.0.
96// +--------+ <- nominal_rate
97// / \
98// nominal_rate*entry_factor -> + \
99// | + <- nominal_rate*exit_factor
100// +-------------+
101// time -->
edac9072 102*/
a617ac35 103void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 104{
f6542ad9
JM
105 // if block is currently executing, don't touch anything!
106 if (is_ticking) return;
107
8b260c2c
JM
108 float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
109 float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
110 //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
111 // How many steps ( can be fractions of steps, we need very precise values ) to accelerate and decelerate
112 // This is a simplification to get rid of rate_delta and get the steps/s² accel directly from the mm/s² accel
113 float acceleration_per_second = (this->acceleration * this->steps_event_count) / this->millimeters;
114
115 float maximum_possible_rate = sqrtf( ( this->steps_event_count * acceleration_per_second ) + ( ( powf(initial_rate, 2) + powf(final_rate, 2) ) / 2.0F ) );
116
117 //printf("id %d: acceleration_per_second: %f, maximum_possible_rate: %f steps/sec, %f mm/sec\n", this->id, acceleration_per_second, maximum_possible_rate, maximum_possible_rate/100);
118
119 // Now this is the maximum rate we'll achieve this move, either because
120 // it's the higher we can achieve, or because it's the higher we are
121 // allowed to achieve
1ae56063 122 this->maximum_rate = std::min(maximum_possible_rate, this->nominal_rate);
8b260c2c
JM
123
124 // Now figure out how long it takes to accelerate in seconds
125 float time_to_accelerate = ( this->maximum_rate - initial_rate ) / acceleration_per_second;
126
127 // Now figure out how long it takes to decelerate
128 float time_to_decelerate = ( final_rate - this->maximum_rate ) / -acceleration_per_second;
129
130 // Now we know how long it takes to accelerate and decelerate, but we must
131 // also know how long the entire move takes so we can figure out how long
132 // is the plateau if there is one
133 float plateau_time = 0;
134
135 // Only if there is actually a plateau ( we are limited by nominal_rate )
136 if(maximum_possible_rate > this->nominal_rate) {
137 // Figure out the acceleration and deceleration distances ( in steps )
138 float acceleration_distance = ( ( initial_rate + this->maximum_rate ) / 2.0F ) * time_to_accelerate;
139 float deceleration_distance = ( ( this->maximum_rate + final_rate ) / 2.0F ) * time_to_decelerate;
140
141 // Figure out the plateau steps
142 float plateau_distance = this->steps_event_count - acceleration_distance - deceleration_distance;
143
144 // Figure out the plateau time in seconds
145 plateau_time = plateau_distance / this->maximum_rate;
1cf31736 146 }
4cff3ded 147
8b260c2c
JM
148 // Figure out how long the move takes total ( in seconds )
149 float total_move_time = time_to_accelerate + time_to_decelerate + plateau_time;
150 //puts "total move time: #{total_move_time}s time to accelerate: #{time_to_accelerate}, time to decelerate: #{time_to_decelerate}"
151
152 // We now have the full timing for acceleration, plateau and deceleration,
153 // yay \o/ Now this is very important these are in seconds, and we need to
154 // round them into ticks. This means instead of accelerating in 100.23
155 // ticks we'll accelerate in 100 ticks. Which means to reach the exact
156 // speed we want to reach, we must figure out a new/slightly different
157 // acceleration/deceleration to be sure we accelerate and decelerate at
158 // the exact rate we want
159
160 // First off round total time, acceleration time and deceleration time in ticks
161 uint32_t acceleration_ticks = floorf( time_to_accelerate * STEP_TICKER_FREQUENCY );
162 uint32_t deceleration_ticks = floorf( time_to_decelerate * STEP_TICKER_FREQUENCY );
163 uint32_t total_move_ticks = floorf( total_move_time * STEP_TICKER_FREQUENCY );
164
165 // Now deduce the plateau time for those new values expressed in tick
166 //uint32_t plateau_ticks = total_move_ticks - acceleration_ticks - deceleration_ticks;
167
168 // Now we figure out the acceleration value to reach EXACTLY maximum_rate(steps/s) in EXACTLY acceleration_ticks(ticks) amount of time in seconds
169 float acceleration_time = acceleration_ticks / STEP_TICKER_FREQUENCY; // This can be moved into the operation below, separated for clarity, note we need to do this instead of using time_to_accelerate(seconds) directly because time_to_accelerate(seconds) and acceleration_ticks(seconds) do not have the same value anymore due to the rounding
170 float deceleration_time = deceleration_ticks / STEP_TICKER_FREQUENCY;
171
172 float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
173 float deceleration_in_steps = (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
174
f6542ad9
JM
175 // we have a potential race condition here as we could get interrupted anywhere in the middle of this call, we need to lock
176 // the updates to the blocks to get around it
177 this->locked= true;
8b260c2c
JM
178 // Now figure out the two acceleration ramp change events in ticks
179 this->accelerate_until = acceleration_ticks;
180 this->decelerate_after = total_move_ticks - deceleration_ticks;
181
182 // Now figure out the acceleration PER TICK, this should ideally be held as a float, even a double if possible as it's very critical to the block timing
183 // steps/tick^2
184
185 this->acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2;
186 this->deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
187
188 // We now have everything we need for this block to call a Steppermotor->move method !!!!
189 // Theorically, if accel is done per tick, the speed curve should be perfect.
8b260c2c
JM
190 this->total_move_ticks = total_move_ticks;
191
192 //puts "accelerate_until: #{this->accelerate_until}, decelerate_after: #{this->decelerate_after}, acceleration_per_tick: #{this->acceleration_per_tick}, total_move_ticks: #{this->total_move_ticks}"
193
194 this->initial_rate = initial_rate;
f6542ad9
JM
195 this->exit_speed = exitspeed;
196
197 // prepare the block for stepticker
198 this->prepare();
199 this->locked= false;
4cff3ded
AW
200}
201
4cff3ded
AW
202// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
203// acceleration within the allotted distance.
558e170c 204float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
1cf31736 205{
a617ac35 206 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
207}
208
4cff3ded 209// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 210float Block::reverse_pass(float exit_speed)
1cf31736 211{
a617ac35
MM
212 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
213 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
214 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
1b5776bf 215 if (this->entry_speed != this->max_entry_speed) {
a617ac35
MM
216 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
217 // for max allowable speed if block is decelerating and nominal length is false.
1b5776bf 218 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed)) {
4fdd2470 219 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
a617ac35
MM
220
221 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
222
223 return this->entry_speed;
1b5776bf 224 } else
a617ac35
MM
225 this->entry_speed = this->max_entry_speed;
226 }
4cff3ded 227
a617ac35 228 return this->entry_speed;
aab6cbba 229}
4cff3ded
AW
230
231
232// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
233// returns maximum exit speed of this block
234float Block::forward_pass(float prev_max_exit_speed)
1cf31736 235{
aab6cbba
AW
236 // If the previous block is an acceleration block, but it is not long enough to complete the
237 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
238 // speeds have already been reset, maximized, and reverse planned by reverse planner.
239 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
240
241 // TODO: find out if both of these checks are necessary
242 if (prev_max_exit_speed > nominal_speed)
243 prev_max_exit_speed = nominal_speed;
244 if (prev_max_exit_speed > max_entry_speed)
245 prev_max_exit_speed = max_entry_speed;
246
1b5776bf 247 if (prev_max_exit_speed <= entry_speed) {
a617ac35
MM
248 // accel limited
249 entry_speed = prev_max_exit_speed;
250 // since we're now acceleration or cruise limited
251 // we don't need to recalculate our entry speed anymore
252 recalculate_flag = false;
aab6cbba 253 }
a617ac35
MM
254 // else
255 // // decel limited, do nothing
7b49793d 256
a617ac35
MM
257 return max_exit_speed();
258}
259
260float Block::max_exit_speed()
261{
5de195be
MM
262 // if block is currently executing, return cached exit speed from calculate_trapezoid
263 // this ensures that a block following a currently executing block will have correct entry speed
f6542ad9
JM
264 if(is_ticking)
265 return this->exit_speed;
5de195be 266
a617ac35
MM
267 // if nominal_length_flag is asserted
268 // we are guaranteed to reach nominal speed regardless of entry speed
269 // thus, max exit will always be nominal
270 if (nominal_length_flag)
271 return nominal_speed;
272
273 // otherwise, we have to work out max exit speed based on entry and acceleration
4fdd2470 274 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
a617ac35
MM
275
276 return min(max, nominal_speed);
4cff3ded
AW
277}
278
f6542ad9
JM
279// prepare block for the step ticker, called everytime the block changes
280// this is done ahead of time so does not delay tick generation, see Conveyor::check_queue()
281void Block::prepare()
282{
283 float inv = 1.0F / this->steps_event_count;
284 for (uint8_t m = 0; m < k_max_actuators; m++) {
285 uint32_t steps = this->steps[m];
286 this->tick_info[m].steps_to_move = steps;
287 if(steps == 0) continue;
288
289 float aratio = inv * steps;
290 this->tick_info[m].steps_per_tick = STEPTICKER_TOFP((this->initial_rate * aratio) / STEP_TICKER_FREQUENCY); // steps/sec / tick frequency to get steps per tick in 2.30 fixed point
291 this->tick_info[m].counter = 0; // 2.30 fixed point
292 this->tick_info[m].step_count = 0;
293 this->tick_info[m].next_accel_event = this->total_move_ticks + 1;
294
295 float acceleration_change = 0;
296 if(this->accelerate_until != 0) { // If the next accel event is the end of accel
297 this->tick_info[m].next_accel_event = this->accelerate_until;
298 acceleration_change = this->acceleration_per_tick;
299
300 } else if(this->decelerate_after == 0 /*&& this->accelerate_until == 0*/) {
301 // we start off decelerating
302 acceleration_change = -this->deceleration_per_tick;
303
304 } else if(this->decelerate_after != this->total_move_ticks /*&& this->accelerate_until == 0*/) {
305 // If the next event is the start of decel ( don't set this if the next accel event is accel end )
306 this->tick_info[m].next_accel_event = this->decelerate_after;
307 }
308
309 // convert to fixed point after scaling
310 this->tick_info[m].acceleration_change= STEPTICKER_TOFP(acceleration_change * aratio);
311 this->tick_info[m].deceleration_change= -STEPTICKER_TOFP(this->deceleration_per_tick * aratio);
312 this->tick_info[m].plateau_rate= STEPTICKER_TOFP((this->maximum_rate * aratio) / STEP_TICKER_FREQUENCY);
313 }
314}